re PR tree-optimization/37716 (ice for legal C++ code with -O2 on 20080926)
[gcc.git] / gcc / tree-sra.c
1 /* Scalar Replacement of Aggregates (SRA) converts some structure
2 references into scalar references, exposing them to the scalar
3 optimizers.
4 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6 Contributed by Diego Novillo <dnovillo@redhat.com>
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 3, or (at your option) any
13 later version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "ggc.h"
29 #include "tree.h"
30
31 /* These RTL headers are needed for basic-block.h. */
32 #include "rtl.h"
33 #include "tm_p.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "diagnostic.h"
37 #include "langhooks.h"
38 #include "tree-inline.h"
39 #include "tree-flow.h"
40 #include "gimple.h"
41 #include "tree-dump.h"
42 #include "tree-pass.h"
43 #include "timevar.h"
44 #include "flags.h"
45 #include "bitmap.h"
46 #include "obstack.h"
47 #include "target.h"
48 /* expr.h is needed for MOVE_RATIO. */
49 #include "expr.h"
50 #include "params.h"
51
52
53 /* This object of this pass is to replace a non-addressable aggregate with a
54 set of independent variables. Most of the time, all of these variables
55 will be scalars. But a secondary objective is to break up larger
56 aggregates into smaller aggregates. In the process we may find that some
57 bits of the larger aggregate can be deleted as unreferenced.
58
59 This substitution is done globally. More localized substitutions would
60 be the purvey of a load-store motion pass.
61
62 The optimization proceeds in phases:
63
64 (1) Identify variables that have types that are candidates for
65 decomposition.
66
67 (2) Scan the function looking for the ways these variables are used.
68 In particular we're interested in the number of times a variable
69 (or member) is needed as a complete unit, and the number of times
70 a variable (or member) is copied.
71
72 (3) Based on the usage profile, instantiate substitution variables.
73
74 (4) Scan the function making replacements.
75 */
76
77
78 /* True if this is the "early" pass, before inlining. */
79 static bool early_sra;
80
81 /* The set of todo flags to return from tree_sra. */
82 static unsigned int todoflags;
83
84 /* The set of aggregate variables that are candidates for scalarization. */
85 static bitmap sra_candidates;
86
87 /* Set of scalarizable PARM_DECLs that need copy-in operations at the
88 beginning of the function. */
89 static bitmap needs_copy_in;
90
91 /* Sets of bit pairs that cache type decomposition and instantiation. */
92 static bitmap sra_type_decomp_cache;
93 static bitmap sra_type_inst_cache;
94
95 /* One of these structures is created for each candidate aggregate and
96 each (accessed) member or group of members of such an aggregate. */
97 struct sra_elt
98 {
99 /* A tree of the elements. Used when we want to traverse everything. */
100 struct sra_elt *parent;
101 struct sra_elt *groups;
102 struct sra_elt *children;
103 struct sra_elt *sibling;
104
105 /* If this element is a root, then this is the VAR_DECL. If this is
106 a sub-element, this is some token used to identify the reference.
107 In the case of COMPONENT_REF, this is the FIELD_DECL. In the case
108 of an ARRAY_REF, this is the (constant) index. In the case of an
109 ARRAY_RANGE_REF, this is the (constant) RANGE_EXPR. In the case
110 of a complex number, this is a zero or one. */
111 tree element;
112
113 /* The type of the element. */
114 tree type;
115
116 /* A VAR_DECL, for any sub-element we've decided to replace. */
117 tree replacement;
118
119 /* The number of times the element is referenced as a whole. I.e.
120 given "a.b.c", this would be incremented for C, but not for A or B. */
121 unsigned int n_uses;
122
123 /* The number of times the element is copied to or from another
124 scalarizable element. */
125 unsigned int n_copies;
126
127 /* True if TYPE is scalar. */
128 bool is_scalar;
129
130 /* True if this element is a group of members of its parent. */
131 bool is_group;
132
133 /* True if we saw something about this element that prevents scalarization,
134 such as non-constant indexing. */
135 bool cannot_scalarize;
136
137 /* True if we've decided that structure-to-structure assignment
138 should happen via memcpy and not per-element. */
139 bool use_block_copy;
140
141 /* True if everything under this element has been marked TREE_NO_WARNING. */
142 bool all_no_warning;
143
144 /* A flag for use with/after random access traversals. */
145 bool visited;
146
147 /* True if there is BIT_FIELD_REF on the lhs with a vector. */
148 bool is_vector_lhs;
149
150 /* 1 if the element is a field that is part of a block, 2 if the field
151 is the block itself, 0 if it's neither. */
152 char in_bitfld_block;
153 };
154
155 #define IS_ELEMENT_FOR_GROUP(ELEMENT) (TREE_CODE (ELEMENT) == RANGE_EXPR)
156
157 #define FOR_EACH_ACTUAL_CHILD(CHILD, ELT) \
158 for ((CHILD) = (ELT)->is_group \
159 ? next_child_for_group (NULL, (ELT)) \
160 : (ELT)->children; \
161 (CHILD); \
162 (CHILD) = (ELT)->is_group \
163 ? next_child_for_group ((CHILD), (ELT)) \
164 : (CHILD)->sibling)
165
166 /* Helper function for above macro. Return next child in group. */
167 static struct sra_elt *
168 next_child_for_group (struct sra_elt *child, struct sra_elt *group)
169 {
170 gcc_assert (group->is_group);
171
172 /* Find the next child in the parent. */
173 if (child)
174 child = child->sibling;
175 else
176 child = group->parent->children;
177
178 /* Skip siblings that do not belong to the group. */
179 while (child)
180 {
181 tree g_elt = group->element;
182 if (TREE_CODE (g_elt) == RANGE_EXPR)
183 {
184 if (!tree_int_cst_lt (child->element, TREE_OPERAND (g_elt, 0))
185 && !tree_int_cst_lt (TREE_OPERAND (g_elt, 1), child->element))
186 break;
187 }
188 else
189 gcc_unreachable ();
190
191 child = child->sibling;
192 }
193
194 return child;
195 }
196
197 /* Random access to the child of a parent is performed by hashing.
198 This prevents quadratic behavior, and allows SRA to function
199 reasonably on larger records. */
200 static htab_t sra_map;
201
202 /* All structures are allocated out of the following obstack. */
203 static struct obstack sra_obstack;
204
205 /* Debugging functions. */
206 static void dump_sra_elt_name (FILE *, struct sra_elt *);
207 extern void debug_sra_elt_name (struct sra_elt *);
208
209 /* Forward declarations. */
210 static tree generate_element_ref (struct sra_elt *);
211 static gimple_seq sra_build_assignment (tree dst, tree src);
212 static void mark_all_v_defs_seq (gimple_seq);
213 static void mark_all_v_defs_stmt (gimple);
214
215 \f
216 /* Return true if DECL is an SRA candidate. */
217
218 static bool
219 is_sra_candidate_decl (tree decl)
220 {
221 return DECL_P (decl) && bitmap_bit_p (sra_candidates, DECL_UID (decl));
222 }
223
224 /* Return true if TYPE is a scalar type. */
225
226 static bool
227 is_sra_scalar_type (tree type)
228 {
229 enum tree_code code = TREE_CODE (type);
230 return (code == INTEGER_TYPE || code == REAL_TYPE || code == VECTOR_TYPE
231 || code == FIXED_POINT_TYPE
232 || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE
233 || code == POINTER_TYPE || code == OFFSET_TYPE
234 || code == REFERENCE_TYPE);
235 }
236
237 /* Return true if TYPE can be decomposed into a set of independent variables.
238
239 Note that this doesn't imply that all elements of TYPE can be
240 instantiated, just that if we decide to break up the type into
241 separate pieces that it can be done. */
242
243 bool
244 sra_type_can_be_decomposed_p (tree type)
245 {
246 unsigned int cache = TYPE_UID (TYPE_MAIN_VARIANT (type)) * 2;
247 tree t;
248
249 /* Avoid searching the same type twice. */
250 if (bitmap_bit_p (sra_type_decomp_cache, cache+0))
251 return true;
252 if (bitmap_bit_p (sra_type_decomp_cache, cache+1))
253 return false;
254
255 /* The type must have a definite nonzero size. */
256 if (TYPE_SIZE (type) == NULL || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
257 || integer_zerop (TYPE_SIZE (type)))
258 goto fail;
259
260 /* The type must be a non-union aggregate. */
261 switch (TREE_CODE (type))
262 {
263 case RECORD_TYPE:
264 {
265 bool saw_one_field = false;
266
267 for (t = TYPE_FIELDS (type); t ; t = TREE_CHAIN (t))
268 if (TREE_CODE (t) == FIELD_DECL)
269 {
270 /* Reject incorrectly represented bit fields. */
271 if (DECL_BIT_FIELD (t)
272 && INTEGRAL_TYPE_P (TREE_TYPE (t))
273 && (tree_low_cst (DECL_SIZE (t), 1)
274 != TYPE_PRECISION (TREE_TYPE (t))))
275 goto fail;
276
277 saw_one_field = true;
278 }
279
280 /* Record types must have at least one field. */
281 if (!saw_one_field)
282 goto fail;
283 }
284 break;
285
286 case ARRAY_TYPE:
287 /* Array types must have a fixed lower and upper bound. */
288 t = TYPE_DOMAIN (type);
289 if (t == NULL)
290 goto fail;
291 if (TYPE_MIN_VALUE (t) == NULL || !TREE_CONSTANT (TYPE_MIN_VALUE (t)))
292 goto fail;
293 if (TYPE_MAX_VALUE (t) == NULL || !TREE_CONSTANT (TYPE_MAX_VALUE (t)))
294 goto fail;
295 break;
296
297 case COMPLEX_TYPE:
298 break;
299
300 default:
301 goto fail;
302 }
303
304 bitmap_set_bit (sra_type_decomp_cache, cache+0);
305 return true;
306
307 fail:
308 bitmap_set_bit (sra_type_decomp_cache, cache+1);
309 return false;
310 }
311
312 /* Returns true if the TYPE is one of the available va_list types.
313 Otherwise it returns false.
314 Note, that for multiple calling conventions there can be more
315 than just one va_list type present. */
316
317 static bool
318 is_va_list_type (tree type)
319 {
320 tree h;
321
322 if (type == NULL_TREE)
323 return false;
324 h = targetm.canonical_va_list_type (type);
325 if (h == NULL_TREE)
326 return false;
327 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (h))
328 return true;
329 return false;
330 }
331
332 /* Return true if DECL can be decomposed into a set of independent
333 (though not necessarily scalar) variables. */
334
335 static bool
336 decl_can_be_decomposed_p (tree var)
337 {
338 /* Early out for scalars. */
339 if (is_sra_scalar_type (TREE_TYPE (var)))
340 return false;
341
342 /* The variable must not be aliased. */
343 if (!is_gimple_non_addressable (var))
344 {
345 if (dump_file && (dump_flags & TDF_DETAILS))
346 {
347 fprintf (dump_file, "Cannot scalarize variable ");
348 print_generic_expr (dump_file, var, dump_flags);
349 fprintf (dump_file, " because it must live in memory\n");
350 }
351 return false;
352 }
353
354 /* The variable must not be volatile. */
355 if (TREE_THIS_VOLATILE (var))
356 {
357 if (dump_file && (dump_flags & TDF_DETAILS))
358 {
359 fprintf (dump_file, "Cannot scalarize variable ");
360 print_generic_expr (dump_file, var, dump_flags);
361 fprintf (dump_file, " because it is declared volatile\n");
362 }
363 return false;
364 }
365
366 /* We must be able to decompose the variable's type. */
367 if (!sra_type_can_be_decomposed_p (TREE_TYPE (var)))
368 {
369 if (dump_file && (dump_flags & TDF_DETAILS))
370 {
371 fprintf (dump_file, "Cannot scalarize variable ");
372 print_generic_expr (dump_file, var, dump_flags);
373 fprintf (dump_file, " because its type cannot be decomposed\n");
374 }
375 return false;
376 }
377
378 /* HACK: if we decompose a va_list_type_node before inlining, then we'll
379 confuse tree-stdarg.c, and we won't be able to figure out which and
380 how many arguments are accessed. This really should be improved in
381 tree-stdarg.c, as the decomposition is truly a win. This could also
382 be fixed if the stdarg pass ran early, but this can't be done until
383 we've aliasing information early too. See PR 30791. */
384 if (early_sra && is_va_list_type (TREE_TYPE (var)))
385 return false;
386
387 return true;
388 }
389
390 /* Return true if TYPE can be *completely* decomposed into scalars. */
391
392 static bool
393 type_can_instantiate_all_elements (tree type)
394 {
395 if (is_sra_scalar_type (type))
396 return true;
397 if (!sra_type_can_be_decomposed_p (type))
398 return false;
399
400 switch (TREE_CODE (type))
401 {
402 case RECORD_TYPE:
403 {
404 unsigned int cache = TYPE_UID (TYPE_MAIN_VARIANT (type)) * 2;
405 tree f;
406
407 if (bitmap_bit_p (sra_type_inst_cache, cache+0))
408 return true;
409 if (bitmap_bit_p (sra_type_inst_cache, cache+1))
410 return false;
411
412 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
413 if (TREE_CODE (f) == FIELD_DECL)
414 {
415 if (!type_can_instantiate_all_elements (TREE_TYPE (f)))
416 {
417 bitmap_set_bit (sra_type_inst_cache, cache+1);
418 return false;
419 }
420 }
421
422 bitmap_set_bit (sra_type_inst_cache, cache+0);
423 return true;
424 }
425
426 case ARRAY_TYPE:
427 return type_can_instantiate_all_elements (TREE_TYPE (type));
428
429 case COMPLEX_TYPE:
430 return true;
431
432 default:
433 gcc_unreachable ();
434 }
435 }
436
437 /* Test whether ELT or some sub-element cannot be scalarized. */
438
439 static bool
440 can_completely_scalarize_p (struct sra_elt *elt)
441 {
442 struct sra_elt *c;
443
444 if (elt->cannot_scalarize)
445 return false;
446
447 for (c = elt->children; c; c = c->sibling)
448 if (!can_completely_scalarize_p (c))
449 return false;
450
451 for (c = elt->groups; c; c = c->sibling)
452 if (!can_completely_scalarize_p (c))
453 return false;
454
455 return true;
456 }
457
458 \f
459 /* A simplified tree hashing algorithm that only handles the types of
460 trees we expect to find in sra_elt->element. */
461
462 static hashval_t
463 sra_hash_tree (tree t)
464 {
465 hashval_t h;
466
467 switch (TREE_CODE (t))
468 {
469 case VAR_DECL:
470 case PARM_DECL:
471 case RESULT_DECL:
472 h = DECL_UID (t);
473 break;
474
475 case INTEGER_CST:
476 h = TREE_INT_CST_LOW (t) ^ TREE_INT_CST_HIGH (t);
477 break;
478
479 case RANGE_EXPR:
480 h = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
481 h = iterative_hash_expr (TREE_OPERAND (t, 1), h);
482 break;
483
484 case FIELD_DECL:
485 /* We can have types that are compatible, but have different member
486 lists, so we can't hash fields by ID. Use offsets instead. */
487 h = iterative_hash_expr (DECL_FIELD_OFFSET (t), 0);
488 h = iterative_hash_expr (DECL_FIELD_BIT_OFFSET (t), h);
489 break;
490
491 case BIT_FIELD_REF:
492 /* Don't take operand 0 into account, that's our parent. */
493 h = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
494 h = iterative_hash_expr (TREE_OPERAND (t, 2), h);
495 break;
496
497 default:
498 gcc_unreachable ();
499 }
500
501 return h;
502 }
503
504 /* Hash function for type SRA_PAIR. */
505
506 static hashval_t
507 sra_elt_hash (const void *x)
508 {
509 const struct sra_elt *const e = (const struct sra_elt *) x;
510 const struct sra_elt *p;
511 hashval_t h;
512
513 h = sra_hash_tree (e->element);
514
515 /* Take into account everything except bitfield blocks back up the
516 chain. Given that chain lengths are rarely very long, this
517 should be acceptable. If we truly identify this as a performance
518 problem, it should work to hash the pointer value
519 "e->parent". */
520 for (p = e->parent; p ; p = p->parent)
521 if (!p->in_bitfld_block)
522 h = (h * 65521) ^ sra_hash_tree (p->element);
523
524 return h;
525 }
526
527 /* Equality function for type SRA_PAIR. */
528
529 static int
530 sra_elt_eq (const void *x, const void *y)
531 {
532 const struct sra_elt *const a = (const struct sra_elt *) x;
533 const struct sra_elt *const b = (const struct sra_elt *) y;
534 tree ae, be;
535 const struct sra_elt *ap = a->parent;
536 const struct sra_elt *bp = b->parent;
537
538 if (ap)
539 while (ap->in_bitfld_block)
540 ap = ap->parent;
541 if (bp)
542 while (bp->in_bitfld_block)
543 bp = bp->parent;
544
545 if (ap != bp)
546 return false;
547
548 ae = a->element;
549 be = b->element;
550
551 if (ae == be)
552 return true;
553 if (TREE_CODE (ae) != TREE_CODE (be))
554 return false;
555
556 switch (TREE_CODE (ae))
557 {
558 case VAR_DECL:
559 case PARM_DECL:
560 case RESULT_DECL:
561 /* These are all pointer unique. */
562 return false;
563
564 case INTEGER_CST:
565 /* Integers are not pointer unique, so compare their values. */
566 return tree_int_cst_equal (ae, be);
567
568 case RANGE_EXPR:
569 return
570 tree_int_cst_equal (TREE_OPERAND (ae, 0), TREE_OPERAND (be, 0))
571 && tree_int_cst_equal (TREE_OPERAND (ae, 1), TREE_OPERAND (be, 1));
572
573 case FIELD_DECL:
574 /* Fields are unique within a record, but not between
575 compatible records. */
576 if (DECL_FIELD_CONTEXT (ae) == DECL_FIELD_CONTEXT (be))
577 return false;
578 return fields_compatible_p (ae, be);
579
580 case BIT_FIELD_REF:
581 return
582 tree_int_cst_equal (TREE_OPERAND (ae, 1), TREE_OPERAND (be, 1))
583 && tree_int_cst_equal (TREE_OPERAND (ae, 2), TREE_OPERAND (be, 2));
584
585 default:
586 gcc_unreachable ();
587 }
588 }
589
590 /* Create or return the SRA_ELT structure for CHILD in PARENT. PARENT
591 may be null, in which case CHILD must be a DECL. */
592
593 static struct sra_elt *
594 lookup_element (struct sra_elt *parent, tree child, tree type,
595 enum insert_option insert)
596 {
597 struct sra_elt dummy;
598 struct sra_elt **slot;
599 struct sra_elt *elt;
600
601 if (parent)
602 dummy.parent = parent->is_group ? parent->parent : parent;
603 else
604 dummy.parent = NULL;
605 dummy.element = child;
606
607 slot = (struct sra_elt **) htab_find_slot (sra_map, &dummy, insert);
608 if (!slot && insert == NO_INSERT)
609 return NULL;
610
611 elt = *slot;
612 if (!elt && insert == INSERT)
613 {
614 *slot = elt = XOBNEW (&sra_obstack, struct sra_elt);
615 memset (elt, 0, sizeof (*elt));
616
617 elt->parent = parent;
618 elt->element = child;
619 elt->type = type;
620 elt->is_scalar = is_sra_scalar_type (type);
621
622 if (parent)
623 {
624 if (IS_ELEMENT_FOR_GROUP (elt->element))
625 {
626 elt->is_group = true;
627 elt->sibling = parent->groups;
628 parent->groups = elt;
629 }
630 else
631 {
632 elt->sibling = parent->children;
633 parent->children = elt;
634 }
635 }
636
637 /* If this is a parameter, then if we want to scalarize, we have
638 one copy from the true function parameter. Count it now. */
639 if (TREE_CODE (child) == PARM_DECL)
640 {
641 elt->n_copies = 1;
642 bitmap_set_bit (needs_copy_in, DECL_UID (child));
643 }
644 }
645
646 return elt;
647 }
648
649 /* Create or return the SRA_ELT structure for EXPR if the expression
650 refers to a scalarizable variable. */
651
652 static struct sra_elt *
653 maybe_lookup_element_for_expr (tree expr)
654 {
655 struct sra_elt *elt;
656 tree child;
657
658 switch (TREE_CODE (expr))
659 {
660 case VAR_DECL:
661 case PARM_DECL:
662 case RESULT_DECL:
663 if (is_sra_candidate_decl (expr))
664 return lookup_element (NULL, expr, TREE_TYPE (expr), INSERT);
665 return NULL;
666
667 case ARRAY_REF:
668 /* We can't scalarize variable array indices. */
669 if (in_array_bounds_p (expr))
670 child = TREE_OPERAND (expr, 1);
671 else
672 return NULL;
673 break;
674
675 case ARRAY_RANGE_REF:
676 /* We can't scalarize variable array indices. */
677 if (range_in_array_bounds_p (expr))
678 {
679 tree domain = TYPE_DOMAIN (TREE_TYPE (expr));
680 child = build2 (RANGE_EXPR, integer_type_node,
681 TYPE_MIN_VALUE (domain), TYPE_MAX_VALUE (domain));
682 }
683 else
684 return NULL;
685 break;
686
687 case COMPONENT_REF:
688 {
689 tree type = TREE_TYPE (TREE_OPERAND (expr, 0));
690 /* Don't look through unions. */
691 if (TREE_CODE (type) != RECORD_TYPE)
692 return NULL;
693 /* Neither through variable-sized records. */
694 if (TYPE_SIZE (type) == NULL_TREE
695 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
696 return NULL;
697 child = TREE_OPERAND (expr, 1);
698 }
699 break;
700
701 case REALPART_EXPR:
702 child = integer_zero_node;
703 break;
704 case IMAGPART_EXPR:
705 child = integer_one_node;
706 break;
707
708 default:
709 return NULL;
710 }
711
712 elt = maybe_lookup_element_for_expr (TREE_OPERAND (expr, 0));
713 if (elt)
714 return lookup_element (elt, child, TREE_TYPE (expr), INSERT);
715 return NULL;
716 }
717
718 \f
719 /* Functions to walk just enough of the tree to see all scalarizable
720 references, and categorize them. */
721
722 /* A set of callbacks for phases 2 and 4. They'll be invoked for the
723 various kinds of references seen. In all cases, *GSI is an iterator
724 pointing to the statement being processed. */
725 struct sra_walk_fns
726 {
727 /* Invoked when ELT is required as a unit. Note that ELT might refer to
728 a leaf node, in which case this is a simple scalar reference. *EXPR_P
729 points to the location of the expression. IS_OUTPUT is true if this
730 is a left-hand-side reference. USE_ALL is true if we saw something we
731 couldn't quite identify and had to force the use of the entire object. */
732 void (*use) (struct sra_elt *elt, tree *expr_p,
733 gimple_stmt_iterator *gsi, bool is_output, bool use_all);
734
735 /* Invoked when we have a copy between two scalarizable references. */
736 void (*copy) (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
737 gimple_stmt_iterator *gsi);
738
739 /* Invoked when ELT is initialized from a constant. VALUE may be NULL,
740 in which case it should be treated as an empty CONSTRUCTOR. */
741 void (*init) (struct sra_elt *elt, tree value, gimple_stmt_iterator *gsi);
742
743 /* Invoked when we have a copy between one scalarizable reference ELT
744 and one non-scalarizable reference OTHER without side-effects.
745 IS_OUTPUT is true if ELT is on the left-hand side. */
746 void (*ldst) (struct sra_elt *elt, tree other,
747 gimple_stmt_iterator *gsi, bool is_output);
748
749 /* True during phase 2, false during phase 4. */
750 /* ??? This is a hack. */
751 bool initial_scan;
752 };
753
754 #ifdef ENABLE_CHECKING
755 /* Invoked via walk_tree, if *TP contains a candidate decl, return it. */
756
757 static tree
758 sra_find_candidate_decl (tree *tp, int *walk_subtrees,
759 void *data ATTRIBUTE_UNUSED)
760 {
761 tree t = *tp;
762 enum tree_code code = TREE_CODE (t);
763
764 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
765 {
766 *walk_subtrees = 0;
767 if (is_sra_candidate_decl (t))
768 return t;
769 }
770 else if (TYPE_P (t))
771 *walk_subtrees = 0;
772
773 return NULL;
774 }
775 #endif
776
777 /* Walk most expressions looking for a scalarizable aggregate.
778 If we find one, invoke FNS->USE. */
779
780 static void
781 sra_walk_expr (tree *expr_p, gimple_stmt_iterator *gsi, bool is_output,
782 const struct sra_walk_fns *fns)
783 {
784 tree expr = *expr_p;
785 tree inner = expr;
786 bool disable_scalarization = false;
787 bool use_all_p = false;
788
789 /* We're looking to collect a reference expression between EXPR and INNER,
790 such that INNER is a scalarizable decl and all other nodes through EXPR
791 are references that we can scalarize. If we come across something that
792 we can't scalarize, we reset EXPR. This has the effect of making it
793 appear that we're referring to the larger expression as a whole. */
794
795 while (1)
796 switch (TREE_CODE (inner))
797 {
798 case VAR_DECL:
799 case PARM_DECL:
800 case RESULT_DECL:
801 /* If there is a scalarizable decl at the bottom, then process it. */
802 if (is_sra_candidate_decl (inner))
803 {
804 struct sra_elt *elt = maybe_lookup_element_for_expr (expr);
805 if (disable_scalarization)
806 elt->cannot_scalarize = true;
807 else
808 fns->use (elt, expr_p, gsi, is_output, use_all_p);
809 }
810 return;
811
812 case ARRAY_REF:
813 /* Non-constant index means any member may be accessed. Prevent the
814 expression from being scalarized. If we were to treat this as a
815 reference to the whole array, we can wind up with a single dynamic
816 index reference inside a loop being overridden by several constant
817 index references during loop setup. It's possible that this could
818 be avoided by using dynamic usage counts based on BB trip counts
819 (based on loop analysis or profiling), but that hardly seems worth
820 the effort. */
821 /* ??? Hack. Figure out how to push this into the scan routines
822 without duplicating too much code. */
823 if (!in_array_bounds_p (inner))
824 {
825 disable_scalarization = true;
826 goto use_all;
827 }
828 /* ??? Are we assured that non-constant bounds and stride will have
829 the same value everywhere? I don't think Fortran will... */
830 if (TREE_OPERAND (inner, 2) || TREE_OPERAND (inner, 3))
831 goto use_all;
832 inner = TREE_OPERAND (inner, 0);
833 break;
834
835 case ARRAY_RANGE_REF:
836 if (!range_in_array_bounds_p (inner))
837 {
838 disable_scalarization = true;
839 goto use_all;
840 }
841 /* ??? See above non-constant bounds and stride . */
842 if (TREE_OPERAND (inner, 2) || TREE_OPERAND (inner, 3))
843 goto use_all;
844 inner = TREE_OPERAND (inner, 0);
845 break;
846
847 case COMPONENT_REF:
848 {
849 tree type = TREE_TYPE (TREE_OPERAND (inner, 0));
850 /* Don't look through unions. */
851 if (TREE_CODE (type) != RECORD_TYPE)
852 goto use_all;
853 /* Neither through variable-sized records. */
854 if (TYPE_SIZE (type) == NULL_TREE
855 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
856 goto use_all;
857 inner = TREE_OPERAND (inner, 0);
858 }
859 break;
860
861 case REALPART_EXPR:
862 case IMAGPART_EXPR:
863 inner = TREE_OPERAND (inner, 0);
864 break;
865
866 case BIT_FIELD_REF:
867 /* A bit field reference to a specific vector is scalarized but for
868 ones for inputs need to be marked as used on the left hand size so
869 when we scalarize it, we can mark that variable as non renamable. */
870 if (is_output
871 && TREE_CODE (TREE_TYPE (TREE_OPERAND (inner, 0))) == VECTOR_TYPE)
872 {
873 struct sra_elt *elt
874 = maybe_lookup_element_for_expr (TREE_OPERAND (inner, 0));
875 if (elt)
876 elt->is_vector_lhs = true;
877 }
878
879 /* A bit field reference (access to *multiple* fields simultaneously)
880 is not currently scalarized. Consider this an access to the full
881 outer element, to which walk_tree will bring us next. */
882 goto use_all;
883
884 CASE_CONVERT:
885 /* Similarly, a nop explicitly wants to look at an object in a
886 type other than the one we've scalarized. */
887 goto use_all;
888
889 case VIEW_CONVERT_EXPR:
890 /* Likewise for a view conversion, but with an additional twist:
891 it can be on the LHS and, in this case, an access to the full
892 outer element would mean a killing def. So we need to punt
893 if we haven't already a full access to the current element,
894 because we cannot pretend to have a killing def if we only
895 have a partial access at some level. */
896 if (is_output && !use_all_p && inner != expr)
897 disable_scalarization = true;
898 goto use_all;
899
900 case WITH_SIZE_EXPR:
901 /* This is a transparent wrapper. The entire inner expression really
902 is being used. */
903 goto use_all;
904
905 use_all:
906 expr_p = &TREE_OPERAND (inner, 0);
907 inner = expr = *expr_p;
908 use_all_p = true;
909 break;
910
911 default:
912 #ifdef ENABLE_CHECKING
913 /* Validate that we're not missing any references. */
914 gcc_assert (!walk_tree (&inner, sra_find_candidate_decl, NULL, NULL));
915 #endif
916 return;
917 }
918 }
919
920 /* Walk the arguments of a GIMPLE_CALL looking for scalarizable aggregates.
921 If we find one, invoke FNS->USE. */
922
923 static void
924 sra_walk_gimple_call (gimple stmt, gimple_stmt_iterator *gsi,
925 const struct sra_walk_fns *fns)
926 {
927 int i;
928 int nargs = gimple_call_num_args (stmt);
929
930 for (i = 0; i < nargs; i++)
931 sra_walk_expr (gimple_call_arg_ptr (stmt, i), gsi, false, fns);
932
933 if (gimple_call_lhs (stmt))
934 sra_walk_expr (gimple_call_lhs_ptr (stmt), gsi, true, fns);
935 }
936
937 /* Walk the inputs and outputs of a GIMPLE_ASM looking for scalarizable
938 aggregates. If we find one, invoke FNS->USE. */
939
940 static void
941 sra_walk_gimple_asm (gimple stmt, gimple_stmt_iterator *gsi,
942 const struct sra_walk_fns *fns)
943 {
944 size_t i;
945 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
946 sra_walk_expr (&TREE_VALUE (gimple_asm_input_op (stmt, i)), gsi, false, fns);
947 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
948 sra_walk_expr (&TREE_VALUE (gimple_asm_output_op (stmt, i)), gsi, true, fns);
949 }
950
951 /* Walk a GIMPLE_ASSIGN and categorize the assignment appropriately. */
952
953 static void
954 sra_walk_gimple_assign (gimple stmt, gimple_stmt_iterator *gsi,
955 const struct sra_walk_fns *fns)
956 {
957 struct sra_elt *lhs_elt = NULL, *rhs_elt = NULL;
958 tree lhs, rhs;
959
960 /* If there is more than 1 element on the RHS, only walk the lhs. */
961 if (!gimple_assign_single_p (stmt))
962 {
963 sra_walk_expr (gimple_assign_lhs_ptr (stmt), gsi, true, fns);
964 return;
965 }
966
967 lhs = gimple_assign_lhs (stmt);
968 rhs = gimple_assign_rhs1 (stmt);
969 lhs_elt = maybe_lookup_element_for_expr (lhs);
970 rhs_elt = maybe_lookup_element_for_expr (rhs);
971
972 /* If both sides are scalarizable, this is a COPY operation. */
973 if (lhs_elt && rhs_elt)
974 {
975 fns->copy (lhs_elt, rhs_elt, gsi);
976 return;
977 }
978
979 /* If the RHS is scalarizable, handle it. There are only two cases. */
980 if (rhs_elt)
981 {
982 if (!rhs_elt->is_scalar && !TREE_SIDE_EFFECTS (lhs))
983 fns->ldst (rhs_elt, lhs, gsi, false);
984 else
985 fns->use (rhs_elt, gimple_assign_rhs1_ptr (stmt), gsi, false, false);
986 }
987
988 /* If it isn't scalarizable, there may be scalarizable variables within, so
989 check for a call or else walk the RHS to see if we need to do any
990 copy-in operations. We need to do it before the LHS is scalarized so
991 that the statements get inserted in the proper place, before any
992 copy-out operations. */
993 else
994 sra_walk_expr (gimple_assign_rhs1_ptr (stmt), gsi, false, fns);
995
996 /* Likewise, handle the LHS being scalarizable. We have cases similar
997 to those above, but also want to handle RHS being constant. */
998 if (lhs_elt)
999 {
1000 /* If this is an assignment from a constant, or constructor, then
1001 we have access to all of the elements individually. Invoke INIT. */
1002 if (TREE_CODE (rhs) == COMPLEX_EXPR
1003 || TREE_CODE (rhs) == COMPLEX_CST
1004 || TREE_CODE (rhs) == CONSTRUCTOR)
1005 fns->init (lhs_elt, rhs, gsi);
1006
1007 /* If this is an assignment from read-only memory, treat this as if
1008 we'd been passed the constructor directly. Invoke INIT. */
1009 else if (TREE_CODE (rhs) == VAR_DECL
1010 && TREE_STATIC (rhs)
1011 && TREE_READONLY (rhs)
1012 && targetm.binds_local_p (rhs))
1013 fns->init (lhs_elt, DECL_INITIAL (rhs), gsi);
1014
1015 /* If this is a copy from a non-scalarizable lvalue, invoke LDST.
1016 The lvalue requirement prevents us from trying to directly scalarize
1017 the result of a function call. Which would result in trying to call
1018 the function multiple times, and other evil things. */
1019 else if (!lhs_elt->is_scalar
1020 && !TREE_SIDE_EFFECTS (rhs) && is_gimple_addressable (rhs))
1021 fns->ldst (lhs_elt, rhs, gsi, true);
1022
1023 /* Otherwise we're being used in some context that requires the
1024 aggregate to be seen as a whole. Invoke USE. */
1025 else
1026 fns->use (lhs_elt, gimple_assign_lhs_ptr (stmt), gsi, true, false);
1027 }
1028
1029 /* Similarly to above, LHS_ELT being null only means that the LHS as a
1030 whole is not a scalarizable reference. There may be occurrences of
1031 scalarizable variables within, which implies a USE. */
1032 else
1033 sra_walk_expr (gimple_assign_lhs_ptr (stmt), gsi, true, fns);
1034 }
1035
1036 /* Entry point to the walk functions. Search the entire function,
1037 invoking the callbacks in FNS on each of the references to
1038 scalarizable variables. */
1039
1040 static void
1041 sra_walk_function (const struct sra_walk_fns *fns)
1042 {
1043 basic_block bb;
1044 gimple_stmt_iterator si, ni;
1045
1046 /* ??? Phase 4 could derive some benefit to walking the function in
1047 dominator tree order. */
1048
1049 FOR_EACH_BB (bb)
1050 for (si = gsi_start_bb (bb); !gsi_end_p (si); si = ni)
1051 {
1052 gimple stmt;
1053
1054 stmt = gsi_stmt (si);
1055
1056 ni = si;
1057 gsi_next (&ni);
1058
1059 /* If the statement has no virtual operands, then it doesn't
1060 make any structure references that we care about. */
1061 if (gimple_aliases_computed_p (cfun)
1062 && ZERO_SSA_OPERANDS (stmt, (SSA_OP_VIRTUAL_DEFS | SSA_OP_VUSE)))
1063 continue;
1064
1065 switch (gimple_code (stmt))
1066 {
1067 case GIMPLE_RETURN:
1068 /* If we have "return <retval>" then the return value is
1069 already exposed for our pleasure. Walk it as a USE to
1070 force all the components back in place for the return.
1071 */
1072 if (gimple_return_retval (stmt) == NULL_TREE)
1073 ;
1074 else
1075 sra_walk_expr (gimple_return_retval_ptr (stmt), &si, false,
1076 fns);
1077 break;
1078
1079 case GIMPLE_ASSIGN:
1080 sra_walk_gimple_assign (stmt, &si, fns);
1081 break;
1082 case GIMPLE_CALL:
1083 sra_walk_gimple_call (stmt, &si, fns);
1084 break;
1085 case GIMPLE_ASM:
1086 sra_walk_gimple_asm (stmt, &si, fns);
1087 break;
1088
1089 default:
1090 break;
1091 }
1092 }
1093 }
1094 \f
1095 /* Phase One: Scan all referenced variables in the program looking for
1096 structures that could be decomposed. */
1097
1098 static bool
1099 find_candidates_for_sra (void)
1100 {
1101 bool any_set = false;
1102 tree var;
1103 referenced_var_iterator rvi;
1104
1105 FOR_EACH_REFERENCED_VAR (var, rvi)
1106 {
1107 if (decl_can_be_decomposed_p (var))
1108 {
1109 bitmap_set_bit (sra_candidates, DECL_UID (var));
1110 any_set = true;
1111 }
1112 }
1113
1114 return any_set;
1115 }
1116
1117 \f
1118 /* Phase Two: Scan all references to scalarizable variables. Count the
1119 number of times they are used or copied respectively. */
1120
1121 /* Callbacks to fill in SRA_WALK_FNS. Everything but USE is
1122 considered a copy, because we can decompose the reference such that
1123 the sub-elements needn't be contiguous. */
1124
1125 static void
1126 scan_use (struct sra_elt *elt, tree *expr_p ATTRIBUTE_UNUSED,
1127 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
1128 bool is_output ATTRIBUTE_UNUSED, bool use_all ATTRIBUTE_UNUSED)
1129 {
1130 elt->n_uses += 1;
1131 }
1132
1133 static void
1134 scan_copy (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
1135 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED)
1136 {
1137 lhs_elt->n_copies += 1;
1138 rhs_elt->n_copies += 1;
1139 }
1140
1141 static void
1142 scan_init (struct sra_elt *lhs_elt, tree rhs ATTRIBUTE_UNUSED,
1143 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED)
1144 {
1145 lhs_elt->n_copies += 1;
1146 }
1147
1148 static void
1149 scan_ldst (struct sra_elt *elt, tree other ATTRIBUTE_UNUSED,
1150 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
1151 bool is_output ATTRIBUTE_UNUSED)
1152 {
1153 elt->n_copies += 1;
1154 }
1155
1156 /* Dump the values we collected during the scanning phase. */
1157
1158 static void
1159 scan_dump (struct sra_elt *elt)
1160 {
1161 struct sra_elt *c;
1162
1163 dump_sra_elt_name (dump_file, elt);
1164 fprintf (dump_file, ": n_uses=%u n_copies=%u\n", elt->n_uses, elt->n_copies);
1165
1166 for (c = elt->children; c ; c = c->sibling)
1167 scan_dump (c);
1168
1169 for (c = elt->groups; c ; c = c->sibling)
1170 scan_dump (c);
1171 }
1172
1173 /* Entry point to phase 2. Scan the entire function, building up
1174 scalarization data structures, recording copies and uses. */
1175
1176 static void
1177 scan_function (void)
1178 {
1179 static const struct sra_walk_fns fns = {
1180 scan_use, scan_copy, scan_init, scan_ldst, true
1181 };
1182 bitmap_iterator bi;
1183
1184 sra_walk_function (&fns);
1185
1186 if (dump_file && (dump_flags & TDF_DETAILS))
1187 {
1188 unsigned i;
1189
1190 fputs ("\nScan results:\n", dump_file);
1191 EXECUTE_IF_SET_IN_BITMAP (sra_candidates, 0, i, bi)
1192 {
1193 tree var = referenced_var (i);
1194 struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
1195 if (elt)
1196 scan_dump (elt);
1197 }
1198 fputc ('\n', dump_file);
1199 }
1200 }
1201 \f
1202 /* Phase Three: Make decisions about which variables to scalarize, if any.
1203 All elements to be scalarized have replacement variables made for them. */
1204
1205 /* A subroutine of build_element_name. Recursively build the element
1206 name on the obstack. */
1207
1208 static void
1209 build_element_name_1 (struct sra_elt *elt)
1210 {
1211 tree t;
1212 char buffer[32];
1213
1214 if (elt->parent)
1215 {
1216 build_element_name_1 (elt->parent);
1217 obstack_1grow (&sra_obstack, '$');
1218
1219 if (TREE_CODE (elt->parent->type) == COMPLEX_TYPE)
1220 {
1221 if (elt->element == integer_zero_node)
1222 obstack_grow (&sra_obstack, "real", 4);
1223 else
1224 obstack_grow (&sra_obstack, "imag", 4);
1225 return;
1226 }
1227 }
1228
1229 t = elt->element;
1230 if (TREE_CODE (t) == INTEGER_CST)
1231 {
1232 /* ??? Eh. Don't bother doing double-wide printing. */
1233 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (t));
1234 obstack_grow (&sra_obstack, buffer, strlen (buffer));
1235 }
1236 else if (TREE_CODE (t) == BIT_FIELD_REF)
1237 {
1238 sprintf (buffer, "B" HOST_WIDE_INT_PRINT_DEC,
1239 tree_low_cst (TREE_OPERAND (t, 2), 1));
1240 obstack_grow (&sra_obstack, buffer, strlen (buffer));
1241 sprintf (buffer, "F" HOST_WIDE_INT_PRINT_DEC,
1242 tree_low_cst (TREE_OPERAND (t, 1), 1));
1243 obstack_grow (&sra_obstack, buffer, strlen (buffer));
1244 }
1245 else
1246 {
1247 tree name = DECL_NAME (t);
1248 if (name)
1249 obstack_grow (&sra_obstack, IDENTIFIER_POINTER (name),
1250 IDENTIFIER_LENGTH (name));
1251 else
1252 {
1253 sprintf (buffer, "D%u", DECL_UID (t));
1254 obstack_grow (&sra_obstack, buffer, strlen (buffer));
1255 }
1256 }
1257 }
1258
1259 /* Construct a pretty variable name for an element's replacement variable.
1260 The name is built on the obstack. */
1261
1262 static char *
1263 build_element_name (struct sra_elt *elt)
1264 {
1265 build_element_name_1 (elt);
1266 obstack_1grow (&sra_obstack, '\0');
1267 return XOBFINISH (&sra_obstack, char *);
1268 }
1269
1270 /* Instantiate an element as an independent variable. */
1271
1272 static void
1273 instantiate_element (struct sra_elt *elt)
1274 {
1275 struct sra_elt *base_elt;
1276 tree var, base;
1277 bool nowarn = TREE_NO_WARNING (elt->element);
1278
1279 for (base_elt = elt; base_elt->parent; base_elt = base_elt->parent)
1280 if (!nowarn)
1281 nowarn = TREE_NO_WARNING (base_elt->parent->element);
1282 base = base_elt->element;
1283
1284 elt->replacement = var = make_rename_temp (elt->type, "SR");
1285
1286 if (DECL_P (elt->element)
1287 && !tree_int_cst_equal (DECL_SIZE (var), DECL_SIZE (elt->element)))
1288 {
1289 DECL_SIZE (var) = DECL_SIZE (elt->element);
1290 DECL_SIZE_UNIT (var) = DECL_SIZE_UNIT (elt->element);
1291
1292 elt->in_bitfld_block = 1;
1293 elt->replacement = fold_build3 (BIT_FIELD_REF, elt->type, var,
1294 DECL_SIZE (var),
1295 BYTES_BIG_ENDIAN
1296 ? size_binop (MINUS_EXPR,
1297 TYPE_SIZE (elt->type),
1298 DECL_SIZE (var))
1299 : bitsize_int (0));
1300 }
1301
1302 /* For vectors, if used on the left hand side with BIT_FIELD_REF,
1303 they are not a gimple register. */
1304 if (TREE_CODE (TREE_TYPE (var)) == VECTOR_TYPE && elt->is_vector_lhs)
1305 DECL_GIMPLE_REG_P (var) = 0;
1306
1307 DECL_SOURCE_LOCATION (var) = DECL_SOURCE_LOCATION (base);
1308 DECL_ARTIFICIAL (var) = 1;
1309
1310 if (TREE_THIS_VOLATILE (elt->type))
1311 {
1312 TREE_THIS_VOLATILE (var) = 1;
1313 TREE_SIDE_EFFECTS (var) = 1;
1314 }
1315
1316 if (DECL_NAME (base) && !DECL_IGNORED_P (base))
1317 {
1318 char *pretty_name = build_element_name (elt);
1319 DECL_NAME (var) = get_identifier (pretty_name);
1320 obstack_free (&sra_obstack, pretty_name);
1321
1322 SET_DECL_DEBUG_EXPR (var, generate_element_ref (elt));
1323 DECL_DEBUG_EXPR_IS_FROM (var) = 1;
1324
1325 DECL_IGNORED_P (var) = 0;
1326 TREE_NO_WARNING (var) = nowarn;
1327 }
1328 else
1329 {
1330 DECL_IGNORED_P (var) = 1;
1331 /* ??? We can't generate any warning that would be meaningful. */
1332 TREE_NO_WARNING (var) = 1;
1333 }
1334
1335 /* Zero-initialize bit-field scalarization variables, to avoid
1336 triggering undefined behavior. */
1337 if (TREE_CODE (elt->element) == BIT_FIELD_REF
1338 || (var != elt->replacement
1339 && TREE_CODE (elt->replacement) == BIT_FIELD_REF))
1340 {
1341 gimple_seq init = sra_build_assignment (var,
1342 fold_convert (TREE_TYPE (var),
1343 integer_zero_node)
1344 );
1345 insert_edge_copies_seq (init, ENTRY_BLOCK_PTR);
1346 mark_all_v_defs_seq (init);
1347 }
1348
1349 if (dump_file)
1350 {
1351 fputs (" ", dump_file);
1352 dump_sra_elt_name (dump_file, elt);
1353 fputs (" -> ", dump_file);
1354 print_generic_expr (dump_file, var, dump_flags);
1355 fputc ('\n', dump_file);
1356 }
1357 }
1358
1359 /* Make one pass across an element tree deciding whether or not it's
1360 profitable to instantiate individual leaf scalars.
1361
1362 PARENT_USES and PARENT_COPIES are the sum of the N_USES and N_COPIES
1363 fields all the way up the tree. */
1364
1365 static void
1366 decide_instantiation_1 (struct sra_elt *elt, unsigned int parent_uses,
1367 unsigned int parent_copies)
1368 {
1369 if (dump_file && !elt->parent)
1370 {
1371 fputs ("Initial instantiation for ", dump_file);
1372 dump_sra_elt_name (dump_file, elt);
1373 fputc ('\n', dump_file);
1374 }
1375
1376 if (elt->cannot_scalarize)
1377 return;
1378
1379 if (elt->is_scalar)
1380 {
1381 /* The decision is simple: instantiate if we're used more frequently
1382 than the parent needs to be seen as a complete unit. */
1383 if (elt->n_uses + elt->n_copies + parent_copies > parent_uses)
1384 instantiate_element (elt);
1385 }
1386 else
1387 {
1388 struct sra_elt *c, *group;
1389 unsigned int this_uses = elt->n_uses + parent_uses;
1390 unsigned int this_copies = elt->n_copies + parent_copies;
1391
1392 /* Consider groups of sub-elements as weighing in favour of
1393 instantiation whatever their size. */
1394 for (group = elt->groups; group ; group = group->sibling)
1395 FOR_EACH_ACTUAL_CHILD (c, group)
1396 {
1397 c->n_uses += group->n_uses;
1398 c->n_copies += group->n_copies;
1399 }
1400
1401 for (c = elt->children; c ; c = c->sibling)
1402 decide_instantiation_1 (c, this_uses, this_copies);
1403 }
1404 }
1405
1406 /* Compute the size and number of all instantiated elements below ELT.
1407 We will only care about this if the size of the complete structure
1408 fits in a HOST_WIDE_INT, so we don't have to worry about overflow. */
1409
1410 static unsigned int
1411 sum_instantiated_sizes (struct sra_elt *elt, unsigned HOST_WIDE_INT *sizep)
1412 {
1413 if (elt->replacement)
1414 {
1415 *sizep += TREE_INT_CST_LOW (TYPE_SIZE_UNIT (elt->type));
1416 return 1;
1417 }
1418 else
1419 {
1420 struct sra_elt *c;
1421 unsigned int count = 0;
1422
1423 for (c = elt->children; c ; c = c->sibling)
1424 count += sum_instantiated_sizes (c, sizep);
1425
1426 return count;
1427 }
1428 }
1429
1430 /* Instantiate fields in ELT->TYPE that are not currently present as
1431 children of ELT. */
1432
1433 static void instantiate_missing_elements (struct sra_elt *elt);
1434
1435 static struct sra_elt *
1436 instantiate_missing_elements_1 (struct sra_elt *elt, tree child, tree type)
1437 {
1438 struct sra_elt *sub = lookup_element (elt, child, type, INSERT);
1439 if (sub->is_scalar)
1440 {
1441 if (sub->replacement == NULL)
1442 instantiate_element (sub);
1443 }
1444 else
1445 instantiate_missing_elements (sub);
1446 return sub;
1447 }
1448
1449 /* Obtain the canonical type for field F of ELEMENT. */
1450
1451 static tree
1452 canon_type_for_field (tree f, tree element)
1453 {
1454 tree field_type = TREE_TYPE (f);
1455
1456 /* canonicalize_component_ref() unwidens some bit-field types (not
1457 marked as DECL_BIT_FIELD in C++), so we must do the same, lest we
1458 may introduce type mismatches. */
1459 if (INTEGRAL_TYPE_P (field_type)
1460 && DECL_MODE (f) != TYPE_MODE (field_type))
1461 field_type = TREE_TYPE (get_unwidened (build3 (COMPONENT_REF,
1462 field_type,
1463 element,
1464 f, NULL_TREE),
1465 NULL_TREE));
1466
1467 return field_type;
1468 }
1469
1470 /* Look for adjacent fields of ELT starting at F that we'd like to
1471 scalarize as a single variable. Return the last field of the
1472 group. */
1473
1474 static tree
1475 try_instantiate_multiple_fields (struct sra_elt *elt, tree f)
1476 {
1477 int count;
1478 unsigned HOST_WIDE_INT align, bit, size, alchk;
1479 enum machine_mode mode;
1480 tree first = f, prev;
1481 tree type, var;
1482 struct sra_elt *block;
1483
1484 /* Point fields are typically best handled as standalone entities. */
1485 if (POINTER_TYPE_P (TREE_TYPE (f)))
1486 return f;
1487
1488 if (!is_sra_scalar_type (TREE_TYPE (f))
1489 || !host_integerp (DECL_FIELD_OFFSET (f), 1)
1490 || !host_integerp (DECL_FIELD_BIT_OFFSET (f), 1)
1491 || !host_integerp (DECL_SIZE (f), 1)
1492 || lookup_element (elt, f, NULL, NO_INSERT))
1493 return f;
1494
1495 block = elt;
1496
1497 /* For complex and array objects, there are going to be integer
1498 literals as child elements. In this case, we can't just take the
1499 alignment and mode of the decl, so we instead rely on the element
1500 type.
1501
1502 ??? We could try to infer additional alignment from the full
1503 object declaration and the location of the sub-elements we're
1504 accessing. */
1505 for (count = 0; !DECL_P (block->element); count++)
1506 block = block->parent;
1507
1508 align = DECL_ALIGN (block->element);
1509 alchk = GET_MODE_BITSIZE (DECL_MODE (block->element));
1510
1511 if (count)
1512 {
1513 type = TREE_TYPE (block->element);
1514 while (count--)
1515 type = TREE_TYPE (type);
1516
1517 align = TYPE_ALIGN (type);
1518 alchk = GET_MODE_BITSIZE (TYPE_MODE (type));
1519 }
1520
1521 if (align < alchk)
1522 align = alchk;
1523
1524 /* Coalescing wider fields is probably pointless and
1525 inefficient. */
1526 if (align > BITS_PER_WORD)
1527 align = BITS_PER_WORD;
1528
1529 bit = tree_low_cst (DECL_FIELD_OFFSET (f), 1) * BITS_PER_UNIT
1530 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f), 1);
1531 size = tree_low_cst (DECL_SIZE (f), 1);
1532
1533 alchk = align - 1;
1534 alchk = ~alchk;
1535
1536 if ((bit & alchk) != ((bit + size - 1) & alchk))
1537 return f;
1538
1539 /* Find adjacent fields in the same alignment word. */
1540
1541 for (prev = f, f = TREE_CHAIN (f);
1542 f && TREE_CODE (f) == FIELD_DECL
1543 && is_sra_scalar_type (TREE_TYPE (f))
1544 && host_integerp (DECL_FIELD_OFFSET (f), 1)
1545 && host_integerp (DECL_FIELD_BIT_OFFSET (f), 1)
1546 && host_integerp (DECL_SIZE (f), 1)
1547 && !lookup_element (elt, f, NULL, NO_INSERT);
1548 prev = f, f = TREE_CHAIN (f))
1549 {
1550 unsigned HOST_WIDE_INT nbit, nsize;
1551
1552 nbit = tree_low_cst (DECL_FIELD_OFFSET (f), 1) * BITS_PER_UNIT
1553 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f), 1);
1554 nsize = tree_low_cst (DECL_SIZE (f), 1);
1555
1556 if (bit + size == nbit)
1557 {
1558 if ((bit & alchk) != ((nbit + nsize - 1) & alchk))
1559 {
1560 /* If we're at an alignment boundary, don't bother
1561 growing alignment such that we can include this next
1562 field. */
1563 if ((nbit & alchk)
1564 || GET_MODE_BITSIZE (DECL_MODE (f)) <= align)
1565 break;
1566
1567 align = GET_MODE_BITSIZE (DECL_MODE (f));
1568 alchk = align - 1;
1569 alchk = ~alchk;
1570
1571 if ((bit & alchk) != ((nbit + nsize - 1) & alchk))
1572 break;
1573 }
1574 size += nsize;
1575 }
1576 else if (nbit + nsize == bit)
1577 {
1578 if ((nbit & alchk) != ((bit + size - 1) & alchk))
1579 {
1580 if ((bit & alchk)
1581 || GET_MODE_BITSIZE (DECL_MODE (f)) <= align)
1582 break;
1583
1584 align = GET_MODE_BITSIZE (DECL_MODE (f));
1585 alchk = align - 1;
1586 alchk = ~alchk;
1587
1588 if ((nbit & alchk) != ((bit + size - 1) & alchk))
1589 break;
1590 }
1591 bit = nbit;
1592 size += nsize;
1593 }
1594 else
1595 break;
1596 }
1597
1598 f = prev;
1599
1600 if (f == first)
1601 return f;
1602
1603 gcc_assert ((bit & alchk) == ((bit + size - 1) & alchk));
1604
1605 /* Try to widen the bit range so as to cover padding bits as well. */
1606
1607 if ((bit & ~alchk) || size != align)
1608 {
1609 unsigned HOST_WIDE_INT mbit = bit & alchk;
1610 unsigned HOST_WIDE_INT msize = align;
1611
1612 for (f = TYPE_FIELDS (elt->type);
1613 f; f = TREE_CHAIN (f))
1614 {
1615 unsigned HOST_WIDE_INT fbit, fsize;
1616
1617 /* Skip the fields from first to prev. */
1618 if (f == first)
1619 {
1620 f = prev;
1621 continue;
1622 }
1623
1624 if (!(TREE_CODE (f) == FIELD_DECL
1625 && host_integerp (DECL_FIELD_OFFSET (f), 1)
1626 && host_integerp (DECL_FIELD_BIT_OFFSET (f), 1)))
1627 continue;
1628
1629 fbit = tree_low_cst (DECL_FIELD_OFFSET (f), 1) * BITS_PER_UNIT
1630 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f), 1);
1631
1632 /* If we're past the selected word, we're fine. */
1633 if ((bit & alchk) < (fbit & alchk))
1634 continue;
1635
1636 if (host_integerp (DECL_SIZE (f), 1))
1637 fsize = tree_low_cst (DECL_SIZE (f), 1);
1638 else
1639 /* Assume a variable-sized field takes up all space till
1640 the end of the word. ??? Endianness issues? */
1641 fsize = align - (fbit & alchk);
1642
1643 if ((fbit & alchk) < (bit & alchk))
1644 {
1645 /* A large field might start at a previous word and
1646 extend into the selected word. Exclude those
1647 bits. ??? Endianness issues? */
1648 HOST_WIDE_INT diff = fbit + fsize - mbit;
1649
1650 if (diff <= 0)
1651 continue;
1652
1653 mbit += diff;
1654 msize -= diff;
1655 }
1656 else
1657 {
1658 /* Non-overlapping, great. */
1659 if (fbit + fsize <= mbit
1660 || mbit + msize <= fbit)
1661 continue;
1662
1663 if (fbit <= mbit)
1664 {
1665 unsigned HOST_WIDE_INT diff = fbit + fsize - mbit;
1666 mbit += diff;
1667 msize -= diff;
1668 }
1669 else if (fbit > mbit)
1670 msize -= (mbit + msize - fbit);
1671 else
1672 gcc_unreachable ();
1673 }
1674 }
1675
1676 bit = mbit;
1677 size = msize;
1678 }
1679
1680 /* Now we know the bit range we're interested in. Find the smallest
1681 machine mode we can use to access it. */
1682
1683 for (mode = smallest_mode_for_size (size, MODE_INT);
1684 ;
1685 mode = GET_MODE_WIDER_MODE (mode))
1686 {
1687 gcc_assert (mode != VOIDmode);
1688
1689 alchk = GET_MODE_PRECISION (mode) - 1;
1690 alchk = ~alchk;
1691
1692 if ((bit & alchk) == ((bit + size - 1) & alchk))
1693 break;
1694 }
1695
1696 gcc_assert (~alchk < align);
1697
1698 /* Create the field group as a single variable. */
1699
1700 /* We used to create a type for the mode above, but size turns
1701 to be out not of mode-size. As we need a matching type
1702 to build a BIT_FIELD_REF, use a nonstandard integer type as
1703 fallback. */
1704 type = lang_hooks.types.type_for_size (size, 1);
1705 if (!type || TYPE_PRECISION (type) != size)
1706 type = build_nonstandard_integer_type (size, 1);
1707 gcc_assert (type);
1708 var = build3 (BIT_FIELD_REF, type, NULL_TREE,
1709 bitsize_int (size), bitsize_int (bit));
1710
1711 block = instantiate_missing_elements_1 (elt, var, type);
1712 gcc_assert (block && block->is_scalar);
1713
1714 var = block->replacement;
1715
1716 if ((bit & ~alchk)
1717 || (HOST_WIDE_INT)size != tree_low_cst (DECL_SIZE (var), 1))
1718 {
1719 block->replacement = fold_build3 (BIT_FIELD_REF,
1720 TREE_TYPE (block->element), var,
1721 bitsize_int (size),
1722 bitsize_int (bit & ~alchk));
1723 }
1724
1725 block->in_bitfld_block = 2;
1726
1727 /* Add the member fields to the group, such that they access
1728 portions of the group variable. */
1729
1730 for (f = first; f != TREE_CHAIN (prev); f = TREE_CHAIN (f))
1731 {
1732 tree field_type = canon_type_for_field (f, elt->element);
1733 struct sra_elt *fld = lookup_element (block, f, field_type, INSERT);
1734
1735 gcc_assert (fld && fld->is_scalar && !fld->replacement);
1736
1737 fld->replacement = fold_build3 (BIT_FIELD_REF, field_type, var,
1738 DECL_SIZE (f),
1739 bitsize_int
1740 ((TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f))
1741 * BITS_PER_UNIT
1742 + (TREE_INT_CST_LOW
1743 (DECL_FIELD_BIT_OFFSET (f))))
1744 & ~alchk));
1745 fld->in_bitfld_block = 1;
1746 }
1747
1748 return prev;
1749 }
1750
1751 static void
1752 instantiate_missing_elements (struct sra_elt *elt)
1753 {
1754 tree type = elt->type;
1755
1756 switch (TREE_CODE (type))
1757 {
1758 case RECORD_TYPE:
1759 {
1760 tree f;
1761 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
1762 if (TREE_CODE (f) == FIELD_DECL)
1763 {
1764 tree last = try_instantiate_multiple_fields (elt, f);
1765
1766 if (last != f)
1767 {
1768 f = last;
1769 continue;
1770 }
1771
1772 instantiate_missing_elements_1 (elt, f,
1773 canon_type_for_field
1774 (f, elt->element));
1775 }
1776 break;
1777 }
1778
1779 case ARRAY_TYPE:
1780 {
1781 tree i, max, subtype;
1782
1783 i = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
1784 max = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
1785 subtype = TREE_TYPE (type);
1786
1787 while (1)
1788 {
1789 instantiate_missing_elements_1 (elt, i, subtype);
1790 if (tree_int_cst_equal (i, max))
1791 break;
1792 i = int_const_binop (PLUS_EXPR, i, integer_one_node, true);
1793 }
1794
1795 break;
1796 }
1797
1798 case COMPLEX_TYPE:
1799 type = TREE_TYPE (type);
1800 instantiate_missing_elements_1 (elt, integer_zero_node, type);
1801 instantiate_missing_elements_1 (elt, integer_one_node, type);
1802 break;
1803
1804 default:
1805 gcc_unreachable ();
1806 }
1807 }
1808
1809 /* Return true if there is only one non aggregate field in the record, TYPE.
1810 Return false otherwise. */
1811
1812 static bool
1813 single_scalar_field_in_record_p (tree type)
1814 {
1815 int num_fields = 0;
1816 tree field;
1817 if (TREE_CODE (type) != RECORD_TYPE)
1818 return false;
1819
1820 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1821 if (TREE_CODE (field) == FIELD_DECL)
1822 {
1823 num_fields++;
1824
1825 if (num_fields == 2)
1826 return false;
1827
1828 if (AGGREGATE_TYPE_P (TREE_TYPE (field)))
1829 return false;
1830 }
1831
1832 return true;
1833 }
1834
1835 /* Make one pass across an element tree deciding whether to perform block
1836 or element copies. If we decide on element copies, instantiate all
1837 elements. Return true if there are any instantiated sub-elements. */
1838
1839 static bool
1840 decide_block_copy (struct sra_elt *elt)
1841 {
1842 struct sra_elt *c;
1843 bool any_inst;
1844
1845 /* We shouldn't be invoked on groups of sub-elements as they must
1846 behave like their parent as far as block copy is concerned. */
1847 gcc_assert (!elt->is_group);
1848
1849 /* If scalarization is disabled, respect it. */
1850 if (elt->cannot_scalarize)
1851 {
1852 elt->use_block_copy = 1;
1853
1854 if (dump_file)
1855 {
1856 fputs ("Scalarization disabled for ", dump_file);
1857 dump_sra_elt_name (dump_file, elt);
1858 fputc ('\n', dump_file);
1859 }
1860
1861 /* Disable scalarization of sub-elements */
1862 for (c = elt->children; c; c = c->sibling)
1863 {
1864 c->cannot_scalarize = 1;
1865 decide_block_copy (c);
1866 }
1867
1868 /* Groups behave like their parent. */
1869 for (c = elt->groups; c; c = c->sibling)
1870 {
1871 c->cannot_scalarize = 1;
1872 c->use_block_copy = 1;
1873 }
1874
1875 return false;
1876 }
1877
1878 /* Don't decide if we've no uses and no groups. */
1879 if (elt->n_uses == 0 && elt->n_copies == 0 && elt->groups == NULL)
1880 ;
1881
1882 else if (!elt->is_scalar)
1883 {
1884 tree size_tree = TYPE_SIZE_UNIT (elt->type);
1885 bool use_block_copy = true;
1886
1887 /* Tradeoffs for COMPLEX types pretty much always make it better
1888 to go ahead and split the components. */
1889 if (TREE_CODE (elt->type) == COMPLEX_TYPE)
1890 use_block_copy = false;
1891
1892 /* Don't bother trying to figure out the rest if the structure is
1893 so large we can't do easy arithmetic. This also forces block
1894 copies for variable sized structures. */
1895 else if (host_integerp (size_tree, 1))
1896 {
1897 unsigned HOST_WIDE_INT full_size, inst_size = 0;
1898 unsigned int max_size, max_count, inst_count, full_count;
1899
1900 /* If the sra-max-structure-size parameter is 0, then the
1901 user has not overridden the parameter and we can choose a
1902 sensible default. */
1903 max_size = SRA_MAX_STRUCTURE_SIZE
1904 ? SRA_MAX_STRUCTURE_SIZE
1905 : MOVE_RATIO (optimize_function_for_speed_p (cfun)) * UNITS_PER_WORD;
1906 max_count = SRA_MAX_STRUCTURE_COUNT
1907 ? SRA_MAX_STRUCTURE_COUNT
1908 : MOVE_RATIO (optimize_function_for_speed_p (cfun));
1909
1910 full_size = tree_low_cst (size_tree, 1);
1911 full_count = count_type_elements (elt->type, false);
1912 inst_count = sum_instantiated_sizes (elt, &inst_size);
1913
1914 /* If there is only one scalar field in the record, don't block copy. */
1915 if (single_scalar_field_in_record_p (elt->type))
1916 use_block_copy = false;
1917
1918 /* ??? What to do here. If there are two fields, and we've only
1919 instantiated one, then instantiating the other is clearly a win.
1920 If there are a large number of fields then the size of the copy
1921 is much more of a factor. */
1922
1923 /* If the structure is small, and we've made copies, go ahead
1924 and instantiate, hoping that the copies will go away. */
1925 if (full_size <= max_size
1926 && (full_count - inst_count) <= max_count
1927 && elt->n_copies > elt->n_uses)
1928 use_block_copy = false;
1929 else if (inst_count * 100 >= full_count * SRA_FIELD_STRUCTURE_RATIO
1930 && inst_size * 100 >= full_size * SRA_FIELD_STRUCTURE_RATIO)
1931 use_block_copy = false;
1932
1933 /* In order to avoid block copy, we have to be able to instantiate
1934 all elements of the type. See if this is possible. */
1935 if (!use_block_copy
1936 && (!can_completely_scalarize_p (elt)
1937 || !type_can_instantiate_all_elements (elt->type)))
1938 use_block_copy = true;
1939 }
1940
1941 elt->use_block_copy = use_block_copy;
1942
1943 /* Groups behave like their parent. */
1944 for (c = elt->groups; c; c = c->sibling)
1945 c->use_block_copy = use_block_copy;
1946
1947 if (dump_file)
1948 {
1949 fprintf (dump_file, "Using %s for ",
1950 use_block_copy ? "block-copy" : "element-copy");
1951 dump_sra_elt_name (dump_file, elt);
1952 fputc ('\n', dump_file);
1953 }
1954
1955 if (!use_block_copy)
1956 {
1957 instantiate_missing_elements (elt);
1958 return true;
1959 }
1960 }
1961
1962 any_inst = elt->replacement != NULL;
1963
1964 for (c = elt->children; c ; c = c->sibling)
1965 any_inst |= decide_block_copy (c);
1966
1967 return any_inst;
1968 }
1969
1970 /* Entry point to phase 3. Instantiate scalar replacement variables. */
1971
1972 static void
1973 decide_instantiations (void)
1974 {
1975 unsigned int i;
1976 bool cleared_any;
1977 bitmap_head done_head;
1978 bitmap_iterator bi;
1979
1980 /* We cannot clear bits from a bitmap we're iterating over,
1981 so save up all the bits to clear until the end. */
1982 bitmap_initialize (&done_head, &bitmap_default_obstack);
1983 cleared_any = false;
1984
1985 EXECUTE_IF_SET_IN_BITMAP (sra_candidates, 0, i, bi)
1986 {
1987 tree var = referenced_var (i);
1988 struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
1989 if (elt)
1990 {
1991 decide_instantiation_1 (elt, 0, 0);
1992 if (!decide_block_copy (elt))
1993 elt = NULL;
1994 }
1995 if (!elt)
1996 {
1997 bitmap_set_bit (&done_head, i);
1998 cleared_any = true;
1999 }
2000 }
2001
2002 if (cleared_any)
2003 {
2004 bitmap_and_compl_into (sra_candidates, &done_head);
2005 bitmap_and_compl_into (needs_copy_in, &done_head);
2006 }
2007 bitmap_clear (&done_head);
2008
2009 mark_set_for_renaming (sra_candidates);
2010
2011 if (dump_file)
2012 fputc ('\n', dump_file);
2013 }
2014
2015 \f
2016 /* Phase Four: Update the function to match the replacements created. */
2017
2018 /* Mark all the variables in VDEF/VUSE operators for STMT for
2019 renaming. This becomes necessary when we modify all of a
2020 non-scalar. */
2021
2022 static void
2023 mark_all_v_defs_stmt (gimple stmt)
2024 {
2025 tree sym;
2026 ssa_op_iter iter;
2027
2028 update_stmt_if_modified (stmt);
2029
2030 FOR_EACH_SSA_TREE_OPERAND (sym, stmt, iter, SSA_OP_ALL_VIRTUALS)
2031 {
2032 if (TREE_CODE (sym) == SSA_NAME)
2033 sym = SSA_NAME_VAR (sym);
2034 mark_sym_for_renaming (sym);
2035 }
2036 }
2037
2038
2039 /* Mark all the variables in virtual operands in all the statements in
2040 LIST for renaming. */
2041
2042 static void
2043 mark_all_v_defs_seq (gimple_seq seq)
2044 {
2045 gimple_stmt_iterator gsi;
2046
2047 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
2048 mark_all_v_defs_stmt (gsi_stmt (gsi));
2049 }
2050
2051 /* Mark every replacement under ELT with TREE_NO_WARNING. */
2052
2053 static void
2054 mark_no_warning (struct sra_elt *elt)
2055 {
2056 if (!elt->all_no_warning)
2057 {
2058 if (elt->replacement)
2059 TREE_NO_WARNING (elt->replacement) = 1;
2060 else
2061 {
2062 struct sra_elt *c;
2063 FOR_EACH_ACTUAL_CHILD (c, elt)
2064 mark_no_warning (c);
2065 }
2066 elt->all_no_warning = true;
2067 }
2068 }
2069
2070 /* Build a single level component reference to ELT rooted at BASE. */
2071
2072 static tree
2073 generate_one_element_ref (struct sra_elt *elt, tree base)
2074 {
2075 switch (TREE_CODE (TREE_TYPE (base)))
2076 {
2077 case RECORD_TYPE:
2078 {
2079 tree field = elt->element;
2080
2081 /* We can't test elt->in_bitfld_block here because, when this is
2082 called from instantiate_element, we haven't set this field
2083 yet. */
2084 if (TREE_CODE (field) == BIT_FIELD_REF)
2085 {
2086 tree ret = unshare_expr (field);
2087 TREE_OPERAND (ret, 0) = base;
2088 return ret;
2089 }
2090
2091 /* Watch out for compatible records with differing field lists. */
2092 if (DECL_FIELD_CONTEXT (field) != TYPE_MAIN_VARIANT (TREE_TYPE (base)))
2093 field = find_compatible_field (TREE_TYPE (base), field);
2094
2095 return build3 (COMPONENT_REF, elt->type, base, field, NULL);
2096 }
2097
2098 case ARRAY_TYPE:
2099 if (TREE_CODE (elt->element) == RANGE_EXPR)
2100 return build4 (ARRAY_RANGE_REF, elt->type, base,
2101 TREE_OPERAND (elt->element, 0), NULL, NULL);
2102 else
2103 return build4 (ARRAY_REF, elt->type, base, elt->element, NULL, NULL);
2104
2105 case COMPLEX_TYPE:
2106 if (elt->element == integer_zero_node)
2107 return build1 (REALPART_EXPR, elt->type, base);
2108 else
2109 return build1 (IMAGPART_EXPR, elt->type, base);
2110
2111 default:
2112 gcc_unreachable ();
2113 }
2114 }
2115
2116 /* Build a full component reference to ELT rooted at its native variable. */
2117
2118 static tree
2119 generate_element_ref (struct sra_elt *elt)
2120 {
2121 if (elt->parent)
2122 return generate_one_element_ref (elt, generate_element_ref (elt->parent));
2123 else
2124 return elt->element;
2125 }
2126
2127 /* Return true if BF is a bit-field that we can handle like a scalar. */
2128
2129 static bool
2130 scalar_bitfield_p (tree bf)
2131 {
2132 return (TREE_CODE (bf) == BIT_FIELD_REF
2133 && (is_gimple_reg (TREE_OPERAND (bf, 0))
2134 || (TYPE_MODE (TREE_TYPE (TREE_OPERAND (bf, 0))) != BLKmode
2135 && (!TREE_SIDE_EFFECTS (TREE_OPERAND (bf, 0))
2136 || (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE
2137 (TREE_OPERAND (bf, 0))))
2138 <= BITS_PER_WORD)))));
2139 }
2140
2141 /* Create an assignment statement from SRC to DST. */
2142
2143 static gimple_seq
2144 sra_build_assignment (tree dst, tree src)
2145 {
2146 gimple stmt;
2147 gimple_seq seq = NULL, seq2 = NULL;
2148 /* Turning BIT_FIELD_REFs into bit operations enables other passes
2149 to do a much better job at optimizing the code.
2150 From dst = BIT_FIELD_REF <var, sz, off> we produce
2151
2152 SR.1 = (scalar type) var;
2153 SR.2 = SR.1 >> off;
2154 SR.3 = SR.2 & ((1 << sz) - 1);
2155 ... possible sign extension of SR.3 ...
2156 dst = (destination type) SR.3;
2157 */
2158 if (scalar_bitfield_p (src))
2159 {
2160 tree var, shift, width;
2161 tree utype, stype;
2162 bool unsignedp = (INTEGRAL_TYPE_P (TREE_TYPE (src))
2163 ? TYPE_UNSIGNED (TREE_TYPE (src)) : true);
2164 struct gimplify_ctx gctx;
2165
2166 var = TREE_OPERAND (src, 0);
2167 width = TREE_OPERAND (src, 1);
2168 /* The offset needs to be adjusted to a right shift quantity
2169 depending on the endianness. */
2170 if (BYTES_BIG_ENDIAN)
2171 {
2172 tree tmp = size_binop (PLUS_EXPR, width, TREE_OPERAND (src, 2));
2173 shift = size_binop (MINUS_EXPR, TYPE_SIZE (TREE_TYPE (var)), tmp);
2174 }
2175 else
2176 shift = TREE_OPERAND (src, 2);
2177
2178 /* In weird cases we have non-integral types for the source or
2179 destination object.
2180 ??? For unknown reasons we also want an unsigned scalar type. */
2181 stype = TREE_TYPE (var);
2182 if (!INTEGRAL_TYPE_P (stype))
2183 stype = lang_hooks.types.type_for_size (TREE_INT_CST_LOW
2184 (TYPE_SIZE (stype)), 1);
2185 else if (!TYPE_UNSIGNED (stype))
2186 stype = unsigned_type_for (stype);
2187
2188 utype = TREE_TYPE (dst);
2189 if (!INTEGRAL_TYPE_P (utype))
2190 utype = lang_hooks.types.type_for_size (TREE_INT_CST_LOW
2191 (TYPE_SIZE (utype)), 1);
2192 else if (!TYPE_UNSIGNED (utype))
2193 utype = unsigned_type_for (utype);
2194
2195 /* Convert the base var of the BIT_FIELD_REF to the scalar type
2196 we use for computation if we cannot use it directly. */
2197 if (INTEGRAL_TYPE_P (TREE_TYPE (var)))
2198 var = fold_convert (stype, var);
2199 else
2200 var = fold_build1 (VIEW_CONVERT_EXPR, stype, var);
2201
2202 if (!integer_zerop (shift))
2203 var = fold_build2 (RSHIFT_EXPR, stype, var, shift);
2204
2205 /* If we need a masking operation, produce one. */
2206 if (TREE_INT_CST_LOW (width) == TYPE_PRECISION (stype))
2207 unsignedp = true;
2208 else
2209 {
2210 tree one = build_int_cst_wide (stype, 1, 0);
2211 tree mask = int_const_binop (LSHIFT_EXPR, one, width, 0);
2212 mask = int_const_binop (MINUS_EXPR, mask, one, 0);
2213 var = fold_build2 (BIT_AND_EXPR, stype, var, mask);
2214 }
2215
2216 /* After shifting and masking, convert to the target type. */
2217 var = fold_convert (utype, var);
2218
2219 /* Perform sign extension, if required.
2220 ??? This should never be necessary. */
2221 if (!unsignedp)
2222 {
2223 tree signbit = int_const_binop (LSHIFT_EXPR,
2224 build_int_cst_wide (utype, 1, 0),
2225 size_binop (MINUS_EXPR, width,
2226 bitsize_int (1)), 0);
2227
2228 var = fold_build2 (BIT_XOR_EXPR, utype, var, signbit);
2229 var = fold_build2 (MINUS_EXPR, utype, var, signbit);
2230 }
2231
2232 /* fold_build3 (BIT_FIELD_REF, ...) sometimes returns a cast. */
2233 STRIP_NOPS (dst);
2234
2235 /* Finally, move and convert to the destination. */
2236 if (INTEGRAL_TYPE_P (TREE_TYPE (dst)))
2237 var = fold_convert (TREE_TYPE (dst), var);
2238 else
2239 var = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (dst), var);
2240
2241 push_gimplify_context (&gctx);
2242 gctx.into_ssa = true;
2243 gctx.allow_rhs_cond_expr = true;
2244
2245 gimplify_assign (dst, var, &seq);
2246
2247 if (gimple_referenced_vars (cfun))
2248 for (var = gctx.temps; var; var = TREE_CHAIN (var))
2249 add_referenced_var (var);
2250 pop_gimplify_context (NULL);
2251
2252 return seq;
2253 }
2254
2255 /* fold_build3 (BIT_FIELD_REF, ...) sometimes returns a cast. */
2256 if (CONVERT_EXPR_P (dst))
2257 {
2258 STRIP_NOPS (dst);
2259 src = fold_convert (TREE_TYPE (dst), src);
2260 }
2261 /* It was hoped that we could perform some type sanity checking
2262 here, but since front-ends can emit accesses of fields in types
2263 different from their nominal types and copy structures containing
2264 them as a whole, we'd have to handle such differences here.
2265 Since such accesses under different types require compatibility
2266 anyway, there's little point in making tests and/or adding
2267 conversions to ensure the types of src and dst are the same.
2268 So we just assume type differences at this point are ok.
2269 The only exception we make here are pointer types, which can be different
2270 in e.g. structurally equal, but non-identical RECORD_TYPEs. */
2271 else if (POINTER_TYPE_P (TREE_TYPE (dst))
2272 && !useless_type_conversion_p (TREE_TYPE (dst), TREE_TYPE (src)))
2273 src = fold_convert (TREE_TYPE (dst), src);
2274
2275 /* ??? Only call the gimplifier if we need to. Otherwise we may
2276 end up substituting with DECL_VALUE_EXPR - see PR37380. */
2277 if (!handled_component_p (src)
2278 && !SSA_VAR_P (src))
2279 {
2280 src = force_gimple_operand (src, &seq2, false, NULL_TREE);
2281 gimple_seq_add_seq (&seq, seq2);
2282 }
2283 stmt = gimple_build_assign (dst, src);
2284 gimple_seq_add_stmt (&seq, stmt);
2285 return seq;
2286 }
2287
2288 /* BIT_FIELD_REFs must not be shared. sra_build_elt_assignment()
2289 takes care of assignments, but we must create copies for uses. */
2290 #define REPLDUP(t) (TREE_CODE (t) != BIT_FIELD_REF ? (t) : unshare_expr (t))
2291
2292 /* Emit an assignment from SRC to DST, but if DST is a scalarizable
2293 BIT_FIELD_REF, turn it into bit operations. */
2294
2295 static gimple_seq
2296 sra_build_bf_assignment (tree dst, tree src)
2297 {
2298 tree var, type, utype, tmp, tmp2, tmp3;
2299 gimple_seq seq;
2300 gimple stmt;
2301 tree cst, cst2, mask;
2302 tree minshift, maxshift;
2303
2304 if (TREE_CODE (dst) != BIT_FIELD_REF)
2305 return sra_build_assignment (dst, src);
2306
2307 var = TREE_OPERAND (dst, 0);
2308
2309 if (!scalar_bitfield_p (dst))
2310 return sra_build_assignment (REPLDUP (dst), src);
2311
2312 seq = NULL;
2313
2314 cst = fold_convert (bitsizetype, TREE_OPERAND (dst, 2));
2315 cst2 = size_binop (PLUS_EXPR,
2316 fold_convert (bitsizetype, TREE_OPERAND (dst, 1)),
2317 cst);
2318
2319 if (BYTES_BIG_ENDIAN)
2320 {
2321 maxshift = size_binop (MINUS_EXPR, TYPE_SIZE (TREE_TYPE (var)), cst);
2322 minshift = size_binop (MINUS_EXPR, TYPE_SIZE (TREE_TYPE (var)), cst2);
2323 }
2324 else
2325 {
2326 maxshift = cst2;
2327 minshift = cst;
2328 }
2329
2330 type = TREE_TYPE (var);
2331 if (!INTEGRAL_TYPE_P (type))
2332 type = lang_hooks.types.type_for_size
2333 (TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (var))), 1);
2334 if (TYPE_UNSIGNED (type))
2335 utype = type;
2336 else
2337 utype = unsigned_type_for (type);
2338
2339 mask = build_int_cst_wide (utype, 1, 0);
2340 if (TREE_INT_CST_LOW (maxshift) == TYPE_PRECISION (utype))
2341 cst = build_int_cst_wide (utype, 0, 0);
2342 else
2343 cst = int_const_binop (LSHIFT_EXPR, mask, maxshift, true);
2344 if (integer_zerop (minshift))
2345 cst2 = mask;
2346 else
2347 cst2 = int_const_binop (LSHIFT_EXPR, mask, minshift, true);
2348 mask = int_const_binop (MINUS_EXPR, cst, cst2, true);
2349 mask = fold_build1 (BIT_NOT_EXPR, utype, mask);
2350
2351 if (TYPE_MAIN_VARIANT (utype) != TYPE_MAIN_VARIANT (TREE_TYPE (var))
2352 && !integer_zerop (mask))
2353 {
2354 tmp = var;
2355 if (!is_gimple_variable (tmp))
2356 tmp = unshare_expr (var);
2357
2358 tmp2 = make_rename_temp (utype, "SR");
2359
2360 if (INTEGRAL_TYPE_P (TREE_TYPE (var)))
2361 stmt = gimple_build_assign (tmp2, fold_convert (utype, tmp));
2362 else
2363 stmt = gimple_build_assign (tmp2, fold_build1 (VIEW_CONVERT_EXPR,
2364 utype, tmp));
2365 gimple_seq_add_stmt (&seq, stmt);
2366 }
2367 else
2368 tmp2 = var;
2369
2370 if (!integer_zerop (mask))
2371 {
2372 tmp = make_rename_temp (utype, "SR");
2373 stmt = gimple_build_assign (tmp, fold_build2 (BIT_AND_EXPR, utype,
2374 tmp2, mask));
2375 gimple_seq_add_stmt (&seq, stmt);
2376 }
2377 else
2378 tmp = mask;
2379
2380 if (is_gimple_reg (src) && INTEGRAL_TYPE_P (TREE_TYPE (src)))
2381 tmp2 = src;
2382 else if (INTEGRAL_TYPE_P (TREE_TYPE (src)))
2383 {
2384 gimple_seq tmp_seq;
2385 tmp2 = make_rename_temp (TREE_TYPE (src), "SR");
2386 tmp_seq = sra_build_assignment (tmp2, src);
2387 gimple_seq_add_seq (&seq, tmp_seq);
2388 }
2389 else
2390 {
2391 gimple_seq tmp_seq;
2392 tmp2 = make_rename_temp
2393 (lang_hooks.types.type_for_size
2394 (TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (src))),
2395 1), "SR");
2396 tmp_seq = sra_build_assignment (tmp2, fold_build1 (VIEW_CONVERT_EXPR,
2397 TREE_TYPE (tmp2), src));
2398 gimple_seq_add_seq (&seq, tmp_seq);
2399 }
2400
2401 if (!TYPE_UNSIGNED (TREE_TYPE (tmp2)))
2402 {
2403 gimple_seq tmp_seq;
2404 tree ut = unsigned_type_for (TREE_TYPE (tmp2));
2405 tmp3 = make_rename_temp (ut, "SR");
2406 tmp2 = fold_convert (ut, tmp2);
2407 tmp_seq = sra_build_assignment (tmp3, tmp2);
2408 gimple_seq_add_seq (&seq, tmp_seq);
2409
2410 tmp2 = fold_build1 (BIT_NOT_EXPR, utype, mask);
2411 tmp2 = int_const_binop (RSHIFT_EXPR, tmp2, minshift, true);
2412 tmp2 = fold_convert (ut, tmp2);
2413 tmp2 = fold_build2 (BIT_AND_EXPR, ut, tmp3, tmp2);
2414
2415 if (tmp3 != tmp2)
2416 {
2417 tmp3 = make_rename_temp (ut, "SR");
2418 tmp_seq = sra_build_assignment (tmp3, tmp2);
2419 gimple_seq_add_seq (&seq, tmp_seq);
2420 }
2421
2422 tmp2 = tmp3;
2423 }
2424
2425 if (TYPE_MAIN_VARIANT (TREE_TYPE (tmp2)) != TYPE_MAIN_VARIANT (utype))
2426 {
2427 gimple_seq tmp_seq;
2428 tmp3 = make_rename_temp (utype, "SR");
2429 tmp2 = fold_convert (utype, tmp2);
2430 tmp_seq = sra_build_assignment (tmp3, tmp2);
2431 gimple_seq_add_seq (&seq, tmp_seq);
2432 tmp2 = tmp3;
2433 }
2434
2435 if (!integer_zerop (minshift))
2436 {
2437 tmp3 = make_rename_temp (utype, "SR");
2438 stmt = gimple_build_assign (tmp3, fold_build2 (LSHIFT_EXPR, utype,
2439 tmp2, minshift));
2440 gimple_seq_add_stmt (&seq, stmt);
2441 tmp2 = tmp3;
2442 }
2443
2444 if (utype != TREE_TYPE (var))
2445 tmp3 = make_rename_temp (utype, "SR");
2446 else
2447 tmp3 = var;
2448 stmt = gimple_build_assign (tmp3, fold_build2 (BIT_IOR_EXPR, utype,
2449 tmp, tmp2));
2450 gimple_seq_add_stmt (&seq, stmt);
2451
2452 if (tmp3 != var)
2453 {
2454 if (TREE_TYPE (var) == type)
2455 stmt = gimple_build_assign (var, fold_convert (type, tmp3));
2456 else
2457 stmt = gimple_build_assign (var, fold_build1 (VIEW_CONVERT_EXPR,
2458 TREE_TYPE (var), tmp3));
2459 gimple_seq_add_stmt (&seq, stmt);
2460 }
2461
2462 return seq;
2463 }
2464
2465 /* Expand an assignment of SRC to the scalarized representation of
2466 ELT. If it is a field group, try to widen the assignment to cover
2467 the full variable. */
2468
2469 static gimple_seq
2470 sra_build_elt_assignment (struct sra_elt *elt, tree src)
2471 {
2472 tree dst = elt->replacement;
2473 tree var, tmp, cst, cst2;
2474 gimple stmt;
2475 gimple_seq seq;
2476
2477 if (TREE_CODE (dst) != BIT_FIELD_REF
2478 || !elt->in_bitfld_block)
2479 return sra_build_assignment (REPLDUP (dst), src);
2480
2481 var = TREE_OPERAND (dst, 0);
2482
2483 /* Try to widen the assignment to the entire variable.
2484 We need the source to be a BIT_FIELD_REF as well, such that, for
2485 BIT_FIELD_REF<d,sz,dp> = BIT_FIELD_REF<s,sz,sp>,
2486 by design, conditions are met such that we can turn it into
2487 d = BIT_FIELD_REF<s,dw,sp-dp>. */
2488 if (elt->in_bitfld_block == 2
2489 && TREE_CODE (src) == BIT_FIELD_REF)
2490 {
2491 tmp = src;
2492 cst = TYPE_SIZE (TREE_TYPE (var));
2493 cst2 = size_binop (MINUS_EXPR, TREE_OPERAND (src, 2),
2494 TREE_OPERAND (dst, 2));
2495
2496 src = TREE_OPERAND (src, 0);
2497
2498 /* Avoid full-width bit-fields. */
2499 if (integer_zerop (cst2)
2500 && tree_int_cst_equal (cst, TYPE_SIZE (TREE_TYPE (src))))
2501 {
2502 if (INTEGRAL_TYPE_P (TREE_TYPE (src))
2503 && !TYPE_UNSIGNED (TREE_TYPE (src)))
2504 src = fold_convert (unsigned_type_for (TREE_TYPE (src)), src);
2505
2506 /* If a single conversion won't do, we'll need a statement
2507 list. */
2508 if (TYPE_MAIN_VARIANT (TREE_TYPE (var))
2509 != TYPE_MAIN_VARIANT (TREE_TYPE (src)))
2510 {
2511 gimple_seq tmp_seq;
2512 seq = NULL;
2513
2514 if (!INTEGRAL_TYPE_P (TREE_TYPE (src)))
2515 src = fold_build1 (VIEW_CONVERT_EXPR,
2516 lang_hooks.types.type_for_size
2517 (TREE_INT_CST_LOW
2518 (TYPE_SIZE (TREE_TYPE (src))),
2519 1), src);
2520 gcc_assert (TYPE_UNSIGNED (TREE_TYPE (src)));
2521
2522 tmp = make_rename_temp (TREE_TYPE (src), "SR");
2523 stmt = gimple_build_assign (tmp, src);
2524 gimple_seq_add_stmt (&seq, stmt);
2525
2526 tmp_seq = sra_build_assignment (var,
2527 fold_convert (TREE_TYPE (var),
2528 tmp));
2529 gimple_seq_add_seq (&seq, tmp_seq);
2530
2531 return seq;
2532 }
2533
2534 src = fold_convert (TREE_TYPE (var), src);
2535 }
2536 else
2537 {
2538 src = fold_convert (TREE_TYPE (var), tmp);
2539 }
2540
2541 return sra_build_assignment (var, src);
2542 }
2543
2544 return sra_build_bf_assignment (dst, src);
2545 }
2546
2547 /* Generate a set of assignment statements in *LIST_P to copy all
2548 instantiated elements under ELT to or from the equivalent structure
2549 rooted at EXPR. COPY_OUT controls the direction of the copy, with
2550 true meaning to copy out of EXPR into ELT. */
2551
2552 static void
2553 generate_copy_inout (struct sra_elt *elt, bool copy_out, tree expr,
2554 gimple_seq *seq_p)
2555 {
2556 struct sra_elt *c;
2557 gimple_seq tmp_seq;
2558 tree t;
2559
2560 if (!copy_out && TREE_CODE (expr) == SSA_NAME
2561 && TREE_CODE (TREE_TYPE (expr)) == COMPLEX_TYPE)
2562 {
2563 tree r, i;
2564
2565 c = lookup_element (elt, integer_zero_node, NULL, NO_INSERT);
2566 r = c->replacement;
2567 c = lookup_element (elt, integer_one_node, NULL, NO_INSERT);
2568 i = c->replacement;
2569
2570 t = build2 (COMPLEX_EXPR, elt->type, r, i);
2571 tmp_seq = sra_build_bf_assignment (expr, t);
2572 SSA_NAME_DEF_STMT (expr) = gimple_seq_last_stmt (tmp_seq);
2573 gimple_seq_add_seq (seq_p, tmp_seq);
2574 }
2575 else if (elt->replacement)
2576 {
2577 if (copy_out)
2578 tmp_seq = sra_build_elt_assignment (elt, expr);
2579 else
2580 tmp_seq = sra_build_bf_assignment (expr, REPLDUP (elt->replacement));
2581 gimple_seq_add_seq (seq_p, tmp_seq);
2582 }
2583 else
2584 {
2585 FOR_EACH_ACTUAL_CHILD (c, elt)
2586 {
2587 t = generate_one_element_ref (c, unshare_expr (expr));
2588 generate_copy_inout (c, copy_out, t, seq_p);
2589 }
2590 }
2591 }
2592
2593 /* Generate a set of assignment statements in *LIST_P to copy all instantiated
2594 elements under SRC to their counterparts under DST. There must be a 1-1
2595 correspondence of instantiated elements. */
2596
2597 static void
2598 generate_element_copy (struct sra_elt *dst, struct sra_elt *src, gimple_seq *seq_p)
2599 {
2600 struct sra_elt *dc, *sc;
2601
2602 FOR_EACH_ACTUAL_CHILD (dc, dst)
2603 {
2604 sc = lookup_element (src, dc->element, NULL, NO_INSERT);
2605 if (!sc && dc->in_bitfld_block == 2)
2606 {
2607 struct sra_elt *dcs;
2608
2609 FOR_EACH_ACTUAL_CHILD (dcs, dc)
2610 {
2611 sc = lookup_element (src, dcs->element, NULL, NO_INSERT);
2612 gcc_assert (sc);
2613 generate_element_copy (dcs, sc, seq_p);
2614 }
2615
2616 continue;
2617 }
2618
2619 /* If DST and SRC are structs with the same elements, but do not have
2620 the same TYPE_MAIN_VARIANT, then lookup of DST FIELD_DECL in SRC
2621 will fail. Try harder by finding the corresponding FIELD_DECL
2622 in SRC. */
2623 if (!sc)
2624 {
2625 tree f;
2626
2627 gcc_assert (useless_type_conversion_p (dst->type, src->type));
2628 gcc_assert (TREE_CODE (dc->element) == FIELD_DECL);
2629 for (f = TYPE_FIELDS (src->type); f ; f = TREE_CHAIN (f))
2630 if (simple_cst_equal (DECL_FIELD_OFFSET (f),
2631 DECL_FIELD_OFFSET (dc->element)) > 0
2632 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (f),
2633 DECL_FIELD_BIT_OFFSET (dc->element)) > 0
2634 && simple_cst_equal (DECL_SIZE (f),
2635 DECL_SIZE (dc->element)) > 0
2636 && (useless_type_conversion_p (TREE_TYPE (dc->element),
2637 TREE_TYPE (f))
2638 || (POINTER_TYPE_P (TREE_TYPE (dc->element))
2639 && POINTER_TYPE_P (TREE_TYPE (f)))))
2640 break;
2641 gcc_assert (f != NULL_TREE);
2642 sc = lookup_element (src, f, NULL, NO_INSERT);
2643 }
2644
2645 generate_element_copy (dc, sc, seq_p);
2646 }
2647
2648 if (dst->replacement)
2649 {
2650 gimple_seq tmp_seq;
2651
2652 gcc_assert (src->replacement);
2653
2654 tmp_seq = sra_build_elt_assignment (dst, REPLDUP (src->replacement));
2655 gimple_seq_add_seq (seq_p, tmp_seq);
2656 }
2657 }
2658
2659 /* Generate a set of assignment statements in *LIST_P to zero all instantiated
2660 elements under ELT. In addition, do not assign to elements that have been
2661 marked VISITED but do reset the visited flag; this allows easy coordination
2662 with generate_element_init. */
2663
2664 static void
2665 generate_element_zero (struct sra_elt *elt, gimple_seq *seq_p)
2666 {
2667 struct sra_elt *c;
2668
2669 if (elt->visited)
2670 {
2671 elt->visited = false;
2672 return;
2673 }
2674
2675 if (!elt->in_bitfld_block)
2676 FOR_EACH_ACTUAL_CHILD (c, elt)
2677 generate_element_zero (c, seq_p);
2678
2679 if (elt->replacement)
2680 {
2681 tree t;
2682 gimple_seq tmp_seq;
2683
2684 gcc_assert (elt->is_scalar);
2685 t = fold_convert (elt->type, integer_zero_node);
2686
2687 tmp_seq = sra_build_elt_assignment (elt, t);
2688 gimple_seq_add_seq (seq_p, tmp_seq);
2689 }
2690 }
2691
2692 /* Generate an assignment VAR = INIT, where INIT may need gimplification.
2693 Add the result to *LIST_P. */
2694
2695 static void
2696 generate_one_element_init (struct sra_elt *elt, tree init, gimple_seq *seq_p)
2697 {
2698 gimple_seq tmp_seq = sra_build_elt_assignment (elt, init);
2699 gimple_seq_add_seq (seq_p, tmp_seq);
2700 }
2701
2702 /* Generate a set of assignment statements in *LIST_P to set all instantiated
2703 elements under ELT with the contents of the initializer INIT. In addition,
2704 mark all assigned elements VISITED; this allows easy coordination with
2705 generate_element_zero. Return false if we found a case we couldn't
2706 handle. */
2707
2708 static bool
2709 generate_element_init_1 (struct sra_elt *elt, tree init, gimple_seq *seq_p)
2710 {
2711 bool result = true;
2712 enum tree_code init_code;
2713 struct sra_elt *sub;
2714 tree t;
2715 unsigned HOST_WIDE_INT idx;
2716 tree value, purpose;
2717
2718 /* We can be passed DECL_INITIAL of a static variable. It might have a
2719 conversion, which we strip off here. */
2720 STRIP_USELESS_TYPE_CONVERSION (init);
2721 init_code = TREE_CODE (init);
2722
2723 if (elt->is_scalar)
2724 {
2725 if (elt->replacement)
2726 {
2727 generate_one_element_init (elt, init, seq_p);
2728 elt->visited = true;
2729 }
2730 return result;
2731 }
2732
2733 switch (init_code)
2734 {
2735 case COMPLEX_CST:
2736 case COMPLEX_EXPR:
2737 FOR_EACH_ACTUAL_CHILD (sub, elt)
2738 {
2739 if (sub->element == integer_zero_node)
2740 t = (init_code == COMPLEX_EXPR
2741 ? TREE_OPERAND (init, 0) : TREE_REALPART (init));
2742 else
2743 t = (init_code == COMPLEX_EXPR
2744 ? TREE_OPERAND (init, 1) : TREE_IMAGPART (init));
2745 result &= generate_element_init_1 (sub, t, seq_p);
2746 }
2747 break;
2748
2749 case CONSTRUCTOR:
2750 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, purpose, value)
2751 {
2752 /* Array constructors are routinely created with NULL indices. */
2753 if (purpose == NULL_TREE)
2754 {
2755 result = false;
2756 break;
2757 }
2758 if (TREE_CODE (purpose) == RANGE_EXPR)
2759 {
2760 tree lower = TREE_OPERAND (purpose, 0);
2761 tree upper = TREE_OPERAND (purpose, 1);
2762
2763 while (1)
2764 {
2765 sub = lookup_element (elt, lower, NULL, NO_INSERT);
2766 if (sub != NULL)
2767 result &= generate_element_init_1 (sub, value, seq_p);
2768 if (tree_int_cst_equal (lower, upper))
2769 break;
2770 lower = int_const_binop (PLUS_EXPR, lower,
2771 integer_one_node, true);
2772 }
2773 }
2774 else
2775 {
2776 sub = lookup_element (elt, purpose, NULL, NO_INSERT);
2777 if (sub != NULL)
2778 result &= generate_element_init_1 (sub, value, seq_p);
2779 }
2780 }
2781 break;
2782
2783 default:
2784 elt->visited = true;
2785 result = false;
2786 }
2787
2788 return result;
2789 }
2790
2791 /* A wrapper function for generate_element_init_1 that handles cleanup after
2792 gimplification. */
2793
2794 static bool
2795 generate_element_init (struct sra_elt *elt, tree init, gimple_seq *seq_p)
2796 {
2797 bool ret;
2798 struct gimplify_ctx gctx;
2799
2800 push_gimplify_context (&gctx);
2801 ret = generate_element_init_1 (elt, init, seq_p);
2802 pop_gimplify_context (NULL);
2803
2804 /* The replacement can expose previously unreferenced variables. */
2805 if (ret && *seq_p)
2806 {
2807 gimple_stmt_iterator i;
2808
2809 for (i = gsi_start (*seq_p); !gsi_end_p (i); gsi_next (&i))
2810 find_new_referenced_vars (gsi_stmt (i));
2811 }
2812
2813 return ret;
2814 }
2815
2816 /* Insert a gimple_seq SEQ on all the outgoing edges out of BB. Note that
2817 if BB has more than one edge, STMT will be replicated for each edge.
2818 Also, abnormal edges will be ignored. */
2819
2820 void
2821 insert_edge_copies_seq (gimple_seq seq, basic_block bb)
2822 {
2823 edge e;
2824 edge_iterator ei;
2825 unsigned n_copies = -1;
2826
2827 FOR_EACH_EDGE (e, ei, bb->succs)
2828 if (!(e->flags & EDGE_ABNORMAL))
2829 n_copies++;
2830
2831 FOR_EACH_EDGE (e, ei, bb->succs)
2832 if (!(e->flags & EDGE_ABNORMAL))
2833 gsi_insert_seq_on_edge (e, n_copies-- > 0 ? gimple_seq_copy (seq) : seq);
2834 }
2835
2836 /* Helper function to insert LIST before GSI, and set up line number info. */
2837
2838 void
2839 sra_insert_before (gimple_stmt_iterator *gsi, gimple_seq seq)
2840 {
2841 gimple stmt = gsi_stmt (*gsi);
2842
2843 if (gimple_has_location (stmt))
2844 annotate_all_with_location (seq, gimple_location (stmt));
2845 gsi_insert_seq_before (gsi, seq, GSI_SAME_STMT);
2846 }
2847
2848 /* Similarly, but insert after GSI. Handles insertion onto edges as well. */
2849
2850 void
2851 sra_insert_after (gimple_stmt_iterator *gsi, gimple_seq seq)
2852 {
2853 gimple stmt = gsi_stmt (*gsi);
2854
2855 if (gimple_has_location (stmt))
2856 annotate_all_with_location (seq, gimple_location (stmt));
2857
2858 if (stmt_ends_bb_p (stmt))
2859 insert_edge_copies_seq (seq, gsi_bb (*gsi));
2860 else
2861 gsi_insert_seq_after (gsi, seq, GSI_SAME_STMT);
2862 }
2863
2864 /* Similarly, but replace the statement at GSI. */
2865
2866 static void
2867 sra_replace (gimple_stmt_iterator *gsi, gimple_seq seq)
2868 {
2869 sra_insert_before (gsi, seq);
2870 gsi_remove (gsi, false);
2871 if (gsi_end_p (*gsi))
2872 *gsi = gsi_last (gsi_seq (*gsi));
2873 else
2874 gsi_prev (gsi);
2875 }
2876
2877 /* Data structure that bitfield_overlaps_p fills in with information
2878 about the element passed in and how much of it overlaps with the
2879 bit-range passed it to. */
2880
2881 struct bitfield_overlap_info
2882 {
2883 /* The bit-length of an element. */
2884 tree field_len;
2885
2886 /* The bit-position of the element in its parent. */
2887 tree field_pos;
2888
2889 /* The number of bits of the element that overlap with the incoming
2890 bit range. */
2891 tree overlap_len;
2892
2893 /* The first bit of the element that overlaps with the incoming bit
2894 range. */
2895 tree overlap_pos;
2896 };
2897
2898 /* Return true if a BIT_FIELD_REF<(FLD->parent), BLEN, BPOS>
2899 expression (referenced as BF below) accesses any of the bits in FLD,
2900 false if it doesn't. If DATA is non-null, its field_len and
2901 field_pos are filled in such that BIT_FIELD_REF<(FLD->parent),
2902 field_len, field_pos> (referenced as BFLD below) represents the
2903 entire field FLD->element, and BIT_FIELD_REF<BFLD, overlap_len,
2904 overlap_pos> represents the portion of the entire field that
2905 overlaps with BF. */
2906
2907 static bool
2908 bitfield_overlaps_p (tree blen, tree bpos, struct sra_elt *fld,
2909 struct bitfield_overlap_info *data)
2910 {
2911 tree flen, fpos;
2912 bool ret;
2913
2914 if (TREE_CODE (fld->element) == FIELD_DECL)
2915 {
2916 flen = fold_convert (bitsizetype, DECL_SIZE (fld->element));
2917 fpos = fold_convert (bitsizetype, DECL_FIELD_OFFSET (fld->element));
2918 fpos = size_binop (MULT_EXPR, fpos, bitsize_int (BITS_PER_UNIT));
2919 fpos = size_binop (PLUS_EXPR, fpos, DECL_FIELD_BIT_OFFSET (fld->element));
2920 }
2921 else if (TREE_CODE (fld->element) == BIT_FIELD_REF)
2922 {
2923 flen = fold_convert (bitsizetype, TREE_OPERAND (fld->element, 1));
2924 fpos = fold_convert (bitsizetype, TREE_OPERAND (fld->element, 2));
2925 }
2926 else if (TREE_CODE (fld->element) == INTEGER_CST)
2927 {
2928 tree domain_type = TYPE_DOMAIN (TREE_TYPE (fld->parent->element));
2929 flen = fold_convert (bitsizetype, TYPE_SIZE (fld->type));
2930 fpos = fold_convert (bitsizetype, fld->element);
2931 if (domain_type && TYPE_MIN_VALUE (domain_type))
2932 fpos = size_binop (MINUS_EXPR, fpos,
2933 fold_convert (bitsizetype,
2934 TYPE_MIN_VALUE (domain_type)));
2935 fpos = size_binop (MULT_EXPR, flen, fpos);
2936 }
2937 else
2938 gcc_unreachable ();
2939
2940 gcc_assert (host_integerp (blen, 1)
2941 && host_integerp (bpos, 1)
2942 && host_integerp (flen, 1)
2943 && host_integerp (fpos, 1));
2944
2945 ret = ((!tree_int_cst_lt (fpos, bpos)
2946 && tree_int_cst_lt (size_binop (MINUS_EXPR, fpos, bpos),
2947 blen))
2948 || (!tree_int_cst_lt (bpos, fpos)
2949 && tree_int_cst_lt (size_binop (MINUS_EXPR, bpos, fpos),
2950 flen)));
2951
2952 if (!ret)
2953 return ret;
2954
2955 if (data)
2956 {
2957 tree bend, fend;
2958
2959 data->field_len = flen;
2960 data->field_pos = fpos;
2961
2962 fend = size_binop (PLUS_EXPR, fpos, flen);
2963 bend = size_binop (PLUS_EXPR, bpos, blen);
2964
2965 if (tree_int_cst_lt (bend, fend))
2966 data->overlap_len = size_binop (MINUS_EXPR, bend, fpos);
2967 else
2968 data->overlap_len = NULL;
2969
2970 if (tree_int_cst_lt (fpos, bpos))
2971 {
2972 data->overlap_pos = size_binop (MINUS_EXPR, bpos, fpos);
2973 data->overlap_len = size_binop (MINUS_EXPR,
2974 data->overlap_len
2975 ? data->overlap_len
2976 : data->field_len,
2977 data->overlap_pos);
2978 }
2979 else
2980 data->overlap_pos = NULL;
2981 }
2982
2983 return ret;
2984 }
2985
2986 /* Add to LISTP a sequence of statements that copies BLEN bits between
2987 VAR and the scalarized elements of ELT, starting a bit VPOS of VAR
2988 and at bit BPOS of ELT. The direction of the copy is given by
2989 TO_VAR. */
2990
2991 static void
2992 sra_explode_bitfield_assignment (tree var, tree vpos, bool to_var,
2993 gimple_seq *seq_p, tree blen, tree bpos,
2994 struct sra_elt *elt)
2995 {
2996 struct sra_elt *fld;
2997 struct bitfield_overlap_info flp;
2998
2999 FOR_EACH_ACTUAL_CHILD (fld, elt)
3000 {
3001 tree flen, fpos;
3002
3003 if (!bitfield_overlaps_p (blen, bpos, fld, &flp))
3004 continue;
3005
3006 flen = flp.overlap_len ? flp.overlap_len : flp.field_len;
3007 fpos = flp.overlap_pos ? flp.overlap_pos : bitsize_int (0);
3008
3009 if (fld->replacement)
3010 {
3011 tree infld, invar, type;
3012 gimple_seq st;
3013
3014 infld = fld->replacement;
3015
3016 type = TREE_TYPE (infld);
3017 if (TYPE_PRECISION (type) != TREE_INT_CST_LOW (flen))
3018 type = lang_hooks.types.type_for_size (TREE_INT_CST_LOW (flen), 1);
3019 else
3020 type = unsigned_type_for (type);
3021
3022 if (TREE_CODE (infld) == BIT_FIELD_REF)
3023 {
3024 fpos = size_binop (PLUS_EXPR, fpos, TREE_OPERAND (infld, 2));
3025 infld = TREE_OPERAND (infld, 0);
3026 }
3027 else if (BYTES_BIG_ENDIAN && DECL_P (fld->element)
3028 && !tree_int_cst_equal (TYPE_SIZE (TREE_TYPE (infld)),
3029 DECL_SIZE (fld->element)))
3030 {
3031 fpos = size_binop (PLUS_EXPR, fpos,
3032 TYPE_SIZE (TREE_TYPE (infld)));
3033 fpos = size_binop (MINUS_EXPR, fpos,
3034 DECL_SIZE (fld->element));
3035 }
3036
3037 infld = fold_build3 (BIT_FIELD_REF, type, infld, flen, fpos);
3038
3039 invar = size_binop (MINUS_EXPR, flp.field_pos, bpos);
3040 if (flp.overlap_pos)
3041 invar = size_binop (PLUS_EXPR, invar, flp.overlap_pos);
3042 invar = size_binop (PLUS_EXPR, invar, vpos);
3043
3044 invar = fold_build3 (BIT_FIELD_REF, type, var, flen, invar);
3045
3046 if (to_var)
3047 st = sra_build_bf_assignment (invar, infld);
3048 else
3049 st = sra_build_bf_assignment (infld, invar);
3050
3051 gimple_seq_add_seq (seq_p, st);
3052 }
3053 else
3054 {
3055 tree sub = size_binop (MINUS_EXPR, flp.field_pos, bpos);
3056 sub = size_binop (PLUS_EXPR, vpos, sub);
3057 if (flp.overlap_pos)
3058 sub = size_binop (PLUS_EXPR, sub, flp.overlap_pos);
3059
3060 sra_explode_bitfield_assignment (var, sub, to_var, seq_p,
3061 flen, fpos, fld);
3062 }
3063 }
3064 }
3065
3066 /* Add to LISTBEFOREP statements that copy scalarized members of ELT
3067 that overlap with BIT_FIELD_REF<(ELT->element), BLEN, BPOS> back
3068 into the full variable, and to LISTAFTERP, if non-NULL, statements
3069 that copy the (presumably modified) overlapping portions of the
3070 full variable back to the scalarized variables. */
3071
3072 static void
3073 sra_sync_for_bitfield_assignment (gimple_seq *seq_before_p,
3074 gimple_seq *seq_after_p,
3075 tree blen, tree bpos,
3076 struct sra_elt *elt)
3077 {
3078 struct sra_elt *fld;
3079 struct bitfield_overlap_info flp;
3080
3081 FOR_EACH_ACTUAL_CHILD (fld, elt)
3082 if (bitfield_overlaps_p (blen, bpos, fld, &flp))
3083 {
3084 if (fld->replacement || (!flp.overlap_len && !flp.overlap_pos))
3085 {
3086 generate_copy_inout (fld, false, generate_element_ref (fld),
3087 seq_before_p);
3088 mark_no_warning (fld);
3089 if (seq_after_p)
3090 generate_copy_inout (fld, true, generate_element_ref (fld),
3091 seq_after_p);
3092 }
3093 else
3094 {
3095 tree flen = flp.overlap_len ? flp.overlap_len : flp.field_len;
3096 tree fpos = flp.overlap_pos ? flp.overlap_pos : bitsize_int (0);
3097
3098 sra_sync_for_bitfield_assignment (seq_before_p, seq_after_p,
3099 flen, fpos, fld);
3100 }
3101 }
3102 }
3103
3104 /* Scalarize a USE. To recap, this is either a simple reference to ELT,
3105 if elt is scalar, or some occurrence of ELT that requires a complete
3106 aggregate. IS_OUTPUT is true if ELT is being modified. */
3107
3108 static void
3109 scalarize_use (struct sra_elt *elt, tree *expr_p, gimple_stmt_iterator *gsi,
3110 bool is_output, bool use_all)
3111 {
3112 gimple stmt = gsi_stmt (*gsi);
3113 tree bfexpr;
3114
3115 if (elt->replacement)
3116 {
3117 tree replacement = elt->replacement;
3118
3119 /* If we have a replacement, then updating the reference is as
3120 simple as modifying the existing statement in place. */
3121 if (is_output
3122 && TREE_CODE (elt->replacement) == BIT_FIELD_REF
3123 && is_gimple_reg (TREE_OPERAND (elt->replacement, 0))
3124 && is_gimple_assign (stmt)
3125 && gimple_assign_lhs_ptr (stmt) == expr_p)
3126 {
3127 gimple_seq newseq;
3128 /* RHS must be a single operand. */
3129 gcc_assert (gimple_assign_single_p (stmt));
3130 newseq = sra_build_elt_assignment (elt, gimple_assign_rhs1 (stmt));
3131 sra_replace (gsi, newseq);
3132 return;
3133 }
3134 else if (!is_output
3135 && TREE_CODE (elt->replacement) == BIT_FIELD_REF
3136 && is_gimple_assign (stmt)
3137 && gimple_assign_rhs1_ptr (stmt) == expr_p)
3138 {
3139 tree tmp = make_rename_temp
3140 (TREE_TYPE (gimple_assign_lhs (stmt)), "SR");
3141 gimple_seq newseq = sra_build_assignment (tmp, REPLDUP (elt->replacement));
3142
3143 sra_insert_before (gsi, newseq);
3144 replacement = tmp;
3145 }
3146 if (is_output)
3147 mark_all_v_defs_stmt (stmt);
3148 *expr_p = REPLDUP (replacement);
3149 update_stmt (stmt);
3150 }
3151 else if (use_all && is_output
3152 && is_gimple_assign (stmt)
3153 && TREE_CODE (bfexpr
3154 = gimple_assign_lhs (stmt)) == BIT_FIELD_REF
3155 && &TREE_OPERAND (bfexpr, 0) == expr_p
3156 && INTEGRAL_TYPE_P (TREE_TYPE (bfexpr))
3157 && TREE_CODE (TREE_TYPE (*expr_p)) == RECORD_TYPE)
3158 {
3159 gimple_seq seq_before = NULL;
3160 gimple_seq seq_after = NULL;
3161 tree blen = fold_convert (bitsizetype, TREE_OPERAND (bfexpr, 1));
3162 tree bpos = fold_convert (bitsizetype, TREE_OPERAND (bfexpr, 2));
3163 bool update = false;
3164
3165 if (!elt->use_block_copy)
3166 {
3167 tree type = TREE_TYPE (bfexpr);
3168 tree var = make_rename_temp (type, "SR"), tmp, vpos;
3169 gimple st;
3170
3171 gimple_assign_set_lhs (stmt, var);
3172 update = true;
3173
3174 if (!TYPE_UNSIGNED (type))
3175 {
3176 type = unsigned_type_for (type);
3177 tmp = make_rename_temp (type, "SR");
3178 st = gimple_build_assign (tmp, fold_convert (type, var));
3179 gimple_seq_add_stmt (&seq_after, st);
3180 var = tmp;
3181 }
3182
3183 /* If VAR is wider than BLEN bits, it is padded at the
3184 most-significant end. We want to set VPOS such that
3185 <BIT_FIELD_REF VAR BLEN VPOS> would refer to the
3186 least-significant BLEN bits of VAR. */
3187 if (BYTES_BIG_ENDIAN)
3188 vpos = size_binop (MINUS_EXPR, TYPE_SIZE (type), blen);
3189 else
3190 vpos = bitsize_int (0);
3191 sra_explode_bitfield_assignment
3192 (var, vpos, false, &seq_after, blen, bpos, elt);
3193 }
3194 else
3195 sra_sync_for_bitfield_assignment
3196 (&seq_before, &seq_after, blen, bpos, elt);
3197
3198 if (seq_before)
3199 {
3200 mark_all_v_defs_seq (seq_before);
3201 sra_insert_before (gsi, seq_before);
3202 }
3203 if (seq_after)
3204 {
3205 mark_all_v_defs_seq (seq_after);
3206 sra_insert_after (gsi, seq_after);
3207 }
3208
3209 if (update)
3210 update_stmt (stmt);
3211 }
3212 else if (use_all && !is_output
3213 && is_gimple_assign (stmt)
3214 && TREE_CODE (bfexpr
3215 = gimple_assign_rhs1 (stmt)) == BIT_FIELD_REF
3216 && &TREE_OPERAND (gimple_assign_rhs1 (stmt), 0) == expr_p
3217 && INTEGRAL_TYPE_P (TREE_TYPE (bfexpr))
3218 && TREE_CODE (TREE_TYPE (*expr_p)) == RECORD_TYPE)
3219 {
3220 gimple_seq seq = NULL;
3221 tree blen = fold_convert (bitsizetype, TREE_OPERAND (bfexpr, 1));
3222 tree bpos = fold_convert (bitsizetype, TREE_OPERAND (bfexpr, 2));
3223 bool update = false;
3224
3225 if (!elt->use_block_copy)
3226 {
3227 tree type = TREE_TYPE (bfexpr);
3228 tree var, vpos;
3229
3230 if (!TYPE_UNSIGNED (type))
3231 type = unsigned_type_for (type);
3232
3233 var = make_rename_temp (type, "SR");
3234
3235 gimple_seq_add_stmt (&seq,
3236 gimple_build_assign
3237 (var, build_int_cst_wide (type, 0, 0)));
3238
3239 /* If VAR is wider than BLEN bits, it is padded at the
3240 most-significant end. We want to set VPOS such that
3241 <BIT_FIELD_REF VAR BLEN VPOS> would refer to the
3242 least-significant BLEN bits of VAR. */
3243 if (BYTES_BIG_ENDIAN)
3244 vpos = size_binop (MINUS_EXPR, TYPE_SIZE (type), blen);
3245 else
3246 vpos = bitsize_int (0);
3247 sra_explode_bitfield_assignment
3248 (var, vpos, true, &seq, blen, bpos, elt);
3249
3250 gimple_assign_set_rhs1 (stmt, var);
3251 update = true;
3252 }
3253 else
3254 sra_sync_for_bitfield_assignment
3255 (&seq, NULL, blen, bpos, elt);
3256
3257 if (seq)
3258 {
3259 mark_all_v_defs_seq (seq);
3260 sra_insert_before (gsi, seq);
3261 }
3262
3263 if (update)
3264 update_stmt (stmt);
3265 }
3266 else
3267 {
3268 gimple_seq seq = NULL;
3269
3270 /* Otherwise we need some copies. If ELT is being read, then we
3271 want to store all (modified) sub-elements back into the
3272 structure before the reference takes place. If ELT is being
3273 written, then we want to load the changed values back into
3274 our shadow variables. */
3275 /* ??? We don't check modified for reads, we just always write all of
3276 the values. We should be able to record the SSA number of the VOP
3277 for which the values were last read. If that number matches the
3278 SSA number of the VOP in the current statement, then we needn't
3279 emit an assignment. This would also eliminate double writes when
3280 a structure is passed as more than one argument to a function call.
3281 This optimization would be most effective if sra_walk_function
3282 processed the blocks in dominator order. */
3283
3284 generate_copy_inout (elt, is_output, generate_element_ref (elt), &seq);
3285 if (seq == NULL)
3286 return;
3287 mark_all_v_defs_seq (seq);
3288 if (is_output)
3289 sra_insert_after (gsi, seq);
3290 else
3291 {
3292 sra_insert_before (gsi, seq);
3293 if (use_all)
3294 mark_no_warning (elt);
3295 }
3296 }
3297 }
3298
3299 /* Scalarize a COPY. To recap, this is an assignment statement between
3300 two scalarizable references, LHS_ELT and RHS_ELT. */
3301
3302 static void
3303 scalarize_copy (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
3304 gimple_stmt_iterator *gsi)
3305 {
3306 gimple_seq seq;
3307 gimple stmt;
3308
3309 if (lhs_elt->replacement && rhs_elt->replacement)
3310 {
3311 /* If we have two scalar operands, modify the existing statement. */
3312 stmt = gsi_stmt (*gsi);
3313
3314 /* See the commentary in sra_walk_function concerning
3315 RETURN_EXPR, and why we should never see one here. */
3316 gcc_assert (is_gimple_assign (stmt));
3317 gcc_assert (gimple_assign_copy_p (stmt));
3318
3319
3320 gimple_assign_set_lhs (stmt, lhs_elt->replacement);
3321 gimple_assign_set_rhs1 (stmt, REPLDUP (rhs_elt->replacement));
3322 update_stmt (stmt);
3323 }
3324 else if (lhs_elt->use_block_copy || rhs_elt->use_block_copy)
3325 {
3326 /* If either side requires a block copy, then sync the RHS back
3327 to the original structure, leave the original assignment
3328 statement (which will perform the block copy), then load the
3329 LHS values out of its now-updated original structure. */
3330 /* ??? Could perform a modified pair-wise element copy. That
3331 would at least allow those elements that are instantiated in
3332 both structures to be optimized well. */
3333
3334 seq = NULL;
3335 generate_copy_inout (rhs_elt, false,
3336 generate_element_ref (rhs_elt), &seq);
3337 if (seq)
3338 {
3339 mark_all_v_defs_seq (seq);
3340 sra_insert_before (gsi, seq);
3341 }
3342
3343 seq = NULL;
3344 generate_copy_inout (lhs_elt, true,
3345 generate_element_ref (lhs_elt), &seq);
3346 if (seq)
3347 {
3348 mark_all_v_defs_seq (seq);
3349 sra_insert_after (gsi, seq);
3350 }
3351 }
3352 else
3353 {
3354 /* Otherwise both sides must be fully instantiated. In which
3355 case perform pair-wise element assignments and replace the
3356 original block copy statement. */
3357
3358 stmt = gsi_stmt (*gsi);
3359 mark_all_v_defs_stmt (stmt);
3360
3361 seq = NULL;
3362 generate_element_copy (lhs_elt, rhs_elt, &seq);
3363 gcc_assert (seq);
3364 mark_all_v_defs_seq (seq);
3365 sra_replace (gsi, seq);
3366 }
3367 }
3368
3369 /* Scalarize an INIT. To recap, this is an assignment to a scalarizable
3370 reference from some form of constructor: CONSTRUCTOR, COMPLEX_CST or
3371 COMPLEX_EXPR. If RHS is NULL, it should be treated as an empty
3372 CONSTRUCTOR. */
3373
3374 static void
3375 scalarize_init (struct sra_elt *lhs_elt, tree rhs, gimple_stmt_iterator *gsi)
3376 {
3377 bool result = true;
3378 gimple_seq seq = NULL, init_seq = NULL;
3379
3380 /* Generate initialization statements for all members extant in the RHS. */
3381 if (rhs)
3382 {
3383 /* Unshare the expression just in case this is from a decl's initial. */
3384 rhs = unshare_expr (rhs);
3385 result = generate_element_init (lhs_elt, rhs, &init_seq);
3386 }
3387
3388 if (!result)
3389 {
3390 /* If we failed to convert the entire initializer, then we must
3391 leave the structure assignment in place and must load values
3392 from the structure into the slots for which we did not find
3393 constants. The easiest way to do this is to generate a complete
3394 copy-out, and then follow that with the constant assignments
3395 that we were able to build. DCE will clean things up. */
3396 gimple_seq seq0 = NULL;
3397 generate_copy_inout (lhs_elt, true, generate_element_ref (lhs_elt),
3398 &seq0);
3399 gimple_seq_add_seq (&seq0, seq);
3400 seq = seq0;
3401 }
3402 else
3403 {
3404 /* CONSTRUCTOR is defined such that any member not mentioned is assigned
3405 a zero value. Initialize the rest of the instantiated elements. */
3406 generate_element_zero (lhs_elt, &seq);
3407 gimple_seq_add_seq (&seq, init_seq);
3408 }
3409
3410 if (lhs_elt->use_block_copy || !result)
3411 {
3412 /* Since LHS is not fully instantiated, we must leave the structure
3413 assignment in place. Treating this case differently from a USE
3414 exposes constants to later optimizations. */
3415 if (seq)
3416 {
3417 mark_all_v_defs_seq (seq);
3418 sra_insert_after (gsi, seq);
3419 }
3420 }
3421 else
3422 {
3423 /* The LHS is fully instantiated. The list of initializations
3424 replaces the original structure assignment. */
3425 gcc_assert (seq);
3426 mark_all_v_defs_stmt (gsi_stmt (*gsi));
3427 mark_all_v_defs_seq (seq);
3428 sra_replace (gsi, seq);
3429 }
3430 }
3431
3432 /* A subroutine of scalarize_ldst called via walk_tree. Set TREE_NO_TRAP
3433 on all INDIRECT_REFs. */
3434
3435 static tree
3436 mark_notrap (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
3437 {
3438 tree t = *tp;
3439
3440 if (TREE_CODE (t) == INDIRECT_REF)
3441 {
3442 TREE_THIS_NOTRAP (t) = 1;
3443 *walk_subtrees = 0;
3444 }
3445 else if (IS_TYPE_OR_DECL_P (t))
3446 *walk_subtrees = 0;
3447
3448 return NULL;
3449 }
3450
3451 /* Scalarize a LDST. To recap, this is an assignment between one scalarizable
3452 reference ELT and one non-scalarizable reference OTHER. IS_OUTPUT is true
3453 if ELT is on the left-hand side. */
3454
3455 static void
3456 scalarize_ldst (struct sra_elt *elt, tree other,
3457 gimple_stmt_iterator *gsi, bool is_output)
3458 {
3459 /* Shouldn't have gotten called for a scalar. */
3460 gcc_assert (!elt->replacement);
3461
3462 if (elt->use_block_copy)
3463 {
3464 /* Since ELT is not fully instantiated, we have to leave the
3465 block copy in place. Treat this as a USE. */
3466 scalarize_use (elt, NULL, gsi, is_output, false);
3467 }
3468 else
3469 {
3470 /* The interesting case is when ELT is fully instantiated. In this
3471 case we can have each element stored/loaded directly to/from the
3472 corresponding slot in OTHER. This avoids a block copy. */
3473
3474 gimple_seq seq = NULL;
3475 gimple stmt = gsi_stmt (*gsi);
3476
3477 mark_all_v_defs_stmt (stmt);
3478 generate_copy_inout (elt, is_output, other, &seq);
3479 gcc_assert (seq);
3480 mark_all_v_defs_seq (seq);
3481
3482 /* Preserve EH semantics. */
3483 if (stmt_ends_bb_p (stmt))
3484 {
3485 gimple_stmt_iterator si;
3486 gimple first;
3487 gimple_seq blist = NULL;
3488 bool thr = stmt_could_throw_p (stmt);
3489
3490 /* If the last statement of this BB created an EH edge
3491 before scalarization, we have to locate the first
3492 statement that can throw in the new statement list and
3493 use that as the last statement of this BB, such that EH
3494 semantics is preserved. All statements up to this one
3495 are added to the same BB. All other statements in the
3496 list will be added to normal outgoing edges of the same
3497 BB. If they access any memory, it's the same memory, so
3498 we can assume they won't throw. */
3499 si = gsi_start (seq);
3500 for (first = gsi_stmt (si);
3501 thr && !gsi_end_p (si) && !stmt_could_throw_p (first);
3502 first = gsi_stmt (si))
3503 {
3504 gsi_remove (&si, false);
3505 gimple_seq_add_stmt (&blist, first);
3506 }
3507
3508 /* Extract the first remaining statement from LIST, this is
3509 the EH statement if there is one. */
3510 gsi_remove (&si, false);
3511
3512 if (blist)
3513 sra_insert_before (gsi, blist);
3514
3515 /* Replace the old statement with this new representative. */
3516 gsi_replace (gsi, first, true);
3517
3518 if (!gsi_end_p (si))
3519 {
3520 /* If any reference would trap, then they all would. And more
3521 to the point, the first would. Therefore none of the rest
3522 will trap since the first didn't. Indicate this by
3523 iterating over the remaining statements and set
3524 TREE_THIS_NOTRAP in all INDIRECT_REFs. */
3525 do
3526 {
3527 walk_gimple_stmt (&si, NULL, mark_notrap, NULL);
3528 gsi_next (&si);
3529 }
3530 while (!gsi_end_p (si));
3531
3532 insert_edge_copies_seq (seq, gsi_bb (*gsi));
3533 }
3534 }
3535 else
3536 sra_replace (gsi, seq);
3537 }
3538 }
3539
3540 /* Generate initializations for all scalarizable parameters. */
3541
3542 static void
3543 scalarize_parms (void)
3544 {
3545 gimple_seq seq = NULL;
3546 unsigned i;
3547 bitmap_iterator bi;
3548
3549 EXECUTE_IF_SET_IN_BITMAP (needs_copy_in, 0, i, bi)
3550 {
3551 tree var = referenced_var (i);
3552 struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
3553 generate_copy_inout (elt, true, var, &seq);
3554 }
3555
3556 if (seq)
3557 {
3558 insert_edge_copies_seq (seq, ENTRY_BLOCK_PTR);
3559 mark_all_v_defs_seq (seq);
3560 }
3561 }
3562
3563 /* Entry point to phase 4. Update the function to match replacements. */
3564
3565 static void
3566 scalarize_function (void)
3567 {
3568 static const struct sra_walk_fns fns = {
3569 scalarize_use, scalarize_copy, scalarize_init, scalarize_ldst, false
3570 };
3571
3572 sra_walk_function (&fns);
3573 scalarize_parms ();
3574 gsi_commit_edge_inserts ();
3575 }
3576
3577 \f
3578 /* Debug helper function. Print ELT in a nice human-readable format. */
3579
3580 static void
3581 dump_sra_elt_name (FILE *f, struct sra_elt *elt)
3582 {
3583 if (elt->parent && TREE_CODE (elt->parent->type) == COMPLEX_TYPE)
3584 {
3585 fputs (elt->element == integer_zero_node ? "__real__ " : "__imag__ ", f);
3586 dump_sra_elt_name (f, elt->parent);
3587 }
3588 else
3589 {
3590 if (elt->parent)
3591 dump_sra_elt_name (f, elt->parent);
3592 if (DECL_P (elt->element))
3593 {
3594 if (TREE_CODE (elt->element) == FIELD_DECL)
3595 fputc ('.', f);
3596 print_generic_expr (f, elt->element, dump_flags);
3597 }
3598 else if (TREE_CODE (elt->element) == BIT_FIELD_REF)
3599 fprintf (f, "$B" HOST_WIDE_INT_PRINT_DEC "F" HOST_WIDE_INT_PRINT_DEC,
3600 tree_low_cst (TREE_OPERAND (elt->element, 2), 1),
3601 tree_low_cst (TREE_OPERAND (elt->element, 1), 1));
3602 else if (TREE_CODE (elt->element) == RANGE_EXPR)
3603 fprintf (f, "["HOST_WIDE_INT_PRINT_DEC".."HOST_WIDE_INT_PRINT_DEC"]",
3604 TREE_INT_CST_LOW (TREE_OPERAND (elt->element, 0)),
3605 TREE_INT_CST_LOW (TREE_OPERAND (elt->element, 1)));
3606 else
3607 fprintf (f, "[" HOST_WIDE_INT_PRINT_DEC "]",
3608 TREE_INT_CST_LOW (elt->element));
3609 }
3610 }
3611
3612 /* Likewise, but callable from the debugger. */
3613
3614 void
3615 debug_sra_elt_name (struct sra_elt *elt)
3616 {
3617 dump_sra_elt_name (stderr, elt);
3618 fputc ('\n', stderr);
3619 }
3620
3621 void
3622 sra_init_cache (void)
3623 {
3624 if (sra_type_decomp_cache)
3625 return;
3626
3627 sra_type_decomp_cache = BITMAP_ALLOC (NULL);
3628 sra_type_inst_cache = BITMAP_ALLOC (NULL);
3629 }
3630
3631
3632 /* Main entry point. */
3633
3634 static unsigned int
3635 tree_sra (void)
3636 {
3637 /* Initialize local variables. */
3638 todoflags = 0;
3639 gcc_obstack_init (&sra_obstack);
3640 sra_candidates = BITMAP_ALLOC (NULL);
3641 needs_copy_in = BITMAP_ALLOC (NULL);
3642 sra_init_cache ();
3643 sra_map = htab_create (101, sra_elt_hash, sra_elt_eq, NULL);
3644
3645 /* Scan. If we find anything, instantiate and scalarize. */
3646 if (find_candidates_for_sra ())
3647 {
3648 scan_function ();
3649 decide_instantiations ();
3650 scalarize_function ();
3651 if (!bitmap_empty_p (sra_candidates))
3652 todoflags |= TODO_rebuild_alias;
3653 }
3654
3655 /* Free allocated memory. */
3656 htab_delete (sra_map);
3657 sra_map = NULL;
3658 BITMAP_FREE (sra_candidates);
3659 BITMAP_FREE (needs_copy_in);
3660 BITMAP_FREE (sra_type_decomp_cache);
3661 BITMAP_FREE (sra_type_inst_cache);
3662 obstack_free (&sra_obstack, NULL);
3663 return todoflags;
3664 }
3665
3666 static unsigned int
3667 tree_sra_early (void)
3668 {
3669 unsigned int ret;
3670
3671 early_sra = true;
3672 ret = tree_sra ();
3673 early_sra = false;
3674
3675 return ret & ~TODO_rebuild_alias;
3676 }
3677
3678 static bool
3679 gate_sra (void)
3680 {
3681 return flag_tree_sra != 0;
3682 }
3683
3684 struct gimple_opt_pass pass_sra_early =
3685 {
3686 {
3687 GIMPLE_PASS,
3688 "esra", /* name */
3689 gate_sra, /* gate */
3690 tree_sra_early, /* execute */
3691 NULL, /* sub */
3692 NULL, /* next */
3693 0, /* static_pass_number */
3694 TV_TREE_SRA, /* tv_id */
3695 PROP_cfg | PROP_ssa, /* properties_required */
3696 0, /* properties_provided */
3697 0, /* properties_destroyed */
3698 0, /* todo_flags_start */
3699 TODO_dump_func
3700 | TODO_update_ssa
3701 | TODO_ggc_collect
3702 | TODO_verify_ssa /* todo_flags_finish */
3703 }
3704 };
3705
3706 struct gimple_opt_pass pass_sra =
3707 {
3708 {
3709 GIMPLE_PASS,
3710 "sra", /* name */
3711 gate_sra, /* gate */
3712 tree_sra, /* execute */
3713 NULL, /* sub */
3714 NULL, /* next */
3715 0, /* static_pass_number */
3716 TV_TREE_SRA, /* tv_id */
3717 PROP_cfg | PROP_ssa, /* properties_required */
3718 0, /* properties_provided */
3719 0, /* properties_destroyed */
3720 0, /* todo_flags_start */
3721 TODO_dump_func
3722 | TODO_update_ssa
3723 | TODO_ggc_collect
3724 | TODO_verify_ssa /* todo_flags_finish */
3725 }
3726 };