re PR middle-end/50260 (internal compiler error: Segmentation fault at ../../gcc...
[gcc.git] / gcc / tree-sra.c
1 /* Scalar Replacement of Aggregates (SRA) converts some structure
2 references into scalar references, exposing them to the scalar
3 optimizers.
4 Copyright (C) 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
5 Contributed by Martin Jambor <mjambor@suse.cz>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* This file implements Scalar Reduction of Aggregates (SRA). SRA is run
24 twice, once in the early stages of compilation (early SRA) and once in the
25 late stages (late SRA). The aim of both is to turn references to scalar
26 parts of aggregates into uses of independent scalar variables.
27
28 The two passes are nearly identical, the only difference is that early SRA
29 does not scalarize unions which are used as the result in a GIMPLE_RETURN
30 statement because together with inlining this can lead to weird type
31 conversions.
32
33 Both passes operate in four stages:
34
35 1. The declarations that have properties which make them candidates for
36 scalarization are identified in function find_var_candidates(). The
37 candidates are stored in candidate_bitmap.
38
39 2. The function body is scanned. In the process, declarations which are
40 used in a manner that prevent their scalarization are removed from the
41 candidate bitmap. More importantly, for every access into an aggregate,
42 an access structure (struct access) is created by create_access() and
43 stored in a vector associated with the aggregate. Among other
44 information, the aggregate declaration, the offset and size of the access
45 and its type are stored in the structure.
46
47 On a related note, assign_link structures are created for every assign
48 statement between candidate aggregates and attached to the related
49 accesses.
50
51 3. The vectors of accesses are analyzed. They are first sorted according to
52 their offset and size and then scanned for partially overlapping accesses
53 (i.e. those which overlap but one is not entirely within another). Such
54 an access disqualifies the whole aggregate from being scalarized.
55
56 If there is no such inhibiting overlap, a representative access structure
57 is chosen for every unique combination of offset and size. Afterwards,
58 the pass builds a set of trees from these structures, in which children
59 of an access are within their parent (in terms of offset and size).
60
61 Then accesses are propagated whenever possible (i.e. in cases when it
62 does not create a partially overlapping access) across assign_links from
63 the right hand side to the left hand side.
64
65 Then the set of trees for each declaration is traversed again and those
66 accesses which should be replaced by a scalar are identified.
67
68 4. The function is traversed again, and for every reference into an
69 aggregate that has some component which is about to be scalarized,
70 statements are amended and new statements are created as necessary.
71 Finally, if a parameter got scalarized, the scalar replacements are
72 initialized with values from respective parameter aggregates. */
73
74 #include "config.h"
75 #include "system.h"
76 #include "coretypes.h"
77 #include "alloc-pool.h"
78 #include "tm.h"
79 #include "tree.h"
80 #include "gimple.h"
81 #include "cgraph.h"
82 #include "tree-flow.h"
83 #include "ipa-prop.h"
84 #include "tree-pretty-print.h"
85 #include "statistics.h"
86 #include "tree-dump.h"
87 #include "timevar.h"
88 #include "params.h"
89 #include "target.h"
90 #include "flags.h"
91 #include "dbgcnt.h"
92 #include "tree-inline.h"
93 #include "gimple-pretty-print.h"
94 #include "ipa-inline.h"
95
96 /* Enumeration of all aggregate reductions we can do. */
97 enum sra_mode { SRA_MODE_EARLY_IPA, /* early call regularization */
98 SRA_MODE_EARLY_INTRA, /* early intraprocedural SRA */
99 SRA_MODE_INTRA }; /* late intraprocedural SRA */
100
101 /* Global variable describing which aggregate reduction we are performing at
102 the moment. */
103 static enum sra_mode sra_mode;
104
105 struct assign_link;
106
107 /* ACCESS represents each access to an aggregate variable (as a whole or a
108 part). It can also represent a group of accesses that refer to exactly the
109 same fragment of an aggregate (i.e. those that have exactly the same offset
110 and size). Such representatives for a single aggregate, once determined,
111 are linked in a linked list and have the group fields set.
112
113 Moreover, when doing intraprocedural SRA, a tree is built from those
114 representatives (by the means of first_child and next_sibling pointers), in
115 which all items in a subtree are "within" the root, i.e. their offset is
116 greater or equal to offset of the root and offset+size is smaller or equal
117 to offset+size of the root. Children of an access are sorted by offset.
118
119 Note that accesses to parts of vector and complex number types always
120 represented by an access to the whole complex number or a vector. It is a
121 duty of the modifying functions to replace them appropriately. */
122
123 struct access
124 {
125 /* Values returned by `get_ref_base_and_extent' for each component reference
126 If EXPR isn't a component reference just set `BASE = EXPR', `OFFSET = 0',
127 `SIZE = TREE_SIZE (TREE_TYPE (expr))'. */
128 HOST_WIDE_INT offset;
129 HOST_WIDE_INT size;
130 tree base;
131
132 /* Expression. It is context dependent so do not use it to create new
133 expressions to access the original aggregate. See PR 42154 for a
134 testcase. */
135 tree expr;
136 /* Type. */
137 tree type;
138
139 /* The statement this access belongs to. */
140 gimple stmt;
141
142 /* Next group representative for this aggregate. */
143 struct access *next_grp;
144
145 /* Pointer to the group representative. Pointer to itself if the struct is
146 the representative. */
147 struct access *group_representative;
148
149 /* If this access has any children (in terms of the definition above), this
150 points to the first one. */
151 struct access *first_child;
152
153 /* In intraprocedural SRA, pointer to the next sibling in the access tree as
154 described above. In IPA-SRA this is a pointer to the next access
155 belonging to the same group (having the same representative). */
156 struct access *next_sibling;
157
158 /* Pointers to the first and last element in the linked list of assign
159 links. */
160 struct assign_link *first_link, *last_link;
161
162 /* Pointer to the next access in the work queue. */
163 struct access *next_queued;
164
165 /* Replacement variable for this access "region." Never to be accessed
166 directly, always only by the means of get_access_replacement() and only
167 when grp_to_be_replaced flag is set. */
168 tree replacement_decl;
169
170 /* Is this particular access write access? */
171 unsigned write : 1;
172
173 /* Is this access an access to a non-addressable field? */
174 unsigned non_addressable : 1;
175
176 /* Is this access currently in the work queue? */
177 unsigned grp_queued : 1;
178
179 /* Does this group contain a write access? This flag is propagated down the
180 access tree. */
181 unsigned grp_write : 1;
182
183 /* Does this group contain a read access? This flag is propagated down the
184 access tree. */
185 unsigned grp_read : 1;
186
187 /* Does this group contain a read access that comes from an assignment
188 statement? This flag is propagated down the access tree. */
189 unsigned grp_assignment_read : 1;
190
191 /* Does this group contain a write access that comes from an assignment
192 statement? This flag is propagated down the access tree. */
193 unsigned grp_assignment_write : 1;
194
195 /* Does this group contain a read access through a scalar type? This flag is
196 not propagated in the access tree in any direction. */
197 unsigned grp_scalar_read : 1;
198
199 /* Does this group contain a write access through a scalar type? This flag
200 is not propagated in the access tree in any direction. */
201 unsigned grp_scalar_write : 1;
202
203 /* Is this access an artificial one created to scalarize some record
204 entirely? */
205 unsigned grp_total_scalarization : 1;
206
207 /* Other passes of the analysis use this bit to make function
208 analyze_access_subtree create scalar replacements for this group if
209 possible. */
210 unsigned grp_hint : 1;
211
212 /* Is the subtree rooted in this access fully covered by scalar
213 replacements? */
214 unsigned grp_covered : 1;
215
216 /* If set to true, this access and all below it in an access tree must not be
217 scalarized. */
218 unsigned grp_unscalarizable_region : 1;
219
220 /* Whether data have been written to parts of the aggregate covered by this
221 access which is not to be scalarized. This flag is propagated up in the
222 access tree. */
223 unsigned grp_unscalarized_data : 1;
224
225 /* Does this access and/or group contain a write access through a
226 BIT_FIELD_REF? */
227 unsigned grp_partial_lhs : 1;
228
229 /* Set when a scalar replacement should be created for this variable. We do
230 the decision and creation at different places because create_tmp_var
231 cannot be called from within FOR_EACH_REFERENCED_VAR. */
232 unsigned grp_to_be_replaced : 1;
233
234 /* Should TREE_NO_WARNING of a replacement be set? */
235 unsigned grp_no_warning : 1;
236
237 /* Is it possible that the group refers to data which might be (directly or
238 otherwise) modified? */
239 unsigned grp_maybe_modified : 1;
240
241 /* Set when this is a representative of a pointer to scalar (i.e. by
242 reference) parameter which we consider for turning into a plain scalar
243 (i.e. a by value parameter). */
244 unsigned grp_scalar_ptr : 1;
245
246 /* Set when we discover that this pointer is not safe to dereference in the
247 caller. */
248 unsigned grp_not_necessarilly_dereferenced : 1;
249 };
250
251 typedef struct access *access_p;
252
253 DEF_VEC_P (access_p);
254 DEF_VEC_ALLOC_P (access_p, heap);
255
256 /* Alloc pool for allocating access structures. */
257 static alloc_pool access_pool;
258
259 /* A structure linking lhs and rhs accesses from an aggregate assignment. They
260 are used to propagate subaccesses from rhs to lhs as long as they don't
261 conflict with what is already there. */
262 struct assign_link
263 {
264 struct access *lacc, *racc;
265 struct assign_link *next;
266 };
267
268 /* Alloc pool for allocating assign link structures. */
269 static alloc_pool link_pool;
270
271 /* Base (tree) -> Vector (VEC(access_p,heap) *) map. */
272 static struct pointer_map_t *base_access_vec;
273
274 /* Bitmap of candidates. */
275 static bitmap candidate_bitmap;
276
277 /* Bitmap of candidates which we should try to entirely scalarize away and
278 those which cannot be (because they are and need be used as a whole). */
279 static bitmap should_scalarize_away_bitmap, cannot_scalarize_away_bitmap;
280
281 /* Obstack for creation of fancy names. */
282 static struct obstack name_obstack;
283
284 /* Head of a linked list of accesses that need to have its subaccesses
285 propagated to their assignment counterparts. */
286 static struct access *work_queue_head;
287
288 /* Number of parameters of the analyzed function when doing early ipa SRA. */
289 static int func_param_count;
290
291 /* scan_function sets the following to true if it encounters a call to
292 __builtin_apply_args. */
293 static bool encountered_apply_args;
294
295 /* Set by scan_function when it finds a recursive call. */
296 static bool encountered_recursive_call;
297
298 /* Set by scan_function when it finds a recursive call with less actual
299 arguments than formal parameters.. */
300 static bool encountered_unchangable_recursive_call;
301
302 /* This is a table in which for each basic block and parameter there is a
303 distance (offset + size) in that parameter which is dereferenced and
304 accessed in that BB. */
305 static HOST_WIDE_INT *bb_dereferences;
306 /* Bitmap of BBs that can cause the function to "stop" progressing by
307 returning, throwing externally, looping infinitely or calling a function
308 which might abort etc.. */
309 static bitmap final_bbs;
310
311 /* Representative of no accesses at all. */
312 static struct access no_accesses_representant;
313
314 /* Predicate to test the special value. */
315
316 static inline bool
317 no_accesses_p (struct access *access)
318 {
319 return access == &no_accesses_representant;
320 }
321
322 /* Dump contents of ACCESS to file F in a human friendly way. If GRP is true,
323 representative fields are dumped, otherwise those which only describe the
324 individual access are. */
325
326 static struct
327 {
328 /* Number of processed aggregates is readily available in
329 analyze_all_variable_accesses and so is not stored here. */
330
331 /* Number of created scalar replacements. */
332 int replacements;
333
334 /* Number of times sra_modify_expr or sra_modify_assign themselves changed an
335 expression. */
336 int exprs;
337
338 /* Number of statements created by generate_subtree_copies. */
339 int subtree_copies;
340
341 /* Number of statements created by load_assign_lhs_subreplacements. */
342 int subreplacements;
343
344 /* Number of times sra_modify_assign has deleted a statement. */
345 int deleted;
346
347 /* Number of times sra_modify_assign has to deal with subaccesses of LHS and
348 RHS reparately due to type conversions or nonexistent matching
349 references. */
350 int separate_lhs_rhs_handling;
351
352 /* Number of parameters that were removed because they were unused. */
353 int deleted_unused_parameters;
354
355 /* Number of scalars passed as parameters by reference that have been
356 converted to be passed by value. */
357 int scalar_by_ref_to_by_val;
358
359 /* Number of aggregate parameters that were replaced by one or more of their
360 components. */
361 int aggregate_params_reduced;
362
363 /* Numbber of components created when splitting aggregate parameters. */
364 int param_reductions_created;
365 } sra_stats;
366
367 static void
368 dump_access (FILE *f, struct access *access, bool grp)
369 {
370 fprintf (f, "access { ");
371 fprintf (f, "base = (%d)'", DECL_UID (access->base));
372 print_generic_expr (f, access->base, 0);
373 fprintf (f, "', offset = " HOST_WIDE_INT_PRINT_DEC, access->offset);
374 fprintf (f, ", size = " HOST_WIDE_INT_PRINT_DEC, access->size);
375 fprintf (f, ", expr = ");
376 print_generic_expr (f, access->expr, 0);
377 fprintf (f, ", type = ");
378 print_generic_expr (f, access->type, 0);
379 if (grp)
380 fprintf (f, ", grp_read = %d, grp_write = %d, grp_assignment_read = %d, "
381 "grp_assignment_write = %d, grp_scalar_read = %d, "
382 "grp_scalar_write = %d, grp_total_scalarization = %d, "
383 "grp_hint = %d, grp_covered = %d, "
384 "grp_unscalarizable_region = %d, grp_unscalarized_data = %d, "
385 "grp_partial_lhs = %d, grp_to_be_replaced = %d, "
386 "grp_maybe_modified = %d, "
387 "grp_not_necessarilly_dereferenced = %d\n",
388 access->grp_read, access->grp_write, access->grp_assignment_read,
389 access->grp_assignment_write, access->grp_scalar_read,
390 access->grp_scalar_write, access->grp_total_scalarization,
391 access->grp_hint, access->grp_covered,
392 access->grp_unscalarizable_region, access->grp_unscalarized_data,
393 access->grp_partial_lhs, access->grp_to_be_replaced,
394 access->grp_maybe_modified,
395 access->grp_not_necessarilly_dereferenced);
396 else
397 fprintf (f, ", write = %d, grp_total_scalarization = %d, "
398 "grp_partial_lhs = %d\n",
399 access->write, access->grp_total_scalarization,
400 access->grp_partial_lhs);
401 }
402
403 /* Dump a subtree rooted in ACCESS to file F, indent by LEVEL. */
404
405 static void
406 dump_access_tree_1 (FILE *f, struct access *access, int level)
407 {
408 do
409 {
410 int i;
411
412 for (i = 0; i < level; i++)
413 fputs ("* ", dump_file);
414
415 dump_access (f, access, true);
416
417 if (access->first_child)
418 dump_access_tree_1 (f, access->first_child, level + 1);
419
420 access = access->next_sibling;
421 }
422 while (access);
423 }
424
425 /* Dump all access trees for a variable, given the pointer to the first root in
426 ACCESS. */
427
428 static void
429 dump_access_tree (FILE *f, struct access *access)
430 {
431 for (; access; access = access->next_grp)
432 dump_access_tree_1 (f, access, 0);
433 }
434
435 /* Return true iff ACC is non-NULL and has subaccesses. */
436
437 static inline bool
438 access_has_children_p (struct access *acc)
439 {
440 return acc && acc->first_child;
441 }
442
443 /* Return a vector of pointers to accesses for the variable given in BASE or
444 NULL if there is none. */
445
446 static VEC (access_p, heap) *
447 get_base_access_vector (tree base)
448 {
449 void **slot;
450
451 slot = pointer_map_contains (base_access_vec, base);
452 if (!slot)
453 return NULL;
454 else
455 return *(VEC (access_p, heap) **) slot;
456 }
457
458 /* Find an access with required OFFSET and SIZE in a subtree of accesses rooted
459 in ACCESS. Return NULL if it cannot be found. */
460
461 static struct access *
462 find_access_in_subtree (struct access *access, HOST_WIDE_INT offset,
463 HOST_WIDE_INT size)
464 {
465 while (access && (access->offset != offset || access->size != size))
466 {
467 struct access *child = access->first_child;
468
469 while (child && (child->offset + child->size <= offset))
470 child = child->next_sibling;
471 access = child;
472 }
473
474 return access;
475 }
476
477 /* Return the first group representative for DECL or NULL if none exists. */
478
479 static struct access *
480 get_first_repr_for_decl (tree base)
481 {
482 VEC (access_p, heap) *access_vec;
483
484 access_vec = get_base_access_vector (base);
485 if (!access_vec)
486 return NULL;
487
488 return VEC_index (access_p, access_vec, 0);
489 }
490
491 /* Find an access representative for the variable BASE and given OFFSET and
492 SIZE. Requires that access trees have already been built. Return NULL if
493 it cannot be found. */
494
495 static struct access *
496 get_var_base_offset_size_access (tree base, HOST_WIDE_INT offset,
497 HOST_WIDE_INT size)
498 {
499 struct access *access;
500
501 access = get_first_repr_for_decl (base);
502 while (access && (access->offset + access->size <= offset))
503 access = access->next_grp;
504 if (!access)
505 return NULL;
506
507 return find_access_in_subtree (access, offset, size);
508 }
509
510 /* Add LINK to the linked list of assign links of RACC. */
511 static void
512 add_link_to_rhs (struct access *racc, struct assign_link *link)
513 {
514 gcc_assert (link->racc == racc);
515
516 if (!racc->first_link)
517 {
518 gcc_assert (!racc->last_link);
519 racc->first_link = link;
520 }
521 else
522 racc->last_link->next = link;
523
524 racc->last_link = link;
525 link->next = NULL;
526 }
527
528 /* Move all link structures in their linked list in OLD_RACC to the linked list
529 in NEW_RACC. */
530 static void
531 relink_to_new_repr (struct access *new_racc, struct access *old_racc)
532 {
533 if (!old_racc->first_link)
534 {
535 gcc_assert (!old_racc->last_link);
536 return;
537 }
538
539 if (new_racc->first_link)
540 {
541 gcc_assert (!new_racc->last_link->next);
542 gcc_assert (!old_racc->last_link || !old_racc->last_link->next);
543
544 new_racc->last_link->next = old_racc->first_link;
545 new_racc->last_link = old_racc->last_link;
546 }
547 else
548 {
549 gcc_assert (!new_racc->last_link);
550
551 new_racc->first_link = old_racc->first_link;
552 new_racc->last_link = old_racc->last_link;
553 }
554 old_racc->first_link = old_racc->last_link = NULL;
555 }
556
557 /* Add ACCESS to the work queue (which is actually a stack). */
558
559 static void
560 add_access_to_work_queue (struct access *access)
561 {
562 if (!access->grp_queued)
563 {
564 gcc_assert (!access->next_queued);
565 access->next_queued = work_queue_head;
566 access->grp_queued = 1;
567 work_queue_head = access;
568 }
569 }
570
571 /* Pop an access from the work queue, and return it, assuming there is one. */
572
573 static struct access *
574 pop_access_from_work_queue (void)
575 {
576 struct access *access = work_queue_head;
577
578 work_queue_head = access->next_queued;
579 access->next_queued = NULL;
580 access->grp_queued = 0;
581 return access;
582 }
583
584
585 /* Allocate necessary structures. */
586
587 static void
588 sra_initialize (void)
589 {
590 candidate_bitmap = BITMAP_ALLOC (NULL);
591 should_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
592 cannot_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
593 gcc_obstack_init (&name_obstack);
594 access_pool = create_alloc_pool ("SRA accesses", sizeof (struct access), 16);
595 link_pool = create_alloc_pool ("SRA links", sizeof (struct assign_link), 16);
596 base_access_vec = pointer_map_create ();
597 memset (&sra_stats, 0, sizeof (sra_stats));
598 encountered_apply_args = false;
599 encountered_recursive_call = false;
600 encountered_unchangable_recursive_call = false;
601 }
602
603 /* Hook fed to pointer_map_traverse, deallocate stored vectors. */
604
605 static bool
606 delete_base_accesses (const void *key ATTRIBUTE_UNUSED, void **value,
607 void *data ATTRIBUTE_UNUSED)
608 {
609 VEC (access_p, heap) *access_vec;
610 access_vec = (VEC (access_p, heap) *) *value;
611 VEC_free (access_p, heap, access_vec);
612
613 return true;
614 }
615
616 /* Deallocate all general structures. */
617
618 static void
619 sra_deinitialize (void)
620 {
621 BITMAP_FREE (candidate_bitmap);
622 BITMAP_FREE (should_scalarize_away_bitmap);
623 BITMAP_FREE (cannot_scalarize_away_bitmap);
624 free_alloc_pool (access_pool);
625 free_alloc_pool (link_pool);
626 obstack_free (&name_obstack, NULL);
627
628 pointer_map_traverse (base_access_vec, delete_base_accesses, NULL);
629 pointer_map_destroy (base_access_vec);
630 }
631
632 /* Remove DECL from candidates for SRA and write REASON to the dump file if
633 there is one. */
634 static void
635 disqualify_candidate (tree decl, const char *reason)
636 {
637 bitmap_clear_bit (candidate_bitmap, DECL_UID (decl));
638
639 if (dump_file && (dump_flags & TDF_DETAILS))
640 {
641 fprintf (dump_file, "! Disqualifying ");
642 print_generic_expr (dump_file, decl, 0);
643 fprintf (dump_file, " - %s\n", reason);
644 }
645 }
646
647 /* Return true iff the type contains a field or an element which does not allow
648 scalarization. */
649
650 static bool
651 type_internals_preclude_sra_p (tree type, const char **msg)
652 {
653 tree fld;
654 tree et;
655
656 switch (TREE_CODE (type))
657 {
658 case RECORD_TYPE:
659 case UNION_TYPE:
660 case QUAL_UNION_TYPE:
661 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
662 if (TREE_CODE (fld) == FIELD_DECL)
663 {
664 tree ft = TREE_TYPE (fld);
665
666 if (TREE_THIS_VOLATILE (fld))
667 {
668 *msg = "volatile structure field";
669 return true;
670 }
671 if (!DECL_FIELD_OFFSET (fld))
672 {
673 *msg = "no structure field offset";
674 return true;
675 }
676 if (!DECL_SIZE (fld))
677 {
678 *msg = "zero structure field size";
679 return true;
680 }
681 if (!host_integerp (DECL_FIELD_OFFSET (fld), 1))
682 {
683 *msg = "structure field offset not fixed";
684 return true;
685 }
686 if (!host_integerp (DECL_SIZE (fld), 1))
687 {
688 *msg = "structure field size not fixed";
689 return true;
690 }
691 if (AGGREGATE_TYPE_P (ft)
692 && int_bit_position (fld) % BITS_PER_UNIT != 0)
693 {
694 *msg = "structure field is bit field";
695 return true;
696 }
697
698 if (AGGREGATE_TYPE_P (ft) && type_internals_preclude_sra_p (ft, msg))
699 return true;
700 }
701
702 return false;
703
704 case ARRAY_TYPE:
705 et = TREE_TYPE (type);
706
707 if (TYPE_VOLATILE (et))
708 {
709 *msg = "element type is volatile";
710 return true;
711 }
712
713 if (AGGREGATE_TYPE_P (et) && type_internals_preclude_sra_p (et, msg))
714 return true;
715
716 return false;
717
718 default:
719 return false;
720 }
721 }
722
723 /* If T is an SSA_NAME, return NULL if it is not a default def or return its
724 base variable if it is. Return T if it is not an SSA_NAME. */
725
726 static tree
727 get_ssa_base_param (tree t)
728 {
729 if (TREE_CODE (t) == SSA_NAME)
730 {
731 if (SSA_NAME_IS_DEFAULT_DEF (t))
732 return SSA_NAME_VAR (t);
733 else
734 return NULL_TREE;
735 }
736 return t;
737 }
738
739 /* Mark a dereference of BASE of distance DIST in a basic block tht STMT
740 belongs to, unless the BB has already been marked as a potentially
741 final. */
742
743 static void
744 mark_parm_dereference (tree base, HOST_WIDE_INT dist, gimple stmt)
745 {
746 basic_block bb = gimple_bb (stmt);
747 int idx, parm_index = 0;
748 tree parm;
749
750 if (bitmap_bit_p (final_bbs, bb->index))
751 return;
752
753 for (parm = DECL_ARGUMENTS (current_function_decl);
754 parm && parm != base;
755 parm = DECL_CHAIN (parm))
756 parm_index++;
757
758 gcc_assert (parm_index < func_param_count);
759
760 idx = bb->index * func_param_count + parm_index;
761 if (bb_dereferences[idx] < dist)
762 bb_dereferences[idx] = dist;
763 }
764
765 /* Allocate an access structure for BASE, OFFSET and SIZE, clear it, fill in
766 the three fields. Also add it to the vector of accesses corresponding to
767 the base. Finally, return the new access. */
768
769 static struct access *
770 create_access_1 (tree base, HOST_WIDE_INT offset, HOST_WIDE_INT size)
771 {
772 VEC (access_p, heap) *vec;
773 struct access *access;
774 void **slot;
775
776 access = (struct access *) pool_alloc (access_pool);
777 memset (access, 0, sizeof (struct access));
778 access->base = base;
779 access->offset = offset;
780 access->size = size;
781
782 slot = pointer_map_contains (base_access_vec, base);
783 if (slot)
784 vec = (VEC (access_p, heap) *) *slot;
785 else
786 vec = VEC_alloc (access_p, heap, 32);
787
788 VEC_safe_push (access_p, heap, vec, access);
789
790 *((struct VEC (access_p,heap) **)
791 pointer_map_insert (base_access_vec, base)) = vec;
792
793 return access;
794 }
795
796 /* Create and insert access for EXPR. Return created access, or NULL if it is
797 not possible. */
798
799 static struct access *
800 create_access (tree expr, gimple stmt, bool write)
801 {
802 struct access *access;
803 HOST_WIDE_INT offset, size, max_size;
804 tree base = expr;
805 bool ptr, unscalarizable_region = false;
806
807 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
808
809 if (sra_mode == SRA_MODE_EARLY_IPA
810 && TREE_CODE (base) == MEM_REF)
811 {
812 base = get_ssa_base_param (TREE_OPERAND (base, 0));
813 if (!base)
814 return NULL;
815 ptr = true;
816 }
817 else
818 ptr = false;
819
820 if (!DECL_P (base) || !bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
821 return NULL;
822
823 if (sra_mode == SRA_MODE_EARLY_IPA)
824 {
825 if (size < 0 || size != max_size)
826 {
827 disqualify_candidate (base, "Encountered a variable sized access.");
828 return NULL;
829 }
830 if (TREE_CODE (expr) == COMPONENT_REF
831 && DECL_BIT_FIELD (TREE_OPERAND (expr, 1)))
832 {
833 disqualify_candidate (base, "Encountered a bit-field access.");
834 return NULL;
835 }
836 gcc_checking_assert ((offset % BITS_PER_UNIT) == 0);
837
838 if (ptr)
839 mark_parm_dereference (base, offset + size, stmt);
840 }
841 else
842 {
843 if (size != max_size)
844 {
845 size = max_size;
846 unscalarizable_region = true;
847 }
848 if (size < 0)
849 {
850 disqualify_candidate (base, "Encountered an unconstrained access.");
851 return NULL;
852 }
853 }
854
855 access = create_access_1 (base, offset, size);
856 access->expr = expr;
857 access->type = TREE_TYPE (expr);
858 access->write = write;
859 access->grp_unscalarizable_region = unscalarizable_region;
860 access->stmt = stmt;
861
862 if (TREE_CODE (expr) == COMPONENT_REF
863 && DECL_NONADDRESSABLE_P (TREE_OPERAND (expr, 1)))
864 access->non_addressable = 1;
865
866 return access;
867 }
868
869
870 /* Return true iff TYPE is a RECORD_TYPE with fields that are either of gimple
871 register types or (recursively) records with only these two kinds of fields.
872 It also returns false if any of these records contains a bit-field. */
873
874 static bool
875 type_consists_of_records_p (tree type)
876 {
877 tree fld;
878
879 if (TREE_CODE (type) != RECORD_TYPE)
880 return false;
881
882 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
883 if (TREE_CODE (fld) == FIELD_DECL)
884 {
885 tree ft = TREE_TYPE (fld);
886
887 if (DECL_BIT_FIELD (fld))
888 return false;
889
890 if (!is_gimple_reg_type (ft)
891 && !type_consists_of_records_p (ft))
892 return false;
893 }
894
895 return true;
896 }
897
898 /* Create total_scalarization accesses for all scalar type fields in DECL that
899 must be of a RECORD_TYPE conforming to type_consists_of_records_p. BASE
900 must be the top-most VAR_DECL representing the variable, OFFSET must be the
901 offset of DECL within BASE. REF must be the memory reference expression for
902 the given decl. */
903
904 static void
905 completely_scalarize_record (tree base, tree decl, HOST_WIDE_INT offset,
906 tree ref)
907 {
908 tree fld, decl_type = TREE_TYPE (decl);
909
910 for (fld = TYPE_FIELDS (decl_type); fld; fld = DECL_CHAIN (fld))
911 if (TREE_CODE (fld) == FIELD_DECL)
912 {
913 HOST_WIDE_INT pos = offset + int_bit_position (fld);
914 tree ft = TREE_TYPE (fld);
915 tree nref = build3 (COMPONENT_REF, TREE_TYPE (fld), ref, fld,
916 NULL_TREE);
917
918 if (is_gimple_reg_type (ft))
919 {
920 struct access *access;
921 HOST_WIDE_INT size;
922
923 size = tree_low_cst (DECL_SIZE (fld), 1);
924 access = create_access_1 (base, pos, size);
925 access->expr = nref;
926 access->type = ft;
927 access->grp_total_scalarization = 1;
928 /* Accesses for intraprocedural SRA can have their stmt NULL. */
929 }
930 else
931 completely_scalarize_record (base, fld, pos, nref);
932 }
933 }
934
935 /* Create total_scalarization accesses for all scalar type fields in VAR and
936 for VAR a a whole. VAR must be of a RECORD_TYPE conforming to
937 type_consists_of_records_p. */
938
939 static void
940 completely_scalarize_var (tree var)
941 {
942 HOST_WIDE_INT size = tree_low_cst (DECL_SIZE (var), 1);
943 struct access *access;
944
945 access = create_access_1 (var, 0, size);
946 access->expr = var;
947 access->type = TREE_TYPE (var);
948 access->grp_total_scalarization = 1;
949
950 completely_scalarize_record (var, var, 0, var);
951 }
952
953 /* Search the given tree for a declaration by skipping handled components and
954 exclude it from the candidates. */
955
956 static void
957 disqualify_base_of_expr (tree t, const char *reason)
958 {
959 t = get_base_address (t);
960 if (sra_mode == SRA_MODE_EARLY_IPA
961 && TREE_CODE (t) == MEM_REF)
962 t = get_ssa_base_param (TREE_OPERAND (t, 0));
963
964 if (t && DECL_P (t))
965 disqualify_candidate (t, reason);
966 }
967
968 /* Scan expression EXPR and create access structures for all accesses to
969 candidates for scalarization. Return the created access or NULL if none is
970 created. */
971
972 static struct access *
973 build_access_from_expr_1 (tree expr, gimple stmt, bool write)
974 {
975 struct access *ret = NULL;
976 bool partial_ref;
977
978 if (TREE_CODE (expr) == BIT_FIELD_REF
979 || TREE_CODE (expr) == IMAGPART_EXPR
980 || TREE_CODE (expr) == REALPART_EXPR)
981 {
982 expr = TREE_OPERAND (expr, 0);
983 partial_ref = true;
984 }
985 else
986 partial_ref = false;
987
988 /* We need to dive through V_C_Es in order to get the size of its parameter
989 and not the result type. Ada produces such statements. We are also
990 capable of handling the topmost V_C_E but not any of those buried in other
991 handled components. */
992 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
993 expr = TREE_OPERAND (expr, 0);
994
995 if (contains_view_convert_expr_p (expr))
996 {
997 disqualify_base_of_expr (expr, "V_C_E under a different handled "
998 "component.");
999 return NULL;
1000 }
1001
1002 switch (TREE_CODE (expr))
1003 {
1004 case MEM_REF:
1005 if (TREE_CODE (TREE_OPERAND (expr, 0)) != ADDR_EXPR
1006 && sra_mode != SRA_MODE_EARLY_IPA)
1007 return NULL;
1008 /* fall through */
1009 case VAR_DECL:
1010 case PARM_DECL:
1011 case RESULT_DECL:
1012 case COMPONENT_REF:
1013 case ARRAY_REF:
1014 case ARRAY_RANGE_REF:
1015 ret = create_access (expr, stmt, write);
1016 break;
1017
1018 default:
1019 break;
1020 }
1021
1022 if (write && partial_ref && ret)
1023 ret->grp_partial_lhs = 1;
1024
1025 return ret;
1026 }
1027
1028 /* Scan expression EXPR and create access structures for all accesses to
1029 candidates for scalarization. Return true if any access has been inserted.
1030 STMT must be the statement from which the expression is taken, WRITE must be
1031 true if the expression is a store and false otherwise. */
1032
1033 static bool
1034 build_access_from_expr (tree expr, gimple stmt, bool write)
1035 {
1036 struct access *access;
1037
1038 access = build_access_from_expr_1 (expr, stmt, write);
1039 if (access)
1040 {
1041 /* This means the aggregate is accesses as a whole in a way other than an
1042 assign statement and thus cannot be removed even if we had a scalar
1043 replacement for everything. */
1044 if (cannot_scalarize_away_bitmap)
1045 bitmap_set_bit (cannot_scalarize_away_bitmap, DECL_UID (access->base));
1046 return true;
1047 }
1048 return false;
1049 }
1050
1051 /* Disqualify LHS and RHS for scalarization if STMT must end its basic block in
1052 modes in which it matters, return true iff they have been disqualified. RHS
1053 may be NULL, in that case ignore it. If we scalarize an aggregate in
1054 intra-SRA we may need to add statements after each statement. This is not
1055 possible if a statement unconditionally has to end the basic block. */
1056 static bool
1057 disqualify_ops_if_throwing_stmt (gimple stmt, tree lhs, tree rhs)
1058 {
1059 if ((sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
1060 && (stmt_can_throw_internal (stmt) || stmt_ends_bb_p (stmt)))
1061 {
1062 disqualify_base_of_expr (lhs, "LHS of a throwing stmt.");
1063 if (rhs)
1064 disqualify_base_of_expr (rhs, "RHS of a throwing stmt.");
1065 return true;
1066 }
1067 return false;
1068 }
1069
1070 /* Return true iff type of EXP is not sufficiently aligned. */
1071
1072 static bool
1073 tree_non_mode_aligned_mem_p (tree exp)
1074 {
1075 enum machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
1076 unsigned int align;
1077
1078 if (TREE_CODE (exp) == VIEW_CONVERT_EXPR)
1079 exp = TREE_OPERAND (exp, 0);
1080
1081 if (TREE_CODE (exp) == SSA_NAME
1082 || TREE_CODE (exp) == MEM_REF
1083 || mode == BLKmode
1084 || is_gimple_min_invariant (exp)
1085 || !STRICT_ALIGNMENT)
1086 return false;
1087
1088 align = get_object_alignment (exp);
1089 if (GET_MODE_ALIGNMENT (mode) > align)
1090 return true;
1091
1092 return false;
1093 }
1094
1095 /* Scan expressions occuring in STMT, create access structures for all accesses
1096 to candidates for scalarization and remove those candidates which occur in
1097 statements or expressions that prevent them from being split apart. Return
1098 true if any access has been inserted. */
1099
1100 static bool
1101 build_accesses_from_assign (gimple stmt)
1102 {
1103 tree lhs, rhs;
1104 struct access *lacc, *racc;
1105
1106 if (!gimple_assign_single_p (stmt))
1107 return false;
1108
1109 lhs = gimple_assign_lhs (stmt);
1110 rhs = gimple_assign_rhs1 (stmt);
1111
1112 if (disqualify_ops_if_throwing_stmt (stmt, lhs, rhs))
1113 return false;
1114
1115 racc = build_access_from_expr_1 (rhs, stmt, false);
1116 lacc = build_access_from_expr_1 (lhs, stmt, true);
1117
1118 if (lacc)
1119 {
1120 lacc->grp_assignment_write = 1;
1121 lacc->grp_unscalarizable_region |= tree_non_mode_aligned_mem_p (rhs);
1122 }
1123
1124 if (racc)
1125 {
1126 racc->grp_assignment_read = 1;
1127 if (should_scalarize_away_bitmap && !gimple_has_volatile_ops (stmt)
1128 && !is_gimple_reg_type (racc->type))
1129 bitmap_set_bit (should_scalarize_away_bitmap, DECL_UID (racc->base));
1130 racc->grp_unscalarizable_region |= tree_non_mode_aligned_mem_p (lhs);
1131 }
1132
1133 if (lacc && racc
1134 && (sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
1135 && !lacc->grp_unscalarizable_region
1136 && !racc->grp_unscalarizable_region
1137 && AGGREGATE_TYPE_P (TREE_TYPE (lhs))
1138 /* FIXME: Turn the following line into an assert after PR 40058 is
1139 fixed. */
1140 && lacc->size == racc->size
1141 && useless_type_conversion_p (lacc->type, racc->type))
1142 {
1143 struct assign_link *link;
1144
1145 link = (struct assign_link *) pool_alloc (link_pool);
1146 memset (link, 0, sizeof (struct assign_link));
1147
1148 link->lacc = lacc;
1149 link->racc = racc;
1150
1151 add_link_to_rhs (racc, link);
1152 }
1153
1154 return lacc || racc;
1155 }
1156
1157 /* Callback of walk_stmt_load_store_addr_ops visit_addr used to determine
1158 GIMPLE_ASM operands with memory constrains which cannot be scalarized. */
1159
1160 static bool
1161 asm_visit_addr (gimple stmt ATTRIBUTE_UNUSED, tree op,
1162 void *data ATTRIBUTE_UNUSED)
1163 {
1164 op = get_base_address (op);
1165 if (op
1166 && DECL_P (op))
1167 disqualify_candidate (op, "Non-scalarizable GIMPLE_ASM operand.");
1168
1169 return false;
1170 }
1171
1172 /* Return true iff callsite CALL has at least as many actual arguments as there
1173 are formal parameters of the function currently processed by IPA-SRA. */
1174
1175 static inline bool
1176 callsite_has_enough_arguments_p (gimple call)
1177 {
1178 return gimple_call_num_args (call) >= (unsigned) func_param_count;
1179 }
1180
1181 /* Scan function and look for interesting expressions and create access
1182 structures for them. Return true iff any access is created. */
1183
1184 static bool
1185 scan_function (void)
1186 {
1187 basic_block bb;
1188 bool ret = false;
1189
1190 FOR_EACH_BB (bb)
1191 {
1192 gimple_stmt_iterator gsi;
1193 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1194 {
1195 gimple stmt = gsi_stmt (gsi);
1196 tree t;
1197 unsigned i;
1198
1199 if (final_bbs && stmt_can_throw_external (stmt))
1200 bitmap_set_bit (final_bbs, bb->index);
1201 switch (gimple_code (stmt))
1202 {
1203 case GIMPLE_RETURN:
1204 t = gimple_return_retval (stmt);
1205 if (t != NULL_TREE)
1206 ret |= build_access_from_expr (t, stmt, false);
1207 if (final_bbs)
1208 bitmap_set_bit (final_bbs, bb->index);
1209 break;
1210
1211 case GIMPLE_ASSIGN:
1212 ret |= build_accesses_from_assign (stmt);
1213 break;
1214
1215 case GIMPLE_CALL:
1216 for (i = 0; i < gimple_call_num_args (stmt); i++)
1217 ret |= build_access_from_expr (gimple_call_arg (stmt, i),
1218 stmt, false);
1219
1220 if (sra_mode == SRA_MODE_EARLY_IPA)
1221 {
1222 tree dest = gimple_call_fndecl (stmt);
1223 int flags = gimple_call_flags (stmt);
1224
1225 if (dest)
1226 {
1227 if (DECL_BUILT_IN_CLASS (dest) == BUILT_IN_NORMAL
1228 && DECL_FUNCTION_CODE (dest) == BUILT_IN_APPLY_ARGS)
1229 encountered_apply_args = true;
1230 if (cgraph_get_node (dest)
1231 == cgraph_get_node (current_function_decl))
1232 {
1233 encountered_recursive_call = true;
1234 if (!callsite_has_enough_arguments_p (stmt))
1235 encountered_unchangable_recursive_call = true;
1236 }
1237 }
1238
1239 if (final_bbs
1240 && (flags & (ECF_CONST | ECF_PURE)) == 0)
1241 bitmap_set_bit (final_bbs, bb->index);
1242 }
1243
1244 t = gimple_call_lhs (stmt);
1245 if (t && !disqualify_ops_if_throwing_stmt (stmt, t, NULL))
1246 ret |= build_access_from_expr (t, stmt, true);
1247 break;
1248
1249 case GIMPLE_ASM:
1250 walk_stmt_load_store_addr_ops (stmt, NULL, NULL, NULL,
1251 asm_visit_addr);
1252 if (final_bbs)
1253 bitmap_set_bit (final_bbs, bb->index);
1254
1255 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
1256 {
1257 t = TREE_VALUE (gimple_asm_input_op (stmt, i));
1258 ret |= build_access_from_expr (t, stmt, false);
1259 }
1260 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
1261 {
1262 t = TREE_VALUE (gimple_asm_output_op (stmt, i));
1263 ret |= build_access_from_expr (t, stmt, true);
1264 }
1265 break;
1266
1267 default:
1268 break;
1269 }
1270 }
1271 }
1272
1273 return ret;
1274 }
1275
1276 /* Helper of QSORT function. There are pointers to accesses in the array. An
1277 access is considered smaller than another if it has smaller offset or if the
1278 offsets are the same but is size is bigger. */
1279
1280 static int
1281 compare_access_positions (const void *a, const void *b)
1282 {
1283 const access_p *fp1 = (const access_p *) a;
1284 const access_p *fp2 = (const access_p *) b;
1285 const access_p f1 = *fp1;
1286 const access_p f2 = *fp2;
1287
1288 if (f1->offset != f2->offset)
1289 return f1->offset < f2->offset ? -1 : 1;
1290
1291 if (f1->size == f2->size)
1292 {
1293 if (f1->type == f2->type)
1294 return 0;
1295 /* Put any non-aggregate type before any aggregate type. */
1296 else if (!is_gimple_reg_type (f1->type)
1297 && is_gimple_reg_type (f2->type))
1298 return 1;
1299 else if (is_gimple_reg_type (f1->type)
1300 && !is_gimple_reg_type (f2->type))
1301 return -1;
1302 /* Put any complex or vector type before any other scalar type. */
1303 else if (TREE_CODE (f1->type) != COMPLEX_TYPE
1304 && TREE_CODE (f1->type) != VECTOR_TYPE
1305 && (TREE_CODE (f2->type) == COMPLEX_TYPE
1306 || TREE_CODE (f2->type) == VECTOR_TYPE))
1307 return 1;
1308 else if ((TREE_CODE (f1->type) == COMPLEX_TYPE
1309 || TREE_CODE (f1->type) == VECTOR_TYPE)
1310 && TREE_CODE (f2->type) != COMPLEX_TYPE
1311 && TREE_CODE (f2->type) != VECTOR_TYPE)
1312 return -1;
1313 /* Put the integral type with the bigger precision first. */
1314 else if (INTEGRAL_TYPE_P (f1->type)
1315 && INTEGRAL_TYPE_P (f2->type))
1316 return TYPE_PRECISION (f2->type) - TYPE_PRECISION (f1->type);
1317 /* Put any integral type with non-full precision last. */
1318 else if (INTEGRAL_TYPE_P (f1->type)
1319 && (TREE_INT_CST_LOW (TYPE_SIZE (f1->type))
1320 != TYPE_PRECISION (f1->type)))
1321 return 1;
1322 else if (INTEGRAL_TYPE_P (f2->type)
1323 && (TREE_INT_CST_LOW (TYPE_SIZE (f2->type))
1324 != TYPE_PRECISION (f2->type)))
1325 return -1;
1326 /* Stabilize the sort. */
1327 return TYPE_UID (f1->type) - TYPE_UID (f2->type);
1328 }
1329
1330 /* We want the bigger accesses first, thus the opposite operator in the next
1331 line: */
1332 return f1->size > f2->size ? -1 : 1;
1333 }
1334
1335
1336 /* Append a name of the declaration to the name obstack. A helper function for
1337 make_fancy_name. */
1338
1339 static void
1340 make_fancy_decl_name (tree decl)
1341 {
1342 char buffer[32];
1343
1344 tree name = DECL_NAME (decl);
1345 if (name)
1346 obstack_grow (&name_obstack, IDENTIFIER_POINTER (name),
1347 IDENTIFIER_LENGTH (name));
1348 else
1349 {
1350 sprintf (buffer, "D%u", DECL_UID (decl));
1351 obstack_grow (&name_obstack, buffer, strlen (buffer));
1352 }
1353 }
1354
1355 /* Helper for make_fancy_name. */
1356
1357 static void
1358 make_fancy_name_1 (tree expr)
1359 {
1360 char buffer[32];
1361 tree index;
1362
1363 if (DECL_P (expr))
1364 {
1365 make_fancy_decl_name (expr);
1366 return;
1367 }
1368
1369 switch (TREE_CODE (expr))
1370 {
1371 case COMPONENT_REF:
1372 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1373 obstack_1grow (&name_obstack, '$');
1374 make_fancy_decl_name (TREE_OPERAND (expr, 1));
1375 break;
1376
1377 case ARRAY_REF:
1378 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1379 obstack_1grow (&name_obstack, '$');
1380 /* Arrays with only one element may not have a constant as their
1381 index. */
1382 index = TREE_OPERAND (expr, 1);
1383 if (TREE_CODE (index) != INTEGER_CST)
1384 break;
1385 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (index));
1386 obstack_grow (&name_obstack, buffer, strlen (buffer));
1387 break;
1388
1389 case ADDR_EXPR:
1390 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1391 break;
1392
1393 case MEM_REF:
1394 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1395 if (!integer_zerop (TREE_OPERAND (expr, 1)))
1396 {
1397 obstack_1grow (&name_obstack, '$');
1398 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC,
1399 TREE_INT_CST_LOW (TREE_OPERAND (expr, 1)));
1400 obstack_grow (&name_obstack, buffer, strlen (buffer));
1401 }
1402 break;
1403
1404 case BIT_FIELD_REF:
1405 case REALPART_EXPR:
1406 case IMAGPART_EXPR:
1407 gcc_unreachable (); /* we treat these as scalars. */
1408 break;
1409 default:
1410 break;
1411 }
1412 }
1413
1414 /* Create a human readable name for replacement variable of ACCESS. */
1415
1416 static char *
1417 make_fancy_name (tree expr)
1418 {
1419 make_fancy_name_1 (expr);
1420 obstack_1grow (&name_obstack, '\0');
1421 return XOBFINISH (&name_obstack, char *);
1422 }
1423
1424 /* Construct a MEM_REF that would reference a part of aggregate BASE of type
1425 EXP_TYPE at the given OFFSET. If BASE is something for which
1426 get_addr_base_and_unit_offset returns NULL, gsi must be non-NULL and is used
1427 to insert new statements either before or below the current one as specified
1428 by INSERT_AFTER. This function is not capable of handling bitfields. */
1429
1430 tree
1431 build_ref_for_offset (location_t loc, tree base, HOST_WIDE_INT offset,
1432 tree exp_type, gimple_stmt_iterator *gsi,
1433 bool insert_after)
1434 {
1435 tree prev_base = base;
1436 tree off;
1437 HOST_WIDE_INT base_offset;
1438
1439 gcc_checking_assert (offset % BITS_PER_UNIT == 0);
1440
1441 base = get_addr_base_and_unit_offset (base, &base_offset);
1442
1443 /* get_addr_base_and_unit_offset returns NULL for references with a variable
1444 offset such as array[var_index]. */
1445 if (!base)
1446 {
1447 gimple stmt;
1448 tree tmp, addr;
1449
1450 gcc_checking_assert (gsi);
1451 tmp = create_tmp_reg (build_pointer_type (TREE_TYPE (prev_base)), NULL);
1452 add_referenced_var (tmp);
1453 tmp = make_ssa_name (tmp, NULL);
1454 addr = build_fold_addr_expr (unshare_expr (prev_base));
1455 STRIP_USELESS_TYPE_CONVERSION (addr);
1456 stmt = gimple_build_assign (tmp, addr);
1457 gimple_set_location (stmt, loc);
1458 SSA_NAME_DEF_STMT (tmp) = stmt;
1459 if (insert_after)
1460 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
1461 else
1462 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1463 update_stmt (stmt);
1464
1465 off = build_int_cst (reference_alias_ptr_type (prev_base),
1466 offset / BITS_PER_UNIT);
1467 base = tmp;
1468 }
1469 else if (TREE_CODE (base) == MEM_REF)
1470 {
1471 off = build_int_cst (TREE_TYPE (TREE_OPERAND (base, 1)),
1472 base_offset + offset / BITS_PER_UNIT);
1473 off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1), off);
1474 base = unshare_expr (TREE_OPERAND (base, 0));
1475 }
1476 else
1477 {
1478 off = build_int_cst (reference_alias_ptr_type (base),
1479 base_offset + offset / BITS_PER_UNIT);
1480 base = build_fold_addr_expr (unshare_expr (base));
1481 }
1482
1483 return fold_build2_loc (loc, MEM_REF, exp_type, base, off);
1484 }
1485
1486 /* Construct a memory reference to a part of an aggregate BASE at the given
1487 OFFSET and of the same type as MODEL. In case this is a reference to a
1488 component, the function will replicate the last COMPONENT_REF of model's
1489 expr to access it. GSI and INSERT_AFTER have the same meaning as in
1490 build_ref_for_offset. */
1491
1492 static tree
1493 build_ref_for_model (location_t loc, tree base, HOST_WIDE_INT offset,
1494 struct access *model, gimple_stmt_iterator *gsi,
1495 bool insert_after)
1496 {
1497 if (TREE_CODE (model->expr) == COMPONENT_REF)
1498 {
1499 tree t, exp_type, fld = TREE_OPERAND (model->expr, 1);
1500 tree cr_offset = component_ref_field_offset (model->expr);
1501
1502 gcc_assert (cr_offset && host_integerp (cr_offset, 1));
1503 offset -= TREE_INT_CST_LOW (cr_offset) * BITS_PER_UNIT;
1504 offset -= TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (fld));
1505 exp_type = TREE_TYPE (TREE_OPERAND (model->expr, 0));
1506 t = build_ref_for_offset (loc, base, offset, exp_type, gsi, insert_after);
1507 return fold_build3_loc (loc, COMPONENT_REF, model->type, t, fld,
1508 TREE_OPERAND (model->expr, 2));
1509 }
1510 else
1511 return build_ref_for_offset (loc, base, offset, model->type,
1512 gsi, insert_after);
1513 }
1514
1515 /* Construct a memory reference consisting of component_refs and array_refs to
1516 a part of an aggregate *RES (which is of type TYPE). The requested part
1517 should have type EXP_TYPE at be the given OFFSET. This function might not
1518 succeed, it returns true when it does and only then *RES points to something
1519 meaningful. This function should be used only to build expressions that we
1520 might need to present to user (e.g. in warnings). In all other situations,
1521 build_ref_for_model or build_ref_for_offset should be used instead. */
1522
1523 static bool
1524 build_user_friendly_ref_for_offset (tree *res, tree type, HOST_WIDE_INT offset,
1525 tree exp_type)
1526 {
1527 while (1)
1528 {
1529 tree fld;
1530 tree tr_size, index, minidx;
1531 HOST_WIDE_INT el_size;
1532
1533 if (offset == 0 && exp_type
1534 && types_compatible_p (exp_type, type))
1535 return true;
1536
1537 switch (TREE_CODE (type))
1538 {
1539 case UNION_TYPE:
1540 case QUAL_UNION_TYPE:
1541 case RECORD_TYPE:
1542 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
1543 {
1544 HOST_WIDE_INT pos, size;
1545 tree expr, *expr_ptr;
1546
1547 if (TREE_CODE (fld) != FIELD_DECL)
1548 continue;
1549
1550 pos = int_bit_position (fld);
1551 gcc_assert (TREE_CODE (type) == RECORD_TYPE || pos == 0);
1552 tr_size = DECL_SIZE (fld);
1553 if (!tr_size || !host_integerp (tr_size, 1))
1554 continue;
1555 size = tree_low_cst (tr_size, 1);
1556 if (size == 0)
1557 {
1558 if (pos != offset)
1559 continue;
1560 }
1561 else if (pos > offset || (pos + size) <= offset)
1562 continue;
1563
1564 expr = build3 (COMPONENT_REF, TREE_TYPE (fld), *res, fld,
1565 NULL_TREE);
1566 expr_ptr = &expr;
1567 if (build_user_friendly_ref_for_offset (expr_ptr, TREE_TYPE (fld),
1568 offset - pos, exp_type))
1569 {
1570 *res = expr;
1571 return true;
1572 }
1573 }
1574 return false;
1575
1576 case ARRAY_TYPE:
1577 tr_size = TYPE_SIZE (TREE_TYPE (type));
1578 if (!tr_size || !host_integerp (tr_size, 1))
1579 return false;
1580 el_size = tree_low_cst (tr_size, 1);
1581
1582 minidx = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
1583 if (TREE_CODE (minidx) != INTEGER_CST || el_size == 0)
1584 return false;
1585 index = build_int_cst (TYPE_DOMAIN (type), offset / el_size);
1586 if (!integer_zerop (minidx))
1587 index = int_const_binop (PLUS_EXPR, index, minidx);
1588 *res = build4 (ARRAY_REF, TREE_TYPE (type), *res, index,
1589 NULL_TREE, NULL_TREE);
1590 offset = offset % el_size;
1591 type = TREE_TYPE (type);
1592 break;
1593
1594 default:
1595 if (offset != 0)
1596 return false;
1597
1598 if (exp_type)
1599 return false;
1600 else
1601 return true;
1602 }
1603 }
1604 }
1605
1606 /* Return true iff TYPE is stdarg va_list type. */
1607
1608 static inline bool
1609 is_va_list_type (tree type)
1610 {
1611 return TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (va_list_type_node);
1612 }
1613
1614 /* Print message to dump file why a variable was rejected. */
1615
1616 static void
1617 reject (tree var, const char *msg)
1618 {
1619 if (dump_file && (dump_flags & TDF_DETAILS))
1620 {
1621 fprintf (dump_file, "Rejected (%d): %s: ", DECL_UID (var), msg);
1622 print_generic_expr (dump_file, var, 0);
1623 fprintf (dump_file, "\n");
1624 }
1625 }
1626
1627 /* The very first phase of intraprocedural SRA. It marks in candidate_bitmap
1628 those with type which is suitable for scalarization. */
1629
1630 static bool
1631 find_var_candidates (void)
1632 {
1633 tree var, type;
1634 referenced_var_iterator rvi;
1635 bool ret = false;
1636 const char *msg;
1637
1638 FOR_EACH_REFERENCED_VAR (cfun, var, rvi)
1639 {
1640 if (TREE_CODE (var) != VAR_DECL && TREE_CODE (var) != PARM_DECL)
1641 continue;
1642 type = TREE_TYPE (var);
1643
1644 if (!AGGREGATE_TYPE_P (type))
1645 {
1646 reject (var, "not aggregate");
1647 continue;
1648 }
1649 if (needs_to_live_in_memory (var))
1650 {
1651 reject (var, "needs to live in memory");
1652 continue;
1653 }
1654 if (TREE_THIS_VOLATILE (var))
1655 {
1656 reject (var, "is volatile");
1657 continue;
1658 }
1659 if (!COMPLETE_TYPE_P (type))
1660 {
1661 reject (var, "has incomplete type");
1662 continue;
1663 }
1664 if (!host_integerp (TYPE_SIZE (type), 1))
1665 {
1666 reject (var, "type size not fixed");
1667 continue;
1668 }
1669 if (tree_low_cst (TYPE_SIZE (type), 1) == 0)
1670 {
1671 reject (var, "type size is zero");
1672 continue;
1673 }
1674 if (type_internals_preclude_sra_p (type, &msg))
1675 {
1676 reject (var, msg);
1677 continue;
1678 }
1679 if (/* Fix for PR 41089. tree-stdarg.c needs to have va_lists intact but
1680 we also want to schedule it rather late. Thus we ignore it in
1681 the early pass. */
1682 (sra_mode == SRA_MODE_EARLY_INTRA
1683 && is_va_list_type (type)))
1684 {
1685 reject (var, "is va_list");
1686 continue;
1687 }
1688
1689 bitmap_set_bit (candidate_bitmap, DECL_UID (var));
1690
1691 if (dump_file && (dump_flags & TDF_DETAILS))
1692 {
1693 fprintf (dump_file, "Candidate (%d): ", DECL_UID (var));
1694 print_generic_expr (dump_file, var, 0);
1695 fprintf (dump_file, "\n");
1696 }
1697 ret = true;
1698 }
1699
1700 return ret;
1701 }
1702
1703 /* Sort all accesses for the given variable, check for partial overlaps and
1704 return NULL if there are any. If there are none, pick a representative for
1705 each combination of offset and size and create a linked list out of them.
1706 Return the pointer to the first representative and make sure it is the first
1707 one in the vector of accesses. */
1708
1709 static struct access *
1710 sort_and_splice_var_accesses (tree var)
1711 {
1712 int i, j, access_count;
1713 struct access *res, **prev_acc_ptr = &res;
1714 VEC (access_p, heap) *access_vec;
1715 bool first = true;
1716 HOST_WIDE_INT low = -1, high = 0;
1717
1718 access_vec = get_base_access_vector (var);
1719 if (!access_vec)
1720 return NULL;
1721 access_count = VEC_length (access_p, access_vec);
1722
1723 /* Sort by <OFFSET, SIZE>. */
1724 VEC_qsort (access_p, access_vec, compare_access_positions);
1725
1726 i = 0;
1727 while (i < access_count)
1728 {
1729 struct access *access = VEC_index (access_p, access_vec, i);
1730 bool grp_write = access->write;
1731 bool grp_read = !access->write;
1732 bool grp_scalar_write = access->write
1733 && is_gimple_reg_type (access->type);
1734 bool grp_scalar_read = !access->write
1735 && is_gimple_reg_type (access->type);
1736 bool grp_assignment_read = access->grp_assignment_read;
1737 bool grp_assignment_write = access->grp_assignment_write;
1738 bool multiple_scalar_reads = false;
1739 bool total_scalarization = access->grp_total_scalarization;
1740 bool grp_partial_lhs = access->grp_partial_lhs;
1741 bool first_scalar = is_gimple_reg_type (access->type);
1742 bool unscalarizable_region = access->grp_unscalarizable_region;
1743
1744 if (first || access->offset >= high)
1745 {
1746 first = false;
1747 low = access->offset;
1748 high = access->offset + access->size;
1749 }
1750 else if (access->offset > low && access->offset + access->size > high)
1751 return NULL;
1752 else
1753 gcc_assert (access->offset >= low
1754 && access->offset + access->size <= high);
1755
1756 j = i + 1;
1757 while (j < access_count)
1758 {
1759 struct access *ac2 = VEC_index (access_p, access_vec, j);
1760 if (ac2->offset != access->offset || ac2->size != access->size)
1761 break;
1762 if (ac2->write)
1763 {
1764 grp_write = true;
1765 grp_scalar_write = (grp_scalar_write
1766 || is_gimple_reg_type (ac2->type));
1767 }
1768 else
1769 {
1770 grp_read = true;
1771 if (is_gimple_reg_type (ac2->type))
1772 {
1773 if (grp_scalar_read)
1774 multiple_scalar_reads = true;
1775 else
1776 grp_scalar_read = true;
1777 }
1778 }
1779 grp_assignment_read |= ac2->grp_assignment_read;
1780 grp_assignment_write |= ac2->grp_assignment_write;
1781 grp_partial_lhs |= ac2->grp_partial_lhs;
1782 unscalarizable_region |= ac2->grp_unscalarizable_region;
1783 total_scalarization |= ac2->grp_total_scalarization;
1784 relink_to_new_repr (access, ac2);
1785
1786 /* If there are both aggregate-type and scalar-type accesses with
1787 this combination of size and offset, the comparison function
1788 should have put the scalars first. */
1789 gcc_assert (first_scalar || !is_gimple_reg_type (ac2->type));
1790 ac2->group_representative = access;
1791 j++;
1792 }
1793
1794 i = j;
1795
1796 access->group_representative = access;
1797 access->grp_write = grp_write;
1798 access->grp_read = grp_read;
1799 access->grp_scalar_read = grp_scalar_read;
1800 access->grp_scalar_write = grp_scalar_write;
1801 access->grp_assignment_read = grp_assignment_read;
1802 access->grp_assignment_write = grp_assignment_write;
1803 access->grp_hint = multiple_scalar_reads || total_scalarization;
1804 access->grp_total_scalarization = total_scalarization;
1805 access->grp_partial_lhs = grp_partial_lhs;
1806 access->grp_unscalarizable_region = unscalarizable_region;
1807 if (access->first_link)
1808 add_access_to_work_queue (access);
1809
1810 *prev_acc_ptr = access;
1811 prev_acc_ptr = &access->next_grp;
1812 }
1813
1814 gcc_assert (res == VEC_index (access_p, access_vec, 0));
1815 return res;
1816 }
1817
1818 /* Create a variable for the given ACCESS which determines the type, name and a
1819 few other properties. Return the variable declaration and store it also to
1820 ACCESS->replacement. */
1821
1822 static tree
1823 create_access_replacement (struct access *access, bool rename)
1824 {
1825 tree repl;
1826
1827 repl = create_tmp_var (access->type, "SR");
1828 add_referenced_var (repl);
1829 if (rename)
1830 mark_sym_for_renaming (repl);
1831
1832 if (!access->grp_partial_lhs
1833 && (TREE_CODE (access->type) == COMPLEX_TYPE
1834 || TREE_CODE (access->type) == VECTOR_TYPE))
1835 DECL_GIMPLE_REG_P (repl) = 1;
1836
1837 DECL_SOURCE_LOCATION (repl) = DECL_SOURCE_LOCATION (access->base);
1838 DECL_ARTIFICIAL (repl) = 1;
1839 DECL_IGNORED_P (repl) = DECL_IGNORED_P (access->base);
1840
1841 if (DECL_NAME (access->base)
1842 && !DECL_IGNORED_P (access->base)
1843 && !DECL_ARTIFICIAL (access->base))
1844 {
1845 char *pretty_name = make_fancy_name (access->expr);
1846 tree debug_expr = unshare_expr (access->expr), d;
1847
1848 DECL_NAME (repl) = get_identifier (pretty_name);
1849 obstack_free (&name_obstack, pretty_name);
1850
1851 /* Get rid of any SSA_NAMEs embedded in debug_expr,
1852 as DECL_DEBUG_EXPR isn't considered when looking for still
1853 used SSA_NAMEs and thus they could be freed. All debug info
1854 generation cares is whether something is constant or variable
1855 and that get_ref_base_and_extent works properly on the
1856 expression. */
1857 for (d = debug_expr; handled_component_p (d); d = TREE_OPERAND (d, 0))
1858 switch (TREE_CODE (d))
1859 {
1860 case ARRAY_REF:
1861 case ARRAY_RANGE_REF:
1862 if (TREE_OPERAND (d, 1)
1863 && TREE_CODE (TREE_OPERAND (d, 1)) == SSA_NAME)
1864 TREE_OPERAND (d, 1) = SSA_NAME_VAR (TREE_OPERAND (d, 1));
1865 if (TREE_OPERAND (d, 3)
1866 && TREE_CODE (TREE_OPERAND (d, 3)) == SSA_NAME)
1867 TREE_OPERAND (d, 3) = SSA_NAME_VAR (TREE_OPERAND (d, 3));
1868 /* FALLTHRU */
1869 case COMPONENT_REF:
1870 if (TREE_OPERAND (d, 2)
1871 && TREE_CODE (TREE_OPERAND (d, 2)) == SSA_NAME)
1872 TREE_OPERAND (d, 2) = SSA_NAME_VAR (TREE_OPERAND (d, 2));
1873 break;
1874 default:
1875 break;
1876 }
1877 SET_DECL_DEBUG_EXPR (repl, debug_expr);
1878 DECL_DEBUG_EXPR_IS_FROM (repl) = 1;
1879 if (access->grp_no_warning)
1880 TREE_NO_WARNING (repl) = 1;
1881 else
1882 TREE_NO_WARNING (repl) = TREE_NO_WARNING (access->base);
1883 }
1884 else
1885 TREE_NO_WARNING (repl) = 1;
1886
1887 if (dump_file)
1888 {
1889 fprintf (dump_file, "Created a replacement for ");
1890 print_generic_expr (dump_file, access->base, 0);
1891 fprintf (dump_file, " offset: %u, size: %u: ",
1892 (unsigned) access->offset, (unsigned) access->size);
1893 print_generic_expr (dump_file, repl, 0);
1894 fprintf (dump_file, "\n");
1895 }
1896 sra_stats.replacements++;
1897
1898 return repl;
1899 }
1900
1901 /* Return ACCESS scalar replacement, create it if it does not exist yet. */
1902
1903 static inline tree
1904 get_access_replacement (struct access *access)
1905 {
1906 gcc_assert (access->grp_to_be_replaced);
1907
1908 if (!access->replacement_decl)
1909 access->replacement_decl = create_access_replacement (access, true);
1910 return access->replacement_decl;
1911 }
1912
1913 /* Return ACCESS scalar replacement, create it if it does not exist yet but do
1914 not mark it for renaming. */
1915
1916 static inline tree
1917 get_unrenamed_access_replacement (struct access *access)
1918 {
1919 gcc_assert (!access->grp_to_be_replaced);
1920
1921 if (!access->replacement_decl)
1922 access->replacement_decl = create_access_replacement (access, false);
1923 return access->replacement_decl;
1924 }
1925
1926
1927 /* Build a subtree of accesses rooted in *ACCESS, and move the pointer in the
1928 linked list along the way. Stop when *ACCESS is NULL or the access pointed
1929 to it is not "within" the root. Return false iff some accesses partially
1930 overlap. */
1931
1932 static bool
1933 build_access_subtree (struct access **access)
1934 {
1935 struct access *root = *access, *last_child = NULL;
1936 HOST_WIDE_INT limit = root->offset + root->size;
1937
1938 *access = (*access)->next_grp;
1939 while (*access && (*access)->offset + (*access)->size <= limit)
1940 {
1941 if (!last_child)
1942 root->first_child = *access;
1943 else
1944 last_child->next_sibling = *access;
1945 last_child = *access;
1946
1947 if (!build_access_subtree (access))
1948 return false;
1949 }
1950
1951 if (*access && (*access)->offset < limit)
1952 return false;
1953
1954 return true;
1955 }
1956
1957 /* Build a tree of access representatives, ACCESS is the pointer to the first
1958 one, others are linked in a list by the next_grp field. Return false iff
1959 some accesses partially overlap. */
1960
1961 static bool
1962 build_access_trees (struct access *access)
1963 {
1964 while (access)
1965 {
1966 struct access *root = access;
1967
1968 if (!build_access_subtree (&access))
1969 return false;
1970 root->next_grp = access;
1971 }
1972 return true;
1973 }
1974
1975 /* Return true if expr contains some ARRAY_REFs into a variable bounded
1976 array. */
1977
1978 static bool
1979 expr_with_var_bounded_array_refs_p (tree expr)
1980 {
1981 while (handled_component_p (expr))
1982 {
1983 if (TREE_CODE (expr) == ARRAY_REF
1984 && !host_integerp (array_ref_low_bound (expr), 0))
1985 return true;
1986 expr = TREE_OPERAND (expr, 0);
1987 }
1988 return false;
1989 }
1990
1991 /* Analyze the subtree of accesses rooted in ROOT, scheduling replacements when
1992 both seeming beneficial and when ALLOW_REPLACEMENTS allows it. Also set all
1993 sorts of access flags appropriately along the way, notably always set
1994 grp_read and grp_assign_read according to MARK_READ and grp_write when
1995 MARK_WRITE is true.
1996
1997 Creating a replacement for a scalar access is considered beneficial if its
1998 grp_hint is set (this means we are either attempting total scalarization or
1999 there is more than one direct read access) or according to the following
2000 table:
2001
2002 Access written to through a scalar type (once or more times)
2003 |
2004 | Written to in an assignment statement
2005 | |
2006 | | Access read as scalar _once_
2007 | | |
2008 | | | Read in an assignment statement
2009 | | | |
2010 | | | | Scalarize Comment
2011 -----------------------------------------------------------------------------
2012 0 0 0 0 No access for the scalar
2013 0 0 0 1 No access for the scalar
2014 0 0 1 0 No Single read - won't help
2015 0 0 1 1 No The same case
2016 0 1 0 0 No access for the scalar
2017 0 1 0 1 No access for the scalar
2018 0 1 1 0 Yes s = *g; return s.i;
2019 0 1 1 1 Yes The same case as above
2020 1 0 0 0 No Won't help
2021 1 0 0 1 Yes s.i = 1; *g = s;
2022 1 0 1 0 Yes s.i = 5; g = s.i;
2023 1 0 1 1 Yes The same case as above
2024 1 1 0 0 No Won't help.
2025 1 1 0 1 Yes s.i = 1; *g = s;
2026 1 1 1 0 Yes s = *g; return s.i;
2027 1 1 1 1 Yes Any of the above yeses */
2028
2029 static bool
2030 analyze_access_subtree (struct access *root, struct access *parent,
2031 bool allow_replacements)
2032 {
2033 struct access *child;
2034 HOST_WIDE_INT limit = root->offset + root->size;
2035 HOST_WIDE_INT covered_to = root->offset;
2036 bool scalar = is_gimple_reg_type (root->type);
2037 bool hole = false, sth_created = false;
2038
2039 if (parent)
2040 {
2041 if (parent->grp_read)
2042 root->grp_read = 1;
2043 if (parent->grp_assignment_read)
2044 root->grp_assignment_read = 1;
2045 if (parent->grp_write)
2046 root->grp_write = 1;
2047 if (parent->grp_assignment_write)
2048 root->grp_assignment_write = 1;
2049 if (parent->grp_total_scalarization)
2050 root->grp_total_scalarization = 1;
2051 }
2052
2053 if (root->grp_unscalarizable_region)
2054 allow_replacements = false;
2055
2056 if (allow_replacements && expr_with_var_bounded_array_refs_p (root->expr))
2057 allow_replacements = false;
2058
2059 for (child = root->first_child; child; child = child->next_sibling)
2060 {
2061 hole |= covered_to < child->offset;
2062 sth_created |= analyze_access_subtree (child, root,
2063 allow_replacements && !scalar);
2064
2065 root->grp_unscalarized_data |= child->grp_unscalarized_data;
2066 root->grp_total_scalarization &= child->grp_total_scalarization;
2067 if (child->grp_covered)
2068 covered_to += child->size;
2069 else
2070 hole = true;
2071 }
2072
2073 if (allow_replacements && scalar && !root->first_child
2074 && (root->grp_hint
2075 || ((root->grp_scalar_read || root->grp_assignment_read)
2076 && (root->grp_scalar_write || root->grp_assignment_write))))
2077 {
2078 if (dump_file && (dump_flags & TDF_DETAILS))
2079 {
2080 fprintf (dump_file, "Marking ");
2081 print_generic_expr (dump_file, root->base, 0);
2082 fprintf (dump_file, " offset: %u, size: %u: ",
2083 (unsigned) root->offset, (unsigned) root->size);
2084 fprintf (dump_file, " to be replaced.\n");
2085 }
2086
2087 root->grp_to_be_replaced = 1;
2088 sth_created = true;
2089 hole = false;
2090 }
2091 else
2092 {
2093 if (covered_to < limit)
2094 hole = true;
2095 if (scalar)
2096 root->grp_total_scalarization = 0;
2097 }
2098
2099 if (sth_created
2100 && (!hole || root->grp_total_scalarization))
2101 {
2102 root->grp_covered = 1;
2103 return true;
2104 }
2105 if (root->grp_write || TREE_CODE (root->base) == PARM_DECL)
2106 root->grp_unscalarized_data = 1; /* not covered and written to */
2107 if (sth_created)
2108 return true;
2109 return false;
2110 }
2111
2112 /* Analyze all access trees linked by next_grp by the means of
2113 analyze_access_subtree. */
2114 static bool
2115 analyze_access_trees (struct access *access)
2116 {
2117 bool ret = false;
2118
2119 while (access)
2120 {
2121 if (analyze_access_subtree (access, NULL, true))
2122 ret = true;
2123 access = access->next_grp;
2124 }
2125
2126 return ret;
2127 }
2128
2129 /* Return true iff a potential new child of LACC at offset OFFSET and with size
2130 SIZE would conflict with an already existing one. If exactly such a child
2131 already exists in LACC, store a pointer to it in EXACT_MATCH. */
2132
2133 static bool
2134 child_would_conflict_in_lacc (struct access *lacc, HOST_WIDE_INT norm_offset,
2135 HOST_WIDE_INT size, struct access **exact_match)
2136 {
2137 struct access *child;
2138
2139 for (child = lacc->first_child; child; child = child->next_sibling)
2140 {
2141 if (child->offset == norm_offset && child->size == size)
2142 {
2143 *exact_match = child;
2144 return true;
2145 }
2146
2147 if (child->offset < norm_offset + size
2148 && child->offset + child->size > norm_offset)
2149 return true;
2150 }
2151
2152 return false;
2153 }
2154
2155 /* Create a new child access of PARENT, with all properties just like MODEL
2156 except for its offset and with its grp_write false and grp_read true.
2157 Return the new access or NULL if it cannot be created. Note that this access
2158 is created long after all splicing and sorting, it's not located in any
2159 access vector and is automatically a representative of its group. */
2160
2161 static struct access *
2162 create_artificial_child_access (struct access *parent, struct access *model,
2163 HOST_WIDE_INT new_offset)
2164 {
2165 struct access *access;
2166 struct access **child;
2167 tree expr = parent->base;
2168
2169 gcc_assert (!model->grp_unscalarizable_region);
2170
2171 access = (struct access *) pool_alloc (access_pool);
2172 memset (access, 0, sizeof (struct access));
2173 if (!build_user_friendly_ref_for_offset (&expr, TREE_TYPE (expr), new_offset,
2174 model->type))
2175 {
2176 access->grp_no_warning = true;
2177 expr = build_ref_for_model (EXPR_LOCATION (parent->base), parent->base,
2178 new_offset, model, NULL, false);
2179 }
2180
2181 access->base = parent->base;
2182 access->expr = expr;
2183 access->offset = new_offset;
2184 access->size = model->size;
2185 access->type = model->type;
2186 access->grp_write = true;
2187 access->grp_read = false;
2188
2189 child = &parent->first_child;
2190 while (*child && (*child)->offset < new_offset)
2191 child = &(*child)->next_sibling;
2192
2193 access->next_sibling = *child;
2194 *child = access;
2195
2196 return access;
2197 }
2198
2199
2200 /* Propagate all subaccesses of RACC across an assignment link to LACC. Return
2201 true if any new subaccess was created. Additionally, if RACC is a scalar
2202 access but LACC is not, change the type of the latter, if possible. */
2203
2204 static bool
2205 propagate_subaccesses_across_link (struct access *lacc, struct access *racc)
2206 {
2207 struct access *rchild;
2208 HOST_WIDE_INT norm_delta = lacc->offset - racc->offset;
2209 bool ret = false;
2210
2211 if (is_gimple_reg_type (lacc->type)
2212 || lacc->grp_unscalarizable_region
2213 || racc->grp_unscalarizable_region)
2214 return false;
2215
2216 if (!lacc->first_child && !racc->first_child
2217 && is_gimple_reg_type (racc->type))
2218 {
2219 tree t = lacc->base;
2220
2221 lacc->type = racc->type;
2222 if (build_user_friendly_ref_for_offset (&t, TREE_TYPE (t), lacc->offset,
2223 racc->type))
2224 lacc->expr = t;
2225 else
2226 {
2227 lacc->expr = build_ref_for_model (EXPR_LOCATION (lacc->base),
2228 lacc->base, lacc->offset,
2229 racc, NULL, false);
2230 lacc->grp_no_warning = true;
2231 }
2232 return false;
2233 }
2234
2235 for (rchild = racc->first_child; rchild; rchild = rchild->next_sibling)
2236 {
2237 struct access *new_acc = NULL;
2238 HOST_WIDE_INT norm_offset = rchild->offset + norm_delta;
2239
2240 if (rchild->grp_unscalarizable_region)
2241 continue;
2242
2243 if (child_would_conflict_in_lacc (lacc, norm_offset, rchild->size,
2244 &new_acc))
2245 {
2246 if (new_acc)
2247 {
2248 rchild->grp_hint = 1;
2249 new_acc->grp_hint |= new_acc->grp_read;
2250 if (rchild->first_child)
2251 ret |= propagate_subaccesses_across_link (new_acc, rchild);
2252 }
2253 continue;
2254 }
2255
2256 rchild->grp_hint = 1;
2257 new_acc = create_artificial_child_access (lacc, rchild, norm_offset);
2258 if (new_acc)
2259 {
2260 ret = true;
2261 if (racc->first_child)
2262 propagate_subaccesses_across_link (new_acc, rchild);
2263 }
2264 }
2265
2266 return ret;
2267 }
2268
2269 /* Propagate all subaccesses across assignment links. */
2270
2271 static void
2272 propagate_all_subaccesses (void)
2273 {
2274 while (work_queue_head)
2275 {
2276 struct access *racc = pop_access_from_work_queue ();
2277 struct assign_link *link;
2278
2279 gcc_assert (racc->first_link);
2280
2281 for (link = racc->first_link; link; link = link->next)
2282 {
2283 struct access *lacc = link->lacc;
2284
2285 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (lacc->base)))
2286 continue;
2287 lacc = lacc->group_representative;
2288 if (propagate_subaccesses_across_link (lacc, racc)
2289 && lacc->first_link)
2290 add_access_to_work_queue (lacc);
2291 }
2292 }
2293 }
2294
2295 /* Go through all accesses collected throughout the (intraprocedural) analysis
2296 stage, exclude overlapping ones, identify representatives and build trees
2297 out of them, making decisions about scalarization on the way. Return true
2298 iff there are any to-be-scalarized variables after this stage. */
2299
2300 static bool
2301 analyze_all_variable_accesses (void)
2302 {
2303 int res = 0;
2304 bitmap tmp = BITMAP_ALLOC (NULL);
2305 bitmap_iterator bi;
2306 unsigned i, max_total_scalarization_size;
2307
2308 max_total_scalarization_size = UNITS_PER_WORD * BITS_PER_UNIT
2309 * MOVE_RATIO (optimize_function_for_speed_p (cfun));
2310
2311 EXECUTE_IF_SET_IN_BITMAP (candidate_bitmap, 0, i, bi)
2312 if (bitmap_bit_p (should_scalarize_away_bitmap, i)
2313 && !bitmap_bit_p (cannot_scalarize_away_bitmap, i))
2314 {
2315 tree var = referenced_var (i);
2316
2317 if (TREE_CODE (var) == VAR_DECL
2318 && type_consists_of_records_p (TREE_TYPE (var)))
2319 {
2320 if ((unsigned) tree_low_cst (TYPE_SIZE (TREE_TYPE (var)), 1)
2321 <= max_total_scalarization_size)
2322 {
2323 completely_scalarize_var (var);
2324 if (dump_file && (dump_flags & TDF_DETAILS))
2325 {
2326 fprintf (dump_file, "Will attempt to totally scalarize ");
2327 print_generic_expr (dump_file, var, 0);
2328 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2329 }
2330 }
2331 else if (dump_file && (dump_flags & TDF_DETAILS))
2332 {
2333 fprintf (dump_file, "Too big to totally scalarize: ");
2334 print_generic_expr (dump_file, var, 0);
2335 fprintf (dump_file, " (UID: %u)\n", DECL_UID (var));
2336 }
2337 }
2338 }
2339
2340 bitmap_copy (tmp, candidate_bitmap);
2341 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2342 {
2343 tree var = referenced_var (i);
2344 struct access *access;
2345
2346 access = sort_and_splice_var_accesses (var);
2347 if (!access || !build_access_trees (access))
2348 disqualify_candidate (var,
2349 "No or inhibitingly overlapping accesses.");
2350 }
2351
2352 propagate_all_subaccesses ();
2353
2354 bitmap_copy (tmp, candidate_bitmap);
2355 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2356 {
2357 tree var = referenced_var (i);
2358 struct access *access = get_first_repr_for_decl (var);
2359
2360 if (analyze_access_trees (access))
2361 {
2362 res++;
2363 if (dump_file && (dump_flags & TDF_DETAILS))
2364 {
2365 fprintf (dump_file, "\nAccess trees for ");
2366 print_generic_expr (dump_file, var, 0);
2367 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2368 dump_access_tree (dump_file, access);
2369 fprintf (dump_file, "\n");
2370 }
2371 }
2372 else
2373 disqualify_candidate (var, "No scalar replacements to be created.");
2374 }
2375
2376 BITMAP_FREE (tmp);
2377
2378 if (res)
2379 {
2380 statistics_counter_event (cfun, "Scalarized aggregates", res);
2381 return true;
2382 }
2383 else
2384 return false;
2385 }
2386
2387 /* Generate statements copying scalar replacements of accesses within a subtree
2388 into or out of AGG. ACCESS, all its children, siblings and their children
2389 are to be processed. AGG is an aggregate type expression (can be a
2390 declaration but does not have to be, it can for example also be a mem_ref or
2391 a series of handled components). TOP_OFFSET is the offset of the processed
2392 subtree which has to be subtracted from offsets of individual accesses to
2393 get corresponding offsets for AGG. If CHUNK_SIZE is non-null, copy only
2394 replacements in the interval <start_offset, start_offset + chunk_size>,
2395 otherwise copy all. GSI is a statement iterator used to place the new
2396 statements. WRITE should be true when the statements should write from AGG
2397 to the replacement and false if vice versa. if INSERT_AFTER is true, new
2398 statements will be added after the current statement in GSI, they will be
2399 added before the statement otherwise. */
2400
2401 static void
2402 generate_subtree_copies (struct access *access, tree agg,
2403 HOST_WIDE_INT top_offset,
2404 HOST_WIDE_INT start_offset, HOST_WIDE_INT chunk_size,
2405 gimple_stmt_iterator *gsi, bool write,
2406 bool insert_after, location_t loc)
2407 {
2408 do
2409 {
2410 if (chunk_size && access->offset >= start_offset + chunk_size)
2411 return;
2412
2413 if (access->grp_to_be_replaced
2414 && (chunk_size == 0
2415 || access->offset + access->size > start_offset))
2416 {
2417 tree expr, repl = get_access_replacement (access);
2418 gimple stmt;
2419
2420 expr = build_ref_for_model (loc, agg, access->offset - top_offset,
2421 access, gsi, insert_after);
2422
2423 if (write)
2424 {
2425 if (access->grp_partial_lhs)
2426 expr = force_gimple_operand_gsi (gsi, expr, true, NULL_TREE,
2427 !insert_after,
2428 insert_after ? GSI_NEW_STMT
2429 : GSI_SAME_STMT);
2430 stmt = gimple_build_assign (repl, expr);
2431 }
2432 else
2433 {
2434 TREE_NO_WARNING (repl) = 1;
2435 if (access->grp_partial_lhs)
2436 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2437 !insert_after,
2438 insert_after ? GSI_NEW_STMT
2439 : GSI_SAME_STMT);
2440 stmt = gimple_build_assign (expr, repl);
2441 }
2442 gimple_set_location (stmt, loc);
2443
2444 if (insert_after)
2445 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2446 else
2447 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2448 update_stmt (stmt);
2449 sra_stats.subtree_copies++;
2450 }
2451
2452 if (access->first_child)
2453 generate_subtree_copies (access->first_child, agg, top_offset,
2454 start_offset, chunk_size, gsi,
2455 write, insert_after, loc);
2456
2457 access = access->next_sibling;
2458 }
2459 while (access);
2460 }
2461
2462 /* Assign zero to all scalar replacements in an access subtree. ACCESS is the
2463 the root of the subtree to be processed. GSI is the statement iterator used
2464 for inserting statements which are added after the current statement if
2465 INSERT_AFTER is true or before it otherwise. */
2466
2467 static void
2468 init_subtree_with_zero (struct access *access, gimple_stmt_iterator *gsi,
2469 bool insert_after, location_t loc)
2470
2471 {
2472 struct access *child;
2473
2474 if (access->grp_to_be_replaced)
2475 {
2476 gimple stmt;
2477
2478 stmt = gimple_build_assign (get_access_replacement (access),
2479 build_zero_cst (access->type));
2480 if (insert_after)
2481 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2482 else
2483 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2484 update_stmt (stmt);
2485 gimple_set_location (stmt, loc);
2486 }
2487
2488 for (child = access->first_child; child; child = child->next_sibling)
2489 init_subtree_with_zero (child, gsi, insert_after, loc);
2490 }
2491
2492 /* Search for an access representative for the given expression EXPR and
2493 return it or NULL if it cannot be found. */
2494
2495 static struct access *
2496 get_access_for_expr (tree expr)
2497 {
2498 HOST_WIDE_INT offset, size, max_size;
2499 tree base;
2500
2501 /* FIXME: This should not be necessary but Ada produces V_C_Es with a type of
2502 a different size than the size of its argument and we need the latter
2503 one. */
2504 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2505 expr = TREE_OPERAND (expr, 0);
2506
2507 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
2508 if (max_size == -1 || !DECL_P (base))
2509 return NULL;
2510
2511 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
2512 return NULL;
2513
2514 return get_var_base_offset_size_access (base, offset, max_size);
2515 }
2516
2517 /* Replace the expression EXPR with a scalar replacement if there is one and
2518 generate other statements to do type conversion or subtree copying if
2519 necessary. GSI is used to place newly created statements, WRITE is true if
2520 the expression is being written to (it is on a LHS of a statement or output
2521 in an assembly statement). */
2522
2523 static bool
2524 sra_modify_expr (tree *expr, gimple_stmt_iterator *gsi, bool write)
2525 {
2526 location_t loc;
2527 struct access *access;
2528 tree type, bfr;
2529
2530 if (TREE_CODE (*expr) == BIT_FIELD_REF)
2531 {
2532 bfr = *expr;
2533 expr = &TREE_OPERAND (*expr, 0);
2534 }
2535 else
2536 bfr = NULL_TREE;
2537
2538 if (TREE_CODE (*expr) == REALPART_EXPR || TREE_CODE (*expr) == IMAGPART_EXPR)
2539 expr = &TREE_OPERAND (*expr, 0);
2540 access = get_access_for_expr (*expr);
2541 if (!access)
2542 return false;
2543 type = TREE_TYPE (*expr);
2544
2545 loc = gimple_location (gsi_stmt (*gsi));
2546 if (access->grp_to_be_replaced)
2547 {
2548 tree repl = get_access_replacement (access);
2549 /* If we replace a non-register typed access simply use the original
2550 access expression to extract the scalar component afterwards.
2551 This happens if scalarizing a function return value or parameter
2552 like in gcc.c-torture/execute/20041124-1.c, 20050316-1.c and
2553 gcc.c-torture/compile/20011217-1.c.
2554
2555 We also want to use this when accessing a complex or vector which can
2556 be accessed as a different type too, potentially creating a need for
2557 type conversion (see PR42196) and when scalarized unions are involved
2558 in assembler statements (see PR42398). */
2559 if (!useless_type_conversion_p (type, access->type))
2560 {
2561 tree ref;
2562
2563 ref = build_ref_for_model (loc, access->base, access->offset, access,
2564 NULL, false);
2565
2566 if (write)
2567 {
2568 gimple stmt;
2569
2570 if (access->grp_partial_lhs)
2571 ref = force_gimple_operand_gsi (gsi, ref, true, NULL_TREE,
2572 false, GSI_NEW_STMT);
2573 stmt = gimple_build_assign (repl, ref);
2574 gimple_set_location (stmt, loc);
2575 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2576 }
2577 else
2578 {
2579 gimple stmt;
2580
2581 if (access->grp_partial_lhs)
2582 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2583 true, GSI_SAME_STMT);
2584 stmt = gimple_build_assign (ref, repl);
2585 gimple_set_location (stmt, loc);
2586 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2587 }
2588 }
2589 else
2590 *expr = repl;
2591 sra_stats.exprs++;
2592 }
2593
2594 if (access->first_child)
2595 {
2596 HOST_WIDE_INT start_offset, chunk_size;
2597 if (bfr
2598 && host_integerp (TREE_OPERAND (bfr, 1), 1)
2599 && host_integerp (TREE_OPERAND (bfr, 2), 1))
2600 {
2601 chunk_size = tree_low_cst (TREE_OPERAND (bfr, 1), 1);
2602 start_offset = access->offset
2603 + tree_low_cst (TREE_OPERAND (bfr, 2), 1);
2604 }
2605 else
2606 start_offset = chunk_size = 0;
2607
2608 generate_subtree_copies (access->first_child, access->base, 0,
2609 start_offset, chunk_size, gsi, write, write,
2610 loc);
2611 }
2612 return true;
2613 }
2614
2615 /* Where scalar replacements of the RHS have been written to when a replacement
2616 of a LHS of an assigments cannot be direclty loaded from a replacement of
2617 the RHS. */
2618 enum unscalarized_data_handling { SRA_UDH_NONE, /* Nothing done so far. */
2619 SRA_UDH_RIGHT, /* Data flushed to the RHS. */
2620 SRA_UDH_LEFT }; /* Data flushed to the LHS. */
2621
2622 /* Store all replacements in the access tree rooted in TOP_RACC either to their
2623 base aggregate if there are unscalarized data or directly to LHS of the
2624 statement that is pointed to by GSI otherwise. */
2625
2626 static enum unscalarized_data_handling
2627 handle_unscalarized_data_in_subtree (struct access *top_racc,
2628 gimple_stmt_iterator *gsi)
2629 {
2630 if (top_racc->grp_unscalarized_data)
2631 {
2632 generate_subtree_copies (top_racc->first_child, top_racc->base, 0, 0, 0,
2633 gsi, false, false,
2634 gimple_location (gsi_stmt (*gsi)));
2635 return SRA_UDH_RIGHT;
2636 }
2637 else
2638 {
2639 tree lhs = gimple_assign_lhs (gsi_stmt (*gsi));
2640 generate_subtree_copies (top_racc->first_child, lhs, top_racc->offset,
2641 0, 0, gsi, false, false,
2642 gimple_location (gsi_stmt (*gsi)));
2643 return SRA_UDH_LEFT;
2644 }
2645 }
2646
2647
2648 /* Try to generate statements to load all sub-replacements in an access subtree
2649 formed by children of LACC from scalar replacements in the TOP_RACC subtree.
2650 If that is not possible, refresh the TOP_RACC base aggregate and load the
2651 accesses from it. LEFT_OFFSET is the offset of the left whole subtree being
2652 copied. NEW_GSI is stmt iterator used for statement insertions after the
2653 original assignment, OLD_GSI is used to insert statements before the
2654 assignment. *REFRESHED keeps the information whether we have needed to
2655 refresh replacements of the LHS and from which side of the assignments this
2656 takes place. */
2657
2658 static void
2659 load_assign_lhs_subreplacements (struct access *lacc, struct access *top_racc,
2660 HOST_WIDE_INT left_offset,
2661 gimple_stmt_iterator *old_gsi,
2662 gimple_stmt_iterator *new_gsi,
2663 enum unscalarized_data_handling *refreshed)
2664 {
2665 location_t loc = gimple_location (gsi_stmt (*old_gsi));
2666 for (lacc = lacc->first_child; lacc; lacc = lacc->next_sibling)
2667 {
2668 if (lacc->grp_to_be_replaced)
2669 {
2670 struct access *racc;
2671 HOST_WIDE_INT offset = lacc->offset - left_offset + top_racc->offset;
2672 gimple stmt;
2673 tree rhs;
2674
2675 racc = find_access_in_subtree (top_racc, offset, lacc->size);
2676 if (racc && racc->grp_to_be_replaced)
2677 {
2678 rhs = get_access_replacement (racc);
2679 if (!useless_type_conversion_p (lacc->type, racc->type))
2680 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, lacc->type, rhs);
2681 }
2682 else
2683 {
2684 /* No suitable access on the right hand side, need to load from
2685 the aggregate. See if we have to update it first... */
2686 if (*refreshed == SRA_UDH_NONE)
2687 *refreshed = handle_unscalarized_data_in_subtree (top_racc,
2688 old_gsi);
2689
2690 if (*refreshed == SRA_UDH_LEFT)
2691 rhs = build_ref_for_model (loc, lacc->base, lacc->offset, lacc,
2692 new_gsi, true);
2693 else
2694 rhs = build_ref_for_model (loc, top_racc->base, offset, lacc,
2695 new_gsi, true);
2696 }
2697
2698 stmt = gimple_build_assign (get_access_replacement (lacc), rhs);
2699 gsi_insert_after (new_gsi, stmt, GSI_NEW_STMT);
2700 gimple_set_location (stmt, loc);
2701 update_stmt (stmt);
2702 sra_stats.subreplacements++;
2703 }
2704 else if (*refreshed == SRA_UDH_NONE
2705 && lacc->grp_read && !lacc->grp_covered)
2706 *refreshed = handle_unscalarized_data_in_subtree (top_racc,
2707 old_gsi);
2708
2709 if (lacc->first_child)
2710 load_assign_lhs_subreplacements (lacc, top_racc, left_offset,
2711 old_gsi, new_gsi, refreshed);
2712 }
2713 }
2714
2715 /* Result code for SRA assignment modification. */
2716 enum assignment_mod_result { SRA_AM_NONE, /* nothing done for the stmt */
2717 SRA_AM_MODIFIED, /* stmt changed but not
2718 removed */
2719 SRA_AM_REMOVED }; /* stmt eliminated */
2720
2721 /* Modify assignments with a CONSTRUCTOR on their RHS. STMT contains a pointer
2722 to the assignment and GSI is the statement iterator pointing at it. Returns
2723 the same values as sra_modify_assign. */
2724
2725 static enum assignment_mod_result
2726 sra_modify_constructor_assign (gimple *stmt, gimple_stmt_iterator *gsi)
2727 {
2728 tree lhs = gimple_assign_lhs (*stmt);
2729 struct access *acc;
2730 location_t loc;
2731
2732 acc = get_access_for_expr (lhs);
2733 if (!acc)
2734 return SRA_AM_NONE;
2735
2736 loc = gimple_location (*stmt);
2737 if (VEC_length (constructor_elt,
2738 CONSTRUCTOR_ELTS (gimple_assign_rhs1 (*stmt))) > 0)
2739 {
2740 /* I have never seen this code path trigger but if it can happen the
2741 following should handle it gracefully. */
2742 if (access_has_children_p (acc))
2743 generate_subtree_copies (acc->first_child, acc->base, 0, 0, 0, gsi,
2744 true, true, loc);
2745 return SRA_AM_MODIFIED;
2746 }
2747
2748 if (acc->grp_covered)
2749 {
2750 init_subtree_with_zero (acc, gsi, false, loc);
2751 unlink_stmt_vdef (*stmt);
2752 gsi_remove (gsi, true);
2753 return SRA_AM_REMOVED;
2754 }
2755 else
2756 {
2757 init_subtree_with_zero (acc, gsi, true, loc);
2758 return SRA_AM_MODIFIED;
2759 }
2760 }
2761
2762 /* Create and return a new suitable default definition SSA_NAME for RACC which
2763 is an access describing an uninitialized part of an aggregate that is being
2764 loaded. */
2765
2766 static tree
2767 get_repl_default_def_ssa_name (struct access *racc)
2768 {
2769 tree repl, decl;
2770
2771 decl = get_unrenamed_access_replacement (racc);
2772
2773 repl = gimple_default_def (cfun, decl);
2774 if (!repl)
2775 {
2776 repl = make_ssa_name (decl, gimple_build_nop ());
2777 set_default_def (decl, repl);
2778 }
2779
2780 return repl;
2781 }
2782
2783 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
2784 somewhere in it. */
2785
2786 static inline bool
2787 contains_bitfld_comp_ref_p (const_tree ref)
2788 {
2789 while (handled_component_p (ref))
2790 {
2791 if (TREE_CODE (ref) == COMPONENT_REF
2792 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
2793 return true;
2794 ref = TREE_OPERAND (ref, 0);
2795 }
2796
2797 return false;
2798 }
2799
2800 /* Return true if REF has an VIEW_CONVERT_EXPR or a COMPONENT_REF with a
2801 bit-field field declaration somewhere in it. */
2802
2803 static inline bool
2804 contains_vce_or_bfcref_p (const_tree ref)
2805 {
2806 while (handled_component_p (ref))
2807 {
2808 if (TREE_CODE (ref) == VIEW_CONVERT_EXPR
2809 || (TREE_CODE (ref) == COMPONENT_REF
2810 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1))))
2811 return true;
2812 ref = TREE_OPERAND (ref, 0);
2813 }
2814
2815 return false;
2816 }
2817
2818 /* Examine both sides of the assignment statement pointed to by STMT, replace
2819 them with a scalare replacement if there is one and generate copying of
2820 replacements if scalarized aggregates have been used in the assignment. GSI
2821 is used to hold generated statements for type conversions and subtree
2822 copying. */
2823
2824 static enum assignment_mod_result
2825 sra_modify_assign (gimple *stmt, gimple_stmt_iterator *gsi)
2826 {
2827 struct access *lacc, *racc;
2828 tree lhs, rhs;
2829 bool modify_this_stmt = false;
2830 bool force_gimple_rhs = false;
2831 location_t loc;
2832 gimple_stmt_iterator orig_gsi = *gsi;
2833
2834 if (!gimple_assign_single_p (*stmt))
2835 return SRA_AM_NONE;
2836 lhs = gimple_assign_lhs (*stmt);
2837 rhs = gimple_assign_rhs1 (*stmt);
2838
2839 if (TREE_CODE (rhs) == CONSTRUCTOR)
2840 return sra_modify_constructor_assign (stmt, gsi);
2841
2842 if (TREE_CODE (rhs) == REALPART_EXPR || TREE_CODE (lhs) == REALPART_EXPR
2843 || TREE_CODE (rhs) == IMAGPART_EXPR || TREE_CODE (lhs) == IMAGPART_EXPR
2844 || TREE_CODE (rhs) == BIT_FIELD_REF || TREE_CODE (lhs) == BIT_FIELD_REF)
2845 {
2846 modify_this_stmt = sra_modify_expr (gimple_assign_rhs1_ptr (*stmt),
2847 gsi, false);
2848 modify_this_stmt |= sra_modify_expr (gimple_assign_lhs_ptr (*stmt),
2849 gsi, true);
2850 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
2851 }
2852
2853 lacc = get_access_for_expr (lhs);
2854 racc = get_access_for_expr (rhs);
2855 if (!lacc && !racc)
2856 return SRA_AM_NONE;
2857
2858 loc = gimple_location (*stmt);
2859 if (lacc && lacc->grp_to_be_replaced)
2860 {
2861 lhs = get_access_replacement (lacc);
2862 gimple_assign_set_lhs (*stmt, lhs);
2863 modify_this_stmt = true;
2864 if (lacc->grp_partial_lhs)
2865 force_gimple_rhs = true;
2866 sra_stats.exprs++;
2867 }
2868
2869 if (racc && racc->grp_to_be_replaced)
2870 {
2871 rhs = get_access_replacement (racc);
2872 modify_this_stmt = true;
2873 if (racc->grp_partial_lhs)
2874 force_gimple_rhs = true;
2875 sra_stats.exprs++;
2876 }
2877
2878 if (modify_this_stmt)
2879 {
2880 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2881 {
2882 /* If we can avoid creating a VIEW_CONVERT_EXPR do so.
2883 ??? This should move to fold_stmt which we simply should
2884 call after building a VIEW_CONVERT_EXPR here. */
2885 if (AGGREGATE_TYPE_P (TREE_TYPE (lhs))
2886 && !contains_bitfld_comp_ref_p (lhs)
2887 && !access_has_children_p (lacc))
2888 {
2889 lhs = build_ref_for_model (loc, lhs, 0, racc, gsi, false);
2890 gimple_assign_set_lhs (*stmt, lhs);
2891 }
2892 else if (AGGREGATE_TYPE_P (TREE_TYPE (rhs))
2893 && !contains_vce_or_bfcref_p (rhs)
2894 && !access_has_children_p (racc))
2895 rhs = build_ref_for_model (loc, rhs, 0, lacc, gsi, false);
2896
2897 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2898 {
2899 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, TREE_TYPE (lhs),
2900 rhs);
2901 if (is_gimple_reg_type (TREE_TYPE (lhs))
2902 && TREE_CODE (lhs) != SSA_NAME)
2903 force_gimple_rhs = true;
2904 }
2905 }
2906 }
2907
2908 /* From this point on, the function deals with assignments in between
2909 aggregates when at least one has scalar reductions of some of its
2910 components. There are three possible scenarios: Both the LHS and RHS have
2911 to-be-scalarized components, 2) only the RHS has or 3) only the LHS has.
2912
2913 In the first case, we would like to load the LHS components from RHS
2914 components whenever possible. If that is not possible, we would like to
2915 read it directly from the RHS (after updating it by storing in it its own
2916 components). If there are some necessary unscalarized data in the LHS,
2917 those will be loaded by the original assignment too. If neither of these
2918 cases happen, the original statement can be removed. Most of this is done
2919 by load_assign_lhs_subreplacements.
2920
2921 In the second case, we would like to store all RHS scalarized components
2922 directly into LHS and if they cover the aggregate completely, remove the
2923 statement too. In the third case, we want the LHS components to be loaded
2924 directly from the RHS (DSE will remove the original statement if it
2925 becomes redundant).
2926
2927 This is a bit complex but manageable when types match and when unions do
2928 not cause confusion in a way that we cannot really load a component of LHS
2929 from the RHS or vice versa (the access representing this level can have
2930 subaccesses that are accessible only through a different union field at a
2931 higher level - different from the one used in the examined expression).
2932 Unions are fun.
2933
2934 Therefore, I specially handle a fourth case, happening when there is a
2935 specific type cast or it is impossible to locate a scalarized subaccess on
2936 the other side of the expression. If that happens, I simply "refresh" the
2937 RHS by storing in it is scalarized components leave the original statement
2938 there to do the copying and then load the scalar replacements of the LHS.
2939 This is what the first branch does. */
2940
2941 if (modify_this_stmt
2942 || gimple_has_volatile_ops (*stmt)
2943 || contains_vce_or_bfcref_p (rhs)
2944 || contains_vce_or_bfcref_p (lhs))
2945 {
2946 if (access_has_children_p (racc))
2947 generate_subtree_copies (racc->first_child, racc->base, 0, 0, 0,
2948 gsi, false, false, loc);
2949 if (access_has_children_p (lacc))
2950 generate_subtree_copies (lacc->first_child, lacc->base, 0, 0, 0,
2951 gsi, true, true, loc);
2952 sra_stats.separate_lhs_rhs_handling++;
2953 }
2954 else
2955 {
2956 if (access_has_children_p (lacc) && access_has_children_p (racc))
2957 {
2958 gimple_stmt_iterator orig_gsi = *gsi;
2959 enum unscalarized_data_handling refreshed;
2960
2961 if (lacc->grp_read && !lacc->grp_covered)
2962 refreshed = handle_unscalarized_data_in_subtree (racc, gsi);
2963 else
2964 refreshed = SRA_UDH_NONE;
2965
2966 load_assign_lhs_subreplacements (lacc, racc, lacc->offset,
2967 &orig_gsi, gsi, &refreshed);
2968 if (refreshed != SRA_UDH_RIGHT)
2969 {
2970 gsi_next (gsi);
2971 unlink_stmt_vdef (*stmt);
2972 gsi_remove (&orig_gsi, true);
2973 sra_stats.deleted++;
2974 return SRA_AM_REMOVED;
2975 }
2976 }
2977 else
2978 {
2979 if (racc)
2980 {
2981 if (!racc->grp_to_be_replaced && !racc->grp_unscalarized_data)
2982 {
2983 if (dump_file)
2984 {
2985 fprintf (dump_file, "Removing load: ");
2986 print_gimple_stmt (dump_file, *stmt, 0, 0);
2987 }
2988
2989 if (TREE_CODE (lhs) == SSA_NAME)
2990 {
2991 rhs = get_repl_default_def_ssa_name (racc);
2992 if (!useless_type_conversion_p (TREE_TYPE (lhs),
2993 TREE_TYPE (rhs)))
2994 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR,
2995 TREE_TYPE (lhs), rhs);
2996 }
2997 else
2998 {
2999 if (racc->first_child)
3000 generate_subtree_copies (racc->first_child, lhs,
3001 racc->offset, 0, 0, gsi,
3002 false, false, loc);
3003
3004 gcc_assert (*stmt == gsi_stmt (*gsi));
3005 unlink_stmt_vdef (*stmt);
3006 gsi_remove (gsi, true);
3007 sra_stats.deleted++;
3008 return SRA_AM_REMOVED;
3009 }
3010 }
3011 else if (racc->first_child)
3012 generate_subtree_copies (racc->first_child, lhs, racc->offset,
3013 0, 0, gsi, false, true, loc);
3014 }
3015 if (access_has_children_p (lacc))
3016 generate_subtree_copies (lacc->first_child, rhs, lacc->offset,
3017 0, 0, gsi, true, true, loc);
3018 }
3019 }
3020
3021 /* This gimplification must be done after generate_subtree_copies, lest we
3022 insert the subtree copies in the middle of the gimplified sequence. */
3023 if (force_gimple_rhs)
3024 rhs = force_gimple_operand_gsi (&orig_gsi, rhs, true, NULL_TREE,
3025 true, GSI_SAME_STMT);
3026 if (gimple_assign_rhs1 (*stmt) != rhs)
3027 {
3028 modify_this_stmt = true;
3029 gimple_assign_set_rhs_from_tree (&orig_gsi, rhs);
3030 gcc_assert (*stmt == gsi_stmt (orig_gsi));
3031 }
3032
3033 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
3034 }
3035
3036 /* Traverse the function body and all modifications as decided in
3037 analyze_all_variable_accesses. Return true iff the CFG has been
3038 changed. */
3039
3040 static bool
3041 sra_modify_function_body (void)
3042 {
3043 bool cfg_changed = false;
3044 basic_block bb;
3045
3046 FOR_EACH_BB (bb)
3047 {
3048 gimple_stmt_iterator gsi = gsi_start_bb (bb);
3049 while (!gsi_end_p (gsi))
3050 {
3051 gimple stmt = gsi_stmt (gsi);
3052 enum assignment_mod_result assign_result;
3053 bool modified = false, deleted = false;
3054 tree *t;
3055 unsigned i;
3056
3057 switch (gimple_code (stmt))
3058 {
3059 case GIMPLE_RETURN:
3060 t = gimple_return_retval_ptr (stmt);
3061 if (*t != NULL_TREE)
3062 modified |= sra_modify_expr (t, &gsi, false);
3063 break;
3064
3065 case GIMPLE_ASSIGN:
3066 assign_result = sra_modify_assign (&stmt, &gsi);
3067 modified |= assign_result == SRA_AM_MODIFIED;
3068 deleted = assign_result == SRA_AM_REMOVED;
3069 break;
3070
3071 case GIMPLE_CALL:
3072 /* Operands must be processed before the lhs. */
3073 for (i = 0; i < gimple_call_num_args (stmt); i++)
3074 {
3075 t = gimple_call_arg_ptr (stmt, i);
3076 modified |= sra_modify_expr (t, &gsi, false);
3077 }
3078
3079 if (gimple_call_lhs (stmt))
3080 {
3081 t = gimple_call_lhs_ptr (stmt);
3082 modified |= sra_modify_expr (t, &gsi, true);
3083 }
3084 break;
3085
3086 case GIMPLE_ASM:
3087 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
3088 {
3089 t = &TREE_VALUE (gimple_asm_input_op (stmt, i));
3090 modified |= sra_modify_expr (t, &gsi, false);
3091 }
3092 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
3093 {
3094 t = &TREE_VALUE (gimple_asm_output_op (stmt, i));
3095 modified |= sra_modify_expr (t, &gsi, true);
3096 }
3097 break;
3098
3099 default:
3100 break;
3101 }
3102
3103 if (modified)
3104 {
3105 update_stmt (stmt);
3106 if (maybe_clean_eh_stmt (stmt)
3107 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
3108 cfg_changed = true;
3109 }
3110 if (!deleted)
3111 gsi_next (&gsi);
3112 }
3113 }
3114
3115 return cfg_changed;
3116 }
3117
3118 /* Generate statements initializing scalar replacements of parts of function
3119 parameters. */
3120
3121 static void
3122 initialize_parameter_reductions (void)
3123 {
3124 gimple_stmt_iterator gsi;
3125 gimple_seq seq = NULL;
3126 tree parm;
3127
3128 for (parm = DECL_ARGUMENTS (current_function_decl);
3129 parm;
3130 parm = DECL_CHAIN (parm))
3131 {
3132 VEC (access_p, heap) *access_vec;
3133 struct access *access;
3134
3135 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3136 continue;
3137 access_vec = get_base_access_vector (parm);
3138 if (!access_vec)
3139 continue;
3140
3141 if (!seq)
3142 {
3143 seq = gimple_seq_alloc ();
3144 gsi = gsi_start (seq);
3145 }
3146
3147 for (access = VEC_index (access_p, access_vec, 0);
3148 access;
3149 access = access->next_grp)
3150 generate_subtree_copies (access, parm, 0, 0, 0, &gsi, true, true,
3151 EXPR_LOCATION (parm));
3152 }
3153
3154 if (seq)
3155 gsi_insert_seq_on_edge_immediate (single_succ_edge (ENTRY_BLOCK_PTR), seq);
3156 }
3157
3158 /* The "main" function of intraprocedural SRA passes. Runs the analysis and if
3159 it reveals there are components of some aggregates to be scalarized, it runs
3160 the required transformations. */
3161 static unsigned int
3162 perform_intra_sra (void)
3163 {
3164 int ret = 0;
3165 sra_initialize ();
3166
3167 if (!find_var_candidates ())
3168 goto out;
3169
3170 if (!scan_function ())
3171 goto out;
3172
3173 if (!analyze_all_variable_accesses ())
3174 goto out;
3175
3176 if (sra_modify_function_body ())
3177 ret = TODO_update_ssa | TODO_cleanup_cfg;
3178 else
3179 ret = TODO_update_ssa;
3180 initialize_parameter_reductions ();
3181
3182 statistics_counter_event (cfun, "Scalar replacements created",
3183 sra_stats.replacements);
3184 statistics_counter_event (cfun, "Modified expressions", sra_stats.exprs);
3185 statistics_counter_event (cfun, "Subtree copy stmts",
3186 sra_stats.subtree_copies);
3187 statistics_counter_event (cfun, "Subreplacement stmts",
3188 sra_stats.subreplacements);
3189 statistics_counter_event (cfun, "Deleted stmts", sra_stats.deleted);
3190 statistics_counter_event (cfun, "Separate LHS and RHS handling",
3191 sra_stats.separate_lhs_rhs_handling);
3192
3193 out:
3194 sra_deinitialize ();
3195 return ret;
3196 }
3197
3198 /* Perform early intraprocedural SRA. */
3199 static unsigned int
3200 early_intra_sra (void)
3201 {
3202 sra_mode = SRA_MODE_EARLY_INTRA;
3203 return perform_intra_sra ();
3204 }
3205
3206 /* Perform "late" intraprocedural SRA. */
3207 static unsigned int
3208 late_intra_sra (void)
3209 {
3210 sra_mode = SRA_MODE_INTRA;
3211 return perform_intra_sra ();
3212 }
3213
3214
3215 static bool
3216 gate_intra_sra (void)
3217 {
3218 return flag_tree_sra != 0 && dbg_cnt (tree_sra);
3219 }
3220
3221
3222 struct gimple_opt_pass pass_sra_early =
3223 {
3224 {
3225 GIMPLE_PASS,
3226 "esra", /* name */
3227 gate_intra_sra, /* gate */
3228 early_intra_sra, /* execute */
3229 NULL, /* sub */
3230 NULL, /* next */
3231 0, /* static_pass_number */
3232 TV_TREE_SRA, /* tv_id */
3233 PROP_cfg | PROP_ssa, /* properties_required */
3234 0, /* properties_provided */
3235 0, /* properties_destroyed */
3236 0, /* todo_flags_start */
3237 TODO_update_ssa
3238 | TODO_ggc_collect
3239 | TODO_verify_ssa /* todo_flags_finish */
3240 }
3241 };
3242
3243 struct gimple_opt_pass pass_sra =
3244 {
3245 {
3246 GIMPLE_PASS,
3247 "sra", /* name */
3248 gate_intra_sra, /* gate */
3249 late_intra_sra, /* execute */
3250 NULL, /* sub */
3251 NULL, /* next */
3252 0, /* static_pass_number */
3253 TV_TREE_SRA, /* tv_id */
3254 PROP_cfg | PROP_ssa, /* properties_required */
3255 0, /* properties_provided */
3256 0, /* properties_destroyed */
3257 TODO_update_address_taken, /* todo_flags_start */
3258 TODO_update_ssa
3259 | TODO_ggc_collect
3260 | TODO_verify_ssa /* todo_flags_finish */
3261 }
3262 };
3263
3264
3265 /* Return true iff PARM (which must be a parm_decl) is an unused scalar
3266 parameter. */
3267
3268 static bool
3269 is_unused_scalar_param (tree parm)
3270 {
3271 tree name;
3272 return (is_gimple_reg (parm)
3273 && (!(name = gimple_default_def (cfun, parm))
3274 || has_zero_uses (name)));
3275 }
3276
3277 /* Scan immediate uses of a default definition SSA name of a parameter PARM and
3278 examine whether there are any direct or otherwise infeasible ones. If so,
3279 return true, otherwise return false. PARM must be a gimple register with a
3280 non-NULL default definition. */
3281
3282 static bool
3283 ptr_parm_has_direct_uses (tree parm)
3284 {
3285 imm_use_iterator ui;
3286 gimple stmt;
3287 tree name = gimple_default_def (cfun, parm);
3288 bool ret = false;
3289
3290 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
3291 {
3292 int uses_ok = 0;
3293 use_operand_p use_p;
3294
3295 if (is_gimple_debug (stmt))
3296 continue;
3297
3298 /* Valid uses include dereferences on the lhs and the rhs. */
3299 if (gimple_has_lhs (stmt))
3300 {
3301 tree lhs = gimple_get_lhs (stmt);
3302 while (handled_component_p (lhs))
3303 lhs = TREE_OPERAND (lhs, 0);
3304 if (TREE_CODE (lhs) == MEM_REF
3305 && TREE_OPERAND (lhs, 0) == name
3306 && integer_zerop (TREE_OPERAND (lhs, 1))
3307 && types_compatible_p (TREE_TYPE (lhs),
3308 TREE_TYPE (TREE_TYPE (name)))
3309 && !TREE_THIS_VOLATILE (lhs))
3310 uses_ok++;
3311 }
3312 if (gimple_assign_single_p (stmt))
3313 {
3314 tree rhs = gimple_assign_rhs1 (stmt);
3315 while (handled_component_p (rhs))
3316 rhs = TREE_OPERAND (rhs, 0);
3317 if (TREE_CODE (rhs) == MEM_REF
3318 && TREE_OPERAND (rhs, 0) == name
3319 && integer_zerop (TREE_OPERAND (rhs, 1))
3320 && types_compatible_p (TREE_TYPE (rhs),
3321 TREE_TYPE (TREE_TYPE (name)))
3322 && !TREE_THIS_VOLATILE (rhs))
3323 uses_ok++;
3324 }
3325 else if (is_gimple_call (stmt))
3326 {
3327 unsigned i;
3328 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3329 {
3330 tree arg = gimple_call_arg (stmt, i);
3331 while (handled_component_p (arg))
3332 arg = TREE_OPERAND (arg, 0);
3333 if (TREE_CODE (arg) == MEM_REF
3334 && TREE_OPERAND (arg, 0) == name
3335 && integer_zerop (TREE_OPERAND (arg, 1))
3336 && types_compatible_p (TREE_TYPE (arg),
3337 TREE_TYPE (TREE_TYPE (name)))
3338 && !TREE_THIS_VOLATILE (arg))
3339 uses_ok++;
3340 }
3341 }
3342
3343 /* If the number of valid uses does not match the number of
3344 uses in this stmt there is an unhandled use. */
3345 FOR_EACH_IMM_USE_ON_STMT (use_p, ui)
3346 --uses_ok;
3347
3348 if (uses_ok != 0)
3349 ret = true;
3350
3351 if (ret)
3352 BREAK_FROM_IMM_USE_STMT (ui);
3353 }
3354
3355 return ret;
3356 }
3357
3358 /* Identify candidates for reduction for IPA-SRA based on their type and mark
3359 them in candidate_bitmap. Note that these do not necessarily include
3360 parameter which are unused and thus can be removed. Return true iff any
3361 such candidate has been found. */
3362
3363 static bool
3364 find_param_candidates (void)
3365 {
3366 tree parm;
3367 int count = 0;
3368 bool ret = false;
3369 const char *msg;
3370
3371 for (parm = DECL_ARGUMENTS (current_function_decl);
3372 parm;
3373 parm = DECL_CHAIN (parm))
3374 {
3375 tree type = TREE_TYPE (parm);
3376
3377 count++;
3378
3379 if (TREE_THIS_VOLATILE (parm)
3380 || TREE_ADDRESSABLE (parm)
3381 || (!is_gimple_reg_type (type) && is_va_list_type (type)))
3382 continue;
3383
3384 if (is_unused_scalar_param (parm))
3385 {
3386 ret = true;
3387 continue;
3388 }
3389
3390 if (POINTER_TYPE_P (type))
3391 {
3392 type = TREE_TYPE (type);
3393
3394 if (TREE_CODE (type) == FUNCTION_TYPE
3395 || TYPE_VOLATILE (type)
3396 || (TREE_CODE (type) == ARRAY_TYPE
3397 && TYPE_NONALIASED_COMPONENT (type))
3398 || !is_gimple_reg (parm)
3399 || is_va_list_type (type)
3400 || ptr_parm_has_direct_uses (parm))
3401 continue;
3402 }
3403 else if (!AGGREGATE_TYPE_P (type))
3404 continue;
3405
3406 if (!COMPLETE_TYPE_P (type)
3407 || !host_integerp (TYPE_SIZE (type), 1)
3408 || tree_low_cst (TYPE_SIZE (type), 1) == 0
3409 || (AGGREGATE_TYPE_P (type)
3410 && type_internals_preclude_sra_p (type, &msg)))
3411 continue;
3412
3413 bitmap_set_bit (candidate_bitmap, DECL_UID (parm));
3414 ret = true;
3415 if (dump_file && (dump_flags & TDF_DETAILS))
3416 {
3417 fprintf (dump_file, "Candidate (%d): ", DECL_UID (parm));
3418 print_generic_expr (dump_file, parm, 0);
3419 fprintf (dump_file, "\n");
3420 }
3421 }
3422
3423 func_param_count = count;
3424 return ret;
3425 }
3426
3427 /* Callback of walk_aliased_vdefs, marks the access passed as DATA as
3428 maybe_modified. */
3429
3430 static bool
3431 mark_maybe_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
3432 void *data)
3433 {
3434 struct access *repr = (struct access *) data;
3435
3436 repr->grp_maybe_modified = 1;
3437 return true;
3438 }
3439
3440 /* Analyze what representatives (in linked lists accessible from
3441 REPRESENTATIVES) can be modified by side effects of statements in the
3442 current function. */
3443
3444 static void
3445 analyze_modified_params (VEC (access_p, heap) *representatives)
3446 {
3447 int i;
3448
3449 for (i = 0; i < func_param_count; i++)
3450 {
3451 struct access *repr;
3452
3453 for (repr = VEC_index (access_p, representatives, i);
3454 repr;
3455 repr = repr->next_grp)
3456 {
3457 struct access *access;
3458 bitmap visited;
3459 ao_ref ar;
3460
3461 if (no_accesses_p (repr))
3462 continue;
3463 if (!POINTER_TYPE_P (TREE_TYPE (repr->base))
3464 || repr->grp_maybe_modified)
3465 continue;
3466
3467 ao_ref_init (&ar, repr->expr);
3468 visited = BITMAP_ALLOC (NULL);
3469 for (access = repr; access; access = access->next_sibling)
3470 {
3471 /* All accesses are read ones, otherwise grp_maybe_modified would
3472 be trivially set. */
3473 walk_aliased_vdefs (&ar, gimple_vuse (access->stmt),
3474 mark_maybe_modified, repr, &visited);
3475 if (repr->grp_maybe_modified)
3476 break;
3477 }
3478 BITMAP_FREE (visited);
3479 }
3480 }
3481 }
3482
3483 /* Propagate distances in bb_dereferences in the opposite direction than the
3484 control flow edges, in each step storing the maximum of the current value
3485 and the minimum of all successors. These steps are repeated until the table
3486 stabilizes. Note that BBs which might terminate the functions (according to
3487 final_bbs bitmap) never updated in this way. */
3488
3489 static void
3490 propagate_dereference_distances (void)
3491 {
3492 VEC (basic_block, heap) *queue;
3493 basic_block bb;
3494
3495 queue = VEC_alloc (basic_block, heap, last_basic_block_for_function (cfun));
3496 VEC_quick_push (basic_block, queue, ENTRY_BLOCK_PTR);
3497 FOR_EACH_BB (bb)
3498 {
3499 VEC_quick_push (basic_block, queue, bb);
3500 bb->aux = bb;
3501 }
3502
3503 while (!VEC_empty (basic_block, queue))
3504 {
3505 edge_iterator ei;
3506 edge e;
3507 bool change = false;
3508 int i;
3509
3510 bb = VEC_pop (basic_block, queue);
3511 bb->aux = NULL;
3512
3513 if (bitmap_bit_p (final_bbs, bb->index))
3514 continue;
3515
3516 for (i = 0; i < func_param_count; i++)
3517 {
3518 int idx = bb->index * func_param_count + i;
3519 bool first = true;
3520 HOST_WIDE_INT inh = 0;
3521
3522 FOR_EACH_EDGE (e, ei, bb->succs)
3523 {
3524 int succ_idx = e->dest->index * func_param_count + i;
3525
3526 if (e->src == EXIT_BLOCK_PTR)
3527 continue;
3528
3529 if (first)
3530 {
3531 first = false;
3532 inh = bb_dereferences [succ_idx];
3533 }
3534 else if (bb_dereferences [succ_idx] < inh)
3535 inh = bb_dereferences [succ_idx];
3536 }
3537
3538 if (!first && bb_dereferences[idx] < inh)
3539 {
3540 bb_dereferences[idx] = inh;
3541 change = true;
3542 }
3543 }
3544
3545 if (change && !bitmap_bit_p (final_bbs, bb->index))
3546 FOR_EACH_EDGE (e, ei, bb->preds)
3547 {
3548 if (e->src->aux)
3549 continue;
3550
3551 e->src->aux = e->src;
3552 VEC_quick_push (basic_block, queue, e->src);
3553 }
3554 }
3555
3556 VEC_free (basic_block, heap, queue);
3557 }
3558
3559 /* Dump a dereferences TABLE with heading STR to file F. */
3560
3561 static void
3562 dump_dereferences_table (FILE *f, const char *str, HOST_WIDE_INT *table)
3563 {
3564 basic_block bb;
3565
3566 fprintf (dump_file, str);
3567 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
3568 {
3569 fprintf (f, "%4i %i ", bb->index, bitmap_bit_p (final_bbs, bb->index));
3570 if (bb != EXIT_BLOCK_PTR)
3571 {
3572 int i;
3573 for (i = 0; i < func_param_count; i++)
3574 {
3575 int idx = bb->index * func_param_count + i;
3576 fprintf (f, " %4" HOST_WIDE_INT_PRINT "d", table[idx]);
3577 }
3578 }
3579 fprintf (f, "\n");
3580 }
3581 fprintf (dump_file, "\n");
3582 }
3583
3584 /* Determine what (parts of) parameters passed by reference that are not
3585 assigned to are not certainly dereferenced in this function and thus the
3586 dereferencing cannot be safely moved to the caller without potentially
3587 introducing a segfault. Mark such REPRESENTATIVES as
3588 grp_not_necessarilly_dereferenced.
3589
3590 The dereferenced maximum "distance," i.e. the offset + size of the accessed
3591 part is calculated rather than simple booleans are calculated for each
3592 pointer parameter to handle cases when only a fraction of the whole
3593 aggregate is allocated (see testsuite/gcc.c-torture/execute/ipa-sra-2.c for
3594 an example).
3595
3596 The maximum dereference distances for each pointer parameter and BB are
3597 already stored in bb_dereference. This routine simply propagates these
3598 values upwards by propagate_dereference_distances and then compares the
3599 distances of individual parameters in the ENTRY BB to the equivalent
3600 distances of each representative of a (fraction of a) parameter. */
3601
3602 static void
3603 analyze_caller_dereference_legality (VEC (access_p, heap) *representatives)
3604 {
3605 int i;
3606
3607 if (dump_file && (dump_flags & TDF_DETAILS))
3608 dump_dereferences_table (dump_file,
3609 "Dereference table before propagation:\n",
3610 bb_dereferences);
3611
3612 propagate_dereference_distances ();
3613
3614 if (dump_file && (dump_flags & TDF_DETAILS))
3615 dump_dereferences_table (dump_file,
3616 "Dereference table after propagation:\n",
3617 bb_dereferences);
3618
3619 for (i = 0; i < func_param_count; i++)
3620 {
3621 struct access *repr = VEC_index (access_p, representatives, i);
3622 int idx = ENTRY_BLOCK_PTR->index * func_param_count + i;
3623
3624 if (!repr || no_accesses_p (repr))
3625 continue;
3626
3627 do
3628 {
3629 if ((repr->offset + repr->size) > bb_dereferences[idx])
3630 repr->grp_not_necessarilly_dereferenced = 1;
3631 repr = repr->next_grp;
3632 }
3633 while (repr);
3634 }
3635 }
3636
3637 /* Return the representative access for the parameter declaration PARM if it is
3638 a scalar passed by reference which is not written to and the pointer value
3639 is not used directly. Thus, if it is legal to dereference it in the caller
3640 and we can rule out modifications through aliases, such parameter should be
3641 turned into one passed by value. Return NULL otherwise. */
3642
3643 static struct access *
3644 unmodified_by_ref_scalar_representative (tree parm)
3645 {
3646 int i, access_count;
3647 struct access *repr;
3648 VEC (access_p, heap) *access_vec;
3649
3650 access_vec = get_base_access_vector (parm);
3651 gcc_assert (access_vec);
3652 repr = VEC_index (access_p, access_vec, 0);
3653 if (repr->write)
3654 return NULL;
3655 repr->group_representative = repr;
3656
3657 access_count = VEC_length (access_p, access_vec);
3658 for (i = 1; i < access_count; i++)
3659 {
3660 struct access *access = VEC_index (access_p, access_vec, i);
3661 if (access->write)
3662 return NULL;
3663 access->group_representative = repr;
3664 access->next_sibling = repr->next_sibling;
3665 repr->next_sibling = access;
3666 }
3667
3668 repr->grp_read = 1;
3669 repr->grp_scalar_ptr = 1;
3670 return repr;
3671 }
3672
3673 /* Return true iff this access precludes IPA-SRA of the parameter it is
3674 associated with. */
3675
3676 static bool
3677 access_precludes_ipa_sra_p (struct access *access)
3678 {
3679 /* Avoid issues such as the second simple testcase in PR 42025. The problem
3680 is incompatible assign in a call statement (and possibly even in asm
3681 statements). This can be relaxed by using a new temporary but only for
3682 non-TREE_ADDRESSABLE types and is probably not worth the complexity. (In
3683 intraprocedural SRA we deal with this by keeping the old aggregate around,
3684 something we cannot do in IPA-SRA.) */
3685 if (access->write
3686 && (is_gimple_call (access->stmt)
3687 || gimple_code (access->stmt) == GIMPLE_ASM))
3688 return true;
3689
3690 if (tree_non_mode_aligned_mem_p (access->expr))
3691 return true;
3692
3693 return false;
3694 }
3695
3696
3697 /* Sort collected accesses for parameter PARM, identify representatives for
3698 each accessed region and link them together. Return NULL if there are
3699 different but overlapping accesses, return the special ptr value meaning
3700 there are no accesses for this parameter if that is the case and return the
3701 first representative otherwise. Set *RO_GRP if there is a group of accesses
3702 with only read (i.e. no write) accesses. */
3703
3704 static struct access *
3705 splice_param_accesses (tree parm, bool *ro_grp)
3706 {
3707 int i, j, access_count, group_count;
3708 int agg_size, total_size = 0;
3709 struct access *access, *res, **prev_acc_ptr = &res;
3710 VEC (access_p, heap) *access_vec;
3711
3712 access_vec = get_base_access_vector (parm);
3713 if (!access_vec)
3714 return &no_accesses_representant;
3715 access_count = VEC_length (access_p, access_vec);
3716
3717 VEC_qsort (access_p, access_vec, compare_access_positions);
3718
3719 i = 0;
3720 total_size = 0;
3721 group_count = 0;
3722 while (i < access_count)
3723 {
3724 bool modification;
3725 tree a1_alias_type;
3726 access = VEC_index (access_p, access_vec, i);
3727 modification = access->write;
3728 if (access_precludes_ipa_sra_p (access))
3729 return NULL;
3730 a1_alias_type = reference_alias_ptr_type (access->expr);
3731
3732 /* Access is about to become group representative unless we find some
3733 nasty overlap which would preclude us from breaking this parameter
3734 apart. */
3735
3736 j = i + 1;
3737 while (j < access_count)
3738 {
3739 struct access *ac2 = VEC_index (access_p, access_vec, j);
3740 if (ac2->offset != access->offset)
3741 {
3742 /* All or nothing law for parameters. */
3743 if (access->offset + access->size > ac2->offset)
3744 return NULL;
3745 else
3746 break;
3747 }
3748 else if (ac2->size != access->size)
3749 return NULL;
3750
3751 if (access_precludes_ipa_sra_p (ac2)
3752 || (ac2->type != access->type
3753 && (TREE_ADDRESSABLE (ac2->type)
3754 || TREE_ADDRESSABLE (access->type)))
3755 || (reference_alias_ptr_type (ac2->expr) != a1_alias_type))
3756 return NULL;
3757
3758 modification |= ac2->write;
3759 ac2->group_representative = access;
3760 ac2->next_sibling = access->next_sibling;
3761 access->next_sibling = ac2;
3762 j++;
3763 }
3764
3765 group_count++;
3766 access->grp_maybe_modified = modification;
3767 if (!modification)
3768 *ro_grp = true;
3769 *prev_acc_ptr = access;
3770 prev_acc_ptr = &access->next_grp;
3771 total_size += access->size;
3772 i = j;
3773 }
3774
3775 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3776 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))), 1);
3777 else
3778 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (parm)), 1);
3779 if (total_size >= agg_size)
3780 return NULL;
3781
3782 gcc_assert (group_count > 0);
3783 return res;
3784 }
3785
3786 /* Decide whether parameters with representative accesses given by REPR should
3787 be reduced into components. */
3788
3789 static int
3790 decide_one_param_reduction (struct access *repr)
3791 {
3792 int total_size, cur_parm_size, agg_size, new_param_count, parm_size_limit;
3793 bool by_ref;
3794 tree parm;
3795
3796 parm = repr->base;
3797 cur_parm_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (parm)), 1);
3798 gcc_assert (cur_parm_size > 0);
3799
3800 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3801 {
3802 by_ref = true;
3803 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))), 1);
3804 }
3805 else
3806 {
3807 by_ref = false;
3808 agg_size = cur_parm_size;
3809 }
3810
3811 if (dump_file)
3812 {
3813 struct access *acc;
3814 fprintf (dump_file, "Evaluating PARAM group sizes for ");
3815 print_generic_expr (dump_file, parm, 0);
3816 fprintf (dump_file, " (UID: %u): \n", DECL_UID (parm));
3817 for (acc = repr; acc; acc = acc->next_grp)
3818 dump_access (dump_file, acc, true);
3819 }
3820
3821 total_size = 0;
3822 new_param_count = 0;
3823
3824 for (; repr; repr = repr->next_grp)
3825 {
3826 gcc_assert (parm == repr->base);
3827
3828 /* Taking the address of a non-addressable field is verboten. */
3829 if (by_ref && repr->non_addressable)
3830 return 0;
3831
3832 if (!by_ref || (!repr->grp_maybe_modified
3833 && !repr->grp_not_necessarilly_dereferenced))
3834 total_size += repr->size;
3835 else
3836 total_size += cur_parm_size;
3837
3838 new_param_count++;
3839 }
3840
3841 gcc_assert (new_param_count > 0);
3842
3843 if (optimize_function_for_size_p (cfun))
3844 parm_size_limit = cur_parm_size;
3845 else
3846 parm_size_limit = (PARAM_VALUE (PARAM_IPA_SRA_PTR_GROWTH_FACTOR)
3847 * cur_parm_size);
3848
3849 if (total_size < agg_size
3850 && total_size <= parm_size_limit)
3851 {
3852 if (dump_file)
3853 fprintf (dump_file, " ....will be split into %i components\n",
3854 new_param_count);
3855 return new_param_count;
3856 }
3857 else
3858 return 0;
3859 }
3860
3861 /* The order of the following enums is important, we need to do extra work for
3862 UNUSED_PARAMS, BY_VAL_ACCESSES and UNMODIF_BY_REF_ACCESSES. */
3863 enum ipa_splicing_result { NO_GOOD_ACCESS, UNUSED_PARAMS, BY_VAL_ACCESSES,
3864 MODIF_BY_REF_ACCESSES, UNMODIF_BY_REF_ACCESSES };
3865
3866 /* Identify representatives of all accesses to all candidate parameters for
3867 IPA-SRA. Return result based on what representatives have been found. */
3868
3869 static enum ipa_splicing_result
3870 splice_all_param_accesses (VEC (access_p, heap) **representatives)
3871 {
3872 enum ipa_splicing_result result = NO_GOOD_ACCESS;
3873 tree parm;
3874 struct access *repr;
3875
3876 *representatives = VEC_alloc (access_p, heap, func_param_count);
3877
3878 for (parm = DECL_ARGUMENTS (current_function_decl);
3879 parm;
3880 parm = DECL_CHAIN (parm))
3881 {
3882 if (is_unused_scalar_param (parm))
3883 {
3884 VEC_quick_push (access_p, *representatives,
3885 &no_accesses_representant);
3886 if (result == NO_GOOD_ACCESS)
3887 result = UNUSED_PARAMS;
3888 }
3889 else if (POINTER_TYPE_P (TREE_TYPE (parm))
3890 && is_gimple_reg_type (TREE_TYPE (TREE_TYPE (parm)))
3891 && bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3892 {
3893 repr = unmodified_by_ref_scalar_representative (parm);
3894 VEC_quick_push (access_p, *representatives, repr);
3895 if (repr)
3896 result = UNMODIF_BY_REF_ACCESSES;
3897 }
3898 else if (bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3899 {
3900 bool ro_grp = false;
3901 repr = splice_param_accesses (parm, &ro_grp);
3902 VEC_quick_push (access_p, *representatives, repr);
3903
3904 if (repr && !no_accesses_p (repr))
3905 {
3906 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3907 {
3908 if (ro_grp)
3909 result = UNMODIF_BY_REF_ACCESSES;
3910 else if (result < MODIF_BY_REF_ACCESSES)
3911 result = MODIF_BY_REF_ACCESSES;
3912 }
3913 else if (result < BY_VAL_ACCESSES)
3914 result = BY_VAL_ACCESSES;
3915 }
3916 else if (no_accesses_p (repr) && (result == NO_GOOD_ACCESS))
3917 result = UNUSED_PARAMS;
3918 }
3919 else
3920 VEC_quick_push (access_p, *representatives, NULL);
3921 }
3922
3923 if (result == NO_GOOD_ACCESS)
3924 {
3925 VEC_free (access_p, heap, *representatives);
3926 *representatives = NULL;
3927 return NO_GOOD_ACCESS;
3928 }
3929
3930 return result;
3931 }
3932
3933 /* Return the index of BASE in PARMS. Abort if it is not found. */
3934
3935 static inline int
3936 get_param_index (tree base, VEC(tree, heap) *parms)
3937 {
3938 int i, len;
3939
3940 len = VEC_length (tree, parms);
3941 for (i = 0; i < len; i++)
3942 if (VEC_index (tree, parms, i) == base)
3943 return i;
3944 gcc_unreachable ();
3945 }
3946
3947 /* Convert the decisions made at the representative level into compact
3948 parameter adjustments. REPRESENTATIVES are pointers to first
3949 representatives of each param accesses, ADJUSTMENTS_COUNT is the expected
3950 final number of adjustments. */
3951
3952 static ipa_parm_adjustment_vec
3953 turn_representatives_into_adjustments (VEC (access_p, heap) *representatives,
3954 int adjustments_count)
3955 {
3956 VEC (tree, heap) *parms;
3957 ipa_parm_adjustment_vec adjustments;
3958 tree parm;
3959 int i;
3960
3961 gcc_assert (adjustments_count > 0);
3962 parms = ipa_get_vector_of_formal_parms (current_function_decl);
3963 adjustments = VEC_alloc (ipa_parm_adjustment_t, heap, adjustments_count);
3964 parm = DECL_ARGUMENTS (current_function_decl);
3965 for (i = 0; i < func_param_count; i++, parm = DECL_CHAIN (parm))
3966 {
3967 struct access *repr = VEC_index (access_p, representatives, i);
3968
3969 if (!repr || no_accesses_p (repr))
3970 {
3971 struct ipa_parm_adjustment *adj;
3972
3973 adj = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
3974 memset (adj, 0, sizeof (*adj));
3975 adj->base_index = get_param_index (parm, parms);
3976 adj->base = parm;
3977 if (!repr)
3978 adj->copy_param = 1;
3979 else
3980 adj->remove_param = 1;
3981 }
3982 else
3983 {
3984 struct ipa_parm_adjustment *adj;
3985 int index = get_param_index (parm, parms);
3986
3987 for (; repr; repr = repr->next_grp)
3988 {
3989 adj = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
3990 memset (adj, 0, sizeof (*adj));
3991 gcc_assert (repr->base == parm);
3992 adj->base_index = index;
3993 adj->base = repr->base;
3994 adj->type = repr->type;
3995 adj->alias_ptr_type = reference_alias_ptr_type (repr->expr);
3996 adj->offset = repr->offset;
3997 adj->by_ref = (POINTER_TYPE_P (TREE_TYPE (repr->base))
3998 && (repr->grp_maybe_modified
3999 || repr->grp_not_necessarilly_dereferenced));
4000
4001 }
4002 }
4003 }
4004 VEC_free (tree, heap, parms);
4005 return adjustments;
4006 }
4007
4008 /* Analyze the collected accesses and produce a plan what to do with the
4009 parameters in the form of adjustments, NULL meaning nothing. */
4010
4011 static ipa_parm_adjustment_vec
4012 analyze_all_param_acesses (void)
4013 {
4014 enum ipa_splicing_result repr_state;
4015 bool proceed = false;
4016 int i, adjustments_count = 0;
4017 VEC (access_p, heap) *representatives;
4018 ipa_parm_adjustment_vec adjustments;
4019
4020 repr_state = splice_all_param_accesses (&representatives);
4021 if (repr_state == NO_GOOD_ACCESS)
4022 return NULL;
4023
4024 /* If there are any parameters passed by reference which are not modified
4025 directly, we need to check whether they can be modified indirectly. */
4026 if (repr_state == UNMODIF_BY_REF_ACCESSES)
4027 {
4028 analyze_caller_dereference_legality (representatives);
4029 analyze_modified_params (representatives);
4030 }
4031
4032 for (i = 0; i < func_param_count; i++)
4033 {
4034 struct access *repr = VEC_index (access_p, representatives, i);
4035
4036 if (repr && !no_accesses_p (repr))
4037 {
4038 if (repr->grp_scalar_ptr)
4039 {
4040 adjustments_count++;
4041 if (repr->grp_not_necessarilly_dereferenced
4042 || repr->grp_maybe_modified)
4043 VEC_replace (access_p, representatives, i, NULL);
4044 else
4045 {
4046 proceed = true;
4047 sra_stats.scalar_by_ref_to_by_val++;
4048 }
4049 }
4050 else
4051 {
4052 int new_components = decide_one_param_reduction (repr);
4053
4054 if (new_components == 0)
4055 {
4056 VEC_replace (access_p, representatives, i, NULL);
4057 adjustments_count++;
4058 }
4059 else
4060 {
4061 adjustments_count += new_components;
4062 sra_stats.aggregate_params_reduced++;
4063 sra_stats.param_reductions_created += new_components;
4064 proceed = true;
4065 }
4066 }
4067 }
4068 else
4069 {
4070 if (no_accesses_p (repr))
4071 {
4072 proceed = true;
4073 sra_stats.deleted_unused_parameters++;
4074 }
4075 adjustments_count++;
4076 }
4077 }
4078
4079 if (!proceed && dump_file)
4080 fprintf (dump_file, "NOT proceeding to change params.\n");
4081
4082 if (proceed)
4083 adjustments = turn_representatives_into_adjustments (representatives,
4084 adjustments_count);
4085 else
4086 adjustments = NULL;
4087
4088 VEC_free (access_p, heap, representatives);
4089 return adjustments;
4090 }
4091
4092 /* If a parameter replacement identified by ADJ does not yet exist in the form
4093 of declaration, create it and record it, otherwise return the previously
4094 created one. */
4095
4096 static tree
4097 get_replaced_param_substitute (struct ipa_parm_adjustment *adj)
4098 {
4099 tree repl;
4100 if (!adj->new_ssa_base)
4101 {
4102 char *pretty_name = make_fancy_name (adj->base);
4103
4104 repl = create_tmp_reg (TREE_TYPE (adj->base), "ISR");
4105 DECL_NAME (repl) = get_identifier (pretty_name);
4106 obstack_free (&name_obstack, pretty_name);
4107
4108 add_referenced_var (repl);
4109 adj->new_ssa_base = repl;
4110 }
4111 else
4112 repl = adj->new_ssa_base;
4113 return repl;
4114 }
4115
4116 /* Find the first adjustment for a particular parameter BASE in a vector of
4117 ADJUSTMENTS which is not a copy_param. Return NULL if there is no such
4118 adjustment. */
4119
4120 static struct ipa_parm_adjustment *
4121 get_adjustment_for_base (ipa_parm_adjustment_vec adjustments, tree base)
4122 {
4123 int i, len;
4124
4125 len = VEC_length (ipa_parm_adjustment_t, adjustments);
4126 for (i = 0; i < len; i++)
4127 {
4128 struct ipa_parm_adjustment *adj;
4129
4130 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
4131 if (!adj->copy_param && adj->base == base)
4132 return adj;
4133 }
4134
4135 return NULL;
4136 }
4137
4138 /* If the statement STMT defines an SSA_NAME of a parameter which is to be
4139 removed because its value is not used, replace the SSA_NAME with a one
4140 relating to a created VAR_DECL together all of its uses and return true.
4141 ADJUSTMENTS is a pointer to an adjustments vector. */
4142
4143 static bool
4144 replace_removed_params_ssa_names (gimple stmt,
4145 ipa_parm_adjustment_vec adjustments)
4146 {
4147 struct ipa_parm_adjustment *adj;
4148 tree lhs, decl, repl, name;
4149
4150 if (gimple_code (stmt) == GIMPLE_PHI)
4151 lhs = gimple_phi_result (stmt);
4152 else if (is_gimple_assign (stmt))
4153 lhs = gimple_assign_lhs (stmt);
4154 else if (is_gimple_call (stmt))
4155 lhs = gimple_call_lhs (stmt);
4156 else
4157 gcc_unreachable ();
4158
4159 if (TREE_CODE (lhs) != SSA_NAME)
4160 return false;
4161 decl = SSA_NAME_VAR (lhs);
4162 if (TREE_CODE (decl) != PARM_DECL)
4163 return false;
4164
4165 adj = get_adjustment_for_base (adjustments, decl);
4166 if (!adj)
4167 return false;
4168
4169 repl = get_replaced_param_substitute (adj);
4170 name = make_ssa_name (repl, stmt);
4171
4172 if (dump_file)
4173 {
4174 fprintf (dump_file, "replacing an SSA name of a removed param ");
4175 print_generic_expr (dump_file, lhs, 0);
4176 fprintf (dump_file, " with ");
4177 print_generic_expr (dump_file, name, 0);
4178 fprintf (dump_file, "\n");
4179 }
4180
4181 if (is_gimple_assign (stmt))
4182 gimple_assign_set_lhs (stmt, name);
4183 else if (is_gimple_call (stmt))
4184 gimple_call_set_lhs (stmt, name);
4185 else
4186 gimple_phi_set_result (stmt, name);
4187
4188 replace_uses_by (lhs, name);
4189 release_ssa_name (lhs);
4190 return true;
4191 }
4192
4193 /* If the expression *EXPR should be replaced by a reduction of a parameter, do
4194 so. ADJUSTMENTS is a pointer to a vector of adjustments. CONVERT
4195 specifies whether the function should care about type incompatibility the
4196 current and new expressions. If it is false, the function will leave
4197 incompatibility issues to the caller. Return true iff the expression
4198 was modified. */
4199
4200 static bool
4201 sra_ipa_modify_expr (tree *expr, bool convert,
4202 ipa_parm_adjustment_vec adjustments)
4203 {
4204 int i, len;
4205 struct ipa_parm_adjustment *adj, *cand = NULL;
4206 HOST_WIDE_INT offset, size, max_size;
4207 tree base, src;
4208
4209 len = VEC_length (ipa_parm_adjustment_t, adjustments);
4210
4211 if (TREE_CODE (*expr) == BIT_FIELD_REF
4212 || TREE_CODE (*expr) == IMAGPART_EXPR
4213 || TREE_CODE (*expr) == REALPART_EXPR)
4214 {
4215 expr = &TREE_OPERAND (*expr, 0);
4216 convert = true;
4217 }
4218
4219 base = get_ref_base_and_extent (*expr, &offset, &size, &max_size);
4220 if (!base || size == -1 || max_size == -1)
4221 return false;
4222
4223 if (TREE_CODE (base) == MEM_REF)
4224 {
4225 offset += mem_ref_offset (base).low * BITS_PER_UNIT;
4226 base = TREE_OPERAND (base, 0);
4227 }
4228
4229 base = get_ssa_base_param (base);
4230 if (!base || TREE_CODE (base) != PARM_DECL)
4231 return false;
4232
4233 for (i = 0; i < len; i++)
4234 {
4235 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
4236
4237 if (adj->base == base &&
4238 (adj->offset == offset || adj->remove_param))
4239 {
4240 cand = adj;
4241 break;
4242 }
4243 }
4244 if (!cand || cand->copy_param || cand->remove_param)
4245 return false;
4246
4247 if (cand->by_ref)
4248 src = build_simple_mem_ref (cand->reduction);
4249 else
4250 src = cand->reduction;
4251
4252 if (dump_file && (dump_flags & TDF_DETAILS))
4253 {
4254 fprintf (dump_file, "About to replace expr ");
4255 print_generic_expr (dump_file, *expr, 0);
4256 fprintf (dump_file, " with ");
4257 print_generic_expr (dump_file, src, 0);
4258 fprintf (dump_file, "\n");
4259 }
4260
4261 if (convert && !useless_type_conversion_p (TREE_TYPE (*expr), cand->type))
4262 {
4263 tree vce = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (*expr), src);
4264 *expr = vce;
4265 }
4266 else
4267 *expr = src;
4268 return true;
4269 }
4270
4271 /* If the statement pointed to by STMT_PTR contains any expressions that need
4272 to replaced with a different one as noted by ADJUSTMENTS, do so. Handle any
4273 potential type incompatibilities (GSI is used to accommodate conversion
4274 statements and must point to the statement). Return true iff the statement
4275 was modified. */
4276
4277 static bool
4278 sra_ipa_modify_assign (gimple *stmt_ptr, gimple_stmt_iterator *gsi,
4279 ipa_parm_adjustment_vec adjustments)
4280 {
4281 gimple stmt = *stmt_ptr;
4282 tree *lhs_p, *rhs_p;
4283 bool any;
4284
4285 if (!gimple_assign_single_p (stmt))
4286 return false;
4287
4288 rhs_p = gimple_assign_rhs1_ptr (stmt);
4289 lhs_p = gimple_assign_lhs_ptr (stmt);
4290
4291 any = sra_ipa_modify_expr (rhs_p, false, adjustments);
4292 any |= sra_ipa_modify_expr (lhs_p, false, adjustments);
4293 if (any)
4294 {
4295 tree new_rhs = NULL_TREE;
4296
4297 if (!useless_type_conversion_p (TREE_TYPE (*lhs_p), TREE_TYPE (*rhs_p)))
4298 {
4299 if (TREE_CODE (*rhs_p) == CONSTRUCTOR)
4300 {
4301 /* V_C_Es of constructors can cause trouble (PR 42714). */
4302 if (is_gimple_reg_type (TREE_TYPE (*lhs_p)))
4303 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
4304 else
4305 *rhs_p = build_constructor (TREE_TYPE (*lhs_p), 0);
4306 }
4307 else
4308 new_rhs = fold_build1_loc (gimple_location (stmt),
4309 VIEW_CONVERT_EXPR, TREE_TYPE (*lhs_p),
4310 *rhs_p);
4311 }
4312 else if (REFERENCE_CLASS_P (*rhs_p)
4313 && is_gimple_reg_type (TREE_TYPE (*lhs_p))
4314 && !is_gimple_reg (*lhs_p))
4315 /* This can happen when an assignment in between two single field
4316 structures is turned into an assignment in between two pointers to
4317 scalars (PR 42237). */
4318 new_rhs = *rhs_p;
4319
4320 if (new_rhs)
4321 {
4322 tree tmp = force_gimple_operand_gsi (gsi, new_rhs, true, NULL_TREE,
4323 true, GSI_SAME_STMT);
4324
4325 gimple_assign_set_rhs_from_tree (gsi, tmp);
4326 }
4327
4328 return true;
4329 }
4330
4331 return false;
4332 }
4333
4334 /* Traverse the function body and all modifications as described in
4335 ADJUSTMENTS. Return true iff the CFG has been changed. */
4336
4337 static bool
4338 ipa_sra_modify_function_body (ipa_parm_adjustment_vec adjustments)
4339 {
4340 bool cfg_changed = false;
4341 basic_block bb;
4342
4343 FOR_EACH_BB (bb)
4344 {
4345 gimple_stmt_iterator gsi;
4346
4347 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4348 replace_removed_params_ssa_names (gsi_stmt (gsi), adjustments);
4349
4350 gsi = gsi_start_bb (bb);
4351 while (!gsi_end_p (gsi))
4352 {
4353 gimple stmt = gsi_stmt (gsi);
4354 bool modified = false;
4355 tree *t;
4356 unsigned i;
4357
4358 switch (gimple_code (stmt))
4359 {
4360 case GIMPLE_RETURN:
4361 t = gimple_return_retval_ptr (stmt);
4362 if (*t != NULL_TREE)
4363 modified |= sra_ipa_modify_expr (t, true, adjustments);
4364 break;
4365
4366 case GIMPLE_ASSIGN:
4367 modified |= sra_ipa_modify_assign (&stmt, &gsi, adjustments);
4368 modified |= replace_removed_params_ssa_names (stmt, adjustments);
4369 break;
4370
4371 case GIMPLE_CALL:
4372 /* Operands must be processed before the lhs. */
4373 for (i = 0; i < gimple_call_num_args (stmt); i++)
4374 {
4375 t = gimple_call_arg_ptr (stmt, i);
4376 modified |= sra_ipa_modify_expr (t, true, adjustments);
4377 }
4378
4379 if (gimple_call_lhs (stmt))
4380 {
4381 t = gimple_call_lhs_ptr (stmt);
4382 modified |= sra_ipa_modify_expr (t, false, adjustments);
4383 modified |= replace_removed_params_ssa_names (stmt,
4384 adjustments);
4385 }
4386 break;
4387
4388 case GIMPLE_ASM:
4389 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
4390 {
4391 t = &TREE_VALUE (gimple_asm_input_op (stmt, i));
4392 modified |= sra_ipa_modify_expr (t, true, adjustments);
4393 }
4394 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
4395 {
4396 t = &TREE_VALUE (gimple_asm_output_op (stmt, i));
4397 modified |= sra_ipa_modify_expr (t, false, adjustments);
4398 }
4399 break;
4400
4401 default:
4402 break;
4403 }
4404
4405 if (modified)
4406 {
4407 update_stmt (stmt);
4408 if (maybe_clean_eh_stmt (stmt)
4409 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
4410 cfg_changed = true;
4411 }
4412 gsi_next (&gsi);
4413 }
4414 }
4415
4416 return cfg_changed;
4417 }
4418
4419 /* Call gimple_debug_bind_reset_value on all debug statements describing
4420 gimple register parameters that are being removed or replaced. */
4421
4422 static void
4423 sra_ipa_reset_debug_stmts (ipa_parm_adjustment_vec adjustments)
4424 {
4425 int i, len;
4426 gimple_stmt_iterator *gsip = NULL, gsi;
4427
4428 if (MAY_HAVE_DEBUG_STMTS && single_succ_p (ENTRY_BLOCK_PTR))
4429 {
4430 gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
4431 gsip = &gsi;
4432 }
4433 len = VEC_length (ipa_parm_adjustment_t, adjustments);
4434 for (i = 0; i < len; i++)
4435 {
4436 struct ipa_parm_adjustment *adj;
4437 imm_use_iterator ui;
4438 gimple stmt, def_temp;
4439 tree name, vexpr, copy = NULL_TREE;
4440 use_operand_p use_p;
4441
4442 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
4443 if (adj->copy_param || !is_gimple_reg (adj->base))
4444 continue;
4445 name = gimple_default_def (cfun, adj->base);
4446 vexpr = NULL;
4447 if (name)
4448 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
4449 {
4450 /* All other users must have been removed by
4451 ipa_sra_modify_function_body. */
4452 gcc_assert (is_gimple_debug (stmt));
4453 if (vexpr == NULL && gsip != NULL)
4454 {
4455 gcc_assert (TREE_CODE (adj->base) == PARM_DECL);
4456 vexpr = make_node (DEBUG_EXPR_DECL);
4457 def_temp = gimple_build_debug_source_bind (vexpr, adj->base,
4458 NULL);
4459 DECL_ARTIFICIAL (vexpr) = 1;
4460 TREE_TYPE (vexpr) = TREE_TYPE (name);
4461 DECL_MODE (vexpr) = DECL_MODE (adj->base);
4462 gsi_insert_before (gsip, def_temp, GSI_SAME_STMT);
4463 }
4464 if (vexpr)
4465 {
4466 FOR_EACH_IMM_USE_ON_STMT (use_p, ui)
4467 SET_USE (use_p, vexpr);
4468 }
4469 else
4470 gimple_debug_bind_reset_value (stmt);
4471 update_stmt (stmt);
4472 }
4473 /* Create a VAR_DECL for debug info purposes. */
4474 if (!DECL_IGNORED_P (adj->base))
4475 {
4476 copy = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
4477 VAR_DECL, DECL_NAME (adj->base),
4478 TREE_TYPE (adj->base));
4479 if (DECL_PT_UID_SET_P (adj->base))
4480 SET_DECL_PT_UID (copy, DECL_PT_UID (adj->base));
4481 TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (adj->base);
4482 TREE_READONLY (copy) = TREE_READONLY (adj->base);
4483 TREE_THIS_VOLATILE (copy) = TREE_THIS_VOLATILE (adj->base);
4484 DECL_GIMPLE_REG_P (copy) = DECL_GIMPLE_REG_P (adj->base);
4485 DECL_ARTIFICIAL (copy) = DECL_ARTIFICIAL (adj->base);
4486 DECL_IGNORED_P (copy) = DECL_IGNORED_P (adj->base);
4487 DECL_ABSTRACT_ORIGIN (copy) = DECL_ORIGIN (adj->base);
4488 DECL_SEEN_IN_BIND_EXPR_P (copy) = 1;
4489 SET_DECL_RTL (copy, 0);
4490 TREE_USED (copy) = 1;
4491 DECL_CONTEXT (copy) = current_function_decl;
4492 add_referenced_var (copy);
4493 add_local_decl (cfun, copy);
4494 DECL_CHAIN (copy) =
4495 BLOCK_VARS (DECL_INITIAL (current_function_decl));
4496 BLOCK_VARS (DECL_INITIAL (current_function_decl)) = copy;
4497 }
4498 if (gsip != NULL && copy && target_for_debug_bind (adj->base))
4499 {
4500 gcc_assert (TREE_CODE (adj->base) == PARM_DECL);
4501 if (vexpr)
4502 def_temp = gimple_build_debug_bind (copy, vexpr, NULL);
4503 else
4504 def_temp = gimple_build_debug_source_bind (copy, adj->base,
4505 NULL);
4506 gsi_insert_before (gsip, def_temp, GSI_SAME_STMT);
4507 }
4508 }
4509 }
4510
4511 /* Return false iff all callers have at least as many actual arguments as there
4512 are formal parameters in the current function. */
4513
4514 static bool
4515 not_all_callers_have_enough_arguments_p (struct cgraph_node *node,
4516 void *data ATTRIBUTE_UNUSED)
4517 {
4518 struct cgraph_edge *cs;
4519 for (cs = node->callers; cs; cs = cs->next_caller)
4520 if (!callsite_has_enough_arguments_p (cs->call_stmt))
4521 return true;
4522
4523 return false;
4524 }
4525
4526 /* Convert all callers of NODE. */
4527
4528 static bool
4529 convert_callers_for_node (struct cgraph_node *node,
4530 void *data)
4531 {
4532 ipa_parm_adjustment_vec adjustments = (ipa_parm_adjustment_vec)data;
4533 bitmap recomputed_callers = BITMAP_ALLOC (NULL);
4534 struct cgraph_edge *cs;
4535
4536 for (cs = node->callers; cs; cs = cs->next_caller)
4537 {
4538 current_function_decl = cs->caller->decl;
4539 push_cfun (DECL_STRUCT_FUNCTION (cs->caller->decl));
4540
4541 if (dump_file)
4542 fprintf (dump_file, "Adjusting call (%i -> %i) %s -> %s\n",
4543 cs->caller->uid, cs->callee->uid,
4544 cgraph_node_name (cs->caller),
4545 cgraph_node_name (cs->callee));
4546
4547 ipa_modify_call_arguments (cs, cs->call_stmt, adjustments);
4548
4549 pop_cfun ();
4550 }
4551
4552 for (cs = node->callers; cs; cs = cs->next_caller)
4553 if (bitmap_set_bit (recomputed_callers, cs->caller->uid)
4554 && gimple_in_ssa_p (DECL_STRUCT_FUNCTION (cs->caller->decl)))
4555 compute_inline_parameters (cs->caller, true);
4556 BITMAP_FREE (recomputed_callers);
4557
4558 return true;
4559 }
4560
4561 /* Convert all callers of NODE to pass parameters as given in ADJUSTMENTS. */
4562
4563 static void
4564 convert_callers (struct cgraph_node *node, tree old_decl,
4565 ipa_parm_adjustment_vec adjustments)
4566 {
4567 tree old_cur_fndecl = current_function_decl;
4568 basic_block this_block;
4569
4570 cgraph_for_node_and_aliases (node, convert_callers_for_node,
4571 adjustments, false);
4572
4573 current_function_decl = old_cur_fndecl;
4574
4575 if (!encountered_recursive_call)
4576 return;
4577
4578 FOR_EACH_BB (this_block)
4579 {
4580 gimple_stmt_iterator gsi;
4581
4582 for (gsi = gsi_start_bb (this_block); !gsi_end_p (gsi); gsi_next (&gsi))
4583 {
4584 gimple stmt = gsi_stmt (gsi);
4585 tree call_fndecl;
4586 if (gimple_code (stmt) != GIMPLE_CALL)
4587 continue;
4588 call_fndecl = gimple_call_fndecl (stmt);
4589 if (call_fndecl == old_decl)
4590 {
4591 if (dump_file)
4592 fprintf (dump_file, "Adjusting recursive call");
4593 gimple_call_set_fndecl (stmt, node->decl);
4594 ipa_modify_call_arguments (NULL, stmt, adjustments);
4595 }
4596 }
4597 }
4598
4599 return;
4600 }
4601
4602 /* Perform all the modification required in IPA-SRA for NODE to have parameters
4603 as given in ADJUSTMENTS. Return true iff the CFG has been changed. */
4604
4605 static bool
4606 modify_function (struct cgraph_node *node, ipa_parm_adjustment_vec adjustments)
4607 {
4608 struct cgraph_node *new_node;
4609 bool cfg_changed;
4610 VEC (cgraph_edge_p, heap) * redirect_callers = collect_callers_of_node (node);
4611
4612 rebuild_cgraph_edges ();
4613 pop_cfun ();
4614 current_function_decl = NULL_TREE;
4615
4616 new_node = cgraph_function_versioning (node, redirect_callers, NULL, NULL,
4617 NULL, NULL, "isra");
4618 current_function_decl = new_node->decl;
4619 push_cfun (DECL_STRUCT_FUNCTION (new_node->decl));
4620
4621 ipa_modify_formal_parameters (current_function_decl, adjustments, "ISRA");
4622 cfg_changed = ipa_sra_modify_function_body (adjustments);
4623 sra_ipa_reset_debug_stmts (adjustments);
4624 convert_callers (new_node, node->decl, adjustments);
4625 cgraph_make_node_local (new_node);
4626 return cfg_changed;
4627 }
4628
4629 /* Return false the function is apparently unsuitable for IPA-SRA based on it's
4630 attributes, return true otherwise. NODE is the cgraph node of the current
4631 function. */
4632
4633 static bool
4634 ipa_sra_preliminary_function_checks (struct cgraph_node *node)
4635 {
4636 if (!cgraph_node_can_be_local_p (node))
4637 {
4638 if (dump_file)
4639 fprintf (dump_file, "Function not local to this compilation unit.\n");
4640 return false;
4641 }
4642
4643 if (!node->local.can_change_signature)
4644 {
4645 if (dump_file)
4646 fprintf (dump_file, "Function can not change signature.\n");
4647 return false;
4648 }
4649
4650 if (!tree_versionable_function_p (node->decl))
4651 {
4652 if (dump_file)
4653 fprintf (dump_file, "Function is not versionable.\n");
4654 return false;
4655 }
4656
4657 if (DECL_VIRTUAL_P (current_function_decl))
4658 {
4659 if (dump_file)
4660 fprintf (dump_file, "Function is a virtual method.\n");
4661 return false;
4662 }
4663
4664 if ((DECL_COMDAT (node->decl) || DECL_EXTERNAL (node->decl))
4665 && inline_summary(node)->size >= MAX_INLINE_INSNS_AUTO)
4666 {
4667 if (dump_file)
4668 fprintf (dump_file, "Function too big to be made truly local.\n");
4669 return false;
4670 }
4671
4672 if (!node->callers)
4673 {
4674 if (dump_file)
4675 fprintf (dump_file,
4676 "Function has no callers in this compilation unit.\n");
4677 return false;
4678 }
4679
4680 if (cfun->stdarg)
4681 {
4682 if (dump_file)
4683 fprintf (dump_file, "Function uses stdarg. \n");
4684 return false;
4685 }
4686
4687 if (TYPE_ATTRIBUTES (TREE_TYPE (node->decl)))
4688 return false;
4689
4690 return true;
4691 }
4692
4693 /* Perform early interprocedural SRA. */
4694
4695 static unsigned int
4696 ipa_early_sra (void)
4697 {
4698 struct cgraph_node *node = cgraph_get_node (current_function_decl);
4699 ipa_parm_adjustment_vec adjustments;
4700 int ret = 0;
4701
4702 if (!ipa_sra_preliminary_function_checks (node))
4703 return 0;
4704
4705 sra_initialize ();
4706 sra_mode = SRA_MODE_EARLY_IPA;
4707
4708 if (!find_param_candidates ())
4709 {
4710 if (dump_file)
4711 fprintf (dump_file, "Function has no IPA-SRA candidates.\n");
4712 goto simple_out;
4713 }
4714
4715 if (cgraph_for_node_and_aliases (node, not_all_callers_have_enough_arguments_p,
4716 NULL, true))
4717 {
4718 if (dump_file)
4719 fprintf (dump_file, "There are callers with insufficient number of "
4720 "arguments.\n");
4721 goto simple_out;
4722 }
4723
4724 bb_dereferences = XCNEWVEC (HOST_WIDE_INT,
4725 func_param_count
4726 * last_basic_block_for_function (cfun));
4727 final_bbs = BITMAP_ALLOC (NULL);
4728
4729 scan_function ();
4730 if (encountered_apply_args)
4731 {
4732 if (dump_file)
4733 fprintf (dump_file, "Function calls __builtin_apply_args().\n");
4734 goto out;
4735 }
4736
4737 if (encountered_unchangable_recursive_call)
4738 {
4739 if (dump_file)
4740 fprintf (dump_file, "Function calls itself with insufficient "
4741 "number of arguments.\n");
4742 goto out;
4743 }
4744
4745 adjustments = analyze_all_param_acesses ();
4746 if (!adjustments)
4747 goto out;
4748 if (dump_file)
4749 ipa_dump_param_adjustments (dump_file, adjustments, current_function_decl);
4750
4751 if (modify_function (node, adjustments))
4752 ret = TODO_update_ssa | TODO_cleanup_cfg;
4753 else
4754 ret = TODO_update_ssa;
4755 VEC_free (ipa_parm_adjustment_t, heap, adjustments);
4756
4757 statistics_counter_event (cfun, "Unused parameters deleted",
4758 sra_stats.deleted_unused_parameters);
4759 statistics_counter_event (cfun, "Scalar parameters converted to by-value",
4760 sra_stats.scalar_by_ref_to_by_val);
4761 statistics_counter_event (cfun, "Aggregate parameters broken up",
4762 sra_stats.aggregate_params_reduced);
4763 statistics_counter_event (cfun, "Aggregate parameter components created",
4764 sra_stats.param_reductions_created);
4765
4766 out:
4767 BITMAP_FREE (final_bbs);
4768 free (bb_dereferences);
4769 simple_out:
4770 sra_deinitialize ();
4771 return ret;
4772 }
4773
4774 /* Return if early ipa sra shall be performed. */
4775 static bool
4776 ipa_early_sra_gate (void)
4777 {
4778 return flag_ipa_sra && dbg_cnt (eipa_sra);
4779 }
4780
4781 struct gimple_opt_pass pass_early_ipa_sra =
4782 {
4783 {
4784 GIMPLE_PASS,
4785 "eipa_sra", /* name */
4786 ipa_early_sra_gate, /* gate */
4787 ipa_early_sra, /* execute */
4788 NULL, /* sub */
4789 NULL, /* next */
4790 0, /* static_pass_number */
4791 TV_IPA_SRA, /* tv_id */
4792 0, /* properties_required */
4793 0, /* properties_provided */
4794 0, /* properties_destroyed */
4795 0, /* todo_flags_start */
4796 TODO_dump_cgraph /* todo_flags_finish */
4797 }
4798 };