re PR tree-optimization/51528 (SRA should not create BOOLEAN_TYPE replacements)
[gcc.git] / gcc / tree-sra.c
1 /* Scalar Replacement of Aggregates (SRA) converts some structure
2 references into scalar references, exposing them to the scalar
3 optimizers.
4 Copyright (C) 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
5 Contributed by Martin Jambor <mjambor@suse.cz>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* This file implements Scalar Reduction of Aggregates (SRA). SRA is run
24 twice, once in the early stages of compilation (early SRA) and once in the
25 late stages (late SRA). The aim of both is to turn references to scalar
26 parts of aggregates into uses of independent scalar variables.
27
28 The two passes are nearly identical, the only difference is that early SRA
29 does not scalarize unions which are used as the result in a GIMPLE_RETURN
30 statement because together with inlining this can lead to weird type
31 conversions.
32
33 Both passes operate in four stages:
34
35 1. The declarations that have properties which make them candidates for
36 scalarization are identified in function find_var_candidates(). The
37 candidates are stored in candidate_bitmap.
38
39 2. The function body is scanned. In the process, declarations which are
40 used in a manner that prevent their scalarization are removed from the
41 candidate bitmap. More importantly, for every access into an aggregate,
42 an access structure (struct access) is created by create_access() and
43 stored in a vector associated with the aggregate. Among other
44 information, the aggregate declaration, the offset and size of the access
45 and its type are stored in the structure.
46
47 On a related note, assign_link structures are created for every assign
48 statement between candidate aggregates and attached to the related
49 accesses.
50
51 3. The vectors of accesses are analyzed. They are first sorted according to
52 their offset and size and then scanned for partially overlapping accesses
53 (i.e. those which overlap but one is not entirely within another). Such
54 an access disqualifies the whole aggregate from being scalarized.
55
56 If there is no such inhibiting overlap, a representative access structure
57 is chosen for every unique combination of offset and size. Afterwards,
58 the pass builds a set of trees from these structures, in which children
59 of an access are within their parent (in terms of offset and size).
60
61 Then accesses are propagated whenever possible (i.e. in cases when it
62 does not create a partially overlapping access) across assign_links from
63 the right hand side to the left hand side.
64
65 Then the set of trees for each declaration is traversed again and those
66 accesses which should be replaced by a scalar are identified.
67
68 4. The function is traversed again, and for every reference into an
69 aggregate that has some component which is about to be scalarized,
70 statements are amended and new statements are created as necessary.
71 Finally, if a parameter got scalarized, the scalar replacements are
72 initialized with values from respective parameter aggregates. */
73
74 #include "config.h"
75 #include "system.h"
76 #include "coretypes.h"
77 #include "alloc-pool.h"
78 #include "tm.h"
79 #include "tree.h"
80 #include "gimple.h"
81 #include "cgraph.h"
82 #include "tree-flow.h"
83 #include "ipa-prop.h"
84 #include "tree-pretty-print.h"
85 #include "statistics.h"
86 #include "tree-dump.h"
87 #include "timevar.h"
88 #include "params.h"
89 #include "target.h"
90 #include "flags.h"
91 #include "dbgcnt.h"
92 #include "tree-inline.h"
93 #include "gimple-pretty-print.h"
94 #include "ipa-inline.h"
95
96 /* Enumeration of all aggregate reductions we can do. */
97 enum sra_mode { SRA_MODE_EARLY_IPA, /* early call regularization */
98 SRA_MODE_EARLY_INTRA, /* early intraprocedural SRA */
99 SRA_MODE_INTRA }; /* late intraprocedural SRA */
100
101 /* Global variable describing which aggregate reduction we are performing at
102 the moment. */
103 static enum sra_mode sra_mode;
104
105 struct assign_link;
106
107 /* ACCESS represents each access to an aggregate variable (as a whole or a
108 part). It can also represent a group of accesses that refer to exactly the
109 same fragment of an aggregate (i.e. those that have exactly the same offset
110 and size). Such representatives for a single aggregate, once determined,
111 are linked in a linked list and have the group fields set.
112
113 Moreover, when doing intraprocedural SRA, a tree is built from those
114 representatives (by the means of first_child and next_sibling pointers), in
115 which all items in a subtree are "within" the root, i.e. their offset is
116 greater or equal to offset of the root and offset+size is smaller or equal
117 to offset+size of the root. Children of an access are sorted by offset.
118
119 Note that accesses to parts of vector and complex number types always
120 represented by an access to the whole complex number or a vector. It is a
121 duty of the modifying functions to replace them appropriately. */
122
123 struct access
124 {
125 /* Values returned by `get_ref_base_and_extent' for each component reference
126 If EXPR isn't a component reference just set `BASE = EXPR', `OFFSET = 0',
127 `SIZE = TREE_SIZE (TREE_TYPE (expr))'. */
128 HOST_WIDE_INT offset;
129 HOST_WIDE_INT size;
130 tree base;
131
132 /* Expression. It is context dependent so do not use it to create new
133 expressions to access the original aggregate. See PR 42154 for a
134 testcase. */
135 tree expr;
136 /* Type. */
137 tree type;
138
139 /* The statement this access belongs to. */
140 gimple stmt;
141
142 /* Next group representative for this aggregate. */
143 struct access *next_grp;
144
145 /* Pointer to the group representative. Pointer to itself if the struct is
146 the representative. */
147 struct access *group_representative;
148
149 /* If this access has any children (in terms of the definition above), this
150 points to the first one. */
151 struct access *first_child;
152
153 /* In intraprocedural SRA, pointer to the next sibling in the access tree as
154 described above. In IPA-SRA this is a pointer to the next access
155 belonging to the same group (having the same representative). */
156 struct access *next_sibling;
157
158 /* Pointers to the first and last element in the linked list of assign
159 links. */
160 struct assign_link *first_link, *last_link;
161
162 /* Pointer to the next access in the work queue. */
163 struct access *next_queued;
164
165 /* Replacement variable for this access "region." Never to be accessed
166 directly, always only by the means of get_access_replacement() and only
167 when grp_to_be_replaced flag is set. */
168 tree replacement_decl;
169
170 /* Is this particular access write access? */
171 unsigned write : 1;
172
173 /* Is this access an access to a non-addressable field? */
174 unsigned non_addressable : 1;
175
176 /* Is this access currently in the work queue? */
177 unsigned grp_queued : 1;
178
179 /* Does this group contain a write access? This flag is propagated down the
180 access tree. */
181 unsigned grp_write : 1;
182
183 /* Does this group contain a read access? This flag is propagated down the
184 access tree. */
185 unsigned grp_read : 1;
186
187 /* Does this group contain a read access that comes from an assignment
188 statement? This flag is propagated down the access tree. */
189 unsigned grp_assignment_read : 1;
190
191 /* Does this group contain a write access that comes from an assignment
192 statement? This flag is propagated down the access tree. */
193 unsigned grp_assignment_write : 1;
194
195 /* Does this group contain a read access through a scalar type? This flag is
196 not propagated in the access tree in any direction. */
197 unsigned grp_scalar_read : 1;
198
199 /* Does this group contain a write access through a scalar type? This flag
200 is not propagated in the access tree in any direction. */
201 unsigned grp_scalar_write : 1;
202
203 /* Is this access an artificial one created to scalarize some record
204 entirely? */
205 unsigned grp_total_scalarization : 1;
206
207 /* Other passes of the analysis use this bit to make function
208 analyze_access_subtree create scalar replacements for this group if
209 possible. */
210 unsigned grp_hint : 1;
211
212 /* Is the subtree rooted in this access fully covered by scalar
213 replacements? */
214 unsigned grp_covered : 1;
215
216 /* If set to true, this access and all below it in an access tree must not be
217 scalarized. */
218 unsigned grp_unscalarizable_region : 1;
219
220 /* Whether data have been written to parts of the aggregate covered by this
221 access which is not to be scalarized. This flag is propagated up in the
222 access tree. */
223 unsigned grp_unscalarized_data : 1;
224
225 /* Does this access and/or group contain a write access through a
226 BIT_FIELD_REF? */
227 unsigned grp_partial_lhs : 1;
228
229 /* Set when a scalar replacement should be created for this variable. We do
230 the decision and creation at different places because create_tmp_var
231 cannot be called from within FOR_EACH_REFERENCED_VAR. */
232 unsigned grp_to_be_replaced : 1;
233
234 /* Should TREE_NO_WARNING of a replacement be set? */
235 unsigned grp_no_warning : 1;
236
237 /* Is it possible that the group refers to data which might be (directly or
238 otherwise) modified? */
239 unsigned grp_maybe_modified : 1;
240
241 /* Set when this is a representative of a pointer to scalar (i.e. by
242 reference) parameter which we consider for turning into a plain scalar
243 (i.e. a by value parameter). */
244 unsigned grp_scalar_ptr : 1;
245
246 /* Set when we discover that this pointer is not safe to dereference in the
247 caller. */
248 unsigned grp_not_necessarilly_dereferenced : 1;
249 };
250
251 typedef struct access *access_p;
252
253 DEF_VEC_P (access_p);
254 DEF_VEC_ALLOC_P (access_p, heap);
255
256 /* Alloc pool for allocating access structures. */
257 static alloc_pool access_pool;
258
259 /* A structure linking lhs and rhs accesses from an aggregate assignment. They
260 are used to propagate subaccesses from rhs to lhs as long as they don't
261 conflict with what is already there. */
262 struct assign_link
263 {
264 struct access *lacc, *racc;
265 struct assign_link *next;
266 };
267
268 /* Alloc pool for allocating assign link structures. */
269 static alloc_pool link_pool;
270
271 /* Base (tree) -> Vector (VEC(access_p,heap) *) map. */
272 static struct pointer_map_t *base_access_vec;
273
274 /* Bitmap of candidates. */
275 static bitmap candidate_bitmap;
276
277 /* Bitmap of candidates which we should try to entirely scalarize away and
278 those which cannot be (because they are and need be used as a whole). */
279 static bitmap should_scalarize_away_bitmap, cannot_scalarize_away_bitmap;
280
281 /* Obstack for creation of fancy names. */
282 static struct obstack name_obstack;
283
284 /* Head of a linked list of accesses that need to have its subaccesses
285 propagated to their assignment counterparts. */
286 static struct access *work_queue_head;
287
288 /* Number of parameters of the analyzed function when doing early ipa SRA. */
289 static int func_param_count;
290
291 /* scan_function sets the following to true if it encounters a call to
292 __builtin_apply_args. */
293 static bool encountered_apply_args;
294
295 /* Set by scan_function when it finds a recursive call. */
296 static bool encountered_recursive_call;
297
298 /* Set by scan_function when it finds a recursive call with less actual
299 arguments than formal parameters.. */
300 static bool encountered_unchangable_recursive_call;
301
302 /* This is a table in which for each basic block and parameter there is a
303 distance (offset + size) in that parameter which is dereferenced and
304 accessed in that BB. */
305 static HOST_WIDE_INT *bb_dereferences;
306 /* Bitmap of BBs that can cause the function to "stop" progressing by
307 returning, throwing externally, looping infinitely or calling a function
308 which might abort etc.. */
309 static bitmap final_bbs;
310
311 /* Representative of no accesses at all. */
312 static struct access no_accesses_representant;
313
314 /* Predicate to test the special value. */
315
316 static inline bool
317 no_accesses_p (struct access *access)
318 {
319 return access == &no_accesses_representant;
320 }
321
322 /* Dump contents of ACCESS to file F in a human friendly way. If GRP is true,
323 representative fields are dumped, otherwise those which only describe the
324 individual access are. */
325
326 static struct
327 {
328 /* Number of processed aggregates is readily available in
329 analyze_all_variable_accesses and so is not stored here. */
330
331 /* Number of created scalar replacements. */
332 int replacements;
333
334 /* Number of times sra_modify_expr or sra_modify_assign themselves changed an
335 expression. */
336 int exprs;
337
338 /* Number of statements created by generate_subtree_copies. */
339 int subtree_copies;
340
341 /* Number of statements created by load_assign_lhs_subreplacements. */
342 int subreplacements;
343
344 /* Number of times sra_modify_assign has deleted a statement. */
345 int deleted;
346
347 /* Number of times sra_modify_assign has to deal with subaccesses of LHS and
348 RHS reparately due to type conversions or nonexistent matching
349 references. */
350 int separate_lhs_rhs_handling;
351
352 /* Number of parameters that were removed because they were unused. */
353 int deleted_unused_parameters;
354
355 /* Number of scalars passed as parameters by reference that have been
356 converted to be passed by value. */
357 int scalar_by_ref_to_by_val;
358
359 /* Number of aggregate parameters that were replaced by one or more of their
360 components. */
361 int aggregate_params_reduced;
362
363 /* Numbber of components created when splitting aggregate parameters. */
364 int param_reductions_created;
365 } sra_stats;
366
367 static void
368 dump_access (FILE *f, struct access *access, bool grp)
369 {
370 fprintf (f, "access { ");
371 fprintf (f, "base = (%d)'", DECL_UID (access->base));
372 print_generic_expr (f, access->base, 0);
373 fprintf (f, "', offset = " HOST_WIDE_INT_PRINT_DEC, access->offset);
374 fprintf (f, ", size = " HOST_WIDE_INT_PRINT_DEC, access->size);
375 fprintf (f, ", expr = ");
376 print_generic_expr (f, access->expr, 0);
377 fprintf (f, ", type = ");
378 print_generic_expr (f, access->type, 0);
379 if (grp)
380 fprintf (f, ", grp_read = %d, grp_write = %d, grp_assignment_read = %d, "
381 "grp_assignment_write = %d, grp_scalar_read = %d, "
382 "grp_scalar_write = %d, grp_total_scalarization = %d, "
383 "grp_hint = %d, grp_covered = %d, "
384 "grp_unscalarizable_region = %d, grp_unscalarized_data = %d, "
385 "grp_partial_lhs = %d, grp_to_be_replaced = %d, "
386 "grp_maybe_modified = %d, "
387 "grp_not_necessarilly_dereferenced = %d\n",
388 access->grp_read, access->grp_write, access->grp_assignment_read,
389 access->grp_assignment_write, access->grp_scalar_read,
390 access->grp_scalar_write, access->grp_total_scalarization,
391 access->grp_hint, access->grp_covered,
392 access->grp_unscalarizable_region, access->grp_unscalarized_data,
393 access->grp_partial_lhs, access->grp_to_be_replaced,
394 access->grp_maybe_modified,
395 access->grp_not_necessarilly_dereferenced);
396 else
397 fprintf (f, ", write = %d, grp_total_scalarization = %d, "
398 "grp_partial_lhs = %d\n",
399 access->write, access->grp_total_scalarization,
400 access->grp_partial_lhs);
401 }
402
403 /* Dump a subtree rooted in ACCESS to file F, indent by LEVEL. */
404
405 static void
406 dump_access_tree_1 (FILE *f, struct access *access, int level)
407 {
408 do
409 {
410 int i;
411
412 for (i = 0; i < level; i++)
413 fputs ("* ", dump_file);
414
415 dump_access (f, access, true);
416
417 if (access->first_child)
418 dump_access_tree_1 (f, access->first_child, level + 1);
419
420 access = access->next_sibling;
421 }
422 while (access);
423 }
424
425 /* Dump all access trees for a variable, given the pointer to the first root in
426 ACCESS. */
427
428 static void
429 dump_access_tree (FILE *f, struct access *access)
430 {
431 for (; access; access = access->next_grp)
432 dump_access_tree_1 (f, access, 0);
433 }
434
435 /* Return true iff ACC is non-NULL and has subaccesses. */
436
437 static inline bool
438 access_has_children_p (struct access *acc)
439 {
440 return acc && acc->first_child;
441 }
442
443 /* Return a vector of pointers to accesses for the variable given in BASE or
444 NULL if there is none. */
445
446 static VEC (access_p, heap) *
447 get_base_access_vector (tree base)
448 {
449 void **slot;
450
451 slot = pointer_map_contains (base_access_vec, base);
452 if (!slot)
453 return NULL;
454 else
455 return *(VEC (access_p, heap) **) slot;
456 }
457
458 /* Find an access with required OFFSET and SIZE in a subtree of accesses rooted
459 in ACCESS. Return NULL if it cannot be found. */
460
461 static struct access *
462 find_access_in_subtree (struct access *access, HOST_WIDE_INT offset,
463 HOST_WIDE_INT size)
464 {
465 while (access && (access->offset != offset || access->size != size))
466 {
467 struct access *child = access->first_child;
468
469 while (child && (child->offset + child->size <= offset))
470 child = child->next_sibling;
471 access = child;
472 }
473
474 return access;
475 }
476
477 /* Return the first group representative for DECL or NULL if none exists. */
478
479 static struct access *
480 get_first_repr_for_decl (tree base)
481 {
482 VEC (access_p, heap) *access_vec;
483
484 access_vec = get_base_access_vector (base);
485 if (!access_vec)
486 return NULL;
487
488 return VEC_index (access_p, access_vec, 0);
489 }
490
491 /* Find an access representative for the variable BASE and given OFFSET and
492 SIZE. Requires that access trees have already been built. Return NULL if
493 it cannot be found. */
494
495 static struct access *
496 get_var_base_offset_size_access (tree base, HOST_WIDE_INT offset,
497 HOST_WIDE_INT size)
498 {
499 struct access *access;
500
501 access = get_first_repr_for_decl (base);
502 while (access && (access->offset + access->size <= offset))
503 access = access->next_grp;
504 if (!access)
505 return NULL;
506
507 return find_access_in_subtree (access, offset, size);
508 }
509
510 /* Add LINK to the linked list of assign links of RACC. */
511 static void
512 add_link_to_rhs (struct access *racc, struct assign_link *link)
513 {
514 gcc_assert (link->racc == racc);
515
516 if (!racc->first_link)
517 {
518 gcc_assert (!racc->last_link);
519 racc->first_link = link;
520 }
521 else
522 racc->last_link->next = link;
523
524 racc->last_link = link;
525 link->next = NULL;
526 }
527
528 /* Move all link structures in their linked list in OLD_RACC to the linked list
529 in NEW_RACC. */
530 static void
531 relink_to_new_repr (struct access *new_racc, struct access *old_racc)
532 {
533 if (!old_racc->first_link)
534 {
535 gcc_assert (!old_racc->last_link);
536 return;
537 }
538
539 if (new_racc->first_link)
540 {
541 gcc_assert (!new_racc->last_link->next);
542 gcc_assert (!old_racc->last_link || !old_racc->last_link->next);
543
544 new_racc->last_link->next = old_racc->first_link;
545 new_racc->last_link = old_racc->last_link;
546 }
547 else
548 {
549 gcc_assert (!new_racc->last_link);
550
551 new_racc->first_link = old_racc->first_link;
552 new_racc->last_link = old_racc->last_link;
553 }
554 old_racc->first_link = old_racc->last_link = NULL;
555 }
556
557 /* Add ACCESS to the work queue (which is actually a stack). */
558
559 static void
560 add_access_to_work_queue (struct access *access)
561 {
562 if (!access->grp_queued)
563 {
564 gcc_assert (!access->next_queued);
565 access->next_queued = work_queue_head;
566 access->grp_queued = 1;
567 work_queue_head = access;
568 }
569 }
570
571 /* Pop an access from the work queue, and return it, assuming there is one. */
572
573 static struct access *
574 pop_access_from_work_queue (void)
575 {
576 struct access *access = work_queue_head;
577
578 work_queue_head = access->next_queued;
579 access->next_queued = NULL;
580 access->grp_queued = 0;
581 return access;
582 }
583
584
585 /* Allocate necessary structures. */
586
587 static void
588 sra_initialize (void)
589 {
590 candidate_bitmap = BITMAP_ALLOC (NULL);
591 should_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
592 cannot_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
593 gcc_obstack_init (&name_obstack);
594 access_pool = create_alloc_pool ("SRA accesses", sizeof (struct access), 16);
595 link_pool = create_alloc_pool ("SRA links", sizeof (struct assign_link), 16);
596 base_access_vec = pointer_map_create ();
597 memset (&sra_stats, 0, sizeof (sra_stats));
598 encountered_apply_args = false;
599 encountered_recursive_call = false;
600 encountered_unchangable_recursive_call = false;
601 }
602
603 /* Hook fed to pointer_map_traverse, deallocate stored vectors. */
604
605 static bool
606 delete_base_accesses (const void *key ATTRIBUTE_UNUSED, void **value,
607 void *data ATTRIBUTE_UNUSED)
608 {
609 VEC (access_p, heap) *access_vec;
610 access_vec = (VEC (access_p, heap) *) *value;
611 VEC_free (access_p, heap, access_vec);
612
613 return true;
614 }
615
616 /* Deallocate all general structures. */
617
618 static void
619 sra_deinitialize (void)
620 {
621 BITMAP_FREE (candidate_bitmap);
622 BITMAP_FREE (should_scalarize_away_bitmap);
623 BITMAP_FREE (cannot_scalarize_away_bitmap);
624 free_alloc_pool (access_pool);
625 free_alloc_pool (link_pool);
626 obstack_free (&name_obstack, NULL);
627
628 pointer_map_traverse (base_access_vec, delete_base_accesses, NULL);
629 pointer_map_destroy (base_access_vec);
630 }
631
632 /* Remove DECL from candidates for SRA and write REASON to the dump file if
633 there is one. */
634 static void
635 disqualify_candidate (tree decl, const char *reason)
636 {
637 bitmap_clear_bit (candidate_bitmap, DECL_UID (decl));
638
639 if (dump_file && (dump_flags & TDF_DETAILS))
640 {
641 fprintf (dump_file, "! Disqualifying ");
642 print_generic_expr (dump_file, decl, 0);
643 fprintf (dump_file, " - %s\n", reason);
644 }
645 }
646
647 /* Return true iff the type contains a field or an element which does not allow
648 scalarization. */
649
650 static bool
651 type_internals_preclude_sra_p (tree type, const char **msg)
652 {
653 tree fld;
654 tree et;
655
656 switch (TREE_CODE (type))
657 {
658 case RECORD_TYPE:
659 case UNION_TYPE:
660 case QUAL_UNION_TYPE:
661 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
662 if (TREE_CODE (fld) == FIELD_DECL)
663 {
664 tree ft = TREE_TYPE (fld);
665
666 if (TREE_THIS_VOLATILE (fld))
667 {
668 *msg = "volatile structure field";
669 return true;
670 }
671 if (!DECL_FIELD_OFFSET (fld))
672 {
673 *msg = "no structure field offset";
674 return true;
675 }
676 if (!DECL_SIZE (fld))
677 {
678 *msg = "zero structure field size";
679 return true;
680 }
681 if (!host_integerp (DECL_FIELD_OFFSET (fld), 1))
682 {
683 *msg = "structure field offset not fixed";
684 return true;
685 }
686 if (!host_integerp (DECL_SIZE (fld), 1))
687 {
688 *msg = "structure field size not fixed";
689 return true;
690 }
691 if (AGGREGATE_TYPE_P (ft)
692 && int_bit_position (fld) % BITS_PER_UNIT != 0)
693 {
694 *msg = "structure field is bit field";
695 return true;
696 }
697
698 if (AGGREGATE_TYPE_P (ft) && type_internals_preclude_sra_p (ft, msg))
699 return true;
700 }
701
702 return false;
703
704 case ARRAY_TYPE:
705 et = TREE_TYPE (type);
706
707 if (TYPE_VOLATILE (et))
708 {
709 *msg = "element type is volatile";
710 return true;
711 }
712
713 if (AGGREGATE_TYPE_P (et) && type_internals_preclude_sra_p (et, msg))
714 return true;
715
716 return false;
717
718 default:
719 return false;
720 }
721 }
722
723 /* If T is an SSA_NAME, return NULL if it is not a default def or return its
724 base variable if it is. Return T if it is not an SSA_NAME. */
725
726 static tree
727 get_ssa_base_param (tree t)
728 {
729 if (TREE_CODE (t) == SSA_NAME)
730 {
731 if (SSA_NAME_IS_DEFAULT_DEF (t))
732 return SSA_NAME_VAR (t);
733 else
734 return NULL_TREE;
735 }
736 return t;
737 }
738
739 /* Mark a dereference of BASE of distance DIST in a basic block tht STMT
740 belongs to, unless the BB has already been marked as a potentially
741 final. */
742
743 static void
744 mark_parm_dereference (tree base, HOST_WIDE_INT dist, gimple stmt)
745 {
746 basic_block bb = gimple_bb (stmt);
747 int idx, parm_index = 0;
748 tree parm;
749
750 if (bitmap_bit_p (final_bbs, bb->index))
751 return;
752
753 for (parm = DECL_ARGUMENTS (current_function_decl);
754 parm && parm != base;
755 parm = DECL_CHAIN (parm))
756 parm_index++;
757
758 gcc_assert (parm_index < func_param_count);
759
760 idx = bb->index * func_param_count + parm_index;
761 if (bb_dereferences[idx] < dist)
762 bb_dereferences[idx] = dist;
763 }
764
765 /* Allocate an access structure for BASE, OFFSET and SIZE, clear it, fill in
766 the three fields. Also add it to the vector of accesses corresponding to
767 the base. Finally, return the new access. */
768
769 static struct access *
770 create_access_1 (tree base, HOST_WIDE_INT offset, HOST_WIDE_INT size)
771 {
772 VEC (access_p, heap) *vec;
773 struct access *access;
774 void **slot;
775
776 access = (struct access *) pool_alloc (access_pool);
777 memset (access, 0, sizeof (struct access));
778 access->base = base;
779 access->offset = offset;
780 access->size = size;
781
782 slot = pointer_map_contains (base_access_vec, base);
783 if (slot)
784 vec = (VEC (access_p, heap) *) *slot;
785 else
786 vec = VEC_alloc (access_p, heap, 32);
787
788 VEC_safe_push (access_p, heap, vec, access);
789
790 *((struct VEC (access_p,heap) **)
791 pointer_map_insert (base_access_vec, base)) = vec;
792
793 return access;
794 }
795
796 /* Create and insert access for EXPR. Return created access, or NULL if it is
797 not possible. */
798
799 static struct access *
800 create_access (tree expr, gimple stmt, bool write)
801 {
802 struct access *access;
803 HOST_WIDE_INT offset, size, max_size;
804 tree base = expr;
805 bool ptr, unscalarizable_region = false;
806
807 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
808
809 if (sra_mode == SRA_MODE_EARLY_IPA
810 && TREE_CODE (base) == MEM_REF)
811 {
812 base = get_ssa_base_param (TREE_OPERAND (base, 0));
813 if (!base)
814 return NULL;
815 ptr = true;
816 }
817 else
818 ptr = false;
819
820 if (!DECL_P (base) || !bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
821 return NULL;
822
823 if (sra_mode == SRA_MODE_EARLY_IPA)
824 {
825 if (size < 0 || size != max_size)
826 {
827 disqualify_candidate (base, "Encountered a variable sized access.");
828 return NULL;
829 }
830 if (TREE_CODE (expr) == COMPONENT_REF
831 && DECL_BIT_FIELD (TREE_OPERAND (expr, 1)))
832 {
833 disqualify_candidate (base, "Encountered a bit-field access.");
834 return NULL;
835 }
836 gcc_checking_assert ((offset % BITS_PER_UNIT) == 0);
837
838 if (ptr)
839 mark_parm_dereference (base, offset + size, stmt);
840 }
841 else
842 {
843 if (size != max_size)
844 {
845 size = max_size;
846 unscalarizable_region = true;
847 }
848 if (size < 0)
849 {
850 disqualify_candidate (base, "Encountered an unconstrained access.");
851 return NULL;
852 }
853 }
854
855 access = create_access_1 (base, offset, size);
856 access->expr = expr;
857 access->type = TREE_TYPE (expr);
858 access->write = write;
859 access->grp_unscalarizable_region = unscalarizable_region;
860 access->stmt = stmt;
861
862 if (TREE_CODE (expr) == COMPONENT_REF
863 && DECL_NONADDRESSABLE_P (TREE_OPERAND (expr, 1)))
864 access->non_addressable = 1;
865
866 return access;
867 }
868
869
870 /* Return true iff TYPE is a RECORD_TYPE with fields that are either of gimple
871 register types or (recursively) records with only these two kinds of fields.
872 It also returns false if any of these records contains a bit-field. */
873
874 static bool
875 type_consists_of_records_p (tree type)
876 {
877 tree fld;
878
879 if (TREE_CODE (type) != RECORD_TYPE)
880 return false;
881
882 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
883 if (TREE_CODE (fld) == FIELD_DECL)
884 {
885 tree ft = TREE_TYPE (fld);
886
887 if (DECL_BIT_FIELD (fld))
888 return false;
889
890 if (!is_gimple_reg_type (ft)
891 && !type_consists_of_records_p (ft))
892 return false;
893 }
894
895 return true;
896 }
897
898 /* Create total_scalarization accesses for all scalar type fields in DECL that
899 must be of a RECORD_TYPE conforming to type_consists_of_records_p. BASE
900 must be the top-most VAR_DECL representing the variable, OFFSET must be the
901 offset of DECL within BASE. REF must be the memory reference expression for
902 the given decl. */
903
904 static void
905 completely_scalarize_record (tree base, tree decl, HOST_WIDE_INT offset,
906 tree ref)
907 {
908 tree fld, decl_type = TREE_TYPE (decl);
909
910 for (fld = TYPE_FIELDS (decl_type); fld; fld = DECL_CHAIN (fld))
911 if (TREE_CODE (fld) == FIELD_DECL)
912 {
913 HOST_WIDE_INT pos = offset + int_bit_position (fld);
914 tree ft = TREE_TYPE (fld);
915 tree nref = build3 (COMPONENT_REF, TREE_TYPE (fld), ref, fld,
916 NULL_TREE);
917
918 if (is_gimple_reg_type (ft))
919 {
920 struct access *access;
921 HOST_WIDE_INT size;
922
923 size = tree_low_cst (DECL_SIZE (fld), 1);
924 access = create_access_1 (base, pos, size);
925 access->expr = nref;
926 access->type = ft;
927 access->grp_total_scalarization = 1;
928 /* Accesses for intraprocedural SRA can have their stmt NULL. */
929 }
930 else
931 completely_scalarize_record (base, fld, pos, nref);
932 }
933 }
934
935 /* Create total_scalarization accesses for all scalar type fields in VAR and
936 for VAR a a whole. VAR must be of a RECORD_TYPE conforming to
937 type_consists_of_records_p. */
938
939 static void
940 completely_scalarize_var (tree var)
941 {
942 HOST_WIDE_INT size = tree_low_cst (DECL_SIZE (var), 1);
943 struct access *access;
944
945 access = create_access_1 (var, 0, size);
946 access->expr = var;
947 access->type = TREE_TYPE (var);
948 access->grp_total_scalarization = 1;
949
950 completely_scalarize_record (var, var, 0, var);
951 }
952
953 /* Search the given tree for a declaration by skipping handled components and
954 exclude it from the candidates. */
955
956 static void
957 disqualify_base_of_expr (tree t, const char *reason)
958 {
959 t = get_base_address (t);
960 if (sra_mode == SRA_MODE_EARLY_IPA
961 && TREE_CODE (t) == MEM_REF)
962 t = get_ssa_base_param (TREE_OPERAND (t, 0));
963
964 if (t && DECL_P (t))
965 disqualify_candidate (t, reason);
966 }
967
968 /* Scan expression EXPR and create access structures for all accesses to
969 candidates for scalarization. Return the created access or NULL if none is
970 created. */
971
972 static struct access *
973 build_access_from_expr_1 (tree expr, gimple stmt, bool write)
974 {
975 struct access *ret = NULL;
976 bool partial_ref;
977
978 if (TREE_CODE (expr) == BIT_FIELD_REF
979 || TREE_CODE (expr) == IMAGPART_EXPR
980 || TREE_CODE (expr) == REALPART_EXPR)
981 {
982 expr = TREE_OPERAND (expr, 0);
983 partial_ref = true;
984 }
985 else
986 partial_ref = false;
987
988 /* We need to dive through V_C_Es in order to get the size of its parameter
989 and not the result type. Ada produces such statements. We are also
990 capable of handling the topmost V_C_E but not any of those buried in other
991 handled components. */
992 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
993 expr = TREE_OPERAND (expr, 0);
994
995 if (contains_view_convert_expr_p (expr))
996 {
997 disqualify_base_of_expr (expr, "V_C_E under a different handled "
998 "component.");
999 return NULL;
1000 }
1001
1002 switch (TREE_CODE (expr))
1003 {
1004 case MEM_REF:
1005 if (TREE_CODE (TREE_OPERAND (expr, 0)) != ADDR_EXPR
1006 && sra_mode != SRA_MODE_EARLY_IPA)
1007 return NULL;
1008 /* fall through */
1009 case VAR_DECL:
1010 case PARM_DECL:
1011 case RESULT_DECL:
1012 case COMPONENT_REF:
1013 case ARRAY_REF:
1014 case ARRAY_RANGE_REF:
1015 ret = create_access (expr, stmt, write);
1016 break;
1017
1018 default:
1019 break;
1020 }
1021
1022 if (write && partial_ref && ret)
1023 ret->grp_partial_lhs = 1;
1024
1025 return ret;
1026 }
1027
1028 /* Scan expression EXPR and create access structures for all accesses to
1029 candidates for scalarization. Return true if any access has been inserted.
1030 STMT must be the statement from which the expression is taken, WRITE must be
1031 true if the expression is a store and false otherwise. */
1032
1033 static bool
1034 build_access_from_expr (tree expr, gimple stmt, bool write)
1035 {
1036 struct access *access;
1037
1038 access = build_access_from_expr_1 (expr, stmt, write);
1039 if (access)
1040 {
1041 /* This means the aggregate is accesses as a whole in a way other than an
1042 assign statement and thus cannot be removed even if we had a scalar
1043 replacement for everything. */
1044 if (cannot_scalarize_away_bitmap)
1045 bitmap_set_bit (cannot_scalarize_away_bitmap, DECL_UID (access->base));
1046 return true;
1047 }
1048 return false;
1049 }
1050
1051 /* Disqualify LHS and RHS for scalarization if STMT must end its basic block in
1052 modes in which it matters, return true iff they have been disqualified. RHS
1053 may be NULL, in that case ignore it. If we scalarize an aggregate in
1054 intra-SRA we may need to add statements after each statement. This is not
1055 possible if a statement unconditionally has to end the basic block. */
1056 static bool
1057 disqualify_ops_if_throwing_stmt (gimple stmt, tree lhs, tree rhs)
1058 {
1059 if ((sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
1060 && (stmt_can_throw_internal (stmt) || stmt_ends_bb_p (stmt)))
1061 {
1062 disqualify_base_of_expr (lhs, "LHS of a throwing stmt.");
1063 if (rhs)
1064 disqualify_base_of_expr (rhs, "RHS of a throwing stmt.");
1065 return true;
1066 }
1067 return false;
1068 }
1069
1070 /* Return true if EXP is a memory reference less aligned than ALIGN. This is
1071 invoked only on strict-alignment targets. */
1072
1073 static bool
1074 tree_non_aligned_mem_p (tree exp, unsigned int align)
1075 {
1076 unsigned int exp_align;
1077
1078 if (TREE_CODE (exp) == VIEW_CONVERT_EXPR)
1079 exp = TREE_OPERAND (exp, 0);
1080
1081 if (TREE_CODE (exp) == SSA_NAME || is_gimple_min_invariant (exp))
1082 return false;
1083
1084 /* get_object_alignment will fall back to BITS_PER_UNIT if it cannot
1085 compute an explicit alignment. Pretend that dereferenced pointers
1086 are always aligned on strict-alignment targets. */
1087 if (TREE_CODE (exp) == MEM_REF || TREE_CODE (exp) == TARGET_MEM_REF)
1088 exp_align = get_object_or_type_alignment (exp);
1089 else
1090 exp_align = get_object_alignment (exp);
1091
1092 if (exp_align < align)
1093 return true;
1094
1095 return false;
1096 }
1097
1098 /* Return true if EXP is a memory reference less aligned than what the access
1099 ACC would require. This is invoked only on strict-alignment targets. */
1100
1101 static bool
1102 tree_non_aligned_mem_for_access_p (tree exp, struct access *acc)
1103 {
1104 unsigned int acc_align;
1105
1106 /* The alignment of the access is that of its expression. However, it may
1107 have been artificially increased, e.g. by a local alignment promotion,
1108 so we cap it to the alignment of the type of the base, on the grounds
1109 that valid sub-accesses cannot be more aligned than that. */
1110 acc_align = get_object_alignment (acc->expr);
1111 if (acc->base && acc_align > TYPE_ALIGN (TREE_TYPE (acc->base)))
1112 acc_align = TYPE_ALIGN (TREE_TYPE (acc->base));
1113
1114 return tree_non_aligned_mem_p (exp, acc_align);
1115 }
1116
1117 /* Scan expressions occuring in STMT, create access structures for all accesses
1118 to candidates for scalarization and remove those candidates which occur in
1119 statements or expressions that prevent them from being split apart. Return
1120 true if any access has been inserted. */
1121
1122 static bool
1123 build_accesses_from_assign (gimple stmt)
1124 {
1125 tree lhs, rhs;
1126 struct access *lacc, *racc;
1127
1128 if (!gimple_assign_single_p (stmt)
1129 /* Scope clobbers don't influence scalarization. */
1130 || gimple_clobber_p (stmt))
1131 return false;
1132
1133 lhs = gimple_assign_lhs (stmt);
1134 rhs = gimple_assign_rhs1 (stmt);
1135
1136 if (disqualify_ops_if_throwing_stmt (stmt, lhs, rhs))
1137 return false;
1138
1139 racc = build_access_from_expr_1 (rhs, stmt, false);
1140 lacc = build_access_from_expr_1 (lhs, stmt, true);
1141
1142 if (lacc)
1143 {
1144 lacc->grp_assignment_write = 1;
1145 if (STRICT_ALIGNMENT && tree_non_aligned_mem_for_access_p (rhs, lacc))
1146 lacc->grp_unscalarizable_region = 1;
1147 }
1148
1149 if (racc)
1150 {
1151 racc->grp_assignment_read = 1;
1152 if (should_scalarize_away_bitmap && !gimple_has_volatile_ops (stmt)
1153 && !is_gimple_reg_type (racc->type))
1154 bitmap_set_bit (should_scalarize_away_bitmap, DECL_UID (racc->base));
1155 if (STRICT_ALIGNMENT && tree_non_aligned_mem_for_access_p (lhs, racc))
1156 racc->grp_unscalarizable_region = 1;
1157 }
1158
1159 if (lacc && racc
1160 && (sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
1161 && !lacc->grp_unscalarizable_region
1162 && !racc->grp_unscalarizable_region
1163 && AGGREGATE_TYPE_P (TREE_TYPE (lhs))
1164 /* FIXME: Turn the following line into an assert after PR 40058 is
1165 fixed. */
1166 && lacc->size == racc->size
1167 && useless_type_conversion_p (lacc->type, racc->type))
1168 {
1169 struct assign_link *link;
1170
1171 link = (struct assign_link *) pool_alloc (link_pool);
1172 memset (link, 0, sizeof (struct assign_link));
1173
1174 link->lacc = lacc;
1175 link->racc = racc;
1176
1177 add_link_to_rhs (racc, link);
1178 }
1179
1180 return lacc || racc;
1181 }
1182
1183 /* Callback of walk_stmt_load_store_addr_ops visit_addr used to determine
1184 GIMPLE_ASM operands with memory constrains which cannot be scalarized. */
1185
1186 static bool
1187 asm_visit_addr (gimple stmt ATTRIBUTE_UNUSED, tree op,
1188 void *data ATTRIBUTE_UNUSED)
1189 {
1190 op = get_base_address (op);
1191 if (op
1192 && DECL_P (op))
1193 disqualify_candidate (op, "Non-scalarizable GIMPLE_ASM operand.");
1194
1195 return false;
1196 }
1197
1198 /* Return true iff callsite CALL has at least as many actual arguments as there
1199 are formal parameters of the function currently processed by IPA-SRA. */
1200
1201 static inline bool
1202 callsite_has_enough_arguments_p (gimple call)
1203 {
1204 return gimple_call_num_args (call) >= (unsigned) func_param_count;
1205 }
1206
1207 /* Scan function and look for interesting expressions and create access
1208 structures for them. Return true iff any access is created. */
1209
1210 static bool
1211 scan_function (void)
1212 {
1213 basic_block bb;
1214 bool ret = false;
1215
1216 FOR_EACH_BB (bb)
1217 {
1218 gimple_stmt_iterator gsi;
1219 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1220 {
1221 gimple stmt = gsi_stmt (gsi);
1222 tree t;
1223 unsigned i;
1224
1225 if (final_bbs && stmt_can_throw_external (stmt))
1226 bitmap_set_bit (final_bbs, bb->index);
1227 switch (gimple_code (stmt))
1228 {
1229 case GIMPLE_RETURN:
1230 t = gimple_return_retval (stmt);
1231 if (t != NULL_TREE)
1232 ret |= build_access_from_expr (t, stmt, false);
1233 if (final_bbs)
1234 bitmap_set_bit (final_bbs, bb->index);
1235 break;
1236
1237 case GIMPLE_ASSIGN:
1238 ret |= build_accesses_from_assign (stmt);
1239 break;
1240
1241 case GIMPLE_CALL:
1242 for (i = 0; i < gimple_call_num_args (stmt); i++)
1243 ret |= build_access_from_expr (gimple_call_arg (stmt, i),
1244 stmt, false);
1245
1246 if (sra_mode == SRA_MODE_EARLY_IPA)
1247 {
1248 tree dest = gimple_call_fndecl (stmt);
1249 int flags = gimple_call_flags (stmt);
1250
1251 if (dest)
1252 {
1253 if (DECL_BUILT_IN_CLASS (dest) == BUILT_IN_NORMAL
1254 && DECL_FUNCTION_CODE (dest) == BUILT_IN_APPLY_ARGS)
1255 encountered_apply_args = true;
1256 if (cgraph_get_node (dest)
1257 == cgraph_get_node (current_function_decl))
1258 {
1259 encountered_recursive_call = true;
1260 if (!callsite_has_enough_arguments_p (stmt))
1261 encountered_unchangable_recursive_call = true;
1262 }
1263 }
1264
1265 if (final_bbs
1266 && (flags & (ECF_CONST | ECF_PURE)) == 0)
1267 bitmap_set_bit (final_bbs, bb->index);
1268 }
1269
1270 t = gimple_call_lhs (stmt);
1271 if (t && !disqualify_ops_if_throwing_stmt (stmt, t, NULL))
1272 ret |= build_access_from_expr (t, stmt, true);
1273 break;
1274
1275 case GIMPLE_ASM:
1276 walk_stmt_load_store_addr_ops (stmt, NULL, NULL, NULL,
1277 asm_visit_addr);
1278 if (final_bbs)
1279 bitmap_set_bit (final_bbs, bb->index);
1280
1281 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
1282 {
1283 t = TREE_VALUE (gimple_asm_input_op (stmt, i));
1284 ret |= build_access_from_expr (t, stmt, false);
1285 }
1286 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
1287 {
1288 t = TREE_VALUE (gimple_asm_output_op (stmt, i));
1289 ret |= build_access_from_expr (t, stmt, true);
1290 }
1291 break;
1292
1293 default:
1294 break;
1295 }
1296 }
1297 }
1298
1299 return ret;
1300 }
1301
1302 /* Helper of QSORT function. There are pointers to accesses in the array. An
1303 access is considered smaller than another if it has smaller offset or if the
1304 offsets are the same but is size is bigger. */
1305
1306 static int
1307 compare_access_positions (const void *a, const void *b)
1308 {
1309 const access_p *fp1 = (const access_p *) a;
1310 const access_p *fp2 = (const access_p *) b;
1311 const access_p f1 = *fp1;
1312 const access_p f2 = *fp2;
1313
1314 if (f1->offset != f2->offset)
1315 return f1->offset < f2->offset ? -1 : 1;
1316
1317 if (f1->size == f2->size)
1318 {
1319 if (f1->type == f2->type)
1320 return 0;
1321 /* Put any non-aggregate type before any aggregate type. */
1322 else if (!is_gimple_reg_type (f1->type)
1323 && is_gimple_reg_type (f2->type))
1324 return 1;
1325 else if (is_gimple_reg_type (f1->type)
1326 && !is_gimple_reg_type (f2->type))
1327 return -1;
1328 /* Put any complex or vector type before any other scalar type. */
1329 else if (TREE_CODE (f1->type) != COMPLEX_TYPE
1330 && TREE_CODE (f1->type) != VECTOR_TYPE
1331 && (TREE_CODE (f2->type) == COMPLEX_TYPE
1332 || TREE_CODE (f2->type) == VECTOR_TYPE))
1333 return 1;
1334 else if ((TREE_CODE (f1->type) == COMPLEX_TYPE
1335 || TREE_CODE (f1->type) == VECTOR_TYPE)
1336 && TREE_CODE (f2->type) != COMPLEX_TYPE
1337 && TREE_CODE (f2->type) != VECTOR_TYPE)
1338 return -1;
1339 /* Put the integral type with the bigger precision first. */
1340 else if (INTEGRAL_TYPE_P (f1->type)
1341 && INTEGRAL_TYPE_P (f2->type))
1342 return TYPE_PRECISION (f2->type) - TYPE_PRECISION (f1->type);
1343 /* Put any integral type with non-full precision last. */
1344 else if (INTEGRAL_TYPE_P (f1->type)
1345 && (TREE_INT_CST_LOW (TYPE_SIZE (f1->type))
1346 != TYPE_PRECISION (f1->type)))
1347 return 1;
1348 else if (INTEGRAL_TYPE_P (f2->type)
1349 && (TREE_INT_CST_LOW (TYPE_SIZE (f2->type))
1350 != TYPE_PRECISION (f2->type)))
1351 return -1;
1352 /* Stabilize the sort. */
1353 return TYPE_UID (f1->type) - TYPE_UID (f2->type);
1354 }
1355
1356 /* We want the bigger accesses first, thus the opposite operator in the next
1357 line: */
1358 return f1->size > f2->size ? -1 : 1;
1359 }
1360
1361
1362 /* Append a name of the declaration to the name obstack. A helper function for
1363 make_fancy_name. */
1364
1365 static void
1366 make_fancy_decl_name (tree decl)
1367 {
1368 char buffer[32];
1369
1370 tree name = DECL_NAME (decl);
1371 if (name)
1372 obstack_grow (&name_obstack, IDENTIFIER_POINTER (name),
1373 IDENTIFIER_LENGTH (name));
1374 else
1375 {
1376 sprintf (buffer, "D%u", DECL_UID (decl));
1377 obstack_grow (&name_obstack, buffer, strlen (buffer));
1378 }
1379 }
1380
1381 /* Helper for make_fancy_name. */
1382
1383 static void
1384 make_fancy_name_1 (tree expr)
1385 {
1386 char buffer[32];
1387 tree index;
1388
1389 if (DECL_P (expr))
1390 {
1391 make_fancy_decl_name (expr);
1392 return;
1393 }
1394
1395 switch (TREE_CODE (expr))
1396 {
1397 case COMPONENT_REF:
1398 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1399 obstack_1grow (&name_obstack, '$');
1400 make_fancy_decl_name (TREE_OPERAND (expr, 1));
1401 break;
1402
1403 case ARRAY_REF:
1404 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1405 obstack_1grow (&name_obstack, '$');
1406 /* Arrays with only one element may not have a constant as their
1407 index. */
1408 index = TREE_OPERAND (expr, 1);
1409 if (TREE_CODE (index) != INTEGER_CST)
1410 break;
1411 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (index));
1412 obstack_grow (&name_obstack, buffer, strlen (buffer));
1413 break;
1414
1415 case ADDR_EXPR:
1416 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1417 break;
1418
1419 case MEM_REF:
1420 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1421 if (!integer_zerop (TREE_OPERAND (expr, 1)))
1422 {
1423 obstack_1grow (&name_obstack, '$');
1424 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC,
1425 TREE_INT_CST_LOW (TREE_OPERAND (expr, 1)));
1426 obstack_grow (&name_obstack, buffer, strlen (buffer));
1427 }
1428 break;
1429
1430 case BIT_FIELD_REF:
1431 case REALPART_EXPR:
1432 case IMAGPART_EXPR:
1433 gcc_unreachable (); /* we treat these as scalars. */
1434 break;
1435 default:
1436 break;
1437 }
1438 }
1439
1440 /* Create a human readable name for replacement variable of ACCESS. */
1441
1442 static char *
1443 make_fancy_name (tree expr)
1444 {
1445 make_fancy_name_1 (expr);
1446 obstack_1grow (&name_obstack, '\0');
1447 return XOBFINISH (&name_obstack, char *);
1448 }
1449
1450 /* Construct a MEM_REF that would reference a part of aggregate BASE of type
1451 EXP_TYPE at the given OFFSET. If BASE is something for which
1452 get_addr_base_and_unit_offset returns NULL, gsi must be non-NULL and is used
1453 to insert new statements either before or below the current one as specified
1454 by INSERT_AFTER. This function is not capable of handling bitfields. */
1455
1456 tree
1457 build_ref_for_offset (location_t loc, tree base, HOST_WIDE_INT offset,
1458 tree exp_type, gimple_stmt_iterator *gsi,
1459 bool insert_after)
1460 {
1461 tree prev_base = base;
1462 tree off;
1463 HOST_WIDE_INT base_offset;
1464 unsigned HOST_WIDE_INT misalign;
1465 unsigned int align;
1466
1467 gcc_checking_assert (offset % BITS_PER_UNIT == 0);
1468
1469 base = get_addr_base_and_unit_offset (base, &base_offset);
1470
1471 /* get_addr_base_and_unit_offset returns NULL for references with a variable
1472 offset such as array[var_index]. */
1473 if (!base)
1474 {
1475 gimple stmt;
1476 tree tmp, addr;
1477
1478 gcc_checking_assert (gsi);
1479 tmp = create_tmp_reg (build_pointer_type (TREE_TYPE (prev_base)), NULL);
1480 add_referenced_var (tmp);
1481 tmp = make_ssa_name (tmp, NULL);
1482 addr = build_fold_addr_expr (unshare_expr (prev_base));
1483 STRIP_USELESS_TYPE_CONVERSION (addr);
1484 stmt = gimple_build_assign (tmp, addr);
1485 gimple_set_location (stmt, loc);
1486 SSA_NAME_DEF_STMT (tmp) = stmt;
1487 if (insert_after)
1488 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
1489 else
1490 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1491 update_stmt (stmt);
1492
1493 off = build_int_cst (reference_alias_ptr_type (prev_base),
1494 offset / BITS_PER_UNIT);
1495 base = tmp;
1496 }
1497 else if (TREE_CODE (base) == MEM_REF)
1498 {
1499 off = build_int_cst (TREE_TYPE (TREE_OPERAND (base, 1)),
1500 base_offset + offset / BITS_PER_UNIT);
1501 off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1), off);
1502 base = unshare_expr (TREE_OPERAND (base, 0));
1503 }
1504 else
1505 {
1506 off = build_int_cst (reference_alias_ptr_type (base),
1507 base_offset + offset / BITS_PER_UNIT);
1508 base = build_fold_addr_expr (unshare_expr (base));
1509 }
1510
1511 /* If prev_base were always an originally performed access
1512 we can extract more optimistic alignment information
1513 by looking at the access mode. That would constrain the
1514 alignment of base + base_offset which we would need to
1515 adjust according to offset.
1516 ??? But it is not at all clear that prev_base is an access
1517 that was in the IL that way, so be conservative for now. */
1518 align = get_pointer_alignment_1 (base, &misalign);
1519 misalign += (double_int_sext (tree_to_double_int (off),
1520 TYPE_PRECISION (TREE_TYPE (off))).low
1521 * BITS_PER_UNIT);
1522 misalign = misalign & (align - 1);
1523 if (misalign != 0)
1524 align = (misalign & -misalign);
1525 if (align < TYPE_ALIGN (exp_type))
1526 exp_type = build_aligned_type (exp_type, align);
1527
1528 return fold_build2_loc (loc, MEM_REF, exp_type, base, off);
1529 }
1530
1531 DEF_VEC_ALLOC_P_STACK (tree);
1532 #define VEC_tree_stack_alloc(alloc) VEC_stack_alloc (tree, alloc)
1533
1534 /* Construct a memory reference to a part of an aggregate BASE at the given
1535 OFFSET and of the type of MODEL. In case this is a chain of references
1536 to component, the function will replicate the chain of COMPONENT_REFs of
1537 the expression of MODEL to access it. GSI and INSERT_AFTER have the same
1538 meaning as in build_ref_for_offset. */
1539
1540 static tree
1541 build_ref_for_model (location_t loc, tree base, HOST_WIDE_INT offset,
1542 struct access *model, gimple_stmt_iterator *gsi,
1543 bool insert_after)
1544 {
1545 tree type = model->type, t;
1546 VEC(tree,stack) *cr_stack = NULL;
1547
1548 if (TREE_CODE (model->expr) == COMPONENT_REF)
1549 {
1550 tree expr = model->expr;
1551
1552 /* Create a stack of the COMPONENT_REFs so later we can walk them in
1553 order from inner to outer. */
1554 cr_stack = VEC_alloc (tree, stack, 6);
1555
1556 do {
1557 tree field = TREE_OPERAND (expr, 1);
1558 tree cr_offset = component_ref_field_offset (expr);
1559 HOST_WIDE_INT bit_pos
1560 = tree_low_cst (cr_offset, 1) * BITS_PER_UNIT
1561 + TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field));
1562
1563 /* We can be called with a model different from the one associated
1564 with BASE so we need to avoid going up the chain too far. */
1565 if (offset - bit_pos < 0)
1566 break;
1567
1568 offset -= bit_pos;
1569 VEC_safe_push (tree, stack, cr_stack, expr);
1570
1571 expr = TREE_OPERAND (expr, 0);
1572 type = TREE_TYPE (expr);
1573 } while (TREE_CODE (expr) == COMPONENT_REF);
1574 }
1575
1576 t = build_ref_for_offset (loc, base, offset, type, gsi, insert_after);
1577
1578 if (TREE_CODE (model->expr) == COMPONENT_REF)
1579 {
1580 unsigned i;
1581 tree expr;
1582
1583 /* Now replicate the chain of COMPONENT_REFs from inner to outer. */
1584 FOR_EACH_VEC_ELT_REVERSE (tree, cr_stack, i, expr)
1585 {
1586 tree field = TREE_OPERAND (expr, 1);
1587 t = fold_build3_loc (loc, COMPONENT_REF, TREE_TYPE (field), t, field,
1588 TREE_OPERAND (expr, 2));
1589 }
1590
1591 VEC_free (tree, stack, cr_stack);
1592 }
1593
1594 return t;
1595 }
1596
1597 /* Construct a memory reference consisting of component_refs and array_refs to
1598 a part of an aggregate *RES (which is of type TYPE). The requested part
1599 should have type EXP_TYPE at be the given OFFSET. This function might not
1600 succeed, it returns true when it does and only then *RES points to something
1601 meaningful. This function should be used only to build expressions that we
1602 might need to present to user (e.g. in warnings). In all other situations,
1603 build_ref_for_model or build_ref_for_offset should be used instead. */
1604
1605 static bool
1606 build_user_friendly_ref_for_offset (tree *res, tree type, HOST_WIDE_INT offset,
1607 tree exp_type)
1608 {
1609 while (1)
1610 {
1611 tree fld;
1612 tree tr_size, index, minidx;
1613 HOST_WIDE_INT el_size;
1614
1615 if (offset == 0 && exp_type
1616 && types_compatible_p (exp_type, type))
1617 return true;
1618
1619 switch (TREE_CODE (type))
1620 {
1621 case UNION_TYPE:
1622 case QUAL_UNION_TYPE:
1623 case RECORD_TYPE:
1624 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
1625 {
1626 HOST_WIDE_INT pos, size;
1627 tree expr, *expr_ptr;
1628
1629 if (TREE_CODE (fld) != FIELD_DECL)
1630 continue;
1631
1632 pos = int_bit_position (fld);
1633 gcc_assert (TREE_CODE (type) == RECORD_TYPE || pos == 0);
1634 tr_size = DECL_SIZE (fld);
1635 if (!tr_size || !host_integerp (tr_size, 1))
1636 continue;
1637 size = tree_low_cst (tr_size, 1);
1638 if (size == 0)
1639 {
1640 if (pos != offset)
1641 continue;
1642 }
1643 else if (pos > offset || (pos + size) <= offset)
1644 continue;
1645
1646 expr = build3 (COMPONENT_REF, TREE_TYPE (fld), *res, fld,
1647 NULL_TREE);
1648 expr_ptr = &expr;
1649 if (build_user_friendly_ref_for_offset (expr_ptr, TREE_TYPE (fld),
1650 offset - pos, exp_type))
1651 {
1652 *res = expr;
1653 return true;
1654 }
1655 }
1656 return false;
1657
1658 case ARRAY_TYPE:
1659 tr_size = TYPE_SIZE (TREE_TYPE (type));
1660 if (!tr_size || !host_integerp (tr_size, 1))
1661 return false;
1662 el_size = tree_low_cst (tr_size, 1);
1663
1664 minidx = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
1665 if (TREE_CODE (minidx) != INTEGER_CST || el_size == 0)
1666 return false;
1667 index = build_int_cst (TYPE_DOMAIN (type), offset / el_size);
1668 if (!integer_zerop (minidx))
1669 index = int_const_binop (PLUS_EXPR, index, minidx);
1670 *res = build4 (ARRAY_REF, TREE_TYPE (type), *res, index,
1671 NULL_TREE, NULL_TREE);
1672 offset = offset % el_size;
1673 type = TREE_TYPE (type);
1674 break;
1675
1676 default:
1677 if (offset != 0)
1678 return false;
1679
1680 if (exp_type)
1681 return false;
1682 else
1683 return true;
1684 }
1685 }
1686 }
1687
1688 /* Return true iff TYPE is stdarg va_list type. */
1689
1690 static inline bool
1691 is_va_list_type (tree type)
1692 {
1693 return TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (va_list_type_node);
1694 }
1695
1696 /* Print message to dump file why a variable was rejected. */
1697
1698 static void
1699 reject (tree var, const char *msg)
1700 {
1701 if (dump_file && (dump_flags & TDF_DETAILS))
1702 {
1703 fprintf (dump_file, "Rejected (%d): %s: ", DECL_UID (var), msg);
1704 print_generic_expr (dump_file, var, 0);
1705 fprintf (dump_file, "\n");
1706 }
1707 }
1708
1709 /* The very first phase of intraprocedural SRA. It marks in candidate_bitmap
1710 those with type which is suitable for scalarization. */
1711
1712 static bool
1713 find_var_candidates (void)
1714 {
1715 tree var, type;
1716 referenced_var_iterator rvi;
1717 bool ret = false;
1718 const char *msg;
1719
1720 FOR_EACH_REFERENCED_VAR (cfun, var, rvi)
1721 {
1722 if (TREE_CODE (var) != VAR_DECL && TREE_CODE (var) != PARM_DECL)
1723 continue;
1724 type = TREE_TYPE (var);
1725
1726 if (!AGGREGATE_TYPE_P (type))
1727 {
1728 reject (var, "not aggregate");
1729 continue;
1730 }
1731 if (needs_to_live_in_memory (var))
1732 {
1733 reject (var, "needs to live in memory");
1734 continue;
1735 }
1736 if (TREE_THIS_VOLATILE (var))
1737 {
1738 reject (var, "is volatile");
1739 continue;
1740 }
1741 if (!COMPLETE_TYPE_P (type))
1742 {
1743 reject (var, "has incomplete type");
1744 continue;
1745 }
1746 if (!host_integerp (TYPE_SIZE (type), 1))
1747 {
1748 reject (var, "type size not fixed");
1749 continue;
1750 }
1751 if (tree_low_cst (TYPE_SIZE (type), 1) == 0)
1752 {
1753 reject (var, "type size is zero");
1754 continue;
1755 }
1756 if (type_internals_preclude_sra_p (type, &msg))
1757 {
1758 reject (var, msg);
1759 continue;
1760 }
1761 if (/* Fix for PR 41089. tree-stdarg.c needs to have va_lists intact but
1762 we also want to schedule it rather late. Thus we ignore it in
1763 the early pass. */
1764 (sra_mode == SRA_MODE_EARLY_INTRA
1765 && is_va_list_type (type)))
1766 {
1767 reject (var, "is va_list");
1768 continue;
1769 }
1770
1771 bitmap_set_bit (candidate_bitmap, DECL_UID (var));
1772
1773 if (dump_file && (dump_flags & TDF_DETAILS))
1774 {
1775 fprintf (dump_file, "Candidate (%d): ", DECL_UID (var));
1776 print_generic_expr (dump_file, var, 0);
1777 fprintf (dump_file, "\n");
1778 }
1779 ret = true;
1780 }
1781
1782 return ret;
1783 }
1784
1785 /* Sort all accesses for the given variable, check for partial overlaps and
1786 return NULL if there are any. If there are none, pick a representative for
1787 each combination of offset and size and create a linked list out of them.
1788 Return the pointer to the first representative and make sure it is the first
1789 one in the vector of accesses. */
1790
1791 static struct access *
1792 sort_and_splice_var_accesses (tree var)
1793 {
1794 int i, j, access_count;
1795 struct access *res, **prev_acc_ptr = &res;
1796 VEC (access_p, heap) *access_vec;
1797 bool first = true;
1798 HOST_WIDE_INT low = -1, high = 0;
1799
1800 access_vec = get_base_access_vector (var);
1801 if (!access_vec)
1802 return NULL;
1803 access_count = VEC_length (access_p, access_vec);
1804
1805 /* Sort by <OFFSET, SIZE>. */
1806 VEC_qsort (access_p, access_vec, compare_access_positions);
1807
1808 i = 0;
1809 while (i < access_count)
1810 {
1811 struct access *access = VEC_index (access_p, access_vec, i);
1812 bool grp_write = access->write;
1813 bool grp_read = !access->write;
1814 bool grp_scalar_write = access->write
1815 && is_gimple_reg_type (access->type);
1816 bool grp_scalar_read = !access->write
1817 && is_gimple_reg_type (access->type);
1818 bool grp_assignment_read = access->grp_assignment_read;
1819 bool grp_assignment_write = access->grp_assignment_write;
1820 bool multiple_scalar_reads = false;
1821 bool total_scalarization = access->grp_total_scalarization;
1822 bool grp_partial_lhs = access->grp_partial_lhs;
1823 bool first_scalar = is_gimple_reg_type (access->type);
1824 bool unscalarizable_region = access->grp_unscalarizable_region;
1825
1826 if (first || access->offset >= high)
1827 {
1828 first = false;
1829 low = access->offset;
1830 high = access->offset + access->size;
1831 }
1832 else if (access->offset > low && access->offset + access->size > high)
1833 return NULL;
1834 else
1835 gcc_assert (access->offset >= low
1836 && access->offset + access->size <= high);
1837
1838 j = i + 1;
1839 while (j < access_count)
1840 {
1841 struct access *ac2 = VEC_index (access_p, access_vec, j);
1842 if (ac2->offset != access->offset || ac2->size != access->size)
1843 break;
1844 if (ac2->write)
1845 {
1846 grp_write = true;
1847 grp_scalar_write = (grp_scalar_write
1848 || is_gimple_reg_type (ac2->type));
1849 }
1850 else
1851 {
1852 grp_read = true;
1853 if (is_gimple_reg_type (ac2->type))
1854 {
1855 if (grp_scalar_read)
1856 multiple_scalar_reads = true;
1857 else
1858 grp_scalar_read = true;
1859 }
1860 }
1861 grp_assignment_read |= ac2->grp_assignment_read;
1862 grp_assignment_write |= ac2->grp_assignment_write;
1863 grp_partial_lhs |= ac2->grp_partial_lhs;
1864 unscalarizable_region |= ac2->grp_unscalarizable_region;
1865 total_scalarization |= ac2->grp_total_scalarization;
1866 relink_to_new_repr (access, ac2);
1867
1868 /* If there are both aggregate-type and scalar-type accesses with
1869 this combination of size and offset, the comparison function
1870 should have put the scalars first. */
1871 gcc_assert (first_scalar || !is_gimple_reg_type (ac2->type));
1872 ac2->group_representative = access;
1873 j++;
1874 }
1875
1876 i = j;
1877
1878 access->group_representative = access;
1879 access->grp_write = grp_write;
1880 access->grp_read = grp_read;
1881 access->grp_scalar_read = grp_scalar_read;
1882 access->grp_scalar_write = grp_scalar_write;
1883 access->grp_assignment_read = grp_assignment_read;
1884 access->grp_assignment_write = grp_assignment_write;
1885 access->grp_hint = multiple_scalar_reads || total_scalarization;
1886 access->grp_total_scalarization = total_scalarization;
1887 access->grp_partial_lhs = grp_partial_lhs;
1888 access->grp_unscalarizable_region = unscalarizable_region;
1889 if (access->first_link)
1890 add_access_to_work_queue (access);
1891
1892 *prev_acc_ptr = access;
1893 prev_acc_ptr = &access->next_grp;
1894 }
1895
1896 gcc_assert (res == VEC_index (access_p, access_vec, 0));
1897 return res;
1898 }
1899
1900 /* Create a variable for the given ACCESS which determines the type, name and a
1901 few other properties. Return the variable declaration and store it also to
1902 ACCESS->replacement. */
1903
1904 static tree
1905 create_access_replacement (struct access *access, bool rename)
1906 {
1907 tree repl;
1908
1909 repl = create_tmp_var (access->type, "SR");
1910 add_referenced_var (repl);
1911 if (rename)
1912 mark_sym_for_renaming (repl);
1913
1914 if (!access->grp_partial_lhs
1915 && (TREE_CODE (access->type) == COMPLEX_TYPE
1916 || TREE_CODE (access->type) == VECTOR_TYPE))
1917 DECL_GIMPLE_REG_P (repl) = 1;
1918
1919 DECL_SOURCE_LOCATION (repl) = DECL_SOURCE_LOCATION (access->base);
1920 DECL_ARTIFICIAL (repl) = 1;
1921 DECL_IGNORED_P (repl) = DECL_IGNORED_P (access->base);
1922
1923 if (DECL_NAME (access->base)
1924 && !DECL_IGNORED_P (access->base)
1925 && !DECL_ARTIFICIAL (access->base))
1926 {
1927 char *pretty_name = make_fancy_name (access->expr);
1928 tree debug_expr = unshare_expr (access->expr), d;
1929
1930 DECL_NAME (repl) = get_identifier (pretty_name);
1931 obstack_free (&name_obstack, pretty_name);
1932
1933 /* Get rid of any SSA_NAMEs embedded in debug_expr,
1934 as DECL_DEBUG_EXPR isn't considered when looking for still
1935 used SSA_NAMEs and thus they could be freed. All debug info
1936 generation cares is whether something is constant or variable
1937 and that get_ref_base_and_extent works properly on the
1938 expression. */
1939 for (d = debug_expr; handled_component_p (d); d = TREE_OPERAND (d, 0))
1940 switch (TREE_CODE (d))
1941 {
1942 case ARRAY_REF:
1943 case ARRAY_RANGE_REF:
1944 if (TREE_OPERAND (d, 1)
1945 && TREE_CODE (TREE_OPERAND (d, 1)) == SSA_NAME)
1946 TREE_OPERAND (d, 1) = SSA_NAME_VAR (TREE_OPERAND (d, 1));
1947 if (TREE_OPERAND (d, 3)
1948 && TREE_CODE (TREE_OPERAND (d, 3)) == SSA_NAME)
1949 TREE_OPERAND (d, 3) = SSA_NAME_VAR (TREE_OPERAND (d, 3));
1950 /* FALLTHRU */
1951 case COMPONENT_REF:
1952 if (TREE_OPERAND (d, 2)
1953 && TREE_CODE (TREE_OPERAND (d, 2)) == SSA_NAME)
1954 TREE_OPERAND (d, 2) = SSA_NAME_VAR (TREE_OPERAND (d, 2));
1955 break;
1956 default:
1957 break;
1958 }
1959 SET_DECL_DEBUG_EXPR (repl, debug_expr);
1960 DECL_DEBUG_EXPR_IS_FROM (repl) = 1;
1961 if (access->grp_no_warning)
1962 TREE_NO_WARNING (repl) = 1;
1963 else
1964 TREE_NO_WARNING (repl) = TREE_NO_WARNING (access->base);
1965 }
1966 else
1967 TREE_NO_WARNING (repl) = 1;
1968
1969 if (dump_file)
1970 {
1971 fprintf (dump_file, "Created a replacement for ");
1972 print_generic_expr (dump_file, access->base, 0);
1973 fprintf (dump_file, " offset: %u, size: %u: ",
1974 (unsigned) access->offset, (unsigned) access->size);
1975 print_generic_expr (dump_file, repl, 0);
1976 fprintf (dump_file, "\n");
1977 }
1978 sra_stats.replacements++;
1979
1980 return repl;
1981 }
1982
1983 /* Return ACCESS scalar replacement, create it if it does not exist yet. */
1984
1985 static inline tree
1986 get_access_replacement (struct access *access)
1987 {
1988 gcc_assert (access->grp_to_be_replaced);
1989
1990 if (!access->replacement_decl)
1991 access->replacement_decl = create_access_replacement (access, true);
1992 return access->replacement_decl;
1993 }
1994
1995 /* Return ACCESS scalar replacement, create it if it does not exist yet but do
1996 not mark it for renaming. */
1997
1998 static inline tree
1999 get_unrenamed_access_replacement (struct access *access)
2000 {
2001 gcc_assert (!access->grp_to_be_replaced);
2002
2003 if (!access->replacement_decl)
2004 access->replacement_decl = create_access_replacement (access, false);
2005 return access->replacement_decl;
2006 }
2007
2008
2009 /* Build a subtree of accesses rooted in *ACCESS, and move the pointer in the
2010 linked list along the way. Stop when *ACCESS is NULL or the access pointed
2011 to it is not "within" the root. Return false iff some accesses partially
2012 overlap. */
2013
2014 static bool
2015 build_access_subtree (struct access **access)
2016 {
2017 struct access *root = *access, *last_child = NULL;
2018 HOST_WIDE_INT limit = root->offset + root->size;
2019
2020 *access = (*access)->next_grp;
2021 while (*access && (*access)->offset + (*access)->size <= limit)
2022 {
2023 if (!last_child)
2024 root->first_child = *access;
2025 else
2026 last_child->next_sibling = *access;
2027 last_child = *access;
2028
2029 if (!build_access_subtree (access))
2030 return false;
2031 }
2032
2033 if (*access && (*access)->offset < limit)
2034 return false;
2035
2036 return true;
2037 }
2038
2039 /* Build a tree of access representatives, ACCESS is the pointer to the first
2040 one, others are linked in a list by the next_grp field. Return false iff
2041 some accesses partially overlap. */
2042
2043 static bool
2044 build_access_trees (struct access *access)
2045 {
2046 while (access)
2047 {
2048 struct access *root = access;
2049
2050 if (!build_access_subtree (&access))
2051 return false;
2052 root->next_grp = access;
2053 }
2054 return true;
2055 }
2056
2057 /* Return true if expr contains some ARRAY_REFs into a variable bounded
2058 array. */
2059
2060 static bool
2061 expr_with_var_bounded_array_refs_p (tree expr)
2062 {
2063 while (handled_component_p (expr))
2064 {
2065 if (TREE_CODE (expr) == ARRAY_REF
2066 && !host_integerp (array_ref_low_bound (expr), 0))
2067 return true;
2068 expr = TREE_OPERAND (expr, 0);
2069 }
2070 return false;
2071 }
2072
2073 /* Analyze the subtree of accesses rooted in ROOT, scheduling replacements when
2074 both seeming beneficial and when ALLOW_REPLACEMENTS allows it. Also set all
2075 sorts of access flags appropriately along the way, notably always set
2076 grp_read and grp_assign_read according to MARK_READ and grp_write when
2077 MARK_WRITE is true.
2078
2079 Creating a replacement for a scalar access is considered beneficial if its
2080 grp_hint is set (this means we are either attempting total scalarization or
2081 there is more than one direct read access) or according to the following
2082 table:
2083
2084 Access written to through a scalar type (once or more times)
2085 |
2086 | Written to in an assignment statement
2087 | |
2088 | | Access read as scalar _once_
2089 | | |
2090 | | | Read in an assignment statement
2091 | | | |
2092 | | | | Scalarize Comment
2093 -----------------------------------------------------------------------------
2094 0 0 0 0 No access for the scalar
2095 0 0 0 1 No access for the scalar
2096 0 0 1 0 No Single read - won't help
2097 0 0 1 1 No The same case
2098 0 1 0 0 No access for the scalar
2099 0 1 0 1 No access for the scalar
2100 0 1 1 0 Yes s = *g; return s.i;
2101 0 1 1 1 Yes The same case as above
2102 1 0 0 0 No Won't help
2103 1 0 0 1 Yes s.i = 1; *g = s;
2104 1 0 1 0 Yes s.i = 5; g = s.i;
2105 1 0 1 1 Yes The same case as above
2106 1 1 0 0 No Won't help.
2107 1 1 0 1 Yes s.i = 1; *g = s;
2108 1 1 1 0 Yes s = *g; return s.i;
2109 1 1 1 1 Yes Any of the above yeses */
2110
2111 static bool
2112 analyze_access_subtree (struct access *root, struct access *parent,
2113 bool allow_replacements)
2114 {
2115 struct access *child;
2116 HOST_WIDE_INT limit = root->offset + root->size;
2117 HOST_WIDE_INT covered_to = root->offset;
2118 bool scalar = is_gimple_reg_type (root->type);
2119 bool hole = false, sth_created = false;
2120
2121 if (parent)
2122 {
2123 if (parent->grp_read)
2124 root->grp_read = 1;
2125 if (parent->grp_assignment_read)
2126 root->grp_assignment_read = 1;
2127 if (parent->grp_write)
2128 root->grp_write = 1;
2129 if (parent->grp_assignment_write)
2130 root->grp_assignment_write = 1;
2131 if (parent->grp_total_scalarization)
2132 root->grp_total_scalarization = 1;
2133 }
2134
2135 if (root->grp_unscalarizable_region)
2136 allow_replacements = false;
2137
2138 if (allow_replacements && expr_with_var_bounded_array_refs_p (root->expr))
2139 allow_replacements = false;
2140
2141 for (child = root->first_child; child; child = child->next_sibling)
2142 {
2143 hole |= covered_to < child->offset;
2144 sth_created |= analyze_access_subtree (child, root,
2145 allow_replacements && !scalar);
2146
2147 root->grp_unscalarized_data |= child->grp_unscalarized_data;
2148 root->grp_total_scalarization &= child->grp_total_scalarization;
2149 if (child->grp_covered)
2150 covered_to += child->size;
2151 else
2152 hole = true;
2153 }
2154
2155 if (allow_replacements && scalar && !root->first_child
2156 && (root->grp_hint
2157 || ((root->grp_scalar_read || root->grp_assignment_read)
2158 && (root->grp_scalar_write || root->grp_assignment_write))))
2159 {
2160 bool new_integer_type;
2161 if (TREE_CODE (root->type) == ENUMERAL_TYPE)
2162 {
2163 tree rt = root->type;
2164 root->type = build_nonstandard_integer_type (TYPE_PRECISION (rt),
2165 TYPE_UNSIGNED (rt));
2166 new_integer_type = true;
2167 }
2168 else
2169 new_integer_type = false;
2170
2171 if (dump_file && (dump_flags & TDF_DETAILS))
2172 {
2173 fprintf (dump_file, "Marking ");
2174 print_generic_expr (dump_file, root->base, 0);
2175 fprintf (dump_file, " offset: %u, size: %u ",
2176 (unsigned) root->offset, (unsigned) root->size);
2177 fprintf (dump_file, " to be replaced%s.\n",
2178 new_integer_type ? " with an integer": "");
2179 }
2180
2181 root->grp_to_be_replaced = 1;
2182 sth_created = true;
2183 hole = false;
2184 }
2185 else
2186 {
2187 if (covered_to < limit)
2188 hole = true;
2189 if (scalar)
2190 root->grp_total_scalarization = 0;
2191 }
2192
2193 if (sth_created
2194 && (!hole || root->grp_total_scalarization))
2195 {
2196 root->grp_covered = 1;
2197 return true;
2198 }
2199 if (root->grp_write || TREE_CODE (root->base) == PARM_DECL)
2200 root->grp_unscalarized_data = 1; /* not covered and written to */
2201 if (sth_created)
2202 return true;
2203 return false;
2204 }
2205
2206 /* Analyze all access trees linked by next_grp by the means of
2207 analyze_access_subtree. */
2208 static bool
2209 analyze_access_trees (struct access *access)
2210 {
2211 bool ret = false;
2212
2213 while (access)
2214 {
2215 if (analyze_access_subtree (access, NULL, true))
2216 ret = true;
2217 access = access->next_grp;
2218 }
2219
2220 return ret;
2221 }
2222
2223 /* Return true iff a potential new child of LACC at offset OFFSET and with size
2224 SIZE would conflict with an already existing one. If exactly such a child
2225 already exists in LACC, store a pointer to it in EXACT_MATCH. */
2226
2227 static bool
2228 child_would_conflict_in_lacc (struct access *lacc, HOST_WIDE_INT norm_offset,
2229 HOST_WIDE_INT size, struct access **exact_match)
2230 {
2231 struct access *child;
2232
2233 for (child = lacc->first_child; child; child = child->next_sibling)
2234 {
2235 if (child->offset == norm_offset && child->size == size)
2236 {
2237 *exact_match = child;
2238 return true;
2239 }
2240
2241 if (child->offset < norm_offset + size
2242 && child->offset + child->size > norm_offset)
2243 return true;
2244 }
2245
2246 return false;
2247 }
2248
2249 /* Create a new child access of PARENT, with all properties just like MODEL
2250 except for its offset and with its grp_write false and grp_read true.
2251 Return the new access or NULL if it cannot be created. Note that this access
2252 is created long after all splicing and sorting, it's not located in any
2253 access vector and is automatically a representative of its group. */
2254
2255 static struct access *
2256 create_artificial_child_access (struct access *parent, struct access *model,
2257 HOST_WIDE_INT new_offset)
2258 {
2259 struct access *access;
2260 struct access **child;
2261 tree expr = parent->base;
2262
2263 gcc_assert (!model->grp_unscalarizable_region);
2264
2265 access = (struct access *) pool_alloc (access_pool);
2266 memset (access, 0, sizeof (struct access));
2267 if (!build_user_friendly_ref_for_offset (&expr, TREE_TYPE (expr), new_offset,
2268 model->type))
2269 {
2270 access->grp_no_warning = true;
2271 expr = build_ref_for_model (EXPR_LOCATION (parent->base), parent->base,
2272 new_offset, model, NULL, false);
2273 }
2274
2275 access->base = parent->base;
2276 access->expr = expr;
2277 access->offset = new_offset;
2278 access->size = model->size;
2279 access->type = model->type;
2280 access->grp_write = true;
2281 access->grp_read = false;
2282
2283 child = &parent->first_child;
2284 while (*child && (*child)->offset < new_offset)
2285 child = &(*child)->next_sibling;
2286
2287 access->next_sibling = *child;
2288 *child = access;
2289
2290 return access;
2291 }
2292
2293
2294 /* Propagate all subaccesses of RACC across an assignment link to LACC. Return
2295 true if any new subaccess was created. Additionally, if RACC is a scalar
2296 access but LACC is not, change the type of the latter, if possible. */
2297
2298 static bool
2299 propagate_subaccesses_across_link (struct access *lacc, struct access *racc)
2300 {
2301 struct access *rchild;
2302 HOST_WIDE_INT norm_delta = lacc->offset - racc->offset;
2303 bool ret = false;
2304
2305 if (is_gimple_reg_type (lacc->type)
2306 || lacc->grp_unscalarizable_region
2307 || racc->grp_unscalarizable_region)
2308 return false;
2309
2310 if (is_gimple_reg_type (racc->type))
2311 {
2312 if (!lacc->first_child && !racc->first_child)
2313 {
2314 tree t = lacc->base;
2315
2316 lacc->type = racc->type;
2317 if (build_user_friendly_ref_for_offset (&t, TREE_TYPE (t),
2318 lacc->offset, racc->type))
2319 lacc->expr = t;
2320 else
2321 {
2322 lacc->expr = build_ref_for_model (EXPR_LOCATION (lacc->base),
2323 lacc->base, lacc->offset,
2324 racc, NULL, false);
2325 lacc->grp_no_warning = true;
2326 }
2327 }
2328 return false;
2329 }
2330
2331 for (rchild = racc->first_child; rchild; rchild = rchild->next_sibling)
2332 {
2333 struct access *new_acc = NULL;
2334 HOST_WIDE_INT norm_offset = rchild->offset + norm_delta;
2335
2336 if (rchild->grp_unscalarizable_region)
2337 continue;
2338
2339 if (child_would_conflict_in_lacc (lacc, norm_offset, rchild->size,
2340 &new_acc))
2341 {
2342 if (new_acc)
2343 {
2344 rchild->grp_hint = 1;
2345 new_acc->grp_hint |= new_acc->grp_read;
2346 if (rchild->first_child)
2347 ret |= propagate_subaccesses_across_link (new_acc, rchild);
2348 }
2349 continue;
2350 }
2351
2352 rchild->grp_hint = 1;
2353 new_acc = create_artificial_child_access (lacc, rchild, norm_offset);
2354 if (new_acc)
2355 {
2356 ret = true;
2357 if (racc->first_child)
2358 propagate_subaccesses_across_link (new_acc, rchild);
2359 }
2360 }
2361
2362 return ret;
2363 }
2364
2365 /* Propagate all subaccesses across assignment links. */
2366
2367 static void
2368 propagate_all_subaccesses (void)
2369 {
2370 while (work_queue_head)
2371 {
2372 struct access *racc = pop_access_from_work_queue ();
2373 struct assign_link *link;
2374
2375 gcc_assert (racc->first_link);
2376
2377 for (link = racc->first_link; link; link = link->next)
2378 {
2379 struct access *lacc = link->lacc;
2380
2381 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (lacc->base)))
2382 continue;
2383 lacc = lacc->group_representative;
2384 if (propagate_subaccesses_across_link (lacc, racc)
2385 && lacc->first_link)
2386 add_access_to_work_queue (lacc);
2387 }
2388 }
2389 }
2390
2391 /* Go through all accesses collected throughout the (intraprocedural) analysis
2392 stage, exclude overlapping ones, identify representatives and build trees
2393 out of them, making decisions about scalarization on the way. Return true
2394 iff there are any to-be-scalarized variables after this stage. */
2395
2396 static bool
2397 analyze_all_variable_accesses (void)
2398 {
2399 int res = 0;
2400 bitmap tmp = BITMAP_ALLOC (NULL);
2401 bitmap_iterator bi;
2402 unsigned i, max_total_scalarization_size;
2403
2404 max_total_scalarization_size = UNITS_PER_WORD * BITS_PER_UNIT
2405 * MOVE_RATIO (optimize_function_for_speed_p (cfun));
2406
2407 EXECUTE_IF_SET_IN_BITMAP (candidate_bitmap, 0, i, bi)
2408 if (bitmap_bit_p (should_scalarize_away_bitmap, i)
2409 && !bitmap_bit_p (cannot_scalarize_away_bitmap, i))
2410 {
2411 tree var = referenced_var (i);
2412
2413 if (TREE_CODE (var) == VAR_DECL
2414 && type_consists_of_records_p (TREE_TYPE (var)))
2415 {
2416 if ((unsigned) tree_low_cst (TYPE_SIZE (TREE_TYPE (var)), 1)
2417 <= max_total_scalarization_size)
2418 {
2419 completely_scalarize_var (var);
2420 if (dump_file && (dump_flags & TDF_DETAILS))
2421 {
2422 fprintf (dump_file, "Will attempt to totally scalarize ");
2423 print_generic_expr (dump_file, var, 0);
2424 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2425 }
2426 }
2427 else if (dump_file && (dump_flags & TDF_DETAILS))
2428 {
2429 fprintf (dump_file, "Too big to totally scalarize: ");
2430 print_generic_expr (dump_file, var, 0);
2431 fprintf (dump_file, " (UID: %u)\n", DECL_UID (var));
2432 }
2433 }
2434 }
2435
2436 bitmap_copy (tmp, candidate_bitmap);
2437 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2438 {
2439 tree var = referenced_var (i);
2440 struct access *access;
2441
2442 access = sort_and_splice_var_accesses (var);
2443 if (!access || !build_access_trees (access))
2444 disqualify_candidate (var,
2445 "No or inhibitingly overlapping accesses.");
2446 }
2447
2448 propagate_all_subaccesses ();
2449
2450 bitmap_copy (tmp, candidate_bitmap);
2451 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2452 {
2453 tree var = referenced_var (i);
2454 struct access *access = get_first_repr_for_decl (var);
2455
2456 if (analyze_access_trees (access))
2457 {
2458 res++;
2459 if (dump_file && (dump_flags & TDF_DETAILS))
2460 {
2461 fprintf (dump_file, "\nAccess trees for ");
2462 print_generic_expr (dump_file, var, 0);
2463 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2464 dump_access_tree (dump_file, access);
2465 fprintf (dump_file, "\n");
2466 }
2467 }
2468 else
2469 disqualify_candidate (var, "No scalar replacements to be created.");
2470 }
2471
2472 BITMAP_FREE (tmp);
2473
2474 if (res)
2475 {
2476 statistics_counter_event (cfun, "Scalarized aggregates", res);
2477 return true;
2478 }
2479 else
2480 return false;
2481 }
2482
2483 /* Generate statements copying scalar replacements of accesses within a subtree
2484 into or out of AGG. ACCESS, all its children, siblings and their children
2485 are to be processed. AGG is an aggregate type expression (can be a
2486 declaration but does not have to be, it can for example also be a mem_ref or
2487 a series of handled components). TOP_OFFSET is the offset of the processed
2488 subtree which has to be subtracted from offsets of individual accesses to
2489 get corresponding offsets for AGG. If CHUNK_SIZE is non-null, copy only
2490 replacements in the interval <start_offset, start_offset + chunk_size>,
2491 otherwise copy all. GSI is a statement iterator used to place the new
2492 statements. WRITE should be true when the statements should write from AGG
2493 to the replacement and false if vice versa. if INSERT_AFTER is true, new
2494 statements will be added after the current statement in GSI, they will be
2495 added before the statement otherwise. */
2496
2497 static void
2498 generate_subtree_copies (struct access *access, tree agg,
2499 HOST_WIDE_INT top_offset,
2500 HOST_WIDE_INT start_offset, HOST_WIDE_INT chunk_size,
2501 gimple_stmt_iterator *gsi, bool write,
2502 bool insert_after, location_t loc)
2503 {
2504 do
2505 {
2506 if (chunk_size && access->offset >= start_offset + chunk_size)
2507 return;
2508
2509 if (access->grp_to_be_replaced
2510 && (chunk_size == 0
2511 || access->offset + access->size > start_offset))
2512 {
2513 tree expr, repl = get_access_replacement (access);
2514 gimple stmt;
2515
2516 expr = build_ref_for_model (loc, agg, access->offset - top_offset,
2517 access, gsi, insert_after);
2518
2519 if (write)
2520 {
2521 if (access->grp_partial_lhs)
2522 expr = force_gimple_operand_gsi (gsi, expr, true, NULL_TREE,
2523 !insert_after,
2524 insert_after ? GSI_NEW_STMT
2525 : GSI_SAME_STMT);
2526 stmt = gimple_build_assign (repl, expr);
2527 }
2528 else
2529 {
2530 TREE_NO_WARNING (repl) = 1;
2531 if (access->grp_partial_lhs)
2532 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2533 !insert_after,
2534 insert_after ? GSI_NEW_STMT
2535 : GSI_SAME_STMT);
2536 stmt = gimple_build_assign (expr, repl);
2537 }
2538 gimple_set_location (stmt, loc);
2539
2540 if (insert_after)
2541 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2542 else
2543 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2544 update_stmt (stmt);
2545 sra_stats.subtree_copies++;
2546 }
2547
2548 if (access->first_child)
2549 generate_subtree_copies (access->first_child, agg, top_offset,
2550 start_offset, chunk_size, gsi,
2551 write, insert_after, loc);
2552
2553 access = access->next_sibling;
2554 }
2555 while (access);
2556 }
2557
2558 /* Assign zero to all scalar replacements in an access subtree. ACCESS is the
2559 the root of the subtree to be processed. GSI is the statement iterator used
2560 for inserting statements which are added after the current statement if
2561 INSERT_AFTER is true or before it otherwise. */
2562
2563 static void
2564 init_subtree_with_zero (struct access *access, gimple_stmt_iterator *gsi,
2565 bool insert_after, location_t loc)
2566
2567 {
2568 struct access *child;
2569
2570 if (access->grp_to_be_replaced)
2571 {
2572 gimple stmt;
2573
2574 stmt = gimple_build_assign (get_access_replacement (access),
2575 build_zero_cst (access->type));
2576 if (insert_after)
2577 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2578 else
2579 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2580 update_stmt (stmt);
2581 gimple_set_location (stmt, loc);
2582 }
2583
2584 for (child = access->first_child; child; child = child->next_sibling)
2585 init_subtree_with_zero (child, gsi, insert_after, loc);
2586 }
2587
2588 /* Search for an access representative for the given expression EXPR and
2589 return it or NULL if it cannot be found. */
2590
2591 static struct access *
2592 get_access_for_expr (tree expr)
2593 {
2594 HOST_WIDE_INT offset, size, max_size;
2595 tree base;
2596
2597 /* FIXME: This should not be necessary but Ada produces V_C_Es with a type of
2598 a different size than the size of its argument and we need the latter
2599 one. */
2600 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2601 expr = TREE_OPERAND (expr, 0);
2602
2603 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
2604 if (max_size == -1 || !DECL_P (base))
2605 return NULL;
2606
2607 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
2608 return NULL;
2609
2610 return get_var_base_offset_size_access (base, offset, max_size);
2611 }
2612
2613 /* Replace the expression EXPR with a scalar replacement if there is one and
2614 generate other statements to do type conversion or subtree copying if
2615 necessary. GSI is used to place newly created statements, WRITE is true if
2616 the expression is being written to (it is on a LHS of a statement or output
2617 in an assembly statement). */
2618
2619 static bool
2620 sra_modify_expr (tree *expr, gimple_stmt_iterator *gsi, bool write)
2621 {
2622 location_t loc;
2623 struct access *access;
2624 tree type, bfr;
2625
2626 if (TREE_CODE (*expr) == BIT_FIELD_REF)
2627 {
2628 bfr = *expr;
2629 expr = &TREE_OPERAND (*expr, 0);
2630 }
2631 else
2632 bfr = NULL_TREE;
2633
2634 if (TREE_CODE (*expr) == REALPART_EXPR || TREE_CODE (*expr) == IMAGPART_EXPR)
2635 expr = &TREE_OPERAND (*expr, 0);
2636 access = get_access_for_expr (*expr);
2637 if (!access)
2638 return false;
2639 type = TREE_TYPE (*expr);
2640
2641 loc = gimple_location (gsi_stmt (*gsi));
2642 if (access->grp_to_be_replaced)
2643 {
2644 tree repl = get_access_replacement (access);
2645 /* If we replace a non-register typed access simply use the original
2646 access expression to extract the scalar component afterwards.
2647 This happens if scalarizing a function return value or parameter
2648 like in gcc.c-torture/execute/20041124-1.c, 20050316-1.c and
2649 gcc.c-torture/compile/20011217-1.c.
2650
2651 We also want to use this when accessing a complex or vector which can
2652 be accessed as a different type too, potentially creating a need for
2653 type conversion (see PR42196) and when scalarized unions are involved
2654 in assembler statements (see PR42398). */
2655 if (!useless_type_conversion_p (type, access->type))
2656 {
2657 tree ref;
2658
2659 ref = build_ref_for_model (loc, access->base, access->offset, access,
2660 NULL, false);
2661
2662 if (write)
2663 {
2664 gimple stmt;
2665
2666 if (access->grp_partial_lhs)
2667 ref = force_gimple_operand_gsi (gsi, ref, true, NULL_TREE,
2668 false, GSI_NEW_STMT);
2669 stmt = gimple_build_assign (repl, ref);
2670 gimple_set_location (stmt, loc);
2671 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2672 }
2673 else
2674 {
2675 gimple stmt;
2676
2677 if (access->grp_partial_lhs)
2678 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2679 true, GSI_SAME_STMT);
2680 stmt = gimple_build_assign (ref, repl);
2681 gimple_set_location (stmt, loc);
2682 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2683 }
2684 }
2685 else
2686 *expr = repl;
2687 sra_stats.exprs++;
2688 }
2689
2690 if (access->first_child)
2691 {
2692 HOST_WIDE_INT start_offset, chunk_size;
2693 if (bfr
2694 && host_integerp (TREE_OPERAND (bfr, 1), 1)
2695 && host_integerp (TREE_OPERAND (bfr, 2), 1))
2696 {
2697 chunk_size = tree_low_cst (TREE_OPERAND (bfr, 1), 1);
2698 start_offset = access->offset
2699 + tree_low_cst (TREE_OPERAND (bfr, 2), 1);
2700 }
2701 else
2702 start_offset = chunk_size = 0;
2703
2704 generate_subtree_copies (access->first_child, access->base, 0,
2705 start_offset, chunk_size, gsi, write, write,
2706 loc);
2707 }
2708 return true;
2709 }
2710
2711 /* Where scalar replacements of the RHS have been written to when a replacement
2712 of a LHS of an assigments cannot be direclty loaded from a replacement of
2713 the RHS. */
2714 enum unscalarized_data_handling { SRA_UDH_NONE, /* Nothing done so far. */
2715 SRA_UDH_RIGHT, /* Data flushed to the RHS. */
2716 SRA_UDH_LEFT }; /* Data flushed to the LHS. */
2717
2718 /* Store all replacements in the access tree rooted in TOP_RACC either to their
2719 base aggregate if there are unscalarized data or directly to LHS of the
2720 statement that is pointed to by GSI otherwise. */
2721
2722 static enum unscalarized_data_handling
2723 handle_unscalarized_data_in_subtree (struct access *top_racc,
2724 gimple_stmt_iterator *gsi)
2725 {
2726 if (top_racc->grp_unscalarized_data)
2727 {
2728 generate_subtree_copies (top_racc->first_child, top_racc->base, 0, 0, 0,
2729 gsi, false, false,
2730 gimple_location (gsi_stmt (*gsi)));
2731 return SRA_UDH_RIGHT;
2732 }
2733 else
2734 {
2735 tree lhs = gimple_assign_lhs (gsi_stmt (*gsi));
2736 generate_subtree_copies (top_racc->first_child, lhs, top_racc->offset,
2737 0, 0, gsi, false, false,
2738 gimple_location (gsi_stmt (*gsi)));
2739 return SRA_UDH_LEFT;
2740 }
2741 }
2742
2743
2744 /* Try to generate statements to load all sub-replacements in an access subtree
2745 formed by children of LACC from scalar replacements in the TOP_RACC subtree.
2746 If that is not possible, refresh the TOP_RACC base aggregate and load the
2747 accesses from it. LEFT_OFFSET is the offset of the left whole subtree being
2748 copied. NEW_GSI is stmt iterator used for statement insertions after the
2749 original assignment, OLD_GSI is used to insert statements before the
2750 assignment. *REFRESHED keeps the information whether we have needed to
2751 refresh replacements of the LHS and from which side of the assignments this
2752 takes place. */
2753
2754 static void
2755 load_assign_lhs_subreplacements (struct access *lacc, struct access *top_racc,
2756 HOST_WIDE_INT left_offset,
2757 gimple_stmt_iterator *old_gsi,
2758 gimple_stmt_iterator *new_gsi,
2759 enum unscalarized_data_handling *refreshed)
2760 {
2761 location_t loc = gimple_location (gsi_stmt (*old_gsi));
2762 for (lacc = lacc->first_child; lacc; lacc = lacc->next_sibling)
2763 {
2764 if (lacc->grp_to_be_replaced)
2765 {
2766 struct access *racc;
2767 HOST_WIDE_INT offset = lacc->offset - left_offset + top_racc->offset;
2768 gimple stmt;
2769 tree rhs;
2770
2771 racc = find_access_in_subtree (top_racc, offset, lacc->size);
2772 if (racc && racc->grp_to_be_replaced)
2773 {
2774 rhs = get_access_replacement (racc);
2775 if (!useless_type_conversion_p (lacc->type, racc->type))
2776 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, lacc->type, rhs);
2777
2778 if (racc->grp_partial_lhs && lacc->grp_partial_lhs)
2779 rhs = force_gimple_operand_gsi (old_gsi, rhs, true, NULL_TREE,
2780 true, GSI_SAME_STMT);
2781 }
2782 else
2783 {
2784 /* No suitable access on the right hand side, need to load from
2785 the aggregate. See if we have to update it first... */
2786 if (*refreshed == SRA_UDH_NONE)
2787 *refreshed = handle_unscalarized_data_in_subtree (top_racc,
2788 old_gsi);
2789
2790 if (*refreshed == SRA_UDH_LEFT)
2791 rhs = build_ref_for_model (loc, lacc->base, lacc->offset, lacc,
2792 new_gsi, true);
2793 else
2794 rhs = build_ref_for_model (loc, top_racc->base, offset, lacc,
2795 new_gsi, true);
2796 if (lacc->grp_partial_lhs)
2797 rhs = force_gimple_operand_gsi (new_gsi, rhs, true, NULL_TREE,
2798 false, GSI_NEW_STMT);
2799 }
2800
2801 stmt = gimple_build_assign (get_access_replacement (lacc), rhs);
2802 gsi_insert_after (new_gsi, stmt, GSI_NEW_STMT);
2803 gimple_set_location (stmt, loc);
2804 update_stmt (stmt);
2805 sra_stats.subreplacements++;
2806 }
2807 else if (*refreshed == SRA_UDH_NONE
2808 && lacc->grp_read && !lacc->grp_covered)
2809 *refreshed = handle_unscalarized_data_in_subtree (top_racc,
2810 old_gsi);
2811
2812 if (lacc->first_child)
2813 load_assign_lhs_subreplacements (lacc, top_racc, left_offset,
2814 old_gsi, new_gsi, refreshed);
2815 }
2816 }
2817
2818 /* Result code for SRA assignment modification. */
2819 enum assignment_mod_result { SRA_AM_NONE, /* nothing done for the stmt */
2820 SRA_AM_MODIFIED, /* stmt changed but not
2821 removed */
2822 SRA_AM_REMOVED }; /* stmt eliminated */
2823
2824 /* Modify assignments with a CONSTRUCTOR on their RHS. STMT contains a pointer
2825 to the assignment and GSI is the statement iterator pointing at it. Returns
2826 the same values as sra_modify_assign. */
2827
2828 static enum assignment_mod_result
2829 sra_modify_constructor_assign (gimple *stmt, gimple_stmt_iterator *gsi)
2830 {
2831 tree lhs = gimple_assign_lhs (*stmt);
2832 struct access *acc;
2833 location_t loc;
2834
2835 acc = get_access_for_expr (lhs);
2836 if (!acc)
2837 return SRA_AM_NONE;
2838
2839 if (gimple_clobber_p (*stmt))
2840 {
2841 /* Remove clobbers of fully scalarized variables, otherwise
2842 do nothing. */
2843 if (acc->grp_covered)
2844 {
2845 unlink_stmt_vdef (*stmt);
2846 gsi_remove (gsi, true);
2847 return SRA_AM_REMOVED;
2848 }
2849 else
2850 return SRA_AM_NONE;
2851 }
2852
2853 loc = gimple_location (*stmt);
2854 if (VEC_length (constructor_elt,
2855 CONSTRUCTOR_ELTS (gimple_assign_rhs1 (*stmt))) > 0)
2856 {
2857 /* I have never seen this code path trigger but if it can happen the
2858 following should handle it gracefully. */
2859 if (access_has_children_p (acc))
2860 generate_subtree_copies (acc->first_child, acc->base, 0, 0, 0, gsi,
2861 true, true, loc);
2862 return SRA_AM_MODIFIED;
2863 }
2864
2865 if (acc->grp_covered)
2866 {
2867 init_subtree_with_zero (acc, gsi, false, loc);
2868 unlink_stmt_vdef (*stmt);
2869 gsi_remove (gsi, true);
2870 return SRA_AM_REMOVED;
2871 }
2872 else
2873 {
2874 init_subtree_with_zero (acc, gsi, true, loc);
2875 return SRA_AM_MODIFIED;
2876 }
2877 }
2878
2879 /* Create and return a new suitable default definition SSA_NAME for RACC which
2880 is an access describing an uninitialized part of an aggregate that is being
2881 loaded. */
2882
2883 static tree
2884 get_repl_default_def_ssa_name (struct access *racc)
2885 {
2886 tree repl, decl;
2887
2888 decl = get_unrenamed_access_replacement (racc);
2889
2890 repl = gimple_default_def (cfun, decl);
2891 if (!repl)
2892 {
2893 repl = make_ssa_name (decl, gimple_build_nop ());
2894 set_default_def (decl, repl);
2895 }
2896
2897 return repl;
2898 }
2899
2900 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
2901 somewhere in it. */
2902
2903 static inline bool
2904 contains_bitfld_comp_ref_p (const_tree ref)
2905 {
2906 while (handled_component_p (ref))
2907 {
2908 if (TREE_CODE (ref) == COMPONENT_REF
2909 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
2910 return true;
2911 ref = TREE_OPERAND (ref, 0);
2912 }
2913
2914 return false;
2915 }
2916
2917 /* Return true if REF has an VIEW_CONVERT_EXPR or a COMPONENT_REF with a
2918 bit-field field declaration somewhere in it. */
2919
2920 static inline bool
2921 contains_vce_or_bfcref_p (const_tree ref)
2922 {
2923 while (handled_component_p (ref))
2924 {
2925 if (TREE_CODE (ref) == VIEW_CONVERT_EXPR
2926 || (TREE_CODE (ref) == COMPONENT_REF
2927 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1))))
2928 return true;
2929 ref = TREE_OPERAND (ref, 0);
2930 }
2931
2932 return false;
2933 }
2934
2935 /* Examine both sides of the assignment statement pointed to by STMT, replace
2936 them with a scalare replacement if there is one and generate copying of
2937 replacements if scalarized aggregates have been used in the assignment. GSI
2938 is used to hold generated statements for type conversions and subtree
2939 copying. */
2940
2941 static enum assignment_mod_result
2942 sra_modify_assign (gimple *stmt, gimple_stmt_iterator *gsi)
2943 {
2944 struct access *lacc, *racc;
2945 tree lhs, rhs;
2946 bool modify_this_stmt = false;
2947 bool force_gimple_rhs = false;
2948 location_t loc;
2949 gimple_stmt_iterator orig_gsi = *gsi;
2950
2951 if (!gimple_assign_single_p (*stmt))
2952 return SRA_AM_NONE;
2953 lhs = gimple_assign_lhs (*stmt);
2954 rhs = gimple_assign_rhs1 (*stmt);
2955
2956 if (TREE_CODE (rhs) == CONSTRUCTOR)
2957 return sra_modify_constructor_assign (stmt, gsi);
2958
2959 if (TREE_CODE (rhs) == REALPART_EXPR || TREE_CODE (lhs) == REALPART_EXPR
2960 || TREE_CODE (rhs) == IMAGPART_EXPR || TREE_CODE (lhs) == IMAGPART_EXPR
2961 || TREE_CODE (rhs) == BIT_FIELD_REF || TREE_CODE (lhs) == BIT_FIELD_REF)
2962 {
2963 modify_this_stmt = sra_modify_expr (gimple_assign_rhs1_ptr (*stmt),
2964 gsi, false);
2965 modify_this_stmt |= sra_modify_expr (gimple_assign_lhs_ptr (*stmt),
2966 gsi, true);
2967 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
2968 }
2969
2970 lacc = get_access_for_expr (lhs);
2971 racc = get_access_for_expr (rhs);
2972 if (!lacc && !racc)
2973 return SRA_AM_NONE;
2974
2975 loc = gimple_location (*stmt);
2976 if (lacc && lacc->grp_to_be_replaced)
2977 {
2978 lhs = get_access_replacement (lacc);
2979 gimple_assign_set_lhs (*stmt, lhs);
2980 modify_this_stmt = true;
2981 if (lacc->grp_partial_lhs)
2982 force_gimple_rhs = true;
2983 sra_stats.exprs++;
2984 }
2985
2986 if (racc && racc->grp_to_be_replaced)
2987 {
2988 rhs = get_access_replacement (racc);
2989 modify_this_stmt = true;
2990 if (racc->grp_partial_lhs)
2991 force_gimple_rhs = true;
2992 sra_stats.exprs++;
2993 }
2994 else if (racc
2995 && !access_has_children_p (racc)
2996 && !racc->grp_to_be_replaced
2997 && !racc->grp_unscalarized_data
2998 && TREE_CODE (lhs) == SSA_NAME)
2999 {
3000 rhs = get_repl_default_def_ssa_name (racc);
3001 modify_this_stmt = true;
3002 sra_stats.exprs++;
3003 }
3004
3005 if (modify_this_stmt)
3006 {
3007 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
3008 {
3009 /* If we can avoid creating a VIEW_CONVERT_EXPR do so.
3010 ??? This should move to fold_stmt which we simply should
3011 call after building a VIEW_CONVERT_EXPR here. */
3012 if (AGGREGATE_TYPE_P (TREE_TYPE (lhs))
3013 && !contains_bitfld_comp_ref_p (lhs)
3014 && !access_has_children_p (lacc))
3015 {
3016 lhs = build_ref_for_model (loc, lhs, 0, racc, gsi, false);
3017 gimple_assign_set_lhs (*stmt, lhs);
3018 }
3019 else if (AGGREGATE_TYPE_P (TREE_TYPE (rhs))
3020 && !contains_vce_or_bfcref_p (rhs)
3021 && !access_has_children_p (racc))
3022 rhs = build_ref_for_model (loc, rhs, 0, lacc, gsi, false);
3023
3024 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
3025 {
3026 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, TREE_TYPE (lhs),
3027 rhs);
3028 if (is_gimple_reg_type (TREE_TYPE (lhs))
3029 && TREE_CODE (lhs) != SSA_NAME)
3030 force_gimple_rhs = true;
3031 }
3032 }
3033 }
3034
3035 /* From this point on, the function deals with assignments in between
3036 aggregates when at least one has scalar reductions of some of its
3037 components. There are three possible scenarios: Both the LHS and RHS have
3038 to-be-scalarized components, 2) only the RHS has or 3) only the LHS has.
3039
3040 In the first case, we would like to load the LHS components from RHS
3041 components whenever possible. If that is not possible, we would like to
3042 read it directly from the RHS (after updating it by storing in it its own
3043 components). If there are some necessary unscalarized data in the LHS,
3044 those will be loaded by the original assignment too. If neither of these
3045 cases happen, the original statement can be removed. Most of this is done
3046 by load_assign_lhs_subreplacements.
3047
3048 In the second case, we would like to store all RHS scalarized components
3049 directly into LHS and if they cover the aggregate completely, remove the
3050 statement too. In the third case, we want the LHS components to be loaded
3051 directly from the RHS (DSE will remove the original statement if it
3052 becomes redundant).
3053
3054 This is a bit complex but manageable when types match and when unions do
3055 not cause confusion in a way that we cannot really load a component of LHS
3056 from the RHS or vice versa (the access representing this level can have
3057 subaccesses that are accessible only through a different union field at a
3058 higher level - different from the one used in the examined expression).
3059 Unions are fun.
3060
3061 Therefore, I specially handle a fourth case, happening when there is a
3062 specific type cast or it is impossible to locate a scalarized subaccess on
3063 the other side of the expression. If that happens, I simply "refresh" the
3064 RHS by storing in it is scalarized components leave the original statement
3065 there to do the copying and then load the scalar replacements of the LHS.
3066 This is what the first branch does. */
3067
3068 if (modify_this_stmt
3069 || gimple_has_volatile_ops (*stmt)
3070 || contains_vce_or_bfcref_p (rhs)
3071 || contains_vce_or_bfcref_p (lhs))
3072 {
3073 if (access_has_children_p (racc))
3074 generate_subtree_copies (racc->first_child, racc->base, 0, 0, 0,
3075 gsi, false, false, loc);
3076 if (access_has_children_p (lacc))
3077 generate_subtree_copies (lacc->first_child, lacc->base, 0, 0, 0,
3078 gsi, true, true, loc);
3079 sra_stats.separate_lhs_rhs_handling++;
3080
3081 /* This gimplification must be done after generate_subtree_copies,
3082 lest we insert the subtree copies in the middle of the gimplified
3083 sequence. */
3084 if (force_gimple_rhs)
3085 rhs = force_gimple_operand_gsi (&orig_gsi, rhs, true, NULL_TREE,
3086 true, GSI_SAME_STMT);
3087 if (gimple_assign_rhs1 (*stmt) != rhs)
3088 {
3089 modify_this_stmt = true;
3090 gimple_assign_set_rhs_from_tree (&orig_gsi, rhs);
3091 gcc_assert (*stmt == gsi_stmt (orig_gsi));
3092 }
3093
3094 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
3095 }
3096 else
3097 {
3098 if (access_has_children_p (lacc) && access_has_children_p (racc))
3099 {
3100 gimple_stmt_iterator orig_gsi = *gsi;
3101 enum unscalarized_data_handling refreshed;
3102
3103 if (lacc->grp_read && !lacc->grp_covered)
3104 refreshed = handle_unscalarized_data_in_subtree (racc, gsi);
3105 else
3106 refreshed = SRA_UDH_NONE;
3107
3108 load_assign_lhs_subreplacements (lacc, racc, lacc->offset,
3109 &orig_gsi, gsi, &refreshed);
3110 if (refreshed != SRA_UDH_RIGHT)
3111 {
3112 gsi_next (gsi);
3113 unlink_stmt_vdef (*stmt);
3114 gsi_remove (&orig_gsi, true);
3115 sra_stats.deleted++;
3116 return SRA_AM_REMOVED;
3117 }
3118 }
3119 else
3120 {
3121 if (access_has_children_p (racc)
3122 && !racc->grp_unscalarized_data)
3123 {
3124 if (dump_file)
3125 {
3126 fprintf (dump_file, "Removing load: ");
3127 print_gimple_stmt (dump_file, *stmt, 0, 0);
3128 }
3129 generate_subtree_copies (racc->first_child, lhs,
3130 racc->offset, 0, 0, gsi,
3131 false, false, loc);
3132 gcc_assert (*stmt == gsi_stmt (*gsi));
3133 unlink_stmt_vdef (*stmt);
3134 gsi_remove (gsi, true);
3135 sra_stats.deleted++;
3136 return SRA_AM_REMOVED;
3137 }
3138 if (access_has_children_p (racc))
3139 generate_subtree_copies (racc->first_child, lhs, racc->offset,
3140 0, 0, gsi, false, true, loc);
3141 if (access_has_children_p (lacc))
3142 generate_subtree_copies (lacc->first_child, rhs, lacc->offset,
3143 0, 0, gsi, true, true, loc);
3144 }
3145
3146 return SRA_AM_NONE;
3147 }
3148 }
3149
3150 /* Traverse the function body and all modifications as decided in
3151 analyze_all_variable_accesses. Return true iff the CFG has been
3152 changed. */
3153
3154 static bool
3155 sra_modify_function_body (void)
3156 {
3157 bool cfg_changed = false;
3158 basic_block bb;
3159
3160 FOR_EACH_BB (bb)
3161 {
3162 gimple_stmt_iterator gsi = gsi_start_bb (bb);
3163 while (!gsi_end_p (gsi))
3164 {
3165 gimple stmt = gsi_stmt (gsi);
3166 enum assignment_mod_result assign_result;
3167 bool modified = false, deleted = false;
3168 tree *t;
3169 unsigned i;
3170
3171 switch (gimple_code (stmt))
3172 {
3173 case GIMPLE_RETURN:
3174 t = gimple_return_retval_ptr (stmt);
3175 if (*t != NULL_TREE)
3176 modified |= sra_modify_expr (t, &gsi, false);
3177 break;
3178
3179 case GIMPLE_ASSIGN:
3180 assign_result = sra_modify_assign (&stmt, &gsi);
3181 modified |= assign_result == SRA_AM_MODIFIED;
3182 deleted = assign_result == SRA_AM_REMOVED;
3183 break;
3184
3185 case GIMPLE_CALL:
3186 /* Operands must be processed before the lhs. */
3187 for (i = 0; i < gimple_call_num_args (stmt); i++)
3188 {
3189 t = gimple_call_arg_ptr (stmt, i);
3190 modified |= sra_modify_expr (t, &gsi, false);
3191 }
3192
3193 if (gimple_call_lhs (stmt))
3194 {
3195 t = gimple_call_lhs_ptr (stmt);
3196 modified |= sra_modify_expr (t, &gsi, true);
3197 }
3198 break;
3199
3200 case GIMPLE_ASM:
3201 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
3202 {
3203 t = &TREE_VALUE (gimple_asm_input_op (stmt, i));
3204 modified |= sra_modify_expr (t, &gsi, false);
3205 }
3206 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
3207 {
3208 t = &TREE_VALUE (gimple_asm_output_op (stmt, i));
3209 modified |= sra_modify_expr (t, &gsi, true);
3210 }
3211 break;
3212
3213 default:
3214 break;
3215 }
3216
3217 if (modified)
3218 {
3219 update_stmt (stmt);
3220 if (maybe_clean_eh_stmt (stmt)
3221 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
3222 cfg_changed = true;
3223 }
3224 if (!deleted)
3225 gsi_next (&gsi);
3226 }
3227 }
3228
3229 return cfg_changed;
3230 }
3231
3232 /* Generate statements initializing scalar replacements of parts of function
3233 parameters. */
3234
3235 static void
3236 initialize_parameter_reductions (void)
3237 {
3238 gimple_stmt_iterator gsi;
3239 gimple_seq seq = NULL;
3240 tree parm;
3241
3242 for (parm = DECL_ARGUMENTS (current_function_decl);
3243 parm;
3244 parm = DECL_CHAIN (parm))
3245 {
3246 VEC (access_p, heap) *access_vec;
3247 struct access *access;
3248
3249 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3250 continue;
3251 access_vec = get_base_access_vector (parm);
3252 if (!access_vec)
3253 continue;
3254
3255 if (!seq)
3256 {
3257 seq = gimple_seq_alloc ();
3258 gsi = gsi_start (seq);
3259 }
3260
3261 for (access = VEC_index (access_p, access_vec, 0);
3262 access;
3263 access = access->next_grp)
3264 generate_subtree_copies (access, parm, 0, 0, 0, &gsi, true, true,
3265 EXPR_LOCATION (parm));
3266 }
3267
3268 if (seq)
3269 gsi_insert_seq_on_edge_immediate (single_succ_edge (ENTRY_BLOCK_PTR), seq);
3270 }
3271
3272 /* The "main" function of intraprocedural SRA passes. Runs the analysis and if
3273 it reveals there are components of some aggregates to be scalarized, it runs
3274 the required transformations. */
3275 static unsigned int
3276 perform_intra_sra (void)
3277 {
3278 int ret = 0;
3279 sra_initialize ();
3280
3281 if (!find_var_candidates ())
3282 goto out;
3283
3284 if (!scan_function ())
3285 goto out;
3286
3287 if (!analyze_all_variable_accesses ())
3288 goto out;
3289
3290 if (sra_modify_function_body ())
3291 ret = TODO_update_ssa | TODO_cleanup_cfg;
3292 else
3293 ret = TODO_update_ssa;
3294 initialize_parameter_reductions ();
3295
3296 statistics_counter_event (cfun, "Scalar replacements created",
3297 sra_stats.replacements);
3298 statistics_counter_event (cfun, "Modified expressions", sra_stats.exprs);
3299 statistics_counter_event (cfun, "Subtree copy stmts",
3300 sra_stats.subtree_copies);
3301 statistics_counter_event (cfun, "Subreplacement stmts",
3302 sra_stats.subreplacements);
3303 statistics_counter_event (cfun, "Deleted stmts", sra_stats.deleted);
3304 statistics_counter_event (cfun, "Separate LHS and RHS handling",
3305 sra_stats.separate_lhs_rhs_handling);
3306
3307 out:
3308 sra_deinitialize ();
3309 return ret;
3310 }
3311
3312 /* Perform early intraprocedural SRA. */
3313 static unsigned int
3314 early_intra_sra (void)
3315 {
3316 sra_mode = SRA_MODE_EARLY_INTRA;
3317 return perform_intra_sra ();
3318 }
3319
3320 /* Perform "late" intraprocedural SRA. */
3321 static unsigned int
3322 late_intra_sra (void)
3323 {
3324 sra_mode = SRA_MODE_INTRA;
3325 return perform_intra_sra ();
3326 }
3327
3328
3329 static bool
3330 gate_intra_sra (void)
3331 {
3332 return flag_tree_sra != 0 && dbg_cnt (tree_sra);
3333 }
3334
3335
3336 struct gimple_opt_pass pass_sra_early =
3337 {
3338 {
3339 GIMPLE_PASS,
3340 "esra", /* name */
3341 gate_intra_sra, /* gate */
3342 early_intra_sra, /* execute */
3343 NULL, /* sub */
3344 NULL, /* next */
3345 0, /* static_pass_number */
3346 TV_TREE_SRA, /* tv_id */
3347 PROP_cfg | PROP_ssa, /* properties_required */
3348 0, /* properties_provided */
3349 0, /* properties_destroyed */
3350 0, /* todo_flags_start */
3351 TODO_update_ssa
3352 | TODO_ggc_collect
3353 | TODO_verify_ssa /* todo_flags_finish */
3354 }
3355 };
3356
3357 struct gimple_opt_pass pass_sra =
3358 {
3359 {
3360 GIMPLE_PASS,
3361 "sra", /* name */
3362 gate_intra_sra, /* gate */
3363 late_intra_sra, /* execute */
3364 NULL, /* sub */
3365 NULL, /* next */
3366 0, /* static_pass_number */
3367 TV_TREE_SRA, /* tv_id */
3368 PROP_cfg | PROP_ssa, /* properties_required */
3369 0, /* properties_provided */
3370 0, /* properties_destroyed */
3371 TODO_update_address_taken, /* todo_flags_start */
3372 TODO_update_ssa
3373 | TODO_ggc_collect
3374 | TODO_verify_ssa /* todo_flags_finish */
3375 }
3376 };
3377
3378
3379 /* Return true iff PARM (which must be a parm_decl) is an unused scalar
3380 parameter. */
3381
3382 static bool
3383 is_unused_scalar_param (tree parm)
3384 {
3385 tree name;
3386 return (is_gimple_reg (parm)
3387 && (!(name = gimple_default_def (cfun, parm))
3388 || has_zero_uses (name)));
3389 }
3390
3391 /* Scan immediate uses of a default definition SSA name of a parameter PARM and
3392 examine whether there are any direct or otherwise infeasible ones. If so,
3393 return true, otherwise return false. PARM must be a gimple register with a
3394 non-NULL default definition. */
3395
3396 static bool
3397 ptr_parm_has_direct_uses (tree parm)
3398 {
3399 imm_use_iterator ui;
3400 gimple stmt;
3401 tree name = gimple_default_def (cfun, parm);
3402 bool ret = false;
3403
3404 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
3405 {
3406 int uses_ok = 0;
3407 use_operand_p use_p;
3408
3409 if (is_gimple_debug (stmt))
3410 continue;
3411
3412 /* Valid uses include dereferences on the lhs and the rhs. */
3413 if (gimple_has_lhs (stmt))
3414 {
3415 tree lhs = gimple_get_lhs (stmt);
3416 while (handled_component_p (lhs))
3417 lhs = TREE_OPERAND (lhs, 0);
3418 if (TREE_CODE (lhs) == MEM_REF
3419 && TREE_OPERAND (lhs, 0) == name
3420 && integer_zerop (TREE_OPERAND (lhs, 1))
3421 && types_compatible_p (TREE_TYPE (lhs),
3422 TREE_TYPE (TREE_TYPE (name)))
3423 && !TREE_THIS_VOLATILE (lhs))
3424 uses_ok++;
3425 }
3426 if (gimple_assign_single_p (stmt))
3427 {
3428 tree rhs = gimple_assign_rhs1 (stmt);
3429 while (handled_component_p (rhs))
3430 rhs = TREE_OPERAND (rhs, 0);
3431 if (TREE_CODE (rhs) == MEM_REF
3432 && TREE_OPERAND (rhs, 0) == name
3433 && integer_zerop (TREE_OPERAND (rhs, 1))
3434 && types_compatible_p (TREE_TYPE (rhs),
3435 TREE_TYPE (TREE_TYPE (name)))
3436 && !TREE_THIS_VOLATILE (rhs))
3437 uses_ok++;
3438 }
3439 else if (is_gimple_call (stmt))
3440 {
3441 unsigned i;
3442 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3443 {
3444 tree arg = gimple_call_arg (stmt, i);
3445 while (handled_component_p (arg))
3446 arg = TREE_OPERAND (arg, 0);
3447 if (TREE_CODE (arg) == MEM_REF
3448 && TREE_OPERAND (arg, 0) == name
3449 && integer_zerop (TREE_OPERAND (arg, 1))
3450 && types_compatible_p (TREE_TYPE (arg),
3451 TREE_TYPE (TREE_TYPE (name)))
3452 && !TREE_THIS_VOLATILE (arg))
3453 uses_ok++;
3454 }
3455 }
3456
3457 /* If the number of valid uses does not match the number of
3458 uses in this stmt there is an unhandled use. */
3459 FOR_EACH_IMM_USE_ON_STMT (use_p, ui)
3460 --uses_ok;
3461
3462 if (uses_ok != 0)
3463 ret = true;
3464
3465 if (ret)
3466 BREAK_FROM_IMM_USE_STMT (ui);
3467 }
3468
3469 return ret;
3470 }
3471
3472 /* Identify candidates for reduction for IPA-SRA based on their type and mark
3473 them in candidate_bitmap. Note that these do not necessarily include
3474 parameter which are unused and thus can be removed. Return true iff any
3475 such candidate has been found. */
3476
3477 static bool
3478 find_param_candidates (void)
3479 {
3480 tree parm;
3481 int count = 0;
3482 bool ret = false;
3483 const char *msg;
3484
3485 for (parm = DECL_ARGUMENTS (current_function_decl);
3486 parm;
3487 parm = DECL_CHAIN (parm))
3488 {
3489 tree type = TREE_TYPE (parm);
3490
3491 count++;
3492
3493 if (TREE_THIS_VOLATILE (parm)
3494 || TREE_ADDRESSABLE (parm)
3495 || (!is_gimple_reg_type (type) && is_va_list_type (type)))
3496 continue;
3497
3498 if (is_unused_scalar_param (parm))
3499 {
3500 ret = true;
3501 continue;
3502 }
3503
3504 if (POINTER_TYPE_P (type))
3505 {
3506 type = TREE_TYPE (type);
3507
3508 if (TREE_CODE (type) == FUNCTION_TYPE
3509 || TYPE_VOLATILE (type)
3510 || (TREE_CODE (type) == ARRAY_TYPE
3511 && TYPE_NONALIASED_COMPONENT (type))
3512 || !is_gimple_reg (parm)
3513 || is_va_list_type (type)
3514 || ptr_parm_has_direct_uses (parm))
3515 continue;
3516 }
3517 else if (!AGGREGATE_TYPE_P (type))
3518 continue;
3519
3520 if (!COMPLETE_TYPE_P (type)
3521 || !host_integerp (TYPE_SIZE (type), 1)
3522 || tree_low_cst (TYPE_SIZE (type), 1) == 0
3523 || (AGGREGATE_TYPE_P (type)
3524 && type_internals_preclude_sra_p (type, &msg)))
3525 continue;
3526
3527 bitmap_set_bit (candidate_bitmap, DECL_UID (parm));
3528 ret = true;
3529 if (dump_file && (dump_flags & TDF_DETAILS))
3530 {
3531 fprintf (dump_file, "Candidate (%d): ", DECL_UID (parm));
3532 print_generic_expr (dump_file, parm, 0);
3533 fprintf (dump_file, "\n");
3534 }
3535 }
3536
3537 func_param_count = count;
3538 return ret;
3539 }
3540
3541 /* Callback of walk_aliased_vdefs, marks the access passed as DATA as
3542 maybe_modified. */
3543
3544 static bool
3545 mark_maybe_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
3546 void *data)
3547 {
3548 struct access *repr = (struct access *) data;
3549
3550 repr->grp_maybe_modified = 1;
3551 return true;
3552 }
3553
3554 /* Analyze what representatives (in linked lists accessible from
3555 REPRESENTATIVES) can be modified by side effects of statements in the
3556 current function. */
3557
3558 static void
3559 analyze_modified_params (VEC (access_p, heap) *representatives)
3560 {
3561 int i;
3562
3563 for (i = 0; i < func_param_count; i++)
3564 {
3565 struct access *repr;
3566
3567 for (repr = VEC_index (access_p, representatives, i);
3568 repr;
3569 repr = repr->next_grp)
3570 {
3571 struct access *access;
3572 bitmap visited;
3573 ao_ref ar;
3574
3575 if (no_accesses_p (repr))
3576 continue;
3577 if (!POINTER_TYPE_P (TREE_TYPE (repr->base))
3578 || repr->grp_maybe_modified)
3579 continue;
3580
3581 ao_ref_init (&ar, repr->expr);
3582 visited = BITMAP_ALLOC (NULL);
3583 for (access = repr; access; access = access->next_sibling)
3584 {
3585 /* All accesses are read ones, otherwise grp_maybe_modified would
3586 be trivially set. */
3587 walk_aliased_vdefs (&ar, gimple_vuse (access->stmt),
3588 mark_maybe_modified, repr, &visited);
3589 if (repr->grp_maybe_modified)
3590 break;
3591 }
3592 BITMAP_FREE (visited);
3593 }
3594 }
3595 }
3596
3597 /* Propagate distances in bb_dereferences in the opposite direction than the
3598 control flow edges, in each step storing the maximum of the current value
3599 and the minimum of all successors. These steps are repeated until the table
3600 stabilizes. Note that BBs which might terminate the functions (according to
3601 final_bbs bitmap) never updated in this way. */
3602
3603 static void
3604 propagate_dereference_distances (void)
3605 {
3606 VEC (basic_block, heap) *queue;
3607 basic_block bb;
3608
3609 queue = VEC_alloc (basic_block, heap, last_basic_block_for_function (cfun));
3610 VEC_quick_push (basic_block, queue, ENTRY_BLOCK_PTR);
3611 FOR_EACH_BB (bb)
3612 {
3613 VEC_quick_push (basic_block, queue, bb);
3614 bb->aux = bb;
3615 }
3616
3617 while (!VEC_empty (basic_block, queue))
3618 {
3619 edge_iterator ei;
3620 edge e;
3621 bool change = false;
3622 int i;
3623
3624 bb = VEC_pop (basic_block, queue);
3625 bb->aux = NULL;
3626
3627 if (bitmap_bit_p (final_bbs, bb->index))
3628 continue;
3629
3630 for (i = 0; i < func_param_count; i++)
3631 {
3632 int idx = bb->index * func_param_count + i;
3633 bool first = true;
3634 HOST_WIDE_INT inh = 0;
3635
3636 FOR_EACH_EDGE (e, ei, bb->succs)
3637 {
3638 int succ_idx = e->dest->index * func_param_count + i;
3639
3640 if (e->src == EXIT_BLOCK_PTR)
3641 continue;
3642
3643 if (first)
3644 {
3645 first = false;
3646 inh = bb_dereferences [succ_idx];
3647 }
3648 else if (bb_dereferences [succ_idx] < inh)
3649 inh = bb_dereferences [succ_idx];
3650 }
3651
3652 if (!first && bb_dereferences[idx] < inh)
3653 {
3654 bb_dereferences[idx] = inh;
3655 change = true;
3656 }
3657 }
3658
3659 if (change && !bitmap_bit_p (final_bbs, bb->index))
3660 FOR_EACH_EDGE (e, ei, bb->preds)
3661 {
3662 if (e->src->aux)
3663 continue;
3664
3665 e->src->aux = e->src;
3666 VEC_quick_push (basic_block, queue, e->src);
3667 }
3668 }
3669
3670 VEC_free (basic_block, heap, queue);
3671 }
3672
3673 /* Dump a dereferences TABLE with heading STR to file F. */
3674
3675 static void
3676 dump_dereferences_table (FILE *f, const char *str, HOST_WIDE_INT *table)
3677 {
3678 basic_block bb;
3679
3680 fprintf (dump_file, str);
3681 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
3682 {
3683 fprintf (f, "%4i %i ", bb->index, bitmap_bit_p (final_bbs, bb->index));
3684 if (bb != EXIT_BLOCK_PTR)
3685 {
3686 int i;
3687 for (i = 0; i < func_param_count; i++)
3688 {
3689 int idx = bb->index * func_param_count + i;
3690 fprintf (f, " %4" HOST_WIDE_INT_PRINT "d", table[idx]);
3691 }
3692 }
3693 fprintf (f, "\n");
3694 }
3695 fprintf (dump_file, "\n");
3696 }
3697
3698 /* Determine what (parts of) parameters passed by reference that are not
3699 assigned to are not certainly dereferenced in this function and thus the
3700 dereferencing cannot be safely moved to the caller without potentially
3701 introducing a segfault. Mark such REPRESENTATIVES as
3702 grp_not_necessarilly_dereferenced.
3703
3704 The dereferenced maximum "distance," i.e. the offset + size of the accessed
3705 part is calculated rather than simple booleans are calculated for each
3706 pointer parameter to handle cases when only a fraction of the whole
3707 aggregate is allocated (see testsuite/gcc.c-torture/execute/ipa-sra-2.c for
3708 an example).
3709
3710 The maximum dereference distances for each pointer parameter and BB are
3711 already stored in bb_dereference. This routine simply propagates these
3712 values upwards by propagate_dereference_distances and then compares the
3713 distances of individual parameters in the ENTRY BB to the equivalent
3714 distances of each representative of a (fraction of a) parameter. */
3715
3716 static void
3717 analyze_caller_dereference_legality (VEC (access_p, heap) *representatives)
3718 {
3719 int i;
3720
3721 if (dump_file && (dump_flags & TDF_DETAILS))
3722 dump_dereferences_table (dump_file,
3723 "Dereference table before propagation:\n",
3724 bb_dereferences);
3725
3726 propagate_dereference_distances ();
3727
3728 if (dump_file && (dump_flags & TDF_DETAILS))
3729 dump_dereferences_table (dump_file,
3730 "Dereference table after propagation:\n",
3731 bb_dereferences);
3732
3733 for (i = 0; i < func_param_count; i++)
3734 {
3735 struct access *repr = VEC_index (access_p, representatives, i);
3736 int idx = ENTRY_BLOCK_PTR->index * func_param_count + i;
3737
3738 if (!repr || no_accesses_p (repr))
3739 continue;
3740
3741 do
3742 {
3743 if ((repr->offset + repr->size) > bb_dereferences[idx])
3744 repr->grp_not_necessarilly_dereferenced = 1;
3745 repr = repr->next_grp;
3746 }
3747 while (repr);
3748 }
3749 }
3750
3751 /* Return the representative access for the parameter declaration PARM if it is
3752 a scalar passed by reference which is not written to and the pointer value
3753 is not used directly. Thus, if it is legal to dereference it in the caller
3754 and we can rule out modifications through aliases, such parameter should be
3755 turned into one passed by value. Return NULL otherwise. */
3756
3757 static struct access *
3758 unmodified_by_ref_scalar_representative (tree parm)
3759 {
3760 int i, access_count;
3761 struct access *repr;
3762 VEC (access_p, heap) *access_vec;
3763
3764 access_vec = get_base_access_vector (parm);
3765 gcc_assert (access_vec);
3766 repr = VEC_index (access_p, access_vec, 0);
3767 if (repr->write)
3768 return NULL;
3769 repr->group_representative = repr;
3770
3771 access_count = VEC_length (access_p, access_vec);
3772 for (i = 1; i < access_count; i++)
3773 {
3774 struct access *access = VEC_index (access_p, access_vec, i);
3775 if (access->write)
3776 return NULL;
3777 access->group_representative = repr;
3778 access->next_sibling = repr->next_sibling;
3779 repr->next_sibling = access;
3780 }
3781
3782 repr->grp_read = 1;
3783 repr->grp_scalar_ptr = 1;
3784 return repr;
3785 }
3786
3787 /* Return true iff this access precludes IPA-SRA of the parameter it is
3788 associated with. */
3789
3790 static bool
3791 access_precludes_ipa_sra_p (struct access *access)
3792 {
3793 /* Avoid issues such as the second simple testcase in PR 42025. The problem
3794 is incompatible assign in a call statement (and possibly even in asm
3795 statements). This can be relaxed by using a new temporary but only for
3796 non-TREE_ADDRESSABLE types and is probably not worth the complexity. (In
3797 intraprocedural SRA we deal with this by keeping the old aggregate around,
3798 something we cannot do in IPA-SRA.) */
3799 if (access->write
3800 && (is_gimple_call (access->stmt)
3801 || gimple_code (access->stmt) == GIMPLE_ASM))
3802 return true;
3803
3804 if (STRICT_ALIGNMENT
3805 && tree_non_aligned_mem_p (access->expr, TYPE_ALIGN (access->type)))
3806 return true;
3807
3808 return false;
3809 }
3810
3811
3812 /* Sort collected accesses for parameter PARM, identify representatives for
3813 each accessed region and link them together. Return NULL if there are
3814 different but overlapping accesses, return the special ptr value meaning
3815 there are no accesses for this parameter if that is the case and return the
3816 first representative otherwise. Set *RO_GRP if there is a group of accesses
3817 with only read (i.e. no write) accesses. */
3818
3819 static struct access *
3820 splice_param_accesses (tree parm, bool *ro_grp)
3821 {
3822 int i, j, access_count, group_count;
3823 int agg_size, total_size = 0;
3824 struct access *access, *res, **prev_acc_ptr = &res;
3825 VEC (access_p, heap) *access_vec;
3826
3827 access_vec = get_base_access_vector (parm);
3828 if (!access_vec)
3829 return &no_accesses_representant;
3830 access_count = VEC_length (access_p, access_vec);
3831
3832 VEC_qsort (access_p, access_vec, compare_access_positions);
3833
3834 i = 0;
3835 total_size = 0;
3836 group_count = 0;
3837 while (i < access_count)
3838 {
3839 bool modification;
3840 tree a1_alias_type;
3841 access = VEC_index (access_p, access_vec, i);
3842 modification = access->write;
3843 if (access_precludes_ipa_sra_p (access))
3844 return NULL;
3845 a1_alias_type = reference_alias_ptr_type (access->expr);
3846
3847 /* Access is about to become group representative unless we find some
3848 nasty overlap which would preclude us from breaking this parameter
3849 apart. */
3850
3851 j = i + 1;
3852 while (j < access_count)
3853 {
3854 struct access *ac2 = VEC_index (access_p, access_vec, j);
3855 if (ac2->offset != access->offset)
3856 {
3857 /* All or nothing law for parameters. */
3858 if (access->offset + access->size > ac2->offset)
3859 return NULL;
3860 else
3861 break;
3862 }
3863 else if (ac2->size != access->size)
3864 return NULL;
3865
3866 if (access_precludes_ipa_sra_p (ac2)
3867 || (ac2->type != access->type
3868 && (TREE_ADDRESSABLE (ac2->type)
3869 || TREE_ADDRESSABLE (access->type)))
3870 || (reference_alias_ptr_type (ac2->expr) != a1_alias_type))
3871 return NULL;
3872
3873 modification |= ac2->write;
3874 ac2->group_representative = access;
3875 ac2->next_sibling = access->next_sibling;
3876 access->next_sibling = ac2;
3877 j++;
3878 }
3879
3880 group_count++;
3881 access->grp_maybe_modified = modification;
3882 if (!modification)
3883 *ro_grp = true;
3884 *prev_acc_ptr = access;
3885 prev_acc_ptr = &access->next_grp;
3886 total_size += access->size;
3887 i = j;
3888 }
3889
3890 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3891 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))), 1);
3892 else
3893 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (parm)), 1);
3894 if (total_size >= agg_size)
3895 return NULL;
3896
3897 gcc_assert (group_count > 0);
3898 return res;
3899 }
3900
3901 /* Decide whether parameters with representative accesses given by REPR should
3902 be reduced into components. */
3903
3904 static int
3905 decide_one_param_reduction (struct access *repr)
3906 {
3907 int total_size, cur_parm_size, agg_size, new_param_count, parm_size_limit;
3908 bool by_ref;
3909 tree parm;
3910
3911 parm = repr->base;
3912 cur_parm_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (parm)), 1);
3913 gcc_assert (cur_parm_size > 0);
3914
3915 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3916 {
3917 by_ref = true;
3918 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))), 1);
3919 }
3920 else
3921 {
3922 by_ref = false;
3923 agg_size = cur_parm_size;
3924 }
3925
3926 if (dump_file)
3927 {
3928 struct access *acc;
3929 fprintf (dump_file, "Evaluating PARAM group sizes for ");
3930 print_generic_expr (dump_file, parm, 0);
3931 fprintf (dump_file, " (UID: %u): \n", DECL_UID (parm));
3932 for (acc = repr; acc; acc = acc->next_grp)
3933 dump_access (dump_file, acc, true);
3934 }
3935
3936 total_size = 0;
3937 new_param_count = 0;
3938
3939 for (; repr; repr = repr->next_grp)
3940 {
3941 gcc_assert (parm == repr->base);
3942
3943 /* Taking the address of a non-addressable field is verboten. */
3944 if (by_ref && repr->non_addressable)
3945 return 0;
3946
3947 /* Do not decompose a non-BLKmode param in a way that would
3948 create BLKmode params. Especially for by-reference passing
3949 (thus, pointer-type param) this is hardly worthwhile. */
3950 if (DECL_MODE (parm) != BLKmode
3951 && TYPE_MODE (repr->type) == BLKmode)
3952 return 0;
3953
3954 if (!by_ref || (!repr->grp_maybe_modified
3955 && !repr->grp_not_necessarilly_dereferenced))
3956 total_size += repr->size;
3957 else
3958 total_size += cur_parm_size;
3959
3960 new_param_count++;
3961 }
3962
3963 gcc_assert (new_param_count > 0);
3964
3965 if (optimize_function_for_size_p (cfun))
3966 parm_size_limit = cur_parm_size;
3967 else
3968 parm_size_limit = (PARAM_VALUE (PARAM_IPA_SRA_PTR_GROWTH_FACTOR)
3969 * cur_parm_size);
3970
3971 if (total_size < agg_size
3972 && total_size <= parm_size_limit)
3973 {
3974 if (dump_file)
3975 fprintf (dump_file, " ....will be split into %i components\n",
3976 new_param_count);
3977 return new_param_count;
3978 }
3979 else
3980 return 0;
3981 }
3982
3983 /* The order of the following enums is important, we need to do extra work for
3984 UNUSED_PARAMS, BY_VAL_ACCESSES and UNMODIF_BY_REF_ACCESSES. */
3985 enum ipa_splicing_result { NO_GOOD_ACCESS, UNUSED_PARAMS, BY_VAL_ACCESSES,
3986 MODIF_BY_REF_ACCESSES, UNMODIF_BY_REF_ACCESSES };
3987
3988 /* Identify representatives of all accesses to all candidate parameters for
3989 IPA-SRA. Return result based on what representatives have been found. */
3990
3991 static enum ipa_splicing_result
3992 splice_all_param_accesses (VEC (access_p, heap) **representatives)
3993 {
3994 enum ipa_splicing_result result = NO_GOOD_ACCESS;
3995 tree parm;
3996 struct access *repr;
3997
3998 *representatives = VEC_alloc (access_p, heap, func_param_count);
3999
4000 for (parm = DECL_ARGUMENTS (current_function_decl);
4001 parm;
4002 parm = DECL_CHAIN (parm))
4003 {
4004 if (is_unused_scalar_param (parm))
4005 {
4006 VEC_quick_push (access_p, *representatives,
4007 &no_accesses_representant);
4008 if (result == NO_GOOD_ACCESS)
4009 result = UNUSED_PARAMS;
4010 }
4011 else if (POINTER_TYPE_P (TREE_TYPE (parm))
4012 && is_gimple_reg_type (TREE_TYPE (TREE_TYPE (parm)))
4013 && bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
4014 {
4015 repr = unmodified_by_ref_scalar_representative (parm);
4016 VEC_quick_push (access_p, *representatives, repr);
4017 if (repr)
4018 result = UNMODIF_BY_REF_ACCESSES;
4019 }
4020 else if (bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
4021 {
4022 bool ro_grp = false;
4023 repr = splice_param_accesses (parm, &ro_grp);
4024 VEC_quick_push (access_p, *representatives, repr);
4025
4026 if (repr && !no_accesses_p (repr))
4027 {
4028 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4029 {
4030 if (ro_grp)
4031 result = UNMODIF_BY_REF_ACCESSES;
4032 else if (result < MODIF_BY_REF_ACCESSES)
4033 result = MODIF_BY_REF_ACCESSES;
4034 }
4035 else if (result < BY_VAL_ACCESSES)
4036 result = BY_VAL_ACCESSES;
4037 }
4038 else if (no_accesses_p (repr) && (result == NO_GOOD_ACCESS))
4039 result = UNUSED_PARAMS;
4040 }
4041 else
4042 VEC_quick_push (access_p, *representatives, NULL);
4043 }
4044
4045 if (result == NO_GOOD_ACCESS)
4046 {
4047 VEC_free (access_p, heap, *representatives);
4048 *representatives = NULL;
4049 return NO_GOOD_ACCESS;
4050 }
4051
4052 return result;
4053 }
4054
4055 /* Return the index of BASE in PARMS. Abort if it is not found. */
4056
4057 static inline int
4058 get_param_index (tree base, VEC(tree, heap) *parms)
4059 {
4060 int i, len;
4061
4062 len = VEC_length (tree, parms);
4063 for (i = 0; i < len; i++)
4064 if (VEC_index (tree, parms, i) == base)
4065 return i;
4066 gcc_unreachable ();
4067 }
4068
4069 /* Convert the decisions made at the representative level into compact
4070 parameter adjustments. REPRESENTATIVES are pointers to first
4071 representatives of each param accesses, ADJUSTMENTS_COUNT is the expected
4072 final number of adjustments. */
4073
4074 static ipa_parm_adjustment_vec
4075 turn_representatives_into_adjustments (VEC (access_p, heap) *representatives,
4076 int adjustments_count)
4077 {
4078 VEC (tree, heap) *parms;
4079 ipa_parm_adjustment_vec adjustments;
4080 tree parm;
4081 int i;
4082
4083 gcc_assert (adjustments_count > 0);
4084 parms = ipa_get_vector_of_formal_parms (current_function_decl);
4085 adjustments = VEC_alloc (ipa_parm_adjustment_t, heap, adjustments_count);
4086 parm = DECL_ARGUMENTS (current_function_decl);
4087 for (i = 0; i < func_param_count; i++, parm = DECL_CHAIN (parm))
4088 {
4089 struct access *repr = VEC_index (access_p, representatives, i);
4090
4091 if (!repr || no_accesses_p (repr))
4092 {
4093 struct ipa_parm_adjustment *adj;
4094
4095 adj = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
4096 memset (adj, 0, sizeof (*adj));
4097 adj->base_index = get_param_index (parm, parms);
4098 adj->base = parm;
4099 if (!repr)
4100 adj->copy_param = 1;
4101 else
4102 adj->remove_param = 1;
4103 }
4104 else
4105 {
4106 struct ipa_parm_adjustment *adj;
4107 int index = get_param_index (parm, parms);
4108
4109 for (; repr; repr = repr->next_grp)
4110 {
4111 adj = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
4112 memset (adj, 0, sizeof (*adj));
4113 gcc_assert (repr->base == parm);
4114 adj->base_index = index;
4115 adj->base = repr->base;
4116 adj->type = repr->type;
4117 adj->alias_ptr_type = reference_alias_ptr_type (repr->expr);
4118 adj->offset = repr->offset;
4119 adj->by_ref = (POINTER_TYPE_P (TREE_TYPE (repr->base))
4120 && (repr->grp_maybe_modified
4121 || repr->grp_not_necessarilly_dereferenced));
4122
4123 }
4124 }
4125 }
4126 VEC_free (tree, heap, parms);
4127 return adjustments;
4128 }
4129
4130 /* Analyze the collected accesses and produce a plan what to do with the
4131 parameters in the form of adjustments, NULL meaning nothing. */
4132
4133 static ipa_parm_adjustment_vec
4134 analyze_all_param_acesses (void)
4135 {
4136 enum ipa_splicing_result repr_state;
4137 bool proceed = false;
4138 int i, adjustments_count = 0;
4139 VEC (access_p, heap) *representatives;
4140 ipa_parm_adjustment_vec adjustments;
4141
4142 repr_state = splice_all_param_accesses (&representatives);
4143 if (repr_state == NO_GOOD_ACCESS)
4144 return NULL;
4145
4146 /* If there are any parameters passed by reference which are not modified
4147 directly, we need to check whether they can be modified indirectly. */
4148 if (repr_state == UNMODIF_BY_REF_ACCESSES)
4149 {
4150 analyze_caller_dereference_legality (representatives);
4151 analyze_modified_params (representatives);
4152 }
4153
4154 for (i = 0; i < func_param_count; i++)
4155 {
4156 struct access *repr = VEC_index (access_p, representatives, i);
4157
4158 if (repr && !no_accesses_p (repr))
4159 {
4160 if (repr->grp_scalar_ptr)
4161 {
4162 adjustments_count++;
4163 if (repr->grp_not_necessarilly_dereferenced
4164 || repr->grp_maybe_modified)
4165 VEC_replace (access_p, representatives, i, NULL);
4166 else
4167 {
4168 proceed = true;
4169 sra_stats.scalar_by_ref_to_by_val++;
4170 }
4171 }
4172 else
4173 {
4174 int new_components = decide_one_param_reduction (repr);
4175
4176 if (new_components == 0)
4177 {
4178 VEC_replace (access_p, representatives, i, NULL);
4179 adjustments_count++;
4180 }
4181 else
4182 {
4183 adjustments_count += new_components;
4184 sra_stats.aggregate_params_reduced++;
4185 sra_stats.param_reductions_created += new_components;
4186 proceed = true;
4187 }
4188 }
4189 }
4190 else
4191 {
4192 if (no_accesses_p (repr))
4193 {
4194 proceed = true;
4195 sra_stats.deleted_unused_parameters++;
4196 }
4197 adjustments_count++;
4198 }
4199 }
4200
4201 if (!proceed && dump_file)
4202 fprintf (dump_file, "NOT proceeding to change params.\n");
4203
4204 if (proceed)
4205 adjustments = turn_representatives_into_adjustments (representatives,
4206 adjustments_count);
4207 else
4208 adjustments = NULL;
4209
4210 VEC_free (access_p, heap, representatives);
4211 return adjustments;
4212 }
4213
4214 /* If a parameter replacement identified by ADJ does not yet exist in the form
4215 of declaration, create it and record it, otherwise return the previously
4216 created one. */
4217
4218 static tree
4219 get_replaced_param_substitute (struct ipa_parm_adjustment *adj)
4220 {
4221 tree repl;
4222 if (!adj->new_ssa_base)
4223 {
4224 char *pretty_name = make_fancy_name (adj->base);
4225
4226 repl = create_tmp_reg (TREE_TYPE (adj->base), "ISR");
4227 DECL_NAME (repl) = get_identifier (pretty_name);
4228 obstack_free (&name_obstack, pretty_name);
4229
4230 add_referenced_var (repl);
4231 adj->new_ssa_base = repl;
4232 }
4233 else
4234 repl = adj->new_ssa_base;
4235 return repl;
4236 }
4237
4238 /* Find the first adjustment for a particular parameter BASE in a vector of
4239 ADJUSTMENTS which is not a copy_param. Return NULL if there is no such
4240 adjustment. */
4241
4242 static struct ipa_parm_adjustment *
4243 get_adjustment_for_base (ipa_parm_adjustment_vec adjustments, tree base)
4244 {
4245 int i, len;
4246
4247 len = VEC_length (ipa_parm_adjustment_t, adjustments);
4248 for (i = 0; i < len; i++)
4249 {
4250 struct ipa_parm_adjustment *adj;
4251
4252 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
4253 if (!adj->copy_param && adj->base == base)
4254 return adj;
4255 }
4256
4257 return NULL;
4258 }
4259
4260 /* If the statement STMT defines an SSA_NAME of a parameter which is to be
4261 removed because its value is not used, replace the SSA_NAME with a one
4262 relating to a created VAR_DECL together all of its uses and return true.
4263 ADJUSTMENTS is a pointer to an adjustments vector. */
4264
4265 static bool
4266 replace_removed_params_ssa_names (gimple stmt,
4267 ipa_parm_adjustment_vec adjustments)
4268 {
4269 struct ipa_parm_adjustment *adj;
4270 tree lhs, decl, repl, name;
4271
4272 if (gimple_code (stmt) == GIMPLE_PHI)
4273 lhs = gimple_phi_result (stmt);
4274 else if (is_gimple_assign (stmt))
4275 lhs = gimple_assign_lhs (stmt);
4276 else if (is_gimple_call (stmt))
4277 lhs = gimple_call_lhs (stmt);
4278 else
4279 gcc_unreachable ();
4280
4281 if (TREE_CODE (lhs) != SSA_NAME)
4282 return false;
4283 decl = SSA_NAME_VAR (lhs);
4284 if (TREE_CODE (decl) != PARM_DECL)
4285 return false;
4286
4287 adj = get_adjustment_for_base (adjustments, decl);
4288 if (!adj)
4289 return false;
4290
4291 repl = get_replaced_param_substitute (adj);
4292 name = make_ssa_name (repl, stmt);
4293
4294 if (dump_file)
4295 {
4296 fprintf (dump_file, "replacing an SSA name of a removed param ");
4297 print_generic_expr (dump_file, lhs, 0);
4298 fprintf (dump_file, " with ");
4299 print_generic_expr (dump_file, name, 0);
4300 fprintf (dump_file, "\n");
4301 }
4302
4303 if (is_gimple_assign (stmt))
4304 gimple_assign_set_lhs (stmt, name);
4305 else if (is_gimple_call (stmt))
4306 gimple_call_set_lhs (stmt, name);
4307 else
4308 gimple_phi_set_result (stmt, name);
4309
4310 replace_uses_by (lhs, name);
4311 release_ssa_name (lhs);
4312 return true;
4313 }
4314
4315 /* If the expression *EXPR should be replaced by a reduction of a parameter, do
4316 so. ADJUSTMENTS is a pointer to a vector of adjustments. CONVERT
4317 specifies whether the function should care about type incompatibility the
4318 current and new expressions. If it is false, the function will leave
4319 incompatibility issues to the caller. Return true iff the expression
4320 was modified. */
4321
4322 static bool
4323 sra_ipa_modify_expr (tree *expr, bool convert,
4324 ipa_parm_adjustment_vec adjustments)
4325 {
4326 int i, len;
4327 struct ipa_parm_adjustment *adj, *cand = NULL;
4328 HOST_WIDE_INT offset, size, max_size;
4329 tree base, src;
4330
4331 len = VEC_length (ipa_parm_adjustment_t, adjustments);
4332
4333 if (TREE_CODE (*expr) == BIT_FIELD_REF
4334 || TREE_CODE (*expr) == IMAGPART_EXPR
4335 || TREE_CODE (*expr) == REALPART_EXPR)
4336 {
4337 expr = &TREE_OPERAND (*expr, 0);
4338 convert = true;
4339 }
4340
4341 base = get_ref_base_and_extent (*expr, &offset, &size, &max_size);
4342 if (!base || size == -1 || max_size == -1)
4343 return false;
4344
4345 if (TREE_CODE (base) == MEM_REF)
4346 {
4347 offset += mem_ref_offset (base).low * BITS_PER_UNIT;
4348 base = TREE_OPERAND (base, 0);
4349 }
4350
4351 base = get_ssa_base_param (base);
4352 if (!base || TREE_CODE (base) != PARM_DECL)
4353 return false;
4354
4355 for (i = 0; i < len; i++)
4356 {
4357 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
4358
4359 if (adj->base == base &&
4360 (adj->offset == offset || adj->remove_param))
4361 {
4362 cand = adj;
4363 break;
4364 }
4365 }
4366 if (!cand || cand->copy_param || cand->remove_param)
4367 return false;
4368
4369 if (cand->by_ref)
4370 src = build_simple_mem_ref (cand->reduction);
4371 else
4372 src = cand->reduction;
4373
4374 if (dump_file && (dump_flags & TDF_DETAILS))
4375 {
4376 fprintf (dump_file, "About to replace expr ");
4377 print_generic_expr (dump_file, *expr, 0);
4378 fprintf (dump_file, " with ");
4379 print_generic_expr (dump_file, src, 0);
4380 fprintf (dump_file, "\n");
4381 }
4382
4383 if (convert && !useless_type_conversion_p (TREE_TYPE (*expr), cand->type))
4384 {
4385 tree vce = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (*expr), src);
4386 *expr = vce;
4387 }
4388 else
4389 *expr = src;
4390 return true;
4391 }
4392
4393 /* If the statement pointed to by STMT_PTR contains any expressions that need
4394 to replaced with a different one as noted by ADJUSTMENTS, do so. Handle any
4395 potential type incompatibilities (GSI is used to accommodate conversion
4396 statements and must point to the statement). Return true iff the statement
4397 was modified. */
4398
4399 static bool
4400 sra_ipa_modify_assign (gimple *stmt_ptr, gimple_stmt_iterator *gsi,
4401 ipa_parm_adjustment_vec adjustments)
4402 {
4403 gimple stmt = *stmt_ptr;
4404 tree *lhs_p, *rhs_p;
4405 bool any;
4406
4407 if (!gimple_assign_single_p (stmt))
4408 return false;
4409
4410 rhs_p = gimple_assign_rhs1_ptr (stmt);
4411 lhs_p = gimple_assign_lhs_ptr (stmt);
4412
4413 any = sra_ipa_modify_expr (rhs_p, false, adjustments);
4414 any |= sra_ipa_modify_expr (lhs_p, false, adjustments);
4415 if (any)
4416 {
4417 tree new_rhs = NULL_TREE;
4418
4419 if (!useless_type_conversion_p (TREE_TYPE (*lhs_p), TREE_TYPE (*rhs_p)))
4420 {
4421 if (TREE_CODE (*rhs_p) == CONSTRUCTOR)
4422 {
4423 /* V_C_Es of constructors can cause trouble (PR 42714). */
4424 if (is_gimple_reg_type (TREE_TYPE (*lhs_p)))
4425 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
4426 else
4427 *rhs_p = build_constructor (TREE_TYPE (*lhs_p), 0);
4428 }
4429 else
4430 new_rhs = fold_build1_loc (gimple_location (stmt),
4431 VIEW_CONVERT_EXPR, TREE_TYPE (*lhs_p),
4432 *rhs_p);
4433 }
4434 else if (REFERENCE_CLASS_P (*rhs_p)
4435 && is_gimple_reg_type (TREE_TYPE (*lhs_p))
4436 && !is_gimple_reg (*lhs_p))
4437 /* This can happen when an assignment in between two single field
4438 structures is turned into an assignment in between two pointers to
4439 scalars (PR 42237). */
4440 new_rhs = *rhs_p;
4441
4442 if (new_rhs)
4443 {
4444 tree tmp = force_gimple_operand_gsi (gsi, new_rhs, true, NULL_TREE,
4445 true, GSI_SAME_STMT);
4446
4447 gimple_assign_set_rhs_from_tree (gsi, tmp);
4448 }
4449
4450 return true;
4451 }
4452
4453 return false;
4454 }
4455
4456 /* Traverse the function body and all modifications as described in
4457 ADJUSTMENTS. Return true iff the CFG has been changed. */
4458
4459 static bool
4460 ipa_sra_modify_function_body (ipa_parm_adjustment_vec adjustments)
4461 {
4462 bool cfg_changed = false;
4463 basic_block bb;
4464
4465 FOR_EACH_BB (bb)
4466 {
4467 gimple_stmt_iterator gsi;
4468
4469 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4470 replace_removed_params_ssa_names (gsi_stmt (gsi), adjustments);
4471
4472 gsi = gsi_start_bb (bb);
4473 while (!gsi_end_p (gsi))
4474 {
4475 gimple stmt = gsi_stmt (gsi);
4476 bool modified = false;
4477 tree *t;
4478 unsigned i;
4479
4480 switch (gimple_code (stmt))
4481 {
4482 case GIMPLE_RETURN:
4483 t = gimple_return_retval_ptr (stmt);
4484 if (*t != NULL_TREE)
4485 modified |= sra_ipa_modify_expr (t, true, adjustments);
4486 break;
4487
4488 case GIMPLE_ASSIGN:
4489 modified |= sra_ipa_modify_assign (&stmt, &gsi, adjustments);
4490 modified |= replace_removed_params_ssa_names (stmt, adjustments);
4491 break;
4492
4493 case GIMPLE_CALL:
4494 /* Operands must be processed before the lhs. */
4495 for (i = 0; i < gimple_call_num_args (stmt); i++)
4496 {
4497 t = gimple_call_arg_ptr (stmt, i);
4498 modified |= sra_ipa_modify_expr (t, true, adjustments);
4499 }
4500
4501 if (gimple_call_lhs (stmt))
4502 {
4503 t = gimple_call_lhs_ptr (stmt);
4504 modified |= sra_ipa_modify_expr (t, false, adjustments);
4505 modified |= replace_removed_params_ssa_names (stmt,
4506 adjustments);
4507 }
4508 break;
4509
4510 case GIMPLE_ASM:
4511 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
4512 {
4513 t = &TREE_VALUE (gimple_asm_input_op (stmt, i));
4514 modified |= sra_ipa_modify_expr (t, true, adjustments);
4515 }
4516 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
4517 {
4518 t = &TREE_VALUE (gimple_asm_output_op (stmt, i));
4519 modified |= sra_ipa_modify_expr (t, false, adjustments);
4520 }
4521 break;
4522
4523 default:
4524 break;
4525 }
4526
4527 if (modified)
4528 {
4529 update_stmt (stmt);
4530 if (maybe_clean_eh_stmt (stmt)
4531 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
4532 cfg_changed = true;
4533 }
4534 gsi_next (&gsi);
4535 }
4536 }
4537
4538 return cfg_changed;
4539 }
4540
4541 /* Call gimple_debug_bind_reset_value on all debug statements describing
4542 gimple register parameters that are being removed or replaced. */
4543
4544 static void
4545 sra_ipa_reset_debug_stmts (ipa_parm_adjustment_vec adjustments)
4546 {
4547 int i, len;
4548 gimple_stmt_iterator *gsip = NULL, gsi;
4549
4550 if (MAY_HAVE_DEBUG_STMTS && single_succ_p (ENTRY_BLOCK_PTR))
4551 {
4552 gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
4553 gsip = &gsi;
4554 }
4555 len = VEC_length (ipa_parm_adjustment_t, adjustments);
4556 for (i = 0; i < len; i++)
4557 {
4558 struct ipa_parm_adjustment *adj;
4559 imm_use_iterator ui;
4560 gimple stmt, def_temp;
4561 tree name, vexpr, copy = NULL_TREE;
4562 use_operand_p use_p;
4563
4564 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
4565 if (adj->copy_param || !is_gimple_reg (adj->base))
4566 continue;
4567 name = gimple_default_def (cfun, adj->base);
4568 vexpr = NULL;
4569 if (name)
4570 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
4571 {
4572 /* All other users must have been removed by
4573 ipa_sra_modify_function_body. */
4574 gcc_assert (is_gimple_debug (stmt));
4575 if (vexpr == NULL && gsip != NULL)
4576 {
4577 gcc_assert (TREE_CODE (adj->base) == PARM_DECL);
4578 vexpr = make_node (DEBUG_EXPR_DECL);
4579 def_temp = gimple_build_debug_source_bind (vexpr, adj->base,
4580 NULL);
4581 DECL_ARTIFICIAL (vexpr) = 1;
4582 TREE_TYPE (vexpr) = TREE_TYPE (name);
4583 DECL_MODE (vexpr) = DECL_MODE (adj->base);
4584 gsi_insert_before (gsip, def_temp, GSI_SAME_STMT);
4585 }
4586 if (vexpr)
4587 {
4588 FOR_EACH_IMM_USE_ON_STMT (use_p, ui)
4589 SET_USE (use_p, vexpr);
4590 }
4591 else
4592 gimple_debug_bind_reset_value (stmt);
4593 update_stmt (stmt);
4594 }
4595 /* Create a VAR_DECL for debug info purposes. */
4596 if (!DECL_IGNORED_P (adj->base))
4597 {
4598 copy = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
4599 VAR_DECL, DECL_NAME (adj->base),
4600 TREE_TYPE (adj->base));
4601 if (DECL_PT_UID_SET_P (adj->base))
4602 SET_DECL_PT_UID (copy, DECL_PT_UID (adj->base));
4603 TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (adj->base);
4604 TREE_READONLY (copy) = TREE_READONLY (adj->base);
4605 TREE_THIS_VOLATILE (copy) = TREE_THIS_VOLATILE (adj->base);
4606 DECL_GIMPLE_REG_P (copy) = DECL_GIMPLE_REG_P (adj->base);
4607 DECL_ARTIFICIAL (copy) = DECL_ARTIFICIAL (adj->base);
4608 DECL_IGNORED_P (copy) = DECL_IGNORED_P (adj->base);
4609 DECL_ABSTRACT_ORIGIN (copy) = DECL_ORIGIN (adj->base);
4610 DECL_SEEN_IN_BIND_EXPR_P (copy) = 1;
4611 SET_DECL_RTL (copy, 0);
4612 TREE_USED (copy) = 1;
4613 DECL_CONTEXT (copy) = current_function_decl;
4614 add_referenced_var (copy);
4615 add_local_decl (cfun, copy);
4616 DECL_CHAIN (copy) =
4617 BLOCK_VARS (DECL_INITIAL (current_function_decl));
4618 BLOCK_VARS (DECL_INITIAL (current_function_decl)) = copy;
4619 }
4620 if (gsip != NULL && copy && target_for_debug_bind (adj->base))
4621 {
4622 gcc_assert (TREE_CODE (adj->base) == PARM_DECL);
4623 if (vexpr)
4624 def_temp = gimple_build_debug_bind (copy, vexpr, NULL);
4625 else
4626 def_temp = gimple_build_debug_source_bind (copy, adj->base,
4627 NULL);
4628 gsi_insert_before (gsip, def_temp, GSI_SAME_STMT);
4629 }
4630 }
4631 }
4632
4633 /* Return false iff all callers have at least as many actual arguments as there
4634 are formal parameters in the current function. */
4635
4636 static bool
4637 not_all_callers_have_enough_arguments_p (struct cgraph_node *node,
4638 void *data ATTRIBUTE_UNUSED)
4639 {
4640 struct cgraph_edge *cs;
4641 for (cs = node->callers; cs; cs = cs->next_caller)
4642 if (!callsite_has_enough_arguments_p (cs->call_stmt))
4643 return true;
4644
4645 return false;
4646 }
4647
4648 /* Convert all callers of NODE. */
4649
4650 static bool
4651 convert_callers_for_node (struct cgraph_node *node,
4652 void *data)
4653 {
4654 ipa_parm_adjustment_vec adjustments = (ipa_parm_adjustment_vec)data;
4655 bitmap recomputed_callers = BITMAP_ALLOC (NULL);
4656 struct cgraph_edge *cs;
4657
4658 for (cs = node->callers; cs; cs = cs->next_caller)
4659 {
4660 current_function_decl = cs->caller->decl;
4661 push_cfun (DECL_STRUCT_FUNCTION (cs->caller->decl));
4662
4663 if (dump_file)
4664 fprintf (dump_file, "Adjusting call (%i -> %i) %s -> %s\n",
4665 cs->caller->uid, cs->callee->uid,
4666 cgraph_node_name (cs->caller),
4667 cgraph_node_name (cs->callee));
4668
4669 ipa_modify_call_arguments (cs, cs->call_stmt, adjustments);
4670
4671 pop_cfun ();
4672 }
4673
4674 for (cs = node->callers; cs; cs = cs->next_caller)
4675 if (bitmap_set_bit (recomputed_callers, cs->caller->uid)
4676 && gimple_in_ssa_p (DECL_STRUCT_FUNCTION (cs->caller->decl)))
4677 compute_inline_parameters (cs->caller, true);
4678 BITMAP_FREE (recomputed_callers);
4679
4680 return true;
4681 }
4682
4683 /* Convert all callers of NODE to pass parameters as given in ADJUSTMENTS. */
4684
4685 static void
4686 convert_callers (struct cgraph_node *node, tree old_decl,
4687 ipa_parm_adjustment_vec adjustments)
4688 {
4689 tree old_cur_fndecl = current_function_decl;
4690 basic_block this_block;
4691
4692 cgraph_for_node_and_aliases (node, convert_callers_for_node,
4693 adjustments, false);
4694
4695 current_function_decl = old_cur_fndecl;
4696
4697 if (!encountered_recursive_call)
4698 return;
4699
4700 FOR_EACH_BB (this_block)
4701 {
4702 gimple_stmt_iterator gsi;
4703
4704 for (gsi = gsi_start_bb (this_block); !gsi_end_p (gsi); gsi_next (&gsi))
4705 {
4706 gimple stmt = gsi_stmt (gsi);
4707 tree call_fndecl;
4708 if (gimple_code (stmt) != GIMPLE_CALL)
4709 continue;
4710 call_fndecl = gimple_call_fndecl (stmt);
4711 if (call_fndecl == old_decl)
4712 {
4713 if (dump_file)
4714 fprintf (dump_file, "Adjusting recursive call");
4715 gimple_call_set_fndecl (stmt, node->decl);
4716 ipa_modify_call_arguments (NULL, stmt, adjustments);
4717 }
4718 }
4719 }
4720
4721 return;
4722 }
4723
4724 /* Perform all the modification required in IPA-SRA for NODE to have parameters
4725 as given in ADJUSTMENTS. Return true iff the CFG has been changed. */
4726
4727 static bool
4728 modify_function (struct cgraph_node *node, ipa_parm_adjustment_vec adjustments)
4729 {
4730 struct cgraph_node *new_node;
4731 bool cfg_changed;
4732 VEC (cgraph_edge_p, heap) * redirect_callers = collect_callers_of_node (node);
4733
4734 rebuild_cgraph_edges ();
4735 free_dominance_info (CDI_DOMINATORS);
4736 pop_cfun ();
4737 current_function_decl = NULL_TREE;
4738
4739 new_node = cgraph_function_versioning (node, redirect_callers, NULL, NULL,
4740 false, NULL, NULL, "isra");
4741 current_function_decl = new_node->decl;
4742 push_cfun (DECL_STRUCT_FUNCTION (new_node->decl));
4743
4744 ipa_modify_formal_parameters (current_function_decl, adjustments, "ISRA");
4745 cfg_changed = ipa_sra_modify_function_body (adjustments);
4746 sra_ipa_reset_debug_stmts (adjustments);
4747 convert_callers (new_node, node->decl, adjustments);
4748 cgraph_make_node_local (new_node);
4749 return cfg_changed;
4750 }
4751
4752 /* Return false the function is apparently unsuitable for IPA-SRA based on it's
4753 attributes, return true otherwise. NODE is the cgraph node of the current
4754 function. */
4755
4756 static bool
4757 ipa_sra_preliminary_function_checks (struct cgraph_node *node)
4758 {
4759 if (!cgraph_node_can_be_local_p (node))
4760 {
4761 if (dump_file)
4762 fprintf (dump_file, "Function not local to this compilation unit.\n");
4763 return false;
4764 }
4765
4766 if (!node->local.can_change_signature)
4767 {
4768 if (dump_file)
4769 fprintf (dump_file, "Function can not change signature.\n");
4770 return false;
4771 }
4772
4773 if (!tree_versionable_function_p (node->decl))
4774 {
4775 if (dump_file)
4776 fprintf (dump_file, "Function is not versionable.\n");
4777 return false;
4778 }
4779
4780 if (DECL_VIRTUAL_P (current_function_decl))
4781 {
4782 if (dump_file)
4783 fprintf (dump_file, "Function is a virtual method.\n");
4784 return false;
4785 }
4786
4787 if ((DECL_COMDAT (node->decl) || DECL_EXTERNAL (node->decl))
4788 && inline_summary(node)->size >= MAX_INLINE_INSNS_AUTO)
4789 {
4790 if (dump_file)
4791 fprintf (dump_file, "Function too big to be made truly local.\n");
4792 return false;
4793 }
4794
4795 if (!node->callers)
4796 {
4797 if (dump_file)
4798 fprintf (dump_file,
4799 "Function has no callers in this compilation unit.\n");
4800 return false;
4801 }
4802
4803 if (cfun->stdarg)
4804 {
4805 if (dump_file)
4806 fprintf (dump_file, "Function uses stdarg. \n");
4807 return false;
4808 }
4809
4810 if (TYPE_ATTRIBUTES (TREE_TYPE (node->decl)))
4811 return false;
4812
4813 return true;
4814 }
4815
4816 /* Perform early interprocedural SRA. */
4817
4818 static unsigned int
4819 ipa_early_sra (void)
4820 {
4821 struct cgraph_node *node = cgraph_get_node (current_function_decl);
4822 ipa_parm_adjustment_vec adjustments;
4823 int ret = 0;
4824
4825 if (!ipa_sra_preliminary_function_checks (node))
4826 return 0;
4827
4828 sra_initialize ();
4829 sra_mode = SRA_MODE_EARLY_IPA;
4830
4831 if (!find_param_candidates ())
4832 {
4833 if (dump_file)
4834 fprintf (dump_file, "Function has no IPA-SRA candidates.\n");
4835 goto simple_out;
4836 }
4837
4838 if (cgraph_for_node_and_aliases (node, not_all_callers_have_enough_arguments_p,
4839 NULL, true))
4840 {
4841 if (dump_file)
4842 fprintf (dump_file, "There are callers with insufficient number of "
4843 "arguments.\n");
4844 goto simple_out;
4845 }
4846
4847 bb_dereferences = XCNEWVEC (HOST_WIDE_INT,
4848 func_param_count
4849 * last_basic_block_for_function (cfun));
4850 final_bbs = BITMAP_ALLOC (NULL);
4851
4852 scan_function ();
4853 if (encountered_apply_args)
4854 {
4855 if (dump_file)
4856 fprintf (dump_file, "Function calls __builtin_apply_args().\n");
4857 goto out;
4858 }
4859
4860 if (encountered_unchangable_recursive_call)
4861 {
4862 if (dump_file)
4863 fprintf (dump_file, "Function calls itself with insufficient "
4864 "number of arguments.\n");
4865 goto out;
4866 }
4867
4868 adjustments = analyze_all_param_acesses ();
4869 if (!adjustments)
4870 goto out;
4871 if (dump_file)
4872 ipa_dump_param_adjustments (dump_file, adjustments, current_function_decl);
4873
4874 if (modify_function (node, adjustments))
4875 ret = TODO_update_ssa | TODO_cleanup_cfg;
4876 else
4877 ret = TODO_update_ssa;
4878 VEC_free (ipa_parm_adjustment_t, heap, adjustments);
4879
4880 statistics_counter_event (cfun, "Unused parameters deleted",
4881 sra_stats.deleted_unused_parameters);
4882 statistics_counter_event (cfun, "Scalar parameters converted to by-value",
4883 sra_stats.scalar_by_ref_to_by_val);
4884 statistics_counter_event (cfun, "Aggregate parameters broken up",
4885 sra_stats.aggregate_params_reduced);
4886 statistics_counter_event (cfun, "Aggregate parameter components created",
4887 sra_stats.param_reductions_created);
4888
4889 out:
4890 BITMAP_FREE (final_bbs);
4891 free (bb_dereferences);
4892 simple_out:
4893 sra_deinitialize ();
4894 return ret;
4895 }
4896
4897 /* Return if early ipa sra shall be performed. */
4898 static bool
4899 ipa_early_sra_gate (void)
4900 {
4901 return flag_ipa_sra && dbg_cnt (eipa_sra);
4902 }
4903
4904 struct gimple_opt_pass pass_early_ipa_sra =
4905 {
4906 {
4907 GIMPLE_PASS,
4908 "eipa_sra", /* name */
4909 ipa_early_sra_gate, /* gate */
4910 ipa_early_sra, /* execute */
4911 NULL, /* sub */
4912 NULL, /* next */
4913 0, /* static_pass_number */
4914 TV_IPA_SRA, /* tv_id */
4915 0, /* properties_required */
4916 0, /* properties_provided */
4917 0, /* properties_destroyed */
4918 0, /* todo_flags_start */
4919 TODO_dump_cgraph /* todo_flags_finish */
4920 }
4921 };