basic-block.h (FOR_ALL_BB_FN): New macro.
[gcc.git] / gcc / tree-ssa-alias.c
1 /* Alias analysis for trees.
2 Copyright (C) 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "timevar.h"
32 #include "expr.h"
33 #include "ggc.h"
34 #include "langhooks.h"
35 #include "flags.h"
36 #include "function.h"
37 #include "diagnostic.h"
38 #include "tree-dump.h"
39 #include "tree-gimple.h"
40 #include "tree-flow.h"
41 #include "tree-inline.h"
42 #include "tree-pass.h"
43 #include "convert.h"
44 #include "params.h"
45 #include "vec.h"
46
47 /* 'true' after aliases have been computed (see compute_may_aliases). */
48 bool aliases_computed_p;
49
50 /* Structure to map a variable to its alias set and keep track of the
51 virtual operands that will be needed to represent it. */
52 struct alias_map_d
53 {
54 /* Variable and its alias set. */
55 tree var;
56 HOST_WIDE_INT set;
57
58 /* Total number of virtual operands that will be needed to represent
59 all the aliases of VAR. */
60 long total_alias_vops;
61
62 /* Nonzero if the aliases for this memory tag have been grouped
63 already. Used in group_aliases. */
64 unsigned int grouped_p : 1;
65
66 /* Set of variables aliased with VAR. This is the exact same
67 information contained in VAR_ANN (VAR)->MAY_ALIASES, but in
68 bitmap form to speed up alias grouping. */
69 sbitmap may_aliases;
70 };
71
72
73 /* Alias information used by compute_may_aliases and its helpers. */
74 struct alias_info
75 {
76 /* SSA names visited while collecting points-to information. If bit I
77 is set, it means that SSA variable with version I has already been
78 visited. */
79 sbitmap ssa_names_visited;
80
81 /* Array of SSA_NAME pointers processed by the points-to collector. */
82 varray_type processed_ptrs;
83
84 /* Variables whose address is still needed. */
85 bitmap addresses_needed;
86
87 /* ADDRESSABLE_VARS contains all the global variables and locals that
88 have had their address taken. */
89 struct alias_map_d **addressable_vars;
90 size_t num_addressable_vars;
91
92 /* POINTERS contains all the _DECL pointers with unique memory tags
93 that have been referenced in the program. */
94 struct alias_map_d **pointers;
95 size_t num_pointers;
96
97 /* Number of function calls found in the program. */
98 size_t num_calls_found;
99
100 /* Number of const/pure function calls found in the program. */
101 size_t num_pure_const_calls_found;
102
103 /* Array of counters to keep track of how many times each pointer has
104 been dereferenced in the program. This is used by the alias grouping
105 heuristic in compute_flow_insensitive_aliasing. */
106 varray_type num_references;
107
108 /* Total number of virtual operands that will be needed to represent
109 all the aliases of all the pointers found in the program. */
110 long total_alias_vops;
111
112 /* Variables that have been written to. */
113 bitmap written_vars;
114
115 /* Pointers that have been used in an indirect store operation. */
116 bitmap dereferenced_ptrs_store;
117
118 /* Pointers that have been used in an indirect load operation. */
119 bitmap dereferenced_ptrs_load;
120 };
121
122
123 /* Counters used to display statistics on alias analysis. */
124 struct alias_stats_d
125 {
126 unsigned int alias_queries;
127 unsigned int alias_mayalias;
128 unsigned int alias_noalias;
129 unsigned int simple_queries;
130 unsigned int simple_resolved;
131 unsigned int tbaa_queries;
132 unsigned int tbaa_resolved;
133 };
134
135
136 /* Local variables. */
137 static struct alias_stats_d alias_stats;
138
139 /* Local functions. */
140 static void compute_flow_insensitive_aliasing (struct alias_info *);
141 static void dump_alias_stats (FILE *);
142 static bool may_alias_p (tree, HOST_WIDE_INT, tree, HOST_WIDE_INT);
143 static tree create_memory_tag (tree type, bool is_type_tag);
144 static tree get_tmt_for (tree, struct alias_info *);
145 static tree get_nmt_for (tree);
146 static void add_may_alias (tree, tree);
147 static void replace_may_alias (tree, size_t, tree);
148 static struct alias_info *init_alias_info (void);
149 static void delete_alias_info (struct alias_info *);
150 static void compute_points_to_and_addr_escape (struct alias_info *);
151 static void compute_flow_sensitive_aliasing (struct alias_info *);
152 static void setup_pointers_and_addressables (struct alias_info *);
153 static bool collect_points_to_info_r (tree, tree, void *);
154 static bool is_escape_site (tree, struct alias_info *);
155 static void add_pointed_to_var (struct alias_info *, tree, tree);
156 static void create_global_var (void);
157 static void collect_points_to_info_for (struct alias_info *, tree);
158 static void maybe_create_global_var (struct alias_info *ai);
159 static void group_aliases (struct alias_info *);
160 static void set_pt_anything (tree ptr);
161 static void set_pt_malloc (tree ptr);
162
163 /* Global declarations. */
164
165 /* Call clobbered variables in the function. If bit I is set, then
166 REFERENCED_VARS (I) is call-clobbered. */
167 bitmap call_clobbered_vars;
168
169 /* Addressable variables in the function. If bit I is set, then
170 REFERENCED_VARS (I) has had its address taken. Note that
171 CALL_CLOBBERED_VARS and ADDRESSABLE_VARS are not related. An
172 addressable variable is not necessarily call-clobbered (e.g., a
173 local addressable whose address does not escape) and not all
174 call-clobbered variables are addressable (e.g., a local static
175 variable). */
176 bitmap addressable_vars;
177
178 /* When the program has too many call-clobbered variables and call-sites,
179 this variable is used to represent the clobbering effects of function
180 calls. In these cases, all the call clobbered variables in the program
181 are forced to alias this variable. This reduces compile times by not
182 having to keep track of too many V_MAY_DEF expressions at call sites. */
183 tree global_var;
184
185
186 /* Compute may-alias information for every variable referenced in function
187 FNDECL.
188
189 Alias analysis proceeds in 3 main phases:
190
191 1- Points-to and escape analysis.
192
193 This phase walks the use-def chains in the SSA web looking for three
194 things:
195
196 * Assignments of the form P_i = &VAR
197 * Assignments of the form P_i = malloc()
198 * Pointers and ADDR_EXPR that escape the current function.
199
200 The concept of 'escaping' is the same one used in the Java world. When
201 a pointer or an ADDR_EXPR escapes, it means that it has been exposed
202 outside of the current function. So, assignment to global variables,
203 function arguments and returning a pointer are all escape sites, as are
204 conversions between pointers and integers.
205
206 This is where we are currently limited. Since not everything is renamed
207 into SSA, we lose track of escape properties when a pointer is stashed
208 inside a field in a structure, for instance. In those cases, we are
209 assuming that the pointer does escape.
210
211 We use escape analysis to determine whether a variable is
212 call-clobbered. Simply put, if an ADDR_EXPR escapes, then the variable
213 is call-clobbered. If a pointer P_i escapes, then all the variables
214 pointed-to by P_i (and its memory tag) also escape.
215
216 2- Compute flow-sensitive aliases
217
218 We have two classes of memory tags. Memory tags associated with the
219 pointed-to data type of the pointers in the program. These tags are
220 called "type memory tag" (TMT). The other class are those associated
221 with SSA_NAMEs, called "name memory tag" (NMT). The basic idea is that
222 when adding operands for an INDIRECT_REF *P_i, we will first check
223 whether P_i has a name tag, if it does we use it, because that will have
224 more precise aliasing information. Otherwise, we use the standard type
225 tag.
226
227 In this phase, we go through all the pointers we found in points-to
228 analysis and create alias sets for the name memory tags associated with
229 each pointer P_i. If P_i escapes, we mark call-clobbered the variables
230 it points to and its tag.
231
232
233 3- Compute flow-insensitive aliases
234
235 This pass will compare the alias set of every type memory tag and every
236 addressable variable found in the program. Given a type memory tag TMT
237 and an addressable variable V. If the alias sets of TMT and V conflict
238 (as computed by may_alias_p), then V is marked as an alias tag and added
239 to the alias set of TMT.
240
241 For instance, consider the following function:
242
243 foo (int i)
244 {
245 int *p, a, b;
246
247 if (i > 10)
248 p = &a;
249 else
250 p = &b;
251
252 *p = 3;
253 a = b + 2;
254 return *p;
255 }
256
257 After aliasing analysis has finished, the type memory tag for pointer
258 'p' will have two aliases, namely variables 'a' and 'b'. Every time
259 pointer 'p' is dereferenced, we want to mark the operation as a
260 potential reference to 'a' and 'b'.
261
262 foo (int i)
263 {
264 int *p, a, b;
265
266 if (i_2 > 10)
267 p_4 = &a;
268 else
269 p_6 = &b;
270 # p_1 = PHI <p_4(1), p_6(2)>;
271
272 # a_7 = V_MAY_DEF <a_3>;
273 # b_8 = V_MAY_DEF <b_5>;
274 *p_1 = 3;
275
276 # a_9 = V_MAY_DEF <a_7>
277 # VUSE <b_8>
278 a_9 = b_8 + 2;
279
280 # VUSE <a_9>;
281 # VUSE <b_8>;
282 return *p_1;
283 }
284
285 In certain cases, the list of may aliases for a pointer may grow too
286 large. This may cause an explosion in the number of virtual operands
287 inserted in the code. Resulting in increased memory consumption and
288 compilation time.
289
290 When the number of virtual operands needed to represent aliased
291 loads and stores grows too large (configurable with @option{--param
292 max-aliased-vops}), alias sets are grouped to avoid severe
293 compile-time slow downs and memory consumption. See group_aliases. */
294
295 static void
296 compute_may_aliases (void)
297 {
298 struct alias_info *ai;
299
300 memset (&alias_stats, 0, sizeof (alias_stats));
301
302 /* Initialize aliasing information. */
303 ai = init_alias_info ();
304
305 /* For each pointer P_i, determine the sets of variables that P_i may
306 point-to. For every addressable variable V, determine whether the
307 address of V escapes the current function, making V call-clobbered
308 (i.e., whether &V is stored in a global variable or if its passed as a
309 function call argument). */
310 compute_points_to_and_addr_escape (ai);
311
312 /* Collect all pointers and addressable variables, compute alias sets,
313 create memory tags for pointers and promote variables whose address is
314 not needed anymore. */
315 setup_pointers_and_addressables (ai);
316
317 /* Compute flow-sensitive, points-to based aliasing for all the name
318 memory tags. Note that this pass needs to be done before flow
319 insensitive analysis because it uses the points-to information
320 gathered before to mark call-clobbered type tags. */
321 compute_flow_sensitive_aliasing (ai);
322
323 /* Compute type-based flow-insensitive aliasing for all the type
324 memory tags. */
325 compute_flow_insensitive_aliasing (ai);
326
327 /* If the program has too many call-clobbered variables and/or function
328 calls, create .GLOBAL_VAR and use it to model call-clobbering
329 semantics at call sites. This reduces the number of virtual operands
330 considerably, improving compile times at the expense of lost
331 aliasing precision. */
332 maybe_create_global_var (ai);
333
334 /* Debugging dumps. */
335 if (dump_file)
336 {
337 dump_referenced_vars (dump_file);
338 if (dump_flags & TDF_STATS)
339 dump_alias_stats (dump_file);
340 dump_points_to_info (dump_file);
341 dump_alias_info (dump_file);
342 }
343
344 /* Deallocate memory used by aliasing data structures. */
345 delete_alias_info (ai);
346
347 {
348 block_stmt_iterator bsi;
349 basic_block bb;
350 FOR_EACH_BB (bb)
351 {
352 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
353 {
354 update_stmt_if_modified (bsi_stmt (bsi));
355 }
356 }
357 }
358
359 }
360
361 struct tree_opt_pass pass_may_alias =
362 {
363 "alias", /* name */
364 NULL, /* gate */
365 compute_may_aliases, /* execute */
366 NULL, /* sub */
367 NULL, /* next */
368 0, /* static_pass_number */
369 TV_TREE_MAY_ALIAS, /* tv_id */
370 PROP_cfg | PROP_ssa, /* properties_required */
371 PROP_alias, /* properties_provided */
372 0, /* properties_destroyed */
373 0, /* todo_flags_start */
374 TODO_dump_func | TODO_update_ssa
375 | TODO_ggc_collect | TODO_verify_ssa
376 | TODO_verify_stmts, /* todo_flags_finish */
377 0 /* letter */
378 };
379
380
381 /* Data structure used to count the number of dereferences to PTR
382 inside an expression. */
383 struct count_ptr_d
384 {
385 tree ptr;
386 unsigned count;
387 };
388
389
390 /* Helper for count_uses_and_derefs. Called by walk_tree to look for
391 (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
392
393 static tree
394 count_ptr_derefs (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED, void *data)
395 {
396 struct count_ptr_d *count_p = (struct count_ptr_d *) data;
397
398 if (INDIRECT_REF_P (*tp) && TREE_OPERAND (*tp, 0) == count_p->ptr)
399 count_p->count++;
400
401 return NULL_TREE;
402 }
403
404
405 /* Count the number of direct and indirect uses for pointer PTR in
406 statement STMT. The two counts are stored in *NUM_USES_P and
407 *NUM_DEREFS_P respectively. *IS_STORE_P is set to 'true' if at
408 least one of those dereferences is a store operation. */
409
410 void
411 count_uses_and_derefs (tree ptr, tree stmt, unsigned *num_uses_p,
412 unsigned *num_derefs_p, bool *is_store)
413 {
414 ssa_op_iter i;
415 tree use;
416
417 *num_uses_p = 0;
418 *num_derefs_p = 0;
419 *is_store = false;
420
421 /* Find out the total number of uses of PTR in STMT. */
422 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
423 if (use == ptr)
424 (*num_uses_p)++;
425
426 /* Now count the number of indirect references to PTR. This is
427 truly awful, but we don't have much choice. There are no parent
428 pointers inside INDIRECT_REFs, so an expression like
429 '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
430 find all the indirect and direct uses of x_1 inside. The only
431 shortcut we can take is the fact that GIMPLE only allows
432 INDIRECT_REFs inside the expressions below. */
433 if (TREE_CODE (stmt) == MODIFY_EXPR
434 || (TREE_CODE (stmt) == RETURN_EXPR
435 && TREE_CODE (TREE_OPERAND (stmt, 0)) == MODIFY_EXPR)
436 || TREE_CODE (stmt) == ASM_EXPR
437 || TREE_CODE (stmt) == CALL_EXPR)
438 {
439 tree lhs, rhs;
440
441 if (TREE_CODE (stmt) == MODIFY_EXPR)
442 {
443 lhs = TREE_OPERAND (stmt, 0);
444 rhs = TREE_OPERAND (stmt, 1);
445 }
446 else if (TREE_CODE (stmt) == RETURN_EXPR)
447 {
448 tree e = TREE_OPERAND (stmt, 0);
449 lhs = TREE_OPERAND (e, 0);
450 rhs = TREE_OPERAND (e, 1);
451 }
452 else if (TREE_CODE (stmt) == ASM_EXPR)
453 {
454 lhs = ASM_OUTPUTS (stmt);
455 rhs = ASM_INPUTS (stmt);
456 }
457 else
458 {
459 lhs = NULL_TREE;
460 rhs = stmt;
461 }
462
463 if (lhs && (TREE_CODE (lhs) == TREE_LIST || EXPR_P (lhs)))
464 {
465 struct count_ptr_d count;
466 count.ptr = ptr;
467 count.count = 0;
468 walk_tree (&lhs, count_ptr_derefs, &count, NULL);
469 *is_store = true;
470 *num_derefs_p = count.count;
471 }
472
473 if (rhs && (TREE_CODE (rhs) == TREE_LIST || EXPR_P (rhs)))
474 {
475 struct count_ptr_d count;
476 count.ptr = ptr;
477 count.count = 0;
478 walk_tree (&rhs, count_ptr_derefs, &count, NULL);
479 *num_derefs_p += count.count;
480 }
481 }
482
483 gcc_assert (*num_uses_p >= *num_derefs_p);
484 }
485
486
487 /* Initialize the data structures used for alias analysis. */
488
489 static struct alias_info *
490 init_alias_info (void)
491 {
492 struct alias_info *ai;
493
494 ai = xcalloc (1, sizeof (struct alias_info));
495 ai->ssa_names_visited = sbitmap_alloc (num_ssa_names);
496 sbitmap_zero (ai->ssa_names_visited);
497 VARRAY_TREE_INIT (ai->processed_ptrs, 50, "processed_ptrs");
498 ai->addresses_needed = BITMAP_ALLOC (NULL);
499 VARRAY_UINT_INIT (ai->num_references, num_referenced_vars, "num_references");
500 ai->written_vars = BITMAP_ALLOC (NULL);
501 ai->dereferenced_ptrs_store = BITMAP_ALLOC (NULL);
502 ai->dereferenced_ptrs_load = BITMAP_ALLOC (NULL);
503
504 /* If aliases have been computed before, clear existing information. */
505 if (aliases_computed_p)
506 {
507 unsigned i;
508
509 /* Similarly, clear the set of addressable variables. In this
510 case, we can just clear the set because addressability is
511 only computed here. */
512 bitmap_clear (addressable_vars);
513
514 /* Clear flow-insensitive alias information from each symbol. */
515 for (i = 0; i < num_referenced_vars; i++)
516 {
517 tree var = referenced_var (i);
518 var_ann_t ann = var_ann (var);
519
520 ann->is_alias_tag = 0;
521 ann->may_aliases = NULL;
522
523 /* Since we are about to re-discover call-clobbered
524 variables, clear the call-clobbered flag. Variables that
525 are intrinsically call-clobbered (globals, local statics,
526 etc) will not be marked by the aliasing code, so we can't
527 remove them from CALL_CLOBBERED_VARS.
528
529 NB: STRUCT_FIELDS are still call clobbered if they are for
530 a global variable, so we *don't* clear their call clobberedness
531 just because they are tags, though we will clear it if they
532 aren't for global variables. */
533 if (ann->mem_tag_kind == NAME_TAG
534 || ann->mem_tag_kind == TYPE_TAG
535 || !is_global_var (var))
536 clear_call_clobbered (var);
537 }
538
539 /* Clear flow-sensitive points-to information from each SSA name. */
540 for (i = 1; i < num_ssa_names; i++)
541 {
542 tree name = ssa_name (i);
543
544 if (!name || !POINTER_TYPE_P (TREE_TYPE (name)))
545 continue;
546
547 if (SSA_NAME_PTR_INFO (name))
548 {
549 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (name);
550
551 /* Clear all the flags but keep the name tag to
552 avoid creating new temporaries unnecessarily. If
553 this pointer is found to point to a subset or
554 superset of its former points-to set, then a new
555 tag will need to be created in create_name_tags. */
556 pi->pt_anything = 0;
557 pi->pt_malloc = 0;
558 pi->pt_null = 0;
559 pi->value_escapes_p = 0;
560 pi->is_dereferenced = 0;
561 if (pi->pt_vars)
562 bitmap_clear (pi->pt_vars);
563 }
564 }
565 }
566
567 /* Next time, we will need to reset alias information. */
568 aliases_computed_p = true;
569
570 return ai;
571 }
572
573
574 /* Deallocate memory used by alias analysis. */
575
576 static void
577 delete_alias_info (struct alias_info *ai)
578 {
579 size_t i;
580
581 sbitmap_free (ai->ssa_names_visited);
582 ai->processed_ptrs = NULL;
583 BITMAP_FREE (ai->addresses_needed);
584
585 for (i = 0; i < ai->num_addressable_vars; i++)
586 {
587 sbitmap_free (ai->addressable_vars[i]->may_aliases);
588 free (ai->addressable_vars[i]);
589 }
590 free (ai->addressable_vars);
591
592 for (i = 0; i < ai->num_pointers; i++)
593 {
594 sbitmap_free (ai->pointers[i]->may_aliases);
595 free (ai->pointers[i]);
596 }
597 free (ai->pointers);
598
599 ai->num_references = NULL;
600 BITMAP_FREE (ai->written_vars);
601 BITMAP_FREE (ai->dereferenced_ptrs_store);
602 BITMAP_FREE (ai->dereferenced_ptrs_load);
603
604 free (ai);
605 }
606
607
608 /* Walk use-def chains for pointer PTR to determine what variables is PTR
609 pointing to. */
610
611 static void
612 collect_points_to_info_for (struct alias_info *ai, tree ptr)
613 {
614 gcc_assert (POINTER_TYPE_P (TREE_TYPE (ptr)));
615
616 if (!TEST_BIT (ai->ssa_names_visited, SSA_NAME_VERSION (ptr)))
617 {
618 SET_BIT (ai->ssa_names_visited, SSA_NAME_VERSION (ptr));
619 walk_use_def_chains (ptr, collect_points_to_info_r, ai, true);
620 VARRAY_PUSH_TREE (ai->processed_ptrs, ptr);
621 }
622 }
623
624
625 /* Traverse use-def links for all the pointers in the program to collect
626 address escape and points-to information.
627
628 This is loosely based on the same idea described in R. Hasti and S.
629 Horwitz, ``Using static single assignment form to improve
630 flow-insensitive pointer analysis,'' in SIGPLAN Conference on
631 Programming Language Design and Implementation, pp. 97-105, 1998. */
632
633 static void
634 compute_points_to_and_addr_escape (struct alias_info *ai)
635 {
636 basic_block bb;
637 unsigned i;
638 tree op;
639 ssa_op_iter iter;
640
641 timevar_push (TV_TREE_PTA);
642
643 FOR_EACH_BB (bb)
644 {
645 bb_ann_t block_ann = bb_ann (bb);
646 block_stmt_iterator si;
647
648 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
649 {
650 bitmap addr_taken;
651 tree stmt = bsi_stmt (si);
652 bool stmt_escapes_p = is_escape_site (stmt, ai);
653 bitmap_iterator bi;
654
655 /* Mark all the variables whose address are taken by the
656 statement. Note that this will miss all the addresses taken
657 in PHI nodes (those are discovered while following the use-def
658 chains). */
659 addr_taken = addresses_taken (stmt);
660 if (addr_taken)
661 EXECUTE_IF_SET_IN_BITMAP (addr_taken, 0, i, bi)
662 {
663 tree var = referenced_var (i);
664 bitmap_set_bit (ai->addresses_needed, var_ann (var)->uid);
665 if (stmt_escapes_p)
666 mark_call_clobbered (var);
667 }
668
669 if (stmt_escapes_p)
670 block_ann->has_escape_site = 1;
671
672 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE)
673 {
674 var_ann_t v_ann = var_ann (SSA_NAME_VAR (op));
675 struct ptr_info_def *pi;
676 bool is_store;
677 unsigned num_uses, num_derefs;
678
679 /* If the operand's variable may be aliased, keep track
680 of how many times we've referenced it. This is used
681 for alias grouping in compute_flow_sensitive_aliasing.
682 Note that we don't need to grow AI->NUM_REFERENCES
683 because we are processing regular variables, not
684 memory tags (the array's initial size is set to
685 NUM_REFERENCED_VARS). */
686 if (may_be_aliased (SSA_NAME_VAR (op)))
687 (VARRAY_UINT (ai->num_references, v_ann->uid))++;
688
689 if (!POINTER_TYPE_P (TREE_TYPE (op)))
690 continue;
691
692 collect_points_to_info_for (ai, op);
693
694 pi = SSA_NAME_PTR_INFO (op);
695 count_uses_and_derefs (op, stmt, &num_uses, &num_derefs,
696 &is_store);
697
698 if (num_derefs > 0)
699 {
700 /* Mark OP as dereferenced. In a subsequent pass,
701 dereferenced pointers that point to a set of
702 variables will be assigned a name tag to alias
703 all the variables OP points to. */
704 pi->is_dereferenced = 1;
705
706 /* Keep track of how many time we've dereferenced each
707 pointer. Again, we don't need to grow
708 AI->NUM_REFERENCES because we're processing
709 existing program variables. */
710 (VARRAY_UINT (ai->num_references, v_ann->uid))++;
711
712 /* If this is a store operation, mark OP as being
713 dereferenced to store, otherwise mark it as being
714 dereferenced to load. */
715 if (is_store)
716 bitmap_set_bit (ai->dereferenced_ptrs_store, v_ann->uid);
717 else
718 bitmap_set_bit (ai->dereferenced_ptrs_load, v_ann->uid);
719 }
720
721 if (stmt_escapes_p && num_derefs < num_uses)
722 {
723 /* If STMT is an escape point and STMT contains at
724 least one direct use of OP, then the value of OP
725 escapes and so the pointed-to variables need to
726 be marked call-clobbered. */
727 pi->value_escapes_p = 1;
728
729 /* If the statement makes a function call, assume
730 that pointer OP will be dereferenced in a store
731 operation inside the called function. */
732 if (get_call_expr_in (stmt))
733 {
734 bitmap_set_bit (ai->dereferenced_ptrs_store, v_ann->uid);
735 pi->is_dereferenced = 1;
736 }
737 }
738 }
739
740 /* Update reference counter for definitions to any
741 potentially aliased variable. This is used in the alias
742 grouping heuristics. */
743 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_DEF)
744 {
745 tree var = SSA_NAME_VAR (op);
746 var_ann_t ann = var_ann (var);
747 bitmap_set_bit (ai->written_vars, ann->uid);
748 if (may_be_aliased (var))
749 (VARRAY_UINT (ai->num_references, ann->uid))++;
750
751 if (POINTER_TYPE_P (TREE_TYPE (op)))
752 collect_points_to_info_for (ai, op);
753 }
754
755 /* Mark variables in V_MAY_DEF operands as being written to. */
756 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_DEFS)
757 {
758 tree var = DECL_P (op) ? op : SSA_NAME_VAR (op);
759 var_ann_t ann = var_ann (var);
760 bitmap_set_bit (ai->written_vars, ann->uid);
761 }
762
763 /* After promoting variables and computing aliasing we will
764 need to re-scan most statements. FIXME: Try to minimize the
765 number of statements re-scanned. It's not really necessary to
766 re-scan *all* statements. */
767 mark_stmt_modified (stmt);
768 }
769 }
770
771 timevar_pop (TV_TREE_PTA);
772 }
773
774
775 /* Create name tags for all the pointers that have been dereferenced.
776 We only create a name tag for a pointer P if P is found to point to
777 a set of variables (so that we can alias them to *P) or if it is
778 the result of a call to malloc (which means that P cannot point to
779 anything else nor alias any other variable).
780
781 If two pointers P and Q point to the same set of variables, they
782 are assigned the same name tag. */
783
784 static void
785 create_name_tags (struct alias_info *ai)
786 {
787 size_t i;
788
789 for (i = 0; i < VARRAY_ACTIVE_SIZE (ai->processed_ptrs); i++)
790 {
791 tree ptr = VARRAY_TREE (ai->processed_ptrs, i);
792 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
793
794 if (pi->pt_anything || !pi->is_dereferenced)
795 {
796 /* No name tags for pointers that have not been
797 dereferenced or point to an arbitrary location. */
798 pi->name_mem_tag = NULL_TREE;
799 continue;
800 }
801
802 if (pi->pt_vars && !bitmap_empty_p (pi->pt_vars))
803 {
804 size_t j;
805 tree old_name_tag = pi->name_mem_tag;
806
807 /* If PTR points to a set of variables, check if we don't
808 have another pointer Q with the same points-to set before
809 creating a tag. If so, use Q's tag instead of creating a
810 new one.
811
812 This is important for not creating unnecessary symbols
813 and also for copy propagation. If we ever need to
814 propagate PTR into Q or vice-versa, we would run into
815 problems if they both had different name tags because
816 they would have different SSA version numbers (which
817 would force us to take the name tags in and out of SSA). */
818 for (j = 0; j < i; j++)
819 {
820 tree q = VARRAY_TREE (ai->processed_ptrs, j);
821 struct ptr_info_def *qi = SSA_NAME_PTR_INFO (q);
822
823 if (qi
824 && qi->pt_vars
825 && qi->name_mem_tag
826 && bitmap_equal_p (pi->pt_vars, qi->pt_vars))
827 {
828 pi->name_mem_tag = qi->name_mem_tag;
829 break;
830 }
831 }
832
833 /* If we didn't find a pointer with the same points-to set
834 as PTR, create a new name tag if needed. */
835 if (pi->name_mem_tag == NULL_TREE)
836 pi->name_mem_tag = get_nmt_for (ptr);
837
838 /* If the new name tag computed for PTR is different than
839 the old name tag that it used to have, then the old tag
840 needs to be removed from the IL, so we mark it for
841 renaming. */
842 if (old_name_tag && old_name_tag != pi->name_mem_tag)
843 mark_sym_for_renaming (old_name_tag);
844 }
845 else if (pi->pt_malloc)
846 {
847 /* Otherwise, create a unique name tag for this pointer. */
848 pi->name_mem_tag = get_nmt_for (ptr);
849 }
850 else
851 {
852 /* Only pointers that may point to malloc or other variables
853 may receive a name tag. If the pointer does not point to
854 a known spot, we should use type tags. */
855 set_pt_anything (ptr);
856 continue;
857 }
858
859 TREE_THIS_VOLATILE (pi->name_mem_tag)
860 |= TREE_THIS_VOLATILE (TREE_TYPE (TREE_TYPE (ptr)));
861
862 /* Mark the new name tag for renaming. */
863 mark_sym_for_renaming (pi->name_mem_tag);
864 }
865 }
866
867
868
869 /* For every pointer P_i in AI->PROCESSED_PTRS, create may-alias sets for
870 the name memory tag (NMT) associated with P_i. If P_i escapes, then its
871 name tag and the variables it points-to are call-clobbered. Finally, if
872 P_i escapes and we could not determine where it points to, then all the
873 variables in the same alias set as *P_i are marked call-clobbered. This
874 is necessary because we must assume that P_i may take the address of any
875 variable in the same alias set. */
876
877 static void
878 compute_flow_sensitive_aliasing (struct alias_info *ai)
879 {
880 size_t i;
881
882 create_name_tags (ai);
883
884 for (i = 0; i < VARRAY_ACTIVE_SIZE (ai->processed_ptrs); i++)
885 {
886 unsigned j;
887 tree ptr = VARRAY_TREE (ai->processed_ptrs, i);
888 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
889 var_ann_t v_ann = var_ann (SSA_NAME_VAR (ptr));
890 bitmap_iterator bi;
891
892 if (pi->value_escapes_p || pi->pt_anything)
893 {
894 /* If PTR escapes or may point to anything, then its associated
895 memory tags and pointed-to variables are call-clobbered. */
896 if (pi->name_mem_tag)
897 mark_call_clobbered (pi->name_mem_tag);
898
899 if (v_ann->type_mem_tag)
900 mark_call_clobbered (v_ann->type_mem_tag);
901
902 if (pi->pt_vars)
903 EXECUTE_IF_SET_IN_BITMAP (pi->pt_vars, 0, j, bi)
904 {
905 mark_call_clobbered (referenced_var (j));
906 }
907 }
908
909 /* Set up aliasing information for PTR's name memory tag (if it has
910 one). Note that only pointers that have been dereferenced will
911 have a name memory tag. */
912 if (pi->name_mem_tag && pi->pt_vars)
913 EXECUTE_IF_SET_IN_BITMAP (pi->pt_vars, 0, j, bi)
914 {
915 add_may_alias (pi->name_mem_tag, referenced_var (j));
916 add_may_alias (v_ann->type_mem_tag, referenced_var (j));
917 }
918
919 /* If the name tag is call clobbered, so is the type tag
920 associated with the base VAR_DECL. */
921 if (pi->name_mem_tag
922 && v_ann->type_mem_tag
923 && is_call_clobbered (pi->name_mem_tag))
924 mark_call_clobbered (v_ann->type_mem_tag);
925 }
926 }
927
928
929 /* Compute type-based alias sets. Traverse all the pointers and
930 addressable variables found in setup_pointers_and_addressables.
931
932 For every pointer P in AI->POINTERS and addressable variable V in
933 AI->ADDRESSABLE_VARS, add V to the may-alias sets of P's type
934 memory tag (TMT) if their alias sets conflict. V is then marked as
935 an alias tag so that the operand scanner knows that statements
936 containing V have aliased operands. */
937
938 static void
939 compute_flow_insensitive_aliasing (struct alias_info *ai)
940 {
941 size_t i;
942
943 /* Initialize counter for the total number of virtual operands that
944 aliasing will introduce. When AI->TOTAL_ALIAS_VOPS goes beyond the
945 threshold set by --params max-alias-vops, we enable alias
946 grouping. */
947 ai->total_alias_vops = 0;
948
949 /* For every pointer P, determine which addressable variables may alias
950 with P's type memory tag. */
951 for (i = 0; i < ai->num_pointers; i++)
952 {
953 size_t j;
954 struct alias_map_d *p_map = ai->pointers[i];
955 tree tag = var_ann (p_map->var)->type_mem_tag;
956 var_ann_t tag_ann = var_ann (tag);
957
958 p_map->total_alias_vops = 0;
959 p_map->may_aliases = sbitmap_alloc (num_referenced_vars);
960 sbitmap_zero (p_map->may_aliases);
961
962 for (j = 0; j < ai->num_addressable_vars; j++)
963 {
964 struct alias_map_d *v_map;
965 var_ann_t v_ann;
966 tree var;
967 bool tag_stored_p, var_stored_p;
968
969 v_map = ai->addressable_vars[j];
970 var = v_map->var;
971 v_ann = var_ann (var);
972
973 /* Skip memory tags and variables that have never been
974 written to. We also need to check if the variables are
975 call-clobbered because they may be overwritten by
976 function calls.
977
978 Note this is effectively random accessing elements in
979 the sparse bitset, which can be highly inefficient.
980 So we first check the call_clobbered status of the
981 tag and variable before querying the bitmap. */
982 tag_stored_p = is_call_clobbered (tag)
983 || bitmap_bit_p (ai->written_vars, tag_ann->uid);
984 var_stored_p = is_call_clobbered (var)
985 || bitmap_bit_p (ai->written_vars, v_ann->uid);
986 if (!tag_stored_p && !var_stored_p)
987 continue;
988
989 if (may_alias_p (p_map->var, p_map->set, var, v_map->set))
990 {
991 subvar_t svars;
992 size_t num_tag_refs, num_var_refs;
993
994 num_tag_refs = VARRAY_UINT (ai->num_references, tag_ann->uid);
995 num_var_refs = VARRAY_UINT (ai->num_references, v_ann->uid);
996
997 /* Add VAR to TAG's may-aliases set. */
998
999 /* If this is an aggregate, we may have subvariables for it
1000 that need to be pointed to. */
1001 if (var_can_have_subvars (var)
1002 && (svars = get_subvars_for_var (var)))
1003 {
1004 subvar_t sv;
1005
1006 for (sv = svars; sv; sv = sv->next)
1007 {
1008 add_may_alias (tag, sv->var);
1009 /* Update the bitmap used to represent TAG's alias set
1010 in case we need to group aliases. */
1011 SET_BIT (p_map->may_aliases, var_ann (sv->var)->uid);
1012 }
1013 }
1014 else
1015 {
1016 add_may_alias (tag, var);
1017 /* Update the bitmap used to represent TAG's alias set
1018 in case we need to group aliases. */
1019 SET_BIT (p_map->may_aliases, var_ann (var)->uid);
1020 }
1021
1022 /* Update the total number of virtual operands due to
1023 aliasing. Since we are adding one more alias to TAG's
1024 may-aliases set, the total number of virtual operands due
1025 to aliasing will be increased by the number of references
1026 made to VAR and TAG (every reference to TAG will also
1027 count as a reference to VAR). */
1028 ai->total_alias_vops += (num_var_refs + num_tag_refs);
1029 p_map->total_alias_vops += (num_var_refs + num_tag_refs);
1030
1031
1032 }
1033 }
1034 }
1035
1036 /* Since this analysis is based exclusively on symbols, it fails to
1037 handle cases where two pointers P and Q have different memory
1038 tags with conflicting alias set numbers but no aliased symbols in
1039 common.
1040
1041 For example, suppose that we have two memory tags TMT.1 and TMT.2
1042 such that
1043
1044 may-aliases (TMT.1) = { a }
1045 may-aliases (TMT.2) = { b }
1046
1047 and the alias set number of TMT.1 conflicts with that of TMT.2.
1048 Since they don't have symbols in common, loads and stores from
1049 TMT.1 and TMT.2 will seem independent of each other, which will
1050 lead to the optimizers making invalid transformations (see
1051 testsuite/gcc.c-torture/execute/pr15262-[12].c).
1052
1053 To avoid this problem, we do a final traversal of AI->POINTERS
1054 looking for pairs of pointers that have no aliased symbols in
1055 common and yet have conflicting alias set numbers. */
1056 for (i = 0; i < ai->num_pointers; i++)
1057 {
1058 size_t j;
1059 struct alias_map_d *p_map1 = ai->pointers[i];
1060 tree tag1 = var_ann (p_map1->var)->type_mem_tag;
1061 sbitmap may_aliases1 = p_map1->may_aliases;
1062
1063 for (j = i + 1; j < ai->num_pointers; j++)
1064 {
1065 struct alias_map_d *p_map2 = ai->pointers[j];
1066 tree tag2 = var_ann (p_map2->var)->type_mem_tag;
1067 sbitmap may_aliases2 = p_map2->may_aliases;
1068
1069 /* If the pointers may not point to each other, do nothing. */
1070 if (!may_alias_p (p_map1->var, p_map1->set, tag2, p_map2->set))
1071 continue;
1072
1073 /* The two pointers may alias each other. If they already have
1074 symbols in common, do nothing. */
1075 if (sbitmap_any_common_bits (may_aliases1, may_aliases2))
1076 continue;
1077
1078 if (sbitmap_first_set_bit (may_aliases2) >= 0)
1079 {
1080 size_t k;
1081
1082 /* Add all the aliases for TAG2 into TAG1's alias set.
1083 FIXME, update grouping heuristic counters. */
1084 EXECUTE_IF_SET_IN_SBITMAP (may_aliases2, 0, k,
1085 add_may_alias (tag1, referenced_var (k)));
1086 sbitmap_a_or_b (may_aliases1, may_aliases1, may_aliases2);
1087 }
1088 else
1089 {
1090 /* Since TAG2 does not have any aliases of its own, add
1091 TAG2 itself to the alias set of TAG1. */
1092 add_may_alias (tag1, tag2);
1093 SET_BIT (may_aliases1, var_ann (tag2)->uid);
1094 }
1095 }
1096 }
1097
1098 if (dump_file)
1099 fprintf (dump_file, "%s: Total number of aliased vops: %ld\n",
1100 get_name (current_function_decl),
1101 ai->total_alias_vops);
1102
1103 /* Determine if we need to enable alias grouping. */
1104 if (ai->total_alias_vops >= MAX_ALIASED_VOPS)
1105 group_aliases (ai);
1106 }
1107
1108
1109 /* Comparison function for qsort used in group_aliases. */
1110
1111 static int
1112 total_alias_vops_cmp (const void *p, const void *q)
1113 {
1114 const struct alias_map_d **p1 = (const struct alias_map_d **)p;
1115 const struct alias_map_d **p2 = (const struct alias_map_d **)q;
1116 long n1 = (*p1)->total_alias_vops;
1117 long n2 = (*p2)->total_alias_vops;
1118
1119 /* We want to sort in descending order. */
1120 return (n1 > n2 ? -1 : (n1 == n2) ? 0 : 1);
1121 }
1122
1123 /* Group all the aliases for TAG to make TAG represent all the
1124 variables in its alias set. Update the total number
1125 of virtual operands due to aliasing (AI->TOTAL_ALIAS_VOPS). This
1126 function will make TAG be the unique alias tag for all the
1127 variables in its may-aliases. So, given:
1128
1129 may-aliases(TAG) = { V1, V2, V3 }
1130
1131 This function will group the variables into:
1132
1133 may-aliases(V1) = { TAG }
1134 may-aliases(V2) = { TAG }
1135 may-aliases(V2) = { TAG } */
1136
1137 static void
1138 group_aliases_into (tree tag, sbitmap tag_aliases, struct alias_info *ai)
1139 {
1140 size_t i;
1141 var_ann_t tag_ann = var_ann (tag);
1142 size_t num_tag_refs = VARRAY_UINT (ai->num_references, tag_ann->uid);
1143
1144 EXECUTE_IF_SET_IN_SBITMAP (tag_aliases, 0, i,
1145 {
1146 tree var = referenced_var (i);
1147 var_ann_t ann = var_ann (var);
1148
1149 /* Make TAG the unique alias of VAR. */
1150 ann->is_alias_tag = 0;
1151 ann->may_aliases = NULL;
1152
1153 /* Note that VAR and TAG may be the same if the function has no
1154 addressable variables (see the discussion at the end of
1155 setup_pointers_and_addressables). */
1156 if (var != tag)
1157 add_may_alias (var, tag);
1158
1159 /* Reduce total number of virtual operands contributed
1160 by TAG on behalf of VAR. Notice that the references to VAR
1161 itself won't be removed. We will merely replace them with
1162 references to TAG. */
1163 ai->total_alias_vops -= num_tag_refs;
1164 });
1165
1166 /* We have reduced the number of virtual operands that TAG makes on
1167 behalf of all the variables formerly aliased with it. However,
1168 we have also "removed" all the virtual operands for TAG itself,
1169 so we add them back. */
1170 ai->total_alias_vops += num_tag_refs;
1171
1172 /* TAG no longer has any aliases. */
1173 tag_ann->may_aliases = NULL;
1174 }
1175
1176
1177 /* Group may-aliases sets to reduce the number of virtual operands due
1178 to aliasing.
1179
1180 1- Sort the list of pointers in decreasing number of contributed
1181 virtual operands.
1182
1183 2- Take the first entry in AI->POINTERS and revert the role of
1184 the memory tag and its aliases. Usually, whenever an aliased
1185 variable Vi is found to alias with a memory tag T, we add Vi
1186 to the may-aliases set for T. Meaning that after alias
1187 analysis, we will have:
1188
1189 may-aliases(T) = { V1, V2, V3, ..., Vn }
1190
1191 This means that every statement that references T, will get 'n'
1192 virtual operands for each of the Vi tags. But, when alias
1193 grouping is enabled, we make T an alias tag and add it to the
1194 alias set of all the Vi variables:
1195
1196 may-aliases(V1) = { T }
1197 may-aliases(V2) = { T }
1198 ...
1199 may-aliases(Vn) = { T }
1200
1201 This has two effects: (a) statements referencing T will only get
1202 a single virtual operand, and, (b) all the variables Vi will now
1203 appear to alias each other. So, we lose alias precision to
1204 improve compile time. But, in theory, a program with such a high
1205 level of aliasing should not be very optimizable in the first
1206 place.
1207
1208 3- Since variables may be in the alias set of more than one
1209 memory tag, the grouping done in step (2) needs to be extended
1210 to all the memory tags that have a non-empty intersection with
1211 the may-aliases set of tag T. For instance, if we originally
1212 had these may-aliases sets:
1213
1214 may-aliases(T) = { V1, V2, V3 }
1215 may-aliases(R) = { V2, V4 }
1216
1217 In step (2) we would have reverted the aliases for T as:
1218
1219 may-aliases(V1) = { T }
1220 may-aliases(V2) = { T }
1221 may-aliases(V3) = { T }
1222
1223 But note that now V2 is no longer aliased with R. We could
1224 add R to may-aliases(V2), but we are in the process of
1225 grouping aliases to reduce virtual operands so what we do is
1226 add V4 to the grouping to obtain:
1227
1228 may-aliases(V1) = { T }
1229 may-aliases(V2) = { T }
1230 may-aliases(V3) = { T }
1231 may-aliases(V4) = { T }
1232
1233 4- If the total number of virtual operands due to aliasing is
1234 still above the threshold set by max-alias-vops, go back to (2). */
1235
1236 static void
1237 group_aliases (struct alias_info *ai)
1238 {
1239 size_t i;
1240
1241 /* Sort the POINTERS array in descending order of contributed
1242 virtual operands. */
1243 qsort (ai->pointers, ai->num_pointers, sizeof (struct alias_map_d *),
1244 total_alias_vops_cmp);
1245
1246 /* For every pointer in AI->POINTERS, reverse the roles of its tag
1247 and the tag's may-aliases set. */
1248 for (i = 0; i < ai->num_pointers; i++)
1249 {
1250 size_t j;
1251 tree tag1 = var_ann (ai->pointers[i]->var)->type_mem_tag;
1252 sbitmap tag1_aliases = ai->pointers[i]->may_aliases;
1253
1254 /* Skip tags that have been grouped already. */
1255 if (ai->pointers[i]->grouped_p)
1256 continue;
1257
1258 /* See if TAG1 had any aliases in common with other type tags.
1259 If we find a TAG2 with common aliases with TAG1, add TAG2's
1260 aliases into TAG1. */
1261 for (j = i + 1; j < ai->num_pointers; j++)
1262 {
1263 sbitmap tag2_aliases = ai->pointers[j]->may_aliases;
1264
1265 if (sbitmap_any_common_bits (tag1_aliases, tag2_aliases))
1266 {
1267 tree tag2 = var_ann (ai->pointers[j]->var)->type_mem_tag;
1268
1269 sbitmap_a_or_b (tag1_aliases, tag1_aliases, tag2_aliases);
1270
1271 /* TAG2 does not need its aliases anymore. */
1272 sbitmap_zero (tag2_aliases);
1273 var_ann (tag2)->may_aliases = NULL;
1274
1275 /* TAG1 is the unique alias of TAG2. */
1276 add_may_alias (tag2, tag1);
1277
1278 ai->pointers[j]->grouped_p = true;
1279 }
1280 }
1281
1282 /* Now group all the aliases we collected into TAG1. */
1283 group_aliases_into (tag1, tag1_aliases, ai);
1284
1285 /* If we've reduced total number of virtual operands below the
1286 threshold, stop. */
1287 if (ai->total_alias_vops < MAX_ALIASED_VOPS)
1288 break;
1289 }
1290
1291 /* Finally, all the variables that have been grouped cannot be in
1292 the may-alias set of name memory tags. Suppose that we have
1293 grouped the aliases in this code so that may-aliases(a) = TMT.20
1294
1295 p_5 = &a;
1296 ...
1297 # a_9 = V_MAY_DEF <a_8>
1298 p_5->field = 0
1299 ... Several modifications to TMT.20 ...
1300 # VUSE <a_9>
1301 x_30 = p_5->field
1302
1303 Since p_5 points to 'a', the optimizers will try to propagate 0
1304 into p_5->field, but that is wrong because there have been
1305 modifications to 'TMT.20' in between. To prevent this we have to
1306 replace 'a' with 'TMT.20' in the name tag of p_5. */
1307 for (i = 0; i < VARRAY_ACTIVE_SIZE (ai->processed_ptrs); i++)
1308 {
1309 size_t j;
1310 tree ptr = VARRAY_TREE (ai->processed_ptrs, i);
1311 tree name_tag = SSA_NAME_PTR_INFO (ptr)->name_mem_tag;
1312 varray_type aliases;
1313
1314 if (name_tag == NULL_TREE)
1315 continue;
1316
1317 aliases = var_ann (name_tag)->may_aliases;
1318 for (j = 0; aliases && j < VARRAY_ACTIVE_SIZE (aliases); j++)
1319 {
1320 tree alias = VARRAY_TREE (aliases, j);
1321 var_ann_t ann = var_ann (alias);
1322
1323 if ((ann->mem_tag_kind == NOT_A_TAG
1324 || ann->mem_tag_kind == STRUCT_FIELD)
1325 && ann->may_aliases)
1326 {
1327 tree new_alias;
1328
1329 gcc_assert (VARRAY_ACTIVE_SIZE (ann->may_aliases) == 1);
1330
1331 new_alias = VARRAY_TREE (ann->may_aliases, 0);
1332 replace_may_alias (name_tag, j, new_alias);
1333 }
1334 }
1335 }
1336
1337 if (dump_file)
1338 fprintf (dump_file,
1339 "%s: Total number of aliased vops after grouping: %ld%s\n",
1340 get_name (current_function_decl),
1341 ai->total_alias_vops,
1342 (ai->total_alias_vops < 0) ? " (negative values are OK)" : "");
1343 }
1344
1345
1346 /* Create a new alias set entry for VAR in AI->ADDRESSABLE_VARS. */
1347
1348 static void
1349 create_alias_map_for (tree var, struct alias_info *ai)
1350 {
1351 struct alias_map_d *alias_map;
1352 alias_map = xcalloc (1, sizeof (*alias_map));
1353 alias_map->var = var;
1354 alias_map->set = get_alias_set (var);
1355 ai->addressable_vars[ai->num_addressable_vars++] = alias_map;
1356 }
1357
1358
1359 /* Create memory tags for all the dereferenced pointers and build the
1360 ADDRESSABLE_VARS and POINTERS arrays used for building the may-alias
1361 sets. Based on the address escape and points-to information collected
1362 earlier, this pass will also clear the TREE_ADDRESSABLE flag from those
1363 variables whose address is not needed anymore. */
1364
1365 static void
1366 setup_pointers_and_addressables (struct alias_info *ai)
1367 {
1368 size_t i, n_vars, num_addressable_vars, num_pointers;
1369
1370 /* Size up the arrays ADDRESSABLE_VARS and POINTERS. */
1371 num_addressable_vars = num_pointers = 0;
1372 for (i = 0; i < num_referenced_vars; i++)
1373 {
1374 tree var = referenced_var (i);
1375
1376 if (may_be_aliased (var))
1377 num_addressable_vars++;
1378
1379 if (POINTER_TYPE_P (TREE_TYPE (var)))
1380 {
1381 /* Since we don't keep track of volatile variables, assume that
1382 these pointers are used in indirect store operations. */
1383 if (TREE_THIS_VOLATILE (var))
1384 bitmap_set_bit (ai->dereferenced_ptrs_store, var_ann (var)->uid);
1385
1386 num_pointers++;
1387 }
1388 }
1389
1390 /* Create ADDRESSABLE_VARS and POINTERS. Note that these arrays are
1391 always going to be slightly bigger than we actually need them
1392 because some TREE_ADDRESSABLE variables will be marked
1393 non-addressable below and only pointers with unique type tags are
1394 going to be added to POINTERS. */
1395 ai->addressable_vars = xcalloc (num_addressable_vars,
1396 sizeof (struct alias_map_d *));
1397 ai->pointers = xcalloc (num_pointers, sizeof (struct alias_map_d *));
1398 ai->num_addressable_vars = 0;
1399 ai->num_pointers = 0;
1400
1401 /* Since we will be creating type memory tags within this loop, cache the
1402 value of NUM_REFERENCED_VARS to avoid processing the additional tags
1403 unnecessarily. */
1404 n_vars = num_referenced_vars;
1405
1406 for (i = 0; i < n_vars; i++)
1407 {
1408 tree var = referenced_var (i);
1409 var_ann_t v_ann = var_ann (var);
1410 subvar_t svars;
1411
1412 /* Name memory tags already have flow-sensitive aliasing
1413 information, so they need not be processed by
1414 compute_flow_insensitive_aliasing. Similarly, type memory
1415 tags are already accounted for when we process their
1416 associated pointer.
1417
1418 Structure fields, on the other hand, have to have some of this
1419 information processed for them, but it's pointless to mark them
1420 non-addressable (since they are fake variables anyway). */
1421 if (v_ann->mem_tag_kind != NOT_A_TAG
1422 && v_ann->mem_tag_kind != STRUCT_FIELD)
1423 continue;
1424
1425 /* Remove the ADDRESSABLE flag from every addressable variable whose
1426 address is not needed anymore. This is caused by the propagation
1427 of ADDR_EXPR constants into INDIRECT_REF expressions and the
1428 removal of dead pointer assignments done by the early scalar
1429 cleanup passes. */
1430 if (TREE_ADDRESSABLE (var) && v_ann->mem_tag_kind != STRUCT_FIELD)
1431 {
1432 if (!bitmap_bit_p (ai->addresses_needed, v_ann->uid)
1433 && TREE_CODE (var) != RESULT_DECL
1434 && !is_global_var (var))
1435 {
1436 bool okay_to_mark = true;
1437
1438 /* Since VAR is now a regular GIMPLE register, we will need
1439 to rename VAR into SSA afterwards. */
1440 mark_sym_for_renaming (var);
1441
1442 if (var_can_have_subvars (var)
1443 && (svars = get_subvars_for_var (var)))
1444 {
1445 subvar_t sv;
1446
1447 for (sv = svars; sv; sv = sv->next)
1448 {
1449 var_ann_t svann = var_ann (sv->var);
1450 if (bitmap_bit_p (ai->addresses_needed, svann->uid))
1451 okay_to_mark = false;
1452 mark_sym_for_renaming (sv->var);
1453 }
1454 }
1455
1456 /* The address of VAR is not needed, remove the
1457 addressable bit, so that it can be optimized as a
1458 regular variable. */
1459 if (okay_to_mark)
1460 mark_non_addressable (var);
1461 }
1462 else
1463 {
1464 /* Add the variable to the set of addressables. Mostly
1465 used when scanning operands for ASM_EXPRs that
1466 clobber memory. In those cases, we need to clobber
1467 all call-clobbered variables and all addressables. */
1468 bitmap_set_bit (addressable_vars, v_ann->uid);
1469 if (var_can_have_subvars (var)
1470 && (svars = get_subvars_for_var (var)))
1471 {
1472 subvar_t sv;
1473 for (sv = svars; sv; sv = sv->next)
1474 bitmap_set_bit (addressable_vars, var_ann (sv->var)->uid);
1475 }
1476
1477 }
1478 }
1479
1480 /* Global variables and addressable locals may be aliased. Create an
1481 entry in ADDRESSABLE_VARS for VAR. */
1482 if (may_be_aliased (var))
1483 {
1484 create_alias_map_for (var, ai);
1485 mark_sym_for_renaming (var);
1486 }
1487
1488 /* Add pointer variables that have been dereferenced to the POINTERS
1489 array and create a type memory tag for them. */
1490 if (POINTER_TYPE_P (TREE_TYPE (var)))
1491 {
1492 if ((bitmap_bit_p (ai->dereferenced_ptrs_store, v_ann->uid)
1493 || bitmap_bit_p (ai->dereferenced_ptrs_load, v_ann->uid)))
1494 {
1495 tree tag;
1496 var_ann_t t_ann;
1497
1498 /* If pointer VAR still doesn't have a memory tag
1499 associated with it, create it now or re-use an
1500 existing one. */
1501 tag = get_tmt_for (var, ai);
1502 t_ann = var_ann (tag);
1503
1504 /* The type tag will need to be renamed into SSA
1505 afterwards. Note that we cannot do this inside
1506 get_tmt_for because aliasing may run multiple times
1507 and we only create type tags the first time. */
1508 mark_sym_for_renaming (tag);
1509
1510 /* Similarly, if pointer VAR used to have another type
1511 tag, we will need to process it in the renamer to
1512 remove the stale virtual operands. */
1513 if (v_ann->type_mem_tag)
1514 mark_sym_for_renaming (v_ann->type_mem_tag);
1515
1516 /* Associate the tag with pointer VAR. */
1517 v_ann->type_mem_tag = tag;
1518
1519 /* If pointer VAR has been used in a store operation,
1520 then its memory tag must be marked as written-to. */
1521 if (bitmap_bit_p (ai->dereferenced_ptrs_store, v_ann->uid))
1522 bitmap_set_bit (ai->written_vars, t_ann->uid);
1523
1524 /* If pointer VAR is a global variable or a PARM_DECL,
1525 then its memory tag should be considered a global
1526 variable. */
1527 if (TREE_CODE (var) == PARM_DECL || is_global_var (var))
1528 mark_call_clobbered (tag);
1529
1530 /* All the dereferences of pointer VAR count as
1531 references of TAG. Since TAG can be associated with
1532 several pointers, add the dereferences of VAR to the
1533 TAG. We may need to grow AI->NUM_REFERENCES because
1534 we have been adding name and type tags. */
1535 if (t_ann->uid >= VARRAY_SIZE (ai->num_references))
1536 VARRAY_GROW (ai->num_references, t_ann->uid + 10);
1537
1538 VARRAY_UINT (ai->num_references, t_ann->uid)
1539 += VARRAY_UINT (ai->num_references, v_ann->uid);
1540 }
1541 else
1542 {
1543 /* The pointer has not been dereferenced. If it had a
1544 type memory tag, remove it and mark the old tag for
1545 renaming to remove it out of the IL. */
1546 var_ann_t ann = var_ann (var);
1547 tree tag = ann->type_mem_tag;
1548 if (tag)
1549 {
1550 mark_sym_for_renaming (tag);
1551 ann->type_mem_tag = NULL_TREE;
1552 }
1553 }
1554 }
1555 }
1556 }
1557
1558
1559 /* Determine whether to use .GLOBAL_VAR to model call clobbering semantics. At
1560 every call site, we need to emit V_MAY_DEF expressions to represent the
1561 clobbering effects of the call for variables whose address escapes the
1562 current function.
1563
1564 One approach is to group all call-clobbered variables into a single
1565 representative that is used as an alias of every call-clobbered variable
1566 (.GLOBAL_VAR). This works well, but it ties the optimizer hands because
1567 references to any call clobbered variable is a reference to .GLOBAL_VAR.
1568
1569 The second approach is to emit a clobbering V_MAY_DEF for every
1570 call-clobbered variable at call sites. This is the preferred way in terms
1571 of optimization opportunities but it may create too many V_MAY_DEF operands
1572 if there are many call clobbered variables and function calls in the
1573 function.
1574
1575 To decide whether or not to use .GLOBAL_VAR we multiply the number of
1576 function calls found by the number of call-clobbered variables. If that
1577 product is beyond a certain threshold, as determined by the parameterized
1578 values shown below, we use .GLOBAL_VAR.
1579
1580 FIXME. This heuristic should be improved. One idea is to use several
1581 .GLOBAL_VARs of different types instead of a single one. The thresholds
1582 have been derived from a typical bootstrap cycle, including all target
1583 libraries. Compile times were found increase by ~1% compared to using
1584 .GLOBAL_VAR. */
1585
1586 static void
1587 maybe_create_global_var (struct alias_info *ai)
1588 {
1589 unsigned i, n_clobbered;
1590 bitmap_iterator bi;
1591
1592 /* No need to create it, if we have one already. */
1593 if (global_var == NULL_TREE)
1594 {
1595 /* Count all the call-clobbered variables. */
1596 n_clobbered = 0;
1597 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
1598 {
1599 n_clobbered++;
1600 }
1601
1602 /* If the number of virtual operands that would be needed to
1603 model all the call-clobbered variables is larger than
1604 GLOBAL_VAR_THRESHOLD, create .GLOBAL_VAR.
1605
1606 Also create .GLOBAL_VAR if there are no call-clobbered
1607 variables and the program contains a mixture of pure/const
1608 and regular function calls. This is to avoid the problem
1609 described in PR 20115:
1610
1611 int X;
1612 int func_pure (void) { return X; }
1613 int func_non_pure (int a) { X += a; }
1614 int foo ()
1615 {
1616 int a = func_pure ();
1617 func_non_pure (a);
1618 a = func_pure ();
1619 return a;
1620 }
1621
1622 Since foo() has no call-clobbered variables, there is
1623 no relationship between the calls to func_pure and
1624 func_non_pure. Since func_pure has no side-effects, value
1625 numbering optimizations elide the second call to func_pure.
1626 So, if we have some pure/const and some regular calls in the
1627 program we create .GLOBAL_VAR to avoid missing these
1628 relations. */
1629 if (ai->num_calls_found * n_clobbered >= (size_t) GLOBAL_VAR_THRESHOLD
1630 || (n_clobbered == 0
1631 && ai->num_calls_found > 0
1632 && ai->num_pure_const_calls_found > 0
1633 && ai->num_calls_found > ai->num_pure_const_calls_found))
1634 create_global_var ();
1635 }
1636
1637 /* Mark all call-clobbered symbols for renaming. Since the initial
1638 rewrite into SSA ignored all call sites, we may need to rename
1639 .GLOBAL_VAR and the call-clobbered variables. */
1640 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
1641 {
1642 tree var = referenced_var (i);
1643
1644 /* If the function has calls to clobbering functions and
1645 .GLOBAL_VAR has been created, make it an alias for all
1646 call-clobbered variables. */
1647 if (global_var && var != global_var)
1648 {
1649 subvar_t svars;
1650 add_may_alias (var, global_var);
1651 if (var_can_have_subvars (var)
1652 && (svars = get_subvars_for_var (var)))
1653 {
1654 subvar_t sv;
1655 for (sv = svars; sv; sv = sv->next)
1656 mark_sym_for_renaming (sv->var);
1657 }
1658 }
1659
1660 mark_sym_for_renaming (var);
1661 }
1662 }
1663
1664
1665 /* Return TRUE if pointer PTR may point to variable VAR.
1666
1667 MEM_ALIAS_SET is the alias set for the memory location pointed-to by PTR
1668 This is needed because when checking for type conflicts we are
1669 interested in the alias set of the memory location pointed-to by
1670 PTR. The alias set of PTR itself is irrelevant.
1671
1672 VAR_ALIAS_SET is the alias set for VAR. */
1673
1674 static bool
1675 may_alias_p (tree ptr, HOST_WIDE_INT mem_alias_set,
1676 tree var, HOST_WIDE_INT var_alias_set)
1677 {
1678 tree mem;
1679 var_ann_t m_ann;
1680
1681 alias_stats.alias_queries++;
1682 alias_stats.simple_queries++;
1683
1684 /* By convention, a variable cannot alias itself. */
1685 mem = var_ann (ptr)->type_mem_tag;
1686 if (mem == var)
1687 {
1688 alias_stats.alias_noalias++;
1689 alias_stats.simple_resolved++;
1690 return false;
1691 }
1692
1693 /* If -fargument-noalias-global is >1, pointer arguments may
1694 not point to global variables. */
1695 if (flag_argument_noalias > 1 && is_global_var (var)
1696 && TREE_CODE (ptr) == PARM_DECL)
1697 {
1698 alias_stats.alias_noalias++;
1699 alias_stats.simple_resolved++;
1700 return false;
1701 }
1702
1703 /* If either MEM or VAR is a read-only global and the other one
1704 isn't, then PTR cannot point to VAR. */
1705 if ((unmodifiable_var_p (mem) && !unmodifiable_var_p (var))
1706 || (unmodifiable_var_p (var) && !unmodifiable_var_p (mem)))
1707 {
1708 alias_stats.alias_noalias++;
1709 alias_stats.simple_resolved++;
1710 return false;
1711 }
1712
1713 m_ann = var_ann (mem);
1714
1715 gcc_assert (m_ann->mem_tag_kind == TYPE_TAG);
1716
1717 alias_stats.tbaa_queries++;
1718
1719 /* If VAR is a pointer with the same alias set as PTR, then dereferencing
1720 PTR can't possibly affect VAR. Note, that we are specifically testing
1721 for PTR's alias set here, not its pointed-to type. We also can't
1722 do this check with relaxed aliasing enabled. */
1723 if (POINTER_TYPE_P (TREE_TYPE (var))
1724 && var_alias_set != 0
1725 && mem_alias_set != 0)
1726 {
1727 HOST_WIDE_INT ptr_alias_set = get_alias_set (ptr);
1728 if (ptr_alias_set == var_alias_set)
1729 {
1730 alias_stats.alias_noalias++;
1731 alias_stats.tbaa_resolved++;
1732 return false;
1733 }
1734 }
1735
1736 /* If the alias sets don't conflict then MEM cannot alias VAR. */
1737 if (!alias_sets_conflict_p (mem_alias_set, var_alias_set))
1738 {
1739 alias_stats.alias_noalias++;
1740 alias_stats.tbaa_resolved++;
1741 return false;
1742 }
1743 alias_stats.alias_mayalias++;
1744 return true;
1745 }
1746
1747
1748 /* Add ALIAS to the set of variables that may alias VAR. */
1749
1750 static void
1751 add_may_alias (tree var, tree alias)
1752 {
1753 size_t i;
1754 var_ann_t v_ann = get_var_ann (var);
1755 var_ann_t a_ann = get_var_ann (alias);
1756
1757 gcc_assert (var != alias);
1758
1759 if (v_ann->may_aliases == NULL)
1760 VARRAY_TREE_INIT (v_ann->may_aliases, 2, "aliases");
1761
1762 /* Avoid adding duplicates. */
1763 for (i = 0; i < VARRAY_ACTIVE_SIZE (v_ann->may_aliases); i++)
1764 if (alias == VARRAY_TREE (v_ann->may_aliases, i))
1765 return;
1766
1767 /* If VAR is a call-clobbered variable, so is its new ALIAS.
1768 FIXME, call-clobbering should only depend on whether an address
1769 escapes. It should be independent of aliasing. */
1770 if (is_call_clobbered (var))
1771 mark_call_clobbered (alias);
1772
1773 /* Likewise. If ALIAS is call-clobbered, so is VAR. */
1774 else if (is_call_clobbered (alias))
1775 mark_call_clobbered (var);
1776
1777 VARRAY_PUSH_TREE (v_ann->may_aliases, alias);
1778 a_ann->is_alias_tag = 1;
1779 }
1780
1781
1782 /* Replace alias I in the alias sets of VAR with NEW_ALIAS. */
1783
1784 static void
1785 replace_may_alias (tree var, size_t i, tree new_alias)
1786 {
1787 var_ann_t v_ann = var_ann (var);
1788 VARRAY_TREE (v_ann->may_aliases, i) = new_alias;
1789
1790 /* If VAR is a call-clobbered variable, so is NEW_ALIAS.
1791 FIXME, call-clobbering should only depend on whether an address
1792 escapes. It should be independent of aliasing. */
1793 if (is_call_clobbered (var))
1794 mark_call_clobbered (new_alias);
1795
1796 /* Likewise. If NEW_ALIAS is call-clobbered, so is VAR. */
1797 else if (is_call_clobbered (new_alias))
1798 mark_call_clobbered (var);
1799 }
1800
1801
1802 /* Mark pointer PTR as pointing to an arbitrary memory location. */
1803
1804 static void
1805 set_pt_anything (tree ptr)
1806 {
1807 struct ptr_info_def *pi = get_ptr_info (ptr);
1808
1809 pi->pt_anything = 1;
1810 pi->pt_malloc = 0;
1811
1812 /* The pointer used to have a name tag, but we now found it pointing
1813 to an arbitrary location. The name tag needs to be renamed and
1814 disassociated from PTR. */
1815 if (pi->name_mem_tag)
1816 {
1817 mark_sym_for_renaming (pi->name_mem_tag);
1818 pi->name_mem_tag = NULL_TREE;
1819 }
1820 }
1821
1822
1823 /* Mark pointer PTR as pointing to a malloc'd memory area. */
1824
1825 static void
1826 set_pt_malloc (tree ptr)
1827 {
1828 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
1829
1830 /* If the pointer has already been found to point to arbitrary
1831 memory locations, it is unsafe to mark it as pointing to malloc. */
1832 if (pi->pt_anything)
1833 return;
1834
1835 pi->pt_malloc = 1;
1836 }
1837
1838
1839 /* Given two different pointers DEST and ORIG. Merge the points-to
1840 information in ORIG into DEST. AI contains all the alias
1841 information collected up to this point. */
1842
1843 static void
1844 merge_pointed_to_info (struct alias_info *ai, tree dest, tree orig)
1845 {
1846 struct ptr_info_def *dest_pi, *orig_pi;
1847
1848 gcc_assert (dest != orig);
1849
1850 /* Make sure we have points-to information for ORIG. */
1851 collect_points_to_info_for (ai, orig);
1852
1853 dest_pi = get_ptr_info (dest);
1854 orig_pi = SSA_NAME_PTR_INFO (orig);
1855
1856 if (orig_pi)
1857 {
1858 gcc_assert (orig_pi != dest_pi);
1859
1860 /* Notice that we never merge PT_MALLOC. This attribute is only
1861 true if the pointer is the result of a malloc() call.
1862 Otherwise, we can end up in this situation:
1863
1864 P_i = malloc ();
1865 ...
1866 P_j = P_i + X;
1867
1868 P_j would be marked as PT_MALLOC, however we currently do not
1869 handle cases of more than one pointer pointing to the same
1870 malloc'd area.
1871
1872 FIXME: If the merging comes from an expression that preserves
1873 the PT_MALLOC attribute (copy assignment, address
1874 arithmetic), we ought to merge PT_MALLOC, but then both
1875 pointers would end up getting different name tags because
1876 create_name_tags is not smart enough to determine that the
1877 two come from the same malloc call. Copy propagation before
1878 aliasing should cure this. */
1879 dest_pi->pt_malloc = 0;
1880 if (orig_pi->pt_malloc || orig_pi->pt_anything)
1881 set_pt_anything (dest);
1882
1883 dest_pi->pt_null |= orig_pi->pt_null;
1884
1885 if (!dest_pi->pt_anything
1886 && orig_pi->pt_vars
1887 && !bitmap_empty_p (orig_pi->pt_vars))
1888 {
1889 if (dest_pi->pt_vars == NULL)
1890 {
1891 dest_pi->pt_vars = BITMAP_GGC_ALLOC ();
1892 bitmap_copy (dest_pi->pt_vars, orig_pi->pt_vars);
1893 }
1894 else
1895 bitmap_ior_into (dest_pi->pt_vars, orig_pi->pt_vars);
1896 }
1897 }
1898 else
1899 set_pt_anything (dest);
1900 }
1901
1902
1903 /* Add EXPR to the list of expressions pointed-to by PTR. */
1904
1905 static void
1906 add_pointed_to_expr (struct alias_info *ai, tree ptr, tree expr)
1907 {
1908 if (TREE_CODE (expr) == WITH_SIZE_EXPR)
1909 expr = TREE_OPERAND (expr, 0);
1910
1911 get_ptr_info (ptr);
1912
1913 if (TREE_CODE (expr) == CALL_EXPR
1914 && (call_expr_flags (expr) & (ECF_MALLOC | ECF_MAY_BE_ALLOCA)))
1915 {
1916 /* If EXPR is a malloc-like call, then the area pointed to PTR
1917 is guaranteed to not alias with anything else. */
1918 set_pt_malloc (ptr);
1919 }
1920 else if (TREE_CODE (expr) == ADDR_EXPR)
1921 {
1922 /* Found P_i = ADDR_EXPR */
1923 add_pointed_to_var (ai, ptr, expr);
1924 }
1925 else if (TREE_CODE (expr) == SSA_NAME && POINTER_TYPE_P (TREE_TYPE (expr)))
1926 {
1927 /* Found P_i = Q_j. */
1928 merge_pointed_to_info (ai, ptr, expr);
1929 }
1930 else if (TREE_CODE (expr) == PLUS_EXPR || TREE_CODE (expr) == MINUS_EXPR)
1931 {
1932 /* Found P_i = PLUS_EXPR or P_i = MINUS_EXPR */
1933 tree op0 = TREE_OPERAND (expr, 0);
1934 tree op1 = TREE_OPERAND (expr, 1);
1935
1936 /* Both operands may be of pointer type. FIXME: Shouldn't
1937 we just expect PTR + OFFSET always? */
1938 if (POINTER_TYPE_P (TREE_TYPE (op0))
1939 && TREE_CODE (op0) != INTEGER_CST)
1940 {
1941 if (TREE_CODE (op0) == SSA_NAME)
1942 merge_pointed_to_info (ai, ptr, op0);
1943 else if (TREE_CODE (op0) == ADDR_EXPR)
1944 add_pointed_to_var (ai, ptr, op0);
1945 else
1946 set_pt_anything (ptr);
1947 }
1948
1949 if (POINTER_TYPE_P (TREE_TYPE (op1))
1950 && TREE_CODE (op1) != INTEGER_CST)
1951 {
1952 if (TREE_CODE (op1) == SSA_NAME)
1953 merge_pointed_to_info (ai, ptr, op1);
1954 else if (TREE_CODE (op1) == ADDR_EXPR)
1955 add_pointed_to_var (ai, ptr, op1);
1956 else
1957 set_pt_anything (ptr);
1958 }
1959
1960 /* Neither operand is a pointer? VAR can be pointing anywhere.
1961 FIXME: Shouldn't we asserting here? If we get here, we found
1962 PTR = INT_CST + INT_CST, which should not be a valid pointer
1963 expression. */
1964 if (!(POINTER_TYPE_P (TREE_TYPE (op0))
1965 && TREE_CODE (op0) != INTEGER_CST)
1966 && !(POINTER_TYPE_P (TREE_TYPE (op1))
1967 && TREE_CODE (op1) != INTEGER_CST))
1968 set_pt_anything (ptr);
1969 }
1970 else if (integer_zerop (expr))
1971 {
1972 /* EXPR is the NULL pointer. Mark PTR as pointing to NULL. */
1973 SSA_NAME_PTR_INFO (ptr)->pt_null = 1;
1974 }
1975 else
1976 {
1977 /* If we can't recognize the expression, assume that PTR may
1978 point anywhere. */
1979 set_pt_anything (ptr);
1980 }
1981 }
1982
1983
1984 /* If VALUE is of the form &DECL, add DECL to the set of variables
1985 pointed-to by PTR. Otherwise, add VALUE as a pointed-to expression by
1986 PTR. AI points to the collected alias information. */
1987
1988 static void
1989 add_pointed_to_var (struct alias_info *ai, tree ptr, tree value)
1990 {
1991 struct ptr_info_def *pi = get_ptr_info (ptr);
1992 tree pt_var = NULL_TREE;
1993 HOST_WIDE_INT offset, size;
1994 tree addrop;
1995 size_t uid;
1996 tree ref;
1997 subvar_t svars;
1998
1999 gcc_assert (TREE_CODE (value) == ADDR_EXPR);
2000
2001 addrop = TREE_OPERAND (value, 0);
2002 if (REFERENCE_CLASS_P (addrop))
2003 pt_var = get_base_address (addrop);
2004 else
2005 pt_var = addrop;
2006
2007 /* If this is a component_ref, see if we can get a smaller number of
2008 variables to take the address of. */
2009 if (TREE_CODE (addrop) == COMPONENT_REF
2010 && (ref = okay_component_ref_for_subvars (addrop, &offset ,&size)))
2011 {
2012 subvar_t sv;
2013 svars = get_subvars_for_var (ref);
2014
2015 uid = var_ann (pt_var)->uid;
2016
2017 if (pi->pt_vars == NULL)
2018 pi->pt_vars = BITMAP_GGC_ALLOC ();
2019 /* If the variable is a global, mark the pointer as pointing to
2020 global memory (which will make its tag a global variable). */
2021 if (is_global_var (pt_var))
2022 pi->pt_global_mem = 1;
2023
2024 for (sv = svars; sv; sv = sv->next)
2025 {
2026 if (overlap_subvar (offset, size, sv, NULL))
2027 {
2028 bitmap_set_bit (pi->pt_vars, var_ann (sv->var)->uid);
2029 bitmap_set_bit (ai->addresses_needed, var_ann (sv->var)->uid);
2030 }
2031 }
2032 }
2033 else if (pt_var && SSA_VAR_P (pt_var))
2034 {
2035
2036 uid = var_ann (pt_var)->uid;
2037
2038 if (pi->pt_vars == NULL)
2039 pi->pt_vars = BITMAP_GGC_ALLOC ();
2040
2041 /* If this is an aggregate, we may have subvariables for it that need
2042 to be pointed to. */
2043 if (var_can_have_subvars (pt_var)
2044 && (svars = get_subvars_for_var (pt_var)))
2045 {
2046 subvar_t sv;
2047 for (sv = svars; sv; sv = sv->next)
2048 {
2049 uid = var_ann (sv->var)->uid;
2050 bitmap_set_bit (ai->addresses_needed, uid);
2051 bitmap_set_bit (pi->pt_vars, uid);
2052 }
2053 }
2054 else
2055 {
2056 bitmap_set_bit (ai->addresses_needed, uid);
2057 bitmap_set_bit (pi->pt_vars, uid);
2058 }
2059
2060 /* If the variable is a global, mark the pointer as pointing to
2061 global memory (which will make its tag a global variable). */
2062 if (is_global_var (pt_var))
2063 pi->pt_global_mem = 1;
2064 }
2065 }
2066
2067
2068 /* Callback for walk_use_def_chains to gather points-to information from the
2069 SSA web.
2070
2071 VAR is an SSA variable or a GIMPLE expression.
2072
2073 STMT is the statement that generates the SSA variable or, if STMT is a
2074 PHI_NODE, VAR is one of the PHI arguments.
2075
2076 DATA is a pointer to a structure of type ALIAS_INFO. */
2077
2078 static bool
2079 collect_points_to_info_r (tree var, tree stmt, void *data)
2080 {
2081 struct alias_info *ai = (struct alias_info *) data;
2082
2083 if (dump_file && (dump_flags & TDF_DETAILS))
2084 {
2085 fprintf (dump_file, "Visiting use-def links for ");
2086 print_generic_expr (dump_file, var, dump_flags);
2087 fprintf (dump_file, "\n");
2088 }
2089
2090 switch (TREE_CODE (stmt))
2091 {
2092 case RETURN_EXPR:
2093 gcc_assert (TREE_CODE (TREE_OPERAND (stmt, 0)) == MODIFY_EXPR);
2094 stmt = TREE_OPERAND (stmt, 0);
2095 /* FALLTHRU */
2096
2097 case MODIFY_EXPR:
2098 {
2099 tree rhs = TREE_OPERAND (stmt, 1);
2100 STRIP_NOPS (rhs);
2101 add_pointed_to_expr (ai, var, rhs);
2102 break;
2103 }
2104
2105 case ASM_EXPR:
2106 /* Pointers defined by __asm__ statements can point anywhere. */
2107 set_pt_anything (var);
2108 break;
2109
2110 case NOP_EXPR:
2111 if (IS_EMPTY_STMT (stmt))
2112 {
2113 tree decl = SSA_NAME_VAR (var);
2114
2115 if (TREE_CODE (decl) == PARM_DECL)
2116 add_pointed_to_expr (ai, var, decl);
2117 else if (DECL_INITIAL (decl))
2118 add_pointed_to_expr (ai, var, DECL_INITIAL (decl));
2119 else
2120 add_pointed_to_expr (ai, var, decl);
2121 }
2122 break;
2123
2124 case PHI_NODE:
2125 {
2126 /* It STMT is a PHI node, then VAR is one of its arguments. The
2127 variable that we are analyzing is the LHS of the PHI node. */
2128 tree lhs = PHI_RESULT (stmt);
2129
2130 switch (TREE_CODE (var))
2131 {
2132 case ADDR_EXPR:
2133 add_pointed_to_var (ai, lhs, var);
2134 break;
2135
2136 case SSA_NAME:
2137 /* Avoid unnecessary merges. */
2138 if (lhs != var)
2139 merge_pointed_to_info (ai, lhs, var);
2140 break;
2141
2142 default:
2143 gcc_assert (is_gimple_min_invariant (var));
2144 add_pointed_to_expr (ai, lhs, var);
2145 break;
2146 }
2147 break;
2148 }
2149
2150 default:
2151 gcc_unreachable ();
2152 }
2153
2154 return false;
2155 }
2156
2157
2158 /* Return true if STMT is an "escape" site from the current function. Escape
2159 sites those statements which might expose the address of a variable
2160 outside the current function. STMT is an escape site iff:
2161
2162 1- STMT is a function call, or
2163 2- STMT is an __asm__ expression, or
2164 3- STMT is an assignment to a non-local variable, or
2165 4- STMT is a return statement.
2166
2167 AI points to the alias information collected so far. */
2168
2169 static bool
2170 is_escape_site (tree stmt, struct alias_info *ai)
2171 {
2172 tree call = get_call_expr_in (stmt);
2173 if (call != NULL_TREE)
2174 {
2175 ai->num_calls_found++;
2176
2177 if (!TREE_SIDE_EFFECTS (call))
2178 ai->num_pure_const_calls_found++;
2179
2180 return true;
2181 }
2182 else if (TREE_CODE (stmt) == ASM_EXPR)
2183 return true;
2184 else if (TREE_CODE (stmt) == MODIFY_EXPR)
2185 {
2186 tree lhs = TREE_OPERAND (stmt, 0);
2187
2188 /* Get to the base of _REF nodes. */
2189 if (TREE_CODE (lhs) != SSA_NAME)
2190 lhs = get_base_address (lhs);
2191
2192 /* If we couldn't recognize the LHS of the assignment, assume that it
2193 is a non-local store. */
2194 if (lhs == NULL_TREE)
2195 return true;
2196
2197 /* If the RHS is a conversion between a pointer and an integer, the
2198 pointer escapes since we can't track the integer. */
2199 if ((TREE_CODE (TREE_OPERAND (stmt, 1)) == NOP_EXPR
2200 || TREE_CODE (TREE_OPERAND (stmt, 1)) == CONVERT_EXPR
2201 || TREE_CODE (TREE_OPERAND (stmt, 1)) == VIEW_CONVERT_EXPR)
2202 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND
2203 (TREE_OPERAND (stmt, 1), 0)))
2204 && !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (stmt, 1))))
2205 return true;
2206
2207 /* If the LHS is an SSA name, it can't possibly represent a non-local
2208 memory store. */
2209 if (TREE_CODE (lhs) == SSA_NAME)
2210 return false;
2211
2212 /* FIXME: LHS is not an SSA_NAME. Even if it's an assignment to a
2213 local variables we cannot be sure if it will escape, because we
2214 don't have information about objects not in SSA form. Need to
2215 implement something along the lines of
2216
2217 J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P.
2218 Midkiff, ``Escape analysis for java,'' in Proceedings of the
2219 Conference on Object-Oriented Programming Systems, Languages, and
2220 Applications (OOPSLA), pp. 1-19, 1999. */
2221 return true;
2222 }
2223 else if (TREE_CODE (stmt) == RETURN_EXPR)
2224 return true;
2225
2226 return false;
2227 }
2228
2229
2230 /* Create a new memory tag of type TYPE. If IS_TYPE_TAG is true, the tag
2231 is considered to represent all the pointers whose pointed-to types are
2232 in the same alias set class. Otherwise, the tag represents a single
2233 SSA_NAME pointer variable. */
2234
2235 static tree
2236 create_memory_tag (tree type, bool is_type_tag)
2237 {
2238 var_ann_t ann;
2239 tree tag = create_tmp_var_raw (type, (is_type_tag) ? "TMT" : "NMT");
2240
2241 /* By default, memory tags are local variables. Alias analysis will
2242 determine whether they should be considered globals. */
2243 DECL_CONTEXT (tag) = current_function_decl;
2244
2245 /* Memory tags are by definition addressable. This also prevents
2246 is_gimple_ref frome confusing memory tags with optimizable
2247 variables. */
2248 TREE_ADDRESSABLE (tag) = 1;
2249
2250 ann = get_var_ann (tag);
2251 ann->mem_tag_kind = (is_type_tag) ? TYPE_TAG : NAME_TAG;
2252 ann->type_mem_tag = NULL_TREE;
2253
2254 /* Add the tag to the symbol table. */
2255 add_referenced_tmp_var (tag);
2256
2257 return tag;
2258 }
2259
2260
2261 /* Create a name memory tag to represent a specific SSA_NAME pointer P_i.
2262 This is used if P_i has been found to point to a specific set of
2263 variables or to a non-aliased memory location like the address returned
2264 by malloc functions. */
2265
2266 static tree
2267 get_nmt_for (tree ptr)
2268 {
2269 struct ptr_info_def *pi = get_ptr_info (ptr);
2270 tree tag = pi->name_mem_tag;
2271
2272 if (tag == NULL_TREE)
2273 tag = create_memory_tag (TREE_TYPE (TREE_TYPE (ptr)), false);
2274
2275 /* If PTR is a PARM_DECL, it points to a global variable or malloc,
2276 then its name tag should be considered a global variable. */
2277 if (TREE_CODE (SSA_NAME_VAR (ptr)) == PARM_DECL
2278 || pi->pt_malloc
2279 || pi->pt_global_mem)
2280 mark_call_clobbered (tag);
2281
2282 return tag;
2283 }
2284
2285
2286 /* Return the type memory tag associated to pointer PTR. A memory tag is an
2287 artificial variable that represents the memory location pointed-to by
2288 PTR. It is used to model the effects of pointer de-references on
2289 addressable variables.
2290
2291 AI points to the data gathered during alias analysis. This function
2292 populates the array AI->POINTERS. */
2293
2294 static tree
2295 get_tmt_for (tree ptr, struct alias_info *ai)
2296 {
2297 size_t i;
2298 tree tag;
2299 tree tag_type = TREE_TYPE (TREE_TYPE (ptr));
2300 HOST_WIDE_INT tag_set = get_alias_set (tag_type);
2301
2302 /* To avoid creating unnecessary memory tags, only create one memory tag
2303 per alias set class. Note that it may be tempting to group
2304 memory tags based on conflicting alias sets instead of
2305 equivalence. That would be wrong because alias sets are not
2306 necessarily transitive (as demonstrated by the libstdc++ test
2307 23_containers/vector/cons/4.cc). Given three alias sets A, B, C
2308 such that conflicts (A, B) == true and conflicts (A, C) == true,
2309 it does not necessarily follow that conflicts (B, C) == true. */
2310 for (i = 0, tag = NULL_TREE; i < ai->num_pointers; i++)
2311 {
2312 struct alias_map_d *curr = ai->pointers[i];
2313 tree curr_tag = var_ann (curr->var)->type_mem_tag;
2314 if (tag_set == curr->set
2315 && TYPE_READONLY (tag_type) == TYPE_READONLY (TREE_TYPE (curr_tag)))
2316 {
2317 tag = curr_tag;
2318 break;
2319 }
2320 }
2321
2322 /* If VAR cannot alias with any of the existing memory tags, create a new
2323 tag for PTR and add it to the POINTERS array. */
2324 if (tag == NULL_TREE)
2325 {
2326 struct alias_map_d *alias_map;
2327
2328 /* If PTR did not have a type tag already, create a new TMT.*
2329 artificial variable representing the memory location
2330 pointed-to by PTR. */
2331 if (var_ann (ptr)->type_mem_tag == NULL_TREE)
2332 tag = create_memory_tag (tag_type, true);
2333 else
2334 tag = var_ann (ptr)->type_mem_tag;
2335
2336 /* Add PTR to the POINTERS array. Note that we are not interested in
2337 PTR's alias set. Instead, we cache the alias set for the memory that
2338 PTR points to. */
2339 alias_map = xcalloc (1, sizeof (*alias_map));
2340 alias_map->var = ptr;
2341 alias_map->set = tag_set;
2342 ai->pointers[ai->num_pointers++] = alias_map;
2343 }
2344
2345 /* If the pointed-to type is volatile, so is the tag. */
2346 TREE_THIS_VOLATILE (tag) |= TREE_THIS_VOLATILE (tag_type);
2347
2348 /* Make sure that the type tag has the same alias set as the
2349 pointed-to type. */
2350 gcc_assert (tag_set == get_alias_set (tag));
2351
2352 /* If PTR's pointed-to type is read-only, then TAG's type must also
2353 be read-only. */
2354 gcc_assert (TYPE_READONLY (tag_type) == TYPE_READONLY (TREE_TYPE (tag)));
2355
2356 return tag;
2357 }
2358
2359
2360 /* Create GLOBAL_VAR, an artificial global variable to act as a
2361 representative of all the variables that may be clobbered by function
2362 calls. */
2363
2364 static void
2365 create_global_var (void)
2366 {
2367 global_var = build_decl (VAR_DECL, get_identifier (".GLOBAL_VAR"),
2368 void_type_node);
2369 DECL_ARTIFICIAL (global_var) = 1;
2370 TREE_READONLY (global_var) = 0;
2371 DECL_EXTERNAL (global_var) = 1;
2372 TREE_STATIC (global_var) = 1;
2373 TREE_USED (global_var) = 1;
2374 DECL_CONTEXT (global_var) = NULL_TREE;
2375 TREE_THIS_VOLATILE (global_var) = 0;
2376 TREE_ADDRESSABLE (global_var) = 0;
2377
2378 add_referenced_tmp_var (global_var);
2379 mark_sym_for_renaming (global_var);
2380 }
2381
2382
2383 /* Dump alias statistics on FILE. */
2384
2385 static void
2386 dump_alias_stats (FILE *file)
2387 {
2388 const char *funcname
2389 = lang_hooks.decl_printable_name (current_function_decl, 2);
2390 fprintf (file, "\nAlias statistics for %s\n\n", funcname);
2391 fprintf (file, "Total alias queries:\t%u\n", alias_stats.alias_queries);
2392 fprintf (file, "Total alias mayalias results:\t%u\n",
2393 alias_stats.alias_mayalias);
2394 fprintf (file, "Total alias noalias results:\t%u\n",
2395 alias_stats.alias_noalias);
2396 fprintf (file, "Total simple queries:\t%u\n",
2397 alias_stats.simple_queries);
2398 fprintf (file, "Total simple resolved:\t%u\n",
2399 alias_stats.simple_resolved);
2400 fprintf (file, "Total TBAA queries:\t%u\n",
2401 alias_stats.tbaa_queries);
2402 fprintf (file, "Total TBAA resolved:\t%u\n",
2403 alias_stats.tbaa_resolved);
2404 }
2405
2406
2407 /* Dump alias information on FILE. */
2408
2409 void
2410 dump_alias_info (FILE *file)
2411 {
2412 size_t i;
2413 const char *funcname
2414 = lang_hooks.decl_printable_name (current_function_decl, 2);
2415
2416 fprintf (file, "\nFlow-insensitive alias information for %s\n\n", funcname);
2417
2418 fprintf (file, "Aliased symbols\n\n");
2419 for (i = 0; i < num_referenced_vars; i++)
2420 {
2421 tree var = referenced_var (i);
2422 if (may_be_aliased (var))
2423 dump_variable (file, var);
2424 }
2425
2426 fprintf (file, "\nDereferenced pointers\n\n");
2427 for (i = 0; i < num_referenced_vars; i++)
2428 {
2429 tree var = referenced_var (i);
2430 var_ann_t ann = var_ann (var);
2431 if (ann->type_mem_tag)
2432 dump_variable (file, var);
2433 }
2434
2435 fprintf (file, "\nType memory tags\n\n");
2436 for (i = 0; i < num_referenced_vars; i++)
2437 {
2438 tree var = referenced_var (i);
2439 var_ann_t ann = var_ann (var);
2440 if (ann->mem_tag_kind == TYPE_TAG)
2441 dump_variable (file, var);
2442 }
2443
2444 fprintf (file, "\n\nFlow-sensitive alias information for %s\n\n", funcname);
2445
2446 fprintf (file, "SSA_NAME pointers\n\n");
2447 for (i = 1; i < num_ssa_names; i++)
2448 {
2449 tree ptr = ssa_name (i);
2450 struct ptr_info_def *pi;
2451
2452 if (ptr == NULL_TREE)
2453 continue;
2454
2455 pi = SSA_NAME_PTR_INFO (ptr);
2456 if (!SSA_NAME_IN_FREE_LIST (ptr)
2457 && pi
2458 && pi->name_mem_tag)
2459 dump_points_to_info_for (file, ptr);
2460 }
2461
2462 fprintf (file, "\nName memory tags\n\n");
2463 for (i = 0; i < num_referenced_vars; i++)
2464 {
2465 tree var = referenced_var (i);
2466 var_ann_t ann = var_ann (var);
2467 if (ann->mem_tag_kind == NAME_TAG)
2468 dump_variable (file, var);
2469 }
2470
2471 fprintf (file, "\n");
2472 }
2473
2474
2475 /* Dump alias information on stderr. */
2476
2477 void
2478 debug_alias_info (void)
2479 {
2480 dump_alias_info (stderr);
2481 }
2482
2483
2484 /* Return the alias information associated with pointer T. It creates a
2485 new instance if none existed. */
2486
2487 struct ptr_info_def *
2488 get_ptr_info (tree t)
2489 {
2490 struct ptr_info_def *pi;
2491
2492 gcc_assert (POINTER_TYPE_P (TREE_TYPE (t)));
2493
2494 pi = SSA_NAME_PTR_INFO (t);
2495 if (pi == NULL)
2496 {
2497 pi = ggc_alloc (sizeof (*pi));
2498 memset ((void *)pi, 0, sizeof (*pi));
2499 SSA_NAME_PTR_INFO (t) = pi;
2500 }
2501
2502 return pi;
2503 }
2504
2505
2506 /* Dump points-to information for SSA_NAME PTR into FILE. */
2507
2508 void
2509 dump_points_to_info_for (FILE *file, tree ptr)
2510 {
2511 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
2512
2513 print_generic_expr (file, ptr, dump_flags);
2514
2515 if (pi)
2516 {
2517 if (pi->name_mem_tag)
2518 {
2519 fprintf (file, ", name memory tag: ");
2520 print_generic_expr (file, pi->name_mem_tag, dump_flags);
2521 }
2522
2523 if (pi->is_dereferenced)
2524 fprintf (file, ", is dereferenced");
2525
2526 if (pi->value_escapes_p)
2527 fprintf (file, ", its value escapes");
2528
2529 if (pi->pt_anything)
2530 fprintf (file, ", points-to anything");
2531
2532 if (pi->pt_malloc)
2533 fprintf (file, ", points-to malloc");
2534
2535 if (pi->pt_null)
2536 fprintf (file, ", points-to NULL");
2537
2538 if (pi->pt_vars)
2539 {
2540 unsigned ix;
2541 bitmap_iterator bi;
2542
2543 fprintf (file, ", points-to vars: { ");
2544 EXECUTE_IF_SET_IN_BITMAP (pi->pt_vars, 0, ix, bi)
2545 {
2546 print_generic_expr (file, referenced_var (ix), dump_flags);
2547 fprintf (file, " ");
2548 }
2549 fprintf (file, "}");
2550 }
2551 }
2552
2553 fprintf (file, "\n");
2554 }
2555
2556
2557 /* Dump points-to information for VAR into stderr. */
2558
2559 void
2560 debug_points_to_info_for (tree var)
2561 {
2562 dump_points_to_info_for (stderr, var);
2563 }
2564
2565
2566 /* Dump points-to information into FILE. NOTE: This function is slow, as
2567 it needs to traverse the whole CFG looking for pointer SSA_NAMEs. */
2568
2569 void
2570 dump_points_to_info (FILE *file)
2571 {
2572 basic_block bb;
2573 block_stmt_iterator si;
2574 size_t i;
2575 ssa_op_iter iter;
2576 const char *fname =
2577 lang_hooks.decl_printable_name (current_function_decl, 2);
2578
2579 fprintf (file, "\n\nPointed-to sets for pointers in %s\n\n", fname);
2580
2581 /* First dump points-to information for the default definitions of
2582 pointer variables. This is necessary because default definitions are
2583 not part of the code. */
2584 for (i = 0; i < num_referenced_vars; i++)
2585 {
2586 tree var = referenced_var (i);
2587 if (POINTER_TYPE_P (TREE_TYPE (var)))
2588 {
2589 var_ann_t ann = var_ann (var);
2590 if (ann->default_def)
2591 dump_points_to_info_for (file, ann->default_def);
2592 }
2593 }
2594
2595 /* Dump points-to information for every pointer defined in the program. */
2596 FOR_EACH_BB (bb)
2597 {
2598 tree phi;
2599
2600 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2601 {
2602 tree ptr = PHI_RESULT (phi);
2603 if (POINTER_TYPE_P (TREE_TYPE (ptr)))
2604 dump_points_to_info_for (file, ptr);
2605 }
2606
2607 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
2608 {
2609 tree stmt = bsi_stmt (si);
2610 tree def;
2611 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
2612 if (POINTER_TYPE_P (TREE_TYPE (def)))
2613 dump_points_to_info_for (file, def);
2614 }
2615 }
2616
2617 fprintf (file, "\n");
2618 }
2619
2620
2621 /* Dump points-to info pointed by PTO into STDERR. */
2622
2623 void
2624 debug_points_to_info (void)
2625 {
2626 dump_points_to_info (stderr);
2627 }
2628
2629 /* Dump to FILE the list of variables that may be aliasing VAR. */
2630
2631 void
2632 dump_may_aliases_for (FILE *file, tree var)
2633 {
2634 varray_type aliases;
2635
2636 if (TREE_CODE (var) == SSA_NAME)
2637 var = SSA_NAME_VAR (var);
2638
2639 aliases = var_ann (var)->may_aliases;
2640 if (aliases)
2641 {
2642 size_t i;
2643 fprintf (file, "{ ");
2644 for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
2645 {
2646 print_generic_expr (file, VARRAY_TREE (aliases, i), dump_flags);
2647 fprintf (file, " ");
2648 }
2649 fprintf (file, "}");
2650 }
2651 }
2652
2653
2654 /* Dump to stderr the list of variables that may be aliasing VAR. */
2655
2656 void
2657 debug_may_aliases_for (tree var)
2658 {
2659 dump_may_aliases_for (stderr, var);
2660 }
2661
2662 /* Return true if VAR may be aliased. */
2663
2664 bool
2665 may_be_aliased (tree var)
2666 {
2667 /* Obviously. */
2668 if (TREE_ADDRESSABLE (var))
2669 return true;
2670
2671 /* Globally visible variables can have their addresses taken by other
2672 translation units. */
2673 if (DECL_EXTERNAL (var) || TREE_PUBLIC (var))
2674 return true;
2675
2676 /* Automatic variables can't have their addresses escape any other way.
2677 This must be after the check for global variables, as extern declarations
2678 do not have TREE_STATIC set. */
2679 if (!TREE_STATIC (var))
2680 return false;
2681
2682 /* If we're in unit-at-a-time mode, then we must have seen all occurrences
2683 of address-of operators, and so we can trust TREE_ADDRESSABLE. Otherwise
2684 we can only be sure the variable isn't addressable if it's local to the
2685 current function. */
2686 if (flag_unit_at_a_time)
2687 return false;
2688 if (decl_function_context (var) == current_function_decl)
2689 return false;
2690
2691 return true;
2692 }
2693
2694
2695 /* Add VAR to the list of may-aliases of PTR's type tag. If PTR
2696 doesn't already have a type tag, create one. */
2697
2698 void
2699 add_type_alias (tree ptr, tree var)
2700 {
2701 varray_type aliases;
2702 tree tag;
2703 var_ann_t ann = var_ann (ptr);
2704 subvar_t svars;
2705
2706 if (ann->type_mem_tag == NULL_TREE)
2707 {
2708 size_t i;
2709 tree q = NULL_TREE;
2710 tree tag_type = TREE_TYPE (TREE_TYPE (ptr));
2711 HOST_WIDE_INT tag_set = get_alias_set (tag_type);
2712
2713 /* PTR doesn't have a type tag, create a new one and add VAR to
2714 the new tag's alias set.
2715
2716 FIXME, This is slower than necessary. We need to determine
2717 whether there is another pointer Q with the same alias set as
2718 PTR. This could be sped up by having type tags associated
2719 with types. */
2720 for (i = 0; i < num_referenced_vars; i++)
2721 {
2722 q = referenced_var (i);
2723
2724 if (POINTER_TYPE_P (TREE_TYPE (q))
2725 && tag_set == get_alias_set (TREE_TYPE (TREE_TYPE (q))))
2726 {
2727 /* Found another pointer Q with the same alias set as
2728 the PTR's pointed-to type. If Q has a type tag, use
2729 it. Otherwise, create a new memory tag for PTR. */
2730 var_ann_t ann1 = var_ann (q);
2731 if (ann1->type_mem_tag)
2732 ann->type_mem_tag = ann1->type_mem_tag;
2733 else
2734 ann->type_mem_tag = create_memory_tag (tag_type, true);
2735 goto found_tag;
2736 }
2737 }
2738
2739 /* Couldn't find any other pointer with a type tag we could use.
2740 Create a new memory tag for PTR. */
2741 ann->type_mem_tag = create_memory_tag (tag_type, true);
2742 }
2743
2744 found_tag:
2745 /* If VAR is not already PTR's type tag, add it to the may-alias set
2746 for PTR's type tag. */
2747 gcc_assert (var_ann (var)->type_mem_tag == NOT_A_TAG);
2748 tag = ann->type_mem_tag;
2749
2750 /* If VAR has subvars, add the subvars to the tag instead of the
2751 actual var. */
2752 if (var_can_have_subvars (var)
2753 && (svars = get_subvars_for_var (var)))
2754 {
2755 subvar_t sv;
2756 for (sv = svars; sv; sv = sv->next)
2757 add_may_alias (tag, sv->var);
2758 }
2759 else
2760 add_may_alias (tag, var);
2761
2762 /* TAG and its set of aliases need to be marked for renaming. */
2763 mark_sym_for_renaming (tag);
2764 if ((aliases = var_ann (tag)->may_aliases) != NULL)
2765 {
2766 size_t i;
2767 for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
2768 mark_sym_for_renaming (VARRAY_TREE (aliases, i));
2769 }
2770
2771 /* If we had grouped aliases, VAR may have aliases of its own. Mark
2772 them for renaming as well. Other statements referencing the
2773 aliases of VAR will need to be updated. */
2774 if ((aliases = var_ann (var)->may_aliases) != NULL)
2775 {
2776 size_t i;
2777 for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
2778 mark_sym_for_renaming (VARRAY_TREE (aliases, i));
2779 }
2780 }
2781
2782
2783 /* This structure is simply used during pushing fields onto the fieldstack
2784 to track the offset of the field, since bitpos_of_field gives it relative
2785 to its immediate containing type, and we want it relative to the ultimate
2786 containing object. */
2787
2788 typedef struct fieldoff
2789 {
2790 tree field;
2791 HOST_WIDE_INT offset;
2792 } fieldoff_s;
2793
2794 DEF_VEC_O (fieldoff_s);
2795 DEF_VEC_ALLOC_O(fieldoff_s,heap);
2796
2797 /* Return the position, in bits, of FIELD_DECL from the beginning of its
2798 structure.
2799 Return -1 if the position is conditional or otherwise non-constant
2800 integer. */
2801
2802 static HOST_WIDE_INT
2803 bitpos_of_field (const tree fdecl)
2804 {
2805
2806 if (TREE_CODE (DECL_FIELD_OFFSET (fdecl)) != INTEGER_CST
2807 || TREE_CODE (DECL_FIELD_BIT_OFFSET (fdecl)) != INTEGER_CST)
2808 return -1;
2809
2810 return (tree_low_cst (DECL_FIELD_OFFSET (fdecl), 1) * 8)
2811 + tree_low_cst (DECL_FIELD_BIT_OFFSET (fdecl), 1);
2812 }
2813
2814 /* Given a TYPE, and a vector of field offsets FIELDSTACK, push all the fields
2815 of TYPE onto fieldstack, recording their offsets along the way.
2816 OFFSET is used to keep track of the offset in this entire structure, rather
2817 than just the immediately containing structure. Returns the number
2818 of fields pushed. */
2819
2820 static int
2821 push_fields_onto_fieldstack (tree type, VEC(fieldoff_s,heap) **fieldstack,
2822 HOST_WIDE_INT offset)
2823 {
2824 tree field;
2825 int count = 0;
2826
2827 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2828 if (TREE_CODE (field) == FIELD_DECL)
2829 {
2830 bool push = false;
2831
2832 if (!var_can_have_subvars (field))
2833 push = true;
2834 else if (!(push_fields_onto_fieldstack
2835 (TREE_TYPE (field), fieldstack,
2836 offset + bitpos_of_field (field)))
2837 && DECL_SIZE (field)
2838 && !integer_zerop (DECL_SIZE (field)))
2839 /* Empty structures may have actual size, like in C++. So
2840 see if we didn't push any subfields and the size is
2841 nonzero, push the field onto the stack */
2842 push = true;
2843
2844 if (push)
2845 {
2846 fieldoff_s *pair;
2847
2848 pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
2849 pair->field = field;
2850 pair->offset = offset + bitpos_of_field (field);
2851 count++;
2852 }
2853 }
2854 return count;
2855 }
2856
2857
2858 /* This represents the used range of a variable. */
2859
2860 typedef struct used_part
2861 {
2862 HOST_WIDE_INT minused;
2863 HOST_WIDE_INT maxused;
2864 /* True if we have an explicit use/def of some portion of this variable,
2865 even if it is all of it. i.e. a.b = 5 or temp = a.b. */
2866 bool explicit_uses;
2867 /* True if we have an implicit use/def of some portion of this
2868 variable. Implicit uses occur when we can't tell what part we
2869 are referencing, and have to make conservative assumptions. */
2870 bool implicit_uses;
2871 } *used_part_t;
2872
2873 /* An array of used_part structures, indexed by variable uid. */
2874
2875 static used_part_t *used_portions;
2876
2877 /* Given a variable uid, UID, get or create the entry in the used portions
2878 table for the variable. */
2879
2880 static used_part_t
2881 get_or_create_used_part_for (size_t uid)
2882 {
2883 used_part_t up;
2884 if (used_portions[uid] == NULL)
2885 {
2886 up = xcalloc (1, sizeof (struct used_part));
2887 up->minused = INT_MAX;
2888 up->maxused = 0;
2889 up->explicit_uses = false;
2890 up->implicit_uses = false;
2891 }
2892 else
2893 up = used_portions[uid];
2894 return up;
2895 }
2896
2897 /* qsort comparison function for two fieldoff's PA and PB */
2898
2899 static int
2900 fieldoff_compare (const void *pa, const void *pb)
2901 {
2902 const fieldoff_s *foa = (const fieldoff_s *)pa;
2903 const fieldoff_s *fob = (const fieldoff_s *)pb;
2904 HOST_WIDE_INT foasize, fobsize;
2905
2906 if (foa->offset != fob->offset)
2907 return foa->offset - fob->offset;
2908
2909 foasize = TREE_INT_CST_LOW (DECL_SIZE (foa->field));
2910 fobsize = TREE_INT_CST_LOW (DECL_SIZE (fob->field));
2911 return foasize - fobsize;
2912 }
2913
2914 /* Given an aggregate VAR, create the subvariables that represent its
2915 fields. */
2916
2917 static void
2918 create_overlap_variables_for (tree var)
2919 {
2920 VEC(fieldoff_s,heap) *fieldstack = NULL;
2921 used_part_t up;
2922 size_t uid = var_ann (var)->uid;
2923
2924 if (used_portions[uid] == NULL)
2925 return;
2926
2927 up = used_portions[uid];
2928 push_fields_onto_fieldstack (TREE_TYPE (var), &fieldstack, 0);
2929 if (VEC_length (fieldoff_s, fieldstack) != 0)
2930 {
2931 subvar_t *subvars;
2932 fieldoff_s *fo;
2933 bool notokay = false;
2934 int fieldcount = 0;
2935 int i;
2936 HOST_WIDE_INT lastfooffset = -1;
2937 HOST_WIDE_INT lastfosize = -1;
2938 tree lastfotype = NULL_TREE;
2939
2940 /* Not all fields have DECL_SIZE set, and those that don't, we don't
2941 know their size, and thus, can't handle.
2942 The same is true of fields with DECL_SIZE that is not an integer
2943 constant (such as variable sized fields).
2944 Fields with offsets which are not constant will have an offset < 0
2945 We *could* handle fields that are constant sized arrays, but
2946 currently don't. Doing so would require some extra changes to
2947 tree-ssa-operands.c. */
2948
2949 for (i = 0; VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
2950 {
2951 if (!DECL_SIZE (fo->field)
2952 || TREE_CODE (DECL_SIZE (fo->field)) != INTEGER_CST
2953 || TREE_CODE (TREE_TYPE (fo->field)) == ARRAY_TYPE
2954 || fo->offset < 0)
2955 {
2956 notokay = true;
2957 break;
2958 }
2959 fieldcount++;
2960 }
2961
2962 /* The current heuristic we use is as follows:
2963 If the variable has no used portions in this function, no
2964 structure vars are created for it.
2965 Otherwise,
2966 If the variable has less than SALIAS_MAX_IMPLICIT_FIELDS,
2967 we always create structure vars for them.
2968 If the variable has more than SALIAS_MAX_IMPLICIT_FIELDS, and
2969 some explicit uses, we create structure vars for them.
2970 If the variable has more than SALIAS_MAX_IMPLICIT_FIELDS, and
2971 no explicit uses, we do not create structure vars for them.
2972 */
2973
2974 if (fieldcount >= SALIAS_MAX_IMPLICIT_FIELDS
2975 && !up->explicit_uses)
2976 {
2977 if (dump_file && (dump_flags & TDF_DETAILS))
2978 {
2979 fprintf (dump_file, "Variable ");
2980 print_generic_expr (dump_file, var, 0);
2981 fprintf (dump_file, " has no explicit uses in this function, and is > SALIAS_MAX_IMPLICIT_FIELDS, so skipping\n");
2982 }
2983 notokay = true;
2984 }
2985
2986 /* Bail out, if we can't create overlap variables. */
2987 if (notokay)
2988 {
2989 VEC_free (fieldoff_s, heap, fieldstack);
2990 return;
2991 }
2992
2993 /* Otherwise, create the variables. */
2994 subvars = lookup_subvars_for_var (var);
2995
2996 qsort (VEC_address (fieldoff_s, fieldstack),
2997 VEC_length (fieldoff_s, fieldstack),
2998 sizeof (fieldoff_s),
2999 fieldoff_compare);
3000
3001 for (i = VEC_length (fieldoff_s, fieldstack);
3002 VEC_iterate (fieldoff_s, fieldstack, --i, fo);)
3003 {
3004 subvar_t sv;
3005 HOST_WIDE_INT fosize;
3006 var_ann_t ann;
3007 tree currfotype;
3008
3009 fosize = TREE_INT_CST_LOW (DECL_SIZE (fo->field));
3010 currfotype = TREE_TYPE (fo->field);
3011
3012 /* If this field isn't in the used portion,
3013 or it has the exact same offset and size as the last
3014 field, skip it. */
3015
3016 if (((fo->offset <= up->minused
3017 && fo->offset + fosize <= up->minused)
3018 || fo->offset >= up->maxused)
3019 || (fo->offset == lastfooffset
3020 && fosize == lastfosize
3021 && currfotype == lastfotype))
3022 continue;
3023 sv = ggc_alloc (sizeof (struct subvar));
3024 sv->offset = fo->offset;
3025 sv->size = fosize;
3026 sv->next = *subvars;
3027 sv->var = create_tmp_var_raw (TREE_TYPE (fo->field), "SFT");
3028 if (dump_file)
3029 {
3030 fprintf (dump_file, "structure field tag %s created for var %s",
3031 get_name (sv->var), get_name (var));
3032 fprintf (dump_file, " offset " HOST_WIDE_INT_PRINT_DEC,
3033 sv->offset);
3034 fprintf (dump_file, " size " HOST_WIDE_INT_PRINT_DEC,
3035 sv->size);
3036 fprintf (dump_file, "\n");
3037 }
3038
3039 /* We need to copy the various flags from var to sv->var, so that
3040 they are is_global_var iff the original variable was. */
3041
3042 DECL_EXTERNAL (sv->var) = DECL_EXTERNAL (var);
3043 TREE_PUBLIC (sv->var) = TREE_PUBLIC (var);
3044 TREE_STATIC (sv->var) = TREE_STATIC (var);
3045 TREE_READONLY (sv->var) = TREE_READONLY (var);
3046
3047 /* Like other memory tags, these need to be marked addressable to
3048 keep is_gimple_reg from thinking they are real. */
3049 TREE_ADDRESSABLE (sv->var) = 1;
3050
3051 DECL_CONTEXT (sv->var) = DECL_CONTEXT (var);
3052
3053 ann = get_var_ann (sv->var);
3054 ann->mem_tag_kind = STRUCT_FIELD;
3055 ann->type_mem_tag = NULL;
3056 add_referenced_tmp_var (sv->var);
3057
3058 lastfotype = currfotype;
3059 lastfooffset = fo->offset;
3060 lastfosize = fosize;
3061 *subvars = sv;
3062 }
3063
3064 /* Once we have created subvars, the original is no longer call
3065 clobbered on its own. Its call clobbered status depends
3066 completely on the call clobbered status of the subvars.
3067
3068 add_referenced_var in the above loop will take care of
3069 marking subvars of global variables as call clobbered for us
3070 to start, since they are global as well. */
3071 clear_call_clobbered (var);
3072 }
3073
3074 VEC_free (fieldoff_s, heap, fieldstack);
3075 }
3076
3077
3078 /* Find the conservative answer to the question of what portions of what
3079 structures are used by this statement. We assume that if we have a
3080 component ref with a known size + offset, that we only need that part
3081 of the structure. For unknown cases, or cases where we do something
3082 to the whole structure, we assume we need to create fields for the
3083 entire structure. */
3084
3085 static tree
3086 find_used_portions (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
3087 {
3088 switch (TREE_CODE (*tp))
3089 {
3090 case COMPONENT_REF:
3091 {
3092 HOST_WIDE_INT bitsize;
3093 HOST_WIDE_INT bitpos;
3094 tree offset;
3095 enum machine_mode mode;
3096 int unsignedp;
3097 int volatilep;
3098 tree ref;
3099 ref = get_inner_reference (*tp, &bitsize, &bitpos, &offset, &mode,
3100 &unsignedp, &volatilep, false);
3101 if (DECL_P (ref) && offset == NULL && bitsize != -1)
3102 {
3103 size_t uid = var_ann (ref)->uid;
3104 used_part_t up;
3105
3106 up = get_or_create_used_part_for (uid);
3107
3108 if (bitpos <= up->minused)
3109 up->minused = bitpos;
3110 if ((bitpos + bitsize >= up->maxused))
3111 up->maxused = bitpos + bitsize;
3112
3113 up->explicit_uses = true;
3114 used_portions[uid] = up;
3115
3116 *walk_subtrees = 0;
3117 return NULL_TREE;
3118 }
3119 else if (DECL_P (ref))
3120 {
3121 if (DECL_SIZE (ref)
3122 && var_can_have_subvars (ref)
3123 && TREE_CODE (DECL_SIZE (ref)) == INTEGER_CST)
3124 {
3125 used_part_t up;
3126 size_t uid = var_ann (ref)->uid;
3127
3128 up = get_or_create_used_part_for (uid);
3129
3130 up->minused = 0;
3131 up->maxused = TREE_INT_CST_LOW (DECL_SIZE (ref));
3132
3133 up->implicit_uses = true;
3134
3135 used_portions[uid] = up;
3136
3137 *walk_subtrees = 0;
3138 return NULL_TREE;
3139 }
3140 }
3141 }
3142 break;
3143 case VAR_DECL:
3144 case PARM_DECL:
3145 {
3146 tree var = *tp;
3147 if (DECL_SIZE (var)
3148 && var_can_have_subvars (var)
3149 && TREE_CODE (DECL_SIZE (var)) == INTEGER_CST)
3150 {
3151 used_part_t up;
3152 size_t uid = var_ann (var)->uid;
3153
3154 up = get_or_create_used_part_for (uid);
3155
3156 up->minused = 0;
3157 up->maxused = TREE_INT_CST_LOW (DECL_SIZE (var));
3158 up->implicit_uses = true;
3159
3160 used_portions[uid] = up;
3161 *walk_subtrees = 0;
3162 return NULL_TREE;
3163 }
3164 }
3165 break;
3166
3167 default:
3168 break;
3169
3170 }
3171 return NULL_TREE;
3172 }
3173
3174 /* We are about to create some new referenced variables, and we need the
3175 before size. */
3176
3177 static size_t old_referenced_vars;
3178
3179
3180 /* Create structure field variables for structures used in this function. */
3181
3182 static void
3183 create_structure_vars (void)
3184 {
3185 basic_block bb;
3186 size_t i;
3187
3188 old_referenced_vars = num_referenced_vars;
3189 used_portions = xcalloc (num_referenced_vars, sizeof (used_part_t));
3190
3191 FOR_EACH_BB (bb)
3192 {
3193 block_stmt_iterator bsi;
3194 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
3195 {
3196 walk_tree_without_duplicates (bsi_stmt_ptr (bsi),
3197 find_used_portions,
3198 NULL);
3199 }
3200 }
3201 for (i = 0; i < old_referenced_vars; i++)
3202 {
3203 tree var = referenced_var (i);
3204 /* The C++ FE creates vars without DECL_SIZE set, for some reason. */
3205 if (var
3206 && DECL_SIZE (var)
3207 && var_can_have_subvars (var)
3208 && var_ann (var)->mem_tag_kind == NOT_A_TAG
3209 && TREE_CODE (DECL_SIZE (var)) == INTEGER_CST)
3210 create_overlap_variables_for (var);
3211 }
3212 for (i = 0; i < old_referenced_vars; i++)
3213 free (used_portions[i]);
3214
3215 free (used_portions);
3216 }
3217
3218 static bool
3219 gate_structure_vars (void)
3220 {
3221 return flag_tree_salias != 0;
3222 }
3223
3224 struct tree_opt_pass pass_create_structure_vars =
3225 {
3226 "salias", /* name */
3227 gate_structure_vars, /* gate */
3228 create_structure_vars, /* execute */
3229 NULL, /* sub */
3230 NULL, /* next */
3231 0, /* static_pass_number */
3232 0, /* tv_id */
3233 PROP_cfg, /* properties_required */
3234 0, /* properties_provided */
3235 0, /* properties_destroyed */
3236 0, /* todo_flags_start */
3237 TODO_dump_func, /* todo_flags_finish */
3238 0 /* letter */
3239 };