tree-data-ref.c (subscript_dependence_tester_1): Call free_conflict_function.
[gcc.git] / gcc / tree-ssa-alias-warnings.c
1 /* Strict aliasing checks.
2 Copyright (C) 2007 Free Software Foundation, Inc.
3 Contributed by Silvius Rus <rus@google.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "alloc-pool.h"
26 #include "tree.h"
27 #include "tree-dump.h"
28 #include "tree-flow.h"
29 #include "params.h"
30 #include "function.h"
31 #include "expr.h"
32 #include "toplev.h"
33 #include "diagnostic.h"
34 #include "tree-ssa-structalias.h"
35 #include "tree-ssa-propagate.h"
36 #include "langhooks.h"
37
38 /* Module to issue a warning when a program uses data through a type
39 different from the type through which the data were defined.
40 Implements -Wstrict-aliasing and -Wstrict-aliasing=n.
41 These checks only happen when -fstrict-aliasing is present.
42
43 The idea is to use the compiler to identify occurrences of nonstandard
44 aliasing, and report them to programmers. Programs free of such aliasing
45 are more portable, maintainable, and can usually be optimized better.
46
47 The current, as of April 2007, C and C++ language standards forbid
48 accessing data of type A through an lvalue of another type B,
49 with certain exceptions. See the C Standard ISO/IEC 9899:1999,
50 section 6.5, paragraph 7, and the C++ Standard ISO/IEC 14882:1998,
51 section 3.10, paragraph 15.
52
53 Example 1:*a is used as int but was defined as a float, *b.
54 int* a = ...;
55 float* b = reinterpret_cast<float*> (a);
56 *b = 2.0;
57 return *a
58
59 Unfortunately, the problem is in general undecidable if we take into
60 account arithmetic expressions such as array indices or pointer arithmetic.
61 (It is at least as hard as Peano arithmetic decidability.)
62 Even ignoring arithmetic, the problem is still NP-hard, because it is
63 at least as hard as flow-insensitive may-alias analysis, which was proved
64 NP-hard by Horwitz et al, TOPLAS 1997.
65
66 It is clear that we need to choose some heuristics.
67 Unfortunately, various users have different goals which correspond to
68 different time budgets so a common approach will not suit all.
69 We present the user with three effort/accuracy levels. By accuracy, we mean
70 a common-sense mix of low count of false positives with a
71 reasonably low number of false negatives. We are heavily biased
72 towards a low count of false positives.
73 The effort (compilation time) is likely to increase with the level.
74
75 -Wstrict-aliasing=1
76 ===================
77 Most aggressive, least accurate. Possibly useful when higher levels
78 do not warn but -fstrict-aliasing still breaks the code, as
79 it has very few false negatives.
80 Warn for all bad pointer conversions, even if never dereferenced.
81 Implemented in the front end (c-common.c).
82 Uses alias_sets_might_conflict to compare types.
83
84 -Wstrict-aliasing=2
85 ===================
86 Aggressive, not too precise.
87 May still have many false positives (not as many as level 1 though),
88 and few false negatives (but possibly more than level 1).
89 Runs only in the front end. Uses alias_sets_might_conflict to
90 compare types. Does not check for pointer dereferences.
91 Only warns when an address is taken. Warns about incomplete type punning.
92
93 -Wstrict-aliasing=3 (default)
94 ===================
95 Should have very few false positives and few false negatives.
96 Takes care of the common punn+dereference pattern in the front end:
97 *(int*)&some_float.
98 Takes care of multiple statement cases in the back end,
99 using flow-sensitive points-to information (-O required).
100 Uses alias_sets_conflict_p to compare types and only warns
101 when the converted pointer is dereferenced.
102 Does not warn about incomplete type punning.
103
104 Future improvements can be included by adding higher levels.
105
106 In summary, expression level analysis is performed in the front-end,
107 and multiple-statement analysis is performed in the backend.
108 The remainder of this discussion is only about the backend analysis.
109
110 This implementation uses flow-sensitive points-to information.
111 Flow-sensitivity refers to accesses to the pointer, and not the object
112 pointed. For instance, we do not warn about the following case.
113
114 Example 2.
115 int* a = (int*)malloc (...);
116 float* b = reinterpret_cast<float*> (a);
117 *b = 2.0;
118 a = (int*)malloc (...);
119 return *a;
120
121 In SSA, it becomes clear that the INT value *A_2 referenced in the
122 return statement is not aliased to the FLOAT defined through *B_1.
123 int* a_1 = (int*)malloc (...);
124 float* b_1 = reinterpret_cast<float*> (a_1);
125 *b_1 = 2.0;
126 a_2 = (int*)malloc (...);
127 return *a_2;
128
129
130 Algorithm Outline
131 =================
132
133 ForEach (ptr, object) in the points-to table
134 If (incompatible_types (*ptr, object))
135 If (referenced (ptr, current function)
136 and referenced (object, current function))
137 Issue warning (ptr, object, reference locations)
138
139 The complexity is:
140 O (sizeof (points-to table)
141 + sizeof (function body) * lookup_time (points-to table))
142
143 Pointer dereference locations are looked up on demand. The search is
144 a single scan of the function body, in which all references to pointers
145 and objects in the points-to table are recorded. However, this dominant
146 time factor occurs rarely, only when cross-type aliasing was detected.
147
148
149 Limitations of the Proposed Implementation
150 ==========================================
151
152 1. We do not catch the following case, because -fstrict-aliasing will
153 associate different tags with MEM while building points-to information,
154 thus before we get to analyze it.
155 XXX: this could be solved by either running with -fno-strict-aliasing
156 or by recording the points-to information before splitting the original
157 tag based on type.
158
159 Example 3.
160 void* mem = malloc (...);
161 int* pi = reinterpret_cast<int*> (mem);
162 float* b = reinterpret_cast<float*> (mem);
163 *b = 2.0;
164 return *pi+1;
165
166 2. We do not check whether the two conflicting (de)references can
167 reach each other in the control flow sense. If we fixed limitation
168 1, we would wrongly issue a warning in the following case.
169
170 Example 4.
171 void* raw = malloc (...);
172 if (...) {
173 float* b = reinterpret_cast<float*> (raw);
174 *b = 2.0;
175 return (int)*b;
176 } else {
177 int* a = reinterpret_cast<int*> (raw);
178 *a = 1;
179 return *a;
180
181 3. Only simple types are compared, thus no structures, unions or classes
182 are analyzed. A first attempt to deal with structures introduced much
183 complication and has not showed much improvement in preliminary tests,
184 so it was left out.
185
186 4. All analysis is intraprocedural. */
187
188
189 /* Local declarations. */
190 static void find_references_in_function (void);
191 \f
192
193
194 /* Get main type of tree TYPE, stripping array dimensions and qualifiers. */
195
196 static tree
197 get_main_type (tree type)
198 {
199 while (TREE_CODE (type) == ARRAY_TYPE)
200 type = TREE_TYPE (type);
201 return TYPE_MAIN_VARIANT (type);
202 }
203
204
205 /* Get the type of the given object. If IS_PTR is true, get the type of the
206 object pointed to or referenced by OBJECT instead.
207 For arrays, return the element type. Ignore all qualifiers. */
208
209 static tree
210 get_otype (tree object, bool is_ptr)
211 {
212 tree otype = TREE_TYPE (object);
213
214 if (is_ptr)
215 {
216 gcc_assert (POINTER_TYPE_P (otype));
217 otype = TREE_TYPE (otype);
218 }
219 return get_main_type (otype);
220 }
221
222
223 /* Return true if tree TYPE is struct, class or union. */
224
225 static bool
226 struct_class_union_p (tree type)
227 {
228 return (TREE_CODE (type) == RECORD_TYPE
229 || TREE_CODE (type) == UNION_TYPE
230 || TREE_CODE (type) == QUAL_UNION_TYPE);
231 }
232 \f
233
234
235 /* Keep data during a search for an aliasing site.
236 RHS = object or pointer aliased. No LHS is specified because we are only
237 looking in the UseDef paths of a given variable, so LHS will always be
238 an SSA name of the same variable.
239 When IS_RHS_POINTER = true, we are looking for ... = RHS. Otherwise,
240 we are looking for ... = &RHS.
241 SITE is the output of a search, non-NULL if the search succeeded. */
242
243 struct alias_match
244 {
245 tree rhs;
246 bool is_rhs_pointer;
247 tree site;
248 };
249
250
251 /* Callback for find_alias_site. Return true if the right hand site
252 of STMT matches DATA. */
253
254 static bool
255 find_alias_site_helper (tree var ATTRIBUTE_UNUSED, tree stmt, void *data)
256 {
257 struct alias_match *match = (struct alias_match *) data;
258 tree rhs_pointer = get_rhs (stmt);
259 tree to_match = NULL_TREE;
260
261 while (TREE_CODE (rhs_pointer) == NOP_EXPR
262 || TREE_CODE (rhs_pointer) == CONVERT_EXPR
263 || TREE_CODE (rhs_pointer) == VIEW_CONVERT_EXPR)
264 rhs_pointer = TREE_OPERAND (rhs_pointer, 0);
265
266 if (!rhs_pointer)
267 /* Not a type conversion. */
268 return false;
269
270 if (TREE_CODE (rhs_pointer) == ADDR_EXPR && !match->is_rhs_pointer)
271 to_match = TREE_OPERAND (rhs_pointer, 0);
272 else if (POINTER_TYPE_P (rhs_pointer) && match->is_rhs_pointer)
273 to_match = rhs_pointer;
274
275 if (to_match != match->rhs)
276 /* Type conversion, but not a name match. */
277 return false;
278
279 /* Found it. */
280 match->site = stmt;
281 return true;
282 }
283
284
285 /* Find the statement where OBJECT1 gets aliased to OBJECT2.
286 If IS_PTR2 is true, consider OBJECT2 to be the name of a pointer or
287 reference rather than the actual aliased object.
288 For now, just implement the case where OBJECT1 is an SSA name defined
289 by a PHI statement. */
290
291 static tree
292 find_alias_site (tree object1, bool is_ptr1 ATTRIBUTE_UNUSED,
293 tree object2, bool is_ptr2)
294 {
295 struct alias_match match;
296
297 match.rhs = object2;
298 match.is_rhs_pointer = is_ptr2;
299 match.site = NULL_TREE;
300
301 if (TREE_CODE (object1) != SSA_NAME)
302 return NULL_TREE;
303
304 walk_use_def_chains (object1, find_alias_site_helper, &match, false);
305 return match.site;
306 }
307
308
309 /* Structure to store temporary results when trying to figure out whether
310 an object is referenced. Just its presence in the text is not enough,
311 as we may just be taking its address. */
312
313 struct match_info
314 {
315 tree object;
316 bool is_ptr;
317 /* The difference between the number of references to OBJECT
318 and the number of occurrences of &OBJECT. */
319 int found;
320 };
321
322
323 /* Return the base if EXPR is an SSA name. Return EXPR otherwise. */
324
325 static tree
326 get_ssa_base (tree expr)
327 {
328 if (TREE_CODE (expr) == SSA_NAME)
329 return SSA_NAME_VAR (expr);
330 else
331 return expr;
332 }
333
334
335 /* Record references to objects and pointer dereferences across some piece of
336 code. The number of references is recorded for each item.
337 References to an object just to take its address are not counted.
338 For instance, if PTR is a pointer and OBJ is an object:
339 1. Expression &obj + *ptr will have the following reference match structure:
340 ptrs: <ptr, 1>
341 objs: <ptr, 1>
342 OBJ does not appear as referenced because we just take its address.
343 2. Expression ptr + *ptr will have the following reference match structure:
344 ptrs: <ptr, 1>
345 objs: <ptr, 2>
346 PTR shows up twice as an object, but is dereferenced only once.
347
348 The elements of the hash tables are tree_map objects. */
349 struct reference_matches
350 {
351 htab_t ptrs;
352 htab_t objs;
353 };
354
355
356 /* Return the match, if any. Otherwise, return NULL_TREE. It will
357 return NULL_TREE even when a match was found, if the value associated
358 to KEY is NULL_TREE. */
359
360 static inline tree
361 match (htab_t ref_map, tree key)
362 {
363 struct tree_map *found;
364 void **slot = NULL;
365 slot = htab_find_slot (ref_map, &key, NO_INSERT);
366
367 if (!slot)
368 return NULL_TREE;
369
370 found = (struct tree_map *) *slot;
371 return found->to;
372 }
373
374
375 /* Set the entry corresponding to KEY, but only if the entry
376 already exists and its value is NULL_TREE. Otherwise, do nothing. */
377
378 static inline void
379 maybe_add_match (htab_t ref_map, struct tree_map *key)
380 {
381 struct tree_map *found = (struct tree_map *) htab_find (ref_map, key);
382
383 if (found && !found->to)
384 found->to = key->to;
385 }
386
387
388 /* Add an entry to HT, with key T and value NULL_TREE. */
389
390 static void
391 add_key (htab_t ht, tree t, alloc_pool references_pool)
392 {
393 void **slot;
394 struct tree_map *tp = (struct tree_map *) pool_alloc (references_pool);
395
396 tp->base.from = t;
397 tp->to = NULL_TREE;
398 slot = htab_find_slot (ht, &t, INSERT);
399 *slot = (void *) tp;
400 }
401
402
403 /* Some memory to keep the objects in the reference table. */
404
405 static alloc_pool ref_table_alloc_pool = NULL;
406
407
408 /* Get some memory to keep the objects in the reference table. */
409
410 static inline alloc_pool
411 reference_table_alloc_pool (bool build)
412 {
413 if (ref_table_alloc_pool || !build)
414 return ref_table_alloc_pool;
415
416 ref_table_alloc_pool =
417 create_alloc_pool ("ref_table_alloc_pool", sizeof (struct tree_map), 20);
418
419 return ref_table_alloc_pool;
420 }
421
422
423 /* Initialize the reference table by adding all pointers in the points-to
424 table as keys, and NULL_TREE as associated values. */
425
426 static struct reference_matches *
427 build_reference_table (void)
428 {
429 unsigned int i;
430 struct reference_matches *ref_table = NULL;
431 alloc_pool references_pool = reference_table_alloc_pool (true);
432
433 ref_table = XNEW (struct reference_matches);
434 ref_table->objs = htab_create (10, tree_map_base_hash, tree_map_eq, NULL);
435 ref_table->ptrs = htab_create (10, tree_map_base_hash, tree_map_eq, NULL);
436
437 for (i = 1; i < num_ssa_names; i++)
438 {
439 tree ptr = ssa_name (i);
440 struct ptr_info_def *pi;
441
442 if (ptr == NULL_TREE)
443 continue;
444
445 pi = SSA_NAME_PTR_INFO (ptr);
446
447 if (!SSA_NAME_IN_FREE_LIST (ptr) && pi && pi->name_mem_tag)
448 {
449 /* Add pointer to the interesting dereference list. */
450 add_key (ref_table->ptrs, ptr, references_pool);
451
452 /* Add all aliased names to the interesting reference list. */
453 if (pi->pt_vars)
454 {
455 unsigned ix;
456 bitmap_iterator bi;
457
458 EXECUTE_IF_SET_IN_BITMAP (pi->pt_vars, 0, ix, bi)
459 {
460 tree alias = referenced_var (ix);
461 add_key (ref_table->objs, alias, references_pool);
462 }
463 }
464 }
465 }
466
467 return ref_table;
468 }
469
470
471 /* Reference table. */
472
473 static struct reference_matches *ref_table = NULL;
474
475
476 /* Clean up the reference table if allocated. */
477
478 static void
479 maybe_free_reference_table (void)
480 {
481 if (ref_table)
482 {
483 htab_delete (ref_table->ptrs);
484 htab_delete (ref_table->objs);
485 free (ref_table);
486 ref_table = NULL;
487 }
488
489 if (ref_table_alloc_pool)
490 {
491 free_alloc_pool (ref_table_alloc_pool);
492 ref_table_alloc_pool = NULL;
493 }
494 }
495
496
497 /* Get the reference table. Initialize it if needed. */
498
499 static inline struct reference_matches *
500 reference_table (bool build)
501 {
502 if (ref_table || !build)
503 return ref_table;
504
505 ref_table = build_reference_table ();
506 find_references_in_function ();
507 return ref_table;
508 }
509
510
511 /* Callback for find_references_in_function.
512 Check whether *TP is an object reference or pointer dereference for the
513 variables given in ((struct match_info*)DATA)->OBJS or
514 ((struct match_info*)DATA)->PTRS. The total number of references
515 is stored in the same structures. */
516
517 static tree
518 find_references_in_tree_helper (tree *tp,
519 int *walk_subtrees ATTRIBUTE_UNUSED,
520 void *data)
521 {
522 struct tree_map match;
523 static int parent_tree_code = ERROR_MARK;
524
525 /* Do not report references just for the purpose of taking an address.
526 XXX: we rely on the fact that the tree walk is in preorder
527 and that ADDR_EXPR is not a leaf, thus cannot be carried over across
528 walks. */
529 if (parent_tree_code == ADDR_EXPR)
530 goto finish;
531
532 match.to = (tree) data;
533
534 if (TREE_CODE (*tp) == INDIRECT_REF)
535 {
536 match.base.from = TREE_OPERAND (*tp, 0);
537 maybe_add_match (reference_table (true)->ptrs, &match);
538 }
539 else
540 {
541 match.base.from = *tp;
542 maybe_add_match (reference_table (true)->objs, &match);
543 }
544
545 finish:
546 parent_tree_code = TREE_CODE (*tp);
547 return NULL_TREE;
548 }
549
550
551 /* Find all the references to aliased variables in the current function. */
552
553 static void
554 find_references_in_function (void)
555 {
556 basic_block bb;
557 block_stmt_iterator i;
558
559 FOR_EACH_BB (bb)
560 for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
561 walk_tree (bsi_stmt_ptr (i), find_references_in_tree_helper,
562 (void *) *bsi_stmt_ptr (i), NULL);
563 }
564
565
566 /* Find the reference site for OBJECT.
567 If IS_PTR is true, look for dereferences of OBJECT instead.
568 XXX: only the first site is returned in the current
569 implementation. If there are no matching sites, return NULL_TREE. */
570
571 static tree
572 reference_site (tree object, bool is_ptr)
573 {
574 if (is_ptr)
575 return match (reference_table (true)->ptrs, object);
576 else
577 return match (reference_table (true)->objs, object);
578 }
579
580
581 /* Try to get more location info when something is missing.
582 OBJECT1 and OBJECT2 are aliased names. If IS_PTR1 or IS_PTR2, the alias
583 is on the memory referenced or pointed to by OBJECT1 and OBJECT2.
584 ALIAS_SITE, DEREF_SITE1 and DEREF_SITE2 are the statements where the
585 alias takes place (some pointer assignment usually) and where the
586 alias is referenced through OBJECT1 and OBJECT2 respectively.
587 REF_TYPE1 and REF_TYPE2 will return the type of the reference at the
588 respective sites. Only the first matching reference is returned for
589 each name. If no statement is found, the function header is returned. */
590
591 static void
592 maybe_find_missing_stmts (tree object1, bool is_ptr1,
593 tree object2, bool is_ptr2,
594 tree *alias_site,
595 tree *deref_site1,
596 tree *deref_site2)
597 {
598 if (object1 && object2)
599 {
600 if (!*alias_site || !EXPR_HAS_LOCATION (*alias_site))
601 *alias_site = find_alias_site (object1, is_ptr1, object2, is_ptr2);
602
603 if (!*deref_site1 || !EXPR_HAS_LOCATION (*deref_site1))
604 *deref_site1 = reference_site (object1, is_ptr1);
605
606 if (!*deref_site2 || !EXPR_HAS_LOCATION (*deref_site2))
607 *deref_site2 = reference_site (object2, is_ptr2);
608 }
609
610 /* If we could not find the alias site, set it to one of the dereference
611 sites, if available. */
612 if (!*alias_site)
613 {
614 if (*deref_site1)
615 *alias_site = *deref_site1;
616 else if (*deref_site2)
617 *alias_site = *deref_site2;
618 }
619
620 /* If we could not find the dereference sites, set them to the alias site,
621 if known. */
622 if (!*deref_site1 && *alias_site)
623 *deref_site1 = *alias_site;
624 if (!*deref_site2 && *alias_site)
625 *deref_site2 = *alias_site;
626 }
627
628
629 /* Callback for find_first_artificial_name.
630 Find out if there are no artificial names at tree node *T. */
631
632 static tree
633 ffan_walker (tree *t,
634 int *go_below ATTRIBUTE_UNUSED,
635 void *data ATTRIBUTE_UNUSED)
636 {
637 if (DECL_P (*t) && !MTAG_P (*t) && DECL_ARTIFICIAL (*t))
638 return *t;
639 else
640 return NULL_TREE;
641 }
642
643 /* Return the first artificial name within EXPR, or NULL_TREE if
644 none exists. */
645
646 static tree
647 find_first_artificial_name (tree expr)
648 {
649 return walk_tree_without_duplicates (&expr, ffan_walker, NULL);
650 }
651
652
653 /* Get a name from the original program for VAR. */
654
655 static const char *
656 get_var_name (tree var)
657 {
658 if (TREE_CODE (var) == SSA_NAME)
659 return get_var_name (get_ssa_base (var));
660
661 if (find_first_artificial_name (var))
662 return "{unknown}";
663
664 if (TREE_CODE (var) == VAR_DECL || TREE_CODE (var) == PARM_DECL)
665 if (DECL_NAME (var))
666 return IDENTIFIER_POINTER (DECL_NAME (var));
667
668 return "{unknown}";
669 }
670
671
672 /* Return "*" if OBJECT is not the actual alias but a pointer to it, or
673 "" otherwise.
674 IS_PTR is true when OBJECT is not the actual alias.
675 In addition to checking IS_PTR, we also make sure that OBJECT is a pointer
676 since IS_PTR would also be true for C++ references, but we should only
677 print a * before a pointer and not before a reference. */
678
679 static const char *
680 get_maybe_star_prefix (tree object, bool is_ptr)
681 {
682 gcc_assert (object);
683 return (is_ptr
684 && TREE_CODE (TREE_TYPE (object)) == POINTER_TYPE) ? "*" : "";
685 }
686
687
688 /* Callback for contains_node_type_p.
689 Returns true if *T has tree code *(int*)DATA. */
690
691 static tree
692 contains_node_type_p_callback (tree *t,
693 int *go_below ATTRIBUTE_UNUSED,
694 void *data)
695 {
696 return ((int) TREE_CODE (*t) == *((int *) data)) ? *t : NULL_TREE;
697 }
698
699
700 /* Return true if T contains a node with tree code TYPE. */
701
702 static bool
703 contains_node_type_p (tree t, int type)
704 {
705 return (walk_tree_without_duplicates (&t, contains_node_type_p_callback,
706 (void *) &type)
707 != NULL_TREE);
708 }
709
710
711 /* Return true if a warning was issued in the front end at STMT. */
712
713 static bool
714 already_warned_in_frontend_p (tree stmt)
715 {
716 tree rhs_pointer;
717
718 if (stmt == NULL_TREE)
719 return false;
720
721 rhs_pointer = get_rhs (stmt);
722
723 if ((TREE_CODE (rhs_pointer) == NOP_EXPR
724 || TREE_CODE (rhs_pointer) == CONVERT_EXPR
725 || TREE_CODE (rhs_pointer) == VIEW_CONVERT_EXPR)
726 && TREE_NO_WARNING (rhs_pointer))
727 return true;
728 else
729 return false;
730 }
731
732
733 /* Return true if and only if TYPE is a function or method pointer type,
734 or pointer to a pointer to ... to a function or method. */
735
736 static bool
737 is_method_pointer (tree type)
738 {
739 while (TREE_CODE (type) == POINTER_TYPE)
740 type = TREE_TYPE (type);
741 return TREE_CODE (type) == METHOD_TYPE || TREE_CODE (type) == FUNCTION_TYPE;
742 }
743
744
745 /* Issue a -Wstrict-aliasing warning.
746 OBJECT1 and OBJECT2 are aliased names.
747 If IS_PTR1 and/or IS_PTR2 is true, then the corresponding name
748 OBJECT1/OBJECT2 is a pointer or reference to the aliased memory,
749 rather than actual storage.
750 ALIAS_SITE is a statement where the alias took place. In the most common
751 case, that is where a pointer was assigned to the address of an object. */
752
753 static bool
754 strict_aliasing_warn (tree alias_site,
755 tree object1, bool is_ptr1,
756 tree object2, bool is_ptr2,
757 bool filter_artificials)
758 {
759 tree ref_site1 = NULL_TREE;
760 tree ref_site2 = NULL_TREE;
761 const char *name1;
762 const char *name2;
763 location_t alias_loc;
764 location_t ref1_loc;
765 location_t ref2_loc;
766 gcc_assert (object1);
767 gcc_assert (object2);
768 name1 = get_var_name (object1);
769 name2 = get_var_name (object2);
770
771
772 if (is_method_pointer (get_main_type (TREE_TYPE (object2))))
773 return false;
774
775 maybe_find_missing_stmts (object1, is_ptr1, object2, is_ptr2, &alias_site,
776 &ref_site1, &ref_site2);
777
778 if (EXPR_HAS_LOCATION (alias_site))
779 alias_loc = EXPR_LOCATION (alias_site);
780 else
781 return false;
782
783 if (EXPR_HAS_LOCATION (ref_site1))
784 ref1_loc = EXPR_LOCATION (ref_site1);
785 else
786 ref1_loc = alias_loc;
787
788 if (EXPR_HAS_LOCATION (ref_site2))
789 ref2_loc = EXPR_LOCATION (ref_site2);
790 else
791 ref2_loc = alias_loc;
792
793 if (already_warned_in_frontend_p (alias_site))
794 return false;
795
796 /* If they are not SSA names, but contain SSA names, drop the warning
797 because it cannot be displayed well.
798 Also drop it if they both contain artificials.
799 XXX: this is a hack, must figure out a better way to display them. */
800 if (filter_artificials)
801 if ((find_first_artificial_name (get_ssa_base (object1))
802 && find_first_artificial_name (get_ssa_base (object2)))
803 || (TREE_CODE (object1) != SSA_NAME
804 && contains_node_type_p (object1, SSA_NAME))
805 || (TREE_CODE (object2) != SSA_NAME
806 && contains_node_type_p (object2, SSA_NAME)))
807 return false;
808
809
810 /* XXX: In the following format string, %s:%d should be replaced by %H.
811 However, in my tests only the first %H printed ok, while the
812 second and third were printed as blanks. */
813 warning (OPT_Wstrict_aliasing,
814 "%Hlikely type-punning may break strict-aliasing rules: "
815 "object %<%s%s%> of main type %qT is referenced at or around "
816 "%s:%d and may be "
817 "aliased to object %<%s%s%> of main type %qT which is referenced "
818 "at or around %s:%d.",
819 &alias_loc,
820 get_maybe_star_prefix (object1, is_ptr1),
821 name1, get_otype (object1, is_ptr1),
822 LOCATION_FILE (ref1_loc), LOCATION_LINE (ref1_loc),
823 get_maybe_star_prefix (object2, is_ptr2),
824 name2, get_otype (object2, is_ptr2),
825 LOCATION_FILE (ref2_loc), LOCATION_LINE (ref2_loc));
826
827 return true;
828 }
829 \f
830
831
832 /* Return true when any objects of TYPE1 and TYPE2 respectively
833 may not be aliased according to the language standard. */
834
835 static bool
836 nonstandard_alias_types_p (tree type1, tree type2)
837 {
838 alias_set_type set1;
839 alias_set_type set2;
840
841 if (VOID_TYPE_P (type1) || VOID_TYPE_P (type2))
842 return false;
843
844 set1 = get_alias_set (type1);
845 set2 = get_alias_set (type2);
846 return !alias_sets_conflict_p (set1, set2);
847 }
848 \f
849
850
851 /* Returns true when *PTR may not be aliased to ALIAS.
852 See C standard 6.5p7 and C++ standard 3.10p15.
853 If PTR_PTR is true, ALIAS represents a pointer or reference to the
854 aliased storage rather than its actual name. */
855
856 static bool
857 nonstandard_alias_p (tree ptr, tree alias, bool ptr_ptr)
858 {
859 /* Find the types to compare. */
860 tree ptr_type = get_otype (ptr, true);
861 tree alias_type = get_otype (alias, ptr_ptr);
862
863 /* XXX: for now, say it's OK if the alias escapes.
864 Not sure this is needed in general, but otherwise GCC will not
865 bootstrap. */
866 if (var_ann (get_ssa_base (alias))->escape_mask != NO_ESCAPE)
867 return false;
868
869 /* XXX: don't get into structures for now. It brings much complication
870 and little benefit. */
871 if (struct_class_union_p (ptr_type) || struct_class_union_p (alias_type))
872 return false;
873
874 /* If they are both SSA names of artificials, let it go, the warning
875 is too confusing. */
876 if (find_first_artificial_name (ptr) && find_first_artificial_name (alias))
877 return false;
878
879 /* Compare the types. */
880 return nonstandard_alias_types_p (ptr_type, alias_type);
881 }
882
883
884 /* Return true when we should skip analysis for pointer PTR based on the
885 fact that their alias information *PI is not considered relevant. */
886
887 static bool
888 skip_this_pointer (tree ptr ATTRIBUTE_UNUSED, struct ptr_info_def *pi)
889 {
890 /* If it is not dereferenced, it is not a problem (locally). */
891 if (!pi->is_dereferenced)
892 return true;
893
894 /* This would probably cause too many false positives. */
895 if (pi->value_escapes_p || pi->pt_anything)
896 return true;
897
898 return false;
899 }
900
901
902 /* Find aliasing to named objects for pointer PTR. */
903
904 static void
905 dsa_named_for (tree ptr)
906 {
907 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
908
909 if (pi)
910 {
911 if (skip_this_pointer (ptr, pi))
912 return;
913
914 /* For all the variables it could be aliased to. */
915 if (pi->pt_vars)
916 {
917 unsigned ix;
918 bitmap_iterator bi;
919
920 EXECUTE_IF_SET_IN_BITMAP (pi->pt_vars, 0, ix, bi)
921 {
922 tree alias = referenced_var (ix);
923
924 if (nonstandard_alias_p (ptr, alias, false))
925 strict_aliasing_warn (SSA_NAME_DEF_STMT (ptr),
926 ptr, true, alias, false, true);
927 }
928 }
929 }
930 }
931
932
933 /* Detect and report strict aliasing violation of named objects. */
934
935 static void
936 detect_strict_aliasing_named (void)
937 {
938 unsigned int i;
939
940 for (i = 1; i < num_ssa_names; i++)
941 {
942 tree ptr = ssa_name (i);
943 struct ptr_info_def *pi;
944
945 if (ptr == NULL_TREE)
946 continue;
947
948 pi = SSA_NAME_PTR_INFO (ptr);
949
950 if (!SSA_NAME_IN_FREE_LIST (ptr) && pi && pi->name_mem_tag)
951 dsa_named_for (ptr);
952 }
953 }
954
955
956 /* Return false only the first time I see each instance of FUNC. */
957
958 static bool
959 processed_func_p (tree func)
960 {
961 static htab_t seen = NULL;
962 void **slot = NULL;
963
964 if (!seen)
965 seen = htab_create (10, tree_map_base_hash, tree_map_eq, NULL);
966
967 slot = htab_find_slot (seen, &func, INSERT);
968 gcc_assert (slot);
969
970 if (*slot)
971 return true;
972
973 gcc_assert (slot);
974 *slot = &func;
975 return false;
976 }
977
978
979 /* Detect and warn about type-punning using points-to information. */
980
981 void
982 strict_aliasing_warning_backend (void)
983 {
984 if (flag_strict_aliasing && warn_strict_aliasing == 3
985 && !processed_func_p (current_function_decl))
986 {
987 detect_strict_aliasing_named ();
988 maybe_free_reference_table ();
989 }
990 }