real.h (struct real_format): Split the signbit field into two two fields, signbit_ro...
[gcc.git] / gcc / tree-ssa-alias.c
1 /* Alias analysis for trees.
2 Copyright (C) 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "timevar.h"
32 #include "expr.h"
33 #include "ggc.h"
34 #include "langhooks.h"
35 #include "flags.h"
36 #include "function.h"
37 #include "diagnostic.h"
38 #include "tree-dump.h"
39 #include "tree-gimple.h"
40 #include "tree-flow.h"
41 #include "tree-inline.h"
42 #include "tree-pass.h"
43 #include "convert.h"
44 #include "params.h"
45 #include "vec.h"
46
47 /* 'true' after aliases have been computed (see compute_may_aliases). */
48 bool aliases_computed_p;
49
50 /* Structure to map a variable to its alias set and keep track of the
51 virtual operands that will be needed to represent it. */
52 struct alias_map_d
53 {
54 /* Variable and its alias set. */
55 tree var;
56 HOST_WIDE_INT set;
57
58 /* Total number of virtual operands that will be needed to represent
59 all the aliases of VAR. */
60 long total_alias_vops;
61
62 /* Nonzero if the aliases for this memory tag have been grouped
63 already. Used in group_aliases. */
64 unsigned int grouped_p : 1;
65
66 /* Set of variables aliased with VAR. This is the exact same
67 information contained in VAR_ANN (VAR)->MAY_ALIASES, but in
68 bitmap form to speed up alias grouping. */
69 sbitmap may_aliases;
70 };
71
72
73 /* Alias information used by compute_may_aliases and its helpers. */
74 struct alias_info
75 {
76 /* SSA names visited while collecting points-to information. If bit I
77 is set, it means that SSA variable with version I has already been
78 visited. */
79 sbitmap ssa_names_visited;
80
81 /* Array of SSA_NAME pointers processed by the points-to collector. */
82 varray_type processed_ptrs;
83
84 /* Variables whose address is still needed. */
85 bitmap addresses_needed;
86
87 /* ADDRESSABLE_VARS contains all the global variables and locals that
88 have had their address taken. */
89 struct alias_map_d **addressable_vars;
90 size_t num_addressable_vars;
91
92 /* POINTERS contains all the _DECL pointers with unique memory tags
93 that have been referenced in the program. */
94 struct alias_map_d **pointers;
95 size_t num_pointers;
96
97 /* Number of function calls found in the program. */
98 size_t num_calls_found;
99
100 /* Number of const/pure function calls found in the program. */
101 size_t num_pure_const_calls_found;
102
103 /* Array of counters to keep track of how many times each pointer has
104 been dereferenced in the program. This is used by the alias grouping
105 heuristic in compute_flow_insensitive_aliasing. */
106 varray_type num_references;
107
108 /* Total number of virtual operands that will be needed to represent
109 all the aliases of all the pointers found in the program. */
110 long total_alias_vops;
111
112 /* Variables that have been written to. */
113 bitmap written_vars;
114
115 /* Pointers that have been used in an indirect store operation. */
116 bitmap dereferenced_ptrs_store;
117
118 /* Pointers that have been used in an indirect load operation. */
119 bitmap dereferenced_ptrs_load;
120 };
121
122
123 /* Counters used to display statistics on alias analysis. */
124 struct alias_stats_d
125 {
126 unsigned int alias_queries;
127 unsigned int alias_mayalias;
128 unsigned int alias_noalias;
129 unsigned int simple_queries;
130 unsigned int simple_resolved;
131 unsigned int tbaa_queries;
132 unsigned int tbaa_resolved;
133 };
134
135
136 /* Local variables. */
137 static struct alias_stats_d alias_stats;
138
139 /* Local functions. */
140 static void compute_flow_insensitive_aliasing (struct alias_info *);
141 static void dump_alias_stats (FILE *);
142 static bool may_alias_p (tree, HOST_WIDE_INT, tree, HOST_WIDE_INT);
143 static tree create_memory_tag (tree type, bool is_type_tag);
144 static tree get_tmt_for (tree, struct alias_info *);
145 static tree get_nmt_for (tree);
146 static void add_may_alias (tree, tree);
147 static void replace_may_alias (tree, size_t, tree);
148 static struct alias_info *init_alias_info (void);
149 static void delete_alias_info (struct alias_info *);
150 static void compute_points_to_and_addr_escape (struct alias_info *);
151 static void compute_flow_sensitive_aliasing (struct alias_info *);
152 static void setup_pointers_and_addressables (struct alias_info *);
153 static bool collect_points_to_info_r (tree, tree, void *);
154 static bool is_escape_site (tree, struct alias_info *);
155 static void add_pointed_to_var (struct alias_info *, tree, tree);
156 static void create_global_var (void);
157 static void collect_points_to_info_for (struct alias_info *, tree);
158 static void maybe_create_global_var (struct alias_info *ai);
159 static void group_aliases (struct alias_info *);
160 static void set_pt_anything (tree ptr);
161 static void set_pt_malloc (tree ptr);
162
163 /* Global declarations. */
164
165 /* Call clobbered variables in the function. If bit I is set, then
166 REFERENCED_VARS (I) is call-clobbered. */
167 bitmap call_clobbered_vars;
168
169 /* Addressable variables in the function. If bit I is set, then
170 REFERENCED_VARS (I) has had its address taken. Note that
171 CALL_CLOBBERED_VARS and ADDRESSABLE_VARS are not related. An
172 addressable variable is not necessarily call-clobbered (e.g., a
173 local addressable whose address does not escape) and not all
174 call-clobbered variables are addressable (e.g., a local static
175 variable). */
176 bitmap addressable_vars;
177
178 /* When the program has too many call-clobbered variables and call-sites,
179 this variable is used to represent the clobbering effects of function
180 calls. In these cases, all the call clobbered variables in the program
181 are forced to alias this variable. This reduces compile times by not
182 having to keep track of too many V_MAY_DEF expressions at call sites. */
183 tree global_var;
184
185
186 /* Compute may-alias information for every variable referenced in function
187 FNDECL.
188
189 Alias analysis proceeds in 3 main phases:
190
191 1- Points-to and escape analysis.
192
193 This phase walks the use-def chains in the SSA web looking for three
194 things:
195
196 * Assignments of the form P_i = &VAR
197 * Assignments of the form P_i = malloc()
198 * Pointers and ADDR_EXPR that escape the current function.
199
200 The concept of 'escaping' is the same one used in the Java world. When
201 a pointer or an ADDR_EXPR escapes, it means that it has been exposed
202 outside of the current function. So, assignment to global variables,
203 function arguments and returning a pointer are all escape sites, as are
204 conversions between pointers and integers.
205
206 This is where we are currently limited. Since not everything is renamed
207 into SSA, we lose track of escape properties when a pointer is stashed
208 inside a field in a structure, for instance. In those cases, we are
209 assuming that the pointer does escape.
210
211 We use escape analysis to determine whether a variable is
212 call-clobbered. Simply put, if an ADDR_EXPR escapes, then the variable
213 is call-clobbered. If a pointer P_i escapes, then all the variables
214 pointed-to by P_i (and its memory tag) also escape.
215
216 2- Compute flow-sensitive aliases
217
218 We have two classes of memory tags. Memory tags associated with the
219 pointed-to data type of the pointers in the program. These tags are
220 called "type memory tag" (TMT). The other class are those associated
221 with SSA_NAMEs, called "name memory tag" (NMT). The basic idea is that
222 when adding operands for an INDIRECT_REF *P_i, we will first check
223 whether P_i has a name tag, if it does we use it, because that will have
224 more precise aliasing information. Otherwise, we use the standard type
225 tag.
226
227 In this phase, we go through all the pointers we found in points-to
228 analysis and create alias sets for the name memory tags associated with
229 each pointer P_i. If P_i escapes, we mark call-clobbered the variables
230 it points to and its tag.
231
232
233 3- Compute flow-insensitive aliases
234
235 This pass will compare the alias set of every type memory tag and every
236 addressable variable found in the program. Given a type memory tag TMT
237 and an addressable variable V. If the alias sets of TMT and V conflict
238 (as computed by may_alias_p), then V is marked as an alias tag and added
239 to the alias set of TMT.
240
241 For instance, consider the following function:
242
243 foo (int i)
244 {
245 int *p, a, b;
246
247 if (i > 10)
248 p = &a;
249 else
250 p = &b;
251
252 *p = 3;
253 a = b + 2;
254 return *p;
255 }
256
257 After aliasing analysis has finished, the type memory tag for pointer
258 'p' will have two aliases, namely variables 'a' and 'b'. Every time
259 pointer 'p' is dereferenced, we want to mark the operation as a
260 potential reference to 'a' and 'b'.
261
262 foo (int i)
263 {
264 int *p, a, b;
265
266 if (i_2 > 10)
267 p_4 = &a;
268 else
269 p_6 = &b;
270 # p_1 = PHI <p_4(1), p_6(2)>;
271
272 # a_7 = V_MAY_DEF <a_3>;
273 # b_8 = V_MAY_DEF <b_5>;
274 *p_1 = 3;
275
276 # a_9 = V_MAY_DEF <a_7>
277 # VUSE <b_8>
278 a_9 = b_8 + 2;
279
280 # VUSE <a_9>;
281 # VUSE <b_8>;
282 return *p_1;
283 }
284
285 In certain cases, the list of may aliases for a pointer may grow too
286 large. This may cause an explosion in the number of virtual operands
287 inserted in the code. Resulting in increased memory consumption and
288 compilation time.
289
290 When the number of virtual operands needed to represent aliased
291 loads and stores grows too large (configurable with @option{--param
292 max-aliased-vops}), alias sets are grouped to avoid severe
293 compile-time slow downs and memory consumption. See group_aliases. */
294
295 static void
296 compute_may_aliases (void)
297 {
298 struct alias_info *ai;
299
300 memset (&alias_stats, 0, sizeof (alias_stats));
301
302 /* Initialize aliasing information. */
303 ai = init_alias_info ();
304
305 /* For each pointer P_i, determine the sets of variables that P_i may
306 point-to. For every addressable variable V, determine whether the
307 address of V escapes the current function, making V call-clobbered
308 (i.e., whether &V is stored in a global variable or if its passed as a
309 function call argument). */
310 compute_points_to_and_addr_escape (ai);
311
312 /* Collect all pointers and addressable variables, compute alias sets,
313 create memory tags for pointers and promote variables whose address is
314 not needed anymore. */
315 setup_pointers_and_addressables (ai);
316
317 /* Compute flow-sensitive, points-to based aliasing for all the name
318 memory tags. Note that this pass needs to be done before flow
319 insensitive analysis because it uses the points-to information
320 gathered before to mark call-clobbered type tags. */
321 compute_flow_sensitive_aliasing (ai);
322
323 /* Compute type-based flow-insensitive aliasing for all the type
324 memory tags. */
325 compute_flow_insensitive_aliasing (ai);
326
327 /* If the program has too many call-clobbered variables and/or function
328 calls, create .GLOBAL_VAR and use it to model call-clobbering
329 semantics at call sites. This reduces the number of virtual operands
330 considerably, improving compile times at the expense of lost
331 aliasing precision. */
332 maybe_create_global_var (ai);
333
334 /* Debugging dumps. */
335 if (dump_file)
336 {
337 dump_referenced_vars (dump_file);
338 if (dump_flags & TDF_STATS)
339 dump_alias_stats (dump_file);
340 dump_points_to_info (dump_file);
341 dump_alias_info (dump_file);
342 }
343
344 /* Deallocate memory used by aliasing data structures. */
345 delete_alias_info (ai);
346 }
347
348 struct tree_opt_pass pass_may_alias =
349 {
350 "alias", /* name */
351 NULL, /* gate */
352 compute_may_aliases, /* execute */
353 NULL, /* sub */
354 NULL, /* next */
355 0, /* static_pass_number */
356 TV_TREE_MAY_ALIAS, /* tv_id */
357 PROP_cfg | PROP_ssa, /* properties_required */
358 PROP_alias, /* properties_provided */
359 0, /* properties_destroyed */
360 0, /* todo_flags_start */
361 TODO_dump_func | TODO_rename_vars
362 | TODO_ggc_collect | TODO_verify_ssa
363 | TODO_verify_stmts, /* todo_flags_finish */
364 0 /* letter */
365 };
366
367
368 /* Data structure used to count the number of dereferences to PTR
369 inside an expression. */
370 struct count_ptr_d
371 {
372 tree ptr;
373 unsigned count;
374 };
375
376
377 /* Helper for count_uses_and_derefs. Called by walk_tree to look for
378 (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
379
380 static tree
381 count_ptr_derefs (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED, void *data)
382 {
383 struct count_ptr_d *count_p = (struct count_ptr_d *) data;
384
385 if (INDIRECT_REF_P (*tp) && TREE_OPERAND (*tp, 0) == count_p->ptr)
386 count_p->count++;
387
388 return NULL_TREE;
389 }
390
391
392 /* Count the number of direct and indirect uses for pointer PTR in
393 statement STMT. The two counts are stored in *NUM_USES_P and
394 *NUM_DEREFS_P respectively. *IS_STORE_P is set to 'true' if at
395 least one of those dereferences is a store operation. */
396
397 static void
398 count_uses_and_derefs (tree ptr, tree stmt, unsigned *num_uses_p,
399 unsigned *num_derefs_p, bool *is_store)
400 {
401 ssa_op_iter i;
402 tree use;
403
404 *num_uses_p = 0;
405 *num_derefs_p = 0;
406 *is_store = false;
407
408 /* Find out the total number of uses of PTR in STMT. */
409 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
410 if (use == ptr)
411 (*num_uses_p)++;
412
413 /* Now count the number of indirect references to PTR. This is
414 truly awful, but we don't have much choice. There are no parent
415 pointers inside INDIRECT_REFs, so an expression like
416 '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
417 find all the indirect and direct uses of x_1 inside. The only
418 shortcut we can take is the fact that GIMPLE only allows
419 INDIRECT_REFs inside the expressions below. */
420 if (TREE_CODE (stmt) == MODIFY_EXPR
421 || (TREE_CODE (stmt) == RETURN_EXPR
422 && TREE_CODE (TREE_OPERAND (stmt, 0)) == MODIFY_EXPR)
423 || TREE_CODE (stmt) == ASM_EXPR
424 || TREE_CODE (stmt) == CALL_EXPR)
425 {
426 tree lhs, rhs;
427
428 if (TREE_CODE (stmt) == MODIFY_EXPR)
429 {
430 lhs = TREE_OPERAND (stmt, 0);
431 rhs = TREE_OPERAND (stmt, 1);
432 }
433 else if (TREE_CODE (stmt) == RETURN_EXPR)
434 {
435 tree e = TREE_OPERAND (stmt, 0);
436 lhs = TREE_OPERAND (e, 0);
437 rhs = TREE_OPERAND (e, 1);
438 }
439 else if (TREE_CODE (stmt) == ASM_EXPR)
440 {
441 lhs = ASM_OUTPUTS (stmt);
442 rhs = ASM_INPUTS (stmt);
443 }
444 else
445 {
446 lhs = NULL_TREE;
447 rhs = stmt;
448 }
449
450 if (lhs && (TREE_CODE (lhs) == TREE_LIST || EXPR_P (lhs)))
451 {
452 struct count_ptr_d count;
453 count.ptr = ptr;
454 count.count = 0;
455 walk_tree (&lhs, count_ptr_derefs, &count, NULL);
456 *is_store = true;
457 *num_derefs_p = count.count;
458 }
459
460 if (rhs && (TREE_CODE (rhs) == TREE_LIST || EXPR_P (rhs)))
461 {
462 struct count_ptr_d count;
463 count.ptr = ptr;
464 count.count = 0;
465 walk_tree (&rhs, count_ptr_derefs, &count, NULL);
466 *num_derefs_p += count.count;
467 }
468 }
469
470 gcc_assert (*num_uses_p >= *num_derefs_p);
471 }
472
473
474 /* Initialize the data structures used for alias analysis. */
475
476 static struct alias_info *
477 init_alias_info (void)
478 {
479 struct alias_info *ai;
480
481 ai = xcalloc (1, sizeof (struct alias_info));
482 ai->ssa_names_visited = sbitmap_alloc (num_ssa_names);
483 sbitmap_zero (ai->ssa_names_visited);
484 VARRAY_TREE_INIT (ai->processed_ptrs, 50, "processed_ptrs");
485 ai->addresses_needed = BITMAP_ALLOC (NULL);
486 VARRAY_UINT_INIT (ai->num_references, num_referenced_vars, "num_references");
487 ai->written_vars = BITMAP_ALLOC (NULL);
488 ai->dereferenced_ptrs_store = BITMAP_ALLOC (NULL);
489 ai->dereferenced_ptrs_load = BITMAP_ALLOC (NULL);
490
491 /* If aliases have been computed before, clear existing information. */
492 if (aliases_computed_p)
493 {
494 unsigned i;
495 basic_block bb;
496
497 /* Make sure that every statement has a valid set of operands.
498 If a statement needs to be scanned for operands while we
499 compute aliases, it may get erroneous operands because all
500 the alias relations are not built at that point.
501 FIXME: This code will become obsolete when operands are not
502 lazily updated. */
503 FOR_EACH_BB (bb)
504 {
505 block_stmt_iterator si;
506 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
507 get_stmt_operands (bsi_stmt (si));
508 }
509
510 /* Similarly, clear the set of addressable variables. In this
511 case, we can just clear the set because addressability is
512 only computed here. */
513 bitmap_clear (addressable_vars);
514
515 /* Clear flow-insensitive alias information from each symbol. */
516 for (i = 0; i < num_referenced_vars; i++)
517 {
518 tree var = referenced_var (i);
519 var_ann_t ann = var_ann (var);
520
521 ann->is_alias_tag = 0;
522 ann->may_aliases = NULL;
523
524 /* Since we are about to re-discover call-clobbered
525 variables, clear the call-clobbered flag. Variables that
526 are intrinsically call-clobbered (globals, local statics,
527 etc) will not be marked by the aliasing code, so we can't
528 remove them from CALL_CLOBBERED_VARS.
529
530 NB: STRUCT_FIELDS are still call clobbered if they are for
531 a global variable, so we *don't* clear their call clobberedness
532 just because they are tags, though we will clear it if they
533 aren't for global variables. */
534 if (ann->mem_tag_kind == NAME_TAG
535 || ann->mem_tag_kind == TYPE_TAG
536 || !is_global_var (var))
537 clear_call_clobbered (var);
538 }
539
540 /* Clear flow-sensitive points-to information from each SSA name. */
541 for (i = 1; i < num_ssa_names; i++)
542 {
543 tree name = ssa_name (i);
544
545 if (!name || !POINTER_TYPE_P (TREE_TYPE (name)))
546 continue;
547
548 if (SSA_NAME_PTR_INFO (name))
549 {
550 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (name);
551
552 /* Clear all the flags but keep the name tag to
553 avoid creating new temporaries unnecessarily. If
554 this pointer is found to point to a subset or
555 superset of its former points-to set, then a new
556 tag will need to be created in create_name_tags. */
557 pi->pt_anything = 0;
558 pi->pt_malloc = 0;
559 pi->pt_null = 0;
560 pi->value_escapes_p = 0;
561 pi->is_dereferenced = 0;
562 if (pi->pt_vars)
563 bitmap_clear (pi->pt_vars);
564 }
565 }
566 }
567
568 /* Next time, we will need to reset alias information. */
569 aliases_computed_p = true;
570
571 return ai;
572 }
573
574
575 /* Deallocate memory used by alias analysis. */
576
577 static void
578 delete_alias_info (struct alias_info *ai)
579 {
580 size_t i;
581
582 sbitmap_free (ai->ssa_names_visited);
583 ai->processed_ptrs = NULL;
584 BITMAP_FREE (ai->addresses_needed);
585
586 for (i = 0; i < ai->num_addressable_vars; i++)
587 {
588 sbitmap_free (ai->addressable_vars[i]->may_aliases);
589 free (ai->addressable_vars[i]);
590 }
591 free (ai->addressable_vars);
592
593 for (i = 0; i < ai->num_pointers; i++)
594 {
595 sbitmap_free (ai->pointers[i]->may_aliases);
596 free (ai->pointers[i]);
597 }
598 free (ai->pointers);
599
600 ai->num_references = NULL;
601 BITMAP_FREE (ai->written_vars);
602 BITMAP_FREE (ai->dereferenced_ptrs_store);
603 BITMAP_FREE (ai->dereferenced_ptrs_load);
604
605 free (ai);
606 }
607
608
609 /* Walk use-def chains for pointer PTR to determine what variables is PTR
610 pointing to. */
611
612 static void
613 collect_points_to_info_for (struct alias_info *ai, tree ptr)
614 {
615 gcc_assert (POINTER_TYPE_P (TREE_TYPE (ptr)));
616
617 if (!TEST_BIT (ai->ssa_names_visited, SSA_NAME_VERSION (ptr)))
618 {
619 SET_BIT (ai->ssa_names_visited, SSA_NAME_VERSION (ptr));
620 walk_use_def_chains (ptr, collect_points_to_info_r, ai, true);
621 VARRAY_PUSH_TREE (ai->processed_ptrs, ptr);
622 }
623 }
624
625
626 /* Traverse use-def links for all the pointers in the program to collect
627 address escape and points-to information.
628
629 This is loosely based on the same idea described in R. Hasti and S.
630 Horwitz, ``Using static single assignment form to improve
631 flow-insensitive pointer analysis,'' in SIGPLAN Conference on
632 Programming Language Design and Implementation, pp. 97-105, 1998. */
633
634 static void
635 compute_points_to_and_addr_escape (struct alias_info *ai)
636 {
637 basic_block bb;
638 unsigned i;
639 tree op;
640 ssa_op_iter iter;
641
642 timevar_push (TV_TREE_PTA);
643
644 FOR_EACH_BB (bb)
645 {
646 bb_ann_t block_ann = bb_ann (bb);
647 block_stmt_iterator si;
648
649 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
650 {
651 bitmap addr_taken;
652 tree stmt = bsi_stmt (si);
653 bool stmt_escapes_p = is_escape_site (stmt, ai);
654 bitmap_iterator bi;
655
656 /* Mark all the variables whose address are taken by the
657 statement. Note that this will miss all the addresses taken
658 in PHI nodes (those are discovered while following the use-def
659 chains). */
660 get_stmt_operands (stmt);
661 addr_taken = addresses_taken (stmt);
662 if (addr_taken)
663 EXECUTE_IF_SET_IN_BITMAP (addr_taken, 0, i, bi)
664 {
665 tree var = referenced_var (i);
666 bitmap_set_bit (ai->addresses_needed, var_ann (var)->uid);
667 if (stmt_escapes_p)
668 mark_call_clobbered (var);
669 }
670
671 if (stmt_escapes_p)
672 block_ann->has_escape_site = 1;
673
674 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE)
675 {
676 var_ann_t v_ann = var_ann (SSA_NAME_VAR (op));
677 struct ptr_info_def *pi;
678 bool is_store;
679 unsigned num_uses, num_derefs;
680
681 /* If the operand's variable may be aliased, keep track
682 of how many times we've referenced it. This is used
683 for alias grouping in compute_flow_sensitive_aliasing.
684 Note that we don't need to grow AI->NUM_REFERENCES
685 because we are processing regular variables, not
686 memory tags (the array's initial size is set to
687 NUM_REFERENCED_VARS). */
688 if (may_be_aliased (SSA_NAME_VAR (op)))
689 (VARRAY_UINT (ai->num_references, v_ann->uid))++;
690
691 if (!POINTER_TYPE_P (TREE_TYPE (op)))
692 continue;
693
694 collect_points_to_info_for (ai, op);
695
696 pi = SSA_NAME_PTR_INFO (op);
697 count_uses_and_derefs (op, stmt, &num_uses, &num_derefs,
698 &is_store);
699
700 if (num_derefs > 0)
701 {
702 /* Mark OP as dereferenced. In a subsequent pass,
703 dereferenced pointers that point to a set of
704 variables will be assigned a name tag to alias
705 all the variables OP points to. */
706 pi->is_dereferenced = 1;
707
708 /* Keep track of how many time we've dereferenced each
709 pointer. Again, we don't need to grow
710 AI->NUM_REFERENCES because we're processing
711 existing program variables. */
712 (VARRAY_UINT (ai->num_references, v_ann->uid))++;
713
714 /* If this is a store operation, mark OP as being
715 dereferenced to store, otherwise mark it as being
716 dereferenced to load. */
717 if (is_store)
718 bitmap_set_bit (ai->dereferenced_ptrs_store, v_ann->uid);
719 else
720 bitmap_set_bit (ai->dereferenced_ptrs_load, v_ann->uid);
721 }
722
723 if (stmt_escapes_p && num_derefs < num_uses)
724 {
725 /* If STMT is an escape point and STMT contains at
726 least one direct use of OP, then the value of OP
727 escapes and so the pointed-to variables need to
728 be marked call-clobbered. */
729 pi->value_escapes_p = 1;
730
731 /* If the statement makes a function call, assume
732 that pointer OP will be dereferenced in a store
733 operation inside the called function. */
734 if (get_call_expr_in (stmt))
735 {
736 bitmap_set_bit (ai->dereferenced_ptrs_store, v_ann->uid);
737 pi->is_dereferenced = 1;
738 }
739 }
740 }
741
742 /* Update reference counter for definitions to any
743 potentially aliased variable. This is used in the alias
744 grouping heuristics. */
745 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_DEF)
746 {
747 tree var = SSA_NAME_VAR (op);
748 var_ann_t ann = var_ann (var);
749 bitmap_set_bit (ai->written_vars, ann->uid);
750 if (may_be_aliased (var))
751 (VARRAY_UINT (ai->num_references, ann->uid))++;
752
753 if (POINTER_TYPE_P (TREE_TYPE (op)))
754 collect_points_to_info_for (ai, op);
755 }
756
757 /* Mark variables in V_MAY_DEF operands as being written to. */
758 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_DEFS)
759 {
760 tree var = SSA_NAME_VAR (op);
761 var_ann_t ann = var_ann (var);
762 bitmap_set_bit (ai->written_vars, ann->uid);
763 }
764
765 /* After promoting variables and computing aliasing we will
766 need to re-scan most statements. FIXME: Try to minimize the
767 number of statements re-scanned. It's not really necessary to
768 re-scan *all* statements. */
769 modify_stmt (stmt);
770 }
771 }
772
773 timevar_pop (TV_TREE_PTA);
774 }
775
776
777 /* Create name tags for all the pointers that have been dereferenced.
778 We only create a name tag for a pointer P if P is found to point to
779 a set of variables (so that we can alias them to *P) or if it is
780 the result of a call to malloc (which means that P cannot point to
781 anything else nor alias any other variable).
782
783 If two pointers P and Q point to the same set of variables, they
784 are assigned the same name tag. */
785
786 static void
787 create_name_tags (struct alias_info *ai)
788 {
789 size_t i;
790
791 for (i = 0; i < VARRAY_ACTIVE_SIZE (ai->processed_ptrs); i++)
792 {
793 tree ptr = VARRAY_TREE (ai->processed_ptrs, i);
794 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
795
796 if (pi->pt_anything || !pi->is_dereferenced)
797 {
798 /* No name tags for pointers that have not been
799 dereferenced or point to an arbitrary location. */
800 pi->name_mem_tag = NULL_TREE;
801 continue;
802 }
803
804 if (pi->pt_vars && !bitmap_empty_p (pi->pt_vars))
805 {
806 size_t j;
807 tree old_name_tag = pi->name_mem_tag;
808
809 /* If PTR points to a set of variables, check if we don't
810 have another pointer Q with the same points-to set before
811 creating a tag. If so, use Q's tag instead of creating a
812 new one.
813
814 This is important for not creating unnecessary symbols
815 and also for copy propagation. If we ever need to
816 propagate PTR into Q or vice-versa, we would run into
817 problems if they both had different name tags because
818 they would have different SSA version numbers (which
819 would force us to take the name tags in and out of SSA). */
820 for (j = 0; j < i; j++)
821 {
822 tree q = VARRAY_TREE (ai->processed_ptrs, j);
823 struct ptr_info_def *qi = SSA_NAME_PTR_INFO (q);
824
825 if (qi
826 && qi->pt_vars
827 && qi->name_mem_tag
828 && bitmap_equal_p (pi->pt_vars, qi->pt_vars))
829 {
830 pi->name_mem_tag = qi->name_mem_tag;
831 break;
832 }
833 }
834
835 /* If we didn't find a pointer with the same points-to set
836 as PTR, create a new name tag if needed. */
837 if (pi->name_mem_tag == NULL_TREE)
838 pi->name_mem_tag = get_nmt_for (ptr);
839
840 /* If the new name tag computed for PTR is different than
841 the old name tag that it used to have, then the old tag
842 needs to be removed from the IL, so we mark it for
843 renaming. */
844 if (old_name_tag && old_name_tag != pi->name_mem_tag)
845 bitmap_set_bit (vars_to_rename, var_ann (old_name_tag)->uid);
846 }
847 else if (pi->pt_malloc)
848 {
849 /* Otherwise, create a unique name tag for this pointer. */
850 pi->name_mem_tag = get_nmt_for (ptr);
851 }
852 else
853 {
854 /* Only pointers that may point to malloc or other variables
855 may receive a name tag. If the pointer does not point to
856 a known spot, we should use type tags. */
857 set_pt_anything (ptr);
858 continue;
859 }
860
861 TREE_THIS_VOLATILE (pi->name_mem_tag)
862 |= TREE_THIS_VOLATILE (TREE_TYPE (TREE_TYPE (ptr)));
863
864 /* Mark the new name tag for renaming. */
865 bitmap_set_bit (vars_to_rename, var_ann (pi->name_mem_tag)->uid);
866 }
867 }
868
869
870
871 /* For every pointer P_i in AI->PROCESSED_PTRS, create may-alias sets for
872 the name memory tag (NMT) associated with P_i. If P_i escapes, then its
873 name tag and the variables it points-to are call-clobbered. Finally, if
874 P_i escapes and we could not determine where it points to, then all the
875 variables in the same alias set as *P_i are marked call-clobbered. This
876 is necessary because we must assume that P_i may take the address of any
877 variable in the same alias set. */
878
879 static void
880 compute_flow_sensitive_aliasing (struct alias_info *ai)
881 {
882 size_t i;
883
884 create_name_tags (ai);
885
886 for (i = 0; i < VARRAY_ACTIVE_SIZE (ai->processed_ptrs); i++)
887 {
888 unsigned j;
889 tree ptr = VARRAY_TREE (ai->processed_ptrs, i);
890 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
891 var_ann_t v_ann = var_ann (SSA_NAME_VAR (ptr));
892 bitmap_iterator bi;
893
894 if (pi->value_escapes_p || pi->pt_anything)
895 {
896 /* If PTR escapes or may point to anything, then its associated
897 memory tags and pointed-to variables are call-clobbered. */
898 if (pi->name_mem_tag)
899 mark_call_clobbered (pi->name_mem_tag);
900
901 if (v_ann->type_mem_tag)
902 mark_call_clobbered (v_ann->type_mem_tag);
903
904 if (pi->pt_vars)
905 EXECUTE_IF_SET_IN_BITMAP (pi->pt_vars, 0, j, bi)
906 {
907 mark_call_clobbered (referenced_var (j));
908 }
909 }
910
911 /* Set up aliasing information for PTR's name memory tag (if it has
912 one). Note that only pointers that have been dereferenced will
913 have a name memory tag. */
914 if (pi->name_mem_tag && pi->pt_vars)
915 EXECUTE_IF_SET_IN_BITMAP (pi->pt_vars, 0, j, bi)
916 {
917 add_may_alias (pi->name_mem_tag, referenced_var (j));
918 add_may_alias (v_ann->type_mem_tag, referenced_var (j));
919 }
920
921 /* If the name tag is call clobbered, so is the type tag
922 associated with the base VAR_DECL. */
923 if (pi->name_mem_tag
924 && v_ann->type_mem_tag
925 && is_call_clobbered (pi->name_mem_tag))
926 mark_call_clobbered (v_ann->type_mem_tag);
927 }
928 }
929
930
931 /* Compute type-based alias sets. Traverse all the pointers and
932 addressable variables found in setup_pointers_and_addressables.
933
934 For every pointer P in AI->POINTERS and addressable variable V in
935 AI->ADDRESSABLE_VARS, add V to the may-alias sets of P's type
936 memory tag (TMT) if their alias sets conflict. V is then marked as
937 an alias tag so that the operand scanner knows that statements
938 containing V have aliased operands. */
939
940 static void
941 compute_flow_insensitive_aliasing (struct alias_info *ai)
942 {
943 size_t i;
944
945 /* Initialize counter for the total number of virtual operands that
946 aliasing will introduce. When AI->TOTAL_ALIAS_VOPS goes beyond the
947 threshold set by --params max-alias-vops, we enable alias
948 grouping. */
949 ai->total_alias_vops = 0;
950
951 /* For every pointer P, determine which addressable variables may alias
952 with P's type memory tag. */
953 for (i = 0; i < ai->num_pointers; i++)
954 {
955 size_t j;
956 struct alias_map_d *p_map = ai->pointers[i];
957 tree tag = var_ann (p_map->var)->type_mem_tag;
958 var_ann_t tag_ann = var_ann (tag);
959
960 p_map->total_alias_vops = 0;
961 p_map->may_aliases = sbitmap_alloc (num_referenced_vars);
962 sbitmap_zero (p_map->may_aliases);
963
964 for (j = 0; j < ai->num_addressable_vars; j++)
965 {
966 struct alias_map_d *v_map;
967 var_ann_t v_ann;
968 tree var;
969 bool tag_stored_p, var_stored_p;
970
971 v_map = ai->addressable_vars[j];
972 var = v_map->var;
973 v_ann = var_ann (var);
974
975 /* Skip memory tags and variables that have never been
976 written to. We also need to check if the variables are
977 call-clobbered because they may be overwritten by
978 function calls.
979
980 Note this is effectively random accessing elements in
981 the sparse bitset, which can be highly inefficient.
982 So we first check the call_clobbered status of the
983 tag and variable before querying the bitmap. */
984 tag_stored_p = is_call_clobbered (tag)
985 || bitmap_bit_p (ai->written_vars, tag_ann->uid);
986 var_stored_p = is_call_clobbered (var)
987 || bitmap_bit_p (ai->written_vars, v_ann->uid);
988 if (!tag_stored_p && !var_stored_p)
989 continue;
990
991 if (may_alias_p (p_map->var, p_map->set, var, v_map->set))
992 {
993 subvar_t svars;
994 size_t num_tag_refs, num_var_refs;
995
996 num_tag_refs = VARRAY_UINT (ai->num_references, tag_ann->uid);
997 num_var_refs = VARRAY_UINT (ai->num_references, v_ann->uid);
998
999 /* Add VAR to TAG's may-aliases set. */
1000
1001 /* If this is an aggregate, we may have subvariables for it
1002 that need to be pointed to. */
1003 if (var_can_have_subvars (var)
1004 && (svars = get_subvars_for_var (var)))
1005 {
1006 subvar_t sv;
1007
1008 for (sv = svars; sv; sv = sv->next)
1009 add_may_alias (tag, sv->var);
1010 }
1011 else
1012 {
1013 add_may_alias (tag, var);
1014 }
1015
1016 /* Update the total number of virtual operands due to
1017 aliasing. Since we are adding one more alias to TAG's
1018 may-aliases set, the total number of virtual operands due
1019 to aliasing will be increased by the number of references
1020 made to VAR and TAG (every reference to TAG will also
1021 count as a reference to VAR). */
1022 ai->total_alias_vops += (num_var_refs + num_tag_refs);
1023 p_map->total_alias_vops += (num_var_refs + num_tag_refs);
1024
1025 /* Update the bitmap used to represent TAG's alias set
1026 in case we need to group aliases. */
1027 SET_BIT (p_map->may_aliases, var_ann (var)->uid);
1028 }
1029 }
1030 }
1031
1032 /* Since this analysis is based exclusively on symbols, it fails to
1033 handle cases where two pointers P and Q have different memory
1034 tags with conflicting alias set numbers but no aliased symbols in
1035 common.
1036
1037 For example, suppose that we have two memory tags TMT.1 and TMT.2
1038 such that
1039
1040 may-aliases (TMT.1) = { a }
1041 may-aliases (TMT.2) = { b }
1042
1043 and the alias set number of TMT.1 conflicts with that of TMT.2.
1044 Since they don't have symbols in common, loads and stores from
1045 TMT.1 and TMT.2 will seem independent of each other, which will
1046 lead to the optimizers making invalid transformations (see
1047 testsuite/gcc.c-torture/execute/pr15262-[12].c).
1048
1049 To avoid this problem, we do a final traversal of AI->POINTERS
1050 looking for pairs of pointers that have no aliased symbols in
1051 common and yet have conflicting alias set numbers. */
1052 for (i = 0; i < ai->num_pointers; i++)
1053 {
1054 size_t j;
1055 struct alias_map_d *p_map1 = ai->pointers[i];
1056 tree tag1 = var_ann (p_map1->var)->type_mem_tag;
1057 sbitmap may_aliases1 = p_map1->may_aliases;
1058
1059 for (j = i + 1; j < ai->num_pointers; j++)
1060 {
1061 struct alias_map_d *p_map2 = ai->pointers[j];
1062 tree tag2 = var_ann (p_map2->var)->type_mem_tag;
1063 sbitmap may_aliases2 = p_map2->may_aliases;
1064
1065 /* If the pointers may not point to each other, do nothing. */
1066 if (!may_alias_p (p_map1->var, p_map1->set, tag2, p_map2->set))
1067 continue;
1068
1069 /* The two pointers may alias each other. If they already have
1070 symbols in common, do nothing. */
1071 if (sbitmap_any_common_bits (may_aliases1, may_aliases2))
1072 continue;
1073
1074 if (sbitmap_first_set_bit (may_aliases2) >= 0)
1075 {
1076 size_t k;
1077
1078 /* Add all the aliases for TAG2 into TAG1's alias set.
1079 FIXME, update grouping heuristic counters. */
1080 EXECUTE_IF_SET_IN_SBITMAP (may_aliases2, 0, k,
1081 add_may_alias (tag1, referenced_var (k)));
1082 sbitmap_a_or_b (may_aliases1, may_aliases1, may_aliases2);
1083 }
1084 else
1085 {
1086 /* Since TAG2 does not have any aliases of its own, add
1087 TAG2 itself to the alias set of TAG1. */
1088 add_may_alias (tag1, tag2);
1089 SET_BIT (may_aliases1, var_ann (tag2)->uid);
1090 }
1091 }
1092 }
1093
1094 if (dump_file)
1095 fprintf (dump_file, "%s: Total number of aliased vops: %ld\n",
1096 get_name (current_function_decl),
1097 ai->total_alias_vops);
1098
1099 /* Determine if we need to enable alias grouping. */
1100 if (ai->total_alias_vops >= MAX_ALIASED_VOPS)
1101 group_aliases (ai);
1102 }
1103
1104
1105 /* Comparison function for qsort used in group_aliases. */
1106
1107 static int
1108 total_alias_vops_cmp (const void *p, const void *q)
1109 {
1110 const struct alias_map_d **p1 = (const struct alias_map_d **)p;
1111 const struct alias_map_d **p2 = (const struct alias_map_d **)q;
1112 long n1 = (*p1)->total_alias_vops;
1113 long n2 = (*p2)->total_alias_vops;
1114
1115 /* We want to sort in descending order. */
1116 return (n1 > n2 ? -1 : (n1 == n2) ? 0 : 1);
1117 }
1118
1119 /* Group all the aliases for TAG to make TAG represent all the
1120 variables in its alias set. Update the total number
1121 of virtual operands due to aliasing (AI->TOTAL_ALIAS_VOPS). This
1122 function will make TAG be the unique alias tag for all the
1123 variables in its may-aliases. So, given:
1124
1125 may-aliases(TAG) = { V1, V2, V3 }
1126
1127 This function will group the variables into:
1128
1129 may-aliases(V1) = { TAG }
1130 may-aliases(V2) = { TAG }
1131 may-aliases(V2) = { TAG } */
1132
1133 static void
1134 group_aliases_into (tree tag, sbitmap tag_aliases, struct alias_info *ai)
1135 {
1136 size_t i;
1137 var_ann_t tag_ann = var_ann (tag);
1138 size_t num_tag_refs = VARRAY_UINT (ai->num_references, tag_ann->uid);
1139
1140 EXECUTE_IF_SET_IN_SBITMAP (tag_aliases, 0, i,
1141 {
1142 tree var = referenced_var (i);
1143 var_ann_t ann = var_ann (var);
1144
1145 /* Make TAG the unique alias of VAR. */
1146 ann->is_alias_tag = 0;
1147 ann->may_aliases = NULL;
1148
1149 /* Note that VAR and TAG may be the same if the function has no
1150 addressable variables (see the discussion at the end of
1151 setup_pointers_and_addressables). */
1152 if (var != tag)
1153 add_may_alias (var, tag);
1154
1155 /* Reduce total number of virtual operands contributed
1156 by TAG on behalf of VAR. Notice that the references to VAR
1157 itself won't be removed. We will merely replace them with
1158 references to TAG. */
1159 ai->total_alias_vops -= num_tag_refs;
1160 });
1161
1162 /* We have reduced the number of virtual operands that TAG makes on
1163 behalf of all the variables formerly aliased with it. However,
1164 we have also "removed" all the virtual operands for TAG itself,
1165 so we add them back. */
1166 ai->total_alias_vops += num_tag_refs;
1167
1168 /* TAG no longer has any aliases. */
1169 tag_ann->may_aliases = NULL;
1170 }
1171
1172
1173 /* Group may-aliases sets to reduce the number of virtual operands due
1174 to aliasing.
1175
1176 1- Sort the list of pointers in decreasing number of contributed
1177 virtual operands.
1178
1179 2- Take the first entry in AI->POINTERS and revert the role of
1180 the memory tag and its aliases. Usually, whenever an aliased
1181 variable Vi is found to alias with a memory tag T, we add Vi
1182 to the may-aliases set for T. Meaning that after alias
1183 analysis, we will have:
1184
1185 may-aliases(T) = { V1, V2, V3, ..., Vn }
1186
1187 This means that every statement that references T, will get 'n'
1188 virtual operands for each of the Vi tags. But, when alias
1189 grouping is enabled, we make T an alias tag and add it to the
1190 alias set of all the Vi variables:
1191
1192 may-aliases(V1) = { T }
1193 may-aliases(V2) = { T }
1194 ...
1195 may-aliases(Vn) = { T }
1196
1197 This has two effects: (a) statements referencing T will only get
1198 a single virtual operand, and, (b) all the variables Vi will now
1199 appear to alias each other. So, we lose alias precision to
1200 improve compile time. But, in theory, a program with such a high
1201 level of aliasing should not be very optimizable in the first
1202 place.
1203
1204 3- Since variables may be in the alias set of more than one
1205 memory tag, the grouping done in step (2) needs to be extended
1206 to all the memory tags that have a non-empty intersection with
1207 the may-aliases set of tag T. For instance, if we originally
1208 had these may-aliases sets:
1209
1210 may-aliases(T) = { V1, V2, V3 }
1211 may-aliases(R) = { V2, V4 }
1212
1213 In step (2) we would have reverted the aliases for T as:
1214
1215 may-aliases(V1) = { T }
1216 may-aliases(V2) = { T }
1217 may-aliases(V3) = { T }
1218
1219 But note that now V2 is no longer aliased with R. We could
1220 add R to may-aliases(V2), but we are in the process of
1221 grouping aliases to reduce virtual operands so what we do is
1222 add V4 to the grouping to obtain:
1223
1224 may-aliases(V1) = { T }
1225 may-aliases(V2) = { T }
1226 may-aliases(V3) = { T }
1227 may-aliases(V4) = { T }
1228
1229 4- If the total number of virtual operands due to aliasing is
1230 still above the threshold set by max-alias-vops, go back to (2). */
1231
1232 static void
1233 group_aliases (struct alias_info *ai)
1234 {
1235 size_t i;
1236
1237 /* Sort the POINTERS array in descending order of contributed
1238 virtual operands. */
1239 qsort (ai->pointers, ai->num_pointers, sizeof (struct alias_map_d *),
1240 total_alias_vops_cmp);
1241
1242 /* For every pointer in AI->POINTERS, reverse the roles of its tag
1243 and the tag's may-aliases set. */
1244 for (i = 0; i < ai->num_pointers; i++)
1245 {
1246 size_t j;
1247 tree tag1 = var_ann (ai->pointers[i]->var)->type_mem_tag;
1248 sbitmap tag1_aliases = ai->pointers[i]->may_aliases;
1249
1250 /* Skip tags that have been grouped already. */
1251 if (ai->pointers[i]->grouped_p)
1252 continue;
1253
1254 /* See if TAG1 had any aliases in common with other type tags.
1255 If we find a TAG2 with common aliases with TAG1, add TAG2's
1256 aliases into TAG1. */
1257 for (j = i + 1; j < ai->num_pointers; j++)
1258 {
1259 sbitmap tag2_aliases = ai->pointers[j]->may_aliases;
1260
1261 if (sbitmap_any_common_bits (tag1_aliases, tag2_aliases))
1262 {
1263 tree tag2 = var_ann (ai->pointers[j]->var)->type_mem_tag;
1264
1265 sbitmap_a_or_b (tag1_aliases, tag1_aliases, tag2_aliases);
1266
1267 /* TAG2 does not need its aliases anymore. */
1268 sbitmap_zero (tag2_aliases);
1269 var_ann (tag2)->may_aliases = NULL;
1270
1271 /* TAG1 is the unique alias of TAG2. */
1272 add_may_alias (tag2, tag1);
1273
1274 ai->pointers[j]->grouped_p = true;
1275 }
1276 }
1277
1278 /* Now group all the aliases we collected into TAG1. */
1279 group_aliases_into (tag1, tag1_aliases, ai);
1280
1281 /* If we've reduced total number of virtual operands below the
1282 threshold, stop. */
1283 if (ai->total_alias_vops < MAX_ALIASED_VOPS)
1284 break;
1285 }
1286
1287 /* Finally, all the variables that have been grouped cannot be in
1288 the may-alias set of name memory tags. Suppose that we have
1289 grouped the aliases in this code so that may-aliases(a) = TMT.20
1290
1291 p_5 = &a;
1292 ...
1293 # a_9 = V_MAY_DEF <a_8>
1294 p_5->field = 0
1295 ... Several modifications to TMT.20 ...
1296 # VUSE <a_9>
1297 x_30 = p_5->field
1298
1299 Since p_5 points to 'a', the optimizers will try to propagate 0
1300 into p_5->field, but that is wrong because there have been
1301 modifications to 'TMT.20' in between. To prevent this we have to
1302 replace 'a' with 'TMT.20' in the name tag of p_5. */
1303 for (i = 0; i < VARRAY_ACTIVE_SIZE (ai->processed_ptrs); i++)
1304 {
1305 size_t j;
1306 tree ptr = VARRAY_TREE (ai->processed_ptrs, i);
1307 tree name_tag = SSA_NAME_PTR_INFO (ptr)->name_mem_tag;
1308 varray_type aliases;
1309
1310 if (name_tag == NULL_TREE)
1311 continue;
1312
1313 aliases = var_ann (name_tag)->may_aliases;
1314 for (j = 0; aliases && j < VARRAY_ACTIVE_SIZE (aliases); j++)
1315 {
1316 tree alias = VARRAY_TREE (aliases, j);
1317 var_ann_t ann = var_ann (alias);
1318
1319 if ((ann->mem_tag_kind == NOT_A_TAG
1320 || ann->mem_tag_kind == STRUCT_FIELD)
1321 && ann->may_aliases)
1322 {
1323 tree new_alias;
1324
1325 gcc_assert (VARRAY_ACTIVE_SIZE (ann->may_aliases) == 1);
1326
1327 new_alias = VARRAY_TREE (ann->may_aliases, 0);
1328 replace_may_alias (name_tag, j, new_alias);
1329 }
1330 }
1331 }
1332
1333 if (dump_file)
1334 fprintf (dump_file,
1335 "%s: Total number of aliased vops after grouping: %ld%s\n",
1336 get_name (current_function_decl),
1337 ai->total_alias_vops,
1338 (ai->total_alias_vops < 0) ? " (negative values are OK)" : "");
1339 }
1340
1341
1342 /* Create a new alias set entry for VAR in AI->ADDRESSABLE_VARS. */
1343
1344 static void
1345 create_alias_map_for (tree var, struct alias_info *ai)
1346 {
1347 struct alias_map_d *alias_map;
1348 alias_map = xcalloc (1, sizeof (*alias_map));
1349 alias_map->var = var;
1350 alias_map->set = get_alias_set (var);
1351 ai->addressable_vars[ai->num_addressable_vars++] = alias_map;
1352 }
1353
1354
1355 /* Create memory tags for all the dereferenced pointers and build the
1356 ADDRESSABLE_VARS and POINTERS arrays used for building the may-alias
1357 sets. Based on the address escape and points-to information collected
1358 earlier, this pass will also clear the TREE_ADDRESSABLE flag from those
1359 variables whose address is not needed anymore. */
1360
1361 static void
1362 setup_pointers_and_addressables (struct alias_info *ai)
1363 {
1364 size_t i, n_vars, num_addressable_vars, num_pointers;
1365
1366 /* Size up the arrays ADDRESSABLE_VARS and POINTERS. */
1367 num_addressable_vars = num_pointers = 0;
1368 for (i = 0; i < num_referenced_vars; i++)
1369 {
1370 tree var = referenced_var (i);
1371
1372 if (may_be_aliased (var))
1373 num_addressable_vars++;
1374
1375 if (POINTER_TYPE_P (TREE_TYPE (var)))
1376 {
1377 /* Since we don't keep track of volatile variables, assume that
1378 these pointers are used in indirect store operations. */
1379 if (TREE_THIS_VOLATILE (var))
1380 bitmap_set_bit (ai->dereferenced_ptrs_store, var_ann (var)->uid);
1381
1382 num_pointers++;
1383 }
1384 }
1385
1386 /* Create ADDRESSABLE_VARS and POINTERS. Note that these arrays are
1387 always going to be slightly bigger than we actually need them
1388 because some TREE_ADDRESSABLE variables will be marked
1389 non-addressable below and only pointers with unique type tags are
1390 going to be added to POINTERS. */
1391 ai->addressable_vars = xcalloc (num_addressable_vars,
1392 sizeof (struct alias_map_d *));
1393 ai->pointers = xcalloc (num_pointers, sizeof (struct alias_map_d *));
1394 ai->num_addressable_vars = 0;
1395 ai->num_pointers = 0;
1396
1397 /* Since we will be creating type memory tags within this loop, cache the
1398 value of NUM_REFERENCED_VARS to avoid processing the additional tags
1399 unnecessarily. */
1400 n_vars = num_referenced_vars;
1401
1402 for (i = 0; i < n_vars; i++)
1403 {
1404 tree var = referenced_var (i);
1405 var_ann_t v_ann = var_ann (var);
1406 subvar_t svars;
1407
1408 /* Name memory tags already have flow-sensitive aliasing
1409 information, so they need not be processed by
1410 compute_flow_insensitive_aliasing. Similarly, type memory
1411 tags are already accounted for when we process their
1412 associated pointer.
1413
1414 Structure fields, on the other hand, have to have some of this
1415 information processed for them, but it's pointless to mark them
1416 non-addressable (since they are fake variables anyway). */
1417 if (v_ann->mem_tag_kind != NOT_A_TAG
1418 && v_ann->mem_tag_kind != STRUCT_FIELD)
1419 continue;
1420
1421 /* Remove the ADDRESSABLE flag from every addressable variable whose
1422 address is not needed anymore. This is caused by the propagation
1423 of ADDR_EXPR constants into INDIRECT_REF expressions and the
1424 removal of dead pointer assignments done by the early scalar
1425 cleanup passes. */
1426 if (TREE_ADDRESSABLE (var) && v_ann->mem_tag_kind != STRUCT_FIELD)
1427 {
1428 if (!bitmap_bit_p (ai->addresses_needed, v_ann->uid)
1429 && TREE_CODE (var) != RESULT_DECL
1430 && !is_global_var (var))
1431 {
1432 bool okay_to_mark = true;
1433 /* Since VAR is now a regular GIMPLE register, we will need
1434 to rename VAR into SSA afterwards. */
1435 bitmap_set_bit (vars_to_rename, v_ann->uid);
1436
1437 if (var_can_have_subvars (var)
1438 && (svars = get_subvars_for_var (var)))
1439 {
1440 subvar_t sv;
1441
1442 for (sv = svars; sv; sv = sv->next)
1443 {
1444 var_ann_t svann = var_ann (sv->var);
1445 if (bitmap_bit_p (ai->addresses_needed, svann->uid))
1446 okay_to_mark = false;
1447 bitmap_set_bit (vars_to_rename, svann->uid);
1448 }
1449 }
1450 /* The address of VAR is not needed, remove the
1451 addressable bit, so that it can be optimized as a
1452 regular variable. */
1453 if (okay_to_mark)
1454 mark_non_addressable (var);
1455
1456 }
1457 else
1458 {
1459 /* Add the variable to the set of addressables. Mostly
1460 used when scanning operands for ASM_EXPRs that
1461 clobber memory. In those cases, we need to clobber
1462 all call-clobbered variables and all addressables. */
1463 bitmap_set_bit (addressable_vars, v_ann->uid);
1464 if (var_can_have_subvars (var)
1465 && (svars = get_subvars_for_var (var)))
1466 {
1467 subvar_t sv;
1468 for (sv = svars; sv; sv = sv->next)
1469 bitmap_set_bit (addressable_vars, var_ann (sv->var)->uid);
1470 }
1471
1472 }
1473 }
1474
1475 /* Global variables and addressable locals may be aliased. Create an
1476 entry in ADDRESSABLE_VARS for VAR. */
1477 if (may_be_aliased (var))
1478 {
1479 create_alias_map_for (var, ai);
1480 bitmap_set_bit (vars_to_rename, var_ann (var)->uid);
1481 }
1482
1483 /* Add pointer variables that have been dereferenced to the POINTERS
1484 array and create a type memory tag for them. */
1485 if (POINTER_TYPE_P (TREE_TYPE (var)))
1486 {
1487 if ((bitmap_bit_p (ai->dereferenced_ptrs_store, v_ann->uid)
1488 || bitmap_bit_p (ai->dereferenced_ptrs_load, v_ann->uid)))
1489 {
1490 tree tag;
1491 var_ann_t t_ann;
1492
1493 /* If pointer VAR still doesn't have a memory tag
1494 associated with it, create it now or re-use an
1495 existing one. */
1496 tag = get_tmt_for (var, ai);
1497 t_ann = var_ann (tag);
1498
1499 /* The type tag will need to be renamed into SSA
1500 afterwards. Note that we cannot do this inside
1501 get_tmt_for because aliasing may run multiple times
1502 and we only create type tags the first time. */
1503 bitmap_set_bit (vars_to_rename, t_ann->uid);
1504
1505 /* Associate the tag with pointer VAR. */
1506 v_ann->type_mem_tag = tag;
1507
1508 /* If pointer VAR has been used in a store operation,
1509 then its memory tag must be marked as written-to. */
1510 if (bitmap_bit_p (ai->dereferenced_ptrs_store, v_ann->uid))
1511 bitmap_set_bit (ai->written_vars, t_ann->uid);
1512
1513 /* If pointer VAR is a global variable or a PARM_DECL,
1514 then its memory tag should be considered a global
1515 variable. */
1516 if (TREE_CODE (var) == PARM_DECL || is_global_var (var))
1517 mark_call_clobbered (tag);
1518
1519 /* All the dereferences of pointer VAR count as
1520 references of TAG. Since TAG can be associated with
1521 several pointers, add the dereferences of VAR to the
1522 TAG. We may need to grow AI->NUM_REFERENCES because
1523 we have been adding name and type tags. */
1524 if (t_ann->uid >= VARRAY_SIZE (ai->num_references))
1525 VARRAY_GROW (ai->num_references, t_ann->uid + 10);
1526
1527 VARRAY_UINT (ai->num_references, t_ann->uid)
1528 += VARRAY_UINT (ai->num_references, v_ann->uid);
1529 }
1530 else
1531 {
1532 /* The pointer has not been dereferenced. If it had a
1533 type memory tag, remove it and mark the old tag for
1534 renaming to remove it out of the IL. */
1535 var_ann_t ann = var_ann (var);
1536 tree tag = ann->type_mem_tag;
1537 if (tag)
1538 {
1539 bitmap_set_bit (vars_to_rename, var_ann (tag)->uid);
1540 ann->type_mem_tag = NULL_TREE;
1541 }
1542 }
1543 }
1544 }
1545 }
1546
1547
1548 /* Determine whether to use .GLOBAL_VAR to model call clobbering semantics. At
1549 every call site, we need to emit V_MAY_DEF expressions to represent the
1550 clobbering effects of the call for variables whose address escapes the
1551 current function.
1552
1553 One approach is to group all call-clobbered variables into a single
1554 representative that is used as an alias of every call-clobbered variable
1555 (.GLOBAL_VAR). This works well, but it ties the optimizer hands because
1556 references to any call clobbered variable is a reference to .GLOBAL_VAR.
1557
1558 The second approach is to emit a clobbering V_MAY_DEF for every
1559 call-clobbered variable at call sites. This is the preferred way in terms
1560 of optimization opportunities but it may create too many V_MAY_DEF operands
1561 if there are many call clobbered variables and function calls in the
1562 function.
1563
1564 To decide whether or not to use .GLOBAL_VAR we multiply the number of
1565 function calls found by the number of call-clobbered variables. If that
1566 product is beyond a certain threshold, as determined by the parameterized
1567 values shown below, we use .GLOBAL_VAR.
1568
1569 FIXME. This heuristic should be improved. One idea is to use several
1570 .GLOBAL_VARs of different types instead of a single one. The thresholds
1571 have been derived from a typical bootstrap cycle, including all target
1572 libraries. Compile times were found increase by ~1% compared to using
1573 .GLOBAL_VAR. */
1574
1575 static void
1576 maybe_create_global_var (struct alias_info *ai)
1577 {
1578 unsigned i, n_clobbered;
1579 bitmap_iterator bi;
1580
1581 /* No need to create it, if we have one already. */
1582 if (global_var == NULL_TREE)
1583 {
1584 /* Count all the call-clobbered variables. */
1585 n_clobbered = 0;
1586 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
1587 {
1588 n_clobbered++;
1589 }
1590
1591 /* If the number of virtual operands that would be needed to
1592 model all the call-clobbered variables is larger than
1593 GLOBAL_VAR_THRESHOLD, create .GLOBAL_VAR.
1594
1595 Also create .GLOBAL_VAR if there are no call-clobbered
1596 variables and the program contains a mixture of pure/const
1597 and regular function calls. This is to avoid the problem
1598 described in PR 20115:
1599
1600 int X;
1601 int func_pure (void) { return X; }
1602 int func_non_pure (int a) { X += a; }
1603 int foo ()
1604 {
1605 int a = func_pure ();
1606 func_non_pure (a);
1607 a = func_pure ();
1608 return a;
1609 }
1610
1611 Since foo() has no call-clobbered variables, there is
1612 no relationship between the calls to func_pure and
1613 func_non_pure. Since func_pure has no side-effects, value
1614 numbering optimizations elide the second call to func_pure.
1615 So, if we have some pure/const and some regular calls in the
1616 program we create .GLOBAL_VAR to avoid missing these
1617 relations. */
1618 if (ai->num_calls_found * n_clobbered >= (size_t) GLOBAL_VAR_THRESHOLD
1619 || (n_clobbered == 0
1620 && ai->num_calls_found > 0
1621 && ai->num_pure_const_calls_found > 0
1622 && ai->num_calls_found > ai->num_pure_const_calls_found))
1623 create_global_var ();
1624 }
1625
1626 /* Mark all call-clobbered symbols for renaming. Since the initial
1627 rewrite into SSA ignored all call sites, we may need to rename
1628 .GLOBAL_VAR and the call-clobbered variables. */
1629 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
1630 {
1631 tree var = referenced_var (i);
1632
1633 /* If the function has calls to clobbering functions and
1634 .GLOBAL_VAR has been created, make it an alias for all
1635 call-clobbered variables. */
1636 if (global_var && var != global_var)
1637 {
1638 subvar_t svars;
1639 add_may_alias (var, global_var);
1640 if (var_can_have_subvars (var)
1641 && (svars = get_subvars_for_var (var)))
1642 {
1643 subvar_t sv;
1644 for (sv = svars; sv; sv = sv->next)
1645 bitmap_set_bit (vars_to_rename, var_ann (sv->var)->uid);
1646 }
1647 }
1648
1649 bitmap_set_bit (vars_to_rename, var_ann (var)->uid);
1650 }
1651 }
1652
1653
1654 /* Return TRUE if pointer PTR may point to variable VAR.
1655
1656 MEM_ALIAS_SET is the alias set for the memory location pointed-to by PTR
1657 This is needed because when checking for type conflicts we are
1658 interested in the alias set of the memory location pointed-to by
1659 PTR. The alias set of PTR itself is irrelevant.
1660
1661 VAR_ALIAS_SET is the alias set for VAR. */
1662
1663 static bool
1664 may_alias_p (tree ptr, HOST_WIDE_INT mem_alias_set,
1665 tree var, HOST_WIDE_INT var_alias_set)
1666 {
1667 tree mem;
1668 var_ann_t m_ann;
1669
1670 alias_stats.alias_queries++;
1671 alias_stats.simple_queries++;
1672
1673 /* By convention, a variable cannot alias itself. */
1674 mem = var_ann (ptr)->type_mem_tag;
1675 if (mem == var)
1676 {
1677 alias_stats.alias_noalias++;
1678 alias_stats.simple_resolved++;
1679 return false;
1680 }
1681
1682 m_ann = var_ann (mem);
1683
1684 gcc_assert (m_ann->mem_tag_kind == TYPE_TAG);
1685
1686 alias_stats.tbaa_queries++;
1687
1688 /* If VAR is a pointer with the same alias set as PTR, then dereferencing
1689 PTR can't possibly affect VAR. Note, that we are specifically testing
1690 for PTR's alias set here, not its pointed-to type. We also can't
1691 do this check with relaxed aliasing enabled. */
1692 if (POINTER_TYPE_P (TREE_TYPE (var))
1693 && var_alias_set != 0
1694 && mem_alias_set != 0)
1695 {
1696 HOST_WIDE_INT ptr_alias_set = get_alias_set (ptr);
1697 if (ptr_alias_set == var_alias_set)
1698 {
1699 alias_stats.alias_noalias++;
1700 alias_stats.tbaa_resolved++;
1701 return false;
1702 }
1703 }
1704
1705 /* If the alias sets don't conflict then MEM cannot alias VAR. */
1706 if (!alias_sets_conflict_p (mem_alias_set, var_alias_set))
1707 {
1708 alias_stats.alias_noalias++;
1709 alias_stats.tbaa_resolved++;
1710 return false;
1711 }
1712 alias_stats.alias_mayalias++;
1713 return true;
1714 }
1715
1716
1717 /* Add ALIAS to the set of variables that may alias VAR. */
1718
1719 static void
1720 add_may_alias (tree var, tree alias)
1721 {
1722 size_t i;
1723 var_ann_t v_ann = get_var_ann (var);
1724 var_ann_t a_ann = get_var_ann (alias);
1725
1726 gcc_assert (var != alias);
1727
1728 if (v_ann->may_aliases == NULL)
1729 VARRAY_TREE_INIT (v_ann->may_aliases, 2, "aliases");
1730
1731 /* Avoid adding duplicates. */
1732 for (i = 0; i < VARRAY_ACTIVE_SIZE (v_ann->may_aliases); i++)
1733 if (alias == VARRAY_TREE (v_ann->may_aliases, i))
1734 return;
1735
1736 /* If VAR is a call-clobbered variable, so is its new ALIAS.
1737 FIXME, call-clobbering should only depend on whether an address
1738 escapes. It should be independent of aliasing. */
1739 if (is_call_clobbered (var))
1740 mark_call_clobbered (alias);
1741
1742 /* Likewise. If ALIAS is call-clobbered, so is VAR. */
1743 else if (is_call_clobbered (alias))
1744 mark_call_clobbered (var);
1745
1746 VARRAY_PUSH_TREE (v_ann->may_aliases, alias);
1747 a_ann->is_alias_tag = 1;
1748 }
1749
1750
1751 /* Replace alias I in the alias sets of VAR with NEW_ALIAS. */
1752
1753 static void
1754 replace_may_alias (tree var, size_t i, tree new_alias)
1755 {
1756 var_ann_t v_ann = var_ann (var);
1757 VARRAY_TREE (v_ann->may_aliases, i) = new_alias;
1758
1759 /* If VAR is a call-clobbered variable, so is NEW_ALIAS.
1760 FIXME, call-clobbering should only depend on whether an address
1761 escapes. It should be independent of aliasing. */
1762 if (is_call_clobbered (var))
1763 mark_call_clobbered (new_alias);
1764
1765 /* Likewise. If NEW_ALIAS is call-clobbered, so is VAR. */
1766 else if (is_call_clobbered (new_alias))
1767 mark_call_clobbered (var);
1768 }
1769
1770
1771 /* Mark pointer PTR as pointing to an arbitrary memory location. */
1772
1773 static void
1774 set_pt_anything (tree ptr)
1775 {
1776 struct ptr_info_def *pi = get_ptr_info (ptr);
1777
1778 pi->pt_anything = 1;
1779 pi->pt_malloc = 0;
1780
1781 /* The pointer used to have a name tag, but we now found it pointing
1782 to an arbitrary location. The name tag needs to be renamed and
1783 disassociated from PTR. */
1784 if (pi->name_mem_tag)
1785 {
1786 bitmap_set_bit (vars_to_rename, var_ann (pi->name_mem_tag)->uid);
1787 pi->name_mem_tag = NULL_TREE;
1788 }
1789 }
1790
1791
1792 /* Mark pointer PTR as pointing to a malloc'd memory area. */
1793
1794 static void
1795 set_pt_malloc (tree ptr)
1796 {
1797 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
1798
1799 /* If the pointer has already been found to point to arbitrary
1800 memory locations, it is unsafe to mark it as pointing to malloc. */
1801 if (pi->pt_anything)
1802 return;
1803
1804 pi->pt_malloc = 1;
1805 }
1806
1807
1808 /* Given two different pointers DEST and ORIG. Merge the points-to
1809 information in ORIG into DEST. AI contains all the alias
1810 information collected up to this point. */
1811
1812 static void
1813 merge_pointed_to_info (struct alias_info *ai, tree dest, tree orig)
1814 {
1815 struct ptr_info_def *dest_pi, *orig_pi;
1816
1817 gcc_assert (dest != orig);
1818
1819 /* Make sure we have points-to information for ORIG. */
1820 collect_points_to_info_for (ai, orig);
1821
1822 dest_pi = get_ptr_info (dest);
1823 orig_pi = SSA_NAME_PTR_INFO (orig);
1824
1825 if (orig_pi)
1826 {
1827 gcc_assert (orig_pi != dest_pi);
1828
1829 /* Notice that we never merge PT_MALLOC. This attribute is only
1830 true if the pointer is the result of a malloc() call.
1831 Otherwise, we can end up in this situation:
1832
1833 P_i = malloc ();
1834 ...
1835 P_j = P_i + X;
1836
1837 P_j would be marked as PT_MALLOC, however we currently do not
1838 handle cases of more than one pointer pointing to the same
1839 malloc'd area.
1840
1841 FIXME: If the merging comes from an expression that preserves
1842 the PT_MALLOC attribute (copy assignment, address
1843 arithmetic), we ought to merge PT_MALLOC, but then both
1844 pointers would end up getting different name tags because
1845 create_name_tags is not smart enough to determine that the
1846 two come from the same malloc call. Copy propagation before
1847 aliasing should cure this. */
1848 dest_pi->pt_malloc = 0;
1849 if (orig_pi->pt_malloc || orig_pi->pt_anything)
1850 set_pt_anything (dest);
1851
1852 dest_pi->pt_null |= orig_pi->pt_null;
1853
1854 if (!dest_pi->pt_anything
1855 && orig_pi->pt_vars
1856 && !bitmap_empty_p (orig_pi->pt_vars))
1857 {
1858 if (dest_pi->pt_vars == NULL)
1859 {
1860 dest_pi->pt_vars = BITMAP_GGC_ALLOC ();
1861 bitmap_copy (dest_pi->pt_vars, orig_pi->pt_vars);
1862 }
1863 else
1864 bitmap_ior_into (dest_pi->pt_vars, orig_pi->pt_vars);
1865 }
1866 }
1867 else
1868 set_pt_anything (dest);
1869 }
1870
1871
1872 /* Add EXPR to the list of expressions pointed-to by PTR. */
1873
1874 static void
1875 add_pointed_to_expr (struct alias_info *ai, tree ptr, tree expr)
1876 {
1877 if (TREE_CODE (expr) == WITH_SIZE_EXPR)
1878 expr = TREE_OPERAND (expr, 0);
1879
1880 get_ptr_info (ptr);
1881
1882 if (TREE_CODE (expr) == CALL_EXPR
1883 && (call_expr_flags (expr) & (ECF_MALLOC | ECF_MAY_BE_ALLOCA)))
1884 {
1885 /* If EXPR is a malloc-like call, then the area pointed to PTR
1886 is guaranteed to not alias with anything else. */
1887 set_pt_malloc (ptr);
1888 }
1889 else if (TREE_CODE (expr) == ADDR_EXPR)
1890 {
1891 /* Found P_i = ADDR_EXPR */
1892 add_pointed_to_var (ai, ptr, expr);
1893 }
1894 else if (TREE_CODE (expr) == SSA_NAME && POINTER_TYPE_P (TREE_TYPE (expr)))
1895 {
1896 /* Found P_i = Q_j. */
1897 merge_pointed_to_info (ai, ptr, expr);
1898 }
1899 else if (TREE_CODE (expr) == PLUS_EXPR || TREE_CODE (expr) == MINUS_EXPR)
1900 {
1901 /* Found P_i = PLUS_EXPR or P_i = MINUS_EXPR */
1902 tree op0 = TREE_OPERAND (expr, 0);
1903 tree op1 = TREE_OPERAND (expr, 1);
1904
1905 /* Both operands may be of pointer type. FIXME: Shouldn't
1906 we just expect PTR + OFFSET always? */
1907 if (POINTER_TYPE_P (TREE_TYPE (op0))
1908 && TREE_CODE (op0) != INTEGER_CST)
1909 {
1910 if (TREE_CODE (op0) == SSA_NAME)
1911 merge_pointed_to_info (ai, ptr, op0);
1912 else if (TREE_CODE (op0) == ADDR_EXPR)
1913 add_pointed_to_var (ai, ptr, op0);
1914 else
1915 set_pt_anything (ptr);
1916 }
1917
1918 if (POINTER_TYPE_P (TREE_TYPE (op1))
1919 && TREE_CODE (op1) != INTEGER_CST)
1920 {
1921 if (TREE_CODE (op1) == SSA_NAME)
1922 merge_pointed_to_info (ai, ptr, op1);
1923 else if (TREE_CODE (op1) == ADDR_EXPR)
1924 add_pointed_to_var (ai, ptr, op1);
1925 else
1926 set_pt_anything (ptr);
1927 }
1928
1929 /* Neither operand is a pointer? VAR can be pointing anywhere.
1930 FIXME: Shouldn't we abort here? If we get here, we found
1931 PTR = INT_CST + INT_CST, which should not be a valid pointer
1932 expression. */
1933 if (!(POINTER_TYPE_P (TREE_TYPE (op0))
1934 && TREE_CODE (op0) != INTEGER_CST)
1935 && !(POINTER_TYPE_P (TREE_TYPE (op1))
1936 && TREE_CODE (op1) != INTEGER_CST))
1937 set_pt_anything (ptr);
1938 }
1939 else if (integer_zerop (expr))
1940 {
1941 /* EXPR is the NULL pointer. Mark PTR as pointing to NULL. */
1942 SSA_NAME_PTR_INFO (ptr)->pt_null = 1;
1943 }
1944 else
1945 {
1946 /* If we can't recognize the expression, assume that PTR may
1947 point anywhere. */
1948 set_pt_anything (ptr);
1949 }
1950 }
1951
1952
1953 /* If VALUE is of the form &DECL, add DECL to the set of variables
1954 pointed-to by PTR. Otherwise, add VALUE as a pointed-to expression by
1955 PTR. AI points to the collected alias information. */
1956
1957 static void
1958 add_pointed_to_var (struct alias_info *ai, tree ptr, tree value)
1959 {
1960 struct ptr_info_def *pi = get_ptr_info (ptr);
1961 tree pt_var = NULL_TREE;
1962 HOST_WIDE_INT offset, size;
1963 tree addrop;
1964 size_t uid;
1965 tree ref;
1966 subvar_t svars;
1967
1968 gcc_assert (TREE_CODE (value) == ADDR_EXPR);
1969
1970 addrop = TREE_OPERAND (value, 0);
1971 if (REFERENCE_CLASS_P (addrop))
1972 pt_var = get_base_address (addrop);
1973 else
1974 pt_var = addrop;
1975
1976 /* If this is a component_ref, see if we can get a smaller number of
1977 variables to take the address of. */
1978 if (TREE_CODE (addrop) == COMPONENT_REF
1979 && (ref = okay_component_ref_for_subvars (addrop, &offset ,&size)))
1980 {
1981 subvar_t sv;
1982 svars = get_subvars_for_var (ref);
1983
1984 uid = var_ann (pt_var)->uid;
1985 bitmap_set_bit (ai->addresses_needed, uid);
1986 if (pi->pt_vars == NULL)
1987 pi->pt_vars = BITMAP_GGC_ALLOC ();
1988 /* If the variable is a global, mark the pointer as pointing to
1989 global memory (which will make its tag a global variable). */
1990 if (is_global_var (pt_var))
1991 pi->pt_global_mem = 1;
1992
1993 for (sv = svars; sv; sv = sv->next)
1994 {
1995 if (offset == sv->offset && size == sv->size)
1996 bitmap_set_bit (pi->pt_vars, var_ann (sv->var)->uid);
1997 else if (offset >= sv->offset && offset < (sv->offset + sv->size))
1998 bitmap_set_bit (pi->pt_vars, var_ann (sv->var)->uid);
1999 else if (offset < sv->offset
2000 && (offset + size > sv->offset))
2001 bitmap_set_bit (pi->pt_vars, var_ann (sv->var)->uid);
2002 }
2003 }
2004 else if (pt_var && SSA_VAR_P (pt_var))
2005 {
2006
2007 uid = var_ann (pt_var)->uid;
2008 bitmap_set_bit (ai->addresses_needed, uid);
2009
2010 if (pi->pt_vars == NULL)
2011 pi->pt_vars = BITMAP_GGC_ALLOC ();
2012
2013 /* If this is an aggregate, we may have subvariables for it that need
2014 to be pointed to. */
2015 if (var_can_have_subvars (pt_var)
2016 && (svars = get_subvars_for_var (pt_var)))
2017 {
2018 subvar_t sv;
2019 for (sv = svars; sv; sv = sv->next)
2020 {
2021 uid = var_ann (sv->var)->uid;
2022 bitmap_set_bit (ai->addresses_needed, uid);
2023 bitmap_set_bit (pi->pt_vars, uid);
2024 }
2025 }
2026 else
2027 bitmap_set_bit (pi->pt_vars, uid);
2028
2029 /* If the variable is a global, mark the pointer as pointing to
2030 global memory (which will make its tag a global variable). */
2031 if (is_global_var (pt_var))
2032 pi->pt_global_mem = 1;
2033 }
2034 }
2035
2036
2037 /* Callback for walk_use_def_chains to gather points-to information from the
2038 SSA web.
2039
2040 VAR is an SSA variable or a GIMPLE expression.
2041
2042 STMT is the statement that generates the SSA variable or, if STMT is a
2043 PHI_NODE, VAR is one of the PHI arguments.
2044
2045 DATA is a pointer to a structure of type ALIAS_INFO. */
2046
2047 static bool
2048 collect_points_to_info_r (tree var, tree stmt, void *data)
2049 {
2050 struct alias_info *ai = (struct alias_info *) data;
2051
2052 if (dump_file && (dump_flags & TDF_DETAILS))
2053 {
2054 fprintf (dump_file, "Visiting use-def links for ");
2055 print_generic_expr (dump_file, var, dump_flags);
2056 fprintf (dump_file, "\n");
2057 }
2058
2059 switch (TREE_CODE (stmt))
2060 {
2061 case RETURN_EXPR:
2062 if (TREE_CODE (TREE_OPERAND (stmt, 0)) != MODIFY_EXPR)
2063 abort ();
2064 stmt = TREE_OPERAND (stmt, 0);
2065 /* FALLTHRU */
2066
2067 case MODIFY_EXPR:
2068 {
2069 tree rhs = TREE_OPERAND (stmt, 1);
2070 STRIP_NOPS (rhs);
2071 add_pointed_to_expr (ai, var, rhs);
2072 break;
2073 }
2074
2075 case ASM_EXPR:
2076 /* Pointers defined by __asm__ statements can point anywhere. */
2077 set_pt_anything (var);
2078 break;
2079
2080 case NOP_EXPR:
2081 if (IS_EMPTY_STMT (stmt))
2082 {
2083 tree decl = SSA_NAME_VAR (var);
2084
2085 if (TREE_CODE (decl) == PARM_DECL)
2086 add_pointed_to_expr (ai, var, decl);
2087 else if (DECL_INITIAL (decl))
2088 add_pointed_to_expr (ai, var, DECL_INITIAL (decl));
2089 else
2090 add_pointed_to_expr (ai, var, decl);
2091 }
2092 break;
2093
2094 case PHI_NODE:
2095 {
2096 /* It STMT is a PHI node, then VAR is one of its arguments. The
2097 variable that we are analyzing is the LHS of the PHI node. */
2098 tree lhs = PHI_RESULT (stmt);
2099
2100 switch (TREE_CODE (var))
2101 {
2102 case ADDR_EXPR:
2103 add_pointed_to_var (ai, lhs, var);
2104 break;
2105
2106 case SSA_NAME:
2107 /* Avoid unnecessary merges. */
2108 if (lhs != var)
2109 merge_pointed_to_info (ai, lhs, var);
2110 break;
2111
2112 default:
2113 gcc_assert (is_gimple_min_invariant (var));
2114 add_pointed_to_expr (ai, lhs, var);
2115 break;
2116 }
2117 break;
2118 }
2119
2120 default:
2121 gcc_unreachable ();
2122 }
2123
2124 return false;
2125 }
2126
2127
2128 /* Return true if STMT is an "escape" site from the current function. Escape
2129 sites those statements which might expose the address of a variable
2130 outside the current function. STMT is an escape site iff:
2131
2132 1- STMT is a function call, or
2133 2- STMT is an __asm__ expression, or
2134 3- STMT is an assignment to a non-local variable, or
2135 4- STMT is a return statement.
2136
2137 AI points to the alias information collected so far. */
2138
2139 static bool
2140 is_escape_site (tree stmt, struct alias_info *ai)
2141 {
2142 tree call = get_call_expr_in (stmt);
2143 if (call != NULL_TREE)
2144 {
2145 ai->num_calls_found++;
2146
2147 if (!TREE_SIDE_EFFECTS (call))
2148 ai->num_pure_const_calls_found++;
2149
2150 return true;
2151 }
2152 else if (TREE_CODE (stmt) == ASM_EXPR)
2153 return true;
2154 else if (TREE_CODE (stmt) == MODIFY_EXPR)
2155 {
2156 tree lhs = TREE_OPERAND (stmt, 0);
2157
2158 /* Get to the base of _REF nodes. */
2159 if (TREE_CODE (lhs) != SSA_NAME)
2160 lhs = get_base_address (lhs);
2161
2162 /* If we couldn't recognize the LHS of the assignment, assume that it
2163 is a non-local store. */
2164 if (lhs == NULL_TREE)
2165 return true;
2166
2167 /* If the RHS is a conversion between a pointer and an integer, the
2168 pointer escapes since we can't track the integer. */
2169 if ((TREE_CODE (TREE_OPERAND (stmt, 1)) == NOP_EXPR
2170 || TREE_CODE (TREE_OPERAND (stmt, 1)) == CONVERT_EXPR
2171 || TREE_CODE (TREE_OPERAND (stmt, 1)) == VIEW_CONVERT_EXPR)
2172 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND
2173 (TREE_OPERAND (stmt, 1), 0)))
2174 && !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (stmt, 1))))
2175 return true;
2176
2177 /* If the LHS is an SSA name, it can't possibly represent a non-local
2178 memory store. */
2179 if (TREE_CODE (lhs) == SSA_NAME)
2180 return false;
2181
2182 /* FIXME: LHS is not an SSA_NAME. Even if it's an assignment to a
2183 local variables we cannot be sure if it will escape, because we
2184 don't have information about objects not in SSA form. Need to
2185 implement something along the lines of
2186
2187 J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P.
2188 Midkiff, ``Escape analysis for java,'' in Proceedings of the
2189 Conference on Object-Oriented Programming Systems, Languages, and
2190 Applications (OOPSLA), pp. 1-19, 1999. */
2191 return true;
2192 }
2193 else if (TREE_CODE (stmt) == RETURN_EXPR)
2194 return true;
2195
2196 return false;
2197 }
2198
2199
2200 /* Create a new memory tag of type TYPE. If IS_TYPE_TAG is true, the tag
2201 is considered to represent all the pointers whose pointed-to types are
2202 in the same alias set class. Otherwise, the tag represents a single
2203 SSA_NAME pointer variable. */
2204
2205 static tree
2206 create_memory_tag (tree type, bool is_type_tag)
2207 {
2208 var_ann_t ann;
2209 tree tag = create_tmp_var_raw (type, (is_type_tag) ? "TMT" : "NMT");
2210
2211 /* By default, memory tags are local variables. Alias analysis will
2212 determine whether they should be considered globals. */
2213 DECL_CONTEXT (tag) = current_function_decl;
2214
2215 /* Memory tags are by definition addressable. This also prevents
2216 is_gimple_ref frome confusing memory tags with optimizable
2217 variables. */
2218 TREE_ADDRESSABLE (tag) = 1;
2219
2220 ann = get_var_ann (tag);
2221 ann->mem_tag_kind = (is_type_tag) ? TYPE_TAG : NAME_TAG;
2222 ann->type_mem_tag = NULL_TREE;
2223
2224 /* Add the tag to the symbol table. */
2225 add_referenced_tmp_var (tag);
2226
2227 return tag;
2228 }
2229
2230
2231 /* Create a name memory tag to represent a specific SSA_NAME pointer P_i.
2232 This is used if P_i has been found to point to a specific set of
2233 variables or to a non-aliased memory location like the address returned
2234 by malloc functions. */
2235
2236 static tree
2237 get_nmt_for (tree ptr)
2238 {
2239 struct ptr_info_def *pi = get_ptr_info (ptr);
2240 tree tag = pi->name_mem_tag;
2241
2242 if (tag == NULL_TREE)
2243 tag = create_memory_tag (TREE_TYPE (TREE_TYPE (ptr)), false);
2244
2245 /* If PTR is a PARM_DECL, it points to a global variable or malloc,
2246 then its name tag should be considered a global variable. */
2247 if (TREE_CODE (SSA_NAME_VAR (ptr)) == PARM_DECL
2248 || pi->pt_malloc
2249 || pi->pt_global_mem)
2250 mark_call_clobbered (tag);
2251
2252 return tag;
2253 }
2254
2255
2256 /* Return the type memory tag associated to pointer PTR. A memory tag is an
2257 artificial variable that represents the memory location pointed-to by
2258 PTR. It is used to model the effects of pointer de-references on
2259 addressable variables.
2260
2261 AI points to the data gathered during alias analysis. This function
2262 populates the array AI->POINTERS. */
2263
2264 static tree
2265 get_tmt_for (tree ptr, struct alias_info *ai)
2266 {
2267 size_t i;
2268 tree tag;
2269 tree tag_type = TREE_TYPE (TREE_TYPE (ptr));
2270 HOST_WIDE_INT tag_set = get_alias_set (tag_type);
2271
2272 /* To avoid creating unnecessary memory tags, only create one memory tag
2273 per alias set class. Note that it may be tempting to group
2274 memory tags based on conflicting alias sets instead of
2275 equivalence. That would be wrong because alias sets are not
2276 necessarily transitive (as demonstrated by the libstdc++ test
2277 23_containers/vector/cons/4.cc). Given three alias sets A, B, C
2278 such that conflicts (A, B) == true and conflicts (A, C) == true,
2279 it does not necessarily follow that conflicts (B, C) == true. */
2280 for (i = 0, tag = NULL_TREE; i < ai->num_pointers; i++)
2281 {
2282 struct alias_map_d *curr = ai->pointers[i];
2283 if (tag_set == curr->set)
2284 {
2285 tag = var_ann (curr->var)->type_mem_tag;
2286 break;
2287 }
2288 }
2289
2290 /* If VAR cannot alias with any of the existing memory tags, create a new
2291 tag for PTR and add it to the POINTERS array. */
2292 if (tag == NULL_TREE)
2293 {
2294 struct alias_map_d *alias_map;
2295
2296 /* If PTR did not have a type tag already, create a new TMT.*
2297 artificial variable representing the memory location
2298 pointed-to by PTR. */
2299 if (var_ann (ptr)->type_mem_tag == NULL_TREE)
2300 tag = create_memory_tag (tag_type, true);
2301 else
2302 tag = var_ann (ptr)->type_mem_tag;
2303
2304 /* Add PTR to the POINTERS array. Note that we are not interested in
2305 PTR's alias set. Instead, we cache the alias set for the memory that
2306 PTR points to. */
2307 alias_map = xcalloc (1, sizeof (*alias_map));
2308 alias_map->var = ptr;
2309 alias_map->set = tag_set;
2310 ai->pointers[ai->num_pointers++] = alias_map;
2311 }
2312
2313 /* If the pointed-to type is volatile, so is the tag. */
2314 TREE_THIS_VOLATILE (tag) |= TREE_THIS_VOLATILE (tag_type);
2315
2316 /* Make sure that the type tag has the same alias set as the
2317 pointed-to type. */
2318 gcc_assert (tag_set == get_alias_set (tag));
2319
2320 return tag;
2321 }
2322
2323
2324 /* Create GLOBAL_VAR, an artificial global variable to act as a
2325 representative of all the variables that may be clobbered by function
2326 calls. */
2327
2328 static void
2329 create_global_var (void)
2330 {
2331 global_var = build_decl (VAR_DECL, get_identifier (".GLOBAL_VAR"),
2332 void_type_node);
2333 DECL_ARTIFICIAL (global_var) = 1;
2334 TREE_READONLY (global_var) = 0;
2335 DECL_EXTERNAL (global_var) = 1;
2336 TREE_STATIC (global_var) = 1;
2337 TREE_USED (global_var) = 1;
2338 DECL_CONTEXT (global_var) = NULL_TREE;
2339 TREE_THIS_VOLATILE (global_var) = 0;
2340 TREE_ADDRESSABLE (global_var) = 0;
2341
2342 add_referenced_tmp_var (global_var);
2343 bitmap_set_bit (vars_to_rename, var_ann (global_var)->uid);
2344 }
2345
2346
2347 /* Dump alias statistics on FILE. */
2348
2349 static void
2350 dump_alias_stats (FILE *file)
2351 {
2352 const char *funcname
2353 = lang_hooks.decl_printable_name (current_function_decl, 2);
2354 fprintf (file, "\nAlias statistics for %s\n\n", funcname);
2355 fprintf (file, "Total alias queries:\t%u\n", alias_stats.alias_queries);
2356 fprintf (file, "Total alias mayalias results:\t%u\n",
2357 alias_stats.alias_mayalias);
2358 fprintf (file, "Total alias noalias results:\t%u\n",
2359 alias_stats.alias_noalias);
2360 fprintf (file, "Total simple queries:\t%u\n",
2361 alias_stats.simple_queries);
2362 fprintf (file, "Total simple resolved:\t%u\n",
2363 alias_stats.simple_resolved);
2364 fprintf (file, "Total TBAA queries:\t%u\n",
2365 alias_stats.tbaa_queries);
2366 fprintf (file, "Total TBAA resolved:\t%u\n",
2367 alias_stats.tbaa_resolved);
2368 }
2369
2370
2371 /* Dump alias information on FILE. */
2372
2373 void
2374 dump_alias_info (FILE *file)
2375 {
2376 size_t i;
2377 const char *funcname
2378 = lang_hooks.decl_printable_name (current_function_decl, 2);
2379
2380 fprintf (file, "\nFlow-insensitive alias information for %s\n\n", funcname);
2381
2382 fprintf (file, "Aliased symbols\n\n");
2383 for (i = 0; i < num_referenced_vars; i++)
2384 {
2385 tree var = referenced_var (i);
2386 if (may_be_aliased (var))
2387 dump_variable (file, var);
2388 }
2389
2390 fprintf (file, "\nDereferenced pointers\n\n");
2391 for (i = 0; i < num_referenced_vars; i++)
2392 {
2393 tree var = referenced_var (i);
2394 var_ann_t ann = var_ann (var);
2395 if (ann->type_mem_tag)
2396 dump_variable (file, var);
2397 }
2398
2399 fprintf (file, "\nType memory tags\n\n");
2400 for (i = 0; i < num_referenced_vars; i++)
2401 {
2402 tree var = referenced_var (i);
2403 var_ann_t ann = var_ann (var);
2404 if (ann->mem_tag_kind == TYPE_TAG)
2405 dump_variable (file, var);
2406 }
2407
2408 fprintf (file, "\n\nFlow-sensitive alias information for %s\n\n", funcname);
2409
2410 fprintf (file, "SSA_NAME pointers\n\n");
2411 for (i = 1; i < num_ssa_names; i++)
2412 {
2413 tree ptr = ssa_name (i);
2414 struct ptr_info_def *pi;
2415
2416 if (ptr == NULL_TREE)
2417 continue;
2418
2419 pi = SSA_NAME_PTR_INFO (ptr);
2420 if (!SSA_NAME_IN_FREE_LIST (ptr)
2421 && pi
2422 && pi->name_mem_tag)
2423 dump_points_to_info_for (file, ptr);
2424 }
2425
2426 fprintf (file, "\nName memory tags\n\n");
2427 for (i = 0; i < num_referenced_vars; i++)
2428 {
2429 tree var = referenced_var (i);
2430 var_ann_t ann = var_ann (var);
2431 if (ann->mem_tag_kind == NAME_TAG)
2432 dump_variable (file, var);
2433 }
2434
2435 fprintf (file, "\n");
2436 }
2437
2438
2439 /* Dump alias information on stderr. */
2440
2441 void
2442 debug_alias_info (void)
2443 {
2444 dump_alias_info (stderr);
2445 }
2446
2447
2448 /* Return the alias information associated with pointer T. It creates a
2449 new instance if none existed. */
2450
2451 struct ptr_info_def *
2452 get_ptr_info (tree t)
2453 {
2454 struct ptr_info_def *pi;
2455
2456 gcc_assert (POINTER_TYPE_P (TREE_TYPE (t)));
2457
2458 pi = SSA_NAME_PTR_INFO (t);
2459 if (pi == NULL)
2460 {
2461 pi = ggc_alloc (sizeof (*pi));
2462 memset ((void *)pi, 0, sizeof (*pi));
2463 SSA_NAME_PTR_INFO (t) = pi;
2464 }
2465
2466 return pi;
2467 }
2468
2469
2470 /* Dump points-to information for SSA_NAME PTR into FILE. */
2471
2472 void
2473 dump_points_to_info_for (FILE *file, tree ptr)
2474 {
2475 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
2476
2477 print_generic_expr (file, ptr, dump_flags);
2478
2479 if (pi)
2480 {
2481 if (pi->name_mem_tag)
2482 {
2483 fprintf (file, ", name memory tag: ");
2484 print_generic_expr (file, pi->name_mem_tag, dump_flags);
2485 }
2486
2487 if (pi->is_dereferenced)
2488 fprintf (file, ", is dereferenced");
2489
2490 if (pi->value_escapes_p)
2491 fprintf (file, ", its value escapes");
2492
2493 if (pi->pt_anything)
2494 fprintf (file, ", points-to anything");
2495
2496 if (pi->pt_malloc)
2497 fprintf (file, ", points-to malloc");
2498
2499 if (pi->pt_null)
2500 fprintf (file, ", points-to NULL");
2501
2502 if (pi->pt_vars)
2503 {
2504 unsigned ix;
2505 bitmap_iterator bi;
2506
2507 fprintf (file, ", points-to vars: { ");
2508 EXECUTE_IF_SET_IN_BITMAP (pi->pt_vars, 0, ix, bi)
2509 {
2510 print_generic_expr (file, referenced_var (ix), dump_flags);
2511 fprintf (file, " ");
2512 }
2513 fprintf (file, "}");
2514 }
2515 }
2516
2517 fprintf (file, "\n");
2518 }
2519
2520
2521 /* Dump points-to information for VAR into stderr. */
2522
2523 void
2524 debug_points_to_info_for (tree var)
2525 {
2526 dump_points_to_info_for (stderr, var);
2527 }
2528
2529
2530 /* Dump points-to information into FILE. NOTE: This function is slow, as
2531 it needs to traverse the whole CFG looking for pointer SSA_NAMEs. */
2532
2533 void
2534 dump_points_to_info (FILE *file)
2535 {
2536 basic_block bb;
2537 block_stmt_iterator si;
2538 size_t i;
2539 ssa_op_iter iter;
2540 const char *fname =
2541 lang_hooks.decl_printable_name (current_function_decl, 2);
2542
2543 fprintf (file, "\n\nPointed-to sets for pointers in %s\n\n", fname);
2544
2545 /* First dump points-to information for the default definitions of
2546 pointer variables. This is necessary because default definitions are
2547 not part of the code. */
2548 for (i = 0; i < num_referenced_vars; i++)
2549 {
2550 tree var = referenced_var (i);
2551 if (POINTER_TYPE_P (TREE_TYPE (var)))
2552 {
2553 var_ann_t ann = var_ann (var);
2554 if (ann->default_def)
2555 dump_points_to_info_for (file, ann->default_def);
2556 }
2557 }
2558
2559 /* Dump points-to information for every pointer defined in the program. */
2560 FOR_EACH_BB (bb)
2561 {
2562 tree phi;
2563
2564 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2565 {
2566 tree ptr = PHI_RESULT (phi);
2567 if (POINTER_TYPE_P (TREE_TYPE (ptr)))
2568 dump_points_to_info_for (file, ptr);
2569 }
2570
2571 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
2572 {
2573 tree stmt = bsi_stmt (si);
2574 tree def;
2575 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
2576 if (POINTER_TYPE_P (TREE_TYPE (def)))
2577 dump_points_to_info_for (file, def);
2578 }
2579 }
2580
2581 fprintf (file, "\n");
2582 }
2583
2584
2585 /* Dump points-to info pointed by PTO into STDERR. */
2586
2587 void
2588 debug_points_to_info (void)
2589 {
2590 dump_points_to_info (stderr);
2591 }
2592
2593 /* Dump to FILE the list of variables that may be aliasing VAR. */
2594
2595 void
2596 dump_may_aliases_for (FILE *file, tree var)
2597 {
2598 varray_type aliases;
2599
2600 if (TREE_CODE (var) == SSA_NAME)
2601 var = SSA_NAME_VAR (var);
2602
2603 aliases = var_ann (var)->may_aliases;
2604 if (aliases)
2605 {
2606 size_t i;
2607 fprintf (file, "{ ");
2608 for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
2609 {
2610 print_generic_expr (file, VARRAY_TREE (aliases, i), dump_flags);
2611 fprintf (file, " ");
2612 }
2613 fprintf (file, "}");
2614 }
2615 }
2616
2617
2618 /* Dump to stderr the list of variables that may be aliasing VAR. */
2619
2620 void
2621 debug_may_aliases_for (tree var)
2622 {
2623 dump_may_aliases_for (stderr, var);
2624 }
2625
2626 /* Return true if VAR may be aliased. */
2627
2628 bool
2629 may_be_aliased (tree var)
2630 {
2631 /* Obviously. */
2632 if (TREE_ADDRESSABLE (var))
2633 return true;
2634
2635 /* Globally visible variables can have their addresses taken by other
2636 translation units. */
2637 if (DECL_EXTERNAL (var) || TREE_PUBLIC (var))
2638 return true;
2639
2640 /* Automatic variables can't have their addresses escape any other way.
2641 This must be after the check for global variables, as extern declarations
2642 do not have TREE_STATIC set. */
2643 if (!TREE_STATIC (var))
2644 return false;
2645
2646 /* If we're in unit-at-a-time mode, then we must have seen all occurrences
2647 of address-of operators, and so we can trust TREE_ADDRESSABLE. Otherwise
2648 we can only be sure the variable isn't addressable if it's local to the
2649 current function. */
2650 if (flag_unit_at_a_time)
2651 return false;
2652 if (decl_function_context (var) == current_function_decl)
2653 return false;
2654
2655 return true;
2656 }
2657
2658 /* This structure is simply used during pushing fields onto the fieldstack
2659 to track the offset of the field, since bitpos_of_field gives it relative
2660 to its immediate containing type, and we want it relative to the ultimate
2661 containing object. */
2662
2663 typedef struct fieldoff
2664 {
2665 tree field;
2666 HOST_WIDE_INT offset;
2667 } *fieldoff_t;
2668
2669 DEF_VEC_MALLOC_P(fieldoff_t);
2670
2671 /* Return the position, in bits, of FIELD_DECL from the beginning of its
2672 structure.
2673 Return -1 if the position is conditional or otherwise non-constant
2674 integer. */
2675
2676 static HOST_WIDE_INT
2677 bitpos_of_field (const tree fdecl)
2678 {
2679
2680 if (TREE_CODE (DECL_FIELD_OFFSET (fdecl)) != INTEGER_CST
2681 || TREE_CODE (DECL_FIELD_BIT_OFFSET (fdecl)) != INTEGER_CST)
2682 return -1;
2683
2684 return (tree_low_cst (DECL_FIELD_OFFSET (fdecl), 1) * 8)
2685 + tree_low_cst (DECL_FIELD_BIT_OFFSET (fdecl), 1);
2686 }
2687
2688 /* Given a TYPE, and a vector of field offsets FIELDSTACK, push all the fields
2689 of TYPE onto fieldstack, recording their offsets along the way.
2690 OFFSET is used to keep track of the offset in this entire structure, rather
2691 than just the immediately containing structure. */
2692
2693 static void
2694 push_fields_onto_fieldstack (tree type, VEC(fieldoff_t) **fieldstack,
2695 HOST_WIDE_INT offset)
2696 {
2697 fieldoff_t pair;
2698 tree field = TYPE_FIELDS (type);
2699 if (!field)
2700 return;
2701 if (var_can_have_subvars (field)
2702 && TREE_CODE (field) == FIELD_DECL)
2703 {
2704 size_t before = VEC_length (fieldoff_t, *fieldstack);
2705 /* Empty structures may have actual size, like in C++. So see if we
2706 actually end up pushing a field, and if not, if the size is non-zero,
2707 push the field onto the stack */
2708 push_fields_onto_fieldstack (TREE_TYPE (field), fieldstack, offset);
2709 if (before == VEC_length (fieldoff_t, *fieldstack)
2710 && DECL_SIZE (field)
2711 && !integer_zerop (DECL_SIZE (field)))
2712 {
2713 pair = xmalloc (sizeof (struct fieldoff));
2714 pair->field = field;
2715 pair->offset = offset;
2716 VEC_safe_push (fieldoff_t, *fieldstack, pair);
2717 }
2718 }
2719 else if (TREE_CODE (field) == FIELD_DECL)
2720 {
2721 pair = xmalloc (sizeof (struct fieldoff));
2722 pair->field = field;
2723 pair->offset = offset + bitpos_of_field (field);
2724 VEC_safe_push (fieldoff_t, *fieldstack, pair);
2725 }
2726 for (field = TREE_CHAIN (field); field; field = TREE_CHAIN (field))
2727 {
2728 if (TREE_CODE (field) != FIELD_DECL)
2729 continue;
2730 if (var_can_have_subvars (field))
2731 {
2732 push_fields_onto_fieldstack (TREE_TYPE (field), fieldstack,
2733 offset + bitpos_of_field (field));
2734 }
2735 else
2736 {
2737 pair = xmalloc (sizeof (struct fieldoff));
2738 pair->field = field;
2739 pair->offset = offset + bitpos_of_field (field);
2740 VEC_safe_push (fieldoff_t, *fieldstack, pair);
2741 }
2742 }
2743 }
2744
2745
2746 /* This represents the used range of a variable. */
2747
2748 typedef struct used_part
2749 {
2750 HOST_WIDE_INT minused;
2751 HOST_WIDE_INT maxused;
2752 } *used_part_t;
2753
2754 /* An array of used_part structures, indexed by variable uid. */
2755
2756 static used_part_t *used_portions;
2757
2758 /* Given a variable uid, UID, get or create the entry in the used portions
2759 table for the variable. */
2760
2761 static used_part_t
2762 get_or_create_used_part_for (size_t uid)
2763 {
2764 used_part_t up;
2765 if (used_portions[uid] == NULL)
2766 {
2767 up = xcalloc (1, sizeof (struct used_part));
2768 up->minused = INT_MAX;
2769 up->maxused = 0;
2770 }
2771 else
2772 up = used_portions[uid];
2773 return up;
2774 }
2775
2776
2777
2778 /* Given an aggregate VAR, create the subvariables that represent its
2779 fields. */
2780
2781 static void
2782 create_overlap_variables_for (tree var)
2783 {
2784 VEC(fieldoff_t) *fieldstack = NULL;
2785 used_part_t up;
2786 size_t uid = var_ann (var)->uid;
2787
2788 if (used_portions[uid] == NULL)
2789 return;
2790
2791 push_fields_onto_fieldstack (TREE_TYPE (var), &fieldstack, 0);
2792 if (VEC_length (fieldoff_t, fieldstack) != 0)
2793 {
2794 subvar_t *subvars;
2795 fieldoff_t fo;
2796 bool notokay = false;
2797 int i;
2798
2799 /* Not all fields have DECL_SIZE set, and those that don't, we don't
2800 know their size, and thus, can't handle.
2801 The same is true of fields with DECL_SIZE that is not an integer
2802 constant (such as variable sized fields).
2803 Fields with offsets which are not constant will have an offset < 0
2804 We *could* handle fields that are constant sized arrays, but
2805 currently don't. Doing so would require some extra changes to
2806 tree-ssa-operands.c. */
2807
2808 for (i = 0; VEC_iterate (fieldoff_t, fieldstack, i, fo); i++)
2809 {
2810 if (!DECL_SIZE (fo->field)
2811 || TREE_CODE (DECL_SIZE (fo->field)) != INTEGER_CST
2812 || TREE_CODE (TREE_TYPE (fo->field)) == ARRAY_TYPE
2813 || fo->offset < 0)
2814 {
2815 notokay = true;
2816 break;
2817 }
2818 }
2819 /* Cleanup after ourselves if we can't create overlap variables. */
2820 if (notokay)
2821 {
2822 while (VEC_length (fieldoff_t, fieldstack) != 0)
2823 {
2824 fo = VEC_pop (fieldoff_t, fieldstack);
2825 free (fo);
2826 }
2827 VEC_free (fieldoff_t, fieldstack);
2828 return;
2829 }
2830 /* Otherwise, create the variables. */
2831 subvars = lookup_subvars_for_var (var);
2832 up = used_portions[uid];
2833
2834 while (VEC_length (fieldoff_t, fieldstack) != 0)
2835 {
2836 subvar_t sv = ggc_alloc (sizeof (struct subvar));
2837 HOST_WIDE_INT fosize;
2838 var_ann_t ann;
2839
2840 fo = VEC_pop (fieldoff_t, fieldstack);
2841 fosize = TREE_INT_CST_LOW (DECL_SIZE (fo->field));
2842
2843 if ((fo->offset <= up->minused
2844 && fo->offset + fosize <= up->minused)
2845 || fo->offset >= up->maxused)
2846 {
2847 free (fo);
2848 continue;
2849 }
2850
2851 sv->offset = fo->offset;
2852 sv->size = fosize;
2853 sv->next = *subvars;
2854 sv->var = create_tmp_var_raw (TREE_TYPE (fo->field), "SFT");
2855 if (dump_file)
2856 {
2857 fprintf (dump_file, "structure field tag %s created for var %s",
2858 get_name (sv->var), get_name (var));
2859 fprintf (dump_file, " offset " HOST_WIDE_INT_PRINT_DEC,
2860 sv->offset);
2861 fprintf (dump_file, " size " HOST_WIDE_INT_PRINT_DEC,
2862 sv->size);
2863 fprintf (dump_file, "\n");
2864
2865 }
2866
2867 /* We need to copy the various flags from var to sv->var, so that
2868 they are is_global_var iff the original variable was. */
2869
2870 DECL_EXTERNAL (sv->var) = DECL_EXTERNAL (var);
2871 TREE_PUBLIC (sv->var) = TREE_PUBLIC (var);
2872 TREE_STATIC (sv->var) = TREE_STATIC (var);
2873 TREE_READONLY (sv->var) = TREE_READONLY (var);
2874
2875 /* Like other memory tags, these need to be marked addressable to
2876 keep is_gimple_reg from thinking they are real. */
2877 TREE_ADDRESSABLE (sv->var) = 1;
2878
2879 DECL_CONTEXT (sv->var) = DECL_CONTEXT (var);
2880
2881 ann = get_var_ann (sv->var);
2882 ann->mem_tag_kind = STRUCT_FIELD;
2883 ann->type_mem_tag = NULL;
2884 add_referenced_tmp_var (sv->var);
2885
2886 *subvars = sv;
2887 free (fo);
2888 }
2889 }
2890
2891 VEC_free (fieldoff_t, fieldstack);
2892 }
2893
2894
2895 /* Find the conservative answer to the question of what portions of what
2896 structures are used by this statement. We assume that if we have a
2897 component ref with a known size + offset, that we only need that part
2898 of the structure. For unknown cases, or cases where we do something
2899 to the whole structure, we assume we need to create fields for the
2900 entire structure. */
2901
2902 static tree
2903 find_used_portions (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2904 {
2905 switch (TREE_CODE (*tp))
2906 {
2907 case COMPONENT_REF:
2908 {
2909 HOST_WIDE_INT bitsize;
2910 HOST_WIDE_INT bitpos;
2911 tree offset;
2912 enum machine_mode mode;
2913 int unsignedp;
2914 int volatilep;
2915 tree ref;
2916 ref = get_inner_reference (*tp, &bitsize, &bitpos, &offset, &mode,
2917 &unsignedp, &volatilep, false);
2918 if (DECL_P (ref) && offset == NULL && bitsize != -1)
2919 {
2920 size_t uid = var_ann (ref)->uid;
2921 used_part_t up;
2922
2923 up = get_or_create_used_part_for (uid);
2924
2925 if (bitpos <= up->minused)
2926 up->minused = bitpos;
2927 if ((bitpos + bitsize >= up->maxused))
2928 up->maxused = bitpos + bitsize;
2929
2930 used_portions[uid] = up;
2931
2932 *walk_subtrees = 0;
2933 return NULL_TREE;
2934 }
2935 else if (DECL_P (ref))
2936 {
2937 if (DECL_SIZE (ref)
2938 && var_can_have_subvars (ref)
2939 && TREE_CODE (DECL_SIZE (ref)) == INTEGER_CST)
2940 {
2941 used_part_t up;
2942 size_t uid = var_ann (ref)->uid;
2943
2944 up = get_or_create_used_part_for (uid);
2945
2946 up->minused = 0;
2947 up->maxused = TREE_INT_CST_LOW (DECL_SIZE (ref));
2948
2949 used_portions[uid] = up;
2950
2951 *walk_subtrees = 0;
2952 return NULL_TREE;
2953 }
2954 }
2955 }
2956 break;
2957 case VAR_DECL:
2958 case PARM_DECL:
2959 {
2960 tree var = *tp;
2961 if (DECL_SIZE (var)
2962 && var_can_have_subvars (var)
2963 && TREE_CODE (DECL_SIZE (var)) == INTEGER_CST)
2964 {
2965 used_part_t up;
2966 size_t uid = var_ann (var)->uid;
2967
2968 up = get_or_create_used_part_for (uid);
2969
2970 up->minused = 0;
2971 up->maxused = TREE_INT_CST_LOW (DECL_SIZE (var));
2972
2973 used_portions[uid] = up;
2974 *walk_subtrees = 0;
2975 return NULL_TREE;
2976 }
2977 }
2978 break;
2979
2980 default:
2981 break;
2982
2983 }
2984 return NULL_TREE;
2985 }
2986
2987 /* We are about to create some new referenced variables, and we need the
2988 before size. */
2989
2990 static size_t old_referenced_vars;
2991
2992
2993 /* Create structure field variables for structures used in this function. */
2994
2995 static void
2996 create_structure_vars (void)
2997 {
2998 basic_block bb;
2999 size_t i;
3000
3001 old_referenced_vars = num_referenced_vars;
3002 used_portions = xcalloc (num_referenced_vars, sizeof (used_part_t));
3003
3004 FOR_EACH_BB (bb)
3005 {
3006 block_stmt_iterator bsi;
3007 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
3008 {
3009 walk_tree_without_duplicates (bsi_stmt_ptr (bsi),
3010 find_used_portions,
3011 NULL);
3012 }
3013 }
3014 for (i = 0; i < old_referenced_vars; i++)
3015 {
3016 tree var = referenced_var (i);
3017 /* The C++ FE creates vars without DECL_SIZE set, for some reason. */
3018 if (var
3019 && DECL_SIZE (var)
3020 && var_can_have_subvars (var)
3021 && var_ann (var)->mem_tag_kind == NOT_A_TAG
3022 && TREE_CODE (DECL_SIZE (var)) == INTEGER_CST)
3023 create_overlap_variables_for (var);
3024 }
3025 for (i = 0; i < old_referenced_vars; i++)
3026 free (used_portions[i]);
3027
3028 free (used_portions);
3029 }
3030
3031 static bool
3032 gate_structure_vars (void)
3033 {
3034 return flag_tree_salias != 0;
3035 }
3036
3037 struct tree_opt_pass pass_create_structure_vars =
3038 {
3039 "salias", /* name */
3040 gate_structure_vars, /* gate */
3041 create_structure_vars, /* execute */
3042 NULL, /* sub */
3043 NULL, /* next */
3044 0, /* static_pass_number */
3045 0, /* tv_id */
3046 PROP_cfg, /* properties_required */
3047 0, /* properties_provided */
3048 0, /* properties_destroyed */
3049 0, /* todo_flags_start */
3050 TODO_dump_func, /* todo_flags_finish */
3051 0 /* letter */
3052 };
3053