cp-tree.def (UNARY_PLUS_EXPR): New C++ unary tree code.
[gcc.git] / gcc / tree-ssa-alias.c
1 /* Alias analysis for trees.
2 Copyright (C) 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "timevar.h"
32 #include "expr.h"
33 #include "ggc.h"
34 #include "langhooks.h"
35 #include "flags.h"
36 #include "function.h"
37 #include "diagnostic.h"
38 #include "tree-dump.h"
39 #include "tree-gimple.h"
40 #include "tree-flow.h"
41 #include "tree-inline.h"
42 #include "tree-pass.h"
43 #include "convert.h"
44 #include "params.h"
45 #include "vec.h"
46
47 /* 'true' after aliases have been computed (see compute_may_aliases). */
48 bool aliases_computed_p;
49
50 /* Structure to map a variable to its alias set and keep track of the
51 virtual operands that will be needed to represent it. */
52 struct alias_map_d
53 {
54 /* Variable and its alias set. */
55 tree var;
56 HOST_WIDE_INT set;
57
58 /* Total number of virtual operands that will be needed to represent
59 all the aliases of VAR. */
60 long total_alias_vops;
61
62 /* Nonzero if the aliases for this memory tag have been grouped
63 already. Used in group_aliases. */
64 unsigned int grouped_p : 1;
65
66 /* Set of variables aliased with VAR. This is the exact same
67 information contained in VAR_ANN (VAR)->MAY_ALIASES, but in
68 bitmap form to speed up alias grouping. */
69 sbitmap may_aliases;
70 };
71
72
73 /* Alias information used by compute_may_aliases and its helpers. */
74 struct alias_info
75 {
76 /* SSA names visited while collecting points-to information. If bit I
77 is set, it means that SSA variable with version I has already been
78 visited. */
79 sbitmap ssa_names_visited;
80
81 /* Array of SSA_NAME pointers processed by the points-to collector. */
82 varray_type processed_ptrs;
83
84 /* Variables whose address is still needed. */
85 bitmap addresses_needed;
86
87 /* ADDRESSABLE_VARS contains all the global variables and locals that
88 have had their address taken. */
89 struct alias_map_d **addressable_vars;
90 size_t num_addressable_vars;
91
92 /* POINTERS contains all the _DECL pointers with unique memory tags
93 that have been referenced in the program. */
94 struct alias_map_d **pointers;
95 size_t num_pointers;
96
97 /* Number of function calls found in the program. */
98 size_t num_calls_found;
99
100 /* Number of const/pure function calls found in the program. */
101 size_t num_pure_const_calls_found;
102
103 /* Array of counters to keep track of how many times each pointer has
104 been dereferenced in the program. This is used by the alias grouping
105 heuristic in compute_flow_insensitive_aliasing. */
106 varray_type num_references;
107
108 /* Total number of virtual operands that will be needed to represent
109 all the aliases of all the pointers found in the program. */
110 long total_alias_vops;
111
112 /* Variables that have been written to. */
113 bitmap written_vars;
114
115 /* Pointers that have been used in an indirect store operation. */
116 bitmap dereferenced_ptrs_store;
117
118 /* Pointers that have been used in an indirect load operation. */
119 bitmap dereferenced_ptrs_load;
120 };
121
122
123 /* Counters used to display statistics on alias analysis. */
124 struct alias_stats_d
125 {
126 unsigned int alias_queries;
127 unsigned int alias_mayalias;
128 unsigned int alias_noalias;
129 unsigned int simple_queries;
130 unsigned int simple_resolved;
131 unsigned int tbaa_queries;
132 unsigned int tbaa_resolved;
133 };
134
135
136 /* Local variables. */
137 static struct alias_stats_d alias_stats;
138
139 /* Local functions. */
140 static void compute_flow_insensitive_aliasing (struct alias_info *);
141 static void dump_alias_stats (FILE *);
142 static bool may_alias_p (tree, HOST_WIDE_INT, tree, HOST_WIDE_INT);
143 static tree create_memory_tag (tree type, bool is_type_tag);
144 static tree get_tmt_for (tree, struct alias_info *);
145 static tree get_nmt_for (tree);
146 static void add_may_alias (tree, tree);
147 static void replace_may_alias (tree, size_t, tree);
148 static struct alias_info *init_alias_info (void);
149 static void delete_alias_info (struct alias_info *);
150 static void compute_points_to_and_addr_escape (struct alias_info *);
151 static void compute_flow_sensitive_aliasing (struct alias_info *);
152 static void setup_pointers_and_addressables (struct alias_info *);
153 static bool collect_points_to_info_r (tree, tree, void *);
154 static bool is_escape_site (tree, struct alias_info *);
155 static void add_pointed_to_var (struct alias_info *, tree, tree);
156 static void create_global_var (void);
157 static void collect_points_to_info_for (struct alias_info *, tree);
158 static void maybe_create_global_var (struct alias_info *ai);
159 static void group_aliases (struct alias_info *);
160 static void set_pt_anything (tree ptr);
161 static void set_pt_malloc (tree ptr);
162
163 /* Global declarations. */
164
165 /* Call clobbered variables in the function. If bit I is set, then
166 REFERENCED_VARS (I) is call-clobbered. */
167 bitmap call_clobbered_vars;
168
169 /* Addressable variables in the function. If bit I is set, then
170 REFERENCED_VARS (I) has had its address taken. Note that
171 CALL_CLOBBERED_VARS and ADDRESSABLE_VARS are not related. An
172 addressable variable is not necessarily call-clobbered (e.g., a
173 local addressable whose address does not escape) and not all
174 call-clobbered variables are addressable (e.g., a local static
175 variable). */
176 bitmap addressable_vars;
177
178 /* When the program has too many call-clobbered variables and call-sites,
179 this variable is used to represent the clobbering effects of function
180 calls. In these cases, all the call clobbered variables in the program
181 are forced to alias this variable. This reduces compile times by not
182 having to keep track of too many V_MAY_DEF expressions at call sites. */
183 tree global_var;
184
185
186 /* Compute may-alias information for every variable referenced in function
187 FNDECL.
188
189 Alias analysis proceeds in 3 main phases:
190
191 1- Points-to and escape analysis.
192
193 This phase walks the use-def chains in the SSA web looking for three
194 things:
195
196 * Assignments of the form P_i = &VAR
197 * Assignments of the form P_i = malloc()
198 * Pointers and ADDR_EXPR that escape the current function.
199
200 The concept of 'escaping' is the same one used in the Java world. When
201 a pointer or an ADDR_EXPR escapes, it means that it has been exposed
202 outside of the current function. So, assignment to global variables,
203 function arguments and returning a pointer are all escape sites, as are
204 conversions between pointers and integers.
205
206 This is where we are currently limited. Since not everything is renamed
207 into SSA, we lose track of escape properties when a pointer is stashed
208 inside a field in a structure, for instance. In those cases, we are
209 assuming that the pointer does escape.
210
211 We use escape analysis to determine whether a variable is
212 call-clobbered. Simply put, if an ADDR_EXPR escapes, then the variable
213 is call-clobbered. If a pointer P_i escapes, then all the variables
214 pointed-to by P_i (and its memory tag) also escape.
215
216 2- Compute flow-sensitive aliases
217
218 We have two classes of memory tags. Memory tags associated with the
219 pointed-to data type of the pointers in the program. These tags are
220 called "type memory tag" (TMT). The other class are those associated
221 with SSA_NAMEs, called "name memory tag" (NMT). The basic idea is that
222 when adding operands for an INDIRECT_REF *P_i, we will first check
223 whether P_i has a name tag, if it does we use it, because that will have
224 more precise aliasing information. Otherwise, we use the standard type
225 tag.
226
227 In this phase, we go through all the pointers we found in points-to
228 analysis and create alias sets for the name memory tags associated with
229 each pointer P_i. If P_i escapes, we mark call-clobbered the variables
230 it points to and its tag.
231
232
233 3- Compute flow-insensitive aliases
234
235 This pass will compare the alias set of every type memory tag and every
236 addressable variable found in the program. Given a type memory tag TMT
237 and an addressable variable V. If the alias sets of TMT and V conflict
238 (as computed by may_alias_p), then V is marked as an alias tag and added
239 to the alias set of TMT.
240
241 For instance, consider the following function:
242
243 foo (int i)
244 {
245 int *p, a, b;
246
247 if (i > 10)
248 p = &a;
249 else
250 p = &b;
251
252 *p = 3;
253 a = b + 2;
254 return *p;
255 }
256
257 After aliasing analysis has finished, the type memory tag for pointer
258 'p' will have two aliases, namely variables 'a' and 'b'. Every time
259 pointer 'p' is dereferenced, we want to mark the operation as a
260 potential reference to 'a' and 'b'.
261
262 foo (int i)
263 {
264 int *p, a, b;
265
266 if (i_2 > 10)
267 p_4 = &a;
268 else
269 p_6 = &b;
270 # p_1 = PHI <p_4(1), p_6(2)>;
271
272 # a_7 = V_MAY_DEF <a_3>;
273 # b_8 = V_MAY_DEF <b_5>;
274 *p_1 = 3;
275
276 # a_9 = V_MAY_DEF <a_7>
277 # VUSE <b_8>
278 a_9 = b_8 + 2;
279
280 # VUSE <a_9>;
281 # VUSE <b_8>;
282 return *p_1;
283 }
284
285 In certain cases, the list of may aliases for a pointer may grow too
286 large. This may cause an explosion in the number of virtual operands
287 inserted in the code. Resulting in increased memory consumption and
288 compilation time.
289
290 When the number of virtual operands needed to represent aliased
291 loads and stores grows too large (configurable with @option{--param
292 max-aliased-vops}), alias sets are grouped to avoid severe
293 compile-time slow downs and memory consumption. See group_aliases. */
294
295 static void
296 compute_may_aliases (void)
297 {
298 struct alias_info *ai;
299
300 memset (&alias_stats, 0, sizeof (alias_stats));
301
302 /* Initialize aliasing information. */
303 ai = init_alias_info ();
304
305 /* For each pointer P_i, determine the sets of variables that P_i may
306 point-to. For every addressable variable V, determine whether the
307 address of V escapes the current function, making V call-clobbered
308 (i.e., whether &V is stored in a global variable or if its passed as a
309 function call argument). */
310 compute_points_to_and_addr_escape (ai);
311
312 /* Collect all pointers and addressable variables, compute alias sets,
313 create memory tags for pointers and promote variables whose address is
314 not needed anymore. */
315 setup_pointers_and_addressables (ai);
316
317 /* Compute flow-sensitive, points-to based aliasing for all the name
318 memory tags. Note that this pass needs to be done before flow
319 insensitive analysis because it uses the points-to information
320 gathered before to mark call-clobbered type tags. */
321 compute_flow_sensitive_aliasing (ai);
322
323 /* Compute type-based flow-insensitive aliasing for all the type
324 memory tags. */
325 compute_flow_insensitive_aliasing (ai);
326
327 /* If the program has too many call-clobbered variables and/or function
328 calls, create .GLOBAL_VAR and use it to model call-clobbering
329 semantics at call sites. This reduces the number of virtual operands
330 considerably, improving compile times at the expense of lost
331 aliasing precision. */
332 maybe_create_global_var (ai);
333
334 /* Debugging dumps. */
335 if (dump_file)
336 {
337 dump_referenced_vars (dump_file);
338 if (dump_flags & TDF_STATS)
339 dump_alias_stats (dump_file);
340 dump_points_to_info (dump_file);
341 dump_alias_info (dump_file);
342 }
343
344 /* Deallocate memory used by aliasing data structures. */
345 delete_alias_info (ai);
346
347 {
348 block_stmt_iterator bsi;
349 basic_block bb;
350 FOR_EACH_BB (bb)
351 {
352 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
353 {
354 update_stmt_if_modified (bsi_stmt (bsi));
355 }
356 }
357 }
358
359 }
360
361 struct tree_opt_pass pass_may_alias =
362 {
363 "alias", /* name */
364 NULL, /* gate */
365 compute_may_aliases, /* execute */
366 NULL, /* sub */
367 NULL, /* next */
368 0, /* static_pass_number */
369 TV_TREE_MAY_ALIAS, /* tv_id */
370 PROP_cfg | PROP_ssa, /* properties_required */
371 PROP_alias, /* properties_provided */
372 0, /* properties_destroyed */
373 0, /* todo_flags_start */
374 TODO_dump_func | TODO_update_ssa
375 | TODO_ggc_collect | TODO_verify_ssa
376 | TODO_verify_stmts, /* todo_flags_finish */
377 0 /* letter */
378 };
379
380
381 /* Data structure used to count the number of dereferences to PTR
382 inside an expression. */
383 struct count_ptr_d
384 {
385 tree ptr;
386 unsigned count;
387 };
388
389
390 /* Helper for count_uses_and_derefs. Called by walk_tree to look for
391 (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
392
393 static tree
394 count_ptr_derefs (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED, void *data)
395 {
396 struct count_ptr_d *count_p = (struct count_ptr_d *) data;
397
398 if (INDIRECT_REF_P (*tp) && TREE_OPERAND (*tp, 0) == count_p->ptr)
399 count_p->count++;
400
401 return NULL_TREE;
402 }
403
404
405 /* Count the number of direct and indirect uses for pointer PTR in
406 statement STMT. The two counts are stored in *NUM_USES_P and
407 *NUM_DEREFS_P respectively. *IS_STORE_P is set to 'true' if at
408 least one of those dereferences is a store operation. */
409
410 void
411 count_uses_and_derefs (tree ptr, tree stmt, unsigned *num_uses_p,
412 unsigned *num_derefs_p, bool *is_store)
413 {
414 ssa_op_iter i;
415 tree use;
416
417 *num_uses_p = 0;
418 *num_derefs_p = 0;
419 *is_store = false;
420
421 /* Find out the total number of uses of PTR in STMT. */
422 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
423 if (use == ptr)
424 (*num_uses_p)++;
425
426 /* Now count the number of indirect references to PTR. This is
427 truly awful, but we don't have much choice. There are no parent
428 pointers inside INDIRECT_REFs, so an expression like
429 '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
430 find all the indirect and direct uses of x_1 inside. The only
431 shortcut we can take is the fact that GIMPLE only allows
432 INDIRECT_REFs inside the expressions below. */
433 if (TREE_CODE (stmt) == MODIFY_EXPR
434 || (TREE_CODE (stmt) == RETURN_EXPR
435 && TREE_CODE (TREE_OPERAND (stmt, 0)) == MODIFY_EXPR)
436 || TREE_CODE (stmt) == ASM_EXPR
437 || TREE_CODE (stmt) == CALL_EXPR)
438 {
439 tree lhs, rhs;
440
441 if (TREE_CODE (stmt) == MODIFY_EXPR)
442 {
443 lhs = TREE_OPERAND (stmt, 0);
444 rhs = TREE_OPERAND (stmt, 1);
445 }
446 else if (TREE_CODE (stmt) == RETURN_EXPR)
447 {
448 tree e = TREE_OPERAND (stmt, 0);
449 lhs = TREE_OPERAND (e, 0);
450 rhs = TREE_OPERAND (e, 1);
451 }
452 else if (TREE_CODE (stmt) == ASM_EXPR)
453 {
454 lhs = ASM_OUTPUTS (stmt);
455 rhs = ASM_INPUTS (stmt);
456 }
457 else
458 {
459 lhs = NULL_TREE;
460 rhs = stmt;
461 }
462
463 if (lhs && (TREE_CODE (lhs) == TREE_LIST || EXPR_P (lhs)))
464 {
465 struct count_ptr_d count;
466 count.ptr = ptr;
467 count.count = 0;
468 walk_tree (&lhs, count_ptr_derefs, &count, NULL);
469 *is_store = true;
470 *num_derefs_p = count.count;
471 }
472
473 if (rhs && (TREE_CODE (rhs) == TREE_LIST || EXPR_P (rhs)))
474 {
475 struct count_ptr_d count;
476 count.ptr = ptr;
477 count.count = 0;
478 walk_tree (&rhs, count_ptr_derefs, &count, NULL);
479 *num_derefs_p += count.count;
480 }
481 }
482
483 gcc_assert (*num_uses_p >= *num_derefs_p);
484 }
485
486
487 /* Initialize the data structures used for alias analysis. */
488
489 static struct alias_info *
490 init_alias_info (void)
491 {
492 struct alias_info *ai;
493
494 ai = xcalloc (1, sizeof (struct alias_info));
495 ai->ssa_names_visited = sbitmap_alloc (num_ssa_names);
496 sbitmap_zero (ai->ssa_names_visited);
497 VARRAY_TREE_INIT (ai->processed_ptrs, 50, "processed_ptrs");
498 ai->addresses_needed = BITMAP_ALLOC (NULL);
499 VARRAY_UINT_INIT (ai->num_references, num_referenced_vars, "num_references");
500 ai->written_vars = BITMAP_ALLOC (NULL);
501 ai->dereferenced_ptrs_store = BITMAP_ALLOC (NULL);
502 ai->dereferenced_ptrs_load = BITMAP_ALLOC (NULL);
503
504 /* If aliases have been computed before, clear existing information. */
505 if (aliases_computed_p)
506 {
507 unsigned i;
508
509 /* Similarly, clear the set of addressable variables. In this
510 case, we can just clear the set because addressability is
511 only computed here. */
512 bitmap_clear (addressable_vars);
513
514 /* Clear flow-insensitive alias information from each symbol. */
515 for (i = 0; i < num_referenced_vars; i++)
516 {
517 tree var = referenced_var (i);
518 var_ann_t ann = var_ann (var);
519
520 ann->is_alias_tag = 0;
521 ann->may_aliases = NULL;
522
523 /* Since we are about to re-discover call-clobbered
524 variables, clear the call-clobbered flag. Variables that
525 are intrinsically call-clobbered (globals, local statics,
526 etc) will not be marked by the aliasing code, so we can't
527 remove them from CALL_CLOBBERED_VARS.
528
529 NB: STRUCT_FIELDS are still call clobbered if they are for
530 a global variable, so we *don't* clear their call clobberedness
531 just because they are tags, though we will clear it if they
532 aren't for global variables. */
533 if (ann->mem_tag_kind == NAME_TAG
534 || ann->mem_tag_kind == TYPE_TAG
535 || !is_global_var (var))
536 clear_call_clobbered (var);
537 }
538
539 /* Clear flow-sensitive points-to information from each SSA name. */
540 for (i = 1; i < num_ssa_names; i++)
541 {
542 tree name = ssa_name (i);
543
544 if (!name || !POINTER_TYPE_P (TREE_TYPE (name)))
545 continue;
546
547 if (SSA_NAME_PTR_INFO (name))
548 {
549 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (name);
550
551 /* Clear all the flags but keep the name tag to
552 avoid creating new temporaries unnecessarily. If
553 this pointer is found to point to a subset or
554 superset of its former points-to set, then a new
555 tag will need to be created in create_name_tags. */
556 pi->pt_anything = 0;
557 pi->pt_malloc = 0;
558 pi->pt_null = 0;
559 pi->value_escapes_p = 0;
560 pi->is_dereferenced = 0;
561 if (pi->pt_vars)
562 bitmap_clear (pi->pt_vars);
563 }
564 }
565 }
566
567 /* Next time, we will need to reset alias information. */
568 aliases_computed_p = true;
569
570 return ai;
571 }
572
573
574 /* Deallocate memory used by alias analysis. */
575
576 static void
577 delete_alias_info (struct alias_info *ai)
578 {
579 size_t i;
580
581 sbitmap_free (ai->ssa_names_visited);
582 ai->processed_ptrs = NULL;
583 BITMAP_FREE (ai->addresses_needed);
584
585 for (i = 0; i < ai->num_addressable_vars; i++)
586 {
587 sbitmap_free (ai->addressable_vars[i]->may_aliases);
588 free (ai->addressable_vars[i]);
589 }
590 free (ai->addressable_vars);
591
592 for (i = 0; i < ai->num_pointers; i++)
593 {
594 sbitmap_free (ai->pointers[i]->may_aliases);
595 free (ai->pointers[i]);
596 }
597 free (ai->pointers);
598
599 ai->num_references = NULL;
600 BITMAP_FREE (ai->written_vars);
601 BITMAP_FREE (ai->dereferenced_ptrs_store);
602 BITMAP_FREE (ai->dereferenced_ptrs_load);
603
604 free (ai);
605 }
606
607
608 /* Walk use-def chains for pointer PTR to determine what variables is PTR
609 pointing to. */
610
611 static void
612 collect_points_to_info_for (struct alias_info *ai, tree ptr)
613 {
614 gcc_assert (POINTER_TYPE_P (TREE_TYPE (ptr)));
615
616 if (!TEST_BIT (ai->ssa_names_visited, SSA_NAME_VERSION (ptr)))
617 {
618 SET_BIT (ai->ssa_names_visited, SSA_NAME_VERSION (ptr));
619 walk_use_def_chains (ptr, collect_points_to_info_r, ai, true);
620 VARRAY_PUSH_TREE (ai->processed_ptrs, ptr);
621 }
622 }
623
624
625 /* Traverse use-def links for all the pointers in the program to collect
626 address escape and points-to information.
627
628 This is loosely based on the same idea described in R. Hasti and S.
629 Horwitz, ``Using static single assignment form to improve
630 flow-insensitive pointer analysis,'' in SIGPLAN Conference on
631 Programming Language Design and Implementation, pp. 97-105, 1998. */
632
633 static void
634 compute_points_to_and_addr_escape (struct alias_info *ai)
635 {
636 basic_block bb;
637 unsigned i;
638 tree op;
639 ssa_op_iter iter;
640
641 timevar_push (TV_TREE_PTA);
642
643 FOR_EACH_BB (bb)
644 {
645 block_stmt_iterator si;
646
647 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
648 {
649 bitmap addr_taken;
650 tree stmt = bsi_stmt (si);
651 bool stmt_escapes_p = is_escape_site (stmt, ai);
652 bitmap_iterator bi;
653
654 /* Mark all the variables whose address are taken by the
655 statement. Note that this will miss all the addresses taken
656 in PHI nodes (those are discovered while following the use-def
657 chains). */
658 addr_taken = addresses_taken (stmt);
659 if (addr_taken)
660 EXECUTE_IF_SET_IN_BITMAP (addr_taken, 0, i, bi)
661 {
662 tree var = referenced_var (i);
663 bitmap_set_bit (ai->addresses_needed, var_ann (var)->uid);
664 if (stmt_escapes_p)
665 mark_call_clobbered (var);
666 }
667
668 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE)
669 {
670 var_ann_t v_ann = var_ann (SSA_NAME_VAR (op));
671 struct ptr_info_def *pi;
672 bool is_store;
673 unsigned num_uses, num_derefs;
674
675 /* If the operand's variable may be aliased, keep track
676 of how many times we've referenced it. This is used
677 for alias grouping in compute_flow_sensitive_aliasing.
678 Note that we don't need to grow AI->NUM_REFERENCES
679 because we are processing regular variables, not
680 memory tags (the array's initial size is set to
681 NUM_REFERENCED_VARS). */
682 if (may_be_aliased (SSA_NAME_VAR (op)))
683 (VARRAY_UINT (ai->num_references, v_ann->uid))++;
684
685 if (!POINTER_TYPE_P (TREE_TYPE (op)))
686 continue;
687
688 collect_points_to_info_for (ai, op);
689
690 pi = SSA_NAME_PTR_INFO (op);
691 count_uses_and_derefs (op, stmt, &num_uses, &num_derefs,
692 &is_store);
693
694 if (num_derefs > 0)
695 {
696 /* Mark OP as dereferenced. In a subsequent pass,
697 dereferenced pointers that point to a set of
698 variables will be assigned a name tag to alias
699 all the variables OP points to. */
700 pi->is_dereferenced = 1;
701
702 /* Keep track of how many time we've dereferenced each
703 pointer. Again, we don't need to grow
704 AI->NUM_REFERENCES because we're processing
705 existing program variables. */
706 (VARRAY_UINT (ai->num_references, v_ann->uid))++;
707
708 /* If this is a store operation, mark OP as being
709 dereferenced to store, otherwise mark it as being
710 dereferenced to load. */
711 if (is_store)
712 bitmap_set_bit (ai->dereferenced_ptrs_store, v_ann->uid);
713 else
714 bitmap_set_bit (ai->dereferenced_ptrs_load, v_ann->uid);
715 }
716
717 if (stmt_escapes_p && num_derefs < num_uses)
718 {
719 /* If STMT is an escape point and STMT contains at
720 least one direct use of OP, then the value of OP
721 escapes and so the pointed-to variables need to
722 be marked call-clobbered. */
723 pi->value_escapes_p = 1;
724
725 /* If the statement makes a function call, assume
726 that pointer OP will be dereferenced in a store
727 operation inside the called function. */
728 if (get_call_expr_in (stmt))
729 {
730 bitmap_set_bit (ai->dereferenced_ptrs_store, v_ann->uid);
731 pi->is_dereferenced = 1;
732 }
733 }
734 }
735
736 /* Update reference counter for definitions to any
737 potentially aliased variable. This is used in the alias
738 grouping heuristics. */
739 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_DEF)
740 {
741 tree var = SSA_NAME_VAR (op);
742 var_ann_t ann = var_ann (var);
743 bitmap_set_bit (ai->written_vars, ann->uid);
744 if (may_be_aliased (var))
745 (VARRAY_UINT (ai->num_references, ann->uid))++;
746
747 if (POINTER_TYPE_P (TREE_TYPE (op)))
748 collect_points_to_info_for (ai, op);
749 }
750
751 /* Mark variables in V_MAY_DEF operands as being written to. */
752 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_DEFS)
753 {
754 tree var = DECL_P (op) ? op : SSA_NAME_VAR (op);
755 var_ann_t ann = var_ann (var);
756 bitmap_set_bit (ai->written_vars, ann->uid);
757 }
758
759 /* After promoting variables and computing aliasing we will
760 need to re-scan most statements. FIXME: Try to minimize the
761 number of statements re-scanned. It's not really necessary to
762 re-scan *all* statements. */
763 mark_stmt_modified (stmt);
764 }
765 }
766
767 timevar_pop (TV_TREE_PTA);
768 }
769
770
771 /* Create name tags for all the pointers that have been dereferenced.
772 We only create a name tag for a pointer P if P is found to point to
773 a set of variables (so that we can alias them to *P) or if it is
774 the result of a call to malloc (which means that P cannot point to
775 anything else nor alias any other variable).
776
777 If two pointers P and Q point to the same set of variables, they
778 are assigned the same name tag. */
779
780 static void
781 create_name_tags (struct alias_info *ai)
782 {
783 size_t i;
784
785 for (i = 0; i < VARRAY_ACTIVE_SIZE (ai->processed_ptrs); i++)
786 {
787 tree ptr = VARRAY_TREE (ai->processed_ptrs, i);
788 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
789
790 if (pi->pt_anything || !pi->is_dereferenced)
791 {
792 /* No name tags for pointers that have not been
793 dereferenced or point to an arbitrary location. */
794 pi->name_mem_tag = NULL_TREE;
795 continue;
796 }
797
798 if (pi->pt_vars && !bitmap_empty_p (pi->pt_vars))
799 {
800 size_t j;
801 tree old_name_tag = pi->name_mem_tag;
802
803 /* If PTR points to a set of variables, check if we don't
804 have another pointer Q with the same points-to set before
805 creating a tag. If so, use Q's tag instead of creating a
806 new one.
807
808 This is important for not creating unnecessary symbols
809 and also for copy propagation. If we ever need to
810 propagate PTR into Q or vice-versa, we would run into
811 problems if they both had different name tags because
812 they would have different SSA version numbers (which
813 would force us to take the name tags in and out of SSA). */
814 for (j = 0; j < i; j++)
815 {
816 tree q = VARRAY_TREE (ai->processed_ptrs, j);
817 struct ptr_info_def *qi = SSA_NAME_PTR_INFO (q);
818
819 if (qi
820 && qi->pt_vars
821 && qi->name_mem_tag
822 && bitmap_equal_p (pi->pt_vars, qi->pt_vars))
823 {
824 pi->name_mem_tag = qi->name_mem_tag;
825 break;
826 }
827 }
828
829 /* If we didn't find a pointer with the same points-to set
830 as PTR, create a new name tag if needed. */
831 if (pi->name_mem_tag == NULL_TREE)
832 pi->name_mem_tag = get_nmt_for (ptr);
833
834 /* If the new name tag computed for PTR is different than
835 the old name tag that it used to have, then the old tag
836 needs to be removed from the IL, so we mark it for
837 renaming. */
838 if (old_name_tag && old_name_tag != pi->name_mem_tag)
839 mark_sym_for_renaming (old_name_tag);
840 }
841 else if (pi->pt_malloc)
842 {
843 /* Otherwise, create a unique name tag for this pointer. */
844 pi->name_mem_tag = get_nmt_for (ptr);
845 }
846 else
847 {
848 /* Only pointers that may point to malloc or other variables
849 may receive a name tag. If the pointer does not point to
850 a known spot, we should use type tags. */
851 set_pt_anything (ptr);
852 continue;
853 }
854
855 TREE_THIS_VOLATILE (pi->name_mem_tag)
856 |= TREE_THIS_VOLATILE (TREE_TYPE (TREE_TYPE (ptr)));
857
858 /* Mark the new name tag for renaming. */
859 mark_sym_for_renaming (pi->name_mem_tag);
860 }
861 }
862
863
864
865 /* For every pointer P_i in AI->PROCESSED_PTRS, create may-alias sets for
866 the name memory tag (NMT) associated with P_i. If P_i escapes, then its
867 name tag and the variables it points-to are call-clobbered. Finally, if
868 P_i escapes and we could not determine where it points to, then all the
869 variables in the same alias set as *P_i are marked call-clobbered. This
870 is necessary because we must assume that P_i may take the address of any
871 variable in the same alias set. */
872
873 static void
874 compute_flow_sensitive_aliasing (struct alias_info *ai)
875 {
876 size_t i;
877
878 create_name_tags (ai);
879
880 for (i = 0; i < VARRAY_ACTIVE_SIZE (ai->processed_ptrs); i++)
881 {
882 unsigned j;
883 tree ptr = VARRAY_TREE (ai->processed_ptrs, i);
884 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
885 var_ann_t v_ann = var_ann (SSA_NAME_VAR (ptr));
886 bitmap_iterator bi;
887
888 if (pi->value_escapes_p || pi->pt_anything)
889 {
890 /* If PTR escapes or may point to anything, then its associated
891 memory tags and pointed-to variables are call-clobbered. */
892 if (pi->name_mem_tag)
893 mark_call_clobbered (pi->name_mem_tag);
894
895 if (v_ann->type_mem_tag)
896 mark_call_clobbered (v_ann->type_mem_tag);
897
898 if (pi->pt_vars)
899 EXECUTE_IF_SET_IN_BITMAP (pi->pt_vars, 0, j, bi)
900 {
901 mark_call_clobbered (referenced_var (j));
902 }
903 }
904
905 /* Set up aliasing information for PTR's name memory tag (if it has
906 one). Note that only pointers that have been dereferenced will
907 have a name memory tag. */
908 if (pi->name_mem_tag && pi->pt_vars)
909 EXECUTE_IF_SET_IN_BITMAP (pi->pt_vars, 0, j, bi)
910 {
911 add_may_alias (pi->name_mem_tag, referenced_var (j));
912 add_may_alias (v_ann->type_mem_tag, referenced_var (j));
913 }
914
915 /* If the name tag is call clobbered, so is the type tag
916 associated with the base VAR_DECL. */
917 if (pi->name_mem_tag
918 && v_ann->type_mem_tag
919 && is_call_clobbered (pi->name_mem_tag))
920 mark_call_clobbered (v_ann->type_mem_tag);
921 }
922 }
923
924
925 /* Compute type-based alias sets. Traverse all the pointers and
926 addressable variables found in setup_pointers_and_addressables.
927
928 For every pointer P in AI->POINTERS and addressable variable V in
929 AI->ADDRESSABLE_VARS, add V to the may-alias sets of P's type
930 memory tag (TMT) if their alias sets conflict. V is then marked as
931 an alias tag so that the operand scanner knows that statements
932 containing V have aliased operands. */
933
934 static void
935 compute_flow_insensitive_aliasing (struct alias_info *ai)
936 {
937 size_t i;
938
939 /* Initialize counter for the total number of virtual operands that
940 aliasing will introduce. When AI->TOTAL_ALIAS_VOPS goes beyond the
941 threshold set by --params max-alias-vops, we enable alias
942 grouping. */
943 ai->total_alias_vops = 0;
944
945 /* For every pointer P, determine which addressable variables may alias
946 with P's type memory tag. */
947 for (i = 0; i < ai->num_pointers; i++)
948 {
949 size_t j;
950 struct alias_map_d *p_map = ai->pointers[i];
951 tree tag = var_ann (p_map->var)->type_mem_tag;
952 var_ann_t tag_ann = var_ann (tag);
953
954 p_map->total_alias_vops = 0;
955 p_map->may_aliases = sbitmap_alloc (num_referenced_vars);
956 sbitmap_zero (p_map->may_aliases);
957
958 for (j = 0; j < ai->num_addressable_vars; j++)
959 {
960 struct alias_map_d *v_map;
961 var_ann_t v_ann;
962 tree var;
963 bool tag_stored_p, var_stored_p;
964
965 v_map = ai->addressable_vars[j];
966 var = v_map->var;
967 v_ann = var_ann (var);
968
969 /* Skip memory tags and variables that have never been
970 written to. We also need to check if the variables are
971 call-clobbered because they may be overwritten by
972 function calls.
973
974 Note this is effectively random accessing elements in
975 the sparse bitset, which can be highly inefficient.
976 So we first check the call_clobbered status of the
977 tag and variable before querying the bitmap. */
978 tag_stored_p = is_call_clobbered (tag)
979 || bitmap_bit_p (ai->written_vars, tag_ann->uid);
980 var_stored_p = is_call_clobbered (var)
981 || bitmap_bit_p (ai->written_vars, v_ann->uid);
982 if (!tag_stored_p && !var_stored_p)
983 continue;
984
985 if (may_alias_p (p_map->var, p_map->set, var, v_map->set))
986 {
987 subvar_t svars;
988 size_t num_tag_refs, num_var_refs;
989
990 num_tag_refs = VARRAY_UINT (ai->num_references, tag_ann->uid);
991 num_var_refs = VARRAY_UINT (ai->num_references, v_ann->uid);
992
993 /* Add VAR to TAG's may-aliases set. */
994
995 /* If this is an aggregate, we may have subvariables for it
996 that need to be pointed to. */
997 if (var_can_have_subvars (var)
998 && (svars = get_subvars_for_var (var)))
999 {
1000 subvar_t sv;
1001
1002 for (sv = svars; sv; sv = sv->next)
1003 {
1004 add_may_alias (tag, sv->var);
1005 /* Update the bitmap used to represent TAG's alias set
1006 in case we need to group aliases. */
1007 SET_BIT (p_map->may_aliases, var_ann (sv->var)->uid);
1008 }
1009 }
1010 else
1011 {
1012 add_may_alias (tag, var);
1013 /* Update the bitmap used to represent TAG's alias set
1014 in case we need to group aliases. */
1015 SET_BIT (p_map->may_aliases, var_ann (var)->uid);
1016 }
1017
1018 /* Update the total number of virtual operands due to
1019 aliasing. Since we are adding one more alias to TAG's
1020 may-aliases set, the total number of virtual operands due
1021 to aliasing will be increased by the number of references
1022 made to VAR and TAG (every reference to TAG will also
1023 count as a reference to VAR). */
1024 ai->total_alias_vops += (num_var_refs + num_tag_refs);
1025 p_map->total_alias_vops += (num_var_refs + num_tag_refs);
1026
1027
1028 }
1029 }
1030 }
1031
1032 /* Since this analysis is based exclusively on symbols, it fails to
1033 handle cases where two pointers P and Q have different memory
1034 tags with conflicting alias set numbers but no aliased symbols in
1035 common.
1036
1037 For example, suppose that we have two memory tags TMT.1 and TMT.2
1038 such that
1039
1040 may-aliases (TMT.1) = { a }
1041 may-aliases (TMT.2) = { b }
1042
1043 and the alias set number of TMT.1 conflicts with that of TMT.2.
1044 Since they don't have symbols in common, loads and stores from
1045 TMT.1 and TMT.2 will seem independent of each other, which will
1046 lead to the optimizers making invalid transformations (see
1047 testsuite/gcc.c-torture/execute/pr15262-[12].c).
1048
1049 To avoid this problem, we do a final traversal of AI->POINTERS
1050 looking for pairs of pointers that have no aliased symbols in
1051 common and yet have conflicting alias set numbers. */
1052 for (i = 0; i < ai->num_pointers; i++)
1053 {
1054 size_t j;
1055 struct alias_map_d *p_map1 = ai->pointers[i];
1056 tree tag1 = var_ann (p_map1->var)->type_mem_tag;
1057 sbitmap may_aliases1 = p_map1->may_aliases;
1058
1059 for (j = i + 1; j < ai->num_pointers; j++)
1060 {
1061 struct alias_map_d *p_map2 = ai->pointers[j];
1062 tree tag2 = var_ann (p_map2->var)->type_mem_tag;
1063 sbitmap may_aliases2 = p_map2->may_aliases;
1064
1065 /* If the pointers may not point to each other, do nothing. */
1066 if (!may_alias_p (p_map1->var, p_map1->set, tag2, p_map2->set))
1067 continue;
1068
1069 /* The two pointers may alias each other. If they already have
1070 symbols in common, do nothing. */
1071 if (sbitmap_any_common_bits (may_aliases1, may_aliases2))
1072 continue;
1073
1074 if (sbitmap_first_set_bit (may_aliases2) >= 0)
1075 {
1076 size_t k;
1077
1078 /* Add all the aliases for TAG2 into TAG1's alias set.
1079 FIXME, update grouping heuristic counters. */
1080 EXECUTE_IF_SET_IN_SBITMAP (may_aliases2, 0, k,
1081 add_may_alias (tag1, referenced_var (k)));
1082 sbitmap_a_or_b (may_aliases1, may_aliases1, may_aliases2);
1083 }
1084 else
1085 {
1086 /* Since TAG2 does not have any aliases of its own, add
1087 TAG2 itself to the alias set of TAG1. */
1088 add_may_alias (tag1, tag2);
1089 SET_BIT (may_aliases1, var_ann (tag2)->uid);
1090 }
1091 }
1092 }
1093
1094 if (dump_file)
1095 fprintf (dump_file, "%s: Total number of aliased vops: %ld\n",
1096 get_name (current_function_decl),
1097 ai->total_alias_vops);
1098
1099 /* Determine if we need to enable alias grouping. */
1100 if (ai->total_alias_vops >= MAX_ALIASED_VOPS)
1101 group_aliases (ai);
1102 }
1103
1104
1105 /* Comparison function for qsort used in group_aliases. */
1106
1107 static int
1108 total_alias_vops_cmp (const void *p, const void *q)
1109 {
1110 const struct alias_map_d **p1 = (const struct alias_map_d **)p;
1111 const struct alias_map_d **p2 = (const struct alias_map_d **)q;
1112 long n1 = (*p1)->total_alias_vops;
1113 long n2 = (*p2)->total_alias_vops;
1114
1115 /* We want to sort in descending order. */
1116 return (n1 > n2 ? -1 : (n1 == n2) ? 0 : 1);
1117 }
1118
1119 /* Group all the aliases for TAG to make TAG represent all the
1120 variables in its alias set. Update the total number
1121 of virtual operands due to aliasing (AI->TOTAL_ALIAS_VOPS). This
1122 function will make TAG be the unique alias tag for all the
1123 variables in its may-aliases. So, given:
1124
1125 may-aliases(TAG) = { V1, V2, V3 }
1126
1127 This function will group the variables into:
1128
1129 may-aliases(V1) = { TAG }
1130 may-aliases(V2) = { TAG }
1131 may-aliases(V2) = { TAG } */
1132
1133 static void
1134 group_aliases_into (tree tag, sbitmap tag_aliases, struct alias_info *ai)
1135 {
1136 size_t i;
1137 var_ann_t tag_ann = var_ann (tag);
1138 size_t num_tag_refs = VARRAY_UINT (ai->num_references, tag_ann->uid);
1139
1140 EXECUTE_IF_SET_IN_SBITMAP (tag_aliases, 0, i,
1141 {
1142 tree var = referenced_var (i);
1143 var_ann_t ann = var_ann (var);
1144
1145 /* Make TAG the unique alias of VAR. */
1146 ann->is_alias_tag = 0;
1147 ann->may_aliases = NULL;
1148
1149 /* Note that VAR and TAG may be the same if the function has no
1150 addressable variables (see the discussion at the end of
1151 setup_pointers_and_addressables). */
1152 if (var != tag)
1153 add_may_alias (var, tag);
1154
1155 /* Reduce total number of virtual operands contributed
1156 by TAG on behalf of VAR. Notice that the references to VAR
1157 itself won't be removed. We will merely replace them with
1158 references to TAG. */
1159 ai->total_alias_vops -= num_tag_refs;
1160 });
1161
1162 /* We have reduced the number of virtual operands that TAG makes on
1163 behalf of all the variables formerly aliased with it. However,
1164 we have also "removed" all the virtual operands for TAG itself,
1165 so we add them back. */
1166 ai->total_alias_vops += num_tag_refs;
1167
1168 /* TAG no longer has any aliases. */
1169 tag_ann->may_aliases = NULL;
1170 }
1171
1172
1173 /* Group may-aliases sets to reduce the number of virtual operands due
1174 to aliasing.
1175
1176 1- Sort the list of pointers in decreasing number of contributed
1177 virtual operands.
1178
1179 2- Take the first entry in AI->POINTERS and revert the role of
1180 the memory tag and its aliases. Usually, whenever an aliased
1181 variable Vi is found to alias with a memory tag T, we add Vi
1182 to the may-aliases set for T. Meaning that after alias
1183 analysis, we will have:
1184
1185 may-aliases(T) = { V1, V2, V3, ..., Vn }
1186
1187 This means that every statement that references T, will get 'n'
1188 virtual operands for each of the Vi tags. But, when alias
1189 grouping is enabled, we make T an alias tag and add it to the
1190 alias set of all the Vi variables:
1191
1192 may-aliases(V1) = { T }
1193 may-aliases(V2) = { T }
1194 ...
1195 may-aliases(Vn) = { T }
1196
1197 This has two effects: (a) statements referencing T will only get
1198 a single virtual operand, and, (b) all the variables Vi will now
1199 appear to alias each other. So, we lose alias precision to
1200 improve compile time. But, in theory, a program with such a high
1201 level of aliasing should not be very optimizable in the first
1202 place.
1203
1204 3- Since variables may be in the alias set of more than one
1205 memory tag, the grouping done in step (2) needs to be extended
1206 to all the memory tags that have a non-empty intersection with
1207 the may-aliases set of tag T. For instance, if we originally
1208 had these may-aliases sets:
1209
1210 may-aliases(T) = { V1, V2, V3 }
1211 may-aliases(R) = { V2, V4 }
1212
1213 In step (2) we would have reverted the aliases for T as:
1214
1215 may-aliases(V1) = { T }
1216 may-aliases(V2) = { T }
1217 may-aliases(V3) = { T }
1218
1219 But note that now V2 is no longer aliased with R. We could
1220 add R to may-aliases(V2), but we are in the process of
1221 grouping aliases to reduce virtual operands so what we do is
1222 add V4 to the grouping to obtain:
1223
1224 may-aliases(V1) = { T }
1225 may-aliases(V2) = { T }
1226 may-aliases(V3) = { T }
1227 may-aliases(V4) = { T }
1228
1229 4- If the total number of virtual operands due to aliasing is
1230 still above the threshold set by max-alias-vops, go back to (2). */
1231
1232 static void
1233 group_aliases (struct alias_info *ai)
1234 {
1235 size_t i;
1236
1237 /* Sort the POINTERS array in descending order of contributed
1238 virtual operands. */
1239 qsort (ai->pointers, ai->num_pointers, sizeof (struct alias_map_d *),
1240 total_alias_vops_cmp);
1241
1242 /* For every pointer in AI->POINTERS, reverse the roles of its tag
1243 and the tag's may-aliases set. */
1244 for (i = 0; i < ai->num_pointers; i++)
1245 {
1246 size_t j;
1247 tree tag1 = var_ann (ai->pointers[i]->var)->type_mem_tag;
1248 sbitmap tag1_aliases = ai->pointers[i]->may_aliases;
1249
1250 /* Skip tags that have been grouped already. */
1251 if (ai->pointers[i]->grouped_p)
1252 continue;
1253
1254 /* See if TAG1 had any aliases in common with other type tags.
1255 If we find a TAG2 with common aliases with TAG1, add TAG2's
1256 aliases into TAG1. */
1257 for (j = i + 1; j < ai->num_pointers; j++)
1258 {
1259 sbitmap tag2_aliases = ai->pointers[j]->may_aliases;
1260
1261 if (sbitmap_any_common_bits (tag1_aliases, tag2_aliases))
1262 {
1263 tree tag2 = var_ann (ai->pointers[j]->var)->type_mem_tag;
1264
1265 sbitmap_a_or_b (tag1_aliases, tag1_aliases, tag2_aliases);
1266
1267 /* TAG2 does not need its aliases anymore. */
1268 sbitmap_zero (tag2_aliases);
1269 var_ann (tag2)->may_aliases = NULL;
1270
1271 /* TAG1 is the unique alias of TAG2. */
1272 add_may_alias (tag2, tag1);
1273
1274 ai->pointers[j]->grouped_p = true;
1275 }
1276 }
1277
1278 /* Now group all the aliases we collected into TAG1. */
1279 group_aliases_into (tag1, tag1_aliases, ai);
1280
1281 /* If we've reduced total number of virtual operands below the
1282 threshold, stop. */
1283 if (ai->total_alias_vops < MAX_ALIASED_VOPS)
1284 break;
1285 }
1286
1287 /* Finally, all the variables that have been grouped cannot be in
1288 the may-alias set of name memory tags. Suppose that we have
1289 grouped the aliases in this code so that may-aliases(a) = TMT.20
1290
1291 p_5 = &a;
1292 ...
1293 # a_9 = V_MAY_DEF <a_8>
1294 p_5->field = 0
1295 ... Several modifications to TMT.20 ...
1296 # VUSE <a_9>
1297 x_30 = p_5->field
1298
1299 Since p_5 points to 'a', the optimizers will try to propagate 0
1300 into p_5->field, but that is wrong because there have been
1301 modifications to 'TMT.20' in between. To prevent this we have to
1302 replace 'a' with 'TMT.20' in the name tag of p_5. */
1303 for (i = 0; i < VARRAY_ACTIVE_SIZE (ai->processed_ptrs); i++)
1304 {
1305 size_t j;
1306 tree ptr = VARRAY_TREE (ai->processed_ptrs, i);
1307 tree name_tag = SSA_NAME_PTR_INFO (ptr)->name_mem_tag;
1308 varray_type aliases;
1309
1310 if (name_tag == NULL_TREE)
1311 continue;
1312
1313 aliases = var_ann (name_tag)->may_aliases;
1314 for (j = 0; aliases && j < VARRAY_ACTIVE_SIZE (aliases); j++)
1315 {
1316 tree alias = VARRAY_TREE (aliases, j);
1317 var_ann_t ann = var_ann (alias);
1318
1319 if ((ann->mem_tag_kind == NOT_A_TAG
1320 || ann->mem_tag_kind == STRUCT_FIELD)
1321 && ann->may_aliases)
1322 {
1323 tree new_alias;
1324
1325 gcc_assert (VARRAY_ACTIVE_SIZE (ann->may_aliases) == 1);
1326
1327 new_alias = VARRAY_TREE (ann->may_aliases, 0);
1328 replace_may_alias (name_tag, j, new_alias);
1329 }
1330 }
1331 }
1332
1333 if (dump_file)
1334 fprintf (dump_file,
1335 "%s: Total number of aliased vops after grouping: %ld%s\n",
1336 get_name (current_function_decl),
1337 ai->total_alias_vops,
1338 (ai->total_alias_vops < 0) ? " (negative values are OK)" : "");
1339 }
1340
1341
1342 /* Create a new alias set entry for VAR in AI->ADDRESSABLE_VARS. */
1343
1344 static void
1345 create_alias_map_for (tree var, struct alias_info *ai)
1346 {
1347 struct alias_map_d *alias_map;
1348 alias_map = xcalloc (1, sizeof (*alias_map));
1349 alias_map->var = var;
1350 alias_map->set = get_alias_set (var);
1351 ai->addressable_vars[ai->num_addressable_vars++] = alias_map;
1352 }
1353
1354
1355 /* Create memory tags for all the dereferenced pointers and build the
1356 ADDRESSABLE_VARS and POINTERS arrays used for building the may-alias
1357 sets. Based on the address escape and points-to information collected
1358 earlier, this pass will also clear the TREE_ADDRESSABLE flag from those
1359 variables whose address is not needed anymore. */
1360
1361 static void
1362 setup_pointers_and_addressables (struct alias_info *ai)
1363 {
1364 size_t i, n_vars, num_addressable_vars, num_pointers;
1365
1366 /* Size up the arrays ADDRESSABLE_VARS and POINTERS. */
1367 num_addressable_vars = num_pointers = 0;
1368 for (i = 0; i < num_referenced_vars; i++)
1369 {
1370 tree var = referenced_var (i);
1371
1372 if (may_be_aliased (var))
1373 num_addressable_vars++;
1374
1375 if (POINTER_TYPE_P (TREE_TYPE (var)))
1376 {
1377 /* Since we don't keep track of volatile variables, assume that
1378 these pointers are used in indirect store operations. */
1379 if (TREE_THIS_VOLATILE (var))
1380 bitmap_set_bit (ai->dereferenced_ptrs_store, var_ann (var)->uid);
1381
1382 num_pointers++;
1383 }
1384 }
1385
1386 /* Create ADDRESSABLE_VARS and POINTERS. Note that these arrays are
1387 always going to be slightly bigger than we actually need them
1388 because some TREE_ADDRESSABLE variables will be marked
1389 non-addressable below and only pointers with unique type tags are
1390 going to be added to POINTERS. */
1391 ai->addressable_vars = xcalloc (num_addressable_vars,
1392 sizeof (struct alias_map_d *));
1393 ai->pointers = xcalloc (num_pointers, sizeof (struct alias_map_d *));
1394 ai->num_addressable_vars = 0;
1395 ai->num_pointers = 0;
1396
1397 /* Since we will be creating type memory tags within this loop, cache the
1398 value of NUM_REFERENCED_VARS to avoid processing the additional tags
1399 unnecessarily. */
1400 n_vars = num_referenced_vars;
1401
1402 for (i = 0; i < n_vars; i++)
1403 {
1404 tree var = referenced_var (i);
1405 var_ann_t v_ann = var_ann (var);
1406 subvar_t svars;
1407
1408 /* Name memory tags already have flow-sensitive aliasing
1409 information, so they need not be processed by
1410 compute_flow_insensitive_aliasing. Similarly, type memory
1411 tags are already accounted for when we process their
1412 associated pointer.
1413
1414 Structure fields, on the other hand, have to have some of this
1415 information processed for them, but it's pointless to mark them
1416 non-addressable (since they are fake variables anyway). */
1417 if (v_ann->mem_tag_kind != NOT_A_TAG
1418 && v_ann->mem_tag_kind != STRUCT_FIELD)
1419 continue;
1420
1421 /* Remove the ADDRESSABLE flag from every addressable variable whose
1422 address is not needed anymore. This is caused by the propagation
1423 of ADDR_EXPR constants into INDIRECT_REF expressions and the
1424 removal of dead pointer assignments done by the early scalar
1425 cleanup passes. */
1426 if (TREE_ADDRESSABLE (var) && v_ann->mem_tag_kind != STRUCT_FIELD)
1427 {
1428 if (!bitmap_bit_p (ai->addresses_needed, v_ann->uid)
1429 && TREE_CODE (var) != RESULT_DECL
1430 && !is_global_var (var))
1431 {
1432 bool okay_to_mark = true;
1433
1434 /* Since VAR is now a regular GIMPLE register, we will need
1435 to rename VAR into SSA afterwards. */
1436 mark_sym_for_renaming (var);
1437
1438 if (var_can_have_subvars (var)
1439 && (svars = get_subvars_for_var (var)))
1440 {
1441 subvar_t sv;
1442
1443 for (sv = svars; sv; sv = sv->next)
1444 {
1445 var_ann_t svann = var_ann (sv->var);
1446 if (bitmap_bit_p (ai->addresses_needed, svann->uid))
1447 okay_to_mark = false;
1448 mark_sym_for_renaming (sv->var);
1449 }
1450 }
1451
1452 /* The address of VAR is not needed, remove the
1453 addressable bit, so that it can be optimized as a
1454 regular variable. */
1455 if (okay_to_mark)
1456 mark_non_addressable (var);
1457 }
1458 else
1459 {
1460 /* Add the variable to the set of addressables. Mostly
1461 used when scanning operands for ASM_EXPRs that
1462 clobber memory. In those cases, we need to clobber
1463 all call-clobbered variables and all addressables. */
1464 bitmap_set_bit (addressable_vars, v_ann->uid);
1465 if (var_can_have_subvars (var)
1466 && (svars = get_subvars_for_var (var)))
1467 {
1468 subvar_t sv;
1469 for (sv = svars; sv; sv = sv->next)
1470 bitmap_set_bit (addressable_vars, var_ann (sv->var)->uid);
1471 }
1472
1473 }
1474 }
1475
1476 /* Global variables and addressable locals may be aliased. Create an
1477 entry in ADDRESSABLE_VARS for VAR. */
1478 if (may_be_aliased (var))
1479 {
1480 create_alias_map_for (var, ai);
1481 mark_sym_for_renaming (var);
1482 }
1483
1484 /* Add pointer variables that have been dereferenced to the POINTERS
1485 array and create a type memory tag for them. */
1486 if (POINTER_TYPE_P (TREE_TYPE (var)))
1487 {
1488 if ((bitmap_bit_p (ai->dereferenced_ptrs_store, v_ann->uid)
1489 || bitmap_bit_p (ai->dereferenced_ptrs_load, v_ann->uid)))
1490 {
1491 tree tag;
1492 var_ann_t t_ann;
1493
1494 /* If pointer VAR still doesn't have a memory tag
1495 associated with it, create it now or re-use an
1496 existing one. */
1497 tag = get_tmt_for (var, ai);
1498 t_ann = var_ann (tag);
1499
1500 /* The type tag will need to be renamed into SSA
1501 afterwards. Note that we cannot do this inside
1502 get_tmt_for because aliasing may run multiple times
1503 and we only create type tags the first time. */
1504 mark_sym_for_renaming (tag);
1505
1506 /* Similarly, if pointer VAR used to have another type
1507 tag, we will need to process it in the renamer to
1508 remove the stale virtual operands. */
1509 if (v_ann->type_mem_tag)
1510 mark_sym_for_renaming (v_ann->type_mem_tag);
1511
1512 /* Associate the tag with pointer VAR. */
1513 v_ann->type_mem_tag = tag;
1514
1515 /* If pointer VAR has been used in a store operation,
1516 then its memory tag must be marked as written-to. */
1517 if (bitmap_bit_p (ai->dereferenced_ptrs_store, v_ann->uid))
1518 bitmap_set_bit (ai->written_vars, t_ann->uid);
1519
1520 /* If pointer VAR is a global variable or a PARM_DECL,
1521 then its memory tag should be considered a global
1522 variable. */
1523 if (TREE_CODE (var) == PARM_DECL || is_global_var (var))
1524 mark_call_clobbered (tag);
1525
1526 /* All the dereferences of pointer VAR count as
1527 references of TAG. Since TAG can be associated with
1528 several pointers, add the dereferences of VAR to the
1529 TAG. We may need to grow AI->NUM_REFERENCES because
1530 we have been adding name and type tags. */
1531 if (t_ann->uid >= VARRAY_SIZE (ai->num_references))
1532 VARRAY_GROW (ai->num_references, t_ann->uid + 10);
1533
1534 VARRAY_UINT (ai->num_references, t_ann->uid)
1535 += VARRAY_UINT (ai->num_references, v_ann->uid);
1536 }
1537 else
1538 {
1539 /* The pointer has not been dereferenced. If it had a
1540 type memory tag, remove it and mark the old tag for
1541 renaming to remove it out of the IL. */
1542 var_ann_t ann = var_ann (var);
1543 tree tag = ann->type_mem_tag;
1544 if (tag)
1545 {
1546 mark_sym_for_renaming (tag);
1547 ann->type_mem_tag = NULL_TREE;
1548 }
1549 }
1550 }
1551 }
1552 }
1553
1554
1555 /* Determine whether to use .GLOBAL_VAR to model call clobbering semantics. At
1556 every call site, we need to emit V_MAY_DEF expressions to represent the
1557 clobbering effects of the call for variables whose address escapes the
1558 current function.
1559
1560 One approach is to group all call-clobbered variables into a single
1561 representative that is used as an alias of every call-clobbered variable
1562 (.GLOBAL_VAR). This works well, but it ties the optimizer hands because
1563 references to any call clobbered variable is a reference to .GLOBAL_VAR.
1564
1565 The second approach is to emit a clobbering V_MAY_DEF for every
1566 call-clobbered variable at call sites. This is the preferred way in terms
1567 of optimization opportunities but it may create too many V_MAY_DEF operands
1568 if there are many call clobbered variables and function calls in the
1569 function.
1570
1571 To decide whether or not to use .GLOBAL_VAR we multiply the number of
1572 function calls found by the number of call-clobbered variables. If that
1573 product is beyond a certain threshold, as determined by the parameterized
1574 values shown below, we use .GLOBAL_VAR.
1575
1576 FIXME. This heuristic should be improved. One idea is to use several
1577 .GLOBAL_VARs of different types instead of a single one. The thresholds
1578 have been derived from a typical bootstrap cycle, including all target
1579 libraries. Compile times were found increase by ~1% compared to using
1580 .GLOBAL_VAR. */
1581
1582 static void
1583 maybe_create_global_var (struct alias_info *ai)
1584 {
1585 unsigned i, n_clobbered;
1586 bitmap_iterator bi;
1587
1588 /* No need to create it, if we have one already. */
1589 if (global_var == NULL_TREE)
1590 {
1591 /* Count all the call-clobbered variables. */
1592 n_clobbered = 0;
1593 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
1594 {
1595 n_clobbered++;
1596 }
1597
1598 /* If the number of virtual operands that would be needed to
1599 model all the call-clobbered variables is larger than
1600 GLOBAL_VAR_THRESHOLD, create .GLOBAL_VAR.
1601
1602 Also create .GLOBAL_VAR if there are no call-clobbered
1603 variables and the program contains a mixture of pure/const
1604 and regular function calls. This is to avoid the problem
1605 described in PR 20115:
1606
1607 int X;
1608 int func_pure (void) { return X; }
1609 int func_non_pure (int a) { X += a; }
1610 int foo ()
1611 {
1612 int a = func_pure ();
1613 func_non_pure (a);
1614 a = func_pure ();
1615 return a;
1616 }
1617
1618 Since foo() has no call-clobbered variables, there is
1619 no relationship between the calls to func_pure and
1620 func_non_pure. Since func_pure has no side-effects, value
1621 numbering optimizations elide the second call to func_pure.
1622 So, if we have some pure/const and some regular calls in the
1623 program we create .GLOBAL_VAR to avoid missing these
1624 relations. */
1625 if (ai->num_calls_found * n_clobbered >= (size_t) GLOBAL_VAR_THRESHOLD
1626 || (n_clobbered == 0
1627 && ai->num_calls_found > 0
1628 && ai->num_pure_const_calls_found > 0
1629 && ai->num_calls_found > ai->num_pure_const_calls_found))
1630 create_global_var ();
1631 }
1632
1633 /* Mark all call-clobbered symbols for renaming. Since the initial
1634 rewrite into SSA ignored all call sites, we may need to rename
1635 .GLOBAL_VAR and the call-clobbered variables. */
1636 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
1637 {
1638 tree var = referenced_var (i);
1639
1640 /* If the function has calls to clobbering functions and
1641 .GLOBAL_VAR has been created, make it an alias for all
1642 call-clobbered variables. */
1643 if (global_var && var != global_var)
1644 {
1645 subvar_t svars;
1646 add_may_alias (var, global_var);
1647 if (var_can_have_subvars (var)
1648 && (svars = get_subvars_for_var (var)))
1649 {
1650 subvar_t sv;
1651 for (sv = svars; sv; sv = sv->next)
1652 mark_sym_for_renaming (sv->var);
1653 }
1654 }
1655
1656 mark_sym_for_renaming (var);
1657 }
1658 }
1659
1660
1661 /* Return TRUE if pointer PTR may point to variable VAR.
1662
1663 MEM_ALIAS_SET is the alias set for the memory location pointed-to by PTR
1664 This is needed because when checking for type conflicts we are
1665 interested in the alias set of the memory location pointed-to by
1666 PTR. The alias set of PTR itself is irrelevant.
1667
1668 VAR_ALIAS_SET is the alias set for VAR. */
1669
1670 static bool
1671 may_alias_p (tree ptr, HOST_WIDE_INT mem_alias_set,
1672 tree var, HOST_WIDE_INT var_alias_set)
1673 {
1674 tree mem;
1675 var_ann_t m_ann;
1676
1677 alias_stats.alias_queries++;
1678 alias_stats.simple_queries++;
1679
1680 /* By convention, a variable cannot alias itself. */
1681 mem = var_ann (ptr)->type_mem_tag;
1682 if (mem == var)
1683 {
1684 alias_stats.alias_noalias++;
1685 alias_stats.simple_resolved++;
1686 return false;
1687 }
1688
1689 /* If -fargument-noalias-global is >1, pointer arguments may
1690 not point to global variables. */
1691 if (flag_argument_noalias > 1 && is_global_var (var)
1692 && TREE_CODE (ptr) == PARM_DECL)
1693 {
1694 alias_stats.alias_noalias++;
1695 alias_stats.simple_resolved++;
1696 return false;
1697 }
1698
1699 /* If either MEM or VAR is a read-only global and the other one
1700 isn't, then PTR cannot point to VAR. */
1701 if ((unmodifiable_var_p (mem) && !unmodifiable_var_p (var))
1702 || (unmodifiable_var_p (var) && !unmodifiable_var_p (mem)))
1703 {
1704 alias_stats.alias_noalias++;
1705 alias_stats.simple_resolved++;
1706 return false;
1707 }
1708
1709 m_ann = var_ann (mem);
1710
1711 gcc_assert (m_ann->mem_tag_kind == TYPE_TAG);
1712
1713 alias_stats.tbaa_queries++;
1714
1715 /* If VAR is a pointer with the same alias set as PTR, then dereferencing
1716 PTR can't possibly affect VAR. Note, that we are specifically testing
1717 for PTR's alias set here, not its pointed-to type. We also can't
1718 do this check with relaxed aliasing enabled. */
1719 if (POINTER_TYPE_P (TREE_TYPE (var))
1720 && var_alias_set != 0
1721 && mem_alias_set != 0)
1722 {
1723 HOST_WIDE_INT ptr_alias_set = get_alias_set (ptr);
1724 if (ptr_alias_set == var_alias_set)
1725 {
1726 alias_stats.alias_noalias++;
1727 alias_stats.tbaa_resolved++;
1728 return false;
1729 }
1730 }
1731
1732 /* If the alias sets don't conflict then MEM cannot alias VAR. */
1733 if (!alias_sets_conflict_p (mem_alias_set, var_alias_set))
1734 {
1735 alias_stats.alias_noalias++;
1736 alias_stats.tbaa_resolved++;
1737 return false;
1738 }
1739 alias_stats.alias_mayalias++;
1740 return true;
1741 }
1742
1743
1744 /* Add ALIAS to the set of variables that may alias VAR. */
1745
1746 static void
1747 add_may_alias (tree var, tree alias)
1748 {
1749 size_t i;
1750 var_ann_t v_ann = get_var_ann (var);
1751 var_ann_t a_ann = get_var_ann (alias);
1752
1753 gcc_assert (var != alias);
1754
1755 if (v_ann->may_aliases == NULL)
1756 VARRAY_TREE_INIT (v_ann->may_aliases, 2, "aliases");
1757
1758 /* Avoid adding duplicates. */
1759 for (i = 0; i < VARRAY_ACTIVE_SIZE (v_ann->may_aliases); i++)
1760 if (alias == VARRAY_TREE (v_ann->may_aliases, i))
1761 return;
1762
1763 /* If VAR is a call-clobbered variable, so is its new ALIAS.
1764 FIXME, call-clobbering should only depend on whether an address
1765 escapes. It should be independent of aliasing. */
1766 if (is_call_clobbered (var))
1767 mark_call_clobbered (alias);
1768
1769 /* Likewise. If ALIAS is call-clobbered, so is VAR. */
1770 else if (is_call_clobbered (alias))
1771 mark_call_clobbered (var);
1772
1773 VARRAY_PUSH_TREE (v_ann->may_aliases, alias);
1774 a_ann->is_alias_tag = 1;
1775 }
1776
1777
1778 /* Replace alias I in the alias sets of VAR with NEW_ALIAS. */
1779
1780 static void
1781 replace_may_alias (tree var, size_t i, tree new_alias)
1782 {
1783 var_ann_t v_ann = var_ann (var);
1784 VARRAY_TREE (v_ann->may_aliases, i) = new_alias;
1785
1786 /* If VAR is a call-clobbered variable, so is NEW_ALIAS.
1787 FIXME, call-clobbering should only depend on whether an address
1788 escapes. It should be independent of aliasing. */
1789 if (is_call_clobbered (var))
1790 mark_call_clobbered (new_alias);
1791
1792 /* Likewise. If NEW_ALIAS is call-clobbered, so is VAR. */
1793 else if (is_call_clobbered (new_alias))
1794 mark_call_clobbered (var);
1795 }
1796
1797
1798 /* Mark pointer PTR as pointing to an arbitrary memory location. */
1799
1800 static void
1801 set_pt_anything (tree ptr)
1802 {
1803 struct ptr_info_def *pi = get_ptr_info (ptr);
1804
1805 pi->pt_anything = 1;
1806 pi->pt_malloc = 0;
1807
1808 /* The pointer used to have a name tag, but we now found it pointing
1809 to an arbitrary location. The name tag needs to be renamed and
1810 disassociated from PTR. */
1811 if (pi->name_mem_tag)
1812 {
1813 mark_sym_for_renaming (pi->name_mem_tag);
1814 pi->name_mem_tag = NULL_TREE;
1815 }
1816 }
1817
1818
1819 /* Mark pointer PTR as pointing to a malloc'd memory area. */
1820
1821 static void
1822 set_pt_malloc (tree ptr)
1823 {
1824 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
1825
1826 /* If the pointer has already been found to point to arbitrary
1827 memory locations, it is unsafe to mark it as pointing to malloc. */
1828 if (pi->pt_anything)
1829 return;
1830
1831 pi->pt_malloc = 1;
1832 }
1833
1834
1835 /* Given two different pointers DEST and ORIG. Merge the points-to
1836 information in ORIG into DEST. AI contains all the alias
1837 information collected up to this point. */
1838
1839 static void
1840 merge_pointed_to_info (struct alias_info *ai, tree dest, tree orig)
1841 {
1842 struct ptr_info_def *dest_pi, *orig_pi;
1843
1844 gcc_assert (dest != orig);
1845
1846 /* Make sure we have points-to information for ORIG. */
1847 collect_points_to_info_for (ai, orig);
1848
1849 dest_pi = get_ptr_info (dest);
1850 orig_pi = SSA_NAME_PTR_INFO (orig);
1851
1852 if (orig_pi)
1853 {
1854 gcc_assert (orig_pi != dest_pi);
1855
1856 /* Notice that we never merge PT_MALLOC. This attribute is only
1857 true if the pointer is the result of a malloc() call.
1858 Otherwise, we can end up in this situation:
1859
1860 P_i = malloc ();
1861 ...
1862 P_j = P_i + X;
1863
1864 P_j would be marked as PT_MALLOC, however we currently do not
1865 handle cases of more than one pointer pointing to the same
1866 malloc'd area.
1867
1868 FIXME: If the merging comes from an expression that preserves
1869 the PT_MALLOC attribute (copy assignment, address
1870 arithmetic), we ought to merge PT_MALLOC, but then both
1871 pointers would end up getting different name tags because
1872 create_name_tags is not smart enough to determine that the
1873 two come from the same malloc call. Copy propagation before
1874 aliasing should cure this. */
1875 dest_pi->pt_malloc = 0;
1876 if (orig_pi->pt_malloc || orig_pi->pt_anything)
1877 set_pt_anything (dest);
1878
1879 dest_pi->pt_null |= orig_pi->pt_null;
1880
1881 if (!dest_pi->pt_anything
1882 && orig_pi->pt_vars
1883 && !bitmap_empty_p (orig_pi->pt_vars))
1884 {
1885 if (dest_pi->pt_vars == NULL)
1886 {
1887 dest_pi->pt_vars = BITMAP_GGC_ALLOC ();
1888 bitmap_copy (dest_pi->pt_vars, orig_pi->pt_vars);
1889 }
1890 else
1891 bitmap_ior_into (dest_pi->pt_vars, orig_pi->pt_vars);
1892 }
1893 }
1894 else
1895 set_pt_anything (dest);
1896 }
1897
1898
1899 /* Add EXPR to the list of expressions pointed-to by PTR. */
1900
1901 static void
1902 add_pointed_to_expr (struct alias_info *ai, tree ptr, tree expr)
1903 {
1904 if (TREE_CODE (expr) == WITH_SIZE_EXPR)
1905 expr = TREE_OPERAND (expr, 0);
1906
1907 get_ptr_info (ptr);
1908
1909 if (TREE_CODE (expr) == CALL_EXPR
1910 && (call_expr_flags (expr) & (ECF_MALLOC | ECF_MAY_BE_ALLOCA)))
1911 {
1912 /* If EXPR is a malloc-like call, then the area pointed to PTR
1913 is guaranteed to not alias with anything else. */
1914 set_pt_malloc (ptr);
1915 }
1916 else if (TREE_CODE (expr) == ADDR_EXPR)
1917 {
1918 /* Found P_i = ADDR_EXPR */
1919 add_pointed_to_var (ai, ptr, expr);
1920 }
1921 else if (TREE_CODE (expr) == SSA_NAME && POINTER_TYPE_P (TREE_TYPE (expr)))
1922 {
1923 /* Found P_i = Q_j. */
1924 merge_pointed_to_info (ai, ptr, expr);
1925 }
1926 else if (TREE_CODE (expr) == PLUS_EXPR || TREE_CODE (expr) == MINUS_EXPR)
1927 {
1928 /* Found P_i = PLUS_EXPR or P_i = MINUS_EXPR */
1929 tree op0 = TREE_OPERAND (expr, 0);
1930 tree op1 = TREE_OPERAND (expr, 1);
1931
1932 /* Both operands may be of pointer type. FIXME: Shouldn't
1933 we just expect PTR + OFFSET always? */
1934 if (POINTER_TYPE_P (TREE_TYPE (op0))
1935 && TREE_CODE (op0) != INTEGER_CST)
1936 {
1937 if (TREE_CODE (op0) == SSA_NAME)
1938 merge_pointed_to_info (ai, ptr, op0);
1939 else if (TREE_CODE (op0) == ADDR_EXPR)
1940 add_pointed_to_var (ai, ptr, op0);
1941 else
1942 set_pt_anything (ptr);
1943 }
1944
1945 if (POINTER_TYPE_P (TREE_TYPE (op1))
1946 && TREE_CODE (op1) != INTEGER_CST)
1947 {
1948 if (TREE_CODE (op1) == SSA_NAME)
1949 merge_pointed_to_info (ai, ptr, op1);
1950 else if (TREE_CODE (op1) == ADDR_EXPR)
1951 add_pointed_to_var (ai, ptr, op1);
1952 else
1953 set_pt_anything (ptr);
1954 }
1955
1956 /* Neither operand is a pointer? VAR can be pointing anywhere.
1957 FIXME: Shouldn't we asserting here? If we get here, we found
1958 PTR = INT_CST + INT_CST, which should not be a valid pointer
1959 expression. */
1960 if (!(POINTER_TYPE_P (TREE_TYPE (op0))
1961 && TREE_CODE (op0) != INTEGER_CST)
1962 && !(POINTER_TYPE_P (TREE_TYPE (op1))
1963 && TREE_CODE (op1) != INTEGER_CST))
1964 set_pt_anything (ptr);
1965 }
1966 else if (integer_zerop (expr))
1967 {
1968 /* EXPR is the NULL pointer. Mark PTR as pointing to NULL. */
1969 SSA_NAME_PTR_INFO (ptr)->pt_null = 1;
1970 }
1971 else
1972 {
1973 /* If we can't recognize the expression, assume that PTR may
1974 point anywhere. */
1975 set_pt_anything (ptr);
1976 }
1977 }
1978
1979
1980 /* If VALUE is of the form &DECL, add DECL to the set of variables
1981 pointed-to by PTR. Otherwise, add VALUE as a pointed-to expression by
1982 PTR. AI points to the collected alias information. */
1983
1984 static void
1985 add_pointed_to_var (struct alias_info *ai, tree ptr, tree value)
1986 {
1987 struct ptr_info_def *pi = get_ptr_info (ptr);
1988 tree pt_var = NULL_TREE;
1989 HOST_WIDE_INT offset, size;
1990 tree addrop;
1991 size_t uid;
1992 tree ref;
1993 subvar_t svars;
1994
1995 gcc_assert (TREE_CODE (value) == ADDR_EXPR);
1996
1997 addrop = TREE_OPERAND (value, 0);
1998 if (REFERENCE_CLASS_P (addrop))
1999 pt_var = get_base_address (addrop);
2000 else
2001 pt_var = addrop;
2002
2003 /* If this is a component_ref, see if we can get a smaller number of
2004 variables to take the address of. */
2005 if (TREE_CODE (addrop) == COMPONENT_REF
2006 && (ref = okay_component_ref_for_subvars (addrop, &offset ,&size)))
2007 {
2008 subvar_t sv;
2009 svars = get_subvars_for_var (ref);
2010
2011 uid = var_ann (pt_var)->uid;
2012
2013 if (pi->pt_vars == NULL)
2014 pi->pt_vars = BITMAP_GGC_ALLOC ();
2015 /* If the variable is a global, mark the pointer as pointing to
2016 global memory (which will make its tag a global variable). */
2017 if (is_global_var (pt_var))
2018 pi->pt_global_mem = 1;
2019
2020 for (sv = svars; sv; sv = sv->next)
2021 {
2022 if (overlap_subvar (offset, size, sv, NULL))
2023 {
2024 bitmap_set_bit (pi->pt_vars, var_ann (sv->var)->uid);
2025 bitmap_set_bit (ai->addresses_needed, var_ann (sv->var)->uid);
2026 }
2027 }
2028 }
2029 else if (pt_var && SSA_VAR_P (pt_var))
2030 {
2031
2032 uid = var_ann (pt_var)->uid;
2033
2034 if (pi->pt_vars == NULL)
2035 pi->pt_vars = BITMAP_GGC_ALLOC ();
2036
2037 /* If this is an aggregate, we may have subvariables for it that need
2038 to be pointed to. */
2039 if (var_can_have_subvars (pt_var)
2040 && (svars = get_subvars_for_var (pt_var)))
2041 {
2042 subvar_t sv;
2043 for (sv = svars; sv; sv = sv->next)
2044 {
2045 uid = var_ann (sv->var)->uid;
2046 bitmap_set_bit (ai->addresses_needed, uid);
2047 bitmap_set_bit (pi->pt_vars, uid);
2048 }
2049 }
2050 else
2051 {
2052 bitmap_set_bit (ai->addresses_needed, uid);
2053 bitmap_set_bit (pi->pt_vars, uid);
2054 }
2055
2056 /* If the variable is a global, mark the pointer as pointing to
2057 global memory (which will make its tag a global variable). */
2058 if (is_global_var (pt_var))
2059 pi->pt_global_mem = 1;
2060 }
2061 }
2062
2063
2064 /* Callback for walk_use_def_chains to gather points-to information from the
2065 SSA web.
2066
2067 VAR is an SSA variable or a GIMPLE expression.
2068
2069 STMT is the statement that generates the SSA variable or, if STMT is a
2070 PHI_NODE, VAR is one of the PHI arguments.
2071
2072 DATA is a pointer to a structure of type ALIAS_INFO. */
2073
2074 static bool
2075 collect_points_to_info_r (tree var, tree stmt, void *data)
2076 {
2077 struct alias_info *ai = (struct alias_info *) data;
2078
2079 if (dump_file && (dump_flags & TDF_DETAILS))
2080 {
2081 fprintf (dump_file, "Visiting use-def links for ");
2082 print_generic_expr (dump_file, var, dump_flags);
2083 fprintf (dump_file, "\n");
2084 }
2085
2086 switch (TREE_CODE (stmt))
2087 {
2088 case RETURN_EXPR:
2089 gcc_assert (TREE_CODE (TREE_OPERAND (stmt, 0)) == MODIFY_EXPR);
2090 stmt = TREE_OPERAND (stmt, 0);
2091 /* FALLTHRU */
2092
2093 case MODIFY_EXPR:
2094 {
2095 tree rhs = TREE_OPERAND (stmt, 1);
2096 STRIP_NOPS (rhs);
2097 add_pointed_to_expr (ai, var, rhs);
2098 break;
2099 }
2100
2101 case ASM_EXPR:
2102 /* Pointers defined by __asm__ statements can point anywhere. */
2103 set_pt_anything (var);
2104 break;
2105
2106 case NOP_EXPR:
2107 if (IS_EMPTY_STMT (stmt))
2108 {
2109 tree decl = SSA_NAME_VAR (var);
2110
2111 if (TREE_CODE (decl) == PARM_DECL)
2112 add_pointed_to_expr (ai, var, decl);
2113 else if (DECL_INITIAL (decl))
2114 add_pointed_to_expr (ai, var, DECL_INITIAL (decl));
2115 else
2116 add_pointed_to_expr (ai, var, decl);
2117 }
2118 break;
2119
2120 case PHI_NODE:
2121 {
2122 /* It STMT is a PHI node, then VAR is one of its arguments. The
2123 variable that we are analyzing is the LHS of the PHI node. */
2124 tree lhs = PHI_RESULT (stmt);
2125
2126 switch (TREE_CODE (var))
2127 {
2128 case ADDR_EXPR:
2129 add_pointed_to_var (ai, lhs, var);
2130 break;
2131
2132 case SSA_NAME:
2133 /* Avoid unnecessary merges. */
2134 if (lhs != var)
2135 merge_pointed_to_info (ai, lhs, var);
2136 break;
2137
2138 default:
2139 gcc_assert (is_gimple_min_invariant (var));
2140 add_pointed_to_expr (ai, lhs, var);
2141 break;
2142 }
2143 break;
2144 }
2145
2146 default:
2147 gcc_unreachable ();
2148 }
2149
2150 return false;
2151 }
2152
2153
2154 /* Return true if STMT is an "escape" site from the current function. Escape
2155 sites those statements which might expose the address of a variable
2156 outside the current function. STMT is an escape site iff:
2157
2158 1- STMT is a function call, or
2159 2- STMT is an __asm__ expression, or
2160 3- STMT is an assignment to a non-local variable, or
2161 4- STMT is a return statement.
2162
2163 AI points to the alias information collected so far. */
2164
2165 static bool
2166 is_escape_site (tree stmt, struct alias_info *ai)
2167 {
2168 tree call = get_call_expr_in (stmt);
2169 if (call != NULL_TREE)
2170 {
2171 ai->num_calls_found++;
2172
2173 if (!TREE_SIDE_EFFECTS (call))
2174 ai->num_pure_const_calls_found++;
2175
2176 return true;
2177 }
2178 else if (TREE_CODE (stmt) == ASM_EXPR)
2179 return true;
2180 else if (TREE_CODE (stmt) == MODIFY_EXPR)
2181 {
2182 tree lhs = TREE_OPERAND (stmt, 0);
2183
2184 /* Get to the base of _REF nodes. */
2185 if (TREE_CODE (lhs) != SSA_NAME)
2186 lhs = get_base_address (lhs);
2187
2188 /* If we couldn't recognize the LHS of the assignment, assume that it
2189 is a non-local store. */
2190 if (lhs == NULL_TREE)
2191 return true;
2192
2193 /* If the RHS is a conversion between a pointer and an integer, the
2194 pointer escapes since we can't track the integer. */
2195 if ((TREE_CODE (TREE_OPERAND (stmt, 1)) == NOP_EXPR
2196 || TREE_CODE (TREE_OPERAND (stmt, 1)) == CONVERT_EXPR
2197 || TREE_CODE (TREE_OPERAND (stmt, 1)) == VIEW_CONVERT_EXPR)
2198 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND
2199 (TREE_OPERAND (stmt, 1), 0)))
2200 && !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (stmt, 1))))
2201 return true;
2202
2203 /* If the LHS is an SSA name, it can't possibly represent a non-local
2204 memory store. */
2205 if (TREE_CODE (lhs) == SSA_NAME)
2206 return false;
2207
2208 /* FIXME: LHS is not an SSA_NAME. Even if it's an assignment to a
2209 local variables we cannot be sure if it will escape, because we
2210 don't have information about objects not in SSA form. Need to
2211 implement something along the lines of
2212
2213 J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P.
2214 Midkiff, ``Escape analysis for java,'' in Proceedings of the
2215 Conference on Object-Oriented Programming Systems, Languages, and
2216 Applications (OOPSLA), pp. 1-19, 1999. */
2217 return true;
2218 }
2219 else if (TREE_CODE (stmt) == RETURN_EXPR)
2220 return true;
2221
2222 return false;
2223 }
2224
2225
2226 /* Create a new memory tag of type TYPE. If IS_TYPE_TAG is true, the tag
2227 is considered to represent all the pointers whose pointed-to types are
2228 in the same alias set class. Otherwise, the tag represents a single
2229 SSA_NAME pointer variable. */
2230
2231 static tree
2232 create_memory_tag (tree type, bool is_type_tag)
2233 {
2234 var_ann_t ann;
2235 tree tag = create_tmp_var_raw (type, (is_type_tag) ? "TMT" : "NMT");
2236
2237 /* By default, memory tags are local variables. Alias analysis will
2238 determine whether they should be considered globals. */
2239 DECL_CONTEXT (tag) = current_function_decl;
2240
2241 /* Memory tags are by definition addressable. This also prevents
2242 is_gimple_ref frome confusing memory tags with optimizable
2243 variables. */
2244 TREE_ADDRESSABLE (tag) = 1;
2245
2246 ann = get_var_ann (tag);
2247 ann->mem_tag_kind = (is_type_tag) ? TYPE_TAG : NAME_TAG;
2248 ann->type_mem_tag = NULL_TREE;
2249
2250 /* Add the tag to the symbol table. */
2251 add_referenced_tmp_var (tag);
2252
2253 return tag;
2254 }
2255
2256
2257 /* Create a name memory tag to represent a specific SSA_NAME pointer P_i.
2258 This is used if P_i has been found to point to a specific set of
2259 variables or to a non-aliased memory location like the address returned
2260 by malloc functions. */
2261
2262 static tree
2263 get_nmt_for (tree ptr)
2264 {
2265 struct ptr_info_def *pi = get_ptr_info (ptr);
2266 tree tag = pi->name_mem_tag;
2267
2268 if (tag == NULL_TREE)
2269 tag = create_memory_tag (TREE_TYPE (TREE_TYPE (ptr)), false);
2270
2271 /* If PTR is a PARM_DECL, it points to a global variable or malloc,
2272 then its name tag should be considered a global variable. */
2273 if (TREE_CODE (SSA_NAME_VAR (ptr)) == PARM_DECL
2274 || pi->pt_malloc
2275 || pi->pt_global_mem)
2276 mark_call_clobbered (tag);
2277
2278 return tag;
2279 }
2280
2281
2282 /* Return the type memory tag associated to pointer PTR. A memory tag is an
2283 artificial variable that represents the memory location pointed-to by
2284 PTR. It is used to model the effects of pointer de-references on
2285 addressable variables.
2286
2287 AI points to the data gathered during alias analysis. This function
2288 populates the array AI->POINTERS. */
2289
2290 static tree
2291 get_tmt_for (tree ptr, struct alias_info *ai)
2292 {
2293 size_t i;
2294 tree tag;
2295 tree tag_type = TREE_TYPE (TREE_TYPE (ptr));
2296 HOST_WIDE_INT tag_set = get_alias_set (tag_type);
2297
2298 /* To avoid creating unnecessary memory tags, only create one memory tag
2299 per alias set class. Note that it may be tempting to group
2300 memory tags based on conflicting alias sets instead of
2301 equivalence. That would be wrong because alias sets are not
2302 necessarily transitive (as demonstrated by the libstdc++ test
2303 23_containers/vector/cons/4.cc). Given three alias sets A, B, C
2304 such that conflicts (A, B) == true and conflicts (A, C) == true,
2305 it does not necessarily follow that conflicts (B, C) == true. */
2306 for (i = 0, tag = NULL_TREE; i < ai->num_pointers; i++)
2307 {
2308 struct alias_map_d *curr = ai->pointers[i];
2309 tree curr_tag = var_ann (curr->var)->type_mem_tag;
2310 if (tag_set == curr->set
2311 && TYPE_READONLY (tag_type) == TYPE_READONLY (TREE_TYPE (curr_tag)))
2312 {
2313 tag = curr_tag;
2314 break;
2315 }
2316 }
2317
2318 /* If VAR cannot alias with any of the existing memory tags, create a new
2319 tag for PTR and add it to the POINTERS array. */
2320 if (tag == NULL_TREE)
2321 {
2322 struct alias_map_d *alias_map;
2323
2324 /* If PTR did not have a type tag already, create a new TMT.*
2325 artificial variable representing the memory location
2326 pointed-to by PTR. */
2327 if (var_ann (ptr)->type_mem_tag == NULL_TREE)
2328 tag = create_memory_tag (tag_type, true);
2329 else
2330 tag = var_ann (ptr)->type_mem_tag;
2331
2332 /* Add PTR to the POINTERS array. Note that we are not interested in
2333 PTR's alias set. Instead, we cache the alias set for the memory that
2334 PTR points to. */
2335 alias_map = xcalloc (1, sizeof (*alias_map));
2336 alias_map->var = ptr;
2337 alias_map->set = tag_set;
2338 ai->pointers[ai->num_pointers++] = alias_map;
2339 }
2340
2341 /* If the pointed-to type is volatile, so is the tag. */
2342 TREE_THIS_VOLATILE (tag) |= TREE_THIS_VOLATILE (tag_type);
2343
2344 /* Make sure that the type tag has the same alias set as the
2345 pointed-to type. */
2346 gcc_assert (tag_set == get_alias_set (tag));
2347
2348 /* If PTR's pointed-to type is read-only, then TAG's type must also
2349 be read-only. */
2350 gcc_assert (TYPE_READONLY (tag_type) == TYPE_READONLY (TREE_TYPE (tag)));
2351
2352 return tag;
2353 }
2354
2355
2356 /* Create GLOBAL_VAR, an artificial global variable to act as a
2357 representative of all the variables that may be clobbered by function
2358 calls. */
2359
2360 static void
2361 create_global_var (void)
2362 {
2363 global_var = build_decl (VAR_DECL, get_identifier (".GLOBAL_VAR"),
2364 void_type_node);
2365 DECL_ARTIFICIAL (global_var) = 1;
2366 TREE_READONLY (global_var) = 0;
2367 DECL_EXTERNAL (global_var) = 1;
2368 TREE_STATIC (global_var) = 1;
2369 TREE_USED (global_var) = 1;
2370 DECL_CONTEXT (global_var) = NULL_TREE;
2371 TREE_THIS_VOLATILE (global_var) = 0;
2372 TREE_ADDRESSABLE (global_var) = 0;
2373
2374 add_referenced_tmp_var (global_var);
2375 mark_sym_for_renaming (global_var);
2376 }
2377
2378
2379 /* Dump alias statistics on FILE. */
2380
2381 static void
2382 dump_alias_stats (FILE *file)
2383 {
2384 const char *funcname
2385 = lang_hooks.decl_printable_name (current_function_decl, 2);
2386 fprintf (file, "\nAlias statistics for %s\n\n", funcname);
2387 fprintf (file, "Total alias queries:\t%u\n", alias_stats.alias_queries);
2388 fprintf (file, "Total alias mayalias results:\t%u\n",
2389 alias_stats.alias_mayalias);
2390 fprintf (file, "Total alias noalias results:\t%u\n",
2391 alias_stats.alias_noalias);
2392 fprintf (file, "Total simple queries:\t%u\n",
2393 alias_stats.simple_queries);
2394 fprintf (file, "Total simple resolved:\t%u\n",
2395 alias_stats.simple_resolved);
2396 fprintf (file, "Total TBAA queries:\t%u\n",
2397 alias_stats.tbaa_queries);
2398 fprintf (file, "Total TBAA resolved:\t%u\n",
2399 alias_stats.tbaa_resolved);
2400 }
2401
2402
2403 /* Dump alias information on FILE. */
2404
2405 void
2406 dump_alias_info (FILE *file)
2407 {
2408 size_t i;
2409 const char *funcname
2410 = lang_hooks.decl_printable_name (current_function_decl, 2);
2411
2412 fprintf (file, "\nFlow-insensitive alias information for %s\n\n", funcname);
2413
2414 fprintf (file, "Aliased symbols\n\n");
2415 for (i = 0; i < num_referenced_vars; i++)
2416 {
2417 tree var = referenced_var (i);
2418 if (may_be_aliased (var))
2419 dump_variable (file, var);
2420 }
2421
2422 fprintf (file, "\nDereferenced pointers\n\n");
2423 for (i = 0; i < num_referenced_vars; i++)
2424 {
2425 tree var = referenced_var (i);
2426 var_ann_t ann = var_ann (var);
2427 if (ann->type_mem_tag)
2428 dump_variable (file, var);
2429 }
2430
2431 fprintf (file, "\nType memory tags\n\n");
2432 for (i = 0; i < num_referenced_vars; i++)
2433 {
2434 tree var = referenced_var (i);
2435 var_ann_t ann = var_ann (var);
2436 if (ann->mem_tag_kind == TYPE_TAG)
2437 dump_variable (file, var);
2438 }
2439
2440 fprintf (file, "\n\nFlow-sensitive alias information for %s\n\n", funcname);
2441
2442 fprintf (file, "SSA_NAME pointers\n\n");
2443 for (i = 1; i < num_ssa_names; i++)
2444 {
2445 tree ptr = ssa_name (i);
2446 struct ptr_info_def *pi;
2447
2448 if (ptr == NULL_TREE)
2449 continue;
2450
2451 pi = SSA_NAME_PTR_INFO (ptr);
2452 if (!SSA_NAME_IN_FREE_LIST (ptr)
2453 && pi
2454 && pi->name_mem_tag)
2455 dump_points_to_info_for (file, ptr);
2456 }
2457
2458 fprintf (file, "\nName memory tags\n\n");
2459 for (i = 0; i < num_referenced_vars; i++)
2460 {
2461 tree var = referenced_var (i);
2462 var_ann_t ann = var_ann (var);
2463 if (ann->mem_tag_kind == NAME_TAG)
2464 dump_variable (file, var);
2465 }
2466
2467 fprintf (file, "\n");
2468 }
2469
2470
2471 /* Dump alias information on stderr. */
2472
2473 void
2474 debug_alias_info (void)
2475 {
2476 dump_alias_info (stderr);
2477 }
2478
2479
2480 /* Return the alias information associated with pointer T. It creates a
2481 new instance if none existed. */
2482
2483 struct ptr_info_def *
2484 get_ptr_info (tree t)
2485 {
2486 struct ptr_info_def *pi;
2487
2488 gcc_assert (POINTER_TYPE_P (TREE_TYPE (t)));
2489
2490 pi = SSA_NAME_PTR_INFO (t);
2491 if (pi == NULL)
2492 {
2493 pi = ggc_alloc (sizeof (*pi));
2494 memset ((void *)pi, 0, sizeof (*pi));
2495 SSA_NAME_PTR_INFO (t) = pi;
2496 }
2497
2498 return pi;
2499 }
2500
2501
2502 /* Dump points-to information for SSA_NAME PTR into FILE. */
2503
2504 void
2505 dump_points_to_info_for (FILE *file, tree ptr)
2506 {
2507 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
2508
2509 print_generic_expr (file, ptr, dump_flags);
2510
2511 if (pi)
2512 {
2513 if (pi->name_mem_tag)
2514 {
2515 fprintf (file, ", name memory tag: ");
2516 print_generic_expr (file, pi->name_mem_tag, dump_flags);
2517 }
2518
2519 if (pi->is_dereferenced)
2520 fprintf (file, ", is dereferenced");
2521
2522 if (pi->value_escapes_p)
2523 fprintf (file, ", its value escapes");
2524
2525 if (pi->pt_anything)
2526 fprintf (file, ", points-to anything");
2527
2528 if (pi->pt_malloc)
2529 fprintf (file, ", points-to malloc");
2530
2531 if (pi->pt_null)
2532 fprintf (file, ", points-to NULL");
2533
2534 if (pi->pt_vars)
2535 {
2536 unsigned ix;
2537 bitmap_iterator bi;
2538
2539 fprintf (file, ", points-to vars: { ");
2540 EXECUTE_IF_SET_IN_BITMAP (pi->pt_vars, 0, ix, bi)
2541 {
2542 print_generic_expr (file, referenced_var (ix), dump_flags);
2543 fprintf (file, " ");
2544 }
2545 fprintf (file, "}");
2546 }
2547 }
2548
2549 fprintf (file, "\n");
2550 }
2551
2552
2553 /* Dump points-to information for VAR into stderr. */
2554
2555 void
2556 debug_points_to_info_for (tree var)
2557 {
2558 dump_points_to_info_for (stderr, var);
2559 }
2560
2561
2562 /* Dump points-to information into FILE. NOTE: This function is slow, as
2563 it needs to traverse the whole CFG looking for pointer SSA_NAMEs. */
2564
2565 void
2566 dump_points_to_info (FILE *file)
2567 {
2568 basic_block bb;
2569 block_stmt_iterator si;
2570 size_t i;
2571 ssa_op_iter iter;
2572 const char *fname =
2573 lang_hooks.decl_printable_name (current_function_decl, 2);
2574
2575 fprintf (file, "\n\nPointed-to sets for pointers in %s\n\n", fname);
2576
2577 /* First dump points-to information for the default definitions of
2578 pointer variables. This is necessary because default definitions are
2579 not part of the code. */
2580 for (i = 0; i < num_referenced_vars; i++)
2581 {
2582 tree var = referenced_var (i);
2583 if (POINTER_TYPE_P (TREE_TYPE (var)))
2584 {
2585 var_ann_t ann = var_ann (var);
2586 if (ann->default_def)
2587 dump_points_to_info_for (file, ann->default_def);
2588 }
2589 }
2590
2591 /* Dump points-to information for every pointer defined in the program. */
2592 FOR_EACH_BB (bb)
2593 {
2594 tree phi;
2595
2596 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2597 {
2598 tree ptr = PHI_RESULT (phi);
2599 if (POINTER_TYPE_P (TREE_TYPE (ptr)))
2600 dump_points_to_info_for (file, ptr);
2601 }
2602
2603 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
2604 {
2605 tree stmt = bsi_stmt (si);
2606 tree def;
2607 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
2608 if (POINTER_TYPE_P (TREE_TYPE (def)))
2609 dump_points_to_info_for (file, def);
2610 }
2611 }
2612
2613 fprintf (file, "\n");
2614 }
2615
2616
2617 /* Dump points-to info pointed by PTO into STDERR. */
2618
2619 void
2620 debug_points_to_info (void)
2621 {
2622 dump_points_to_info (stderr);
2623 }
2624
2625 /* Dump to FILE the list of variables that may be aliasing VAR. */
2626
2627 void
2628 dump_may_aliases_for (FILE *file, tree var)
2629 {
2630 varray_type aliases;
2631
2632 if (TREE_CODE (var) == SSA_NAME)
2633 var = SSA_NAME_VAR (var);
2634
2635 aliases = var_ann (var)->may_aliases;
2636 if (aliases)
2637 {
2638 size_t i;
2639 fprintf (file, "{ ");
2640 for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
2641 {
2642 print_generic_expr (file, VARRAY_TREE (aliases, i), dump_flags);
2643 fprintf (file, " ");
2644 }
2645 fprintf (file, "}");
2646 }
2647 }
2648
2649
2650 /* Dump to stderr the list of variables that may be aliasing VAR. */
2651
2652 void
2653 debug_may_aliases_for (tree var)
2654 {
2655 dump_may_aliases_for (stderr, var);
2656 }
2657
2658 /* Return true if VAR may be aliased. */
2659
2660 bool
2661 may_be_aliased (tree var)
2662 {
2663 /* Obviously. */
2664 if (TREE_ADDRESSABLE (var))
2665 return true;
2666
2667 /* Globally visible variables can have their addresses taken by other
2668 translation units. */
2669 if (DECL_EXTERNAL (var) || TREE_PUBLIC (var))
2670 return true;
2671
2672 /* Automatic variables can't have their addresses escape any other way.
2673 This must be after the check for global variables, as extern declarations
2674 do not have TREE_STATIC set. */
2675 if (!TREE_STATIC (var))
2676 return false;
2677
2678 /* If we're in unit-at-a-time mode, then we must have seen all occurrences
2679 of address-of operators, and so we can trust TREE_ADDRESSABLE. Otherwise
2680 we can only be sure the variable isn't addressable if it's local to the
2681 current function. */
2682 if (flag_unit_at_a_time)
2683 return false;
2684 if (decl_function_context (var) == current_function_decl)
2685 return false;
2686
2687 return true;
2688 }
2689
2690
2691 /* Add VAR to the list of may-aliases of PTR's type tag. If PTR
2692 doesn't already have a type tag, create one. */
2693
2694 void
2695 add_type_alias (tree ptr, tree var)
2696 {
2697 varray_type aliases;
2698 tree tag;
2699 var_ann_t ann = var_ann (ptr);
2700 subvar_t svars;
2701
2702 if (ann->type_mem_tag == NULL_TREE)
2703 {
2704 size_t i;
2705 tree q = NULL_TREE;
2706 tree tag_type = TREE_TYPE (TREE_TYPE (ptr));
2707 HOST_WIDE_INT tag_set = get_alias_set (tag_type);
2708
2709 /* PTR doesn't have a type tag, create a new one and add VAR to
2710 the new tag's alias set.
2711
2712 FIXME, This is slower than necessary. We need to determine
2713 whether there is another pointer Q with the same alias set as
2714 PTR. This could be sped up by having type tags associated
2715 with types. */
2716 for (i = 0; i < num_referenced_vars; i++)
2717 {
2718 q = referenced_var (i);
2719
2720 if (POINTER_TYPE_P (TREE_TYPE (q))
2721 && tag_set == get_alias_set (TREE_TYPE (TREE_TYPE (q))))
2722 {
2723 /* Found another pointer Q with the same alias set as
2724 the PTR's pointed-to type. If Q has a type tag, use
2725 it. Otherwise, create a new memory tag for PTR. */
2726 var_ann_t ann1 = var_ann (q);
2727 if (ann1->type_mem_tag)
2728 ann->type_mem_tag = ann1->type_mem_tag;
2729 else
2730 ann->type_mem_tag = create_memory_tag (tag_type, true);
2731 goto found_tag;
2732 }
2733 }
2734
2735 /* Couldn't find any other pointer with a type tag we could use.
2736 Create a new memory tag for PTR. */
2737 ann->type_mem_tag = create_memory_tag (tag_type, true);
2738 }
2739
2740 found_tag:
2741 /* If VAR is not already PTR's type tag, add it to the may-alias set
2742 for PTR's type tag. */
2743 gcc_assert (var_ann (var)->type_mem_tag == NOT_A_TAG);
2744 tag = ann->type_mem_tag;
2745
2746 /* If VAR has subvars, add the subvars to the tag instead of the
2747 actual var. */
2748 if (var_can_have_subvars (var)
2749 && (svars = get_subvars_for_var (var)))
2750 {
2751 subvar_t sv;
2752 for (sv = svars; sv; sv = sv->next)
2753 add_may_alias (tag, sv->var);
2754 }
2755 else
2756 add_may_alias (tag, var);
2757
2758 /* TAG and its set of aliases need to be marked for renaming. */
2759 mark_sym_for_renaming (tag);
2760 if ((aliases = var_ann (tag)->may_aliases) != NULL)
2761 {
2762 size_t i;
2763 for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
2764 mark_sym_for_renaming (VARRAY_TREE (aliases, i));
2765 }
2766
2767 /* If we had grouped aliases, VAR may have aliases of its own. Mark
2768 them for renaming as well. Other statements referencing the
2769 aliases of VAR will need to be updated. */
2770 if ((aliases = var_ann (var)->may_aliases) != NULL)
2771 {
2772 size_t i;
2773 for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
2774 mark_sym_for_renaming (VARRAY_TREE (aliases, i));
2775 }
2776 }
2777
2778
2779 /* This structure is simply used during pushing fields onto the fieldstack
2780 to track the offset of the field, since bitpos_of_field gives it relative
2781 to its immediate containing type, and we want it relative to the ultimate
2782 containing object. */
2783
2784 typedef struct fieldoff
2785 {
2786 tree field;
2787 HOST_WIDE_INT offset;
2788 } fieldoff_s;
2789
2790 DEF_VEC_O (fieldoff_s);
2791 DEF_VEC_ALLOC_O(fieldoff_s,heap);
2792
2793 /* Return the position, in bits, of FIELD_DECL from the beginning of its
2794 structure.
2795 Return -1 if the position is conditional or otherwise non-constant
2796 integer. */
2797
2798 static HOST_WIDE_INT
2799 bitpos_of_field (const tree fdecl)
2800 {
2801
2802 if (TREE_CODE (DECL_FIELD_OFFSET (fdecl)) != INTEGER_CST
2803 || TREE_CODE (DECL_FIELD_BIT_OFFSET (fdecl)) != INTEGER_CST)
2804 return -1;
2805
2806 return (tree_low_cst (DECL_FIELD_OFFSET (fdecl), 1) * 8)
2807 + tree_low_cst (DECL_FIELD_BIT_OFFSET (fdecl), 1);
2808 }
2809
2810 /* Given a TYPE, and a vector of field offsets FIELDSTACK, push all the fields
2811 of TYPE onto fieldstack, recording their offsets along the way.
2812 OFFSET is used to keep track of the offset in this entire structure, rather
2813 than just the immediately containing structure. Returns the number
2814 of fields pushed. */
2815
2816 static int
2817 push_fields_onto_fieldstack (tree type, VEC(fieldoff_s,heap) **fieldstack,
2818 HOST_WIDE_INT offset)
2819 {
2820 tree field;
2821 int count = 0;
2822
2823 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2824 if (TREE_CODE (field) == FIELD_DECL)
2825 {
2826 bool push = false;
2827
2828 if (!var_can_have_subvars (field))
2829 push = true;
2830 else if (!(push_fields_onto_fieldstack
2831 (TREE_TYPE (field), fieldstack,
2832 offset + bitpos_of_field (field)))
2833 && DECL_SIZE (field)
2834 && !integer_zerop (DECL_SIZE (field)))
2835 /* Empty structures may have actual size, like in C++. So
2836 see if we didn't push any subfields and the size is
2837 nonzero, push the field onto the stack */
2838 push = true;
2839
2840 if (push)
2841 {
2842 fieldoff_s *pair;
2843
2844 pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
2845 pair->field = field;
2846 pair->offset = offset + bitpos_of_field (field);
2847 count++;
2848 }
2849 }
2850 return count;
2851 }
2852
2853
2854 /* This represents the used range of a variable. */
2855
2856 typedef struct used_part
2857 {
2858 HOST_WIDE_INT minused;
2859 HOST_WIDE_INT maxused;
2860 /* True if we have an explicit use/def of some portion of this variable,
2861 even if it is all of it. i.e. a.b = 5 or temp = a.b. */
2862 bool explicit_uses;
2863 /* True if we have an implicit use/def of some portion of this
2864 variable. Implicit uses occur when we can't tell what part we
2865 are referencing, and have to make conservative assumptions. */
2866 bool implicit_uses;
2867 } *used_part_t;
2868
2869 /* An array of used_part structures, indexed by variable uid. */
2870
2871 static used_part_t *used_portions;
2872
2873 /* Given a variable uid, UID, get or create the entry in the used portions
2874 table for the variable. */
2875
2876 static used_part_t
2877 get_or_create_used_part_for (size_t uid)
2878 {
2879 used_part_t up;
2880 if (used_portions[uid] == NULL)
2881 {
2882 up = xcalloc (1, sizeof (struct used_part));
2883 up->minused = INT_MAX;
2884 up->maxused = 0;
2885 up->explicit_uses = false;
2886 up->implicit_uses = false;
2887 }
2888 else
2889 up = used_portions[uid];
2890 return up;
2891 }
2892
2893 /* qsort comparison function for two fieldoff's PA and PB */
2894
2895 static int
2896 fieldoff_compare (const void *pa, const void *pb)
2897 {
2898 const fieldoff_s *foa = (const fieldoff_s *)pa;
2899 const fieldoff_s *fob = (const fieldoff_s *)pb;
2900 HOST_WIDE_INT foasize, fobsize;
2901
2902 if (foa->offset != fob->offset)
2903 return foa->offset - fob->offset;
2904
2905 foasize = TREE_INT_CST_LOW (DECL_SIZE (foa->field));
2906 fobsize = TREE_INT_CST_LOW (DECL_SIZE (fob->field));
2907 return foasize - fobsize;
2908 }
2909
2910 /* Given an aggregate VAR, create the subvariables that represent its
2911 fields. */
2912
2913 static void
2914 create_overlap_variables_for (tree var)
2915 {
2916 VEC(fieldoff_s,heap) *fieldstack = NULL;
2917 used_part_t up;
2918 size_t uid = var_ann (var)->uid;
2919
2920 if (used_portions[uid] == NULL)
2921 return;
2922
2923 up = used_portions[uid];
2924 push_fields_onto_fieldstack (TREE_TYPE (var), &fieldstack, 0);
2925 if (VEC_length (fieldoff_s, fieldstack) != 0)
2926 {
2927 subvar_t *subvars;
2928 fieldoff_s *fo;
2929 bool notokay = false;
2930 int fieldcount = 0;
2931 int i;
2932 HOST_WIDE_INT lastfooffset = -1;
2933 HOST_WIDE_INT lastfosize = -1;
2934 tree lastfotype = NULL_TREE;
2935
2936 /* Not all fields have DECL_SIZE set, and those that don't, we don't
2937 know their size, and thus, can't handle.
2938 The same is true of fields with DECL_SIZE that is not an integer
2939 constant (such as variable sized fields).
2940 Fields with offsets which are not constant will have an offset < 0
2941 We *could* handle fields that are constant sized arrays, but
2942 currently don't. Doing so would require some extra changes to
2943 tree-ssa-operands.c. */
2944
2945 for (i = 0; VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
2946 {
2947 if (!DECL_SIZE (fo->field)
2948 || TREE_CODE (DECL_SIZE (fo->field)) != INTEGER_CST
2949 || TREE_CODE (TREE_TYPE (fo->field)) == ARRAY_TYPE
2950 || fo->offset < 0)
2951 {
2952 notokay = true;
2953 break;
2954 }
2955 fieldcount++;
2956 }
2957
2958 /* The current heuristic we use is as follows:
2959 If the variable has no used portions in this function, no
2960 structure vars are created for it.
2961 Otherwise,
2962 If the variable has less than SALIAS_MAX_IMPLICIT_FIELDS,
2963 we always create structure vars for them.
2964 If the variable has more than SALIAS_MAX_IMPLICIT_FIELDS, and
2965 some explicit uses, we create structure vars for them.
2966 If the variable has more than SALIAS_MAX_IMPLICIT_FIELDS, and
2967 no explicit uses, we do not create structure vars for them.
2968 */
2969
2970 if (fieldcount >= SALIAS_MAX_IMPLICIT_FIELDS
2971 && !up->explicit_uses)
2972 {
2973 if (dump_file && (dump_flags & TDF_DETAILS))
2974 {
2975 fprintf (dump_file, "Variable ");
2976 print_generic_expr (dump_file, var, 0);
2977 fprintf (dump_file, " has no explicit uses in this function, and is > SALIAS_MAX_IMPLICIT_FIELDS, so skipping\n");
2978 }
2979 notokay = true;
2980 }
2981
2982 /* Bail out, if we can't create overlap variables. */
2983 if (notokay)
2984 {
2985 VEC_free (fieldoff_s, heap, fieldstack);
2986 return;
2987 }
2988
2989 /* Otherwise, create the variables. */
2990 subvars = lookup_subvars_for_var (var);
2991
2992 qsort (VEC_address (fieldoff_s, fieldstack),
2993 VEC_length (fieldoff_s, fieldstack),
2994 sizeof (fieldoff_s),
2995 fieldoff_compare);
2996
2997 for (i = VEC_length (fieldoff_s, fieldstack);
2998 VEC_iterate (fieldoff_s, fieldstack, --i, fo);)
2999 {
3000 subvar_t sv;
3001 HOST_WIDE_INT fosize;
3002 var_ann_t ann;
3003 tree currfotype;
3004
3005 fosize = TREE_INT_CST_LOW (DECL_SIZE (fo->field));
3006 currfotype = TREE_TYPE (fo->field);
3007
3008 /* If this field isn't in the used portion,
3009 or it has the exact same offset and size as the last
3010 field, skip it. */
3011
3012 if (((fo->offset <= up->minused
3013 && fo->offset + fosize <= up->minused)
3014 || fo->offset >= up->maxused)
3015 || (fo->offset == lastfooffset
3016 && fosize == lastfosize
3017 && currfotype == lastfotype))
3018 continue;
3019 sv = ggc_alloc (sizeof (struct subvar));
3020 sv->offset = fo->offset;
3021 sv->size = fosize;
3022 sv->next = *subvars;
3023 sv->var = create_tmp_var_raw (TREE_TYPE (fo->field), "SFT");
3024 if (dump_file)
3025 {
3026 fprintf (dump_file, "structure field tag %s created for var %s",
3027 get_name (sv->var), get_name (var));
3028 fprintf (dump_file, " offset " HOST_WIDE_INT_PRINT_DEC,
3029 sv->offset);
3030 fprintf (dump_file, " size " HOST_WIDE_INT_PRINT_DEC,
3031 sv->size);
3032 fprintf (dump_file, "\n");
3033 }
3034
3035 /* We need to copy the various flags from var to sv->var, so that
3036 they are is_global_var iff the original variable was. */
3037
3038 DECL_EXTERNAL (sv->var) = DECL_EXTERNAL (var);
3039 TREE_PUBLIC (sv->var) = TREE_PUBLIC (var);
3040 TREE_STATIC (sv->var) = TREE_STATIC (var);
3041 TREE_READONLY (sv->var) = TREE_READONLY (var);
3042
3043 /* Like other memory tags, these need to be marked addressable to
3044 keep is_gimple_reg from thinking they are real. */
3045 TREE_ADDRESSABLE (sv->var) = 1;
3046
3047 DECL_CONTEXT (sv->var) = DECL_CONTEXT (var);
3048
3049 ann = get_var_ann (sv->var);
3050 ann->mem_tag_kind = STRUCT_FIELD;
3051 ann->type_mem_tag = NULL;
3052 add_referenced_tmp_var (sv->var);
3053
3054 lastfotype = currfotype;
3055 lastfooffset = fo->offset;
3056 lastfosize = fosize;
3057 *subvars = sv;
3058 }
3059
3060 /* Once we have created subvars, the original is no longer call
3061 clobbered on its own. Its call clobbered status depends
3062 completely on the call clobbered status of the subvars.
3063
3064 add_referenced_var in the above loop will take care of
3065 marking subvars of global variables as call clobbered for us
3066 to start, since they are global as well. */
3067 clear_call_clobbered (var);
3068 }
3069
3070 VEC_free (fieldoff_s, heap, fieldstack);
3071 }
3072
3073
3074 /* Find the conservative answer to the question of what portions of what
3075 structures are used by this statement. We assume that if we have a
3076 component ref with a known size + offset, that we only need that part
3077 of the structure. For unknown cases, or cases where we do something
3078 to the whole structure, we assume we need to create fields for the
3079 entire structure. */
3080
3081 static tree
3082 find_used_portions (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
3083 {
3084 switch (TREE_CODE (*tp))
3085 {
3086 case COMPONENT_REF:
3087 {
3088 HOST_WIDE_INT bitsize;
3089 HOST_WIDE_INT bitpos;
3090 tree offset;
3091 enum machine_mode mode;
3092 int unsignedp;
3093 int volatilep;
3094 tree ref;
3095 ref = get_inner_reference (*tp, &bitsize, &bitpos, &offset, &mode,
3096 &unsignedp, &volatilep, false);
3097 if (DECL_P (ref) && offset == NULL && bitsize != -1)
3098 {
3099 size_t uid = var_ann (ref)->uid;
3100 used_part_t up;
3101
3102 up = get_or_create_used_part_for (uid);
3103
3104 if (bitpos <= up->minused)
3105 up->minused = bitpos;
3106 if ((bitpos + bitsize >= up->maxused))
3107 up->maxused = bitpos + bitsize;
3108
3109 up->explicit_uses = true;
3110 used_portions[uid] = up;
3111
3112 *walk_subtrees = 0;
3113 return NULL_TREE;
3114 }
3115 else if (DECL_P (ref))
3116 {
3117 if (DECL_SIZE (ref)
3118 && var_can_have_subvars (ref)
3119 && TREE_CODE (DECL_SIZE (ref)) == INTEGER_CST)
3120 {
3121 used_part_t up;
3122 size_t uid = var_ann (ref)->uid;
3123
3124 up = get_or_create_used_part_for (uid);
3125
3126 up->minused = 0;
3127 up->maxused = TREE_INT_CST_LOW (DECL_SIZE (ref));
3128
3129 up->implicit_uses = true;
3130
3131 used_portions[uid] = up;
3132
3133 *walk_subtrees = 0;
3134 return NULL_TREE;
3135 }
3136 }
3137 }
3138 break;
3139 case VAR_DECL:
3140 case PARM_DECL:
3141 {
3142 tree var = *tp;
3143 if (DECL_SIZE (var)
3144 && var_can_have_subvars (var)
3145 && TREE_CODE (DECL_SIZE (var)) == INTEGER_CST)
3146 {
3147 used_part_t up;
3148 size_t uid = var_ann (var)->uid;
3149
3150 up = get_or_create_used_part_for (uid);
3151
3152 up->minused = 0;
3153 up->maxused = TREE_INT_CST_LOW (DECL_SIZE (var));
3154 up->implicit_uses = true;
3155
3156 used_portions[uid] = up;
3157 *walk_subtrees = 0;
3158 return NULL_TREE;
3159 }
3160 }
3161 break;
3162
3163 default:
3164 break;
3165
3166 }
3167 return NULL_TREE;
3168 }
3169
3170 /* We are about to create some new referenced variables, and we need the
3171 before size. */
3172
3173 static size_t old_referenced_vars;
3174
3175
3176 /* Create structure field variables for structures used in this function. */
3177
3178 static void
3179 create_structure_vars (void)
3180 {
3181 basic_block bb;
3182 size_t i;
3183
3184 old_referenced_vars = num_referenced_vars;
3185 used_portions = xcalloc (num_referenced_vars, sizeof (used_part_t));
3186
3187 FOR_EACH_BB (bb)
3188 {
3189 block_stmt_iterator bsi;
3190 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
3191 {
3192 walk_tree_without_duplicates (bsi_stmt_ptr (bsi),
3193 find_used_portions,
3194 NULL);
3195 }
3196 }
3197 for (i = 0; i < old_referenced_vars; i++)
3198 {
3199 tree var = referenced_var (i);
3200 /* The C++ FE creates vars without DECL_SIZE set, for some reason. */
3201 if (var
3202 && DECL_SIZE (var)
3203 && var_can_have_subvars (var)
3204 && var_ann (var)->mem_tag_kind == NOT_A_TAG
3205 && TREE_CODE (DECL_SIZE (var)) == INTEGER_CST)
3206 create_overlap_variables_for (var);
3207 }
3208 for (i = 0; i < old_referenced_vars; i++)
3209 free (used_portions[i]);
3210
3211 free (used_portions);
3212 }
3213
3214 static bool
3215 gate_structure_vars (void)
3216 {
3217 return flag_tree_salias != 0;
3218 }
3219
3220 struct tree_opt_pass pass_create_structure_vars =
3221 {
3222 "salias", /* name */
3223 gate_structure_vars, /* gate */
3224 create_structure_vars, /* execute */
3225 NULL, /* sub */
3226 NULL, /* next */
3227 0, /* static_pass_number */
3228 0, /* tv_id */
3229 PROP_cfg, /* properties_required */
3230 0, /* properties_provided */
3231 0, /* properties_destroyed */
3232 0, /* todo_flags_start */
3233 TODO_dump_func, /* todo_flags_finish */
3234 0 /* letter */
3235 };