tree-ssa-alias.c (indirect_ref_may_alias_decl_p, [...]): Revert accidental commits.
[gcc.git] / gcc / tree-ssa-alias.c
1 /* Alias analysis for trees.
2 Copyright (C) 2004-2019 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "timevar.h" /* for TV_ALIAS_STMT_WALK */
30 #include "ssa.h"
31 #include "cgraph.h"
32 #include "tree-pretty-print.h"
33 #include "alias.h"
34 #include "fold-const.h"
35 #include "langhooks.h"
36 #include "dumpfile.h"
37 #include "tree-eh.h"
38 #include "tree-dfa.h"
39 #include "ipa-reference.h"
40 #include "varasm.h"
41
42 /* Broad overview of how alias analysis on gimple works:
43
44 Statements clobbering or using memory are linked through the
45 virtual operand factored use-def chain. The virtual operand
46 is unique per function, its symbol is accessible via gimple_vop (cfun).
47 Virtual operands are used for efficiently walking memory statements
48 in the gimple IL and are useful for things like value-numbering as
49 a generation count for memory references.
50
51 SSA_NAME pointers may have associated points-to information
52 accessible via the SSA_NAME_PTR_INFO macro. Flow-insensitive
53 points-to information is (re-)computed by the TODO_rebuild_alias
54 pass manager todo. Points-to information is also used for more
55 precise tracking of call-clobbered and call-used variables and
56 related disambiguations.
57
58 This file contains functions for disambiguating memory references,
59 the so called alias-oracle and tools for walking of the gimple IL.
60
61 The main alias-oracle entry-points are
62
63 bool stmt_may_clobber_ref_p (gimple *, tree)
64
65 This function queries if a statement may invalidate (parts of)
66 the memory designated by the reference tree argument.
67
68 bool ref_maybe_used_by_stmt_p (gimple *, tree)
69
70 This function queries if a statement may need (parts of) the
71 memory designated by the reference tree argument.
72
73 There are variants of these functions that only handle the call
74 part of a statement, call_may_clobber_ref_p and ref_maybe_used_by_call_p.
75 Note that these do not disambiguate against a possible call lhs.
76
77 bool refs_may_alias_p (tree, tree)
78
79 This function tries to disambiguate two reference trees.
80
81 bool ptr_deref_may_alias_global_p (tree)
82
83 This function queries if dereferencing a pointer variable may
84 alias global memory.
85
86 More low-level disambiguators are available and documented in
87 this file. Low-level disambiguators dealing with points-to
88 information are in tree-ssa-structalias.c. */
89
90
91 /* Query statistics for the different low-level disambiguators.
92 A high-level query may trigger multiple of them. */
93
94 static struct {
95 unsigned HOST_WIDE_INT refs_may_alias_p_may_alias;
96 unsigned HOST_WIDE_INT refs_may_alias_p_no_alias;
97 unsigned HOST_WIDE_INT ref_maybe_used_by_call_p_may_alias;
98 unsigned HOST_WIDE_INT ref_maybe_used_by_call_p_no_alias;
99 unsigned HOST_WIDE_INT call_may_clobber_ref_p_may_alias;
100 unsigned HOST_WIDE_INT call_may_clobber_ref_p_no_alias;
101 unsigned HOST_WIDE_INT aliasing_component_refs_p_may_alias;
102 unsigned HOST_WIDE_INT aliasing_component_refs_p_no_alias;
103 unsigned HOST_WIDE_INT nonoverlapping_component_refs_p_may_alias;
104 unsigned HOST_WIDE_INT nonoverlapping_component_refs_p_no_alias;
105 unsigned HOST_WIDE_INT nonoverlapping_component_refs_of_decl_p_may_alias;
106 unsigned HOST_WIDE_INT nonoverlapping_component_refs_of_decl_p_no_alias;
107 } alias_stats;
108
109 void
110 dump_alias_stats (FILE *s)
111 {
112 fprintf (s, "\nAlias oracle query stats:\n");
113 fprintf (s, " refs_may_alias_p: "
114 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
115 HOST_WIDE_INT_PRINT_DEC" queries\n",
116 alias_stats.refs_may_alias_p_no_alias,
117 alias_stats.refs_may_alias_p_no_alias
118 + alias_stats.refs_may_alias_p_may_alias);
119 fprintf (s, " ref_maybe_used_by_call_p: "
120 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
121 HOST_WIDE_INT_PRINT_DEC" queries\n",
122 alias_stats.ref_maybe_used_by_call_p_no_alias,
123 alias_stats.refs_may_alias_p_no_alias
124 + alias_stats.ref_maybe_used_by_call_p_may_alias);
125 fprintf (s, " call_may_clobber_ref_p: "
126 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
127 HOST_WIDE_INT_PRINT_DEC" queries\n",
128 alias_stats.call_may_clobber_ref_p_no_alias,
129 alias_stats.call_may_clobber_ref_p_no_alias
130 + alias_stats.call_may_clobber_ref_p_may_alias);
131 fprintf (s, " nonoverlapping_component_refs_p: "
132 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
133 HOST_WIDE_INT_PRINT_DEC" queries\n",
134 alias_stats.nonoverlapping_component_refs_p_no_alias,
135 alias_stats.nonoverlapping_component_refs_p_no_alias
136 + alias_stats.nonoverlapping_component_refs_p_may_alias);
137 fprintf (s, " nonoverlapping_component_refs_of_decl_p: "
138 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
139 HOST_WIDE_INT_PRINT_DEC" queries\n",
140 alias_stats.nonoverlapping_component_refs_of_decl_p_no_alias,
141 alias_stats.nonoverlapping_component_refs_of_decl_p_no_alias
142 + alias_stats.nonoverlapping_component_refs_of_decl_p_may_alias);
143 fprintf (s, " aliasing_component_refs_p: "
144 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
145 HOST_WIDE_INT_PRINT_DEC" queries\n",
146 alias_stats.aliasing_component_refs_p_no_alias,
147 alias_stats.aliasing_component_refs_p_no_alias
148 + alias_stats.aliasing_component_refs_p_may_alias);
149 dump_alias_stats_in_alias_c (s);
150 }
151
152
153 /* Return true, if dereferencing PTR may alias with a global variable. */
154
155 bool
156 ptr_deref_may_alias_global_p (tree ptr)
157 {
158 struct ptr_info_def *pi;
159
160 /* If we end up with a pointer constant here that may point
161 to global memory. */
162 if (TREE_CODE (ptr) != SSA_NAME)
163 return true;
164
165 pi = SSA_NAME_PTR_INFO (ptr);
166
167 /* If we do not have points-to information for this variable,
168 we have to punt. */
169 if (!pi)
170 return true;
171
172 /* ??? This does not use TBAA to prune globals ptr may not access. */
173 return pt_solution_includes_global (&pi->pt);
174 }
175
176 /* Return true if dereferencing PTR may alias DECL.
177 The caller is responsible for applying TBAA to see if PTR
178 may access DECL at all. */
179
180 static bool
181 ptr_deref_may_alias_decl_p (tree ptr, tree decl)
182 {
183 struct ptr_info_def *pi;
184
185 /* Conversions are irrelevant for points-to information and
186 data-dependence analysis can feed us those. */
187 STRIP_NOPS (ptr);
188
189 /* Anything we do not explicilty handle aliases. */
190 if ((TREE_CODE (ptr) != SSA_NAME
191 && TREE_CODE (ptr) != ADDR_EXPR
192 && TREE_CODE (ptr) != POINTER_PLUS_EXPR)
193 || !POINTER_TYPE_P (TREE_TYPE (ptr))
194 || (!VAR_P (decl)
195 && TREE_CODE (decl) != PARM_DECL
196 && TREE_CODE (decl) != RESULT_DECL))
197 return true;
198
199 /* Disregard pointer offsetting. */
200 if (TREE_CODE (ptr) == POINTER_PLUS_EXPR)
201 {
202 do
203 {
204 ptr = TREE_OPERAND (ptr, 0);
205 }
206 while (TREE_CODE (ptr) == POINTER_PLUS_EXPR);
207 return ptr_deref_may_alias_decl_p (ptr, decl);
208 }
209
210 /* ADDR_EXPR pointers either just offset another pointer or directly
211 specify the pointed-to set. */
212 if (TREE_CODE (ptr) == ADDR_EXPR)
213 {
214 tree base = get_base_address (TREE_OPERAND (ptr, 0));
215 if (base
216 && (TREE_CODE (base) == MEM_REF
217 || TREE_CODE (base) == TARGET_MEM_REF))
218 ptr = TREE_OPERAND (base, 0);
219 else if (base
220 && DECL_P (base))
221 return compare_base_decls (base, decl) != 0;
222 else if (base
223 && CONSTANT_CLASS_P (base))
224 return false;
225 else
226 return true;
227 }
228
229 /* Non-aliased variables cannot be pointed to. */
230 if (!may_be_aliased (decl))
231 return false;
232
233 /* If we do not have useful points-to information for this pointer
234 we cannot disambiguate anything else. */
235 pi = SSA_NAME_PTR_INFO (ptr);
236 if (!pi)
237 return true;
238
239 return pt_solution_includes (&pi->pt, decl);
240 }
241
242 /* Return true if dereferenced PTR1 and PTR2 may alias.
243 The caller is responsible for applying TBAA to see if accesses
244 through PTR1 and PTR2 may conflict at all. */
245
246 bool
247 ptr_derefs_may_alias_p (tree ptr1, tree ptr2)
248 {
249 struct ptr_info_def *pi1, *pi2;
250
251 /* Conversions are irrelevant for points-to information and
252 data-dependence analysis can feed us those. */
253 STRIP_NOPS (ptr1);
254 STRIP_NOPS (ptr2);
255
256 /* Disregard pointer offsetting. */
257 if (TREE_CODE (ptr1) == POINTER_PLUS_EXPR)
258 {
259 do
260 {
261 ptr1 = TREE_OPERAND (ptr1, 0);
262 }
263 while (TREE_CODE (ptr1) == POINTER_PLUS_EXPR);
264 return ptr_derefs_may_alias_p (ptr1, ptr2);
265 }
266 if (TREE_CODE (ptr2) == POINTER_PLUS_EXPR)
267 {
268 do
269 {
270 ptr2 = TREE_OPERAND (ptr2, 0);
271 }
272 while (TREE_CODE (ptr2) == POINTER_PLUS_EXPR);
273 return ptr_derefs_may_alias_p (ptr1, ptr2);
274 }
275
276 /* ADDR_EXPR pointers either just offset another pointer or directly
277 specify the pointed-to set. */
278 if (TREE_CODE (ptr1) == ADDR_EXPR)
279 {
280 tree base = get_base_address (TREE_OPERAND (ptr1, 0));
281 if (base
282 && (TREE_CODE (base) == MEM_REF
283 || TREE_CODE (base) == TARGET_MEM_REF))
284 return ptr_derefs_may_alias_p (TREE_OPERAND (base, 0), ptr2);
285 else if (base
286 && DECL_P (base))
287 return ptr_deref_may_alias_decl_p (ptr2, base);
288 else
289 return true;
290 }
291 if (TREE_CODE (ptr2) == ADDR_EXPR)
292 {
293 tree base = get_base_address (TREE_OPERAND (ptr2, 0));
294 if (base
295 && (TREE_CODE (base) == MEM_REF
296 || TREE_CODE (base) == TARGET_MEM_REF))
297 return ptr_derefs_may_alias_p (ptr1, TREE_OPERAND (base, 0));
298 else if (base
299 && DECL_P (base))
300 return ptr_deref_may_alias_decl_p (ptr1, base);
301 else
302 return true;
303 }
304
305 /* From here we require SSA name pointers. Anything else aliases. */
306 if (TREE_CODE (ptr1) != SSA_NAME
307 || TREE_CODE (ptr2) != SSA_NAME
308 || !POINTER_TYPE_P (TREE_TYPE (ptr1))
309 || !POINTER_TYPE_P (TREE_TYPE (ptr2)))
310 return true;
311
312 /* We may end up with two empty points-to solutions for two same pointers.
313 In this case we still want to say both pointers alias, so shortcut
314 that here. */
315 if (ptr1 == ptr2)
316 return true;
317
318 /* If we do not have useful points-to information for either pointer
319 we cannot disambiguate anything else. */
320 pi1 = SSA_NAME_PTR_INFO (ptr1);
321 pi2 = SSA_NAME_PTR_INFO (ptr2);
322 if (!pi1 || !pi2)
323 return true;
324
325 /* ??? This does not use TBAA to prune decls from the intersection
326 that not both pointers may access. */
327 return pt_solutions_intersect (&pi1->pt, &pi2->pt);
328 }
329
330 /* Return true if dereferencing PTR may alias *REF.
331 The caller is responsible for applying TBAA to see if PTR
332 may access *REF at all. */
333
334 static bool
335 ptr_deref_may_alias_ref_p_1 (tree ptr, ao_ref *ref)
336 {
337 tree base = ao_ref_base (ref);
338
339 if (TREE_CODE (base) == MEM_REF
340 || TREE_CODE (base) == TARGET_MEM_REF)
341 return ptr_derefs_may_alias_p (ptr, TREE_OPERAND (base, 0));
342 else if (DECL_P (base))
343 return ptr_deref_may_alias_decl_p (ptr, base);
344
345 return true;
346 }
347
348 /* Returns true if PTR1 and PTR2 compare unequal because of points-to. */
349
350 bool
351 ptrs_compare_unequal (tree ptr1, tree ptr2)
352 {
353 /* First resolve the pointers down to a SSA name pointer base or
354 a VAR_DECL, PARM_DECL or RESULT_DECL. This explicitely does
355 not yet try to handle LABEL_DECLs, FUNCTION_DECLs, CONST_DECLs
356 or STRING_CSTs which needs points-to adjustments to track them
357 in the points-to sets. */
358 tree obj1 = NULL_TREE;
359 tree obj2 = NULL_TREE;
360 if (TREE_CODE (ptr1) == ADDR_EXPR)
361 {
362 tree tem = get_base_address (TREE_OPERAND (ptr1, 0));
363 if (! tem)
364 return false;
365 if (VAR_P (tem)
366 || TREE_CODE (tem) == PARM_DECL
367 || TREE_CODE (tem) == RESULT_DECL)
368 obj1 = tem;
369 else if (TREE_CODE (tem) == MEM_REF)
370 ptr1 = TREE_OPERAND (tem, 0);
371 }
372 if (TREE_CODE (ptr2) == ADDR_EXPR)
373 {
374 tree tem = get_base_address (TREE_OPERAND (ptr2, 0));
375 if (! tem)
376 return false;
377 if (VAR_P (tem)
378 || TREE_CODE (tem) == PARM_DECL
379 || TREE_CODE (tem) == RESULT_DECL)
380 obj2 = tem;
381 else if (TREE_CODE (tem) == MEM_REF)
382 ptr2 = TREE_OPERAND (tem, 0);
383 }
384
385 /* Canonicalize ptr vs. object. */
386 if (TREE_CODE (ptr1) == SSA_NAME && obj2)
387 {
388 std::swap (ptr1, ptr2);
389 std::swap (obj1, obj2);
390 }
391
392 if (obj1 && obj2)
393 /* Other code handles this correctly, no need to duplicate it here. */;
394 else if (obj1 && TREE_CODE (ptr2) == SSA_NAME)
395 {
396 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr2);
397 /* We may not use restrict to optimize pointer comparisons.
398 See PR71062. So we have to assume that restrict-pointed-to
399 may be in fact obj1. */
400 if (!pi
401 || pi->pt.vars_contains_restrict
402 || pi->pt.vars_contains_interposable)
403 return false;
404 if (VAR_P (obj1)
405 && (TREE_STATIC (obj1) || DECL_EXTERNAL (obj1)))
406 {
407 varpool_node *node = varpool_node::get (obj1);
408 /* If obj1 may bind to NULL give up (see below). */
409 if (! node
410 || ! node->nonzero_address ()
411 || ! decl_binds_to_current_def_p (obj1))
412 return false;
413 }
414 return !pt_solution_includes (&pi->pt, obj1);
415 }
416
417 /* ??? We'd like to handle ptr1 != NULL and ptr1 != ptr2
418 but those require pt.null to be conservatively correct. */
419
420 return false;
421 }
422
423 /* Returns whether reference REF to BASE may refer to global memory. */
424
425 static bool
426 ref_may_alias_global_p_1 (tree base)
427 {
428 if (DECL_P (base))
429 return is_global_var (base);
430 else if (TREE_CODE (base) == MEM_REF
431 || TREE_CODE (base) == TARGET_MEM_REF)
432 return ptr_deref_may_alias_global_p (TREE_OPERAND (base, 0));
433 return true;
434 }
435
436 bool
437 ref_may_alias_global_p (ao_ref *ref)
438 {
439 tree base = ao_ref_base (ref);
440 return ref_may_alias_global_p_1 (base);
441 }
442
443 bool
444 ref_may_alias_global_p (tree ref)
445 {
446 tree base = get_base_address (ref);
447 return ref_may_alias_global_p_1 (base);
448 }
449
450 /* Return true whether STMT may clobber global memory. */
451
452 bool
453 stmt_may_clobber_global_p (gimple *stmt)
454 {
455 tree lhs;
456
457 if (!gimple_vdef (stmt))
458 return false;
459
460 /* ??? We can ask the oracle whether an artificial pointer
461 dereference with a pointer with points-to information covering
462 all global memory (what about non-address taken memory?) maybe
463 clobbered by this call. As there is at the moment no convenient
464 way of doing that without generating garbage do some manual
465 checking instead.
466 ??? We could make a NULL ao_ref argument to the various
467 predicates special, meaning any global memory. */
468
469 switch (gimple_code (stmt))
470 {
471 case GIMPLE_ASSIGN:
472 lhs = gimple_assign_lhs (stmt);
473 return (TREE_CODE (lhs) != SSA_NAME
474 && ref_may_alias_global_p (lhs));
475 case GIMPLE_CALL:
476 return true;
477 default:
478 return true;
479 }
480 }
481
482
483 /* Dump alias information on FILE. */
484
485 void
486 dump_alias_info (FILE *file)
487 {
488 unsigned i;
489 tree ptr;
490 const char *funcname
491 = lang_hooks.decl_printable_name (current_function_decl, 2);
492 tree var;
493
494 fprintf (file, "\n\nAlias information for %s\n\n", funcname);
495
496 fprintf (file, "Aliased symbols\n\n");
497
498 FOR_EACH_LOCAL_DECL (cfun, i, var)
499 {
500 if (may_be_aliased (var))
501 dump_variable (file, var);
502 }
503
504 fprintf (file, "\nCall clobber information\n");
505
506 fprintf (file, "\nESCAPED");
507 dump_points_to_solution (file, &cfun->gimple_df->escaped);
508
509 fprintf (file, "\n\nFlow-insensitive points-to information\n\n");
510
511 FOR_EACH_SSA_NAME (i, ptr, cfun)
512 {
513 struct ptr_info_def *pi;
514
515 if (!POINTER_TYPE_P (TREE_TYPE (ptr))
516 || SSA_NAME_IN_FREE_LIST (ptr))
517 continue;
518
519 pi = SSA_NAME_PTR_INFO (ptr);
520 if (pi)
521 dump_points_to_info_for (file, ptr);
522 }
523
524 fprintf (file, "\n");
525 }
526
527
528 /* Dump alias information on stderr. */
529
530 DEBUG_FUNCTION void
531 debug_alias_info (void)
532 {
533 dump_alias_info (stderr);
534 }
535
536
537 /* Dump the points-to set *PT into FILE. */
538
539 void
540 dump_points_to_solution (FILE *file, struct pt_solution *pt)
541 {
542 if (pt->anything)
543 fprintf (file, ", points-to anything");
544
545 if (pt->nonlocal)
546 fprintf (file, ", points-to non-local");
547
548 if (pt->escaped)
549 fprintf (file, ", points-to escaped");
550
551 if (pt->ipa_escaped)
552 fprintf (file, ", points-to unit escaped");
553
554 if (pt->null)
555 fprintf (file, ", points-to NULL");
556
557 if (pt->vars)
558 {
559 fprintf (file, ", points-to vars: ");
560 dump_decl_set (file, pt->vars);
561 if (pt->vars_contains_nonlocal
562 || pt->vars_contains_escaped
563 || pt->vars_contains_escaped_heap
564 || pt->vars_contains_restrict)
565 {
566 const char *comma = "";
567 fprintf (file, " (");
568 if (pt->vars_contains_nonlocal)
569 {
570 fprintf (file, "nonlocal");
571 comma = ", ";
572 }
573 if (pt->vars_contains_escaped)
574 {
575 fprintf (file, "%sescaped", comma);
576 comma = ", ";
577 }
578 if (pt->vars_contains_escaped_heap)
579 {
580 fprintf (file, "%sescaped heap", comma);
581 comma = ", ";
582 }
583 if (pt->vars_contains_restrict)
584 {
585 fprintf (file, "%srestrict", comma);
586 comma = ", ";
587 }
588 if (pt->vars_contains_interposable)
589 fprintf (file, "%sinterposable", comma);
590 fprintf (file, ")");
591 }
592 }
593 }
594
595
596 /* Unified dump function for pt_solution. */
597
598 DEBUG_FUNCTION void
599 debug (pt_solution &ref)
600 {
601 dump_points_to_solution (stderr, &ref);
602 }
603
604 DEBUG_FUNCTION void
605 debug (pt_solution *ptr)
606 {
607 if (ptr)
608 debug (*ptr);
609 else
610 fprintf (stderr, "<nil>\n");
611 }
612
613
614 /* Dump points-to information for SSA_NAME PTR into FILE. */
615
616 void
617 dump_points_to_info_for (FILE *file, tree ptr)
618 {
619 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
620
621 print_generic_expr (file, ptr, dump_flags);
622
623 if (pi)
624 dump_points_to_solution (file, &pi->pt);
625 else
626 fprintf (file, ", points-to anything");
627
628 fprintf (file, "\n");
629 }
630
631
632 /* Dump points-to information for VAR into stderr. */
633
634 DEBUG_FUNCTION void
635 debug_points_to_info_for (tree var)
636 {
637 dump_points_to_info_for (stderr, var);
638 }
639
640
641 /* Initializes the alias-oracle reference representation *R from REF. */
642
643 void
644 ao_ref_init (ao_ref *r, tree ref)
645 {
646 r->ref = ref;
647 r->base = NULL_TREE;
648 r->offset = 0;
649 r->size = -1;
650 r->max_size = -1;
651 r->ref_alias_set = -1;
652 r->base_alias_set = -1;
653 r->volatile_p = ref ? TREE_THIS_VOLATILE (ref) : false;
654 }
655
656 /* Returns the base object of the memory reference *REF. */
657
658 tree
659 ao_ref_base (ao_ref *ref)
660 {
661 bool reverse;
662
663 if (ref->base)
664 return ref->base;
665 ref->base = get_ref_base_and_extent (ref->ref, &ref->offset, &ref->size,
666 &ref->max_size, &reverse);
667 return ref->base;
668 }
669
670 /* Returns the base object alias set of the memory reference *REF. */
671
672 alias_set_type
673 ao_ref_base_alias_set (ao_ref *ref)
674 {
675 tree base_ref;
676 if (ref->base_alias_set != -1)
677 return ref->base_alias_set;
678 if (!ref->ref)
679 return 0;
680 base_ref = ref->ref;
681 while (handled_component_p (base_ref))
682 base_ref = TREE_OPERAND (base_ref, 0);
683 ref->base_alias_set = get_alias_set (base_ref);
684 return ref->base_alias_set;
685 }
686
687 /* Returns the reference alias set of the memory reference *REF. */
688
689 alias_set_type
690 ao_ref_alias_set (ao_ref *ref)
691 {
692 if (ref->ref_alias_set != -1)
693 return ref->ref_alias_set;
694 ref->ref_alias_set = get_alias_set (ref->ref);
695 return ref->ref_alias_set;
696 }
697
698 /* Init an alias-oracle reference representation from a gimple pointer
699 PTR and a gimple size SIZE in bytes. If SIZE is NULL_TREE then the
700 size is assumed to be unknown. The access is assumed to be only
701 to or after of the pointer target, not before it. */
702
703 void
704 ao_ref_init_from_ptr_and_size (ao_ref *ref, tree ptr, tree size)
705 {
706 poly_int64 t, size_hwi, extra_offset = 0;
707 ref->ref = NULL_TREE;
708 if (TREE_CODE (ptr) == SSA_NAME)
709 {
710 gimple *stmt = SSA_NAME_DEF_STMT (ptr);
711 if (gimple_assign_single_p (stmt)
712 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
713 ptr = gimple_assign_rhs1 (stmt);
714 else if (is_gimple_assign (stmt)
715 && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
716 && ptrdiff_tree_p (gimple_assign_rhs2 (stmt), &extra_offset))
717 {
718 ptr = gimple_assign_rhs1 (stmt);
719 extra_offset *= BITS_PER_UNIT;
720 }
721 }
722
723 if (TREE_CODE (ptr) == ADDR_EXPR)
724 {
725 ref->base = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &t);
726 if (ref->base)
727 ref->offset = BITS_PER_UNIT * t;
728 else
729 {
730 size = NULL_TREE;
731 ref->offset = 0;
732 ref->base = get_base_address (TREE_OPERAND (ptr, 0));
733 }
734 }
735 else
736 {
737 gcc_assert (POINTER_TYPE_P (TREE_TYPE (ptr)));
738 ref->base = build2 (MEM_REF, char_type_node,
739 ptr, null_pointer_node);
740 ref->offset = 0;
741 }
742 ref->offset += extra_offset;
743 if (size
744 && poly_int_tree_p (size, &size_hwi)
745 && coeffs_in_range_p (size_hwi, 0, HOST_WIDE_INT_MAX / BITS_PER_UNIT))
746 ref->max_size = ref->size = size_hwi * BITS_PER_UNIT;
747 else
748 ref->max_size = ref->size = -1;
749 ref->ref_alias_set = 0;
750 ref->base_alias_set = 0;
751 ref->volatile_p = false;
752 }
753
754 /* S1 and S2 are TYPE_SIZE or DECL_SIZE. Compare them:
755 Return -1 if S1 < S2
756 Return 1 if S1 > S2
757 Return 0 if equal or incomparable. */
758
759 static int
760 compare_sizes (tree s1, tree s2)
761 {
762 if (!s1 || !s2)
763 return 0;
764
765 poly_uint64 size1;
766 poly_uint64 size2;
767
768 if (!poly_int_tree_p (s1, &size1) || !poly_int_tree_p (s2, &size2))
769 return 0;
770 if (known_lt (size1, size2))
771 return -1;
772 if (known_lt (size2, size1))
773 return 1;
774 return 0;
775 }
776
777 /* Compare TYPE1 and TYPE2 by its size.
778 Return -1 if size of TYPE1 < size of TYPE2
779 Return 1 if size of TYPE1 > size of TYPE2
780 Return 0 if types are of equal sizes or we can not compare them. */
781
782 static int
783 compare_type_sizes (tree type1, tree type2)
784 {
785 /* Be conservative for arrays and vectors. We want to support partial
786 overlap on int[3] and int[3] as tested in gcc.dg/torture/alias-2.c. */
787 while (TREE_CODE (type1) == ARRAY_TYPE
788 || TREE_CODE (type1) == VECTOR_TYPE)
789 type1 = TREE_TYPE (type1);
790 while (TREE_CODE (type2) == ARRAY_TYPE
791 || TREE_CODE (type2) == VECTOR_TYPE)
792 type2 = TREE_TYPE (type2);
793 return compare_sizes (TYPE_SIZE (type1), TYPE_SIZE (type2));
794 }
795
796 /* Return 1 if TYPE1 and TYPE2 are to be considered equivalent for the
797 purpose of TBAA. Return 0 if they are distinct and -1 if we cannot
798 decide. */
799
800 static inline int
801 same_type_for_tbaa (tree type1, tree type2)
802 {
803 type1 = TYPE_MAIN_VARIANT (type1);
804 type2 = TYPE_MAIN_VARIANT (type2);
805
806 /* Handle the most common case first. */
807 if (type1 == type2)
808 return 1;
809
810 /* If we would have to do structural comparison bail out. */
811 if (TYPE_STRUCTURAL_EQUALITY_P (type1)
812 || TYPE_STRUCTURAL_EQUALITY_P (type2))
813 return -1;
814
815 /* Compare the canonical types. */
816 if (TYPE_CANONICAL (type1) == TYPE_CANONICAL (type2))
817 return 1;
818
819 /* ??? Array types are not properly unified in all cases as we have
820 spurious changes in the index types for example. Removing this
821 causes all sorts of problems with the Fortran frontend. */
822 if (TREE_CODE (type1) == ARRAY_TYPE
823 && TREE_CODE (type2) == ARRAY_TYPE)
824 return -1;
825
826 /* ??? In Ada, an lvalue of an unconstrained type can be used to access an
827 object of one of its constrained subtypes, e.g. when a function with an
828 unconstrained parameter passed by reference is called on an object and
829 inlined. But, even in the case of a fixed size, type and subtypes are
830 not equivalent enough as to share the same TYPE_CANONICAL, since this
831 would mean that conversions between them are useless, whereas they are
832 not (e.g. type and subtypes can have different modes). So, in the end,
833 they are only guaranteed to have the same alias set. */
834 if (get_alias_set (type1) == get_alias_set (type2))
835 return -1;
836
837 /* The types are known to be not equal. */
838 return 0;
839 }
840
841 /* Return true if TYPE is a composite type (i.e. we may apply one of handled
842 components on it). */
843
844 static bool
845 type_has_components_p (tree type)
846 {
847 return AGGREGATE_TYPE_P (type) || VECTOR_TYPE_P (type)
848 || TREE_CODE (type) == COMPLEX_TYPE;
849 }
850
851 /* Determine if the two component references REF1 and REF2 which are
852 based on access types TYPE1 and TYPE2 and of which at least one is based
853 on an indirect reference may alias. REF2 is the only one that can
854 be a decl in which case REF2_IS_DECL is true.
855 REF1_ALIAS_SET, BASE1_ALIAS_SET, REF2_ALIAS_SET and BASE2_ALIAS_SET
856 are the respective alias sets. */
857
858 static bool
859 aliasing_component_refs_p (tree ref1,
860 alias_set_type ref1_alias_set,
861 alias_set_type base1_alias_set,
862 poly_int64 offset1, poly_int64 max_size1,
863 tree ref2,
864 alias_set_type ref2_alias_set,
865 alias_set_type base2_alias_set,
866 poly_int64 offset2, poly_int64 max_size2,
867 bool ref2_is_decl)
868 {
869 /* If one reference is a component references through pointers try to find a
870 common base and apply offset based disambiguation. This handles
871 for example
872 struct A { int i; int j; } *q;
873 struct B { struct A a; int k; } *p;
874 disambiguating q->i and p->a.j. */
875 tree base1, base2;
876 tree type1, type2;
877 tree *refp;
878 int same_p1 = 0, same_p2 = 0;
879 bool maybe_match = false;
880 tree end_struct_ref1 = NULL, end_struct_ref2 = NULL;
881
882 /* Choose bases and base types to search for. */
883 base1 = ref1;
884 while (handled_component_p (base1))
885 {
886 /* Generally access paths are monotous in the size of object. The
887 exception are trailing arrays of structures. I.e.
888 struct a {int array[0];};
889 or
890 struct a {int array1[0]; int array[];};
891 Such struct has size 0 but accesses to a.array may have non-zero size.
892 In this case the size of TREE_TYPE (base1) is smaller than
893 size of TREE_TYPE (TREE_OPERNAD (base1, 0)).
894
895 Because we compare sizes of arrays just by sizes of their elements,
896 we only need to care about zero sized array fields here. */
897 if (TREE_CODE (base1) == COMPONENT_REF
898 && TREE_CODE (TREE_TYPE (TREE_OPERAND (base1, 1))) == ARRAY_TYPE
899 && (!TYPE_SIZE (TREE_TYPE (TREE_OPERAND (base1, 1)))
900 || integer_zerop (TYPE_SIZE (TREE_TYPE (TREE_OPERAND (base1, 1)))))
901 && array_at_struct_end_p (base1))
902 {
903 gcc_checking_assert (!end_struct_ref1);
904 end_struct_ref1 = base1;
905 }
906 base1 = TREE_OPERAND (base1, 0);
907 }
908 type1 = TREE_TYPE (base1);
909 base2 = ref2;
910 while (handled_component_p (base2))
911 {
912 if (TREE_CODE (base2) == COMPONENT_REF
913 && TREE_CODE (TREE_TYPE (TREE_OPERAND (base2, 1))) == ARRAY_TYPE
914 && (!TYPE_SIZE (TREE_TYPE (TREE_OPERAND (base2, 1)))
915 || integer_zerop (TYPE_SIZE (TREE_TYPE (TREE_OPERAND (base2, 1)))))
916 && array_at_struct_end_p (base2))
917 {
918 gcc_checking_assert (!end_struct_ref2);
919 end_struct_ref2 = base2;
920 }
921 base2 = TREE_OPERAND (base2, 0);
922 }
923 type2 = TREE_TYPE (base2);
924
925 /* Now search for the type1 in the access path of ref2. This
926 would be a common base for doing offset based disambiguation on.
927 This however only makes sense if type2 is big enough to hold type1. */
928 int cmp_outer = compare_type_sizes (type2, type1);
929
930 /* If type2 is big enough to contain type1 walk its access path.
931 We also need to care of arrays at the end of structs that may extend
932 beyond the end of structure. */
933 if (cmp_outer >= 0
934 || (end_struct_ref2
935 && compare_type_sizes (TREE_TYPE (end_struct_ref2), type1) >= 0))
936 {
937 refp = &ref2;
938 while (true)
939 {
940 /* We walk from inner type to the outer types. If type we see is
941 already too large to be part of type1, terminate the search. */
942 int cmp = compare_type_sizes (type1, TREE_TYPE (*refp));
943
944 if (cmp < 0
945 && (!end_struct_ref1
946 || compare_type_sizes (TREE_TYPE (end_struct_ref1),
947 TREE_TYPE (*refp)) < 0))
948 break;
949 /* If types may be of same size, see if we can decide about their
950 equality. */
951 if (cmp == 0)
952 {
953 same_p2 = same_type_for_tbaa (TREE_TYPE (*refp), type1);
954 if (same_p2 == 1)
955 break;
956 /* In case we can't decide whether types are same try to
957 continue looking for the exact match.
958 Remember however that we possibly saw a match
959 to bypass the access path continuations tests we do later. */
960 if (same_p2 == -1)
961 maybe_match = true;
962 }
963 if (!handled_component_p (*refp))
964 break;
965 refp = &TREE_OPERAND (*refp, 0);
966 }
967 if (same_p2 == 1)
968 {
969 poly_int64 offadj, sztmp, msztmp;
970 bool reverse;
971
972 /* We assume that arrays can overlap by multiple of their elements
973 size as tested in gcc.dg/torture/alias-2.c.
974 This partial overlap happen only when both arrays are bases of
975 the access and not contained within another component ref.
976 To be safe we also assume partial overlap for VLAs. */
977 if (TREE_CODE (TREE_TYPE (base1)) == ARRAY_TYPE
978 && (!TYPE_SIZE (TREE_TYPE (base1))
979 || TREE_CODE (TYPE_SIZE (TREE_TYPE (base1))) != INTEGER_CST
980 || (*refp == base2 && !ref2_is_decl)))
981 {
982 ++alias_stats.aliasing_component_refs_p_may_alias;
983 return true;
984 }
985
986 get_ref_base_and_extent (*refp, &offadj, &sztmp, &msztmp, &reverse);
987 offset2 -= offadj;
988 get_ref_base_and_extent (base1, &offadj, &sztmp, &msztmp, &reverse);
989 offset1 -= offadj;
990 if (ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
991 {
992 ++alias_stats.aliasing_component_refs_p_may_alias;
993 return true;
994 }
995 else
996 {
997 ++alias_stats.aliasing_component_refs_p_no_alias;
998 return false;
999 }
1000 }
1001 }
1002
1003 /* If we didn't find a common base, try the other way around. */
1004 if (cmp_outer <= 0
1005 || (end_struct_ref1
1006 && compare_type_sizes (TREE_TYPE (end_struct_ref1), type1) <= 0))
1007 {
1008 refp = &ref1;
1009 while (true)
1010 {
1011 int cmp = compare_type_sizes (type2, TREE_TYPE (*refp));
1012 if (cmp < 0
1013 && (!end_struct_ref2
1014 || compare_type_sizes (TREE_TYPE (end_struct_ref2),
1015 TREE_TYPE (*refp)) < 0))
1016 break;
1017 /* If types may be of same size, see if we can decide about their
1018 equality. */
1019 if (cmp == 0)
1020 {
1021 same_p1 = same_type_for_tbaa (TREE_TYPE (*refp), type2);
1022 if (same_p1 == 1)
1023 break;
1024 if (same_p1 == -1)
1025 maybe_match = true;
1026 }
1027 if (!handled_component_p (*refp))
1028 break;
1029 refp = &TREE_OPERAND (*refp, 0);
1030 }
1031 if (same_p1 == 1)
1032 {
1033 poly_int64 offadj, sztmp, msztmp;
1034 bool reverse;
1035
1036 if (TREE_CODE (TREE_TYPE (base2)) == ARRAY_TYPE
1037 && (!TYPE_SIZE (TREE_TYPE (base2))
1038 || TREE_CODE (TYPE_SIZE (TREE_TYPE (base2))) != INTEGER_CST
1039 || (*refp == base1 && !ref2_is_decl)))
1040 {
1041 ++alias_stats.aliasing_component_refs_p_may_alias;
1042 return true;
1043 }
1044
1045 get_ref_base_and_extent (*refp, &offadj, &sztmp, &msztmp, &reverse);
1046 offset1 -= offadj;
1047 get_ref_base_and_extent (base2, &offadj, &sztmp, &msztmp, &reverse);
1048 offset2 -= offadj;
1049 if (ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
1050 {
1051 ++alias_stats.aliasing_component_refs_p_may_alias;
1052 return true;
1053 }
1054 else
1055 {
1056 ++alias_stats.aliasing_component_refs_p_no_alias;
1057 return false;
1058 }
1059 }
1060 }
1061
1062 /* In the following code we make an assumption that the types in access
1063 paths do not overlap and thus accesses alias only if one path can be
1064 continuation of another. If we was not able to decide about equivalence,
1065 we need to give up. */
1066 if (maybe_match)
1067 return true;
1068
1069 /* If we have two type access paths B1.path1 and B2.path2 they may
1070 only alias if either B1 is in B2.path2 or B2 is in B1.path1.
1071 But we can still have a path that goes B1.path1...B2.path2 with
1072 a part that we do not see. So we can only disambiguate now
1073 if there is no B2 in the tail of path1 and no B1 on the
1074 tail of path2. */
1075 if (compare_type_sizes (TREE_TYPE (ref2), type1) >= 0
1076 && (!end_struct_ref1
1077 || compare_type_sizes (TREE_TYPE (ref2),
1078 TREE_TYPE (end_struct_ref1)) >= 0)
1079 && type_has_components_p (TREE_TYPE (ref2))
1080 && (base1_alias_set == ref2_alias_set
1081 || alias_set_subset_of (base1_alias_set, ref2_alias_set)))
1082 {
1083 ++alias_stats.aliasing_component_refs_p_may_alias;
1084 return true;
1085 }
1086 /* If this is ptr vs. decl then we know there is no ptr ... decl path. */
1087 if (!ref2_is_decl
1088 && compare_type_sizes (TREE_TYPE (ref1), type2) >= 0
1089 && (!end_struct_ref2
1090 || compare_type_sizes (TREE_TYPE (ref1),
1091 TREE_TYPE (end_struct_ref2)) >= 0)
1092 && type_has_components_p (TREE_TYPE (ref1))
1093 && (base2_alias_set == ref1_alias_set
1094 || alias_set_subset_of (base2_alias_set, ref1_alias_set)))
1095 {
1096 ++alias_stats.aliasing_component_refs_p_may_alias;
1097 return true;
1098 }
1099 ++alias_stats.aliasing_component_refs_p_no_alias;
1100 return false;
1101 }
1102
1103 /* Return true if we can determine that component references REF1 and REF2,
1104 that are within a common DECL, cannot overlap. */
1105
1106 static bool
1107 nonoverlapping_component_refs_of_decl_p (tree ref1, tree ref2)
1108 {
1109 auto_vec<tree, 16> component_refs1;
1110 auto_vec<tree, 16> component_refs2;
1111
1112 /* Create the stack of handled components for REF1. */
1113 while (handled_component_p (ref1))
1114 {
1115 component_refs1.safe_push (ref1);
1116 ref1 = TREE_OPERAND (ref1, 0);
1117 }
1118 if (TREE_CODE (ref1) == MEM_REF)
1119 {
1120 if (!integer_zerop (TREE_OPERAND (ref1, 1)))
1121 {
1122 ++alias_stats.nonoverlapping_component_refs_of_decl_p_may_alias;
1123 return false;
1124 }
1125 ref1 = TREE_OPERAND (TREE_OPERAND (ref1, 0), 0);
1126 }
1127
1128 /* Create the stack of handled components for REF2. */
1129 while (handled_component_p (ref2))
1130 {
1131 component_refs2.safe_push (ref2);
1132 ref2 = TREE_OPERAND (ref2, 0);
1133 }
1134 if (TREE_CODE (ref2) == MEM_REF)
1135 {
1136 if (!integer_zerop (TREE_OPERAND (ref2, 1)))
1137 {
1138 ++alias_stats.nonoverlapping_component_refs_of_decl_p_may_alias;
1139 return false;
1140 }
1141 ref2 = TREE_OPERAND (TREE_OPERAND (ref2, 0), 0);
1142 }
1143
1144 /* Bases must be either same or uncomparable. */
1145 gcc_checking_assert (ref1 == ref2
1146 || (DECL_P (ref1) && DECL_P (ref2)
1147 && compare_base_decls (ref1, ref2) != 0));
1148
1149 /* Pop the stacks in parallel and examine the COMPONENT_REFs of the same
1150 rank. This is sufficient because we start from the same DECL and you
1151 cannot reference several fields at a time with COMPONENT_REFs (unlike
1152 with ARRAY_RANGE_REFs for arrays) so you always need the same number
1153 of them to access a sub-component, unless you're in a union, in which
1154 case the return value will precisely be false. */
1155 while (true)
1156 {
1157 do
1158 {
1159 if (component_refs1.is_empty ())
1160 {
1161 ++alias_stats.nonoverlapping_component_refs_of_decl_p_may_alias;
1162 return false;
1163 }
1164 ref1 = component_refs1.pop ();
1165 }
1166 while (!RECORD_OR_UNION_TYPE_P (TREE_TYPE (TREE_OPERAND (ref1, 0))));
1167
1168 do
1169 {
1170 if (component_refs2.is_empty ())
1171 {
1172 ++alias_stats.nonoverlapping_component_refs_of_decl_p_may_alias;
1173 return false;
1174 }
1175 ref2 = component_refs2.pop ();
1176 }
1177 while (!RECORD_OR_UNION_TYPE_P (TREE_TYPE (TREE_OPERAND (ref2, 0))));
1178
1179 /* Beware of BIT_FIELD_REF. */
1180 if (TREE_CODE (ref1) != COMPONENT_REF
1181 || TREE_CODE (ref2) != COMPONENT_REF)
1182 {
1183 ++alias_stats.nonoverlapping_component_refs_of_decl_p_may_alias;
1184 return false;
1185 }
1186
1187 tree field1 = TREE_OPERAND (ref1, 1);
1188 tree field2 = TREE_OPERAND (ref2, 1);
1189
1190 /* ??? We cannot simply use the type of operand #0 of the refs here
1191 as the Fortran compiler smuggles type punning into COMPONENT_REFs
1192 for common blocks instead of using unions like everyone else. */
1193 tree type1 = DECL_CONTEXT (field1);
1194 tree type2 = DECL_CONTEXT (field2);
1195
1196 /* We cannot disambiguate fields in a union or qualified union. */
1197 if (type1 != type2 || TREE_CODE (type1) != RECORD_TYPE)
1198 {
1199 ++alias_stats.nonoverlapping_component_refs_of_decl_p_may_alias;
1200 return false;
1201 }
1202
1203 if (field1 != field2)
1204 {
1205 /* A field and its representative need to be considered the
1206 same. */
1207 if (DECL_BIT_FIELD_REPRESENTATIVE (field1) == field2
1208 || DECL_BIT_FIELD_REPRESENTATIVE (field2) == field1)
1209 {
1210 ++alias_stats.nonoverlapping_component_refs_of_decl_p_may_alias;
1211 return false;
1212 }
1213 /* Different fields of the same record type cannot overlap.
1214 ??? Bitfields can overlap at RTL level so punt on them. */
1215 if (DECL_BIT_FIELD (field1) && DECL_BIT_FIELD (field2))
1216 {
1217 ++alias_stats.nonoverlapping_component_refs_of_decl_p_may_alias;
1218 return false;
1219 }
1220 ++alias_stats.nonoverlapping_component_refs_of_decl_p_no_alias;
1221 return true;
1222 }
1223 }
1224
1225 ++alias_stats.nonoverlapping_component_refs_of_decl_p_may_alias;
1226 return false;
1227 }
1228
1229 /* qsort compare function to sort FIELD_DECLs after their
1230 DECL_FIELD_CONTEXT TYPE_UID. */
1231
1232 static inline int
1233 ncr_compar (const void *field1_, const void *field2_)
1234 {
1235 const_tree field1 = *(const_tree *) const_cast <void *>(field1_);
1236 const_tree field2 = *(const_tree *) const_cast <void *>(field2_);
1237 unsigned int uid1 = TYPE_UID (DECL_FIELD_CONTEXT (field1));
1238 unsigned int uid2 = TYPE_UID (DECL_FIELD_CONTEXT (field2));
1239 if (uid1 < uid2)
1240 return -1;
1241 else if (uid1 > uid2)
1242 return 1;
1243 return 0;
1244 }
1245
1246 /* Return true if we can determine that the fields referenced cannot
1247 overlap for any pair of objects. */
1248
1249 static bool
1250 nonoverlapping_component_refs_p (const_tree x, const_tree y)
1251 {
1252 if (!flag_strict_aliasing
1253 || !x || !y
1254 || !handled_component_p (x)
1255 || !handled_component_p (y))
1256 {
1257 ++alias_stats.nonoverlapping_component_refs_p_may_alias;
1258 return false;
1259 }
1260
1261 auto_vec<const_tree, 16> fieldsx;
1262 while (handled_component_p (x))
1263 {
1264 if (TREE_CODE (x) == COMPONENT_REF)
1265 {
1266 tree field = TREE_OPERAND (x, 1);
1267 tree type = DECL_FIELD_CONTEXT (field);
1268 if (TREE_CODE (type) == RECORD_TYPE)
1269 fieldsx.safe_push (field);
1270 }
1271 else if (TREE_CODE (x) == VIEW_CONVERT_EXPR)
1272 fieldsx.truncate (0);
1273 x = TREE_OPERAND (x, 0);
1274 }
1275 if (fieldsx.length () == 0)
1276 return false;
1277 auto_vec<const_tree, 16> fieldsy;
1278 while (handled_component_p (y))
1279 {
1280 if (TREE_CODE (y) == COMPONENT_REF)
1281 {
1282 tree field = TREE_OPERAND (y, 1);
1283 tree type = DECL_FIELD_CONTEXT (field);
1284 if (TREE_CODE (type) == RECORD_TYPE)
1285 fieldsy.safe_push (TREE_OPERAND (y, 1));
1286 }
1287 else if (TREE_CODE (y) == VIEW_CONVERT_EXPR)
1288 fieldsy.truncate (0);
1289 y = TREE_OPERAND (y, 0);
1290 }
1291 if (fieldsy.length () == 0)
1292 {
1293 ++alias_stats.nonoverlapping_component_refs_p_may_alias;
1294 return false;
1295 }
1296
1297 /* Most common case first. */
1298 if (fieldsx.length () == 1
1299 && fieldsy.length () == 1)
1300 {
1301 if ((DECL_FIELD_CONTEXT (fieldsx[0])
1302 == DECL_FIELD_CONTEXT (fieldsy[0]))
1303 && fieldsx[0] != fieldsy[0]
1304 && !(DECL_BIT_FIELD (fieldsx[0]) && DECL_BIT_FIELD (fieldsy[0])))
1305 {
1306 ++alias_stats.nonoverlapping_component_refs_p_no_alias;
1307 return true;
1308 }
1309 else
1310 {
1311 ++alias_stats.nonoverlapping_component_refs_p_may_alias;
1312 return false;
1313 }
1314 }
1315
1316 if (fieldsx.length () == 2)
1317 {
1318 if (ncr_compar (&fieldsx[0], &fieldsx[1]) == 1)
1319 std::swap (fieldsx[0], fieldsx[1]);
1320 }
1321 else
1322 fieldsx.qsort (ncr_compar);
1323
1324 if (fieldsy.length () == 2)
1325 {
1326 if (ncr_compar (&fieldsy[0], &fieldsy[1]) == 1)
1327 std::swap (fieldsy[0], fieldsy[1]);
1328 }
1329 else
1330 fieldsy.qsort (ncr_compar);
1331
1332 unsigned i = 0, j = 0;
1333 do
1334 {
1335 const_tree fieldx = fieldsx[i];
1336 const_tree fieldy = fieldsy[j];
1337 tree typex = DECL_FIELD_CONTEXT (fieldx);
1338 tree typey = DECL_FIELD_CONTEXT (fieldy);
1339 if (typex == typey)
1340 {
1341 /* We're left with accessing different fields of a structure,
1342 no possible overlap. */
1343 if (fieldx != fieldy)
1344 {
1345 /* A field and its representative need to be considered the
1346 same. */
1347 if (DECL_BIT_FIELD_REPRESENTATIVE (fieldx) == fieldy
1348 || DECL_BIT_FIELD_REPRESENTATIVE (fieldy) == fieldx)
1349 {
1350 ++alias_stats.nonoverlapping_component_refs_p_may_alias;
1351 return false;
1352 }
1353 /* Different fields of the same record type cannot overlap.
1354 ??? Bitfields can overlap at RTL level so punt on them. */
1355 if (DECL_BIT_FIELD (fieldx) && DECL_BIT_FIELD (fieldy))
1356 {
1357 ++alias_stats.nonoverlapping_component_refs_p_may_alias;
1358 return false;
1359 }
1360 ++alias_stats.nonoverlapping_component_refs_p_no_alias;
1361 return true;
1362 }
1363 }
1364 if (TYPE_UID (typex) < TYPE_UID (typey))
1365 {
1366 i++;
1367 if (i == fieldsx.length ())
1368 break;
1369 }
1370 else
1371 {
1372 j++;
1373 if (j == fieldsy.length ())
1374 break;
1375 }
1376 }
1377 while (1);
1378
1379 ++alias_stats.nonoverlapping_component_refs_p_may_alias;
1380 return false;
1381 }
1382
1383
1384 /* Return true if two memory references based on the variables BASE1
1385 and BASE2 constrained to [OFFSET1, OFFSET1 + MAX_SIZE1) and
1386 [OFFSET2, OFFSET2 + MAX_SIZE2) may alias. REF1 and REF2
1387 if non-NULL are the complete memory reference trees. */
1388
1389 static bool
1390 decl_refs_may_alias_p (tree ref1, tree base1,
1391 poly_int64 offset1, poly_int64 max_size1,
1392 tree ref2, tree base2,
1393 poly_int64 offset2, poly_int64 max_size2)
1394 {
1395 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
1396
1397 /* If both references are based on different variables, they cannot alias. */
1398 if (compare_base_decls (base1, base2) == 0)
1399 return false;
1400
1401 /* If both references are based on the same variable, they cannot alias if
1402 the accesses do not overlap. */
1403 if (!ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
1404 return false;
1405
1406 /* For components with variable position, the above test isn't sufficient,
1407 so we disambiguate component references manually. */
1408 if (ref1 && ref2
1409 && handled_component_p (ref1) && handled_component_p (ref2)
1410 && nonoverlapping_component_refs_of_decl_p (ref1, ref2))
1411 return false;
1412
1413 return true;
1414 }
1415
1416 /* Return true if an indirect reference based on *PTR1 constrained
1417 to [OFFSET1, OFFSET1 + MAX_SIZE1) may alias a variable based on BASE2
1418 constrained to [OFFSET2, OFFSET2 + MAX_SIZE2). *PTR1 and BASE2 have
1419 the alias sets BASE1_ALIAS_SET and BASE2_ALIAS_SET which can be -1
1420 in which case they are computed on-demand. REF1 and REF2
1421 if non-NULL are the complete memory reference trees. */
1422
1423 static bool
1424 indirect_ref_may_alias_decl_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
1425 poly_int64 offset1, poly_int64 max_size1,
1426 alias_set_type ref1_alias_set,
1427 alias_set_type base1_alias_set,
1428 tree ref2 ATTRIBUTE_UNUSED, tree base2,
1429 poly_int64 offset2, poly_int64 max_size2,
1430 alias_set_type ref2_alias_set,
1431 alias_set_type base2_alias_set, bool tbaa_p)
1432 {
1433 tree ptr1;
1434 tree ptrtype1, dbase2;
1435
1436 gcc_checking_assert ((TREE_CODE (base1) == MEM_REF
1437 || TREE_CODE (base1) == TARGET_MEM_REF)
1438 && DECL_P (base2));
1439
1440 ptr1 = TREE_OPERAND (base1, 0);
1441 poly_offset_int moff = mem_ref_offset (base1) << LOG2_BITS_PER_UNIT;
1442
1443 /* If only one reference is based on a variable, they cannot alias if
1444 the pointer access is beyond the extent of the variable access.
1445 (the pointer base cannot validly point to an offset less than zero
1446 of the variable).
1447 ??? IVOPTs creates bases that do not honor this restriction,
1448 so do not apply this optimization for TARGET_MEM_REFs. */
1449 if (TREE_CODE (base1) != TARGET_MEM_REF
1450 && !ranges_maybe_overlap_p (offset1 + moff, -1, offset2, max_size2))
1451 return false;
1452 /* They also cannot alias if the pointer may not point to the decl. */
1453 if (!ptr_deref_may_alias_decl_p (ptr1, base2))
1454 return false;
1455
1456 /* Disambiguations that rely on strict aliasing rules follow. */
1457 if (!flag_strict_aliasing || !tbaa_p)
1458 return true;
1459
1460 ptrtype1 = TREE_TYPE (TREE_OPERAND (base1, 1));
1461
1462 /* If the alias set for a pointer access is zero all bets are off. */
1463 if (base1_alias_set == 0)
1464 return true;
1465
1466 /* When we are trying to disambiguate an access with a pointer dereference
1467 as base versus one with a decl as base we can use both the size
1468 of the decl and its dynamic type for extra disambiguation.
1469 ??? We do not know anything about the dynamic type of the decl
1470 other than that its alias-set contains base2_alias_set as a subset
1471 which does not help us here. */
1472 /* As we know nothing useful about the dynamic type of the decl just
1473 use the usual conflict check rather than a subset test.
1474 ??? We could introduce -fvery-strict-aliasing when the language
1475 does not allow decls to have a dynamic type that differs from their
1476 static type. Then we can check
1477 !alias_set_subset_of (base1_alias_set, base2_alias_set) instead. */
1478 if (base1_alias_set != base2_alias_set
1479 && !alias_sets_conflict_p (base1_alias_set, base2_alias_set))
1480 return false;
1481 /* If the size of the access relevant for TBAA through the pointer
1482 is bigger than the size of the decl we can't possibly access the
1483 decl via that pointer. */
1484 if (/* ??? This in turn may run afoul when a decl of type T which is
1485 a member of union type U is accessed through a pointer to
1486 type U and sizeof T is smaller than sizeof U. */
1487 TREE_CODE (TREE_TYPE (ptrtype1)) != UNION_TYPE
1488 && TREE_CODE (TREE_TYPE (ptrtype1)) != QUAL_UNION_TYPE
1489 && compare_sizes (DECL_SIZE (base2),
1490 TYPE_SIZE (TREE_TYPE (ptrtype1))) < 0)
1491 return false;
1492
1493 if (!ref2)
1494 return true;
1495
1496 /* If the decl is accessed via a MEM_REF, reconstruct the base
1497 we can use for TBAA and an appropriately adjusted offset. */
1498 dbase2 = ref2;
1499 while (handled_component_p (dbase2))
1500 dbase2 = TREE_OPERAND (dbase2, 0);
1501 poly_int64 doffset1 = offset1;
1502 poly_offset_int doffset2 = offset2;
1503 if (TREE_CODE (dbase2) == MEM_REF
1504 || TREE_CODE (dbase2) == TARGET_MEM_REF)
1505 {
1506 doffset2 -= mem_ref_offset (dbase2) << LOG2_BITS_PER_UNIT;
1507 tree ptrtype2 = TREE_TYPE (TREE_OPERAND (dbase2, 1));
1508 /* If second reference is view-converted, give up now. */
1509 if (same_type_for_tbaa (TREE_TYPE (dbase2), TREE_TYPE (ptrtype2)) != 1)
1510 return true;
1511 }
1512
1513 /* If first reference is view-converted, give up now. */
1514 if (same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) != 1)
1515 return true;
1516
1517 /* If both references are through the same type, they do not alias
1518 if the accesses do not overlap. This does extra disambiguation
1519 for mixed/pointer accesses but requires strict aliasing.
1520 For MEM_REFs we require that the component-ref offset we computed
1521 is relative to the start of the type which we ensure by
1522 comparing rvalue and access type and disregarding the constant
1523 pointer offset.
1524
1525 But avoid treating variable length arrays as "objects", instead assume they
1526 can overlap by an exact multiple of their element size.
1527 See gcc.dg/torture/alias-2.c. */
1528 if (((TREE_CODE (base1) != TARGET_MEM_REF
1529 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
1530 && (TREE_CODE (dbase2) != TARGET_MEM_REF
1531 || (!TMR_INDEX (dbase2) && !TMR_INDEX2 (base2))))
1532 && same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (dbase2)) == 1
1533 && (TREE_CODE (TREE_TYPE (base1)) != ARRAY_TYPE
1534 || (TYPE_SIZE (TREE_TYPE (base1))
1535 && TREE_CODE (TYPE_SIZE (TREE_TYPE (base1))) == INTEGER_CST)))
1536 return ranges_maybe_overlap_p (doffset1, max_size1, doffset2, max_size2);
1537
1538 if (ref1 && ref2
1539 && nonoverlapping_component_refs_p (ref1, ref2))
1540 return false;
1541
1542 /* Do access-path based disambiguation. */
1543 if (ref1 && ref2
1544 && (handled_component_p (ref1) || handled_component_p (ref2)))
1545 return aliasing_component_refs_p (ref1,
1546 ref1_alias_set, base1_alias_set,
1547 offset1, max_size1,
1548 ref2,
1549 ref2_alias_set, base2_alias_set,
1550 offset2, max_size2,
1551 /* Only if the other reference is actual
1552 decl we can safely check only toplevel
1553 part of access path 1. */
1554 same_type_for_tbaa (TREE_TYPE (dbase2),
1555 TREE_TYPE (base2))
1556 == 1);
1557
1558 return true;
1559 }
1560
1561 /* Return true if two indirect references based on *PTR1
1562 and *PTR2 constrained to [OFFSET1, OFFSET1 + MAX_SIZE1) and
1563 [OFFSET2, OFFSET2 + MAX_SIZE2) may alias. *PTR1 and *PTR2 have
1564 the alias sets BASE1_ALIAS_SET and BASE2_ALIAS_SET which can be -1
1565 in which case they are computed on-demand. REF1 and REF2
1566 if non-NULL are the complete memory reference trees. */
1567
1568 static bool
1569 indirect_refs_may_alias_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
1570 poly_int64 offset1, poly_int64 max_size1,
1571 alias_set_type ref1_alias_set,
1572 alias_set_type base1_alias_set,
1573 tree ref2 ATTRIBUTE_UNUSED, tree base2,
1574 poly_int64 offset2, poly_int64 max_size2,
1575 alias_set_type ref2_alias_set,
1576 alias_set_type base2_alias_set, bool tbaa_p)
1577 {
1578 tree ptr1;
1579 tree ptr2;
1580 tree ptrtype1, ptrtype2;
1581
1582 gcc_checking_assert ((TREE_CODE (base1) == MEM_REF
1583 || TREE_CODE (base1) == TARGET_MEM_REF)
1584 && (TREE_CODE (base2) == MEM_REF
1585 || TREE_CODE (base2) == TARGET_MEM_REF));
1586
1587 ptr1 = TREE_OPERAND (base1, 0);
1588 ptr2 = TREE_OPERAND (base2, 0);
1589
1590 /* If both bases are based on pointers they cannot alias if they may not
1591 point to the same memory object or if they point to the same object
1592 and the accesses do not overlap. */
1593 if ((!cfun || gimple_in_ssa_p (cfun))
1594 && operand_equal_p (ptr1, ptr2, 0)
1595 && (((TREE_CODE (base1) != TARGET_MEM_REF
1596 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
1597 && (TREE_CODE (base2) != TARGET_MEM_REF
1598 || (!TMR_INDEX (base2) && !TMR_INDEX2 (base2))))
1599 || (TREE_CODE (base1) == TARGET_MEM_REF
1600 && TREE_CODE (base2) == TARGET_MEM_REF
1601 && (TMR_STEP (base1) == TMR_STEP (base2)
1602 || (TMR_STEP (base1) && TMR_STEP (base2)
1603 && operand_equal_p (TMR_STEP (base1),
1604 TMR_STEP (base2), 0)))
1605 && (TMR_INDEX (base1) == TMR_INDEX (base2)
1606 || (TMR_INDEX (base1) && TMR_INDEX (base2)
1607 && operand_equal_p (TMR_INDEX (base1),
1608 TMR_INDEX (base2), 0)))
1609 && (TMR_INDEX2 (base1) == TMR_INDEX2 (base2)
1610 || (TMR_INDEX2 (base1) && TMR_INDEX2 (base2)
1611 && operand_equal_p (TMR_INDEX2 (base1),
1612 TMR_INDEX2 (base2), 0))))))
1613 {
1614 poly_offset_int moff1 = mem_ref_offset (base1) << LOG2_BITS_PER_UNIT;
1615 poly_offset_int moff2 = mem_ref_offset (base2) << LOG2_BITS_PER_UNIT;
1616 return ranges_maybe_overlap_p (offset1 + moff1, max_size1,
1617 offset2 + moff2, max_size2);
1618 }
1619 if (!ptr_derefs_may_alias_p (ptr1, ptr2))
1620 return false;
1621
1622 /* Disambiguations that rely on strict aliasing rules follow. */
1623 if (!flag_strict_aliasing || !tbaa_p)
1624 return true;
1625
1626 ptrtype1 = TREE_TYPE (TREE_OPERAND (base1, 1));
1627 ptrtype2 = TREE_TYPE (TREE_OPERAND (base2, 1));
1628
1629 /* If the alias set for a pointer access is zero all bets are off. */
1630 if (base1_alias_set == 0
1631 || base2_alias_set == 0)
1632 return true;
1633
1634 /* Do type-based disambiguation. */
1635 if (base1_alias_set != base2_alias_set
1636 && !alias_sets_conflict_p (base1_alias_set, base2_alias_set))
1637 return false;
1638
1639 /* If either reference is view-converted, give up now. */
1640 if (same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) != 1
1641 || same_type_for_tbaa (TREE_TYPE (base2), TREE_TYPE (ptrtype2)) != 1)
1642 return true;
1643
1644 /* If both references are through the same type, they do not alias
1645 if the accesses do not overlap. This does extra disambiguation
1646 for mixed/pointer accesses but requires strict aliasing. */
1647 if ((TREE_CODE (base1) != TARGET_MEM_REF
1648 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
1649 && (TREE_CODE (base2) != TARGET_MEM_REF
1650 || (!TMR_INDEX (base2) && !TMR_INDEX2 (base2)))
1651 && same_type_for_tbaa (TREE_TYPE (ptrtype1),
1652 TREE_TYPE (ptrtype2)) == 1
1653 /* But avoid treating arrays as "objects", instead assume they
1654 can overlap by an exact multiple of their element size.
1655 See gcc.dg/torture/alias-2.c. */
1656 && TREE_CODE (TREE_TYPE (ptrtype1)) != ARRAY_TYPE)
1657 return ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2);
1658
1659 if (ref1 && ref2
1660 && nonoverlapping_component_refs_p (ref1, ref2))
1661 return false;
1662
1663 /* Do access-path based disambiguation. */
1664 if (ref1 && ref2
1665 && (handled_component_p (ref1) || handled_component_p (ref2)))
1666 return aliasing_component_refs_p (ref1,
1667 ref1_alias_set, base1_alias_set,
1668 offset1, max_size1,
1669 ref2,
1670 ref2_alias_set, base2_alias_set,
1671 offset2, max_size2, false);
1672
1673 return true;
1674 }
1675
1676 /* Return true, if the two memory references REF1 and REF2 may alias. */
1677
1678 static bool
1679 refs_may_alias_p_2 (ao_ref *ref1, ao_ref *ref2, bool tbaa_p)
1680 {
1681 tree base1, base2;
1682 poly_int64 offset1 = 0, offset2 = 0;
1683 poly_int64 max_size1 = -1, max_size2 = -1;
1684 bool var1_p, var2_p, ind1_p, ind2_p;
1685
1686 gcc_checking_assert ((!ref1->ref
1687 || TREE_CODE (ref1->ref) == SSA_NAME
1688 || DECL_P (ref1->ref)
1689 || TREE_CODE (ref1->ref) == STRING_CST
1690 || handled_component_p (ref1->ref)
1691 || TREE_CODE (ref1->ref) == MEM_REF
1692 || TREE_CODE (ref1->ref) == TARGET_MEM_REF)
1693 && (!ref2->ref
1694 || TREE_CODE (ref2->ref) == SSA_NAME
1695 || DECL_P (ref2->ref)
1696 || TREE_CODE (ref2->ref) == STRING_CST
1697 || handled_component_p (ref2->ref)
1698 || TREE_CODE (ref2->ref) == MEM_REF
1699 || TREE_CODE (ref2->ref) == TARGET_MEM_REF));
1700
1701 /* Decompose the references into their base objects and the access. */
1702 base1 = ao_ref_base (ref1);
1703 offset1 = ref1->offset;
1704 max_size1 = ref1->max_size;
1705 base2 = ao_ref_base (ref2);
1706 offset2 = ref2->offset;
1707 max_size2 = ref2->max_size;
1708
1709 /* We can end up with registers or constants as bases for example from
1710 *D.1663_44 = VIEW_CONVERT_EXPR<struct DB_LSN>(__tmp$B0F64_59);
1711 which is seen as a struct copy. */
1712 if (TREE_CODE (base1) == SSA_NAME
1713 || TREE_CODE (base1) == CONST_DECL
1714 || TREE_CODE (base1) == CONSTRUCTOR
1715 || TREE_CODE (base1) == ADDR_EXPR
1716 || CONSTANT_CLASS_P (base1)
1717 || TREE_CODE (base2) == SSA_NAME
1718 || TREE_CODE (base2) == CONST_DECL
1719 || TREE_CODE (base2) == CONSTRUCTOR
1720 || TREE_CODE (base2) == ADDR_EXPR
1721 || CONSTANT_CLASS_P (base2))
1722 return false;
1723
1724 /* We can end up referring to code via function and label decls.
1725 As we likely do not properly track code aliases conservatively
1726 bail out. */
1727 if (TREE_CODE (base1) == FUNCTION_DECL
1728 || TREE_CODE (base1) == LABEL_DECL
1729 || TREE_CODE (base2) == FUNCTION_DECL
1730 || TREE_CODE (base2) == LABEL_DECL)
1731 return true;
1732
1733 /* Two volatile accesses always conflict. */
1734 if (ref1->volatile_p
1735 && ref2->volatile_p)
1736 return true;
1737
1738 /* Defer to simple offset based disambiguation if we have
1739 references based on two decls. Do this before defering to
1740 TBAA to handle must-alias cases in conformance with the
1741 GCC extension of allowing type-punning through unions. */
1742 var1_p = DECL_P (base1);
1743 var2_p = DECL_P (base2);
1744 if (var1_p && var2_p)
1745 return decl_refs_may_alias_p (ref1->ref, base1, offset1, max_size1,
1746 ref2->ref, base2, offset2, max_size2);
1747
1748 /* Handle restrict based accesses.
1749 ??? ao_ref_base strips inner MEM_REF [&decl], recover from that
1750 here. */
1751 tree rbase1 = base1;
1752 tree rbase2 = base2;
1753 if (var1_p)
1754 {
1755 rbase1 = ref1->ref;
1756 if (rbase1)
1757 while (handled_component_p (rbase1))
1758 rbase1 = TREE_OPERAND (rbase1, 0);
1759 }
1760 if (var2_p)
1761 {
1762 rbase2 = ref2->ref;
1763 if (rbase2)
1764 while (handled_component_p (rbase2))
1765 rbase2 = TREE_OPERAND (rbase2, 0);
1766 }
1767 if (rbase1 && rbase2
1768 && (TREE_CODE (base1) == MEM_REF || TREE_CODE (base1) == TARGET_MEM_REF)
1769 && (TREE_CODE (base2) == MEM_REF || TREE_CODE (base2) == TARGET_MEM_REF)
1770 /* If the accesses are in the same restrict clique... */
1771 && MR_DEPENDENCE_CLIQUE (base1) == MR_DEPENDENCE_CLIQUE (base2)
1772 /* But based on different pointers they do not alias. */
1773 && MR_DEPENDENCE_BASE (base1) != MR_DEPENDENCE_BASE (base2))
1774 return false;
1775
1776 ind1_p = (TREE_CODE (base1) == MEM_REF
1777 || TREE_CODE (base1) == TARGET_MEM_REF);
1778 ind2_p = (TREE_CODE (base2) == MEM_REF
1779 || TREE_CODE (base2) == TARGET_MEM_REF);
1780
1781 /* Canonicalize the pointer-vs-decl case. */
1782 if (ind1_p && var2_p)
1783 {
1784 std::swap (offset1, offset2);
1785 std::swap (max_size1, max_size2);
1786 std::swap (base1, base2);
1787 std::swap (ref1, ref2);
1788 var1_p = true;
1789 ind1_p = false;
1790 var2_p = false;
1791 ind2_p = true;
1792 }
1793
1794 /* First defer to TBAA if possible. */
1795 if (tbaa_p
1796 && flag_strict_aliasing
1797 && !alias_sets_conflict_p (ao_ref_alias_set (ref1),
1798 ao_ref_alias_set (ref2)))
1799 return false;
1800
1801 /* If the reference is based on a pointer that points to memory
1802 that may not be written to then the other reference cannot possibly
1803 clobber it. */
1804 if ((TREE_CODE (TREE_OPERAND (base2, 0)) == SSA_NAME
1805 && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base2, 0)))
1806 || (ind1_p
1807 && TREE_CODE (TREE_OPERAND (base1, 0)) == SSA_NAME
1808 && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base1, 0))))
1809 return false;
1810
1811 /* Dispatch to the pointer-vs-decl or pointer-vs-pointer disambiguators. */
1812 if (var1_p && ind2_p)
1813 return indirect_ref_may_alias_decl_p (ref2->ref, base2,
1814 offset2, max_size2,
1815 ao_ref_alias_set (ref2),
1816 ao_ref_base_alias_set (ref2),
1817 ref1->ref, base1,
1818 offset1, max_size1,
1819 ao_ref_alias_set (ref1),
1820 ao_ref_base_alias_set (ref1),
1821 tbaa_p);
1822 else if (ind1_p && ind2_p)
1823 return indirect_refs_may_alias_p (ref1->ref, base1,
1824 offset1, max_size1,
1825 ao_ref_alias_set (ref1),
1826 ao_ref_base_alias_set (ref1),
1827 ref2->ref, base2,
1828 offset2, max_size2,
1829 ao_ref_alias_set (ref2),
1830 ao_ref_base_alias_set (ref2),
1831 tbaa_p);
1832
1833 gcc_unreachable ();
1834 }
1835
1836 /* Return true, if the two memory references REF1 and REF2 may alias
1837 and update statistics. */
1838
1839 bool
1840 refs_may_alias_p_1 (ao_ref *ref1, ao_ref *ref2, bool tbaa_p)
1841 {
1842 bool res = refs_may_alias_p_2 (ref1, ref2, tbaa_p);
1843 if (res)
1844 ++alias_stats.refs_may_alias_p_may_alias;
1845 else
1846 ++alias_stats.refs_may_alias_p_no_alias;
1847 return res;
1848 }
1849
1850 static bool
1851 refs_may_alias_p (tree ref1, ao_ref *ref2, bool tbaa_p)
1852 {
1853 ao_ref r1;
1854 ao_ref_init (&r1, ref1);
1855 return refs_may_alias_p_1 (&r1, ref2, tbaa_p);
1856 }
1857
1858 bool
1859 refs_may_alias_p (tree ref1, tree ref2, bool tbaa_p)
1860 {
1861 ao_ref r1, r2;
1862 ao_ref_init (&r1, ref1);
1863 ao_ref_init (&r2, ref2);
1864 return refs_may_alias_p_1 (&r1, &r2, tbaa_p);
1865 }
1866
1867 /* Returns true if there is a anti-dependence for the STORE that
1868 executes after the LOAD. */
1869
1870 bool
1871 refs_anti_dependent_p (tree load, tree store)
1872 {
1873 ao_ref r1, r2;
1874 ao_ref_init (&r1, load);
1875 ao_ref_init (&r2, store);
1876 return refs_may_alias_p_1 (&r1, &r2, false);
1877 }
1878
1879 /* Returns true if there is a output dependence for the stores
1880 STORE1 and STORE2. */
1881
1882 bool
1883 refs_output_dependent_p (tree store1, tree store2)
1884 {
1885 ao_ref r1, r2;
1886 ao_ref_init (&r1, store1);
1887 ao_ref_init (&r2, store2);
1888 return refs_may_alias_p_1 (&r1, &r2, false);
1889 }
1890
1891 /* If the call CALL may use the memory reference REF return true,
1892 otherwise return false. */
1893
1894 static bool
1895 ref_maybe_used_by_call_p_1 (gcall *call, ao_ref *ref, bool tbaa_p)
1896 {
1897 tree base, callee;
1898 unsigned i;
1899 int flags = gimple_call_flags (call);
1900
1901 /* Const functions without a static chain do not implicitly use memory. */
1902 if (!gimple_call_chain (call)
1903 && (flags & (ECF_CONST|ECF_NOVOPS)))
1904 goto process_args;
1905
1906 base = ao_ref_base (ref);
1907 if (!base)
1908 return true;
1909
1910 /* A call that is not without side-effects might involve volatile
1911 accesses and thus conflicts with all other volatile accesses. */
1912 if (ref->volatile_p)
1913 return true;
1914
1915 /* If the reference is based on a decl that is not aliased the call
1916 cannot possibly use it. */
1917 if (DECL_P (base)
1918 && !may_be_aliased (base)
1919 /* But local statics can be used through recursion. */
1920 && !is_global_var (base))
1921 goto process_args;
1922
1923 callee = gimple_call_fndecl (call);
1924
1925 /* Handle those builtin functions explicitly that do not act as
1926 escape points. See tree-ssa-structalias.c:find_func_aliases
1927 for the list of builtins we might need to handle here. */
1928 if (callee != NULL_TREE
1929 && gimple_call_builtin_p (call, BUILT_IN_NORMAL))
1930 switch (DECL_FUNCTION_CODE (callee))
1931 {
1932 /* All the following functions read memory pointed to by
1933 their second argument. strcat/strncat additionally
1934 reads memory pointed to by the first argument. */
1935 case BUILT_IN_STRCAT:
1936 case BUILT_IN_STRNCAT:
1937 {
1938 ao_ref dref;
1939 ao_ref_init_from_ptr_and_size (&dref,
1940 gimple_call_arg (call, 0),
1941 NULL_TREE);
1942 if (refs_may_alias_p_1 (&dref, ref, false))
1943 return true;
1944 }
1945 /* FALLTHRU */
1946 case BUILT_IN_STRCPY:
1947 case BUILT_IN_STRNCPY:
1948 case BUILT_IN_MEMCPY:
1949 case BUILT_IN_MEMMOVE:
1950 case BUILT_IN_MEMPCPY:
1951 case BUILT_IN_STPCPY:
1952 case BUILT_IN_STPNCPY:
1953 case BUILT_IN_TM_MEMCPY:
1954 case BUILT_IN_TM_MEMMOVE:
1955 {
1956 ao_ref dref;
1957 tree size = NULL_TREE;
1958 if (gimple_call_num_args (call) == 3)
1959 size = gimple_call_arg (call, 2);
1960 ao_ref_init_from_ptr_and_size (&dref,
1961 gimple_call_arg (call, 1),
1962 size);
1963 return refs_may_alias_p_1 (&dref, ref, false);
1964 }
1965 case BUILT_IN_STRCAT_CHK:
1966 case BUILT_IN_STRNCAT_CHK:
1967 {
1968 ao_ref dref;
1969 ao_ref_init_from_ptr_and_size (&dref,
1970 gimple_call_arg (call, 0),
1971 NULL_TREE);
1972 if (refs_may_alias_p_1 (&dref, ref, false))
1973 return true;
1974 }
1975 /* FALLTHRU */
1976 case BUILT_IN_STRCPY_CHK:
1977 case BUILT_IN_STRNCPY_CHK:
1978 case BUILT_IN_MEMCPY_CHK:
1979 case BUILT_IN_MEMMOVE_CHK:
1980 case BUILT_IN_MEMPCPY_CHK:
1981 case BUILT_IN_STPCPY_CHK:
1982 case BUILT_IN_STPNCPY_CHK:
1983 {
1984 ao_ref dref;
1985 tree size = NULL_TREE;
1986 if (gimple_call_num_args (call) == 4)
1987 size = gimple_call_arg (call, 2);
1988 ao_ref_init_from_ptr_and_size (&dref,
1989 gimple_call_arg (call, 1),
1990 size);
1991 return refs_may_alias_p_1 (&dref, ref, false);
1992 }
1993 case BUILT_IN_BCOPY:
1994 {
1995 ao_ref dref;
1996 tree size = gimple_call_arg (call, 2);
1997 ao_ref_init_from_ptr_and_size (&dref,
1998 gimple_call_arg (call, 0),
1999 size);
2000 return refs_may_alias_p_1 (&dref, ref, false);
2001 }
2002
2003 /* The following functions read memory pointed to by their
2004 first argument. */
2005 CASE_BUILT_IN_TM_LOAD (1):
2006 CASE_BUILT_IN_TM_LOAD (2):
2007 CASE_BUILT_IN_TM_LOAD (4):
2008 CASE_BUILT_IN_TM_LOAD (8):
2009 CASE_BUILT_IN_TM_LOAD (FLOAT):
2010 CASE_BUILT_IN_TM_LOAD (DOUBLE):
2011 CASE_BUILT_IN_TM_LOAD (LDOUBLE):
2012 CASE_BUILT_IN_TM_LOAD (M64):
2013 CASE_BUILT_IN_TM_LOAD (M128):
2014 CASE_BUILT_IN_TM_LOAD (M256):
2015 case BUILT_IN_TM_LOG:
2016 case BUILT_IN_TM_LOG_1:
2017 case BUILT_IN_TM_LOG_2:
2018 case BUILT_IN_TM_LOG_4:
2019 case BUILT_IN_TM_LOG_8:
2020 case BUILT_IN_TM_LOG_FLOAT:
2021 case BUILT_IN_TM_LOG_DOUBLE:
2022 case BUILT_IN_TM_LOG_LDOUBLE:
2023 case BUILT_IN_TM_LOG_M64:
2024 case BUILT_IN_TM_LOG_M128:
2025 case BUILT_IN_TM_LOG_M256:
2026 return ptr_deref_may_alias_ref_p_1 (gimple_call_arg (call, 0), ref);
2027
2028 /* These read memory pointed to by the first argument. */
2029 case BUILT_IN_STRDUP:
2030 case BUILT_IN_STRNDUP:
2031 case BUILT_IN_REALLOC:
2032 {
2033 ao_ref dref;
2034 tree size = NULL_TREE;
2035 if (gimple_call_num_args (call) == 2)
2036 size = gimple_call_arg (call, 1);
2037 ao_ref_init_from_ptr_and_size (&dref,
2038 gimple_call_arg (call, 0),
2039 size);
2040 return refs_may_alias_p_1 (&dref, ref, false);
2041 }
2042 /* These read memory pointed to by the first argument. */
2043 case BUILT_IN_INDEX:
2044 case BUILT_IN_STRCHR:
2045 case BUILT_IN_STRRCHR:
2046 {
2047 ao_ref dref;
2048 ao_ref_init_from_ptr_and_size (&dref,
2049 gimple_call_arg (call, 0),
2050 NULL_TREE);
2051 return refs_may_alias_p_1 (&dref, ref, false);
2052 }
2053 /* These read memory pointed to by the first argument with size
2054 in the third argument. */
2055 case BUILT_IN_MEMCHR:
2056 {
2057 ao_ref dref;
2058 ao_ref_init_from_ptr_and_size (&dref,
2059 gimple_call_arg (call, 0),
2060 gimple_call_arg (call, 2));
2061 return refs_may_alias_p_1 (&dref, ref, false);
2062 }
2063 /* These read memory pointed to by the first and second arguments. */
2064 case BUILT_IN_STRSTR:
2065 case BUILT_IN_STRPBRK:
2066 {
2067 ao_ref dref;
2068 ao_ref_init_from_ptr_and_size (&dref,
2069 gimple_call_arg (call, 0),
2070 NULL_TREE);
2071 if (refs_may_alias_p_1 (&dref, ref, false))
2072 return true;
2073 ao_ref_init_from_ptr_and_size (&dref,
2074 gimple_call_arg (call, 1),
2075 NULL_TREE);
2076 return refs_may_alias_p_1 (&dref, ref, false);
2077 }
2078
2079 /* The following builtins do not read from memory. */
2080 case BUILT_IN_FREE:
2081 case BUILT_IN_MALLOC:
2082 case BUILT_IN_POSIX_MEMALIGN:
2083 case BUILT_IN_ALIGNED_ALLOC:
2084 case BUILT_IN_CALLOC:
2085 CASE_BUILT_IN_ALLOCA:
2086 case BUILT_IN_STACK_SAVE:
2087 case BUILT_IN_STACK_RESTORE:
2088 case BUILT_IN_MEMSET:
2089 case BUILT_IN_TM_MEMSET:
2090 case BUILT_IN_MEMSET_CHK:
2091 case BUILT_IN_FREXP:
2092 case BUILT_IN_FREXPF:
2093 case BUILT_IN_FREXPL:
2094 case BUILT_IN_GAMMA_R:
2095 case BUILT_IN_GAMMAF_R:
2096 case BUILT_IN_GAMMAL_R:
2097 case BUILT_IN_LGAMMA_R:
2098 case BUILT_IN_LGAMMAF_R:
2099 case BUILT_IN_LGAMMAL_R:
2100 case BUILT_IN_MODF:
2101 case BUILT_IN_MODFF:
2102 case BUILT_IN_MODFL:
2103 case BUILT_IN_REMQUO:
2104 case BUILT_IN_REMQUOF:
2105 case BUILT_IN_REMQUOL:
2106 case BUILT_IN_SINCOS:
2107 case BUILT_IN_SINCOSF:
2108 case BUILT_IN_SINCOSL:
2109 case BUILT_IN_ASSUME_ALIGNED:
2110 case BUILT_IN_VA_END:
2111 return false;
2112 /* __sync_* builtins and some OpenMP builtins act as threading
2113 barriers. */
2114 #undef DEF_SYNC_BUILTIN
2115 #define DEF_SYNC_BUILTIN(ENUM, NAME, TYPE, ATTRS) case ENUM:
2116 #include "sync-builtins.def"
2117 #undef DEF_SYNC_BUILTIN
2118 case BUILT_IN_GOMP_ATOMIC_START:
2119 case BUILT_IN_GOMP_ATOMIC_END:
2120 case BUILT_IN_GOMP_BARRIER:
2121 case BUILT_IN_GOMP_BARRIER_CANCEL:
2122 case BUILT_IN_GOMP_TASKWAIT:
2123 case BUILT_IN_GOMP_TASKGROUP_END:
2124 case BUILT_IN_GOMP_CRITICAL_START:
2125 case BUILT_IN_GOMP_CRITICAL_END:
2126 case BUILT_IN_GOMP_CRITICAL_NAME_START:
2127 case BUILT_IN_GOMP_CRITICAL_NAME_END:
2128 case BUILT_IN_GOMP_LOOP_END:
2129 case BUILT_IN_GOMP_LOOP_END_CANCEL:
2130 case BUILT_IN_GOMP_ORDERED_START:
2131 case BUILT_IN_GOMP_ORDERED_END:
2132 case BUILT_IN_GOMP_SECTIONS_END:
2133 case BUILT_IN_GOMP_SECTIONS_END_CANCEL:
2134 case BUILT_IN_GOMP_SINGLE_COPY_START:
2135 case BUILT_IN_GOMP_SINGLE_COPY_END:
2136 return true;
2137
2138 default:
2139 /* Fallthru to general call handling. */;
2140 }
2141
2142 /* Check if base is a global static variable that is not read
2143 by the function. */
2144 if (callee != NULL_TREE && VAR_P (base) && TREE_STATIC (base))
2145 {
2146 struct cgraph_node *node = cgraph_node::get (callee);
2147 bitmap not_read;
2148
2149 /* FIXME: Callee can be an OMP builtin that does not have a call graph
2150 node yet. We should enforce that there are nodes for all decls in the
2151 IL and remove this check instead. */
2152 if (node
2153 && (not_read = ipa_reference_get_not_read_global (node))
2154 && bitmap_bit_p (not_read, ipa_reference_var_uid (base)))
2155 goto process_args;
2156 }
2157
2158 /* Check if the base variable is call-used. */
2159 if (DECL_P (base))
2160 {
2161 if (pt_solution_includes (gimple_call_use_set (call), base))
2162 return true;
2163 }
2164 else if ((TREE_CODE (base) == MEM_REF
2165 || TREE_CODE (base) == TARGET_MEM_REF)
2166 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
2167 {
2168 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (TREE_OPERAND (base, 0));
2169 if (!pi)
2170 return true;
2171
2172 if (pt_solutions_intersect (gimple_call_use_set (call), &pi->pt))
2173 return true;
2174 }
2175 else
2176 return true;
2177
2178 /* Inspect call arguments for passed-by-value aliases. */
2179 process_args:
2180 for (i = 0; i < gimple_call_num_args (call); ++i)
2181 {
2182 tree op = gimple_call_arg (call, i);
2183 int flags = gimple_call_arg_flags (call, i);
2184
2185 if (flags & EAF_UNUSED)
2186 continue;
2187
2188 if (TREE_CODE (op) == WITH_SIZE_EXPR)
2189 op = TREE_OPERAND (op, 0);
2190
2191 if (TREE_CODE (op) != SSA_NAME
2192 && !is_gimple_min_invariant (op))
2193 {
2194 ao_ref r;
2195 ao_ref_init (&r, op);
2196 if (refs_may_alias_p_1 (&r, ref, tbaa_p))
2197 return true;
2198 }
2199 }
2200
2201 return false;
2202 }
2203
2204 static bool
2205 ref_maybe_used_by_call_p (gcall *call, ao_ref *ref, bool tbaa_p)
2206 {
2207 bool res;
2208 res = ref_maybe_used_by_call_p_1 (call, ref, tbaa_p);
2209 if (res)
2210 ++alias_stats.ref_maybe_used_by_call_p_may_alias;
2211 else
2212 ++alias_stats.ref_maybe_used_by_call_p_no_alias;
2213 return res;
2214 }
2215
2216
2217 /* If the statement STMT may use the memory reference REF return
2218 true, otherwise return false. */
2219
2220 bool
2221 ref_maybe_used_by_stmt_p (gimple *stmt, ao_ref *ref, bool tbaa_p)
2222 {
2223 if (is_gimple_assign (stmt))
2224 {
2225 tree rhs;
2226
2227 /* All memory assign statements are single. */
2228 if (!gimple_assign_single_p (stmt))
2229 return false;
2230
2231 rhs = gimple_assign_rhs1 (stmt);
2232 if (is_gimple_reg (rhs)
2233 || is_gimple_min_invariant (rhs)
2234 || gimple_assign_rhs_code (stmt) == CONSTRUCTOR)
2235 return false;
2236
2237 return refs_may_alias_p (rhs, ref, tbaa_p);
2238 }
2239 else if (is_gimple_call (stmt))
2240 return ref_maybe_used_by_call_p (as_a <gcall *> (stmt), ref, tbaa_p);
2241 else if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
2242 {
2243 tree retval = gimple_return_retval (return_stmt);
2244 if (retval
2245 && TREE_CODE (retval) != SSA_NAME
2246 && !is_gimple_min_invariant (retval)
2247 && refs_may_alias_p (retval, ref, tbaa_p))
2248 return true;
2249 /* If ref escapes the function then the return acts as a use. */
2250 tree base = ao_ref_base (ref);
2251 if (!base)
2252 ;
2253 else if (DECL_P (base))
2254 return is_global_var (base);
2255 else if (TREE_CODE (base) == MEM_REF
2256 || TREE_CODE (base) == TARGET_MEM_REF)
2257 return ptr_deref_may_alias_global_p (TREE_OPERAND (base, 0));
2258 return false;
2259 }
2260
2261 return true;
2262 }
2263
2264 bool
2265 ref_maybe_used_by_stmt_p (gimple *stmt, tree ref, bool tbaa_p)
2266 {
2267 ao_ref r;
2268 ao_ref_init (&r, ref);
2269 return ref_maybe_used_by_stmt_p (stmt, &r, tbaa_p);
2270 }
2271
2272 /* If the call in statement CALL may clobber the memory reference REF
2273 return true, otherwise return false. */
2274
2275 bool
2276 call_may_clobber_ref_p_1 (gcall *call, ao_ref *ref)
2277 {
2278 tree base;
2279 tree callee;
2280
2281 /* If the call is pure or const it cannot clobber anything. */
2282 if (gimple_call_flags (call)
2283 & (ECF_PURE|ECF_CONST|ECF_LOOPING_CONST_OR_PURE|ECF_NOVOPS))
2284 return false;
2285 if (gimple_call_internal_p (call))
2286 switch (gimple_call_internal_fn (call))
2287 {
2288 /* Treat these internal calls like ECF_PURE for aliasing,
2289 they don't write to any memory the program should care about.
2290 They have important other side-effects, and read memory,
2291 so can't be ECF_NOVOPS. */
2292 case IFN_UBSAN_NULL:
2293 case IFN_UBSAN_BOUNDS:
2294 case IFN_UBSAN_VPTR:
2295 case IFN_UBSAN_OBJECT_SIZE:
2296 case IFN_UBSAN_PTR:
2297 case IFN_ASAN_CHECK:
2298 return false;
2299 default:
2300 break;
2301 }
2302
2303 base = ao_ref_base (ref);
2304 if (!base)
2305 return true;
2306
2307 if (TREE_CODE (base) == SSA_NAME
2308 || CONSTANT_CLASS_P (base))
2309 return false;
2310
2311 /* A call that is not without side-effects might involve volatile
2312 accesses and thus conflicts with all other volatile accesses. */
2313 if (ref->volatile_p)
2314 return true;
2315
2316 /* If the reference is based on a decl that is not aliased the call
2317 cannot possibly clobber it. */
2318 if (DECL_P (base)
2319 && !may_be_aliased (base)
2320 /* But local non-readonly statics can be modified through recursion
2321 or the call may implement a threading barrier which we must
2322 treat as may-def. */
2323 && (TREE_READONLY (base)
2324 || !is_global_var (base)))
2325 return false;
2326
2327 /* If the reference is based on a pointer that points to memory
2328 that may not be written to then the call cannot possibly clobber it. */
2329 if ((TREE_CODE (base) == MEM_REF
2330 || TREE_CODE (base) == TARGET_MEM_REF)
2331 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME
2332 && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base, 0)))
2333 return false;
2334
2335 callee = gimple_call_fndecl (call);
2336
2337 /* Handle those builtin functions explicitly that do not act as
2338 escape points. See tree-ssa-structalias.c:find_func_aliases
2339 for the list of builtins we might need to handle here. */
2340 if (callee != NULL_TREE
2341 && gimple_call_builtin_p (call, BUILT_IN_NORMAL))
2342 switch (DECL_FUNCTION_CODE (callee))
2343 {
2344 /* All the following functions clobber memory pointed to by
2345 their first argument. */
2346 case BUILT_IN_STRCPY:
2347 case BUILT_IN_STRNCPY:
2348 case BUILT_IN_MEMCPY:
2349 case BUILT_IN_MEMMOVE:
2350 case BUILT_IN_MEMPCPY:
2351 case BUILT_IN_STPCPY:
2352 case BUILT_IN_STPNCPY:
2353 case BUILT_IN_STRCAT:
2354 case BUILT_IN_STRNCAT:
2355 case BUILT_IN_MEMSET:
2356 case BUILT_IN_TM_MEMSET:
2357 CASE_BUILT_IN_TM_STORE (1):
2358 CASE_BUILT_IN_TM_STORE (2):
2359 CASE_BUILT_IN_TM_STORE (4):
2360 CASE_BUILT_IN_TM_STORE (8):
2361 CASE_BUILT_IN_TM_STORE (FLOAT):
2362 CASE_BUILT_IN_TM_STORE (DOUBLE):
2363 CASE_BUILT_IN_TM_STORE (LDOUBLE):
2364 CASE_BUILT_IN_TM_STORE (M64):
2365 CASE_BUILT_IN_TM_STORE (M128):
2366 CASE_BUILT_IN_TM_STORE (M256):
2367 case BUILT_IN_TM_MEMCPY:
2368 case BUILT_IN_TM_MEMMOVE:
2369 {
2370 ao_ref dref;
2371 tree size = NULL_TREE;
2372 /* Don't pass in size for strncat, as the maximum size
2373 is strlen (dest) + n + 1 instead of n, resp.
2374 n + 1 at dest + strlen (dest), but strlen (dest) isn't
2375 known. */
2376 if (gimple_call_num_args (call) == 3
2377 && DECL_FUNCTION_CODE (callee) != BUILT_IN_STRNCAT)
2378 size = gimple_call_arg (call, 2);
2379 ao_ref_init_from_ptr_and_size (&dref,
2380 gimple_call_arg (call, 0),
2381 size);
2382 return refs_may_alias_p_1 (&dref, ref, false);
2383 }
2384 case BUILT_IN_STRCPY_CHK:
2385 case BUILT_IN_STRNCPY_CHK:
2386 case BUILT_IN_MEMCPY_CHK:
2387 case BUILT_IN_MEMMOVE_CHK:
2388 case BUILT_IN_MEMPCPY_CHK:
2389 case BUILT_IN_STPCPY_CHK:
2390 case BUILT_IN_STPNCPY_CHK:
2391 case BUILT_IN_STRCAT_CHK:
2392 case BUILT_IN_STRNCAT_CHK:
2393 case BUILT_IN_MEMSET_CHK:
2394 {
2395 ao_ref dref;
2396 tree size = NULL_TREE;
2397 /* Don't pass in size for __strncat_chk, as the maximum size
2398 is strlen (dest) + n + 1 instead of n, resp.
2399 n + 1 at dest + strlen (dest), but strlen (dest) isn't
2400 known. */
2401 if (gimple_call_num_args (call) == 4
2402 && DECL_FUNCTION_CODE (callee) != BUILT_IN_STRNCAT_CHK)
2403 size = gimple_call_arg (call, 2);
2404 ao_ref_init_from_ptr_and_size (&dref,
2405 gimple_call_arg (call, 0),
2406 size);
2407 return refs_may_alias_p_1 (&dref, ref, false);
2408 }
2409 case BUILT_IN_BCOPY:
2410 {
2411 ao_ref dref;
2412 tree size = gimple_call_arg (call, 2);
2413 ao_ref_init_from_ptr_and_size (&dref,
2414 gimple_call_arg (call, 1),
2415 size);
2416 return refs_may_alias_p_1 (&dref, ref, false);
2417 }
2418 /* Allocating memory does not have any side-effects apart from
2419 being the definition point for the pointer. */
2420 case BUILT_IN_MALLOC:
2421 case BUILT_IN_ALIGNED_ALLOC:
2422 case BUILT_IN_CALLOC:
2423 case BUILT_IN_STRDUP:
2424 case BUILT_IN_STRNDUP:
2425 /* Unix98 specifies that errno is set on allocation failure. */
2426 if (flag_errno_math
2427 && targetm.ref_may_alias_errno (ref))
2428 return true;
2429 return false;
2430 case BUILT_IN_STACK_SAVE:
2431 CASE_BUILT_IN_ALLOCA:
2432 case BUILT_IN_ASSUME_ALIGNED:
2433 return false;
2434 /* But posix_memalign stores a pointer into the memory pointed to
2435 by its first argument. */
2436 case BUILT_IN_POSIX_MEMALIGN:
2437 {
2438 tree ptrptr = gimple_call_arg (call, 0);
2439 ao_ref dref;
2440 ao_ref_init_from_ptr_and_size (&dref, ptrptr,
2441 TYPE_SIZE_UNIT (ptr_type_node));
2442 return (refs_may_alias_p_1 (&dref, ref, false)
2443 || (flag_errno_math
2444 && targetm.ref_may_alias_errno (ref)));
2445 }
2446 /* Freeing memory kills the pointed-to memory. More importantly
2447 the call has to serve as a barrier for moving loads and stores
2448 across it. */
2449 case BUILT_IN_FREE:
2450 case BUILT_IN_VA_END:
2451 {
2452 tree ptr = gimple_call_arg (call, 0);
2453 return ptr_deref_may_alias_ref_p_1 (ptr, ref);
2454 }
2455 /* Realloc serves both as allocation point and deallocation point. */
2456 case BUILT_IN_REALLOC:
2457 {
2458 tree ptr = gimple_call_arg (call, 0);
2459 /* Unix98 specifies that errno is set on allocation failure. */
2460 return ((flag_errno_math
2461 && targetm.ref_may_alias_errno (ref))
2462 || ptr_deref_may_alias_ref_p_1 (ptr, ref));
2463 }
2464 case BUILT_IN_GAMMA_R:
2465 case BUILT_IN_GAMMAF_R:
2466 case BUILT_IN_GAMMAL_R:
2467 case BUILT_IN_LGAMMA_R:
2468 case BUILT_IN_LGAMMAF_R:
2469 case BUILT_IN_LGAMMAL_R:
2470 {
2471 tree out = gimple_call_arg (call, 1);
2472 if (ptr_deref_may_alias_ref_p_1 (out, ref))
2473 return true;
2474 if (flag_errno_math)
2475 break;
2476 return false;
2477 }
2478 case BUILT_IN_FREXP:
2479 case BUILT_IN_FREXPF:
2480 case BUILT_IN_FREXPL:
2481 case BUILT_IN_MODF:
2482 case BUILT_IN_MODFF:
2483 case BUILT_IN_MODFL:
2484 {
2485 tree out = gimple_call_arg (call, 1);
2486 return ptr_deref_may_alias_ref_p_1 (out, ref);
2487 }
2488 case BUILT_IN_REMQUO:
2489 case BUILT_IN_REMQUOF:
2490 case BUILT_IN_REMQUOL:
2491 {
2492 tree out = gimple_call_arg (call, 2);
2493 if (ptr_deref_may_alias_ref_p_1 (out, ref))
2494 return true;
2495 if (flag_errno_math)
2496 break;
2497 return false;
2498 }
2499 case BUILT_IN_SINCOS:
2500 case BUILT_IN_SINCOSF:
2501 case BUILT_IN_SINCOSL:
2502 {
2503 tree sin = gimple_call_arg (call, 1);
2504 tree cos = gimple_call_arg (call, 2);
2505 return (ptr_deref_may_alias_ref_p_1 (sin, ref)
2506 || ptr_deref_may_alias_ref_p_1 (cos, ref));
2507 }
2508 /* __sync_* builtins and some OpenMP builtins act as threading
2509 barriers. */
2510 #undef DEF_SYNC_BUILTIN
2511 #define DEF_SYNC_BUILTIN(ENUM, NAME, TYPE, ATTRS) case ENUM:
2512 #include "sync-builtins.def"
2513 #undef DEF_SYNC_BUILTIN
2514 case BUILT_IN_GOMP_ATOMIC_START:
2515 case BUILT_IN_GOMP_ATOMIC_END:
2516 case BUILT_IN_GOMP_BARRIER:
2517 case BUILT_IN_GOMP_BARRIER_CANCEL:
2518 case BUILT_IN_GOMP_TASKWAIT:
2519 case BUILT_IN_GOMP_TASKGROUP_END:
2520 case BUILT_IN_GOMP_CRITICAL_START:
2521 case BUILT_IN_GOMP_CRITICAL_END:
2522 case BUILT_IN_GOMP_CRITICAL_NAME_START:
2523 case BUILT_IN_GOMP_CRITICAL_NAME_END:
2524 case BUILT_IN_GOMP_LOOP_END:
2525 case BUILT_IN_GOMP_LOOP_END_CANCEL:
2526 case BUILT_IN_GOMP_ORDERED_START:
2527 case BUILT_IN_GOMP_ORDERED_END:
2528 case BUILT_IN_GOMP_SECTIONS_END:
2529 case BUILT_IN_GOMP_SECTIONS_END_CANCEL:
2530 case BUILT_IN_GOMP_SINGLE_COPY_START:
2531 case BUILT_IN_GOMP_SINGLE_COPY_END:
2532 return true;
2533 default:
2534 /* Fallthru to general call handling. */;
2535 }
2536
2537 /* Check if base is a global static variable that is not written
2538 by the function. */
2539 if (callee != NULL_TREE && VAR_P (base) && TREE_STATIC (base))
2540 {
2541 struct cgraph_node *node = cgraph_node::get (callee);
2542 bitmap not_written;
2543
2544 if (node
2545 && (not_written = ipa_reference_get_not_written_global (node))
2546 && bitmap_bit_p (not_written, ipa_reference_var_uid (base)))
2547 return false;
2548 }
2549
2550 /* Check if the base variable is call-clobbered. */
2551 if (DECL_P (base))
2552 return pt_solution_includes (gimple_call_clobber_set (call), base);
2553 else if ((TREE_CODE (base) == MEM_REF
2554 || TREE_CODE (base) == TARGET_MEM_REF)
2555 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
2556 {
2557 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (TREE_OPERAND (base, 0));
2558 if (!pi)
2559 return true;
2560
2561 return pt_solutions_intersect (gimple_call_clobber_set (call), &pi->pt);
2562 }
2563
2564 return true;
2565 }
2566
2567 /* If the call in statement CALL may clobber the memory reference REF
2568 return true, otherwise return false. */
2569
2570 bool
2571 call_may_clobber_ref_p (gcall *call, tree ref)
2572 {
2573 bool res;
2574 ao_ref r;
2575 ao_ref_init (&r, ref);
2576 res = call_may_clobber_ref_p_1 (call, &r);
2577 if (res)
2578 ++alias_stats.call_may_clobber_ref_p_may_alias;
2579 else
2580 ++alias_stats.call_may_clobber_ref_p_no_alias;
2581 return res;
2582 }
2583
2584
2585 /* If the statement STMT may clobber the memory reference REF return true,
2586 otherwise return false. */
2587
2588 bool
2589 stmt_may_clobber_ref_p_1 (gimple *stmt, ao_ref *ref, bool tbaa_p)
2590 {
2591 if (is_gimple_call (stmt))
2592 {
2593 tree lhs = gimple_call_lhs (stmt);
2594 if (lhs
2595 && TREE_CODE (lhs) != SSA_NAME)
2596 {
2597 ao_ref r;
2598 ao_ref_init (&r, lhs);
2599 if (refs_may_alias_p_1 (ref, &r, tbaa_p))
2600 return true;
2601 }
2602
2603 return call_may_clobber_ref_p_1 (as_a <gcall *> (stmt), ref);
2604 }
2605 else if (gimple_assign_single_p (stmt))
2606 {
2607 tree lhs = gimple_assign_lhs (stmt);
2608 if (TREE_CODE (lhs) != SSA_NAME)
2609 {
2610 ao_ref r;
2611 ao_ref_init (&r, lhs);
2612 return refs_may_alias_p_1 (ref, &r, tbaa_p);
2613 }
2614 }
2615 else if (gimple_code (stmt) == GIMPLE_ASM)
2616 return true;
2617
2618 return false;
2619 }
2620
2621 bool
2622 stmt_may_clobber_ref_p (gimple *stmt, tree ref, bool tbaa_p)
2623 {
2624 ao_ref r;
2625 ao_ref_init (&r, ref);
2626 return stmt_may_clobber_ref_p_1 (stmt, &r, tbaa_p);
2627 }
2628
2629 /* Return true if store1 and store2 described by corresponding tuples
2630 <BASE, OFFSET, SIZE, MAX_SIZE> have the same size and store to the same
2631 address. */
2632
2633 static bool
2634 same_addr_size_stores_p (tree base1, poly_int64 offset1, poly_int64 size1,
2635 poly_int64 max_size1,
2636 tree base2, poly_int64 offset2, poly_int64 size2,
2637 poly_int64 max_size2)
2638 {
2639 /* Offsets need to be 0. */
2640 if (maybe_ne (offset1, 0)
2641 || maybe_ne (offset2, 0))
2642 return false;
2643
2644 bool base1_obj_p = SSA_VAR_P (base1);
2645 bool base2_obj_p = SSA_VAR_P (base2);
2646
2647 /* We need one object. */
2648 if (base1_obj_p == base2_obj_p)
2649 return false;
2650 tree obj = base1_obj_p ? base1 : base2;
2651
2652 /* And we need one MEM_REF. */
2653 bool base1_memref_p = TREE_CODE (base1) == MEM_REF;
2654 bool base2_memref_p = TREE_CODE (base2) == MEM_REF;
2655 if (base1_memref_p == base2_memref_p)
2656 return false;
2657 tree memref = base1_memref_p ? base1 : base2;
2658
2659 /* Sizes need to be valid. */
2660 if (!known_size_p (max_size1)
2661 || !known_size_p (max_size2)
2662 || !known_size_p (size1)
2663 || !known_size_p (size2))
2664 return false;
2665
2666 /* Max_size needs to match size. */
2667 if (maybe_ne (max_size1, size1)
2668 || maybe_ne (max_size2, size2))
2669 return false;
2670
2671 /* Sizes need to match. */
2672 if (maybe_ne (size1, size2))
2673 return false;
2674
2675
2676 /* Check that memref is a store to pointer with singleton points-to info. */
2677 if (!integer_zerop (TREE_OPERAND (memref, 1)))
2678 return false;
2679 tree ptr = TREE_OPERAND (memref, 0);
2680 if (TREE_CODE (ptr) != SSA_NAME)
2681 return false;
2682 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
2683 unsigned int pt_uid;
2684 if (pi == NULL
2685 || !pt_solution_singleton_or_null_p (&pi->pt, &pt_uid))
2686 return false;
2687
2688 /* Be conservative with non-call exceptions when the address might
2689 be NULL. */
2690 if (cfun->can_throw_non_call_exceptions && pi->pt.null)
2691 return false;
2692
2693 /* Check that ptr points relative to obj. */
2694 unsigned int obj_uid = DECL_PT_UID (obj);
2695 if (obj_uid != pt_uid)
2696 return false;
2697
2698 /* Check that the object size is the same as the store size. That ensures us
2699 that ptr points to the start of obj. */
2700 return (DECL_SIZE (obj)
2701 && poly_int_tree_p (DECL_SIZE (obj))
2702 && known_eq (wi::to_poly_offset (DECL_SIZE (obj)), size1));
2703 }
2704
2705 /* If STMT kills the memory reference REF return true, otherwise
2706 return false. */
2707
2708 bool
2709 stmt_kills_ref_p (gimple *stmt, ao_ref *ref)
2710 {
2711 if (!ao_ref_base (ref))
2712 return false;
2713
2714 if (gimple_has_lhs (stmt)
2715 && TREE_CODE (gimple_get_lhs (stmt)) != SSA_NAME
2716 /* The assignment is not necessarily carried out if it can throw
2717 and we can catch it in the current function where we could inspect
2718 the previous value.
2719 ??? We only need to care about the RHS throwing. For aggregate
2720 assignments or similar calls and non-call exceptions the LHS
2721 might throw as well. */
2722 && !stmt_can_throw_internal (cfun, stmt))
2723 {
2724 tree lhs = gimple_get_lhs (stmt);
2725 /* If LHS is literally a base of the access we are done. */
2726 if (ref->ref)
2727 {
2728 tree base = ref->ref;
2729 tree innermost_dropped_array_ref = NULL_TREE;
2730 if (handled_component_p (base))
2731 {
2732 tree saved_lhs0 = NULL_TREE;
2733 if (handled_component_p (lhs))
2734 {
2735 saved_lhs0 = TREE_OPERAND (lhs, 0);
2736 TREE_OPERAND (lhs, 0) = integer_zero_node;
2737 }
2738 do
2739 {
2740 /* Just compare the outermost handled component, if
2741 they are equal we have found a possible common
2742 base. */
2743 tree saved_base0 = TREE_OPERAND (base, 0);
2744 TREE_OPERAND (base, 0) = integer_zero_node;
2745 bool res = operand_equal_p (lhs, base, 0);
2746 TREE_OPERAND (base, 0) = saved_base0;
2747 if (res)
2748 break;
2749 /* Remember if we drop an array-ref that we need to
2750 double-check not being at struct end. */
2751 if (TREE_CODE (base) == ARRAY_REF
2752 || TREE_CODE (base) == ARRAY_RANGE_REF)
2753 innermost_dropped_array_ref = base;
2754 /* Otherwise drop handled components of the access. */
2755 base = saved_base0;
2756 }
2757 while (handled_component_p (base));
2758 if (saved_lhs0)
2759 TREE_OPERAND (lhs, 0) = saved_lhs0;
2760 }
2761 /* Finally check if the lhs has the same address and size as the
2762 base candidate of the access. Watch out if we have dropped
2763 an array-ref that was at struct end, this means ref->ref may
2764 be outside of the TYPE_SIZE of its base. */
2765 if ((! innermost_dropped_array_ref
2766 || ! array_at_struct_end_p (innermost_dropped_array_ref))
2767 && (lhs == base
2768 || (((TYPE_SIZE (TREE_TYPE (lhs))
2769 == TYPE_SIZE (TREE_TYPE (base)))
2770 || (TYPE_SIZE (TREE_TYPE (lhs))
2771 && TYPE_SIZE (TREE_TYPE (base))
2772 && operand_equal_p (TYPE_SIZE (TREE_TYPE (lhs)),
2773 TYPE_SIZE (TREE_TYPE (base)),
2774 0)))
2775 && operand_equal_p (lhs, base,
2776 OEP_ADDRESS_OF
2777 | OEP_MATCH_SIDE_EFFECTS))))
2778 return true;
2779 }
2780
2781 /* Now look for non-literal equal bases with the restriction of
2782 handling constant offset and size. */
2783 /* For a must-alias check we need to be able to constrain
2784 the access properly. */
2785 if (!ref->max_size_known_p ())
2786 return false;
2787 poly_int64 size, offset, max_size, ref_offset = ref->offset;
2788 bool reverse;
2789 tree base = get_ref_base_and_extent (lhs, &offset, &size, &max_size,
2790 &reverse);
2791 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
2792 so base == ref->base does not always hold. */
2793 if (base != ref->base)
2794 {
2795 /* Try using points-to info. */
2796 if (same_addr_size_stores_p (base, offset, size, max_size, ref->base,
2797 ref->offset, ref->size, ref->max_size))
2798 return true;
2799
2800 /* If both base and ref->base are MEM_REFs, only compare the
2801 first operand, and if the second operand isn't equal constant,
2802 try to add the offsets into offset and ref_offset. */
2803 if (TREE_CODE (base) == MEM_REF && TREE_CODE (ref->base) == MEM_REF
2804 && TREE_OPERAND (base, 0) == TREE_OPERAND (ref->base, 0))
2805 {
2806 if (!tree_int_cst_equal (TREE_OPERAND (base, 1),
2807 TREE_OPERAND (ref->base, 1)))
2808 {
2809 poly_offset_int off1 = mem_ref_offset (base);
2810 off1 <<= LOG2_BITS_PER_UNIT;
2811 off1 += offset;
2812 poly_offset_int off2 = mem_ref_offset (ref->base);
2813 off2 <<= LOG2_BITS_PER_UNIT;
2814 off2 += ref_offset;
2815 if (!off1.to_shwi (&offset) || !off2.to_shwi (&ref_offset))
2816 size = -1;
2817 }
2818 }
2819 else
2820 size = -1;
2821 }
2822 /* For a must-alias check we need to be able to constrain
2823 the access properly. */
2824 if (known_eq (size, max_size)
2825 && known_subrange_p (ref_offset, ref->max_size, offset, size))
2826 return true;
2827 }
2828
2829 if (is_gimple_call (stmt))
2830 {
2831 tree callee = gimple_call_fndecl (stmt);
2832 if (callee != NULL_TREE
2833 && gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
2834 switch (DECL_FUNCTION_CODE (callee))
2835 {
2836 case BUILT_IN_FREE:
2837 {
2838 tree ptr = gimple_call_arg (stmt, 0);
2839 tree base = ao_ref_base (ref);
2840 if (base && TREE_CODE (base) == MEM_REF
2841 && TREE_OPERAND (base, 0) == ptr)
2842 return true;
2843 break;
2844 }
2845
2846 case BUILT_IN_MEMCPY:
2847 case BUILT_IN_MEMPCPY:
2848 case BUILT_IN_MEMMOVE:
2849 case BUILT_IN_MEMSET:
2850 case BUILT_IN_MEMCPY_CHK:
2851 case BUILT_IN_MEMPCPY_CHK:
2852 case BUILT_IN_MEMMOVE_CHK:
2853 case BUILT_IN_MEMSET_CHK:
2854 case BUILT_IN_STRNCPY:
2855 case BUILT_IN_STPNCPY:
2856 {
2857 /* For a must-alias check we need to be able to constrain
2858 the access properly. */
2859 if (!ref->max_size_known_p ())
2860 return false;
2861 tree dest = gimple_call_arg (stmt, 0);
2862 tree len = gimple_call_arg (stmt, 2);
2863 if (!poly_int_tree_p (len))
2864 return false;
2865 tree rbase = ref->base;
2866 poly_offset_int roffset = ref->offset;
2867 ao_ref dref;
2868 ao_ref_init_from_ptr_and_size (&dref, dest, len);
2869 tree base = ao_ref_base (&dref);
2870 poly_offset_int offset = dref.offset;
2871 if (!base || !known_size_p (dref.size))
2872 return false;
2873 if (TREE_CODE (base) == MEM_REF)
2874 {
2875 if (TREE_CODE (rbase) != MEM_REF)
2876 return false;
2877 // Compare pointers.
2878 offset += mem_ref_offset (base) << LOG2_BITS_PER_UNIT;
2879 roffset += mem_ref_offset (rbase) << LOG2_BITS_PER_UNIT;
2880 base = TREE_OPERAND (base, 0);
2881 rbase = TREE_OPERAND (rbase, 0);
2882 }
2883 if (base == rbase
2884 && known_subrange_p (roffset, ref->max_size, offset,
2885 wi::to_poly_offset (len)
2886 << LOG2_BITS_PER_UNIT))
2887 return true;
2888 break;
2889 }
2890
2891 case BUILT_IN_VA_END:
2892 {
2893 tree ptr = gimple_call_arg (stmt, 0);
2894 if (TREE_CODE (ptr) == ADDR_EXPR)
2895 {
2896 tree base = ao_ref_base (ref);
2897 if (TREE_OPERAND (ptr, 0) == base)
2898 return true;
2899 }
2900 break;
2901 }
2902
2903 default:;
2904 }
2905 }
2906 return false;
2907 }
2908
2909 bool
2910 stmt_kills_ref_p (gimple *stmt, tree ref)
2911 {
2912 ao_ref r;
2913 ao_ref_init (&r, ref);
2914 return stmt_kills_ref_p (stmt, &r);
2915 }
2916
2917
2918 /* Walk the virtual use-def chain of VUSE until hitting the virtual operand
2919 TARGET or a statement clobbering the memory reference REF in which
2920 case false is returned. The walk starts with VUSE, one argument of PHI. */
2921
2922 static bool
2923 maybe_skip_until (gimple *phi, tree &target, basic_block target_bb,
2924 ao_ref *ref, tree vuse, unsigned int &limit, bitmap *visited,
2925 bool abort_on_visited,
2926 void *(*translate)(ao_ref *, tree, void *, bool *),
2927 void *data)
2928 {
2929 basic_block bb = gimple_bb (phi);
2930
2931 if (!*visited)
2932 *visited = BITMAP_ALLOC (NULL);
2933
2934 bitmap_set_bit (*visited, SSA_NAME_VERSION (PHI_RESULT (phi)));
2935
2936 /* Walk until we hit the target. */
2937 while (vuse != target)
2938 {
2939 gimple *def_stmt = SSA_NAME_DEF_STMT (vuse);
2940 /* If we are searching for the target VUSE by walking up to
2941 TARGET_BB dominating the original PHI we are finished once
2942 we reach a default def or a definition in a block dominating
2943 that block. Update TARGET and return. */
2944 if (!target
2945 && (gimple_nop_p (def_stmt)
2946 || dominated_by_p (CDI_DOMINATORS,
2947 target_bb, gimple_bb (def_stmt))))
2948 {
2949 target = vuse;
2950 return true;
2951 }
2952
2953 /* Recurse for PHI nodes. */
2954 if (gimple_code (def_stmt) == GIMPLE_PHI)
2955 {
2956 /* An already visited PHI node ends the walk successfully. */
2957 if (bitmap_bit_p (*visited, SSA_NAME_VERSION (PHI_RESULT (def_stmt))))
2958 return !abort_on_visited;
2959 vuse = get_continuation_for_phi (def_stmt, ref, limit,
2960 visited, abort_on_visited,
2961 translate, data);
2962 if (!vuse)
2963 return false;
2964 continue;
2965 }
2966 else if (gimple_nop_p (def_stmt))
2967 return false;
2968 else
2969 {
2970 /* A clobbering statement or the end of the IL ends it failing. */
2971 if ((int)limit <= 0)
2972 return false;
2973 --limit;
2974 if (stmt_may_clobber_ref_p_1 (def_stmt, ref))
2975 {
2976 bool disambiguate_only = true;
2977 if (translate
2978 && (*translate) (ref, vuse, data, &disambiguate_only) == NULL)
2979 ;
2980 else
2981 return false;
2982 }
2983 }
2984 /* If we reach a new basic-block see if we already skipped it
2985 in a previous walk that ended successfully. */
2986 if (gimple_bb (def_stmt) != bb)
2987 {
2988 if (!bitmap_set_bit (*visited, SSA_NAME_VERSION (vuse)))
2989 return !abort_on_visited;
2990 bb = gimple_bb (def_stmt);
2991 }
2992 vuse = gimple_vuse (def_stmt);
2993 }
2994 return true;
2995 }
2996
2997
2998 /* Starting from a PHI node for the virtual operand of the memory reference
2999 REF find a continuation virtual operand that allows to continue walking
3000 statements dominating PHI skipping only statements that cannot possibly
3001 clobber REF. Decrements LIMIT for each alias disambiguation done
3002 and aborts the walk, returning NULL_TREE if it reaches zero.
3003 Returns NULL_TREE if no suitable virtual operand can be found. */
3004
3005 tree
3006 get_continuation_for_phi (gimple *phi, ao_ref *ref,
3007 unsigned int &limit, bitmap *visited,
3008 bool abort_on_visited,
3009 void *(*translate)(ao_ref *, tree, void *, bool *),
3010 void *data)
3011 {
3012 unsigned nargs = gimple_phi_num_args (phi);
3013
3014 /* Through a single-argument PHI we can simply look through. */
3015 if (nargs == 1)
3016 return PHI_ARG_DEF (phi, 0);
3017
3018 /* For two or more arguments try to pairwise skip non-aliasing code
3019 until we hit the phi argument definition that dominates the other one. */
3020 basic_block phi_bb = gimple_bb (phi);
3021 tree arg0, arg1;
3022 unsigned i;
3023
3024 /* Find a candidate for the virtual operand which definition
3025 dominates those of all others. */
3026 /* First look if any of the args themselves satisfy this. */
3027 for (i = 0; i < nargs; ++i)
3028 {
3029 arg0 = PHI_ARG_DEF (phi, i);
3030 if (SSA_NAME_IS_DEFAULT_DEF (arg0))
3031 break;
3032 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (arg0));
3033 if (def_bb != phi_bb
3034 && dominated_by_p (CDI_DOMINATORS, phi_bb, def_bb))
3035 break;
3036 arg0 = NULL_TREE;
3037 }
3038 /* If not, look if we can reach such candidate by walking defs
3039 until we hit the immediate dominator. maybe_skip_until will
3040 do that for us. */
3041 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, phi_bb);
3042
3043 /* Then check against the (to be) found candidate. */
3044 for (i = 0; i < nargs; ++i)
3045 {
3046 arg1 = PHI_ARG_DEF (phi, i);
3047 if (arg1 == arg0)
3048 ;
3049 else if (! maybe_skip_until (phi, arg0, dom, ref, arg1, limit, visited,
3050 abort_on_visited,
3051 /* Do not translate when walking over
3052 backedges. */
3053 dominated_by_p
3054 (CDI_DOMINATORS,
3055 gimple_bb (SSA_NAME_DEF_STMT (arg1)),
3056 phi_bb)
3057 ? NULL : translate, data))
3058 return NULL_TREE;
3059 }
3060
3061 return arg0;
3062 }
3063
3064 /* Based on the memory reference REF and its virtual use VUSE call
3065 WALKER for each virtual use that is equivalent to VUSE, including VUSE
3066 itself. That is, for each virtual use for which its defining statement
3067 does not clobber REF.
3068
3069 WALKER is called with REF, the current virtual use and DATA. If
3070 WALKER returns non-NULL the walk stops and its result is returned.
3071 At the end of a non-successful walk NULL is returned.
3072
3073 TRANSLATE if non-NULL is called with a pointer to REF, the virtual
3074 use which definition is a statement that may clobber REF and DATA.
3075 If TRANSLATE returns (void *)-1 the walk stops and NULL is returned.
3076 If TRANSLATE returns non-NULL the walk stops and its result is returned.
3077 If TRANSLATE returns NULL the walk continues and TRANSLATE is supposed
3078 to adjust REF and *DATA to make that valid.
3079
3080 VALUEIZE if non-NULL is called with the next VUSE that is considered
3081 and return value is substituted for that. This can be used to
3082 implement optimistic value-numbering for example. Note that the
3083 VUSE argument is assumed to be valueized already.
3084
3085 LIMIT specifies the number of alias queries we are allowed to do,
3086 the walk stops when it reaches zero and NULL is returned. LIMIT
3087 is decremented by the number of alias queries (plus adjustments
3088 done by the callbacks) upon return.
3089
3090 TODO: Cache the vector of equivalent vuses per ref, vuse pair. */
3091
3092 void *
3093 walk_non_aliased_vuses (ao_ref *ref, tree vuse,
3094 void *(*walker)(ao_ref *, tree, void *),
3095 void *(*translate)(ao_ref *, tree, void *, bool *),
3096 tree (*valueize)(tree),
3097 unsigned &limit, void *data)
3098 {
3099 bitmap visited = NULL;
3100 void *res;
3101 bool translated = false;
3102
3103 timevar_push (TV_ALIAS_STMT_WALK);
3104
3105 do
3106 {
3107 gimple *def_stmt;
3108
3109 /* ??? Do we want to account this to TV_ALIAS_STMT_WALK? */
3110 res = (*walker) (ref, vuse, data);
3111 /* Abort walk. */
3112 if (res == (void *)-1)
3113 {
3114 res = NULL;
3115 break;
3116 }
3117 /* Lookup succeeded. */
3118 else if (res != NULL)
3119 break;
3120
3121 if (valueize)
3122 {
3123 vuse = valueize (vuse);
3124 if (!vuse)
3125 {
3126 res = NULL;
3127 break;
3128 }
3129 }
3130 def_stmt = SSA_NAME_DEF_STMT (vuse);
3131 if (gimple_nop_p (def_stmt))
3132 break;
3133 else if (gimple_code (def_stmt) == GIMPLE_PHI)
3134 vuse = get_continuation_for_phi (def_stmt, ref, limit,
3135 &visited, translated, translate, data);
3136 else
3137 {
3138 if ((int)limit <= 0)
3139 {
3140 res = NULL;
3141 break;
3142 }
3143 if (stmt_may_clobber_ref_p_1 (def_stmt, ref))
3144 {
3145 if (!translate)
3146 break;
3147 bool disambiguate_only = false;
3148 res = (*translate) (ref, vuse, data, &disambiguate_only);
3149 /* Failed lookup and translation. */
3150 if (res == (void *)-1)
3151 {
3152 res = NULL;
3153 break;
3154 }
3155 /* Lookup succeeded. */
3156 else if (res != NULL)
3157 break;
3158 /* Translation succeeded, continue walking. */
3159 translated = translated || !disambiguate_only;
3160 }
3161 vuse = gimple_vuse (def_stmt);
3162 }
3163 }
3164 while (vuse);
3165
3166 if (visited)
3167 BITMAP_FREE (visited);
3168
3169 timevar_pop (TV_ALIAS_STMT_WALK);
3170
3171 return res;
3172 }
3173
3174
3175 /* Based on the memory reference REF call WALKER for each vdef which
3176 defining statement may clobber REF, starting with VDEF. If REF
3177 is NULL_TREE, each defining statement is visited.
3178
3179 WALKER is called with REF, the current vdef and DATA. If WALKER
3180 returns true the walk is stopped, otherwise it continues.
3181
3182 If function entry is reached, FUNCTION_ENTRY_REACHED is set to true.
3183 The pointer may be NULL and then we do not track this information.
3184
3185 At PHI nodes walk_aliased_vdefs forks into one walk for reach
3186 PHI argument (but only one walk continues on merge points), the
3187 return value is true if any of the walks was successful.
3188
3189 The function returns the number of statements walked or -1 if
3190 LIMIT stmts were walked and the walk was aborted at this point.
3191 If LIMIT is zero the walk is not aborted. */
3192
3193 static int
3194 walk_aliased_vdefs_1 (ao_ref *ref, tree vdef,
3195 bool (*walker)(ao_ref *, tree, void *), void *data,
3196 bitmap *visited, unsigned int cnt,
3197 bool *function_entry_reached, unsigned limit)
3198 {
3199 do
3200 {
3201 gimple *def_stmt = SSA_NAME_DEF_STMT (vdef);
3202
3203 if (*visited
3204 && !bitmap_set_bit (*visited, SSA_NAME_VERSION (vdef)))
3205 return cnt;
3206
3207 if (gimple_nop_p (def_stmt))
3208 {
3209 if (function_entry_reached)
3210 *function_entry_reached = true;
3211 return cnt;
3212 }
3213 else if (gimple_code (def_stmt) == GIMPLE_PHI)
3214 {
3215 unsigned i;
3216 if (!*visited)
3217 *visited = BITMAP_ALLOC (NULL);
3218 for (i = 0; i < gimple_phi_num_args (def_stmt); ++i)
3219 {
3220 int res = walk_aliased_vdefs_1 (ref,
3221 gimple_phi_arg_def (def_stmt, i),
3222 walker, data, visited, cnt,
3223 function_entry_reached, limit);
3224 if (res == -1)
3225 return -1;
3226 cnt = res;
3227 }
3228 return cnt;
3229 }
3230
3231 /* ??? Do we want to account this to TV_ALIAS_STMT_WALK? */
3232 cnt++;
3233 if (cnt == limit)
3234 return -1;
3235 if ((!ref
3236 || stmt_may_clobber_ref_p_1 (def_stmt, ref))
3237 && (*walker) (ref, vdef, data))
3238 return cnt;
3239
3240 vdef = gimple_vuse (def_stmt);
3241 }
3242 while (1);
3243 }
3244
3245 int
3246 walk_aliased_vdefs (ao_ref *ref, tree vdef,
3247 bool (*walker)(ao_ref *, tree, void *), void *data,
3248 bitmap *visited,
3249 bool *function_entry_reached, unsigned int limit)
3250 {
3251 bitmap local_visited = NULL;
3252 int ret;
3253
3254 timevar_push (TV_ALIAS_STMT_WALK);
3255
3256 if (function_entry_reached)
3257 *function_entry_reached = false;
3258
3259 ret = walk_aliased_vdefs_1 (ref, vdef, walker, data,
3260 visited ? visited : &local_visited, 0,
3261 function_entry_reached, limit);
3262 if (local_visited)
3263 BITMAP_FREE (local_visited);
3264
3265 timevar_pop (TV_ALIAS_STMT_WALK);
3266
3267 return ret;
3268 }
3269