Make aliasing_component_refs_p to work harder when same_type_for_tbaa returns -1
[gcc.git] / gcc / tree-ssa-alias.c
1 /* Alias analysis for trees.
2 Copyright (C) 2004-2019 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "timevar.h" /* for TV_ALIAS_STMT_WALK */
30 #include "ssa.h"
31 #include "cgraph.h"
32 #include "tree-pretty-print.h"
33 #include "alias.h"
34 #include "fold-const.h"
35 #include "langhooks.h"
36 #include "dumpfile.h"
37 #include "tree-eh.h"
38 #include "tree-dfa.h"
39 #include "ipa-reference.h"
40 #include "varasm.h"
41
42 /* Broad overview of how alias analysis on gimple works:
43
44 Statements clobbering or using memory are linked through the
45 virtual operand factored use-def chain. The virtual operand
46 is unique per function, its symbol is accessible via gimple_vop (cfun).
47 Virtual operands are used for efficiently walking memory statements
48 in the gimple IL and are useful for things like value-numbering as
49 a generation count for memory references.
50
51 SSA_NAME pointers may have associated points-to information
52 accessible via the SSA_NAME_PTR_INFO macro. Flow-insensitive
53 points-to information is (re-)computed by the TODO_rebuild_alias
54 pass manager todo. Points-to information is also used for more
55 precise tracking of call-clobbered and call-used variables and
56 related disambiguations.
57
58 This file contains functions for disambiguating memory references,
59 the so called alias-oracle and tools for walking of the gimple IL.
60
61 The main alias-oracle entry-points are
62
63 bool stmt_may_clobber_ref_p (gimple *, tree)
64
65 This function queries if a statement may invalidate (parts of)
66 the memory designated by the reference tree argument.
67
68 bool ref_maybe_used_by_stmt_p (gimple *, tree)
69
70 This function queries if a statement may need (parts of) the
71 memory designated by the reference tree argument.
72
73 There are variants of these functions that only handle the call
74 part of a statement, call_may_clobber_ref_p and ref_maybe_used_by_call_p.
75 Note that these do not disambiguate against a possible call lhs.
76
77 bool refs_may_alias_p (tree, tree)
78
79 This function tries to disambiguate two reference trees.
80
81 bool ptr_deref_may_alias_global_p (tree)
82
83 This function queries if dereferencing a pointer variable may
84 alias global memory.
85
86 More low-level disambiguators are available and documented in
87 this file. Low-level disambiguators dealing with points-to
88 information are in tree-ssa-structalias.c. */
89
90
91 /* Query statistics for the different low-level disambiguators.
92 A high-level query may trigger multiple of them. */
93
94 static struct {
95 unsigned HOST_WIDE_INT refs_may_alias_p_may_alias;
96 unsigned HOST_WIDE_INT refs_may_alias_p_no_alias;
97 unsigned HOST_WIDE_INT ref_maybe_used_by_call_p_may_alias;
98 unsigned HOST_WIDE_INT ref_maybe_used_by_call_p_no_alias;
99 unsigned HOST_WIDE_INT call_may_clobber_ref_p_may_alias;
100 unsigned HOST_WIDE_INT call_may_clobber_ref_p_no_alias;
101 unsigned HOST_WIDE_INT aliasing_component_refs_p_may_alias;
102 unsigned HOST_WIDE_INT aliasing_component_refs_p_no_alias;
103 } alias_stats;
104
105 void
106 dump_alias_stats (FILE *s)
107 {
108 fprintf (s, "\nAlias oracle query stats:\n");
109 fprintf (s, " refs_may_alias_p: "
110 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
111 HOST_WIDE_INT_PRINT_DEC" queries\n",
112 alias_stats.refs_may_alias_p_no_alias,
113 alias_stats.refs_may_alias_p_no_alias
114 + alias_stats.refs_may_alias_p_may_alias);
115 fprintf (s, " ref_maybe_used_by_call_p: "
116 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
117 HOST_WIDE_INT_PRINT_DEC" queries\n",
118 alias_stats.ref_maybe_used_by_call_p_no_alias,
119 alias_stats.refs_may_alias_p_no_alias
120 + alias_stats.ref_maybe_used_by_call_p_may_alias);
121 fprintf (s, " call_may_clobber_ref_p: "
122 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
123 HOST_WIDE_INT_PRINT_DEC" queries\n",
124 alias_stats.call_may_clobber_ref_p_no_alias,
125 alias_stats.call_may_clobber_ref_p_no_alias
126 + alias_stats.call_may_clobber_ref_p_may_alias);
127 fprintf (s, " aliasing_component_ref_p: "
128 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
129 HOST_WIDE_INT_PRINT_DEC" queries\n",
130 alias_stats.aliasing_component_refs_p_no_alias,
131 alias_stats.aliasing_component_refs_p_no_alias
132 + alias_stats.aliasing_component_refs_p_may_alias);
133 dump_alias_stats_in_alias_c (s);
134 }
135
136
137 /* Return true, if dereferencing PTR may alias with a global variable. */
138
139 bool
140 ptr_deref_may_alias_global_p (tree ptr)
141 {
142 struct ptr_info_def *pi;
143
144 /* If we end up with a pointer constant here that may point
145 to global memory. */
146 if (TREE_CODE (ptr) != SSA_NAME)
147 return true;
148
149 pi = SSA_NAME_PTR_INFO (ptr);
150
151 /* If we do not have points-to information for this variable,
152 we have to punt. */
153 if (!pi)
154 return true;
155
156 /* ??? This does not use TBAA to prune globals ptr may not access. */
157 return pt_solution_includes_global (&pi->pt);
158 }
159
160 /* Return true if dereferencing PTR may alias DECL.
161 The caller is responsible for applying TBAA to see if PTR
162 may access DECL at all. */
163
164 static bool
165 ptr_deref_may_alias_decl_p (tree ptr, tree decl)
166 {
167 struct ptr_info_def *pi;
168
169 /* Conversions are irrelevant for points-to information and
170 data-dependence analysis can feed us those. */
171 STRIP_NOPS (ptr);
172
173 /* Anything we do not explicilty handle aliases. */
174 if ((TREE_CODE (ptr) != SSA_NAME
175 && TREE_CODE (ptr) != ADDR_EXPR
176 && TREE_CODE (ptr) != POINTER_PLUS_EXPR)
177 || !POINTER_TYPE_P (TREE_TYPE (ptr))
178 || (!VAR_P (decl)
179 && TREE_CODE (decl) != PARM_DECL
180 && TREE_CODE (decl) != RESULT_DECL))
181 return true;
182
183 /* Disregard pointer offsetting. */
184 if (TREE_CODE (ptr) == POINTER_PLUS_EXPR)
185 {
186 do
187 {
188 ptr = TREE_OPERAND (ptr, 0);
189 }
190 while (TREE_CODE (ptr) == POINTER_PLUS_EXPR);
191 return ptr_deref_may_alias_decl_p (ptr, decl);
192 }
193
194 /* ADDR_EXPR pointers either just offset another pointer or directly
195 specify the pointed-to set. */
196 if (TREE_CODE (ptr) == ADDR_EXPR)
197 {
198 tree base = get_base_address (TREE_OPERAND (ptr, 0));
199 if (base
200 && (TREE_CODE (base) == MEM_REF
201 || TREE_CODE (base) == TARGET_MEM_REF))
202 ptr = TREE_OPERAND (base, 0);
203 else if (base
204 && DECL_P (base))
205 return compare_base_decls (base, decl) != 0;
206 else if (base
207 && CONSTANT_CLASS_P (base))
208 return false;
209 else
210 return true;
211 }
212
213 /* Non-aliased variables cannot be pointed to. */
214 if (!may_be_aliased (decl))
215 return false;
216
217 /* If we do not have useful points-to information for this pointer
218 we cannot disambiguate anything else. */
219 pi = SSA_NAME_PTR_INFO (ptr);
220 if (!pi)
221 return true;
222
223 return pt_solution_includes (&pi->pt, decl);
224 }
225
226 /* Return true if dereferenced PTR1 and PTR2 may alias.
227 The caller is responsible for applying TBAA to see if accesses
228 through PTR1 and PTR2 may conflict at all. */
229
230 bool
231 ptr_derefs_may_alias_p (tree ptr1, tree ptr2)
232 {
233 struct ptr_info_def *pi1, *pi2;
234
235 /* Conversions are irrelevant for points-to information and
236 data-dependence analysis can feed us those. */
237 STRIP_NOPS (ptr1);
238 STRIP_NOPS (ptr2);
239
240 /* Disregard pointer offsetting. */
241 if (TREE_CODE (ptr1) == POINTER_PLUS_EXPR)
242 {
243 do
244 {
245 ptr1 = TREE_OPERAND (ptr1, 0);
246 }
247 while (TREE_CODE (ptr1) == POINTER_PLUS_EXPR);
248 return ptr_derefs_may_alias_p (ptr1, ptr2);
249 }
250 if (TREE_CODE (ptr2) == POINTER_PLUS_EXPR)
251 {
252 do
253 {
254 ptr2 = TREE_OPERAND (ptr2, 0);
255 }
256 while (TREE_CODE (ptr2) == POINTER_PLUS_EXPR);
257 return ptr_derefs_may_alias_p (ptr1, ptr2);
258 }
259
260 /* ADDR_EXPR pointers either just offset another pointer or directly
261 specify the pointed-to set. */
262 if (TREE_CODE (ptr1) == ADDR_EXPR)
263 {
264 tree base = get_base_address (TREE_OPERAND (ptr1, 0));
265 if (base
266 && (TREE_CODE (base) == MEM_REF
267 || TREE_CODE (base) == TARGET_MEM_REF))
268 return ptr_derefs_may_alias_p (TREE_OPERAND (base, 0), ptr2);
269 else if (base
270 && DECL_P (base))
271 return ptr_deref_may_alias_decl_p (ptr2, base);
272 else
273 return true;
274 }
275 if (TREE_CODE (ptr2) == ADDR_EXPR)
276 {
277 tree base = get_base_address (TREE_OPERAND (ptr2, 0));
278 if (base
279 && (TREE_CODE (base) == MEM_REF
280 || TREE_CODE (base) == TARGET_MEM_REF))
281 return ptr_derefs_may_alias_p (ptr1, TREE_OPERAND (base, 0));
282 else if (base
283 && DECL_P (base))
284 return ptr_deref_may_alias_decl_p (ptr1, base);
285 else
286 return true;
287 }
288
289 /* From here we require SSA name pointers. Anything else aliases. */
290 if (TREE_CODE (ptr1) != SSA_NAME
291 || TREE_CODE (ptr2) != SSA_NAME
292 || !POINTER_TYPE_P (TREE_TYPE (ptr1))
293 || !POINTER_TYPE_P (TREE_TYPE (ptr2)))
294 return true;
295
296 /* We may end up with two empty points-to solutions for two same pointers.
297 In this case we still want to say both pointers alias, so shortcut
298 that here. */
299 if (ptr1 == ptr2)
300 return true;
301
302 /* If we do not have useful points-to information for either pointer
303 we cannot disambiguate anything else. */
304 pi1 = SSA_NAME_PTR_INFO (ptr1);
305 pi2 = SSA_NAME_PTR_INFO (ptr2);
306 if (!pi1 || !pi2)
307 return true;
308
309 /* ??? This does not use TBAA to prune decls from the intersection
310 that not both pointers may access. */
311 return pt_solutions_intersect (&pi1->pt, &pi2->pt);
312 }
313
314 /* Return true if dereferencing PTR may alias *REF.
315 The caller is responsible for applying TBAA to see if PTR
316 may access *REF at all. */
317
318 static bool
319 ptr_deref_may_alias_ref_p_1 (tree ptr, ao_ref *ref)
320 {
321 tree base = ao_ref_base (ref);
322
323 if (TREE_CODE (base) == MEM_REF
324 || TREE_CODE (base) == TARGET_MEM_REF)
325 return ptr_derefs_may_alias_p (ptr, TREE_OPERAND (base, 0));
326 else if (DECL_P (base))
327 return ptr_deref_may_alias_decl_p (ptr, base);
328
329 return true;
330 }
331
332 /* Returns true if PTR1 and PTR2 compare unequal because of points-to. */
333
334 bool
335 ptrs_compare_unequal (tree ptr1, tree ptr2)
336 {
337 /* First resolve the pointers down to a SSA name pointer base or
338 a VAR_DECL, PARM_DECL or RESULT_DECL. This explicitely does
339 not yet try to handle LABEL_DECLs, FUNCTION_DECLs, CONST_DECLs
340 or STRING_CSTs which needs points-to adjustments to track them
341 in the points-to sets. */
342 tree obj1 = NULL_TREE;
343 tree obj2 = NULL_TREE;
344 if (TREE_CODE (ptr1) == ADDR_EXPR)
345 {
346 tree tem = get_base_address (TREE_OPERAND (ptr1, 0));
347 if (! tem)
348 return false;
349 if (VAR_P (tem)
350 || TREE_CODE (tem) == PARM_DECL
351 || TREE_CODE (tem) == RESULT_DECL)
352 obj1 = tem;
353 else if (TREE_CODE (tem) == MEM_REF)
354 ptr1 = TREE_OPERAND (tem, 0);
355 }
356 if (TREE_CODE (ptr2) == ADDR_EXPR)
357 {
358 tree tem = get_base_address (TREE_OPERAND (ptr2, 0));
359 if (! tem)
360 return false;
361 if (VAR_P (tem)
362 || TREE_CODE (tem) == PARM_DECL
363 || TREE_CODE (tem) == RESULT_DECL)
364 obj2 = tem;
365 else if (TREE_CODE (tem) == MEM_REF)
366 ptr2 = TREE_OPERAND (tem, 0);
367 }
368
369 /* Canonicalize ptr vs. object. */
370 if (TREE_CODE (ptr1) == SSA_NAME && obj2)
371 {
372 std::swap (ptr1, ptr2);
373 std::swap (obj1, obj2);
374 }
375
376 if (obj1 && obj2)
377 /* Other code handles this correctly, no need to duplicate it here. */;
378 else if (obj1 && TREE_CODE (ptr2) == SSA_NAME)
379 {
380 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr2);
381 /* We may not use restrict to optimize pointer comparisons.
382 See PR71062. So we have to assume that restrict-pointed-to
383 may be in fact obj1. */
384 if (!pi
385 || pi->pt.vars_contains_restrict
386 || pi->pt.vars_contains_interposable)
387 return false;
388 if (VAR_P (obj1)
389 && (TREE_STATIC (obj1) || DECL_EXTERNAL (obj1)))
390 {
391 varpool_node *node = varpool_node::get (obj1);
392 /* If obj1 may bind to NULL give up (see below). */
393 if (! node
394 || ! node->nonzero_address ()
395 || ! decl_binds_to_current_def_p (obj1))
396 return false;
397 }
398 return !pt_solution_includes (&pi->pt, obj1);
399 }
400
401 /* ??? We'd like to handle ptr1 != NULL and ptr1 != ptr2
402 but those require pt.null to be conservatively correct. */
403
404 return false;
405 }
406
407 /* Returns whether reference REF to BASE may refer to global memory. */
408
409 static bool
410 ref_may_alias_global_p_1 (tree base)
411 {
412 if (DECL_P (base))
413 return is_global_var (base);
414 else if (TREE_CODE (base) == MEM_REF
415 || TREE_CODE (base) == TARGET_MEM_REF)
416 return ptr_deref_may_alias_global_p (TREE_OPERAND (base, 0));
417 return true;
418 }
419
420 bool
421 ref_may_alias_global_p (ao_ref *ref)
422 {
423 tree base = ao_ref_base (ref);
424 return ref_may_alias_global_p_1 (base);
425 }
426
427 bool
428 ref_may_alias_global_p (tree ref)
429 {
430 tree base = get_base_address (ref);
431 return ref_may_alias_global_p_1 (base);
432 }
433
434 /* Return true whether STMT may clobber global memory. */
435
436 bool
437 stmt_may_clobber_global_p (gimple *stmt)
438 {
439 tree lhs;
440
441 if (!gimple_vdef (stmt))
442 return false;
443
444 /* ??? We can ask the oracle whether an artificial pointer
445 dereference with a pointer with points-to information covering
446 all global memory (what about non-address taken memory?) maybe
447 clobbered by this call. As there is at the moment no convenient
448 way of doing that without generating garbage do some manual
449 checking instead.
450 ??? We could make a NULL ao_ref argument to the various
451 predicates special, meaning any global memory. */
452
453 switch (gimple_code (stmt))
454 {
455 case GIMPLE_ASSIGN:
456 lhs = gimple_assign_lhs (stmt);
457 return (TREE_CODE (lhs) != SSA_NAME
458 && ref_may_alias_global_p (lhs));
459 case GIMPLE_CALL:
460 return true;
461 default:
462 return true;
463 }
464 }
465
466
467 /* Dump alias information on FILE. */
468
469 void
470 dump_alias_info (FILE *file)
471 {
472 unsigned i;
473 tree ptr;
474 const char *funcname
475 = lang_hooks.decl_printable_name (current_function_decl, 2);
476 tree var;
477
478 fprintf (file, "\n\nAlias information for %s\n\n", funcname);
479
480 fprintf (file, "Aliased symbols\n\n");
481
482 FOR_EACH_LOCAL_DECL (cfun, i, var)
483 {
484 if (may_be_aliased (var))
485 dump_variable (file, var);
486 }
487
488 fprintf (file, "\nCall clobber information\n");
489
490 fprintf (file, "\nESCAPED");
491 dump_points_to_solution (file, &cfun->gimple_df->escaped);
492
493 fprintf (file, "\n\nFlow-insensitive points-to information\n\n");
494
495 FOR_EACH_SSA_NAME (i, ptr, cfun)
496 {
497 struct ptr_info_def *pi;
498
499 if (!POINTER_TYPE_P (TREE_TYPE (ptr))
500 || SSA_NAME_IN_FREE_LIST (ptr))
501 continue;
502
503 pi = SSA_NAME_PTR_INFO (ptr);
504 if (pi)
505 dump_points_to_info_for (file, ptr);
506 }
507
508 fprintf (file, "\n");
509 }
510
511
512 /* Dump alias information on stderr. */
513
514 DEBUG_FUNCTION void
515 debug_alias_info (void)
516 {
517 dump_alias_info (stderr);
518 }
519
520
521 /* Dump the points-to set *PT into FILE. */
522
523 void
524 dump_points_to_solution (FILE *file, struct pt_solution *pt)
525 {
526 if (pt->anything)
527 fprintf (file, ", points-to anything");
528
529 if (pt->nonlocal)
530 fprintf (file, ", points-to non-local");
531
532 if (pt->escaped)
533 fprintf (file, ", points-to escaped");
534
535 if (pt->ipa_escaped)
536 fprintf (file, ", points-to unit escaped");
537
538 if (pt->null)
539 fprintf (file, ", points-to NULL");
540
541 if (pt->vars)
542 {
543 fprintf (file, ", points-to vars: ");
544 dump_decl_set (file, pt->vars);
545 if (pt->vars_contains_nonlocal
546 || pt->vars_contains_escaped
547 || pt->vars_contains_escaped_heap
548 || pt->vars_contains_restrict)
549 {
550 const char *comma = "";
551 fprintf (file, " (");
552 if (pt->vars_contains_nonlocal)
553 {
554 fprintf (file, "nonlocal");
555 comma = ", ";
556 }
557 if (pt->vars_contains_escaped)
558 {
559 fprintf (file, "%sescaped", comma);
560 comma = ", ";
561 }
562 if (pt->vars_contains_escaped_heap)
563 {
564 fprintf (file, "%sescaped heap", comma);
565 comma = ", ";
566 }
567 if (pt->vars_contains_restrict)
568 {
569 fprintf (file, "%srestrict", comma);
570 comma = ", ";
571 }
572 if (pt->vars_contains_interposable)
573 fprintf (file, "%sinterposable", comma);
574 fprintf (file, ")");
575 }
576 }
577 }
578
579
580 /* Unified dump function for pt_solution. */
581
582 DEBUG_FUNCTION void
583 debug (pt_solution &ref)
584 {
585 dump_points_to_solution (stderr, &ref);
586 }
587
588 DEBUG_FUNCTION void
589 debug (pt_solution *ptr)
590 {
591 if (ptr)
592 debug (*ptr);
593 else
594 fprintf (stderr, "<nil>\n");
595 }
596
597
598 /* Dump points-to information for SSA_NAME PTR into FILE. */
599
600 void
601 dump_points_to_info_for (FILE *file, tree ptr)
602 {
603 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
604
605 print_generic_expr (file, ptr, dump_flags);
606
607 if (pi)
608 dump_points_to_solution (file, &pi->pt);
609 else
610 fprintf (file, ", points-to anything");
611
612 fprintf (file, "\n");
613 }
614
615
616 /* Dump points-to information for VAR into stderr. */
617
618 DEBUG_FUNCTION void
619 debug_points_to_info_for (tree var)
620 {
621 dump_points_to_info_for (stderr, var);
622 }
623
624
625 /* Initializes the alias-oracle reference representation *R from REF. */
626
627 void
628 ao_ref_init (ao_ref *r, tree ref)
629 {
630 r->ref = ref;
631 r->base = NULL_TREE;
632 r->offset = 0;
633 r->size = -1;
634 r->max_size = -1;
635 r->ref_alias_set = -1;
636 r->base_alias_set = -1;
637 r->volatile_p = ref ? TREE_THIS_VOLATILE (ref) : false;
638 }
639
640 /* Returns the base object of the memory reference *REF. */
641
642 tree
643 ao_ref_base (ao_ref *ref)
644 {
645 bool reverse;
646
647 if (ref->base)
648 return ref->base;
649 ref->base = get_ref_base_and_extent (ref->ref, &ref->offset, &ref->size,
650 &ref->max_size, &reverse);
651 return ref->base;
652 }
653
654 /* Returns the base object alias set of the memory reference *REF. */
655
656 alias_set_type
657 ao_ref_base_alias_set (ao_ref *ref)
658 {
659 tree base_ref;
660 if (ref->base_alias_set != -1)
661 return ref->base_alias_set;
662 if (!ref->ref)
663 return 0;
664 base_ref = ref->ref;
665 while (handled_component_p (base_ref))
666 base_ref = TREE_OPERAND (base_ref, 0);
667 ref->base_alias_set = get_alias_set (base_ref);
668 return ref->base_alias_set;
669 }
670
671 /* Returns the reference alias set of the memory reference *REF. */
672
673 alias_set_type
674 ao_ref_alias_set (ao_ref *ref)
675 {
676 if (ref->ref_alias_set != -1)
677 return ref->ref_alias_set;
678 ref->ref_alias_set = get_alias_set (ref->ref);
679 return ref->ref_alias_set;
680 }
681
682 /* Init an alias-oracle reference representation from a gimple pointer
683 PTR and a gimple size SIZE in bytes. If SIZE is NULL_TREE then the
684 size is assumed to be unknown. The access is assumed to be only
685 to or after of the pointer target, not before it. */
686
687 void
688 ao_ref_init_from_ptr_and_size (ao_ref *ref, tree ptr, tree size)
689 {
690 poly_int64 t, size_hwi, extra_offset = 0;
691 ref->ref = NULL_TREE;
692 if (TREE_CODE (ptr) == SSA_NAME)
693 {
694 gimple *stmt = SSA_NAME_DEF_STMT (ptr);
695 if (gimple_assign_single_p (stmt)
696 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
697 ptr = gimple_assign_rhs1 (stmt);
698 else if (is_gimple_assign (stmt)
699 && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
700 && ptrdiff_tree_p (gimple_assign_rhs2 (stmt), &extra_offset))
701 {
702 ptr = gimple_assign_rhs1 (stmt);
703 extra_offset *= BITS_PER_UNIT;
704 }
705 }
706
707 if (TREE_CODE (ptr) == ADDR_EXPR)
708 {
709 ref->base = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &t);
710 if (ref->base)
711 ref->offset = BITS_PER_UNIT * t;
712 else
713 {
714 size = NULL_TREE;
715 ref->offset = 0;
716 ref->base = get_base_address (TREE_OPERAND (ptr, 0));
717 }
718 }
719 else
720 {
721 gcc_assert (POINTER_TYPE_P (TREE_TYPE (ptr)));
722 ref->base = build2 (MEM_REF, char_type_node,
723 ptr, null_pointer_node);
724 ref->offset = 0;
725 }
726 ref->offset += extra_offset;
727 if (size
728 && poly_int_tree_p (size, &size_hwi)
729 && coeffs_in_range_p (size_hwi, 0, HOST_WIDE_INT_MAX / BITS_PER_UNIT))
730 ref->max_size = ref->size = size_hwi * BITS_PER_UNIT;
731 else
732 ref->max_size = ref->size = -1;
733 ref->ref_alias_set = 0;
734 ref->base_alias_set = 0;
735 ref->volatile_p = false;
736 }
737
738 /* S1 and S2 are TYPE_SIZE or DECL_SIZE. Compare them:
739 Return -1 if S1 < S2
740 Return 1 if S1 > S2
741 Return 0 if equal or incomparable. */
742
743 static int
744 compare_sizes (tree s1, tree s2)
745 {
746 if (!s1 || !s2)
747 return 0;
748
749 poly_uint64 size1;
750 poly_uint64 size2;
751
752 if (!poly_int_tree_p (s1, &size1) || !poly_int_tree_p (s2, &size2))
753 return 0;
754 if (known_lt (size1, size2))
755 return -1;
756 if (known_lt (size2, size1))
757 return 1;
758 return 0;
759 }
760
761 /* Compare TYPE1 and TYPE2 by its size.
762 Return -1 if size of TYPE1 < size of TYPE2
763 Return 1 if size of TYPE1 > size of TYPE2
764 Return 0 if types are of equal sizes or we can not compare them. */
765
766 static int
767 compare_type_sizes (tree type1, tree type2)
768 {
769 /* Be conservative for arrays and vectors. We want to support partial
770 overlap on int[3] and int[3] as tested in gcc.dg/torture/alias-2.c. */
771 while (TREE_CODE (type1) == ARRAY_TYPE
772 || TREE_CODE (type1) == VECTOR_TYPE)
773 type1 = TREE_TYPE (type1);
774 while (TREE_CODE (type2) == ARRAY_TYPE
775 || TREE_CODE (type2) == VECTOR_TYPE)
776 type2 = TREE_TYPE (type2);
777 return compare_sizes (TYPE_SIZE (type1), TYPE_SIZE (type2));
778 }
779
780 /* Return 1 if TYPE1 and TYPE2 are to be considered equivalent for the
781 purpose of TBAA. Return 0 if they are distinct and -1 if we cannot
782 decide. */
783
784 static inline int
785 same_type_for_tbaa (tree type1, tree type2)
786 {
787 type1 = TYPE_MAIN_VARIANT (type1);
788 type2 = TYPE_MAIN_VARIANT (type2);
789
790 /* Handle the most common case first. */
791 if (type1 == type2)
792 return 1;
793
794 /* If we would have to do structural comparison bail out. */
795 if (TYPE_STRUCTURAL_EQUALITY_P (type1)
796 || TYPE_STRUCTURAL_EQUALITY_P (type2))
797 return -1;
798
799 /* Compare the canonical types. */
800 if (TYPE_CANONICAL (type1) == TYPE_CANONICAL (type2))
801 return 1;
802
803 /* ??? Array types are not properly unified in all cases as we have
804 spurious changes in the index types for example. Removing this
805 causes all sorts of problems with the Fortran frontend. */
806 if (TREE_CODE (type1) == ARRAY_TYPE
807 && TREE_CODE (type2) == ARRAY_TYPE)
808 return -1;
809
810 /* ??? In Ada, an lvalue of an unconstrained type can be used to access an
811 object of one of its constrained subtypes, e.g. when a function with an
812 unconstrained parameter passed by reference is called on an object and
813 inlined. But, even in the case of a fixed size, type and subtypes are
814 not equivalent enough as to share the same TYPE_CANONICAL, since this
815 would mean that conversions between them are useless, whereas they are
816 not (e.g. type and subtypes can have different modes). So, in the end,
817 they are only guaranteed to have the same alias set. */
818 if (get_alias_set (type1) == get_alias_set (type2))
819 return -1;
820
821 /* The types are known to be not equal. */
822 return 0;
823 }
824
825 /* Return true if TYPE is a composite type (i.e. we may apply one of handled
826 components on it). */
827
828 static bool
829 type_has_components_p (tree type)
830 {
831 return AGGREGATE_TYPE_P (type) || VECTOR_TYPE_P (type)
832 || TREE_CODE (type) == COMPLEX_TYPE;
833 }
834
835 /* Determine if the two component references REF1 and REF2 which are
836 based on access types TYPE1 and TYPE2 and of which at least one is based
837 on an indirect reference may alias. REF2 is the only one that can
838 be a decl in which case REF2_IS_DECL is true.
839 REF1_ALIAS_SET, BASE1_ALIAS_SET, REF2_ALIAS_SET and BASE2_ALIAS_SET
840 are the respective alias sets. */
841
842 static bool
843 aliasing_component_refs_p (tree ref1,
844 alias_set_type ref1_alias_set,
845 alias_set_type base1_alias_set,
846 poly_int64 offset1, poly_int64 max_size1,
847 tree ref2,
848 alias_set_type ref2_alias_set,
849 alias_set_type base2_alias_set,
850 poly_int64 offset2, poly_int64 max_size2,
851 bool ref2_is_decl)
852 {
853 /* If one reference is a component references through pointers try to find a
854 common base and apply offset based disambiguation. This handles
855 for example
856 struct A { int i; int j; } *q;
857 struct B { struct A a; int k; } *p;
858 disambiguating q->i and p->a.j. */
859 tree base1, base2;
860 tree type1, type2;
861 tree *refp;
862 int same_p1 = 0, same_p2 = 0;
863 bool maybe_match = false;
864
865 /* Choose bases and base types to search for. */
866 base1 = ref1;
867 while (handled_component_p (base1))
868 base1 = TREE_OPERAND (base1, 0);
869 type1 = TREE_TYPE (base1);
870 base2 = ref2;
871 while (handled_component_p (base2))
872 base2 = TREE_OPERAND (base2, 0);
873 type2 = TREE_TYPE (base2);
874
875 /* Now search for the type1 in the access path of ref2. This
876 would be a common base for doing offset based disambiguation on.
877 This however only makes sense if type2 is big enough to hold type1. */
878 int cmp_outer = compare_type_sizes (type2, type1);
879 if (cmp_outer >= 0)
880 {
881 refp = &ref2;
882 while (true)
883 {
884 /* We walk from inner type to the outer types. If type we see is
885 already too large to be part of type1, terminate the search. */
886 int cmp = compare_type_sizes (type1, TREE_TYPE (*refp));
887 if (cmp < 0)
888 break;
889 /* If types may be of same size, see if we can decide about their
890 equality. */
891 if (cmp == 0)
892 {
893 same_p2 = same_type_for_tbaa (TREE_TYPE (*refp), type1);
894 if (same_p2 == 1)
895 break;
896 /* In case we can't decide whether types are same try to
897 continue looking for the exact match.
898 Remember however that we possibly saw a match
899 to bypass the access path continuations tests we do later. */
900 if (same_p2 == -1)
901 maybe_match = true;
902 }
903 if (!handled_component_p (*refp))
904 break;
905 refp = &TREE_OPERAND (*refp, 0);
906 }
907 if (same_p2 == 1)
908 {
909 poly_int64 offadj, sztmp, msztmp;
910 bool reverse;
911
912 /* We assume that arrays can overlap by multiple of their elements
913 size as tested in gcc.dg/torture/alias-2.c.
914 This partial overlap happen only when both arrays are bases of
915 the access and not contained within another component ref.
916 To be safe we also assume partial overlap for VLAs. */
917 if (TREE_CODE (TREE_TYPE (base1)) == ARRAY_TYPE
918 && (!TYPE_SIZE (TREE_TYPE (base1))
919 || TREE_CODE (TYPE_SIZE (TREE_TYPE (base1))) != INTEGER_CST
920 || (*refp == base2 && !ref2_is_decl)))
921 {
922 ++alias_stats.aliasing_component_refs_p_may_alias;
923 return true;
924 }
925
926 get_ref_base_and_extent (*refp, &offadj, &sztmp, &msztmp, &reverse);
927 offset2 -= offadj;
928 get_ref_base_and_extent (base1, &offadj, &sztmp, &msztmp, &reverse);
929 offset1 -= offadj;
930 if (ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
931 {
932 ++alias_stats.aliasing_component_refs_p_may_alias;
933 return true;
934 }
935 else
936 {
937 ++alias_stats.aliasing_component_refs_p_no_alias;
938 return false;
939 }
940 }
941 }
942
943 /* If we didn't find a common base, try the other way around. */
944 if (cmp_outer <= 0)
945 {
946 refp = &ref1;
947 while (true)
948 {
949 int cmp = compare_type_sizes (type2, TREE_TYPE (*refp));
950 if (cmp < 0)
951 break;
952 /* If types may be of same size, see if we can decide about their
953 equality. */
954 if (cmp == 0)
955 {
956 same_p1 = same_type_for_tbaa (TREE_TYPE (*refp), type2);
957 if (same_p1 == 1)
958 break;
959 if (same_p1 == -1)
960 maybe_match = true;
961 }
962 if (!handled_component_p (*refp))
963 break;
964 refp = &TREE_OPERAND (*refp, 0);
965 }
966 if (same_p1 == 1)
967 {
968 poly_int64 offadj, sztmp, msztmp;
969 bool reverse;
970
971 if (TREE_CODE (TREE_TYPE (base2)) == ARRAY_TYPE
972 && (!TYPE_SIZE (TREE_TYPE (base2))
973 || TREE_CODE (TYPE_SIZE (TREE_TYPE (base2))) != INTEGER_CST
974 || (*refp == base1 && !ref2_is_decl)))
975 {
976 ++alias_stats.aliasing_component_refs_p_may_alias;
977 return true;
978 }
979
980 get_ref_base_and_extent (*refp, &offadj, &sztmp, &msztmp, &reverse);
981 offset1 -= offadj;
982 get_ref_base_and_extent (base2, &offadj, &sztmp, &msztmp, &reverse);
983 offset2 -= offadj;
984 if (ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
985 {
986 ++alias_stats.aliasing_component_refs_p_may_alias;
987 return true;
988 }
989 else
990 {
991 ++alias_stats.aliasing_component_refs_p_no_alias;
992 return false;
993 }
994 }
995 }
996
997 /* In the following code we make an assumption that the types in access
998 paths do not overlap and thus accesses alias only if one path can be
999 continuation of another. If we was not able to decide about equivalence,
1000 we need to give up. */
1001 if (maybe_match)
1002 return true;
1003
1004 /* If we have two type access paths B1.path1 and B2.path2 they may
1005 only alias if either B1 is in B2.path2 or B2 is in B1.path1.
1006 But we can still have a path that goes B1.path1...B2.path2 with
1007 a part that we do not see. So we can only disambiguate now
1008 if there is no B2 in the tail of path1 and no B1 on the
1009 tail of path2. */
1010 if (compare_type_sizes (TREE_TYPE (ref2), type1) >= 0
1011 && type_has_components_p (TREE_TYPE (ref2))
1012 && (base1_alias_set == ref2_alias_set
1013 || alias_set_subset_of (base1_alias_set, ref2_alias_set)))
1014 {
1015 ++alias_stats.aliasing_component_refs_p_may_alias;
1016 return true;
1017 }
1018 /* If this is ptr vs. decl then we know there is no ptr ... decl path. */
1019 if (!ref2_is_decl
1020 && compare_type_sizes (TREE_TYPE (ref1), type2) >= 0
1021 && type_has_components_p (TREE_TYPE (ref1))
1022 && (base2_alias_set == ref1_alias_set
1023 || alias_set_subset_of (base2_alias_set, ref1_alias_set)))
1024 {
1025 ++alias_stats.aliasing_component_refs_p_may_alias;
1026 return true;
1027 }
1028 ++alias_stats.aliasing_component_refs_p_no_alias;
1029 return false;
1030 }
1031
1032 /* Return true if we can determine that component references REF1 and REF2,
1033 that are within a common DECL, cannot overlap. */
1034
1035 static bool
1036 nonoverlapping_component_refs_of_decl_p (tree ref1, tree ref2)
1037 {
1038 auto_vec<tree, 16> component_refs1;
1039 auto_vec<tree, 16> component_refs2;
1040
1041 /* Create the stack of handled components for REF1. */
1042 while (handled_component_p (ref1))
1043 {
1044 component_refs1.safe_push (ref1);
1045 ref1 = TREE_OPERAND (ref1, 0);
1046 }
1047 if (TREE_CODE (ref1) == MEM_REF)
1048 {
1049 if (!integer_zerop (TREE_OPERAND (ref1, 1)))
1050 return false;
1051 ref1 = TREE_OPERAND (TREE_OPERAND (ref1, 0), 0);
1052 }
1053
1054 /* Create the stack of handled components for REF2. */
1055 while (handled_component_p (ref2))
1056 {
1057 component_refs2.safe_push (ref2);
1058 ref2 = TREE_OPERAND (ref2, 0);
1059 }
1060 if (TREE_CODE (ref2) == MEM_REF)
1061 {
1062 if (!integer_zerop (TREE_OPERAND (ref2, 1)))
1063 return false;
1064 ref2 = TREE_OPERAND (TREE_OPERAND (ref2, 0), 0);
1065 }
1066
1067 /* Bases must be either same or uncomparable. */
1068 gcc_checking_assert (ref1 == ref2
1069 || (DECL_P (ref1) && DECL_P (ref2)
1070 && compare_base_decls (ref1, ref2) != 0));
1071
1072 /* Pop the stacks in parallel and examine the COMPONENT_REFs of the same
1073 rank. This is sufficient because we start from the same DECL and you
1074 cannot reference several fields at a time with COMPONENT_REFs (unlike
1075 with ARRAY_RANGE_REFs for arrays) so you always need the same number
1076 of them to access a sub-component, unless you're in a union, in which
1077 case the return value will precisely be false. */
1078 while (true)
1079 {
1080 do
1081 {
1082 if (component_refs1.is_empty ())
1083 return false;
1084 ref1 = component_refs1.pop ();
1085 }
1086 while (!RECORD_OR_UNION_TYPE_P (TREE_TYPE (TREE_OPERAND (ref1, 0))));
1087
1088 do
1089 {
1090 if (component_refs2.is_empty ())
1091 return false;
1092 ref2 = component_refs2.pop ();
1093 }
1094 while (!RECORD_OR_UNION_TYPE_P (TREE_TYPE (TREE_OPERAND (ref2, 0))));
1095
1096 /* Beware of BIT_FIELD_REF. */
1097 if (TREE_CODE (ref1) != COMPONENT_REF
1098 || TREE_CODE (ref2) != COMPONENT_REF)
1099 return false;
1100
1101 tree field1 = TREE_OPERAND (ref1, 1);
1102 tree field2 = TREE_OPERAND (ref2, 1);
1103
1104 /* ??? We cannot simply use the type of operand #0 of the refs here
1105 as the Fortran compiler smuggles type punning into COMPONENT_REFs
1106 for common blocks instead of using unions like everyone else. */
1107 tree type1 = DECL_CONTEXT (field1);
1108 tree type2 = DECL_CONTEXT (field2);
1109
1110 /* We cannot disambiguate fields in a union or qualified union. */
1111 if (type1 != type2 || TREE_CODE (type1) != RECORD_TYPE)
1112 return false;
1113
1114 if (field1 != field2)
1115 {
1116 /* A field and its representative need to be considered the
1117 same. */
1118 if (DECL_BIT_FIELD_REPRESENTATIVE (field1) == field2
1119 || DECL_BIT_FIELD_REPRESENTATIVE (field2) == field1)
1120 return false;
1121 /* Different fields of the same record type cannot overlap.
1122 ??? Bitfields can overlap at RTL level so punt on them. */
1123 if (DECL_BIT_FIELD (field1) && DECL_BIT_FIELD (field2))
1124 return false;
1125 return true;
1126 }
1127 }
1128
1129 return false;
1130 }
1131
1132 /* qsort compare function to sort FIELD_DECLs after their
1133 DECL_FIELD_CONTEXT TYPE_UID. */
1134
1135 static inline int
1136 ncr_compar (const void *field1_, const void *field2_)
1137 {
1138 const_tree field1 = *(const_tree *) const_cast <void *>(field1_);
1139 const_tree field2 = *(const_tree *) const_cast <void *>(field2_);
1140 unsigned int uid1 = TYPE_UID (DECL_FIELD_CONTEXT (field1));
1141 unsigned int uid2 = TYPE_UID (DECL_FIELD_CONTEXT (field2));
1142 if (uid1 < uid2)
1143 return -1;
1144 else if (uid1 > uid2)
1145 return 1;
1146 return 0;
1147 }
1148
1149 /* Return true if we can determine that the fields referenced cannot
1150 overlap for any pair of objects. */
1151
1152 static bool
1153 nonoverlapping_component_refs_p (const_tree x, const_tree y)
1154 {
1155 if (!flag_strict_aliasing
1156 || !x || !y
1157 || TREE_CODE (x) != COMPONENT_REF
1158 || TREE_CODE (y) != COMPONENT_REF)
1159 return false;
1160
1161 auto_vec<const_tree, 16> fieldsx;
1162 while (TREE_CODE (x) == COMPONENT_REF)
1163 {
1164 tree field = TREE_OPERAND (x, 1);
1165 tree type = DECL_FIELD_CONTEXT (field);
1166 if (TREE_CODE (type) == RECORD_TYPE)
1167 fieldsx.safe_push (field);
1168 x = TREE_OPERAND (x, 0);
1169 }
1170 if (fieldsx.length () == 0)
1171 return false;
1172 auto_vec<const_tree, 16> fieldsy;
1173 while (TREE_CODE (y) == COMPONENT_REF)
1174 {
1175 tree field = TREE_OPERAND (y, 1);
1176 tree type = DECL_FIELD_CONTEXT (field);
1177 if (TREE_CODE (type) == RECORD_TYPE)
1178 fieldsy.safe_push (TREE_OPERAND (y, 1));
1179 y = TREE_OPERAND (y, 0);
1180 }
1181 if (fieldsy.length () == 0)
1182 return false;
1183
1184 /* Most common case first. */
1185 if (fieldsx.length () == 1
1186 && fieldsy.length () == 1)
1187 return ((DECL_FIELD_CONTEXT (fieldsx[0])
1188 == DECL_FIELD_CONTEXT (fieldsy[0]))
1189 && fieldsx[0] != fieldsy[0]
1190 && !(DECL_BIT_FIELD (fieldsx[0]) && DECL_BIT_FIELD (fieldsy[0])));
1191
1192 if (fieldsx.length () == 2)
1193 {
1194 if (ncr_compar (&fieldsx[0], &fieldsx[1]) == 1)
1195 std::swap (fieldsx[0], fieldsx[1]);
1196 }
1197 else
1198 fieldsx.qsort (ncr_compar);
1199
1200 if (fieldsy.length () == 2)
1201 {
1202 if (ncr_compar (&fieldsy[0], &fieldsy[1]) == 1)
1203 std::swap (fieldsy[0], fieldsy[1]);
1204 }
1205 else
1206 fieldsy.qsort (ncr_compar);
1207
1208 unsigned i = 0, j = 0;
1209 do
1210 {
1211 const_tree fieldx = fieldsx[i];
1212 const_tree fieldy = fieldsy[j];
1213 tree typex = DECL_FIELD_CONTEXT (fieldx);
1214 tree typey = DECL_FIELD_CONTEXT (fieldy);
1215 if (typex == typey)
1216 {
1217 /* We're left with accessing different fields of a structure,
1218 no possible overlap. */
1219 if (fieldx != fieldy)
1220 {
1221 /* A field and its representative need to be considered the
1222 same. */
1223 if (DECL_BIT_FIELD_REPRESENTATIVE (fieldx) == fieldy
1224 || DECL_BIT_FIELD_REPRESENTATIVE (fieldy) == fieldx)
1225 return false;
1226 /* Different fields of the same record type cannot overlap.
1227 ??? Bitfields can overlap at RTL level so punt on them. */
1228 if (DECL_BIT_FIELD (fieldx) && DECL_BIT_FIELD (fieldy))
1229 return false;
1230 return true;
1231 }
1232 }
1233 if (TYPE_UID (typex) < TYPE_UID (typey))
1234 {
1235 i++;
1236 if (i == fieldsx.length ())
1237 break;
1238 }
1239 else
1240 {
1241 j++;
1242 if (j == fieldsy.length ())
1243 break;
1244 }
1245 }
1246 while (1);
1247
1248 return false;
1249 }
1250
1251
1252 /* Return true if two memory references based on the variables BASE1
1253 and BASE2 constrained to [OFFSET1, OFFSET1 + MAX_SIZE1) and
1254 [OFFSET2, OFFSET2 + MAX_SIZE2) may alias. REF1 and REF2
1255 if non-NULL are the complete memory reference trees. */
1256
1257 static bool
1258 decl_refs_may_alias_p (tree ref1, tree base1,
1259 poly_int64 offset1, poly_int64 max_size1,
1260 tree ref2, tree base2,
1261 poly_int64 offset2, poly_int64 max_size2)
1262 {
1263 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
1264
1265 /* If both references are based on different variables, they cannot alias. */
1266 if (compare_base_decls (base1, base2) == 0)
1267 return false;
1268
1269 /* If both references are based on the same variable, they cannot alias if
1270 the accesses do not overlap. */
1271 if (!ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
1272 return false;
1273
1274 /* For components with variable position, the above test isn't sufficient,
1275 so we disambiguate component references manually. */
1276 if (ref1 && ref2
1277 && handled_component_p (ref1) && handled_component_p (ref2)
1278 && nonoverlapping_component_refs_of_decl_p (ref1, ref2))
1279 return false;
1280
1281 return true;
1282 }
1283
1284 /* Return true if an indirect reference based on *PTR1 constrained
1285 to [OFFSET1, OFFSET1 + MAX_SIZE1) may alias a variable based on BASE2
1286 constrained to [OFFSET2, OFFSET2 + MAX_SIZE2). *PTR1 and BASE2 have
1287 the alias sets BASE1_ALIAS_SET and BASE2_ALIAS_SET which can be -1
1288 in which case they are computed on-demand. REF1 and REF2
1289 if non-NULL are the complete memory reference trees. */
1290
1291 static bool
1292 indirect_ref_may_alias_decl_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
1293 poly_int64 offset1, poly_int64 max_size1,
1294 alias_set_type ref1_alias_set,
1295 alias_set_type base1_alias_set,
1296 tree ref2 ATTRIBUTE_UNUSED, tree base2,
1297 poly_int64 offset2, poly_int64 max_size2,
1298 alias_set_type ref2_alias_set,
1299 alias_set_type base2_alias_set, bool tbaa_p)
1300 {
1301 tree ptr1;
1302 tree ptrtype1, dbase2;
1303
1304 gcc_checking_assert ((TREE_CODE (base1) == MEM_REF
1305 || TREE_CODE (base1) == TARGET_MEM_REF)
1306 && DECL_P (base2));
1307
1308 ptr1 = TREE_OPERAND (base1, 0);
1309 poly_offset_int moff = mem_ref_offset (base1) << LOG2_BITS_PER_UNIT;
1310
1311 /* If only one reference is based on a variable, they cannot alias if
1312 the pointer access is beyond the extent of the variable access.
1313 (the pointer base cannot validly point to an offset less than zero
1314 of the variable).
1315 ??? IVOPTs creates bases that do not honor this restriction,
1316 so do not apply this optimization for TARGET_MEM_REFs. */
1317 if (TREE_CODE (base1) != TARGET_MEM_REF
1318 && !ranges_maybe_overlap_p (offset1 + moff, -1, offset2, max_size2))
1319 return false;
1320 /* They also cannot alias if the pointer may not point to the decl. */
1321 if (!ptr_deref_may_alias_decl_p (ptr1, base2))
1322 return false;
1323
1324 /* Disambiguations that rely on strict aliasing rules follow. */
1325 if (!flag_strict_aliasing || !tbaa_p)
1326 return true;
1327
1328 ptrtype1 = TREE_TYPE (TREE_OPERAND (base1, 1));
1329
1330 /* If the alias set for a pointer access is zero all bets are off. */
1331 if (base1_alias_set == 0)
1332 return true;
1333
1334 /* When we are trying to disambiguate an access with a pointer dereference
1335 as base versus one with a decl as base we can use both the size
1336 of the decl and its dynamic type for extra disambiguation.
1337 ??? We do not know anything about the dynamic type of the decl
1338 other than that its alias-set contains base2_alias_set as a subset
1339 which does not help us here. */
1340 /* As we know nothing useful about the dynamic type of the decl just
1341 use the usual conflict check rather than a subset test.
1342 ??? We could introduce -fvery-strict-aliasing when the language
1343 does not allow decls to have a dynamic type that differs from their
1344 static type. Then we can check
1345 !alias_set_subset_of (base1_alias_set, base2_alias_set) instead. */
1346 if (base1_alias_set != base2_alias_set
1347 && !alias_sets_conflict_p (base1_alias_set, base2_alias_set))
1348 return false;
1349 /* If the size of the access relevant for TBAA through the pointer
1350 is bigger than the size of the decl we can't possibly access the
1351 decl via that pointer. */
1352 if (/* ??? This in turn may run afoul when a decl of type T which is
1353 a member of union type U is accessed through a pointer to
1354 type U and sizeof T is smaller than sizeof U. */
1355 TREE_CODE (TREE_TYPE (ptrtype1)) != UNION_TYPE
1356 && TREE_CODE (TREE_TYPE (ptrtype1)) != QUAL_UNION_TYPE
1357 && compare_sizes (DECL_SIZE (base2),
1358 TYPE_SIZE (TREE_TYPE (ptrtype1))) < 0)
1359 return false;
1360
1361 if (!ref2)
1362 return true;
1363
1364 /* If the decl is accessed via a MEM_REF, reconstruct the base
1365 we can use for TBAA and an appropriately adjusted offset. */
1366 dbase2 = ref2;
1367 while (handled_component_p (dbase2))
1368 dbase2 = TREE_OPERAND (dbase2, 0);
1369 poly_int64 doffset1 = offset1;
1370 poly_offset_int doffset2 = offset2;
1371 if (TREE_CODE (dbase2) == MEM_REF
1372 || TREE_CODE (dbase2) == TARGET_MEM_REF)
1373 doffset2 -= mem_ref_offset (dbase2) << LOG2_BITS_PER_UNIT;
1374
1375 /* If either reference is view-converted, give up now. */
1376 if (same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) != 1
1377 || same_type_for_tbaa (TREE_TYPE (dbase2), TREE_TYPE (base2)) != 1)
1378 return true;
1379
1380 /* If both references are through the same type, they do not alias
1381 if the accesses do not overlap. This does extra disambiguation
1382 for mixed/pointer accesses but requires strict aliasing.
1383 For MEM_REFs we require that the component-ref offset we computed
1384 is relative to the start of the type which we ensure by
1385 comparing rvalue and access type and disregarding the constant
1386 pointer offset.
1387
1388 But avoid treating variable length arrays as "objects", instead assume they
1389 can overlap by an exact multiple of their element size.
1390 See gcc.dg/torture/alias-2.c. */
1391 if ((TREE_CODE (base1) != TARGET_MEM_REF
1392 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
1393 && same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (dbase2)) == 1
1394 && (TREE_CODE (TREE_TYPE (base1)) != ARRAY_TYPE
1395 || (TYPE_SIZE (TREE_TYPE (base1))
1396 && TREE_CODE (TYPE_SIZE (TREE_TYPE (base1))) == INTEGER_CST)))
1397 return ranges_maybe_overlap_p (doffset1, max_size1, doffset2, max_size2);
1398
1399 if (ref1 && ref2
1400 && nonoverlapping_component_refs_p (ref1, ref2))
1401 return false;
1402
1403 /* Do access-path based disambiguation. */
1404 if (ref1 && ref2
1405 && (handled_component_p (ref1) || handled_component_p (ref2)))
1406 return aliasing_component_refs_p (ref1,
1407 ref1_alias_set, base1_alias_set,
1408 offset1, max_size1,
1409 ref2,
1410 ref2_alias_set, base2_alias_set,
1411 offset2, max_size2, true);
1412
1413 return true;
1414 }
1415
1416 /* Return true if two indirect references based on *PTR1
1417 and *PTR2 constrained to [OFFSET1, OFFSET1 + MAX_SIZE1) and
1418 [OFFSET2, OFFSET2 + MAX_SIZE2) may alias. *PTR1 and *PTR2 have
1419 the alias sets BASE1_ALIAS_SET and BASE2_ALIAS_SET which can be -1
1420 in which case they are computed on-demand. REF1 and REF2
1421 if non-NULL are the complete memory reference trees. */
1422
1423 static bool
1424 indirect_refs_may_alias_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
1425 poly_int64 offset1, poly_int64 max_size1,
1426 alias_set_type ref1_alias_set,
1427 alias_set_type base1_alias_set,
1428 tree ref2 ATTRIBUTE_UNUSED, tree base2,
1429 poly_int64 offset2, poly_int64 max_size2,
1430 alias_set_type ref2_alias_set,
1431 alias_set_type base2_alias_set, bool tbaa_p)
1432 {
1433 tree ptr1;
1434 tree ptr2;
1435 tree ptrtype1, ptrtype2;
1436
1437 gcc_checking_assert ((TREE_CODE (base1) == MEM_REF
1438 || TREE_CODE (base1) == TARGET_MEM_REF)
1439 && (TREE_CODE (base2) == MEM_REF
1440 || TREE_CODE (base2) == TARGET_MEM_REF));
1441
1442 ptr1 = TREE_OPERAND (base1, 0);
1443 ptr2 = TREE_OPERAND (base2, 0);
1444
1445 /* If both bases are based on pointers they cannot alias if they may not
1446 point to the same memory object or if they point to the same object
1447 and the accesses do not overlap. */
1448 if ((!cfun || gimple_in_ssa_p (cfun))
1449 && operand_equal_p (ptr1, ptr2, 0)
1450 && (((TREE_CODE (base1) != TARGET_MEM_REF
1451 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
1452 && (TREE_CODE (base2) != TARGET_MEM_REF
1453 || (!TMR_INDEX (base2) && !TMR_INDEX2 (base2))))
1454 || (TREE_CODE (base1) == TARGET_MEM_REF
1455 && TREE_CODE (base2) == TARGET_MEM_REF
1456 && (TMR_STEP (base1) == TMR_STEP (base2)
1457 || (TMR_STEP (base1) && TMR_STEP (base2)
1458 && operand_equal_p (TMR_STEP (base1),
1459 TMR_STEP (base2), 0)))
1460 && (TMR_INDEX (base1) == TMR_INDEX (base2)
1461 || (TMR_INDEX (base1) && TMR_INDEX (base2)
1462 && operand_equal_p (TMR_INDEX (base1),
1463 TMR_INDEX (base2), 0)))
1464 && (TMR_INDEX2 (base1) == TMR_INDEX2 (base2)
1465 || (TMR_INDEX2 (base1) && TMR_INDEX2 (base2)
1466 && operand_equal_p (TMR_INDEX2 (base1),
1467 TMR_INDEX2 (base2), 0))))))
1468 {
1469 poly_offset_int moff1 = mem_ref_offset (base1) << LOG2_BITS_PER_UNIT;
1470 poly_offset_int moff2 = mem_ref_offset (base2) << LOG2_BITS_PER_UNIT;
1471 return ranges_maybe_overlap_p (offset1 + moff1, max_size1,
1472 offset2 + moff2, max_size2);
1473 }
1474 if (!ptr_derefs_may_alias_p (ptr1, ptr2))
1475 return false;
1476
1477 /* Disambiguations that rely on strict aliasing rules follow. */
1478 if (!flag_strict_aliasing || !tbaa_p)
1479 return true;
1480
1481 ptrtype1 = TREE_TYPE (TREE_OPERAND (base1, 1));
1482 ptrtype2 = TREE_TYPE (TREE_OPERAND (base2, 1));
1483
1484 /* If the alias set for a pointer access is zero all bets are off. */
1485 if (base1_alias_set == 0
1486 || base2_alias_set == 0)
1487 return true;
1488
1489 /* Do type-based disambiguation. */
1490 if (base1_alias_set != base2_alias_set
1491 && !alias_sets_conflict_p (base1_alias_set, base2_alias_set))
1492 return false;
1493
1494 /* If either reference is view-converted, give up now. */
1495 if (same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) != 1
1496 || same_type_for_tbaa (TREE_TYPE (base2), TREE_TYPE (ptrtype2)) != 1)
1497 return true;
1498
1499 /* If both references are through the same type, they do not alias
1500 if the accesses do not overlap. This does extra disambiguation
1501 for mixed/pointer accesses but requires strict aliasing. */
1502 if ((TREE_CODE (base1) != TARGET_MEM_REF
1503 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
1504 && (TREE_CODE (base2) != TARGET_MEM_REF
1505 || (!TMR_INDEX (base2) && !TMR_INDEX2 (base2)))
1506 && same_type_for_tbaa (TREE_TYPE (ptrtype1),
1507 TREE_TYPE (ptrtype2)) == 1
1508 /* But avoid treating arrays as "objects", instead assume they
1509 can overlap by an exact multiple of their element size.
1510 See gcc.dg/torture/alias-2.c. */
1511 && TREE_CODE (TREE_TYPE (ptrtype1)) != ARRAY_TYPE)
1512 return ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2);
1513
1514 if (ref1 && ref2
1515 && nonoverlapping_component_refs_p (ref1, ref2))
1516 return false;
1517
1518 /* Do access-path based disambiguation. */
1519 if (ref1 && ref2
1520 && (handled_component_p (ref1) || handled_component_p (ref2)))
1521 return aliasing_component_refs_p (ref1,
1522 ref1_alias_set, base1_alias_set,
1523 offset1, max_size1,
1524 ref2,
1525 ref2_alias_set, base2_alias_set,
1526 offset2, max_size2, false);
1527
1528 return true;
1529 }
1530
1531 /* Return true, if the two memory references REF1 and REF2 may alias. */
1532
1533 static bool
1534 refs_may_alias_p_2 (ao_ref *ref1, ao_ref *ref2, bool tbaa_p)
1535 {
1536 tree base1, base2;
1537 poly_int64 offset1 = 0, offset2 = 0;
1538 poly_int64 max_size1 = -1, max_size2 = -1;
1539 bool var1_p, var2_p, ind1_p, ind2_p;
1540
1541 gcc_checking_assert ((!ref1->ref
1542 || TREE_CODE (ref1->ref) == SSA_NAME
1543 || DECL_P (ref1->ref)
1544 || TREE_CODE (ref1->ref) == STRING_CST
1545 || handled_component_p (ref1->ref)
1546 || TREE_CODE (ref1->ref) == MEM_REF
1547 || TREE_CODE (ref1->ref) == TARGET_MEM_REF)
1548 && (!ref2->ref
1549 || TREE_CODE (ref2->ref) == SSA_NAME
1550 || DECL_P (ref2->ref)
1551 || TREE_CODE (ref2->ref) == STRING_CST
1552 || handled_component_p (ref2->ref)
1553 || TREE_CODE (ref2->ref) == MEM_REF
1554 || TREE_CODE (ref2->ref) == TARGET_MEM_REF));
1555
1556 /* Decompose the references into their base objects and the access. */
1557 base1 = ao_ref_base (ref1);
1558 offset1 = ref1->offset;
1559 max_size1 = ref1->max_size;
1560 base2 = ao_ref_base (ref2);
1561 offset2 = ref2->offset;
1562 max_size2 = ref2->max_size;
1563
1564 /* We can end up with registers or constants as bases for example from
1565 *D.1663_44 = VIEW_CONVERT_EXPR<struct DB_LSN>(__tmp$B0F64_59);
1566 which is seen as a struct copy. */
1567 if (TREE_CODE (base1) == SSA_NAME
1568 || TREE_CODE (base1) == CONST_DECL
1569 || TREE_CODE (base1) == CONSTRUCTOR
1570 || TREE_CODE (base1) == ADDR_EXPR
1571 || CONSTANT_CLASS_P (base1)
1572 || TREE_CODE (base2) == SSA_NAME
1573 || TREE_CODE (base2) == CONST_DECL
1574 || TREE_CODE (base2) == CONSTRUCTOR
1575 || TREE_CODE (base2) == ADDR_EXPR
1576 || CONSTANT_CLASS_P (base2))
1577 return false;
1578
1579 /* We can end up referring to code via function and label decls.
1580 As we likely do not properly track code aliases conservatively
1581 bail out. */
1582 if (TREE_CODE (base1) == FUNCTION_DECL
1583 || TREE_CODE (base1) == LABEL_DECL
1584 || TREE_CODE (base2) == FUNCTION_DECL
1585 || TREE_CODE (base2) == LABEL_DECL)
1586 return true;
1587
1588 /* Two volatile accesses always conflict. */
1589 if (ref1->volatile_p
1590 && ref2->volatile_p)
1591 return true;
1592
1593 /* Defer to simple offset based disambiguation if we have
1594 references based on two decls. Do this before defering to
1595 TBAA to handle must-alias cases in conformance with the
1596 GCC extension of allowing type-punning through unions. */
1597 var1_p = DECL_P (base1);
1598 var2_p = DECL_P (base2);
1599 if (var1_p && var2_p)
1600 return decl_refs_may_alias_p (ref1->ref, base1, offset1, max_size1,
1601 ref2->ref, base2, offset2, max_size2);
1602
1603 /* Handle restrict based accesses.
1604 ??? ao_ref_base strips inner MEM_REF [&decl], recover from that
1605 here. */
1606 tree rbase1 = base1;
1607 tree rbase2 = base2;
1608 if (var1_p)
1609 {
1610 rbase1 = ref1->ref;
1611 if (rbase1)
1612 while (handled_component_p (rbase1))
1613 rbase1 = TREE_OPERAND (rbase1, 0);
1614 }
1615 if (var2_p)
1616 {
1617 rbase2 = ref2->ref;
1618 if (rbase2)
1619 while (handled_component_p (rbase2))
1620 rbase2 = TREE_OPERAND (rbase2, 0);
1621 }
1622 if (rbase1 && rbase2
1623 && (TREE_CODE (base1) == MEM_REF || TREE_CODE (base1) == TARGET_MEM_REF)
1624 && (TREE_CODE (base2) == MEM_REF || TREE_CODE (base2) == TARGET_MEM_REF)
1625 /* If the accesses are in the same restrict clique... */
1626 && MR_DEPENDENCE_CLIQUE (base1) == MR_DEPENDENCE_CLIQUE (base2)
1627 /* But based on different pointers they do not alias. */
1628 && MR_DEPENDENCE_BASE (base1) != MR_DEPENDENCE_BASE (base2))
1629 return false;
1630
1631 ind1_p = (TREE_CODE (base1) == MEM_REF
1632 || TREE_CODE (base1) == TARGET_MEM_REF);
1633 ind2_p = (TREE_CODE (base2) == MEM_REF
1634 || TREE_CODE (base2) == TARGET_MEM_REF);
1635
1636 /* Canonicalize the pointer-vs-decl case. */
1637 if (ind1_p && var2_p)
1638 {
1639 std::swap (offset1, offset2);
1640 std::swap (max_size1, max_size2);
1641 std::swap (base1, base2);
1642 std::swap (ref1, ref2);
1643 var1_p = true;
1644 ind1_p = false;
1645 var2_p = false;
1646 ind2_p = true;
1647 }
1648
1649 /* First defer to TBAA if possible. */
1650 if (tbaa_p
1651 && flag_strict_aliasing
1652 && !alias_sets_conflict_p (ao_ref_alias_set (ref1),
1653 ao_ref_alias_set (ref2)))
1654 return false;
1655
1656 /* If the reference is based on a pointer that points to memory
1657 that may not be written to then the other reference cannot possibly
1658 clobber it. */
1659 if ((TREE_CODE (TREE_OPERAND (base2, 0)) == SSA_NAME
1660 && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base2, 0)))
1661 || (ind1_p
1662 && TREE_CODE (TREE_OPERAND (base1, 0)) == SSA_NAME
1663 && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base1, 0))))
1664 return false;
1665
1666 /* Dispatch to the pointer-vs-decl or pointer-vs-pointer disambiguators. */
1667 if (var1_p && ind2_p)
1668 return indirect_ref_may_alias_decl_p (ref2->ref, base2,
1669 offset2, max_size2,
1670 ao_ref_alias_set (ref2),
1671 ao_ref_base_alias_set (ref2),
1672 ref1->ref, base1,
1673 offset1, max_size1,
1674 ao_ref_alias_set (ref1),
1675 ao_ref_base_alias_set (ref1),
1676 tbaa_p);
1677 else if (ind1_p && ind2_p)
1678 return indirect_refs_may_alias_p (ref1->ref, base1,
1679 offset1, max_size1,
1680 ao_ref_alias_set (ref1),
1681 ao_ref_base_alias_set (ref1),
1682 ref2->ref, base2,
1683 offset2, max_size2,
1684 ao_ref_alias_set (ref2),
1685 ao_ref_base_alias_set (ref2),
1686 tbaa_p);
1687
1688 gcc_unreachable ();
1689 }
1690
1691 /* Return true, if the two memory references REF1 and REF2 may alias
1692 and update statistics. */
1693
1694 bool
1695 refs_may_alias_p_1 (ao_ref *ref1, ao_ref *ref2, bool tbaa_p)
1696 {
1697 bool res = refs_may_alias_p_2 (ref1, ref2, tbaa_p);
1698 if (res)
1699 ++alias_stats.refs_may_alias_p_may_alias;
1700 else
1701 ++alias_stats.refs_may_alias_p_no_alias;
1702 return res;
1703 }
1704
1705 static bool
1706 refs_may_alias_p (tree ref1, ao_ref *ref2, bool tbaa_p)
1707 {
1708 ao_ref r1;
1709 ao_ref_init (&r1, ref1);
1710 return refs_may_alias_p_1 (&r1, ref2, tbaa_p);
1711 }
1712
1713 bool
1714 refs_may_alias_p (tree ref1, tree ref2, bool tbaa_p)
1715 {
1716 ao_ref r1, r2;
1717 ao_ref_init (&r1, ref1);
1718 ao_ref_init (&r2, ref2);
1719 return refs_may_alias_p_1 (&r1, &r2, tbaa_p);
1720 }
1721
1722 /* Returns true if there is a anti-dependence for the STORE that
1723 executes after the LOAD. */
1724
1725 bool
1726 refs_anti_dependent_p (tree load, tree store)
1727 {
1728 ao_ref r1, r2;
1729 ao_ref_init (&r1, load);
1730 ao_ref_init (&r2, store);
1731 return refs_may_alias_p_1 (&r1, &r2, false);
1732 }
1733
1734 /* Returns true if there is a output dependence for the stores
1735 STORE1 and STORE2. */
1736
1737 bool
1738 refs_output_dependent_p (tree store1, tree store2)
1739 {
1740 ao_ref r1, r2;
1741 ao_ref_init (&r1, store1);
1742 ao_ref_init (&r2, store2);
1743 return refs_may_alias_p_1 (&r1, &r2, false);
1744 }
1745
1746 /* If the call CALL may use the memory reference REF return true,
1747 otherwise return false. */
1748
1749 static bool
1750 ref_maybe_used_by_call_p_1 (gcall *call, ao_ref *ref, bool tbaa_p)
1751 {
1752 tree base, callee;
1753 unsigned i;
1754 int flags = gimple_call_flags (call);
1755
1756 /* Const functions without a static chain do not implicitly use memory. */
1757 if (!gimple_call_chain (call)
1758 && (flags & (ECF_CONST|ECF_NOVOPS)))
1759 goto process_args;
1760
1761 base = ao_ref_base (ref);
1762 if (!base)
1763 return true;
1764
1765 /* A call that is not without side-effects might involve volatile
1766 accesses and thus conflicts with all other volatile accesses. */
1767 if (ref->volatile_p)
1768 return true;
1769
1770 /* If the reference is based on a decl that is not aliased the call
1771 cannot possibly use it. */
1772 if (DECL_P (base)
1773 && !may_be_aliased (base)
1774 /* But local statics can be used through recursion. */
1775 && !is_global_var (base))
1776 goto process_args;
1777
1778 callee = gimple_call_fndecl (call);
1779
1780 /* Handle those builtin functions explicitly that do not act as
1781 escape points. See tree-ssa-structalias.c:find_func_aliases
1782 for the list of builtins we might need to handle here. */
1783 if (callee != NULL_TREE
1784 && gimple_call_builtin_p (call, BUILT_IN_NORMAL))
1785 switch (DECL_FUNCTION_CODE (callee))
1786 {
1787 /* All the following functions read memory pointed to by
1788 their second argument. strcat/strncat additionally
1789 reads memory pointed to by the first argument. */
1790 case BUILT_IN_STRCAT:
1791 case BUILT_IN_STRNCAT:
1792 {
1793 ao_ref dref;
1794 ao_ref_init_from_ptr_and_size (&dref,
1795 gimple_call_arg (call, 0),
1796 NULL_TREE);
1797 if (refs_may_alias_p_1 (&dref, ref, false))
1798 return true;
1799 }
1800 /* FALLTHRU */
1801 case BUILT_IN_STRCPY:
1802 case BUILT_IN_STRNCPY:
1803 case BUILT_IN_MEMCPY:
1804 case BUILT_IN_MEMMOVE:
1805 case BUILT_IN_MEMPCPY:
1806 case BUILT_IN_STPCPY:
1807 case BUILT_IN_STPNCPY:
1808 case BUILT_IN_TM_MEMCPY:
1809 case BUILT_IN_TM_MEMMOVE:
1810 {
1811 ao_ref dref;
1812 tree size = NULL_TREE;
1813 if (gimple_call_num_args (call) == 3)
1814 size = gimple_call_arg (call, 2);
1815 ao_ref_init_from_ptr_and_size (&dref,
1816 gimple_call_arg (call, 1),
1817 size);
1818 return refs_may_alias_p_1 (&dref, ref, false);
1819 }
1820 case BUILT_IN_STRCAT_CHK:
1821 case BUILT_IN_STRNCAT_CHK:
1822 {
1823 ao_ref dref;
1824 ao_ref_init_from_ptr_and_size (&dref,
1825 gimple_call_arg (call, 0),
1826 NULL_TREE);
1827 if (refs_may_alias_p_1 (&dref, ref, false))
1828 return true;
1829 }
1830 /* FALLTHRU */
1831 case BUILT_IN_STRCPY_CHK:
1832 case BUILT_IN_STRNCPY_CHK:
1833 case BUILT_IN_MEMCPY_CHK:
1834 case BUILT_IN_MEMMOVE_CHK:
1835 case BUILT_IN_MEMPCPY_CHK:
1836 case BUILT_IN_STPCPY_CHK:
1837 case BUILT_IN_STPNCPY_CHK:
1838 {
1839 ao_ref dref;
1840 tree size = NULL_TREE;
1841 if (gimple_call_num_args (call) == 4)
1842 size = gimple_call_arg (call, 2);
1843 ao_ref_init_from_ptr_and_size (&dref,
1844 gimple_call_arg (call, 1),
1845 size);
1846 return refs_may_alias_p_1 (&dref, ref, false);
1847 }
1848 case BUILT_IN_BCOPY:
1849 {
1850 ao_ref dref;
1851 tree size = gimple_call_arg (call, 2);
1852 ao_ref_init_from_ptr_and_size (&dref,
1853 gimple_call_arg (call, 0),
1854 size);
1855 return refs_may_alias_p_1 (&dref, ref, false);
1856 }
1857
1858 /* The following functions read memory pointed to by their
1859 first argument. */
1860 CASE_BUILT_IN_TM_LOAD (1):
1861 CASE_BUILT_IN_TM_LOAD (2):
1862 CASE_BUILT_IN_TM_LOAD (4):
1863 CASE_BUILT_IN_TM_LOAD (8):
1864 CASE_BUILT_IN_TM_LOAD (FLOAT):
1865 CASE_BUILT_IN_TM_LOAD (DOUBLE):
1866 CASE_BUILT_IN_TM_LOAD (LDOUBLE):
1867 CASE_BUILT_IN_TM_LOAD (M64):
1868 CASE_BUILT_IN_TM_LOAD (M128):
1869 CASE_BUILT_IN_TM_LOAD (M256):
1870 case BUILT_IN_TM_LOG:
1871 case BUILT_IN_TM_LOG_1:
1872 case BUILT_IN_TM_LOG_2:
1873 case BUILT_IN_TM_LOG_4:
1874 case BUILT_IN_TM_LOG_8:
1875 case BUILT_IN_TM_LOG_FLOAT:
1876 case BUILT_IN_TM_LOG_DOUBLE:
1877 case BUILT_IN_TM_LOG_LDOUBLE:
1878 case BUILT_IN_TM_LOG_M64:
1879 case BUILT_IN_TM_LOG_M128:
1880 case BUILT_IN_TM_LOG_M256:
1881 return ptr_deref_may_alias_ref_p_1 (gimple_call_arg (call, 0), ref);
1882
1883 /* These read memory pointed to by the first argument. */
1884 case BUILT_IN_STRDUP:
1885 case BUILT_IN_STRNDUP:
1886 case BUILT_IN_REALLOC:
1887 {
1888 ao_ref dref;
1889 tree size = NULL_TREE;
1890 if (gimple_call_num_args (call) == 2)
1891 size = gimple_call_arg (call, 1);
1892 ao_ref_init_from_ptr_and_size (&dref,
1893 gimple_call_arg (call, 0),
1894 size);
1895 return refs_may_alias_p_1 (&dref, ref, false);
1896 }
1897 /* These read memory pointed to by the first argument. */
1898 case BUILT_IN_INDEX:
1899 case BUILT_IN_STRCHR:
1900 case BUILT_IN_STRRCHR:
1901 {
1902 ao_ref dref;
1903 ao_ref_init_from_ptr_and_size (&dref,
1904 gimple_call_arg (call, 0),
1905 NULL_TREE);
1906 return refs_may_alias_p_1 (&dref, ref, false);
1907 }
1908 /* These read memory pointed to by the first argument with size
1909 in the third argument. */
1910 case BUILT_IN_MEMCHR:
1911 {
1912 ao_ref dref;
1913 ao_ref_init_from_ptr_and_size (&dref,
1914 gimple_call_arg (call, 0),
1915 gimple_call_arg (call, 2));
1916 return refs_may_alias_p_1 (&dref, ref, false);
1917 }
1918 /* These read memory pointed to by the first and second arguments. */
1919 case BUILT_IN_STRSTR:
1920 case BUILT_IN_STRPBRK:
1921 {
1922 ao_ref dref;
1923 ao_ref_init_from_ptr_and_size (&dref,
1924 gimple_call_arg (call, 0),
1925 NULL_TREE);
1926 if (refs_may_alias_p_1 (&dref, ref, false))
1927 return true;
1928 ao_ref_init_from_ptr_and_size (&dref,
1929 gimple_call_arg (call, 1),
1930 NULL_TREE);
1931 return refs_may_alias_p_1 (&dref, ref, false);
1932 }
1933
1934 /* The following builtins do not read from memory. */
1935 case BUILT_IN_FREE:
1936 case BUILT_IN_MALLOC:
1937 case BUILT_IN_POSIX_MEMALIGN:
1938 case BUILT_IN_ALIGNED_ALLOC:
1939 case BUILT_IN_CALLOC:
1940 CASE_BUILT_IN_ALLOCA:
1941 case BUILT_IN_STACK_SAVE:
1942 case BUILT_IN_STACK_RESTORE:
1943 case BUILT_IN_MEMSET:
1944 case BUILT_IN_TM_MEMSET:
1945 case BUILT_IN_MEMSET_CHK:
1946 case BUILT_IN_FREXP:
1947 case BUILT_IN_FREXPF:
1948 case BUILT_IN_FREXPL:
1949 case BUILT_IN_GAMMA_R:
1950 case BUILT_IN_GAMMAF_R:
1951 case BUILT_IN_GAMMAL_R:
1952 case BUILT_IN_LGAMMA_R:
1953 case BUILT_IN_LGAMMAF_R:
1954 case BUILT_IN_LGAMMAL_R:
1955 case BUILT_IN_MODF:
1956 case BUILT_IN_MODFF:
1957 case BUILT_IN_MODFL:
1958 case BUILT_IN_REMQUO:
1959 case BUILT_IN_REMQUOF:
1960 case BUILT_IN_REMQUOL:
1961 case BUILT_IN_SINCOS:
1962 case BUILT_IN_SINCOSF:
1963 case BUILT_IN_SINCOSL:
1964 case BUILT_IN_ASSUME_ALIGNED:
1965 case BUILT_IN_VA_END:
1966 return false;
1967 /* __sync_* builtins and some OpenMP builtins act as threading
1968 barriers. */
1969 #undef DEF_SYNC_BUILTIN
1970 #define DEF_SYNC_BUILTIN(ENUM, NAME, TYPE, ATTRS) case ENUM:
1971 #include "sync-builtins.def"
1972 #undef DEF_SYNC_BUILTIN
1973 case BUILT_IN_GOMP_ATOMIC_START:
1974 case BUILT_IN_GOMP_ATOMIC_END:
1975 case BUILT_IN_GOMP_BARRIER:
1976 case BUILT_IN_GOMP_BARRIER_CANCEL:
1977 case BUILT_IN_GOMP_TASKWAIT:
1978 case BUILT_IN_GOMP_TASKGROUP_END:
1979 case BUILT_IN_GOMP_CRITICAL_START:
1980 case BUILT_IN_GOMP_CRITICAL_END:
1981 case BUILT_IN_GOMP_CRITICAL_NAME_START:
1982 case BUILT_IN_GOMP_CRITICAL_NAME_END:
1983 case BUILT_IN_GOMP_LOOP_END:
1984 case BUILT_IN_GOMP_LOOP_END_CANCEL:
1985 case BUILT_IN_GOMP_ORDERED_START:
1986 case BUILT_IN_GOMP_ORDERED_END:
1987 case BUILT_IN_GOMP_SECTIONS_END:
1988 case BUILT_IN_GOMP_SECTIONS_END_CANCEL:
1989 case BUILT_IN_GOMP_SINGLE_COPY_START:
1990 case BUILT_IN_GOMP_SINGLE_COPY_END:
1991 return true;
1992
1993 default:
1994 /* Fallthru to general call handling. */;
1995 }
1996
1997 /* Check if base is a global static variable that is not read
1998 by the function. */
1999 if (callee != NULL_TREE && VAR_P (base) && TREE_STATIC (base))
2000 {
2001 struct cgraph_node *node = cgraph_node::get (callee);
2002 bitmap not_read;
2003
2004 /* FIXME: Callee can be an OMP builtin that does not have a call graph
2005 node yet. We should enforce that there are nodes for all decls in the
2006 IL and remove this check instead. */
2007 if (node
2008 && (not_read = ipa_reference_get_not_read_global (node))
2009 && bitmap_bit_p (not_read, ipa_reference_var_uid (base)))
2010 goto process_args;
2011 }
2012
2013 /* Check if the base variable is call-used. */
2014 if (DECL_P (base))
2015 {
2016 if (pt_solution_includes (gimple_call_use_set (call), base))
2017 return true;
2018 }
2019 else if ((TREE_CODE (base) == MEM_REF
2020 || TREE_CODE (base) == TARGET_MEM_REF)
2021 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
2022 {
2023 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (TREE_OPERAND (base, 0));
2024 if (!pi)
2025 return true;
2026
2027 if (pt_solutions_intersect (gimple_call_use_set (call), &pi->pt))
2028 return true;
2029 }
2030 else
2031 return true;
2032
2033 /* Inspect call arguments for passed-by-value aliases. */
2034 process_args:
2035 for (i = 0; i < gimple_call_num_args (call); ++i)
2036 {
2037 tree op = gimple_call_arg (call, i);
2038 int flags = gimple_call_arg_flags (call, i);
2039
2040 if (flags & EAF_UNUSED)
2041 continue;
2042
2043 if (TREE_CODE (op) == WITH_SIZE_EXPR)
2044 op = TREE_OPERAND (op, 0);
2045
2046 if (TREE_CODE (op) != SSA_NAME
2047 && !is_gimple_min_invariant (op))
2048 {
2049 ao_ref r;
2050 ao_ref_init (&r, op);
2051 if (refs_may_alias_p_1 (&r, ref, tbaa_p))
2052 return true;
2053 }
2054 }
2055
2056 return false;
2057 }
2058
2059 static bool
2060 ref_maybe_used_by_call_p (gcall *call, ao_ref *ref, bool tbaa_p)
2061 {
2062 bool res;
2063 res = ref_maybe_used_by_call_p_1 (call, ref, tbaa_p);
2064 if (res)
2065 ++alias_stats.ref_maybe_used_by_call_p_may_alias;
2066 else
2067 ++alias_stats.ref_maybe_used_by_call_p_no_alias;
2068 return res;
2069 }
2070
2071
2072 /* If the statement STMT may use the memory reference REF return
2073 true, otherwise return false. */
2074
2075 bool
2076 ref_maybe_used_by_stmt_p (gimple *stmt, ao_ref *ref, bool tbaa_p)
2077 {
2078 if (is_gimple_assign (stmt))
2079 {
2080 tree rhs;
2081
2082 /* All memory assign statements are single. */
2083 if (!gimple_assign_single_p (stmt))
2084 return false;
2085
2086 rhs = gimple_assign_rhs1 (stmt);
2087 if (is_gimple_reg (rhs)
2088 || is_gimple_min_invariant (rhs)
2089 || gimple_assign_rhs_code (stmt) == CONSTRUCTOR)
2090 return false;
2091
2092 return refs_may_alias_p (rhs, ref, tbaa_p);
2093 }
2094 else if (is_gimple_call (stmt))
2095 return ref_maybe_used_by_call_p (as_a <gcall *> (stmt), ref, tbaa_p);
2096 else if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
2097 {
2098 tree retval = gimple_return_retval (return_stmt);
2099 if (retval
2100 && TREE_CODE (retval) != SSA_NAME
2101 && !is_gimple_min_invariant (retval)
2102 && refs_may_alias_p (retval, ref, tbaa_p))
2103 return true;
2104 /* If ref escapes the function then the return acts as a use. */
2105 tree base = ao_ref_base (ref);
2106 if (!base)
2107 ;
2108 else if (DECL_P (base))
2109 return is_global_var (base);
2110 else if (TREE_CODE (base) == MEM_REF
2111 || TREE_CODE (base) == TARGET_MEM_REF)
2112 return ptr_deref_may_alias_global_p (TREE_OPERAND (base, 0));
2113 return false;
2114 }
2115
2116 return true;
2117 }
2118
2119 bool
2120 ref_maybe_used_by_stmt_p (gimple *stmt, tree ref, bool tbaa_p)
2121 {
2122 ao_ref r;
2123 ao_ref_init (&r, ref);
2124 return ref_maybe_used_by_stmt_p (stmt, &r, tbaa_p);
2125 }
2126
2127 /* If the call in statement CALL may clobber the memory reference REF
2128 return true, otherwise return false. */
2129
2130 bool
2131 call_may_clobber_ref_p_1 (gcall *call, ao_ref *ref)
2132 {
2133 tree base;
2134 tree callee;
2135
2136 /* If the call is pure or const it cannot clobber anything. */
2137 if (gimple_call_flags (call)
2138 & (ECF_PURE|ECF_CONST|ECF_LOOPING_CONST_OR_PURE|ECF_NOVOPS))
2139 return false;
2140 if (gimple_call_internal_p (call))
2141 switch (gimple_call_internal_fn (call))
2142 {
2143 /* Treat these internal calls like ECF_PURE for aliasing,
2144 they don't write to any memory the program should care about.
2145 They have important other side-effects, and read memory,
2146 so can't be ECF_NOVOPS. */
2147 case IFN_UBSAN_NULL:
2148 case IFN_UBSAN_BOUNDS:
2149 case IFN_UBSAN_VPTR:
2150 case IFN_UBSAN_OBJECT_SIZE:
2151 case IFN_UBSAN_PTR:
2152 case IFN_ASAN_CHECK:
2153 return false;
2154 default:
2155 break;
2156 }
2157
2158 base = ao_ref_base (ref);
2159 if (!base)
2160 return true;
2161
2162 if (TREE_CODE (base) == SSA_NAME
2163 || CONSTANT_CLASS_P (base))
2164 return false;
2165
2166 /* A call that is not without side-effects might involve volatile
2167 accesses and thus conflicts with all other volatile accesses. */
2168 if (ref->volatile_p)
2169 return true;
2170
2171 /* If the reference is based on a decl that is not aliased the call
2172 cannot possibly clobber it. */
2173 if (DECL_P (base)
2174 && !may_be_aliased (base)
2175 /* But local non-readonly statics can be modified through recursion
2176 or the call may implement a threading barrier which we must
2177 treat as may-def. */
2178 && (TREE_READONLY (base)
2179 || !is_global_var (base)))
2180 return false;
2181
2182 /* If the reference is based on a pointer that points to memory
2183 that may not be written to then the call cannot possibly clobber it. */
2184 if ((TREE_CODE (base) == MEM_REF
2185 || TREE_CODE (base) == TARGET_MEM_REF)
2186 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME
2187 && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base, 0)))
2188 return false;
2189
2190 callee = gimple_call_fndecl (call);
2191
2192 /* Handle those builtin functions explicitly that do not act as
2193 escape points. See tree-ssa-structalias.c:find_func_aliases
2194 for the list of builtins we might need to handle here. */
2195 if (callee != NULL_TREE
2196 && gimple_call_builtin_p (call, BUILT_IN_NORMAL))
2197 switch (DECL_FUNCTION_CODE (callee))
2198 {
2199 /* All the following functions clobber memory pointed to by
2200 their first argument. */
2201 case BUILT_IN_STRCPY:
2202 case BUILT_IN_STRNCPY:
2203 case BUILT_IN_MEMCPY:
2204 case BUILT_IN_MEMMOVE:
2205 case BUILT_IN_MEMPCPY:
2206 case BUILT_IN_STPCPY:
2207 case BUILT_IN_STPNCPY:
2208 case BUILT_IN_STRCAT:
2209 case BUILT_IN_STRNCAT:
2210 case BUILT_IN_MEMSET:
2211 case BUILT_IN_TM_MEMSET:
2212 CASE_BUILT_IN_TM_STORE (1):
2213 CASE_BUILT_IN_TM_STORE (2):
2214 CASE_BUILT_IN_TM_STORE (4):
2215 CASE_BUILT_IN_TM_STORE (8):
2216 CASE_BUILT_IN_TM_STORE (FLOAT):
2217 CASE_BUILT_IN_TM_STORE (DOUBLE):
2218 CASE_BUILT_IN_TM_STORE (LDOUBLE):
2219 CASE_BUILT_IN_TM_STORE (M64):
2220 CASE_BUILT_IN_TM_STORE (M128):
2221 CASE_BUILT_IN_TM_STORE (M256):
2222 case BUILT_IN_TM_MEMCPY:
2223 case BUILT_IN_TM_MEMMOVE:
2224 {
2225 ao_ref dref;
2226 tree size = NULL_TREE;
2227 /* Don't pass in size for strncat, as the maximum size
2228 is strlen (dest) + n + 1 instead of n, resp.
2229 n + 1 at dest + strlen (dest), but strlen (dest) isn't
2230 known. */
2231 if (gimple_call_num_args (call) == 3
2232 && DECL_FUNCTION_CODE (callee) != BUILT_IN_STRNCAT)
2233 size = gimple_call_arg (call, 2);
2234 ao_ref_init_from_ptr_and_size (&dref,
2235 gimple_call_arg (call, 0),
2236 size);
2237 return refs_may_alias_p_1 (&dref, ref, false);
2238 }
2239 case BUILT_IN_STRCPY_CHK:
2240 case BUILT_IN_STRNCPY_CHK:
2241 case BUILT_IN_MEMCPY_CHK:
2242 case BUILT_IN_MEMMOVE_CHK:
2243 case BUILT_IN_MEMPCPY_CHK:
2244 case BUILT_IN_STPCPY_CHK:
2245 case BUILT_IN_STPNCPY_CHK:
2246 case BUILT_IN_STRCAT_CHK:
2247 case BUILT_IN_STRNCAT_CHK:
2248 case BUILT_IN_MEMSET_CHK:
2249 {
2250 ao_ref dref;
2251 tree size = NULL_TREE;
2252 /* Don't pass in size for __strncat_chk, as the maximum size
2253 is strlen (dest) + n + 1 instead of n, resp.
2254 n + 1 at dest + strlen (dest), but strlen (dest) isn't
2255 known. */
2256 if (gimple_call_num_args (call) == 4
2257 && DECL_FUNCTION_CODE (callee) != BUILT_IN_STRNCAT_CHK)
2258 size = gimple_call_arg (call, 2);
2259 ao_ref_init_from_ptr_and_size (&dref,
2260 gimple_call_arg (call, 0),
2261 size);
2262 return refs_may_alias_p_1 (&dref, ref, false);
2263 }
2264 case BUILT_IN_BCOPY:
2265 {
2266 ao_ref dref;
2267 tree size = gimple_call_arg (call, 2);
2268 ao_ref_init_from_ptr_and_size (&dref,
2269 gimple_call_arg (call, 1),
2270 size);
2271 return refs_may_alias_p_1 (&dref, ref, false);
2272 }
2273 /* Allocating memory does not have any side-effects apart from
2274 being the definition point for the pointer. */
2275 case BUILT_IN_MALLOC:
2276 case BUILT_IN_ALIGNED_ALLOC:
2277 case BUILT_IN_CALLOC:
2278 case BUILT_IN_STRDUP:
2279 case BUILT_IN_STRNDUP:
2280 /* Unix98 specifies that errno is set on allocation failure. */
2281 if (flag_errno_math
2282 && targetm.ref_may_alias_errno (ref))
2283 return true;
2284 return false;
2285 case BUILT_IN_STACK_SAVE:
2286 CASE_BUILT_IN_ALLOCA:
2287 case BUILT_IN_ASSUME_ALIGNED:
2288 return false;
2289 /* But posix_memalign stores a pointer into the memory pointed to
2290 by its first argument. */
2291 case BUILT_IN_POSIX_MEMALIGN:
2292 {
2293 tree ptrptr = gimple_call_arg (call, 0);
2294 ao_ref dref;
2295 ao_ref_init_from_ptr_and_size (&dref, ptrptr,
2296 TYPE_SIZE_UNIT (ptr_type_node));
2297 return (refs_may_alias_p_1 (&dref, ref, false)
2298 || (flag_errno_math
2299 && targetm.ref_may_alias_errno (ref)));
2300 }
2301 /* Freeing memory kills the pointed-to memory. More importantly
2302 the call has to serve as a barrier for moving loads and stores
2303 across it. */
2304 case BUILT_IN_FREE:
2305 case BUILT_IN_VA_END:
2306 {
2307 tree ptr = gimple_call_arg (call, 0);
2308 return ptr_deref_may_alias_ref_p_1 (ptr, ref);
2309 }
2310 /* Realloc serves both as allocation point and deallocation point. */
2311 case BUILT_IN_REALLOC:
2312 {
2313 tree ptr = gimple_call_arg (call, 0);
2314 /* Unix98 specifies that errno is set on allocation failure. */
2315 return ((flag_errno_math
2316 && targetm.ref_may_alias_errno (ref))
2317 || ptr_deref_may_alias_ref_p_1 (ptr, ref));
2318 }
2319 case BUILT_IN_GAMMA_R:
2320 case BUILT_IN_GAMMAF_R:
2321 case BUILT_IN_GAMMAL_R:
2322 case BUILT_IN_LGAMMA_R:
2323 case BUILT_IN_LGAMMAF_R:
2324 case BUILT_IN_LGAMMAL_R:
2325 {
2326 tree out = gimple_call_arg (call, 1);
2327 if (ptr_deref_may_alias_ref_p_1 (out, ref))
2328 return true;
2329 if (flag_errno_math)
2330 break;
2331 return false;
2332 }
2333 case BUILT_IN_FREXP:
2334 case BUILT_IN_FREXPF:
2335 case BUILT_IN_FREXPL:
2336 case BUILT_IN_MODF:
2337 case BUILT_IN_MODFF:
2338 case BUILT_IN_MODFL:
2339 {
2340 tree out = gimple_call_arg (call, 1);
2341 return ptr_deref_may_alias_ref_p_1 (out, ref);
2342 }
2343 case BUILT_IN_REMQUO:
2344 case BUILT_IN_REMQUOF:
2345 case BUILT_IN_REMQUOL:
2346 {
2347 tree out = gimple_call_arg (call, 2);
2348 if (ptr_deref_may_alias_ref_p_1 (out, ref))
2349 return true;
2350 if (flag_errno_math)
2351 break;
2352 return false;
2353 }
2354 case BUILT_IN_SINCOS:
2355 case BUILT_IN_SINCOSF:
2356 case BUILT_IN_SINCOSL:
2357 {
2358 tree sin = gimple_call_arg (call, 1);
2359 tree cos = gimple_call_arg (call, 2);
2360 return (ptr_deref_may_alias_ref_p_1 (sin, ref)
2361 || ptr_deref_may_alias_ref_p_1 (cos, ref));
2362 }
2363 /* __sync_* builtins and some OpenMP builtins act as threading
2364 barriers. */
2365 #undef DEF_SYNC_BUILTIN
2366 #define DEF_SYNC_BUILTIN(ENUM, NAME, TYPE, ATTRS) case ENUM:
2367 #include "sync-builtins.def"
2368 #undef DEF_SYNC_BUILTIN
2369 case BUILT_IN_GOMP_ATOMIC_START:
2370 case BUILT_IN_GOMP_ATOMIC_END:
2371 case BUILT_IN_GOMP_BARRIER:
2372 case BUILT_IN_GOMP_BARRIER_CANCEL:
2373 case BUILT_IN_GOMP_TASKWAIT:
2374 case BUILT_IN_GOMP_TASKGROUP_END:
2375 case BUILT_IN_GOMP_CRITICAL_START:
2376 case BUILT_IN_GOMP_CRITICAL_END:
2377 case BUILT_IN_GOMP_CRITICAL_NAME_START:
2378 case BUILT_IN_GOMP_CRITICAL_NAME_END:
2379 case BUILT_IN_GOMP_LOOP_END:
2380 case BUILT_IN_GOMP_LOOP_END_CANCEL:
2381 case BUILT_IN_GOMP_ORDERED_START:
2382 case BUILT_IN_GOMP_ORDERED_END:
2383 case BUILT_IN_GOMP_SECTIONS_END:
2384 case BUILT_IN_GOMP_SECTIONS_END_CANCEL:
2385 case BUILT_IN_GOMP_SINGLE_COPY_START:
2386 case BUILT_IN_GOMP_SINGLE_COPY_END:
2387 return true;
2388 default:
2389 /* Fallthru to general call handling. */;
2390 }
2391
2392 /* Check if base is a global static variable that is not written
2393 by the function. */
2394 if (callee != NULL_TREE && VAR_P (base) && TREE_STATIC (base))
2395 {
2396 struct cgraph_node *node = cgraph_node::get (callee);
2397 bitmap not_written;
2398
2399 if (node
2400 && (not_written = ipa_reference_get_not_written_global (node))
2401 && bitmap_bit_p (not_written, ipa_reference_var_uid (base)))
2402 return false;
2403 }
2404
2405 /* Check if the base variable is call-clobbered. */
2406 if (DECL_P (base))
2407 return pt_solution_includes (gimple_call_clobber_set (call), base);
2408 else if ((TREE_CODE (base) == MEM_REF
2409 || TREE_CODE (base) == TARGET_MEM_REF)
2410 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
2411 {
2412 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (TREE_OPERAND (base, 0));
2413 if (!pi)
2414 return true;
2415
2416 return pt_solutions_intersect (gimple_call_clobber_set (call), &pi->pt);
2417 }
2418
2419 return true;
2420 }
2421
2422 /* If the call in statement CALL may clobber the memory reference REF
2423 return true, otherwise return false. */
2424
2425 bool
2426 call_may_clobber_ref_p (gcall *call, tree ref)
2427 {
2428 bool res;
2429 ao_ref r;
2430 ao_ref_init (&r, ref);
2431 res = call_may_clobber_ref_p_1 (call, &r);
2432 if (res)
2433 ++alias_stats.call_may_clobber_ref_p_may_alias;
2434 else
2435 ++alias_stats.call_may_clobber_ref_p_no_alias;
2436 return res;
2437 }
2438
2439
2440 /* If the statement STMT may clobber the memory reference REF return true,
2441 otherwise return false. */
2442
2443 bool
2444 stmt_may_clobber_ref_p_1 (gimple *stmt, ao_ref *ref, bool tbaa_p)
2445 {
2446 if (is_gimple_call (stmt))
2447 {
2448 tree lhs = gimple_call_lhs (stmt);
2449 if (lhs
2450 && TREE_CODE (lhs) != SSA_NAME)
2451 {
2452 ao_ref r;
2453 ao_ref_init (&r, lhs);
2454 if (refs_may_alias_p_1 (ref, &r, tbaa_p))
2455 return true;
2456 }
2457
2458 return call_may_clobber_ref_p_1 (as_a <gcall *> (stmt), ref);
2459 }
2460 else if (gimple_assign_single_p (stmt))
2461 {
2462 tree lhs = gimple_assign_lhs (stmt);
2463 if (TREE_CODE (lhs) != SSA_NAME)
2464 {
2465 ao_ref r;
2466 ao_ref_init (&r, lhs);
2467 return refs_may_alias_p_1 (ref, &r, tbaa_p);
2468 }
2469 }
2470 else if (gimple_code (stmt) == GIMPLE_ASM)
2471 return true;
2472
2473 return false;
2474 }
2475
2476 bool
2477 stmt_may_clobber_ref_p (gimple *stmt, tree ref, bool tbaa_p)
2478 {
2479 ao_ref r;
2480 ao_ref_init (&r, ref);
2481 return stmt_may_clobber_ref_p_1 (stmt, &r, tbaa_p);
2482 }
2483
2484 /* Return true if store1 and store2 described by corresponding tuples
2485 <BASE, OFFSET, SIZE, MAX_SIZE> have the same size and store to the same
2486 address. */
2487
2488 static bool
2489 same_addr_size_stores_p (tree base1, poly_int64 offset1, poly_int64 size1,
2490 poly_int64 max_size1,
2491 tree base2, poly_int64 offset2, poly_int64 size2,
2492 poly_int64 max_size2)
2493 {
2494 /* Offsets need to be 0. */
2495 if (maybe_ne (offset1, 0)
2496 || maybe_ne (offset2, 0))
2497 return false;
2498
2499 bool base1_obj_p = SSA_VAR_P (base1);
2500 bool base2_obj_p = SSA_VAR_P (base2);
2501
2502 /* We need one object. */
2503 if (base1_obj_p == base2_obj_p)
2504 return false;
2505 tree obj = base1_obj_p ? base1 : base2;
2506
2507 /* And we need one MEM_REF. */
2508 bool base1_memref_p = TREE_CODE (base1) == MEM_REF;
2509 bool base2_memref_p = TREE_CODE (base2) == MEM_REF;
2510 if (base1_memref_p == base2_memref_p)
2511 return false;
2512 tree memref = base1_memref_p ? base1 : base2;
2513
2514 /* Sizes need to be valid. */
2515 if (!known_size_p (max_size1)
2516 || !known_size_p (max_size2)
2517 || !known_size_p (size1)
2518 || !known_size_p (size2))
2519 return false;
2520
2521 /* Max_size needs to match size. */
2522 if (maybe_ne (max_size1, size1)
2523 || maybe_ne (max_size2, size2))
2524 return false;
2525
2526 /* Sizes need to match. */
2527 if (maybe_ne (size1, size2))
2528 return false;
2529
2530
2531 /* Check that memref is a store to pointer with singleton points-to info. */
2532 if (!integer_zerop (TREE_OPERAND (memref, 1)))
2533 return false;
2534 tree ptr = TREE_OPERAND (memref, 0);
2535 if (TREE_CODE (ptr) != SSA_NAME)
2536 return false;
2537 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
2538 unsigned int pt_uid;
2539 if (pi == NULL
2540 || !pt_solution_singleton_or_null_p (&pi->pt, &pt_uid))
2541 return false;
2542
2543 /* Be conservative with non-call exceptions when the address might
2544 be NULL. */
2545 if (cfun->can_throw_non_call_exceptions && pi->pt.null)
2546 return false;
2547
2548 /* Check that ptr points relative to obj. */
2549 unsigned int obj_uid = DECL_PT_UID (obj);
2550 if (obj_uid != pt_uid)
2551 return false;
2552
2553 /* Check that the object size is the same as the store size. That ensures us
2554 that ptr points to the start of obj. */
2555 return (DECL_SIZE (obj)
2556 && poly_int_tree_p (DECL_SIZE (obj))
2557 && known_eq (wi::to_poly_offset (DECL_SIZE (obj)), size1));
2558 }
2559
2560 /* If STMT kills the memory reference REF return true, otherwise
2561 return false. */
2562
2563 bool
2564 stmt_kills_ref_p (gimple *stmt, ao_ref *ref)
2565 {
2566 if (!ao_ref_base (ref))
2567 return false;
2568
2569 if (gimple_has_lhs (stmt)
2570 && TREE_CODE (gimple_get_lhs (stmt)) != SSA_NAME
2571 /* The assignment is not necessarily carried out if it can throw
2572 and we can catch it in the current function where we could inspect
2573 the previous value.
2574 ??? We only need to care about the RHS throwing. For aggregate
2575 assignments or similar calls and non-call exceptions the LHS
2576 might throw as well. */
2577 && !stmt_can_throw_internal (cfun, stmt))
2578 {
2579 tree lhs = gimple_get_lhs (stmt);
2580 /* If LHS is literally a base of the access we are done. */
2581 if (ref->ref)
2582 {
2583 tree base = ref->ref;
2584 tree innermost_dropped_array_ref = NULL_TREE;
2585 if (handled_component_p (base))
2586 {
2587 tree saved_lhs0 = NULL_TREE;
2588 if (handled_component_p (lhs))
2589 {
2590 saved_lhs0 = TREE_OPERAND (lhs, 0);
2591 TREE_OPERAND (lhs, 0) = integer_zero_node;
2592 }
2593 do
2594 {
2595 /* Just compare the outermost handled component, if
2596 they are equal we have found a possible common
2597 base. */
2598 tree saved_base0 = TREE_OPERAND (base, 0);
2599 TREE_OPERAND (base, 0) = integer_zero_node;
2600 bool res = operand_equal_p (lhs, base, 0);
2601 TREE_OPERAND (base, 0) = saved_base0;
2602 if (res)
2603 break;
2604 /* Remember if we drop an array-ref that we need to
2605 double-check not being at struct end. */
2606 if (TREE_CODE (base) == ARRAY_REF
2607 || TREE_CODE (base) == ARRAY_RANGE_REF)
2608 innermost_dropped_array_ref = base;
2609 /* Otherwise drop handled components of the access. */
2610 base = saved_base0;
2611 }
2612 while (handled_component_p (base));
2613 if (saved_lhs0)
2614 TREE_OPERAND (lhs, 0) = saved_lhs0;
2615 }
2616 /* Finally check if the lhs has the same address and size as the
2617 base candidate of the access. Watch out if we have dropped
2618 an array-ref that was at struct end, this means ref->ref may
2619 be outside of the TYPE_SIZE of its base. */
2620 if ((! innermost_dropped_array_ref
2621 || ! array_at_struct_end_p (innermost_dropped_array_ref))
2622 && (lhs == base
2623 || (((TYPE_SIZE (TREE_TYPE (lhs))
2624 == TYPE_SIZE (TREE_TYPE (base)))
2625 || (TYPE_SIZE (TREE_TYPE (lhs))
2626 && TYPE_SIZE (TREE_TYPE (base))
2627 && operand_equal_p (TYPE_SIZE (TREE_TYPE (lhs)),
2628 TYPE_SIZE (TREE_TYPE (base)),
2629 0)))
2630 && operand_equal_p (lhs, base,
2631 OEP_ADDRESS_OF
2632 | OEP_MATCH_SIDE_EFFECTS))))
2633 return true;
2634 }
2635
2636 /* Now look for non-literal equal bases with the restriction of
2637 handling constant offset and size. */
2638 /* For a must-alias check we need to be able to constrain
2639 the access properly. */
2640 if (!ref->max_size_known_p ())
2641 return false;
2642 poly_int64 size, offset, max_size, ref_offset = ref->offset;
2643 bool reverse;
2644 tree base = get_ref_base_and_extent (lhs, &offset, &size, &max_size,
2645 &reverse);
2646 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
2647 so base == ref->base does not always hold. */
2648 if (base != ref->base)
2649 {
2650 /* Try using points-to info. */
2651 if (same_addr_size_stores_p (base, offset, size, max_size, ref->base,
2652 ref->offset, ref->size, ref->max_size))
2653 return true;
2654
2655 /* If both base and ref->base are MEM_REFs, only compare the
2656 first operand, and if the second operand isn't equal constant,
2657 try to add the offsets into offset and ref_offset. */
2658 if (TREE_CODE (base) == MEM_REF && TREE_CODE (ref->base) == MEM_REF
2659 && TREE_OPERAND (base, 0) == TREE_OPERAND (ref->base, 0))
2660 {
2661 if (!tree_int_cst_equal (TREE_OPERAND (base, 1),
2662 TREE_OPERAND (ref->base, 1)))
2663 {
2664 poly_offset_int off1 = mem_ref_offset (base);
2665 off1 <<= LOG2_BITS_PER_UNIT;
2666 off1 += offset;
2667 poly_offset_int off2 = mem_ref_offset (ref->base);
2668 off2 <<= LOG2_BITS_PER_UNIT;
2669 off2 += ref_offset;
2670 if (!off1.to_shwi (&offset) || !off2.to_shwi (&ref_offset))
2671 size = -1;
2672 }
2673 }
2674 else
2675 size = -1;
2676 }
2677 /* For a must-alias check we need to be able to constrain
2678 the access properly. */
2679 if (known_eq (size, max_size)
2680 && known_subrange_p (ref_offset, ref->max_size, offset, size))
2681 return true;
2682 }
2683
2684 if (is_gimple_call (stmt))
2685 {
2686 tree callee = gimple_call_fndecl (stmt);
2687 if (callee != NULL_TREE
2688 && gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
2689 switch (DECL_FUNCTION_CODE (callee))
2690 {
2691 case BUILT_IN_FREE:
2692 {
2693 tree ptr = gimple_call_arg (stmt, 0);
2694 tree base = ao_ref_base (ref);
2695 if (base && TREE_CODE (base) == MEM_REF
2696 && TREE_OPERAND (base, 0) == ptr)
2697 return true;
2698 break;
2699 }
2700
2701 case BUILT_IN_MEMCPY:
2702 case BUILT_IN_MEMPCPY:
2703 case BUILT_IN_MEMMOVE:
2704 case BUILT_IN_MEMSET:
2705 case BUILT_IN_MEMCPY_CHK:
2706 case BUILT_IN_MEMPCPY_CHK:
2707 case BUILT_IN_MEMMOVE_CHK:
2708 case BUILT_IN_MEMSET_CHK:
2709 case BUILT_IN_STRNCPY:
2710 case BUILT_IN_STPNCPY:
2711 {
2712 /* For a must-alias check we need to be able to constrain
2713 the access properly. */
2714 if (!ref->max_size_known_p ())
2715 return false;
2716 tree dest = gimple_call_arg (stmt, 0);
2717 tree len = gimple_call_arg (stmt, 2);
2718 if (!poly_int_tree_p (len))
2719 return false;
2720 tree rbase = ref->base;
2721 poly_offset_int roffset = ref->offset;
2722 ao_ref dref;
2723 ao_ref_init_from_ptr_and_size (&dref, dest, len);
2724 tree base = ao_ref_base (&dref);
2725 poly_offset_int offset = dref.offset;
2726 if (!base || !known_size_p (dref.size))
2727 return false;
2728 if (TREE_CODE (base) == MEM_REF)
2729 {
2730 if (TREE_CODE (rbase) != MEM_REF)
2731 return false;
2732 // Compare pointers.
2733 offset += mem_ref_offset (base) << LOG2_BITS_PER_UNIT;
2734 roffset += mem_ref_offset (rbase) << LOG2_BITS_PER_UNIT;
2735 base = TREE_OPERAND (base, 0);
2736 rbase = TREE_OPERAND (rbase, 0);
2737 }
2738 if (base == rbase
2739 && known_subrange_p (roffset, ref->max_size, offset,
2740 wi::to_poly_offset (len)
2741 << LOG2_BITS_PER_UNIT))
2742 return true;
2743 break;
2744 }
2745
2746 case BUILT_IN_VA_END:
2747 {
2748 tree ptr = gimple_call_arg (stmt, 0);
2749 if (TREE_CODE (ptr) == ADDR_EXPR)
2750 {
2751 tree base = ao_ref_base (ref);
2752 if (TREE_OPERAND (ptr, 0) == base)
2753 return true;
2754 }
2755 break;
2756 }
2757
2758 default:;
2759 }
2760 }
2761 return false;
2762 }
2763
2764 bool
2765 stmt_kills_ref_p (gimple *stmt, tree ref)
2766 {
2767 ao_ref r;
2768 ao_ref_init (&r, ref);
2769 return stmt_kills_ref_p (stmt, &r);
2770 }
2771
2772
2773 /* Walk the virtual use-def chain of VUSE until hitting the virtual operand
2774 TARGET or a statement clobbering the memory reference REF in which
2775 case false is returned. The walk starts with VUSE, one argument of PHI. */
2776
2777 static bool
2778 maybe_skip_until (gimple *phi, tree &target, basic_block target_bb,
2779 ao_ref *ref, tree vuse, unsigned int &limit, bitmap *visited,
2780 bool abort_on_visited,
2781 void *(*translate)(ao_ref *, tree, void *, bool *),
2782 void *data)
2783 {
2784 basic_block bb = gimple_bb (phi);
2785
2786 if (!*visited)
2787 *visited = BITMAP_ALLOC (NULL);
2788
2789 bitmap_set_bit (*visited, SSA_NAME_VERSION (PHI_RESULT (phi)));
2790
2791 /* Walk until we hit the target. */
2792 while (vuse != target)
2793 {
2794 gimple *def_stmt = SSA_NAME_DEF_STMT (vuse);
2795 /* If we are searching for the target VUSE by walking up to
2796 TARGET_BB dominating the original PHI we are finished once
2797 we reach a default def or a definition in a block dominating
2798 that block. Update TARGET and return. */
2799 if (!target
2800 && (gimple_nop_p (def_stmt)
2801 || dominated_by_p (CDI_DOMINATORS,
2802 target_bb, gimple_bb (def_stmt))))
2803 {
2804 target = vuse;
2805 return true;
2806 }
2807
2808 /* Recurse for PHI nodes. */
2809 if (gimple_code (def_stmt) == GIMPLE_PHI)
2810 {
2811 /* An already visited PHI node ends the walk successfully. */
2812 if (bitmap_bit_p (*visited, SSA_NAME_VERSION (PHI_RESULT (def_stmt))))
2813 return !abort_on_visited;
2814 vuse = get_continuation_for_phi (def_stmt, ref, limit,
2815 visited, abort_on_visited,
2816 translate, data);
2817 if (!vuse)
2818 return false;
2819 continue;
2820 }
2821 else if (gimple_nop_p (def_stmt))
2822 return false;
2823 else
2824 {
2825 /* A clobbering statement or the end of the IL ends it failing. */
2826 if ((int)limit <= 0)
2827 return false;
2828 --limit;
2829 if (stmt_may_clobber_ref_p_1 (def_stmt, ref))
2830 {
2831 bool disambiguate_only = true;
2832 if (translate
2833 && (*translate) (ref, vuse, data, &disambiguate_only) == NULL)
2834 ;
2835 else
2836 return false;
2837 }
2838 }
2839 /* If we reach a new basic-block see if we already skipped it
2840 in a previous walk that ended successfully. */
2841 if (gimple_bb (def_stmt) != bb)
2842 {
2843 if (!bitmap_set_bit (*visited, SSA_NAME_VERSION (vuse)))
2844 return !abort_on_visited;
2845 bb = gimple_bb (def_stmt);
2846 }
2847 vuse = gimple_vuse (def_stmt);
2848 }
2849 return true;
2850 }
2851
2852
2853 /* Starting from a PHI node for the virtual operand of the memory reference
2854 REF find a continuation virtual operand that allows to continue walking
2855 statements dominating PHI skipping only statements that cannot possibly
2856 clobber REF. Decrements LIMIT for each alias disambiguation done
2857 and aborts the walk, returning NULL_TREE if it reaches zero.
2858 Returns NULL_TREE if no suitable virtual operand can be found. */
2859
2860 tree
2861 get_continuation_for_phi (gimple *phi, ao_ref *ref,
2862 unsigned int &limit, bitmap *visited,
2863 bool abort_on_visited,
2864 void *(*translate)(ao_ref *, tree, void *, bool *),
2865 void *data)
2866 {
2867 unsigned nargs = gimple_phi_num_args (phi);
2868
2869 /* Through a single-argument PHI we can simply look through. */
2870 if (nargs == 1)
2871 return PHI_ARG_DEF (phi, 0);
2872
2873 /* For two or more arguments try to pairwise skip non-aliasing code
2874 until we hit the phi argument definition that dominates the other one. */
2875 basic_block phi_bb = gimple_bb (phi);
2876 tree arg0, arg1;
2877 unsigned i;
2878
2879 /* Find a candidate for the virtual operand which definition
2880 dominates those of all others. */
2881 /* First look if any of the args themselves satisfy this. */
2882 for (i = 0; i < nargs; ++i)
2883 {
2884 arg0 = PHI_ARG_DEF (phi, i);
2885 if (SSA_NAME_IS_DEFAULT_DEF (arg0))
2886 break;
2887 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (arg0));
2888 if (def_bb != phi_bb
2889 && dominated_by_p (CDI_DOMINATORS, phi_bb, def_bb))
2890 break;
2891 arg0 = NULL_TREE;
2892 }
2893 /* If not, look if we can reach such candidate by walking defs
2894 until we hit the immediate dominator. maybe_skip_until will
2895 do that for us. */
2896 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, phi_bb);
2897
2898 /* Then check against the (to be) found candidate. */
2899 for (i = 0; i < nargs; ++i)
2900 {
2901 arg1 = PHI_ARG_DEF (phi, i);
2902 if (arg1 == arg0)
2903 ;
2904 else if (! maybe_skip_until (phi, arg0, dom, ref, arg1, limit, visited,
2905 abort_on_visited,
2906 /* Do not translate when walking over
2907 backedges. */
2908 dominated_by_p
2909 (CDI_DOMINATORS,
2910 gimple_bb (SSA_NAME_DEF_STMT (arg1)),
2911 phi_bb)
2912 ? NULL : translate, data))
2913 return NULL_TREE;
2914 }
2915
2916 return arg0;
2917 }
2918
2919 /* Based on the memory reference REF and its virtual use VUSE call
2920 WALKER for each virtual use that is equivalent to VUSE, including VUSE
2921 itself. That is, for each virtual use for which its defining statement
2922 does not clobber REF.
2923
2924 WALKER is called with REF, the current virtual use and DATA. If
2925 WALKER returns non-NULL the walk stops and its result is returned.
2926 At the end of a non-successful walk NULL is returned.
2927
2928 TRANSLATE if non-NULL is called with a pointer to REF, the virtual
2929 use which definition is a statement that may clobber REF and DATA.
2930 If TRANSLATE returns (void *)-1 the walk stops and NULL is returned.
2931 If TRANSLATE returns non-NULL the walk stops and its result is returned.
2932 If TRANSLATE returns NULL the walk continues and TRANSLATE is supposed
2933 to adjust REF and *DATA to make that valid.
2934
2935 VALUEIZE if non-NULL is called with the next VUSE that is considered
2936 and return value is substituted for that. This can be used to
2937 implement optimistic value-numbering for example. Note that the
2938 VUSE argument is assumed to be valueized already.
2939
2940 LIMIT specifies the number of alias queries we are allowed to do,
2941 the walk stops when it reaches zero and NULL is returned. LIMIT
2942 is decremented by the number of alias queries (plus adjustments
2943 done by the callbacks) upon return.
2944
2945 TODO: Cache the vector of equivalent vuses per ref, vuse pair. */
2946
2947 void *
2948 walk_non_aliased_vuses (ao_ref *ref, tree vuse,
2949 void *(*walker)(ao_ref *, tree, void *),
2950 void *(*translate)(ao_ref *, tree, void *, bool *),
2951 tree (*valueize)(tree),
2952 unsigned &limit, void *data)
2953 {
2954 bitmap visited = NULL;
2955 void *res;
2956 bool translated = false;
2957
2958 timevar_push (TV_ALIAS_STMT_WALK);
2959
2960 do
2961 {
2962 gimple *def_stmt;
2963
2964 /* ??? Do we want to account this to TV_ALIAS_STMT_WALK? */
2965 res = (*walker) (ref, vuse, data);
2966 /* Abort walk. */
2967 if (res == (void *)-1)
2968 {
2969 res = NULL;
2970 break;
2971 }
2972 /* Lookup succeeded. */
2973 else if (res != NULL)
2974 break;
2975
2976 if (valueize)
2977 {
2978 vuse = valueize (vuse);
2979 if (!vuse)
2980 {
2981 res = NULL;
2982 break;
2983 }
2984 }
2985 def_stmt = SSA_NAME_DEF_STMT (vuse);
2986 if (gimple_nop_p (def_stmt))
2987 break;
2988 else if (gimple_code (def_stmt) == GIMPLE_PHI)
2989 vuse = get_continuation_for_phi (def_stmt, ref, limit,
2990 &visited, translated, translate, data);
2991 else
2992 {
2993 if ((int)limit <= 0)
2994 {
2995 res = NULL;
2996 break;
2997 }
2998 if (stmt_may_clobber_ref_p_1 (def_stmt, ref))
2999 {
3000 if (!translate)
3001 break;
3002 bool disambiguate_only = false;
3003 res = (*translate) (ref, vuse, data, &disambiguate_only);
3004 /* Failed lookup and translation. */
3005 if (res == (void *)-1)
3006 {
3007 res = NULL;
3008 break;
3009 }
3010 /* Lookup succeeded. */
3011 else if (res != NULL)
3012 break;
3013 /* Translation succeeded, continue walking. */
3014 translated = translated || !disambiguate_only;
3015 }
3016 vuse = gimple_vuse (def_stmt);
3017 }
3018 }
3019 while (vuse);
3020
3021 if (visited)
3022 BITMAP_FREE (visited);
3023
3024 timevar_pop (TV_ALIAS_STMT_WALK);
3025
3026 return res;
3027 }
3028
3029
3030 /* Based on the memory reference REF call WALKER for each vdef which
3031 defining statement may clobber REF, starting with VDEF. If REF
3032 is NULL_TREE, each defining statement is visited.
3033
3034 WALKER is called with REF, the current vdef and DATA. If WALKER
3035 returns true the walk is stopped, otherwise it continues.
3036
3037 If function entry is reached, FUNCTION_ENTRY_REACHED is set to true.
3038 The pointer may be NULL and then we do not track this information.
3039
3040 At PHI nodes walk_aliased_vdefs forks into one walk for reach
3041 PHI argument (but only one walk continues on merge points), the
3042 return value is true if any of the walks was successful.
3043
3044 The function returns the number of statements walked or -1 if
3045 LIMIT stmts were walked and the walk was aborted at this point.
3046 If LIMIT is zero the walk is not aborted. */
3047
3048 static int
3049 walk_aliased_vdefs_1 (ao_ref *ref, tree vdef,
3050 bool (*walker)(ao_ref *, tree, void *), void *data,
3051 bitmap *visited, unsigned int cnt,
3052 bool *function_entry_reached, unsigned limit)
3053 {
3054 do
3055 {
3056 gimple *def_stmt = SSA_NAME_DEF_STMT (vdef);
3057
3058 if (*visited
3059 && !bitmap_set_bit (*visited, SSA_NAME_VERSION (vdef)))
3060 return cnt;
3061
3062 if (gimple_nop_p (def_stmt))
3063 {
3064 if (function_entry_reached)
3065 *function_entry_reached = true;
3066 return cnt;
3067 }
3068 else if (gimple_code (def_stmt) == GIMPLE_PHI)
3069 {
3070 unsigned i;
3071 if (!*visited)
3072 *visited = BITMAP_ALLOC (NULL);
3073 for (i = 0; i < gimple_phi_num_args (def_stmt); ++i)
3074 {
3075 int res = walk_aliased_vdefs_1 (ref,
3076 gimple_phi_arg_def (def_stmt, i),
3077 walker, data, visited, cnt,
3078 function_entry_reached, limit);
3079 if (res == -1)
3080 return -1;
3081 cnt = res;
3082 }
3083 return cnt;
3084 }
3085
3086 /* ??? Do we want to account this to TV_ALIAS_STMT_WALK? */
3087 cnt++;
3088 if (cnt == limit)
3089 return -1;
3090 if ((!ref
3091 || stmt_may_clobber_ref_p_1 (def_stmt, ref))
3092 && (*walker) (ref, vdef, data))
3093 return cnt;
3094
3095 vdef = gimple_vuse (def_stmt);
3096 }
3097 while (1);
3098 }
3099
3100 int
3101 walk_aliased_vdefs (ao_ref *ref, tree vdef,
3102 bool (*walker)(ao_ref *, tree, void *), void *data,
3103 bitmap *visited,
3104 bool *function_entry_reached, unsigned int limit)
3105 {
3106 bitmap local_visited = NULL;
3107 int ret;
3108
3109 timevar_push (TV_ALIAS_STMT_WALK);
3110
3111 if (function_entry_reached)
3112 *function_entry_reached = false;
3113
3114 ret = walk_aliased_vdefs_1 (ref, vdef, walker, data,
3115 visited ? visited : &local_visited, 0,
3116 function_entry_reached, limit);
3117 if (local_visited)
3118 BITMAP_FREE (local_visited);
3119
3120 timevar_pop (TV_ALIAS_STMT_WALK);
3121
3122 return ret;
3123 }
3124