re PR tree-optimization/90883 (Generated code is worse if returned struct is unnamed)
[gcc.git] / gcc / tree-ssa-alias.c
1 /* Alias analysis for trees.
2 Copyright (C) 2004-2019 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "timevar.h" /* for TV_ALIAS_STMT_WALK */
30 #include "ssa.h"
31 #include "cgraph.h"
32 #include "tree-pretty-print.h"
33 #include "alias.h"
34 #include "fold-const.h"
35 #include "langhooks.h"
36 #include "dumpfile.h"
37 #include "tree-eh.h"
38 #include "tree-dfa.h"
39 #include "ipa-reference.h"
40 #include "varasm.h"
41
42 /* Broad overview of how alias analysis on gimple works:
43
44 Statements clobbering or using memory are linked through the
45 virtual operand factored use-def chain. The virtual operand
46 is unique per function, its symbol is accessible via gimple_vop (cfun).
47 Virtual operands are used for efficiently walking memory statements
48 in the gimple IL and are useful for things like value-numbering as
49 a generation count for memory references.
50
51 SSA_NAME pointers may have associated points-to information
52 accessible via the SSA_NAME_PTR_INFO macro. Flow-insensitive
53 points-to information is (re-)computed by the TODO_rebuild_alias
54 pass manager todo. Points-to information is also used for more
55 precise tracking of call-clobbered and call-used variables and
56 related disambiguations.
57
58 This file contains functions for disambiguating memory references,
59 the so called alias-oracle and tools for walking of the gimple IL.
60
61 The main alias-oracle entry-points are
62
63 bool stmt_may_clobber_ref_p (gimple *, tree)
64
65 This function queries if a statement may invalidate (parts of)
66 the memory designated by the reference tree argument.
67
68 bool ref_maybe_used_by_stmt_p (gimple *, tree)
69
70 This function queries if a statement may need (parts of) the
71 memory designated by the reference tree argument.
72
73 There are variants of these functions that only handle the call
74 part of a statement, call_may_clobber_ref_p and ref_maybe_used_by_call_p.
75 Note that these do not disambiguate against a possible call lhs.
76
77 bool refs_may_alias_p (tree, tree)
78
79 This function tries to disambiguate two reference trees.
80
81 bool ptr_deref_may_alias_global_p (tree)
82
83 This function queries if dereferencing a pointer variable may
84 alias global memory.
85
86 More low-level disambiguators are available and documented in
87 this file. Low-level disambiguators dealing with points-to
88 information are in tree-ssa-structalias.c. */
89
90
91 /* Query statistics for the different low-level disambiguators.
92 A high-level query may trigger multiple of them. */
93
94 static struct {
95 unsigned HOST_WIDE_INT refs_may_alias_p_may_alias;
96 unsigned HOST_WIDE_INT refs_may_alias_p_no_alias;
97 unsigned HOST_WIDE_INT ref_maybe_used_by_call_p_may_alias;
98 unsigned HOST_WIDE_INT ref_maybe_used_by_call_p_no_alias;
99 unsigned HOST_WIDE_INT call_may_clobber_ref_p_may_alias;
100 unsigned HOST_WIDE_INT call_may_clobber_ref_p_no_alias;
101 unsigned HOST_WIDE_INT aliasing_component_refs_p_may_alias;
102 unsigned HOST_WIDE_INT aliasing_component_refs_p_no_alias;
103 unsigned HOST_WIDE_INT nonoverlapping_component_refs_p_may_alias;
104 unsigned HOST_WIDE_INT nonoverlapping_component_refs_p_no_alias;
105 unsigned HOST_WIDE_INT nonoverlapping_component_refs_of_decl_p_may_alias;
106 unsigned HOST_WIDE_INT nonoverlapping_component_refs_of_decl_p_no_alias;
107 } alias_stats;
108
109 void
110 dump_alias_stats (FILE *s)
111 {
112 fprintf (s, "\nAlias oracle query stats:\n");
113 fprintf (s, " refs_may_alias_p: "
114 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
115 HOST_WIDE_INT_PRINT_DEC" queries\n",
116 alias_stats.refs_may_alias_p_no_alias,
117 alias_stats.refs_may_alias_p_no_alias
118 + alias_stats.refs_may_alias_p_may_alias);
119 fprintf (s, " ref_maybe_used_by_call_p: "
120 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
121 HOST_WIDE_INT_PRINT_DEC" queries\n",
122 alias_stats.ref_maybe_used_by_call_p_no_alias,
123 alias_stats.refs_may_alias_p_no_alias
124 + alias_stats.ref_maybe_used_by_call_p_may_alias);
125 fprintf (s, " call_may_clobber_ref_p: "
126 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
127 HOST_WIDE_INT_PRINT_DEC" queries\n",
128 alias_stats.call_may_clobber_ref_p_no_alias,
129 alias_stats.call_may_clobber_ref_p_no_alias
130 + alias_stats.call_may_clobber_ref_p_may_alias);
131 fprintf (s, " nonoverlapping_component_refs_p: "
132 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
133 HOST_WIDE_INT_PRINT_DEC" queries\n",
134 alias_stats.nonoverlapping_component_refs_p_no_alias,
135 alias_stats.nonoverlapping_component_refs_p_no_alias
136 + alias_stats.nonoverlapping_component_refs_p_may_alias);
137 fprintf (s, " nonoverlapping_component_refs_of_decl_p: "
138 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
139 HOST_WIDE_INT_PRINT_DEC" queries\n",
140 alias_stats.nonoverlapping_component_refs_of_decl_p_no_alias,
141 alias_stats.nonoverlapping_component_refs_of_decl_p_no_alias
142 + alias_stats.nonoverlapping_component_refs_of_decl_p_may_alias);
143 fprintf (s, " aliasing_component_refs_p: "
144 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
145 HOST_WIDE_INT_PRINT_DEC" queries\n",
146 alias_stats.aliasing_component_refs_p_no_alias,
147 alias_stats.aliasing_component_refs_p_no_alias
148 + alias_stats.aliasing_component_refs_p_may_alias);
149 dump_alias_stats_in_alias_c (s);
150 }
151
152
153 /* Return true, if dereferencing PTR may alias with a global variable. */
154
155 bool
156 ptr_deref_may_alias_global_p (tree ptr)
157 {
158 struct ptr_info_def *pi;
159
160 /* If we end up with a pointer constant here that may point
161 to global memory. */
162 if (TREE_CODE (ptr) != SSA_NAME)
163 return true;
164
165 pi = SSA_NAME_PTR_INFO (ptr);
166
167 /* If we do not have points-to information for this variable,
168 we have to punt. */
169 if (!pi)
170 return true;
171
172 /* ??? This does not use TBAA to prune globals ptr may not access. */
173 return pt_solution_includes_global (&pi->pt);
174 }
175
176 /* Return true if dereferencing PTR may alias DECL.
177 The caller is responsible for applying TBAA to see if PTR
178 may access DECL at all. */
179
180 static bool
181 ptr_deref_may_alias_decl_p (tree ptr, tree decl)
182 {
183 struct ptr_info_def *pi;
184
185 /* Conversions are irrelevant for points-to information and
186 data-dependence analysis can feed us those. */
187 STRIP_NOPS (ptr);
188
189 /* Anything we do not explicilty handle aliases. */
190 if ((TREE_CODE (ptr) != SSA_NAME
191 && TREE_CODE (ptr) != ADDR_EXPR
192 && TREE_CODE (ptr) != POINTER_PLUS_EXPR)
193 || !POINTER_TYPE_P (TREE_TYPE (ptr))
194 || (!VAR_P (decl)
195 && TREE_CODE (decl) != PARM_DECL
196 && TREE_CODE (decl) != RESULT_DECL))
197 return true;
198
199 /* Disregard pointer offsetting. */
200 if (TREE_CODE (ptr) == POINTER_PLUS_EXPR)
201 {
202 do
203 {
204 ptr = TREE_OPERAND (ptr, 0);
205 }
206 while (TREE_CODE (ptr) == POINTER_PLUS_EXPR);
207 return ptr_deref_may_alias_decl_p (ptr, decl);
208 }
209
210 /* ADDR_EXPR pointers either just offset another pointer or directly
211 specify the pointed-to set. */
212 if (TREE_CODE (ptr) == ADDR_EXPR)
213 {
214 tree base = get_base_address (TREE_OPERAND (ptr, 0));
215 if (base
216 && (TREE_CODE (base) == MEM_REF
217 || TREE_CODE (base) == TARGET_MEM_REF))
218 ptr = TREE_OPERAND (base, 0);
219 else if (base
220 && DECL_P (base))
221 return compare_base_decls (base, decl) != 0;
222 else if (base
223 && CONSTANT_CLASS_P (base))
224 return false;
225 else
226 return true;
227 }
228
229 /* Non-aliased variables cannot be pointed to. */
230 if (!may_be_aliased (decl))
231 return false;
232
233 /* If we do not have useful points-to information for this pointer
234 we cannot disambiguate anything else. */
235 pi = SSA_NAME_PTR_INFO (ptr);
236 if (!pi)
237 return true;
238
239 return pt_solution_includes (&pi->pt, decl);
240 }
241
242 /* Return true if dereferenced PTR1 and PTR2 may alias.
243 The caller is responsible for applying TBAA to see if accesses
244 through PTR1 and PTR2 may conflict at all. */
245
246 bool
247 ptr_derefs_may_alias_p (tree ptr1, tree ptr2)
248 {
249 struct ptr_info_def *pi1, *pi2;
250
251 /* Conversions are irrelevant for points-to information and
252 data-dependence analysis can feed us those. */
253 STRIP_NOPS (ptr1);
254 STRIP_NOPS (ptr2);
255
256 /* Disregard pointer offsetting. */
257 if (TREE_CODE (ptr1) == POINTER_PLUS_EXPR)
258 {
259 do
260 {
261 ptr1 = TREE_OPERAND (ptr1, 0);
262 }
263 while (TREE_CODE (ptr1) == POINTER_PLUS_EXPR);
264 return ptr_derefs_may_alias_p (ptr1, ptr2);
265 }
266 if (TREE_CODE (ptr2) == POINTER_PLUS_EXPR)
267 {
268 do
269 {
270 ptr2 = TREE_OPERAND (ptr2, 0);
271 }
272 while (TREE_CODE (ptr2) == POINTER_PLUS_EXPR);
273 return ptr_derefs_may_alias_p (ptr1, ptr2);
274 }
275
276 /* ADDR_EXPR pointers either just offset another pointer or directly
277 specify the pointed-to set. */
278 if (TREE_CODE (ptr1) == ADDR_EXPR)
279 {
280 tree base = get_base_address (TREE_OPERAND (ptr1, 0));
281 if (base
282 && (TREE_CODE (base) == MEM_REF
283 || TREE_CODE (base) == TARGET_MEM_REF))
284 return ptr_derefs_may_alias_p (TREE_OPERAND (base, 0), ptr2);
285 else if (base
286 && DECL_P (base))
287 return ptr_deref_may_alias_decl_p (ptr2, base);
288 else
289 return true;
290 }
291 if (TREE_CODE (ptr2) == ADDR_EXPR)
292 {
293 tree base = get_base_address (TREE_OPERAND (ptr2, 0));
294 if (base
295 && (TREE_CODE (base) == MEM_REF
296 || TREE_CODE (base) == TARGET_MEM_REF))
297 return ptr_derefs_may_alias_p (ptr1, TREE_OPERAND (base, 0));
298 else if (base
299 && DECL_P (base))
300 return ptr_deref_may_alias_decl_p (ptr1, base);
301 else
302 return true;
303 }
304
305 /* From here we require SSA name pointers. Anything else aliases. */
306 if (TREE_CODE (ptr1) != SSA_NAME
307 || TREE_CODE (ptr2) != SSA_NAME
308 || !POINTER_TYPE_P (TREE_TYPE (ptr1))
309 || !POINTER_TYPE_P (TREE_TYPE (ptr2)))
310 return true;
311
312 /* We may end up with two empty points-to solutions for two same pointers.
313 In this case we still want to say both pointers alias, so shortcut
314 that here. */
315 if (ptr1 == ptr2)
316 return true;
317
318 /* If we do not have useful points-to information for either pointer
319 we cannot disambiguate anything else. */
320 pi1 = SSA_NAME_PTR_INFO (ptr1);
321 pi2 = SSA_NAME_PTR_INFO (ptr2);
322 if (!pi1 || !pi2)
323 return true;
324
325 /* ??? This does not use TBAA to prune decls from the intersection
326 that not both pointers may access. */
327 return pt_solutions_intersect (&pi1->pt, &pi2->pt);
328 }
329
330 /* Return true if dereferencing PTR may alias *REF.
331 The caller is responsible for applying TBAA to see if PTR
332 may access *REF at all. */
333
334 static bool
335 ptr_deref_may_alias_ref_p_1 (tree ptr, ao_ref *ref)
336 {
337 tree base = ao_ref_base (ref);
338
339 if (TREE_CODE (base) == MEM_REF
340 || TREE_CODE (base) == TARGET_MEM_REF)
341 return ptr_derefs_may_alias_p (ptr, TREE_OPERAND (base, 0));
342 else if (DECL_P (base))
343 return ptr_deref_may_alias_decl_p (ptr, base);
344
345 return true;
346 }
347
348 /* Returns true if PTR1 and PTR2 compare unequal because of points-to. */
349
350 bool
351 ptrs_compare_unequal (tree ptr1, tree ptr2)
352 {
353 /* First resolve the pointers down to a SSA name pointer base or
354 a VAR_DECL, PARM_DECL or RESULT_DECL. This explicitely does
355 not yet try to handle LABEL_DECLs, FUNCTION_DECLs, CONST_DECLs
356 or STRING_CSTs which needs points-to adjustments to track them
357 in the points-to sets. */
358 tree obj1 = NULL_TREE;
359 tree obj2 = NULL_TREE;
360 if (TREE_CODE (ptr1) == ADDR_EXPR)
361 {
362 tree tem = get_base_address (TREE_OPERAND (ptr1, 0));
363 if (! tem)
364 return false;
365 if (VAR_P (tem)
366 || TREE_CODE (tem) == PARM_DECL
367 || TREE_CODE (tem) == RESULT_DECL)
368 obj1 = tem;
369 else if (TREE_CODE (tem) == MEM_REF)
370 ptr1 = TREE_OPERAND (tem, 0);
371 }
372 if (TREE_CODE (ptr2) == ADDR_EXPR)
373 {
374 tree tem = get_base_address (TREE_OPERAND (ptr2, 0));
375 if (! tem)
376 return false;
377 if (VAR_P (tem)
378 || TREE_CODE (tem) == PARM_DECL
379 || TREE_CODE (tem) == RESULT_DECL)
380 obj2 = tem;
381 else if (TREE_CODE (tem) == MEM_REF)
382 ptr2 = TREE_OPERAND (tem, 0);
383 }
384
385 /* Canonicalize ptr vs. object. */
386 if (TREE_CODE (ptr1) == SSA_NAME && obj2)
387 {
388 std::swap (ptr1, ptr2);
389 std::swap (obj1, obj2);
390 }
391
392 if (obj1 && obj2)
393 /* Other code handles this correctly, no need to duplicate it here. */;
394 else if (obj1 && TREE_CODE (ptr2) == SSA_NAME)
395 {
396 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr2);
397 /* We may not use restrict to optimize pointer comparisons.
398 See PR71062. So we have to assume that restrict-pointed-to
399 may be in fact obj1. */
400 if (!pi
401 || pi->pt.vars_contains_restrict
402 || pi->pt.vars_contains_interposable)
403 return false;
404 if (VAR_P (obj1)
405 && (TREE_STATIC (obj1) || DECL_EXTERNAL (obj1)))
406 {
407 varpool_node *node = varpool_node::get (obj1);
408 /* If obj1 may bind to NULL give up (see below). */
409 if (! node
410 || ! node->nonzero_address ()
411 || ! decl_binds_to_current_def_p (obj1))
412 return false;
413 }
414 return !pt_solution_includes (&pi->pt, obj1);
415 }
416
417 /* ??? We'd like to handle ptr1 != NULL and ptr1 != ptr2
418 but those require pt.null to be conservatively correct. */
419
420 return false;
421 }
422
423 /* Returns whether reference REF to BASE may refer to global memory. */
424
425 static bool
426 ref_may_alias_global_p_1 (tree base)
427 {
428 if (DECL_P (base))
429 return is_global_var (base);
430 else if (TREE_CODE (base) == MEM_REF
431 || TREE_CODE (base) == TARGET_MEM_REF)
432 return ptr_deref_may_alias_global_p (TREE_OPERAND (base, 0));
433 return true;
434 }
435
436 bool
437 ref_may_alias_global_p (ao_ref *ref)
438 {
439 tree base = ao_ref_base (ref);
440 return ref_may_alias_global_p_1 (base);
441 }
442
443 bool
444 ref_may_alias_global_p (tree ref)
445 {
446 tree base = get_base_address (ref);
447 return ref_may_alias_global_p_1 (base);
448 }
449
450 /* Return true whether STMT may clobber global memory. */
451
452 bool
453 stmt_may_clobber_global_p (gimple *stmt)
454 {
455 tree lhs;
456
457 if (!gimple_vdef (stmt))
458 return false;
459
460 /* ??? We can ask the oracle whether an artificial pointer
461 dereference with a pointer with points-to information covering
462 all global memory (what about non-address taken memory?) maybe
463 clobbered by this call. As there is at the moment no convenient
464 way of doing that without generating garbage do some manual
465 checking instead.
466 ??? We could make a NULL ao_ref argument to the various
467 predicates special, meaning any global memory. */
468
469 switch (gimple_code (stmt))
470 {
471 case GIMPLE_ASSIGN:
472 lhs = gimple_assign_lhs (stmt);
473 return (TREE_CODE (lhs) != SSA_NAME
474 && ref_may_alias_global_p (lhs));
475 case GIMPLE_CALL:
476 return true;
477 default:
478 return true;
479 }
480 }
481
482
483 /* Dump alias information on FILE. */
484
485 void
486 dump_alias_info (FILE *file)
487 {
488 unsigned i;
489 tree ptr;
490 const char *funcname
491 = lang_hooks.decl_printable_name (current_function_decl, 2);
492 tree var;
493
494 fprintf (file, "\n\nAlias information for %s\n\n", funcname);
495
496 fprintf (file, "Aliased symbols\n\n");
497
498 FOR_EACH_LOCAL_DECL (cfun, i, var)
499 {
500 if (may_be_aliased (var))
501 dump_variable (file, var);
502 }
503
504 fprintf (file, "\nCall clobber information\n");
505
506 fprintf (file, "\nESCAPED");
507 dump_points_to_solution (file, &cfun->gimple_df->escaped);
508
509 fprintf (file, "\n\nFlow-insensitive points-to information\n\n");
510
511 FOR_EACH_SSA_NAME (i, ptr, cfun)
512 {
513 struct ptr_info_def *pi;
514
515 if (!POINTER_TYPE_P (TREE_TYPE (ptr))
516 || SSA_NAME_IN_FREE_LIST (ptr))
517 continue;
518
519 pi = SSA_NAME_PTR_INFO (ptr);
520 if (pi)
521 dump_points_to_info_for (file, ptr);
522 }
523
524 fprintf (file, "\n");
525 }
526
527
528 /* Dump alias information on stderr. */
529
530 DEBUG_FUNCTION void
531 debug_alias_info (void)
532 {
533 dump_alias_info (stderr);
534 }
535
536
537 /* Dump the points-to set *PT into FILE. */
538
539 void
540 dump_points_to_solution (FILE *file, struct pt_solution *pt)
541 {
542 if (pt->anything)
543 fprintf (file, ", points-to anything");
544
545 if (pt->nonlocal)
546 fprintf (file, ", points-to non-local");
547
548 if (pt->escaped)
549 fprintf (file, ", points-to escaped");
550
551 if (pt->ipa_escaped)
552 fprintf (file, ", points-to unit escaped");
553
554 if (pt->null)
555 fprintf (file, ", points-to NULL");
556
557 if (pt->vars)
558 {
559 fprintf (file, ", points-to vars: ");
560 dump_decl_set (file, pt->vars);
561 if (pt->vars_contains_nonlocal
562 || pt->vars_contains_escaped
563 || pt->vars_contains_escaped_heap
564 || pt->vars_contains_restrict)
565 {
566 const char *comma = "";
567 fprintf (file, " (");
568 if (pt->vars_contains_nonlocal)
569 {
570 fprintf (file, "nonlocal");
571 comma = ", ";
572 }
573 if (pt->vars_contains_escaped)
574 {
575 fprintf (file, "%sescaped", comma);
576 comma = ", ";
577 }
578 if (pt->vars_contains_escaped_heap)
579 {
580 fprintf (file, "%sescaped heap", comma);
581 comma = ", ";
582 }
583 if (pt->vars_contains_restrict)
584 {
585 fprintf (file, "%srestrict", comma);
586 comma = ", ";
587 }
588 if (pt->vars_contains_interposable)
589 fprintf (file, "%sinterposable", comma);
590 fprintf (file, ")");
591 }
592 }
593 }
594
595
596 /* Unified dump function for pt_solution. */
597
598 DEBUG_FUNCTION void
599 debug (pt_solution &ref)
600 {
601 dump_points_to_solution (stderr, &ref);
602 }
603
604 DEBUG_FUNCTION void
605 debug (pt_solution *ptr)
606 {
607 if (ptr)
608 debug (*ptr);
609 else
610 fprintf (stderr, "<nil>\n");
611 }
612
613
614 /* Dump points-to information for SSA_NAME PTR into FILE. */
615
616 void
617 dump_points_to_info_for (FILE *file, tree ptr)
618 {
619 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
620
621 print_generic_expr (file, ptr, dump_flags);
622
623 if (pi)
624 dump_points_to_solution (file, &pi->pt);
625 else
626 fprintf (file, ", points-to anything");
627
628 fprintf (file, "\n");
629 }
630
631
632 /* Dump points-to information for VAR into stderr. */
633
634 DEBUG_FUNCTION void
635 debug_points_to_info_for (tree var)
636 {
637 dump_points_to_info_for (stderr, var);
638 }
639
640
641 /* Initializes the alias-oracle reference representation *R from REF. */
642
643 void
644 ao_ref_init (ao_ref *r, tree ref)
645 {
646 r->ref = ref;
647 r->base = NULL_TREE;
648 r->offset = 0;
649 r->size = -1;
650 r->max_size = -1;
651 r->ref_alias_set = -1;
652 r->base_alias_set = -1;
653 r->volatile_p = ref ? TREE_THIS_VOLATILE (ref) : false;
654 }
655
656 /* Returns the base object of the memory reference *REF. */
657
658 tree
659 ao_ref_base (ao_ref *ref)
660 {
661 bool reverse;
662
663 if (ref->base)
664 return ref->base;
665 ref->base = get_ref_base_and_extent (ref->ref, &ref->offset, &ref->size,
666 &ref->max_size, &reverse);
667 return ref->base;
668 }
669
670 /* Returns the base object alias set of the memory reference *REF. */
671
672 alias_set_type
673 ao_ref_base_alias_set (ao_ref *ref)
674 {
675 tree base_ref;
676 if (ref->base_alias_set != -1)
677 return ref->base_alias_set;
678 if (!ref->ref)
679 return 0;
680 base_ref = ref->ref;
681 while (handled_component_p (base_ref))
682 base_ref = TREE_OPERAND (base_ref, 0);
683 ref->base_alias_set = get_alias_set (base_ref);
684 return ref->base_alias_set;
685 }
686
687 /* Returns the reference alias set of the memory reference *REF. */
688
689 alias_set_type
690 ao_ref_alias_set (ao_ref *ref)
691 {
692 if (ref->ref_alias_set != -1)
693 return ref->ref_alias_set;
694 ref->ref_alias_set = get_alias_set (ref->ref);
695 return ref->ref_alias_set;
696 }
697
698 /* Init an alias-oracle reference representation from a gimple pointer
699 PTR and a gimple size SIZE in bytes. If SIZE is NULL_TREE then the
700 size is assumed to be unknown. The access is assumed to be only
701 to or after of the pointer target, not before it. */
702
703 void
704 ao_ref_init_from_ptr_and_size (ao_ref *ref, tree ptr, tree size)
705 {
706 poly_int64 t, size_hwi, extra_offset = 0;
707 ref->ref = NULL_TREE;
708 if (TREE_CODE (ptr) == SSA_NAME)
709 {
710 gimple *stmt = SSA_NAME_DEF_STMT (ptr);
711 if (gimple_assign_single_p (stmt)
712 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
713 ptr = gimple_assign_rhs1 (stmt);
714 else if (is_gimple_assign (stmt)
715 && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
716 && ptrdiff_tree_p (gimple_assign_rhs2 (stmt), &extra_offset))
717 {
718 ptr = gimple_assign_rhs1 (stmt);
719 extra_offset *= BITS_PER_UNIT;
720 }
721 }
722
723 if (TREE_CODE (ptr) == ADDR_EXPR)
724 {
725 ref->base = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &t);
726 if (ref->base)
727 ref->offset = BITS_PER_UNIT * t;
728 else
729 {
730 size = NULL_TREE;
731 ref->offset = 0;
732 ref->base = get_base_address (TREE_OPERAND (ptr, 0));
733 }
734 }
735 else
736 {
737 gcc_assert (POINTER_TYPE_P (TREE_TYPE (ptr)));
738 ref->base = build2 (MEM_REF, char_type_node,
739 ptr, null_pointer_node);
740 ref->offset = 0;
741 }
742 ref->offset += extra_offset;
743 if (size
744 && poly_int_tree_p (size, &size_hwi)
745 && coeffs_in_range_p (size_hwi, 0, HOST_WIDE_INT_MAX / BITS_PER_UNIT))
746 ref->max_size = ref->size = size_hwi * BITS_PER_UNIT;
747 else
748 ref->max_size = ref->size = -1;
749 ref->ref_alias_set = 0;
750 ref->base_alias_set = 0;
751 ref->volatile_p = false;
752 }
753
754 /* S1 and S2 are TYPE_SIZE or DECL_SIZE. Compare them:
755 Return -1 if S1 < S2
756 Return 1 if S1 > S2
757 Return 0 if equal or incomparable. */
758
759 static int
760 compare_sizes (tree s1, tree s2)
761 {
762 if (!s1 || !s2)
763 return 0;
764
765 poly_uint64 size1;
766 poly_uint64 size2;
767
768 if (!poly_int_tree_p (s1, &size1) || !poly_int_tree_p (s2, &size2))
769 return 0;
770 if (known_lt (size1, size2))
771 return -1;
772 if (known_lt (size2, size1))
773 return 1;
774 return 0;
775 }
776
777 /* Compare TYPE1 and TYPE2 by its size.
778 Return -1 if size of TYPE1 < size of TYPE2
779 Return 1 if size of TYPE1 > size of TYPE2
780 Return 0 if types are of equal sizes or we can not compare them. */
781
782 static int
783 compare_type_sizes (tree type1, tree type2)
784 {
785 /* Be conservative for arrays and vectors. We want to support partial
786 overlap on int[3] and int[3] as tested in gcc.dg/torture/alias-2.c. */
787 while (TREE_CODE (type1) == ARRAY_TYPE
788 || TREE_CODE (type1) == VECTOR_TYPE)
789 type1 = TREE_TYPE (type1);
790 while (TREE_CODE (type2) == ARRAY_TYPE
791 || TREE_CODE (type2) == VECTOR_TYPE)
792 type2 = TREE_TYPE (type2);
793 return compare_sizes (TYPE_SIZE (type1), TYPE_SIZE (type2));
794 }
795
796 /* Return 1 if TYPE1 and TYPE2 are to be considered equivalent for the
797 purpose of TBAA. Return 0 if they are distinct and -1 if we cannot
798 decide. */
799
800 static inline int
801 same_type_for_tbaa (tree type1, tree type2)
802 {
803 type1 = TYPE_MAIN_VARIANT (type1);
804 type2 = TYPE_MAIN_VARIANT (type2);
805
806 /* Handle the most common case first. */
807 if (type1 == type2)
808 return 1;
809
810 /* If we would have to do structural comparison bail out. */
811 if (TYPE_STRUCTURAL_EQUALITY_P (type1)
812 || TYPE_STRUCTURAL_EQUALITY_P (type2))
813 return -1;
814
815 /* Compare the canonical types. */
816 if (TYPE_CANONICAL (type1) == TYPE_CANONICAL (type2))
817 return 1;
818
819 /* ??? Array types are not properly unified in all cases as we have
820 spurious changes in the index types for example. Removing this
821 causes all sorts of problems with the Fortran frontend. */
822 if (TREE_CODE (type1) == ARRAY_TYPE
823 && TREE_CODE (type2) == ARRAY_TYPE)
824 return -1;
825
826 /* ??? In Ada, an lvalue of an unconstrained type can be used to access an
827 object of one of its constrained subtypes, e.g. when a function with an
828 unconstrained parameter passed by reference is called on an object and
829 inlined. But, even in the case of a fixed size, type and subtypes are
830 not equivalent enough as to share the same TYPE_CANONICAL, since this
831 would mean that conversions between them are useless, whereas they are
832 not (e.g. type and subtypes can have different modes). So, in the end,
833 they are only guaranteed to have the same alias set. */
834 if (get_alias_set (type1) == get_alias_set (type2))
835 return -1;
836
837 /* The types are known to be not equal. */
838 return 0;
839 }
840
841 /* Return true if TYPE is a composite type (i.e. we may apply one of handled
842 components on it). */
843
844 static bool
845 type_has_components_p (tree type)
846 {
847 return AGGREGATE_TYPE_P (type) || VECTOR_TYPE_P (type)
848 || TREE_CODE (type) == COMPLEX_TYPE;
849 }
850
851 /* Determine if the two component references REF1 and REF2 which are
852 based on access types TYPE1 and TYPE2 and of which at least one is based
853 on an indirect reference may alias.
854 REF1_ALIAS_SET, BASE1_ALIAS_SET, REF2_ALIAS_SET and BASE2_ALIAS_SET
855 are the respective alias sets. */
856
857 static bool
858 aliasing_component_refs_p (tree ref1,
859 alias_set_type ref1_alias_set,
860 alias_set_type base1_alias_set,
861 poly_int64 offset1, poly_int64 max_size1,
862 tree ref2,
863 alias_set_type ref2_alias_set,
864 alias_set_type base2_alias_set,
865 poly_int64 offset2, poly_int64 max_size2)
866 {
867 /* If one reference is a component references through pointers try to find a
868 common base and apply offset based disambiguation. This handles
869 for example
870 struct A { int i; int j; } *q;
871 struct B { struct A a; int k; } *p;
872 disambiguating q->i and p->a.j. */
873 tree base1, base2;
874 tree type1, type2;
875 int same_p1 = 0, same_p2 = 0;
876 bool maybe_match = false;
877 tree end_struct_ref1 = NULL, end_struct_ref2 = NULL;
878
879 /* Choose bases and base types to search for. */
880 base1 = ref1;
881 while (handled_component_p (base1))
882 {
883 /* Generally access paths are monotous in the size of object. The
884 exception are trailing arrays of structures. I.e.
885 struct a {int array[0];};
886 or
887 struct a {int array1[0]; int array[];};
888 Such struct has size 0 but accesses to a.array may have non-zero size.
889 In this case the size of TREE_TYPE (base1) is smaller than
890 size of TREE_TYPE (TREE_OPERNAD (base1, 0)).
891
892 Because we compare sizes of arrays just by sizes of their elements,
893 we only need to care about zero sized array fields here. */
894 if (TREE_CODE (base1) == COMPONENT_REF
895 && TREE_CODE (TREE_TYPE (TREE_OPERAND (base1, 1))) == ARRAY_TYPE
896 && (!TYPE_SIZE (TREE_TYPE (TREE_OPERAND (base1, 1)))
897 || integer_zerop (TYPE_SIZE (TREE_TYPE (TREE_OPERAND (base1, 1)))))
898 && array_at_struct_end_p (base1))
899 {
900 gcc_checking_assert (!end_struct_ref1);
901 end_struct_ref1 = base1;
902 }
903 if (TREE_CODE (base1) == VIEW_CONVERT_EXPR
904 || TREE_CODE (base1) == BIT_FIELD_REF)
905 ref1 = TREE_OPERAND (base1, 0);
906 base1 = TREE_OPERAND (base1, 0);
907 }
908 type1 = TREE_TYPE (base1);
909 base2 = ref2;
910 while (handled_component_p (base2))
911 {
912 if (TREE_CODE (base2) == COMPONENT_REF
913 && TREE_CODE (TREE_TYPE (TREE_OPERAND (base2, 1))) == ARRAY_TYPE
914 && (!TYPE_SIZE (TREE_TYPE (TREE_OPERAND (base2, 1)))
915 || integer_zerop (TYPE_SIZE (TREE_TYPE (TREE_OPERAND (base2, 1)))))
916 && array_at_struct_end_p (base2))
917 {
918 gcc_checking_assert (!end_struct_ref2);
919 end_struct_ref2 = base2;
920 }
921 if (TREE_CODE (base2) == VIEW_CONVERT_EXPR
922 || TREE_CODE (base2) == BIT_FIELD_REF)
923 ref2 = TREE_OPERAND (base2, 0);
924 base2 = TREE_OPERAND (base2, 0);
925 }
926 type2 = TREE_TYPE (base2);
927
928 /* Now search for the type1 in the access path of ref2. This
929 would be a common base for doing offset based disambiguation on.
930 This however only makes sense if type2 is big enough to hold type1. */
931 int cmp_outer = compare_type_sizes (type2, type1);
932
933 /* If type2 is big enough to contain type1 walk its access path.
934 We also need to care of arrays at the end of structs that may extend
935 beyond the end of structure. */
936 if (cmp_outer >= 0
937 || (end_struct_ref2
938 && compare_type_sizes (TREE_TYPE (end_struct_ref2), type1) >= 0))
939 {
940 tree ref = ref2;
941 while (true)
942 {
943 /* We walk from inner type to the outer types. If type we see is
944 already too large to be part of type1, terminate the search. */
945 int cmp = compare_type_sizes (type1, TREE_TYPE (ref));
946
947 if (cmp < 0
948 && (!end_struct_ref1
949 || compare_type_sizes (TREE_TYPE (end_struct_ref1),
950 TREE_TYPE (ref)) < 0))
951 break;
952 /* If types may be of same size, see if we can decide about their
953 equality. */
954 if (cmp == 0)
955 {
956 same_p2 = same_type_for_tbaa (TREE_TYPE (ref), type1);
957 if (same_p2 == 1)
958 break;
959 /* In case we can't decide whether types are same try to
960 continue looking for the exact match.
961 Remember however that we possibly saw a match
962 to bypass the access path continuations tests we do later. */
963 if (same_p2 == -1)
964 maybe_match = true;
965 }
966 if (!handled_component_p (ref))
967 break;
968 ref = TREE_OPERAND (ref, 0);
969 }
970 if (same_p2 == 1)
971 {
972 poly_int64 offadj, sztmp, msztmp;
973 bool reverse;
974
975 /* We assume that arrays can overlap by multiple of their elements
976 size as tested in gcc.dg/torture/alias-2.c.
977 This partial overlap happen only when both arrays are bases of
978 the access and not contained within another component ref.
979 To be safe we also assume partial overlap for VLAs. */
980 if (TREE_CODE (TREE_TYPE (base1)) == ARRAY_TYPE
981 && (!TYPE_SIZE (TREE_TYPE (base1))
982 || TREE_CODE (TYPE_SIZE (TREE_TYPE (base1))) != INTEGER_CST
983 || ref == base2))
984 {
985 ++alias_stats.aliasing_component_refs_p_may_alias;
986 return true;
987 }
988
989 get_ref_base_and_extent (ref, &offadj, &sztmp, &msztmp, &reverse);
990 offset2 -= offadj;
991 get_ref_base_and_extent (base1, &offadj, &sztmp, &msztmp, &reverse);
992 offset1 -= offadj;
993 if (ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
994 {
995 ++alias_stats.aliasing_component_refs_p_may_alias;
996 return true;
997 }
998 else
999 {
1000 ++alias_stats.aliasing_component_refs_p_no_alias;
1001 return false;
1002 }
1003 }
1004 }
1005
1006 /* If we didn't find a common base, try the other way around. */
1007 if (cmp_outer <= 0
1008 || (end_struct_ref1
1009 && compare_type_sizes (TREE_TYPE (end_struct_ref1), type1) <= 0))
1010 {
1011 tree ref = ref1;
1012 while (true)
1013 {
1014 int cmp = compare_type_sizes (type2, TREE_TYPE (ref));
1015 if (cmp < 0
1016 && (!end_struct_ref2
1017 || compare_type_sizes (TREE_TYPE (end_struct_ref2),
1018 TREE_TYPE (ref)) < 0))
1019 break;
1020 /* If types may be of same size, see if we can decide about their
1021 equality. */
1022 if (cmp == 0)
1023 {
1024 same_p1 = same_type_for_tbaa (TREE_TYPE (ref), type2);
1025 if (same_p1 == 1)
1026 break;
1027 if (same_p1 == -1)
1028 maybe_match = true;
1029 }
1030 if (!handled_component_p (ref))
1031 break;
1032 ref = TREE_OPERAND (ref, 0);
1033 }
1034 if (same_p1 == 1)
1035 {
1036 poly_int64 offadj, sztmp, msztmp;
1037 bool reverse;
1038
1039 if (TREE_CODE (TREE_TYPE (base2)) == ARRAY_TYPE
1040 && (!TYPE_SIZE (TREE_TYPE (base2))
1041 || TREE_CODE (TYPE_SIZE (TREE_TYPE (base2))) != INTEGER_CST
1042 || ref == base1))
1043 {
1044 ++alias_stats.aliasing_component_refs_p_may_alias;
1045 return true;
1046 }
1047
1048 get_ref_base_and_extent (ref, &offadj, &sztmp, &msztmp, &reverse);
1049 offset1 -= offadj;
1050 get_ref_base_and_extent (base2, &offadj, &sztmp, &msztmp, &reverse);
1051 offset2 -= offadj;
1052 if (ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
1053 {
1054 ++alias_stats.aliasing_component_refs_p_may_alias;
1055 return true;
1056 }
1057 else
1058 {
1059 ++alias_stats.aliasing_component_refs_p_no_alias;
1060 return false;
1061 }
1062 }
1063 }
1064
1065 /* In the following code we make an assumption that the types in access
1066 paths do not overlap and thus accesses alias only if one path can be
1067 continuation of another. If we was not able to decide about equivalence,
1068 we need to give up. */
1069 if (maybe_match)
1070 return true;
1071
1072 /* If we have two type access paths B1.path1 and B2.path2 they may
1073 only alias if either B1 is in B2.path2 or B2 is in B1.path1.
1074 But we can still have a path that goes B1.path1...B2.path2 with
1075 a part that we do not see. So we can only disambiguate now
1076 if there is no B2 in the tail of path1 and no B1 on the
1077 tail of path2. */
1078 if (compare_type_sizes (TREE_TYPE (ref2), type1) >= 0
1079 && (!end_struct_ref1
1080 || compare_type_sizes (TREE_TYPE (ref2),
1081 TREE_TYPE (end_struct_ref1)) >= 0)
1082 && type_has_components_p (TREE_TYPE (ref2))
1083 && (base1_alias_set == ref2_alias_set
1084 || alias_set_subset_of (base1_alias_set, ref2_alias_set)))
1085 {
1086 ++alias_stats.aliasing_component_refs_p_may_alias;
1087 return true;
1088 }
1089 /* If this is ptr vs. decl then we know there is no ptr ... decl path. */
1090 if (compare_type_sizes (TREE_TYPE (ref1), type2) >= 0
1091 && (!end_struct_ref2
1092 || compare_type_sizes (TREE_TYPE (ref1),
1093 TREE_TYPE (end_struct_ref2)) >= 0)
1094 && type_has_components_p (TREE_TYPE (ref1))
1095 && (base2_alias_set == ref1_alias_set
1096 || alias_set_subset_of (base2_alias_set, ref1_alias_set)))
1097 {
1098 ++alias_stats.aliasing_component_refs_p_may_alias;
1099 return true;
1100 }
1101 ++alias_stats.aliasing_component_refs_p_no_alias;
1102 return false;
1103 }
1104
1105 /* Return true if we can determine that component references REF1 and REF2,
1106 that are within a common DECL, cannot overlap. */
1107
1108 static bool
1109 nonoverlapping_component_refs_of_decl_p (tree ref1, tree ref2)
1110 {
1111 auto_vec<tree, 16> component_refs1;
1112 auto_vec<tree, 16> component_refs2;
1113
1114 /* Create the stack of handled components for REF1. */
1115 while (handled_component_p (ref1))
1116 {
1117 component_refs1.safe_push (ref1);
1118 ref1 = TREE_OPERAND (ref1, 0);
1119 }
1120 if (TREE_CODE (ref1) == MEM_REF)
1121 {
1122 if (!integer_zerop (TREE_OPERAND (ref1, 1)))
1123 {
1124 ++alias_stats.nonoverlapping_component_refs_of_decl_p_may_alias;
1125 return false;
1126 }
1127 ref1 = TREE_OPERAND (TREE_OPERAND (ref1, 0), 0);
1128 }
1129
1130 /* Create the stack of handled components for REF2. */
1131 while (handled_component_p (ref2))
1132 {
1133 component_refs2.safe_push (ref2);
1134 ref2 = TREE_OPERAND (ref2, 0);
1135 }
1136 if (TREE_CODE (ref2) == MEM_REF)
1137 {
1138 if (!integer_zerop (TREE_OPERAND (ref2, 1)))
1139 {
1140 ++alias_stats.nonoverlapping_component_refs_of_decl_p_may_alias;
1141 return false;
1142 }
1143 ref2 = TREE_OPERAND (TREE_OPERAND (ref2, 0), 0);
1144 }
1145
1146 /* Bases must be either same or uncomparable. */
1147 gcc_checking_assert (ref1 == ref2
1148 || (DECL_P (ref1) && DECL_P (ref2)
1149 && compare_base_decls (ref1, ref2) != 0));
1150
1151 /* Pop the stacks in parallel and examine the COMPONENT_REFs of the same
1152 rank. This is sufficient because we start from the same DECL and you
1153 cannot reference several fields at a time with COMPONENT_REFs (unlike
1154 with ARRAY_RANGE_REFs for arrays) so you always need the same number
1155 of them to access a sub-component, unless you're in a union, in which
1156 case the return value will precisely be false. */
1157 while (true)
1158 {
1159 do
1160 {
1161 if (component_refs1.is_empty ())
1162 {
1163 ++alias_stats.nonoverlapping_component_refs_of_decl_p_may_alias;
1164 return false;
1165 }
1166 ref1 = component_refs1.pop ();
1167 }
1168 while (!RECORD_OR_UNION_TYPE_P (TREE_TYPE (TREE_OPERAND (ref1, 0))));
1169
1170 do
1171 {
1172 if (component_refs2.is_empty ())
1173 {
1174 ++alias_stats.nonoverlapping_component_refs_of_decl_p_may_alias;
1175 return false;
1176 }
1177 ref2 = component_refs2.pop ();
1178 }
1179 while (!RECORD_OR_UNION_TYPE_P (TREE_TYPE (TREE_OPERAND (ref2, 0))));
1180
1181 /* Beware of BIT_FIELD_REF. */
1182 if (TREE_CODE (ref1) != COMPONENT_REF
1183 || TREE_CODE (ref2) != COMPONENT_REF)
1184 {
1185 ++alias_stats.nonoverlapping_component_refs_of_decl_p_may_alias;
1186 return false;
1187 }
1188
1189 tree field1 = TREE_OPERAND (ref1, 1);
1190 tree field2 = TREE_OPERAND (ref2, 1);
1191
1192 /* ??? We cannot simply use the type of operand #0 of the refs here
1193 as the Fortran compiler smuggles type punning into COMPONENT_REFs
1194 for common blocks instead of using unions like everyone else. */
1195 tree type1 = DECL_CONTEXT (field1);
1196 tree type2 = DECL_CONTEXT (field2);
1197
1198 /* We cannot disambiguate fields in a union or qualified union. */
1199 if (type1 != type2 || TREE_CODE (type1) != RECORD_TYPE)
1200 {
1201 ++alias_stats.nonoverlapping_component_refs_of_decl_p_may_alias;
1202 return false;
1203 }
1204
1205 if (field1 != field2)
1206 {
1207 /* A field and its representative need to be considered the
1208 same. */
1209 if (DECL_BIT_FIELD_REPRESENTATIVE (field1) == field2
1210 || DECL_BIT_FIELD_REPRESENTATIVE (field2) == field1)
1211 {
1212 ++alias_stats.nonoverlapping_component_refs_of_decl_p_may_alias;
1213 return false;
1214 }
1215 /* Different fields of the same record type cannot overlap.
1216 ??? Bitfields can overlap at RTL level so punt on them. */
1217 if (DECL_BIT_FIELD (field1) && DECL_BIT_FIELD (field2))
1218 {
1219 ++alias_stats.nonoverlapping_component_refs_of_decl_p_may_alias;
1220 return false;
1221 }
1222 ++alias_stats.nonoverlapping_component_refs_of_decl_p_no_alias;
1223 return true;
1224 }
1225 }
1226
1227 ++alias_stats.nonoverlapping_component_refs_of_decl_p_may_alias;
1228 return false;
1229 }
1230
1231 /* qsort compare function to sort FIELD_DECLs after their
1232 DECL_FIELD_CONTEXT TYPE_UID. */
1233
1234 static inline int
1235 ncr_compar (const void *field1_, const void *field2_)
1236 {
1237 const_tree field1 = *(const_tree *) const_cast <void *>(field1_);
1238 const_tree field2 = *(const_tree *) const_cast <void *>(field2_);
1239 unsigned int uid1 = TYPE_UID (DECL_FIELD_CONTEXT (field1));
1240 unsigned int uid2 = TYPE_UID (DECL_FIELD_CONTEXT (field2));
1241 if (uid1 < uid2)
1242 return -1;
1243 else if (uid1 > uid2)
1244 return 1;
1245 return 0;
1246 }
1247
1248 /* Return true if we can determine that the fields referenced cannot
1249 overlap for any pair of objects. */
1250
1251 static bool
1252 nonoverlapping_component_refs_p (const_tree x, const_tree y)
1253 {
1254 if (!flag_strict_aliasing
1255 || !x || !y
1256 || !handled_component_p (x)
1257 || !handled_component_p (y))
1258 {
1259 ++alias_stats.nonoverlapping_component_refs_p_may_alias;
1260 return false;
1261 }
1262
1263 auto_vec<const_tree, 16> fieldsx;
1264 while (handled_component_p (x))
1265 {
1266 if (TREE_CODE (x) == COMPONENT_REF)
1267 {
1268 tree field = TREE_OPERAND (x, 1);
1269 tree type = DECL_FIELD_CONTEXT (field);
1270 if (TREE_CODE (type) == RECORD_TYPE)
1271 fieldsx.safe_push (field);
1272 }
1273 else if (TREE_CODE (x) == VIEW_CONVERT_EXPR
1274 || TREE_CODE (x) == BIT_FIELD_REF)
1275 fieldsx.truncate (0);
1276 x = TREE_OPERAND (x, 0);
1277 }
1278 if (fieldsx.length () == 0)
1279 return false;
1280 auto_vec<const_tree, 16> fieldsy;
1281 while (handled_component_p (y))
1282 {
1283 if (TREE_CODE (y) == COMPONENT_REF)
1284 {
1285 tree field = TREE_OPERAND (y, 1);
1286 tree type = DECL_FIELD_CONTEXT (field);
1287 if (TREE_CODE (type) == RECORD_TYPE)
1288 fieldsy.safe_push (TREE_OPERAND (y, 1));
1289 }
1290 else if (TREE_CODE (y) == VIEW_CONVERT_EXPR
1291 || TREE_CODE (y) == BIT_FIELD_REF)
1292 fieldsy.truncate (0);
1293 y = TREE_OPERAND (y, 0);
1294 }
1295 if (fieldsy.length () == 0)
1296 {
1297 ++alias_stats.nonoverlapping_component_refs_p_may_alias;
1298 return false;
1299 }
1300
1301 /* Most common case first. */
1302 if (fieldsx.length () == 1
1303 && fieldsy.length () == 1)
1304 {
1305 if ((DECL_FIELD_CONTEXT (fieldsx[0])
1306 == DECL_FIELD_CONTEXT (fieldsy[0]))
1307 && fieldsx[0] != fieldsy[0]
1308 && !(DECL_BIT_FIELD (fieldsx[0]) && DECL_BIT_FIELD (fieldsy[0])))
1309 {
1310 ++alias_stats.nonoverlapping_component_refs_p_no_alias;
1311 return true;
1312 }
1313 else
1314 {
1315 ++alias_stats.nonoverlapping_component_refs_p_may_alias;
1316 return false;
1317 }
1318 }
1319
1320 if (fieldsx.length () == 2)
1321 {
1322 if (ncr_compar (&fieldsx[0], &fieldsx[1]) == 1)
1323 std::swap (fieldsx[0], fieldsx[1]);
1324 }
1325 else
1326 fieldsx.qsort (ncr_compar);
1327
1328 if (fieldsy.length () == 2)
1329 {
1330 if (ncr_compar (&fieldsy[0], &fieldsy[1]) == 1)
1331 std::swap (fieldsy[0], fieldsy[1]);
1332 }
1333 else
1334 fieldsy.qsort (ncr_compar);
1335
1336 unsigned i = 0, j = 0;
1337 do
1338 {
1339 const_tree fieldx = fieldsx[i];
1340 const_tree fieldy = fieldsy[j];
1341 tree typex = DECL_FIELD_CONTEXT (fieldx);
1342 tree typey = DECL_FIELD_CONTEXT (fieldy);
1343 if (typex == typey)
1344 {
1345 /* We're left with accessing different fields of a structure,
1346 no possible overlap. */
1347 if (fieldx != fieldy)
1348 {
1349 /* A field and its representative need to be considered the
1350 same. */
1351 if (DECL_BIT_FIELD_REPRESENTATIVE (fieldx) == fieldy
1352 || DECL_BIT_FIELD_REPRESENTATIVE (fieldy) == fieldx)
1353 ;
1354 /* Different fields of the same record type cannot overlap.
1355 ??? Bitfields can overlap at RTL level so punt on them. */
1356 else if (DECL_BIT_FIELD (fieldx) && DECL_BIT_FIELD (fieldy))
1357 ;
1358 else
1359 {
1360 ++alias_stats.nonoverlapping_component_refs_p_no_alias;
1361 return true;
1362 }
1363 }
1364 }
1365 if (TYPE_UID (typex) < TYPE_UID (typey))
1366 {
1367 i++;
1368 if (i == fieldsx.length ())
1369 break;
1370 }
1371 else
1372 {
1373 j++;
1374 if (j == fieldsy.length ())
1375 break;
1376 }
1377 }
1378 while (1);
1379
1380 ++alias_stats.nonoverlapping_component_refs_p_may_alias;
1381 return false;
1382 }
1383
1384
1385 /* Return true if two memory references based on the variables BASE1
1386 and BASE2 constrained to [OFFSET1, OFFSET1 + MAX_SIZE1) and
1387 [OFFSET2, OFFSET2 + MAX_SIZE2) may alias. REF1 and REF2
1388 if non-NULL are the complete memory reference trees. */
1389
1390 static bool
1391 decl_refs_may_alias_p (tree ref1, tree base1,
1392 poly_int64 offset1, poly_int64 max_size1,
1393 tree ref2, tree base2,
1394 poly_int64 offset2, poly_int64 max_size2)
1395 {
1396 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
1397
1398 /* If both references are based on different variables, they cannot alias. */
1399 if (compare_base_decls (base1, base2) == 0)
1400 return false;
1401
1402 /* If both references are based on the same variable, they cannot alias if
1403 the accesses do not overlap. */
1404 if (!ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
1405 return false;
1406
1407 /* For components with variable position, the above test isn't sufficient,
1408 so we disambiguate component references manually. */
1409 if (ref1 && ref2
1410 && handled_component_p (ref1) && handled_component_p (ref2)
1411 && nonoverlapping_component_refs_of_decl_p (ref1, ref2))
1412 return false;
1413
1414 return true;
1415 }
1416
1417 /* Return true if an indirect reference based on *PTR1 constrained
1418 to [OFFSET1, OFFSET1 + MAX_SIZE1) may alias a variable based on BASE2
1419 constrained to [OFFSET2, OFFSET2 + MAX_SIZE2). *PTR1 and BASE2 have
1420 the alias sets BASE1_ALIAS_SET and BASE2_ALIAS_SET which can be -1
1421 in which case they are computed on-demand. REF1 and REF2
1422 if non-NULL are the complete memory reference trees. */
1423
1424 static bool
1425 indirect_ref_may_alias_decl_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
1426 poly_int64 offset1, poly_int64 max_size1,
1427 alias_set_type ref1_alias_set,
1428 alias_set_type base1_alias_set,
1429 tree ref2 ATTRIBUTE_UNUSED, tree base2,
1430 poly_int64 offset2, poly_int64 max_size2,
1431 alias_set_type ref2_alias_set,
1432 alias_set_type base2_alias_set, bool tbaa_p)
1433 {
1434 tree ptr1;
1435 tree ptrtype1, dbase2;
1436
1437 gcc_checking_assert ((TREE_CODE (base1) == MEM_REF
1438 || TREE_CODE (base1) == TARGET_MEM_REF)
1439 && DECL_P (base2));
1440
1441 ptr1 = TREE_OPERAND (base1, 0);
1442 poly_offset_int moff = mem_ref_offset (base1) << LOG2_BITS_PER_UNIT;
1443
1444 /* If only one reference is based on a variable, they cannot alias if
1445 the pointer access is beyond the extent of the variable access.
1446 (the pointer base cannot validly point to an offset less than zero
1447 of the variable).
1448 ??? IVOPTs creates bases that do not honor this restriction,
1449 so do not apply this optimization for TARGET_MEM_REFs. */
1450 if (TREE_CODE (base1) != TARGET_MEM_REF
1451 && !ranges_maybe_overlap_p (offset1 + moff, -1, offset2, max_size2))
1452 return false;
1453 /* They also cannot alias if the pointer may not point to the decl. */
1454 if (!ptr_deref_may_alias_decl_p (ptr1, base2))
1455 return false;
1456
1457 /* Disambiguations that rely on strict aliasing rules follow. */
1458 if (!flag_strict_aliasing || !tbaa_p)
1459 return true;
1460
1461 /* If the alias set for a pointer access is zero all bets are off. */
1462 if (base1_alias_set == 0 || base2_alias_set == 0)
1463 return true;
1464
1465 /* When we are trying to disambiguate an access with a pointer dereference
1466 as base versus one with a decl as base we can use both the size
1467 of the decl and its dynamic type for extra disambiguation.
1468 ??? We do not know anything about the dynamic type of the decl
1469 other than that its alias-set contains base2_alias_set as a subset
1470 which does not help us here. */
1471 /* As we know nothing useful about the dynamic type of the decl just
1472 use the usual conflict check rather than a subset test.
1473 ??? We could introduce -fvery-strict-aliasing when the language
1474 does not allow decls to have a dynamic type that differs from their
1475 static type. Then we can check
1476 !alias_set_subset_of (base1_alias_set, base2_alias_set) instead. */
1477 if (base1_alias_set != base2_alias_set
1478 && !alias_sets_conflict_p (base1_alias_set, base2_alias_set))
1479 return false;
1480
1481 ptrtype1 = TREE_TYPE (TREE_OPERAND (base1, 1));
1482
1483 /* If the size of the access relevant for TBAA through the pointer
1484 is bigger than the size of the decl we can't possibly access the
1485 decl via that pointer. */
1486 if (/* ??? This in turn may run afoul when a decl of type T which is
1487 a member of union type U is accessed through a pointer to
1488 type U and sizeof T is smaller than sizeof U. */
1489 TREE_CODE (TREE_TYPE (ptrtype1)) != UNION_TYPE
1490 && TREE_CODE (TREE_TYPE (ptrtype1)) != QUAL_UNION_TYPE
1491 && compare_sizes (DECL_SIZE (base2),
1492 TYPE_SIZE (TREE_TYPE (ptrtype1))) < 0)
1493 return false;
1494
1495 if (!ref2)
1496 return true;
1497
1498 /* If the decl is accessed via a MEM_REF, reconstruct the base
1499 we can use for TBAA and an appropriately adjusted offset. */
1500 dbase2 = ref2;
1501 while (handled_component_p (dbase2))
1502 dbase2 = TREE_OPERAND (dbase2, 0);
1503 poly_int64 doffset1 = offset1;
1504 poly_offset_int doffset2 = offset2;
1505 if (TREE_CODE (dbase2) == MEM_REF
1506 || TREE_CODE (dbase2) == TARGET_MEM_REF)
1507 {
1508 doffset2 -= mem_ref_offset (dbase2) << LOG2_BITS_PER_UNIT;
1509 tree ptrtype2 = TREE_TYPE (TREE_OPERAND (dbase2, 1));
1510 /* If second reference is view-converted, give up now. */
1511 if (same_type_for_tbaa (TREE_TYPE (dbase2), TREE_TYPE (ptrtype2)) != 1)
1512 return true;
1513 }
1514
1515 /* If first reference is view-converted, give up now. */
1516 if (same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) != 1)
1517 return true;
1518
1519 /* If both references are through the same type, they do not alias
1520 if the accesses do not overlap. This does extra disambiguation
1521 for mixed/pointer accesses but requires strict aliasing.
1522 For MEM_REFs we require that the component-ref offset we computed
1523 is relative to the start of the type which we ensure by
1524 comparing rvalue and access type and disregarding the constant
1525 pointer offset.
1526
1527 But avoid treating variable length arrays as "objects", instead assume they
1528 can overlap by an exact multiple of their element size.
1529 See gcc.dg/torture/alias-2.c. */
1530 if (((TREE_CODE (base1) != TARGET_MEM_REF
1531 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
1532 && (TREE_CODE (dbase2) != TARGET_MEM_REF
1533 || (!TMR_INDEX (dbase2) && !TMR_INDEX2 (dbase2))))
1534 && same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (dbase2)) == 1
1535 && (TREE_CODE (TREE_TYPE (base1)) != ARRAY_TYPE
1536 || (TYPE_SIZE (TREE_TYPE (base1))
1537 && TREE_CODE (TYPE_SIZE (TREE_TYPE (base1))) == INTEGER_CST)))
1538 return ranges_maybe_overlap_p (doffset1, max_size1, doffset2, max_size2);
1539
1540 if (ref1 && ref2
1541 && nonoverlapping_component_refs_p (ref1, ref2))
1542 return false;
1543
1544 /* Do access-path based disambiguation. */
1545 if (ref1 && ref2
1546 && (handled_component_p (ref1) || handled_component_p (ref2)))
1547 return aliasing_component_refs_p (ref1,
1548 ref1_alias_set, base1_alias_set,
1549 offset1, max_size1,
1550 ref2,
1551 ref2_alias_set, base2_alias_set,
1552 offset2, max_size2);
1553
1554 return true;
1555 }
1556
1557 /* Return true if two indirect references based on *PTR1
1558 and *PTR2 constrained to [OFFSET1, OFFSET1 + MAX_SIZE1) and
1559 [OFFSET2, OFFSET2 + MAX_SIZE2) may alias. *PTR1 and *PTR2 have
1560 the alias sets BASE1_ALIAS_SET and BASE2_ALIAS_SET which can be -1
1561 in which case they are computed on-demand. REF1 and REF2
1562 if non-NULL are the complete memory reference trees. */
1563
1564 static bool
1565 indirect_refs_may_alias_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
1566 poly_int64 offset1, poly_int64 max_size1,
1567 alias_set_type ref1_alias_set,
1568 alias_set_type base1_alias_set,
1569 tree ref2 ATTRIBUTE_UNUSED, tree base2,
1570 poly_int64 offset2, poly_int64 max_size2,
1571 alias_set_type ref2_alias_set,
1572 alias_set_type base2_alias_set, bool tbaa_p)
1573 {
1574 tree ptr1;
1575 tree ptr2;
1576 tree ptrtype1, ptrtype2;
1577
1578 gcc_checking_assert ((TREE_CODE (base1) == MEM_REF
1579 || TREE_CODE (base1) == TARGET_MEM_REF)
1580 && (TREE_CODE (base2) == MEM_REF
1581 || TREE_CODE (base2) == TARGET_MEM_REF));
1582
1583 ptr1 = TREE_OPERAND (base1, 0);
1584 ptr2 = TREE_OPERAND (base2, 0);
1585
1586 /* If both bases are based on pointers they cannot alias if they may not
1587 point to the same memory object or if they point to the same object
1588 and the accesses do not overlap. */
1589 if ((!cfun || gimple_in_ssa_p (cfun))
1590 && operand_equal_p (ptr1, ptr2, 0)
1591 && (((TREE_CODE (base1) != TARGET_MEM_REF
1592 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
1593 && (TREE_CODE (base2) != TARGET_MEM_REF
1594 || (!TMR_INDEX (base2) && !TMR_INDEX2 (base2))))
1595 || (TREE_CODE (base1) == TARGET_MEM_REF
1596 && TREE_CODE (base2) == TARGET_MEM_REF
1597 && (TMR_STEP (base1) == TMR_STEP (base2)
1598 || (TMR_STEP (base1) && TMR_STEP (base2)
1599 && operand_equal_p (TMR_STEP (base1),
1600 TMR_STEP (base2), 0)))
1601 && (TMR_INDEX (base1) == TMR_INDEX (base2)
1602 || (TMR_INDEX (base1) && TMR_INDEX (base2)
1603 && operand_equal_p (TMR_INDEX (base1),
1604 TMR_INDEX (base2), 0)))
1605 && (TMR_INDEX2 (base1) == TMR_INDEX2 (base2)
1606 || (TMR_INDEX2 (base1) && TMR_INDEX2 (base2)
1607 && operand_equal_p (TMR_INDEX2 (base1),
1608 TMR_INDEX2 (base2), 0))))))
1609 {
1610 poly_offset_int moff1 = mem_ref_offset (base1) << LOG2_BITS_PER_UNIT;
1611 poly_offset_int moff2 = mem_ref_offset (base2) << LOG2_BITS_PER_UNIT;
1612 return ranges_maybe_overlap_p (offset1 + moff1, max_size1,
1613 offset2 + moff2, max_size2);
1614 }
1615 if (!ptr_derefs_may_alias_p (ptr1, ptr2))
1616 return false;
1617
1618 /* Disambiguations that rely on strict aliasing rules follow. */
1619 if (!flag_strict_aliasing || !tbaa_p)
1620 return true;
1621
1622 ptrtype1 = TREE_TYPE (TREE_OPERAND (base1, 1));
1623 ptrtype2 = TREE_TYPE (TREE_OPERAND (base2, 1));
1624
1625 /* If the alias set for a pointer access is zero all bets are off. */
1626 if (base1_alias_set == 0
1627 || base2_alias_set == 0)
1628 return true;
1629
1630 /* Do type-based disambiguation. */
1631 if (base1_alias_set != base2_alias_set
1632 && !alias_sets_conflict_p (base1_alias_set, base2_alias_set))
1633 return false;
1634
1635 /* If either reference is view-converted, give up now. */
1636 if (same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) != 1
1637 || same_type_for_tbaa (TREE_TYPE (base2), TREE_TYPE (ptrtype2)) != 1)
1638 return true;
1639
1640 /* If both references are through the same type, they do not alias
1641 if the accesses do not overlap. This does extra disambiguation
1642 for mixed/pointer accesses but requires strict aliasing. */
1643 if ((TREE_CODE (base1) != TARGET_MEM_REF
1644 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
1645 && (TREE_CODE (base2) != TARGET_MEM_REF
1646 || (!TMR_INDEX (base2) && !TMR_INDEX2 (base2)))
1647 && same_type_for_tbaa (TREE_TYPE (ptrtype1),
1648 TREE_TYPE (ptrtype2)) == 1
1649 /* But avoid treating arrays as "objects", instead assume they
1650 can overlap by an exact multiple of their element size.
1651 See gcc.dg/torture/alias-2.c. */
1652 && TREE_CODE (TREE_TYPE (ptrtype1)) != ARRAY_TYPE)
1653 return ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2);
1654
1655 if (ref1 && ref2
1656 && nonoverlapping_component_refs_p (ref1, ref2))
1657 return false;
1658
1659 /* Do access-path based disambiguation. */
1660 if (ref1 && ref2
1661 && (handled_component_p (ref1) || handled_component_p (ref2)))
1662 return aliasing_component_refs_p (ref1,
1663 ref1_alias_set, base1_alias_set,
1664 offset1, max_size1,
1665 ref2,
1666 ref2_alias_set, base2_alias_set,
1667 offset2, max_size2);
1668
1669 return true;
1670 }
1671
1672 /* Return true, if the two memory references REF1 and REF2 may alias. */
1673
1674 static bool
1675 refs_may_alias_p_2 (ao_ref *ref1, ao_ref *ref2, bool tbaa_p)
1676 {
1677 tree base1, base2;
1678 poly_int64 offset1 = 0, offset2 = 0;
1679 poly_int64 max_size1 = -1, max_size2 = -1;
1680 bool var1_p, var2_p, ind1_p, ind2_p;
1681
1682 gcc_checking_assert ((!ref1->ref
1683 || TREE_CODE (ref1->ref) == SSA_NAME
1684 || DECL_P (ref1->ref)
1685 || TREE_CODE (ref1->ref) == STRING_CST
1686 || handled_component_p (ref1->ref)
1687 || TREE_CODE (ref1->ref) == MEM_REF
1688 || TREE_CODE (ref1->ref) == TARGET_MEM_REF)
1689 && (!ref2->ref
1690 || TREE_CODE (ref2->ref) == SSA_NAME
1691 || DECL_P (ref2->ref)
1692 || TREE_CODE (ref2->ref) == STRING_CST
1693 || handled_component_p (ref2->ref)
1694 || TREE_CODE (ref2->ref) == MEM_REF
1695 || TREE_CODE (ref2->ref) == TARGET_MEM_REF));
1696
1697 /* Decompose the references into their base objects and the access. */
1698 base1 = ao_ref_base (ref1);
1699 offset1 = ref1->offset;
1700 max_size1 = ref1->max_size;
1701 base2 = ao_ref_base (ref2);
1702 offset2 = ref2->offset;
1703 max_size2 = ref2->max_size;
1704
1705 /* We can end up with registers or constants as bases for example from
1706 *D.1663_44 = VIEW_CONVERT_EXPR<struct DB_LSN>(__tmp$B0F64_59);
1707 which is seen as a struct copy. */
1708 if (TREE_CODE (base1) == SSA_NAME
1709 || TREE_CODE (base1) == CONST_DECL
1710 || TREE_CODE (base1) == CONSTRUCTOR
1711 || TREE_CODE (base1) == ADDR_EXPR
1712 || CONSTANT_CLASS_P (base1)
1713 || TREE_CODE (base2) == SSA_NAME
1714 || TREE_CODE (base2) == CONST_DECL
1715 || TREE_CODE (base2) == CONSTRUCTOR
1716 || TREE_CODE (base2) == ADDR_EXPR
1717 || CONSTANT_CLASS_P (base2))
1718 return false;
1719
1720 /* We can end up referring to code via function and label decls.
1721 As we likely do not properly track code aliases conservatively
1722 bail out. */
1723 if (TREE_CODE (base1) == FUNCTION_DECL
1724 || TREE_CODE (base1) == LABEL_DECL
1725 || TREE_CODE (base2) == FUNCTION_DECL
1726 || TREE_CODE (base2) == LABEL_DECL)
1727 return true;
1728
1729 /* Two volatile accesses always conflict. */
1730 if (ref1->volatile_p
1731 && ref2->volatile_p)
1732 return true;
1733
1734 /* Defer to simple offset based disambiguation if we have
1735 references based on two decls. Do this before defering to
1736 TBAA to handle must-alias cases in conformance with the
1737 GCC extension of allowing type-punning through unions. */
1738 var1_p = DECL_P (base1);
1739 var2_p = DECL_P (base2);
1740 if (var1_p && var2_p)
1741 return decl_refs_may_alias_p (ref1->ref, base1, offset1, max_size1,
1742 ref2->ref, base2, offset2, max_size2);
1743
1744 /* Handle restrict based accesses.
1745 ??? ao_ref_base strips inner MEM_REF [&decl], recover from that
1746 here. */
1747 tree rbase1 = base1;
1748 tree rbase2 = base2;
1749 if (var1_p)
1750 {
1751 rbase1 = ref1->ref;
1752 if (rbase1)
1753 while (handled_component_p (rbase1))
1754 rbase1 = TREE_OPERAND (rbase1, 0);
1755 }
1756 if (var2_p)
1757 {
1758 rbase2 = ref2->ref;
1759 if (rbase2)
1760 while (handled_component_p (rbase2))
1761 rbase2 = TREE_OPERAND (rbase2, 0);
1762 }
1763 if (rbase1 && rbase2
1764 && (TREE_CODE (base1) == MEM_REF || TREE_CODE (base1) == TARGET_MEM_REF)
1765 && (TREE_CODE (base2) == MEM_REF || TREE_CODE (base2) == TARGET_MEM_REF)
1766 /* If the accesses are in the same restrict clique... */
1767 && MR_DEPENDENCE_CLIQUE (base1) == MR_DEPENDENCE_CLIQUE (base2)
1768 /* But based on different pointers they do not alias. */
1769 && MR_DEPENDENCE_BASE (base1) != MR_DEPENDENCE_BASE (base2))
1770 return false;
1771
1772 ind1_p = (TREE_CODE (base1) == MEM_REF
1773 || TREE_CODE (base1) == TARGET_MEM_REF);
1774 ind2_p = (TREE_CODE (base2) == MEM_REF
1775 || TREE_CODE (base2) == TARGET_MEM_REF);
1776
1777 /* Canonicalize the pointer-vs-decl case. */
1778 if (ind1_p && var2_p)
1779 {
1780 std::swap (offset1, offset2);
1781 std::swap (max_size1, max_size2);
1782 std::swap (base1, base2);
1783 std::swap (ref1, ref2);
1784 var1_p = true;
1785 ind1_p = false;
1786 var2_p = false;
1787 ind2_p = true;
1788 }
1789
1790 /* First defer to TBAA if possible. */
1791 if (tbaa_p
1792 && flag_strict_aliasing
1793 && !alias_sets_conflict_p (ao_ref_alias_set (ref1),
1794 ao_ref_alias_set (ref2)))
1795 return false;
1796
1797 /* If the reference is based on a pointer that points to memory
1798 that may not be written to then the other reference cannot possibly
1799 clobber it. */
1800 if ((TREE_CODE (TREE_OPERAND (base2, 0)) == SSA_NAME
1801 && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base2, 0)))
1802 || (ind1_p
1803 && TREE_CODE (TREE_OPERAND (base1, 0)) == SSA_NAME
1804 && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base1, 0))))
1805 return false;
1806
1807 /* Dispatch to the pointer-vs-decl or pointer-vs-pointer disambiguators. */
1808 if (var1_p && ind2_p)
1809 return indirect_ref_may_alias_decl_p (ref2->ref, base2,
1810 offset2, max_size2,
1811 ao_ref_alias_set (ref2),
1812 ao_ref_base_alias_set (ref2),
1813 ref1->ref, base1,
1814 offset1, max_size1,
1815 ao_ref_alias_set (ref1),
1816 ao_ref_base_alias_set (ref1),
1817 tbaa_p);
1818 else if (ind1_p && ind2_p)
1819 return indirect_refs_may_alias_p (ref1->ref, base1,
1820 offset1, max_size1,
1821 ao_ref_alias_set (ref1),
1822 ao_ref_base_alias_set (ref1),
1823 ref2->ref, base2,
1824 offset2, max_size2,
1825 ao_ref_alias_set (ref2),
1826 ao_ref_base_alias_set (ref2),
1827 tbaa_p);
1828
1829 gcc_unreachable ();
1830 }
1831
1832 /* Return true, if the two memory references REF1 and REF2 may alias
1833 and update statistics. */
1834
1835 bool
1836 refs_may_alias_p_1 (ao_ref *ref1, ao_ref *ref2, bool tbaa_p)
1837 {
1838 bool res = refs_may_alias_p_2 (ref1, ref2, tbaa_p);
1839 if (res)
1840 ++alias_stats.refs_may_alias_p_may_alias;
1841 else
1842 ++alias_stats.refs_may_alias_p_no_alias;
1843 return res;
1844 }
1845
1846 static bool
1847 refs_may_alias_p (tree ref1, ao_ref *ref2, bool tbaa_p)
1848 {
1849 ao_ref r1;
1850 ao_ref_init (&r1, ref1);
1851 return refs_may_alias_p_1 (&r1, ref2, tbaa_p);
1852 }
1853
1854 bool
1855 refs_may_alias_p (tree ref1, tree ref2, bool tbaa_p)
1856 {
1857 ao_ref r1, r2;
1858 ao_ref_init (&r1, ref1);
1859 ao_ref_init (&r2, ref2);
1860 return refs_may_alias_p_1 (&r1, &r2, tbaa_p);
1861 }
1862
1863 /* Returns true if there is a anti-dependence for the STORE that
1864 executes after the LOAD. */
1865
1866 bool
1867 refs_anti_dependent_p (tree load, tree store)
1868 {
1869 ao_ref r1, r2;
1870 ao_ref_init (&r1, load);
1871 ao_ref_init (&r2, store);
1872 return refs_may_alias_p_1 (&r1, &r2, false);
1873 }
1874
1875 /* Returns true if there is a output dependence for the stores
1876 STORE1 and STORE2. */
1877
1878 bool
1879 refs_output_dependent_p (tree store1, tree store2)
1880 {
1881 ao_ref r1, r2;
1882 ao_ref_init (&r1, store1);
1883 ao_ref_init (&r2, store2);
1884 return refs_may_alias_p_1 (&r1, &r2, false);
1885 }
1886
1887 /* If the call CALL may use the memory reference REF return true,
1888 otherwise return false. */
1889
1890 static bool
1891 ref_maybe_used_by_call_p_1 (gcall *call, ao_ref *ref, bool tbaa_p)
1892 {
1893 tree base, callee;
1894 unsigned i;
1895 int flags = gimple_call_flags (call);
1896
1897 /* Const functions without a static chain do not implicitly use memory. */
1898 if (!gimple_call_chain (call)
1899 && (flags & (ECF_CONST|ECF_NOVOPS)))
1900 goto process_args;
1901
1902 base = ao_ref_base (ref);
1903 if (!base)
1904 return true;
1905
1906 /* A call that is not without side-effects might involve volatile
1907 accesses and thus conflicts with all other volatile accesses. */
1908 if (ref->volatile_p)
1909 return true;
1910
1911 /* If the reference is based on a decl that is not aliased the call
1912 cannot possibly use it. */
1913 if (DECL_P (base)
1914 && !may_be_aliased (base)
1915 /* But local statics can be used through recursion. */
1916 && !is_global_var (base))
1917 goto process_args;
1918
1919 callee = gimple_call_fndecl (call);
1920
1921 /* Handle those builtin functions explicitly that do not act as
1922 escape points. See tree-ssa-structalias.c:find_func_aliases
1923 for the list of builtins we might need to handle here. */
1924 if (callee != NULL_TREE
1925 && gimple_call_builtin_p (call, BUILT_IN_NORMAL))
1926 switch (DECL_FUNCTION_CODE (callee))
1927 {
1928 /* All the following functions read memory pointed to by
1929 their second argument. strcat/strncat additionally
1930 reads memory pointed to by the first argument. */
1931 case BUILT_IN_STRCAT:
1932 case BUILT_IN_STRNCAT:
1933 {
1934 ao_ref dref;
1935 ao_ref_init_from_ptr_and_size (&dref,
1936 gimple_call_arg (call, 0),
1937 NULL_TREE);
1938 if (refs_may_alias_p_1 (&dref, ref, false))
1939 return true;
1940 }
1941 /* FALLTHRU */
1942 case BUILT_IN_STRCPY:
1943 case BUILT_IN_STRNCPY:
1944 case BUILT_IN_MEMCPY:
1945 case BUILT_IN_MEMMOVE:
1946 case BUILT_IN_MEMPCPY:
1947 case BUILT_IN_STPCPY:
1948 case BUILT_IN_STPNCPY:
1949 case BUILT_IN_TM_MEMCPY:
1950 case BUILT_IN_TM_MEMMOVE:
1951 {
1952 ao_ref dref;
1953 tree size = NULL_TREE;
1954 if (gimple_call_num_args (call) == 3)
1955 size = gimple_call_arg (call, 2);
1956 ao_ref_init_from_ptr_and_size (&dref,
1957 gimple_call_arg (call, 1),
1958 size);
1959 return refs_may_alias_p_1 (&dref, ref, false);
1960 }
1961 case BUILT_IN_STRCAT_CHK:
1962 case BUILT_IN_STRNCAT_CHK:
1963 {
1964 ao_ref dref;
1965 ao_ref_init_from_ptr_and_size (&dref,
1966 gimple_call_arg (call, 0),
1967 NULL_TREE);
1968 if (refs_may_alias_p_1 (&dref, ref, false))
1969 return true;
1970 }
1971 /* FALLTHRU */
1972 case BUILT_IN_STRCPY_CHK:
1973 case BUILT_IN_STRNCPY_CHK:
1974 case BUILT_IN_MEMCPY_CHK:
1975 case BUILT_IN_MEMMOVE_CHK:
1976 case BUILT_IN_MEMPCPY_CHK:
1977 case BUILT_IN_STPCPY_CHK:
1978 case BUILT_IN_STPNCPY_CHK:
1979 {
1980 ao_ref dref;
1981 tree size = NULL_TREE;
1982 if (gimple_call_num_args (call) == 4)
1983 size = gimple_call_arg (call, 2);
1984 ao_ref_init_from_ptr_and_size (&dref,
1985 gimple_call_arg (call, 1),
1986 size);
1987 return refs_may_alias_p_1 (&dref, ref, false);
1988 }
1989 case BUILT_IN_BCOPY:
1990 {
1991 ao_ref dref;
1992 tree size = gimple_call_arg (call, 2);
1993 ao_ref_init_from_ptr_and_size (&dref,
1994 gimple_call_arg (call, 0),
1995 size);
1996 return refs_may_alias_p_1 (&dref, ref, false);
1997 }
1998
1999 /* The following functions read memory pointed to by their
2000 first argument. */
2001 CASE_BUILT_IN_TM_LOAD (1):
2002 CASE_BUILT_IN_TM_LOAD (2):
2003 CASE_BUILT_IN_TM_LOAD (4):
2004 CASE_BUILT_IN_TM_LOAD (8):
2005 CASE_BUILT_IN_TM_LOAD (FLOAT):
2006 CASE_BUILT_IN_TM_LOAD (DOUBLE):
2007 CASE_BUILT_IN_TM_LOAD (LDOUBLE):
2008 CASE_BUILT_IN_TM_LOAD (M64):
2009 CASE_BUILT_IN_TM_LOAD (M128):
2010 CASE_BUILT_IN_TM_LOAD (M256):
2011 case BUILT_IN_TM_LOG:
2012 case BUILT_IN_TM_LOG_1:
2013 case BUILT_IN_TM_LOG_2:
2014 case BUILT_IN_TM_LOG_4:
2015 case BUILT_IN_TM_LOG_8:
2016 case BUILT_IN_TM_LOG_FLOAT:
2017 case BUILT_IN_TM_LOG_DOUBLE:
2018 case BUILT_IN_TM_LOG_LDOUBLE:
2019 case BUILT_IN_TM_LOG_M64:
2020 case BUILT_IN_TM_LOG_M128:
2021 case BUILT_IN_TM_LOG_M256:
2022 return ptr_deref_may_alias_ref_p_1 (gimple_call_arg (call, 0), ref);
2023
2024 /* These read memory pointed to by the first argument. */
2025 case BUILT_IN_STRDUP:
2026 case BUILT_IN_STRNDUP:
2027 case BUILT_IN_REALLOC:
2028 {
2029 ao_ref dref;
2030 tree size = NULL_TREE;
2031 if (gimple_call_num_args (call) == 2)
2032 size = gimple_call_arg (call, 1);
2033 ao_ref_init_from_ptr_and_size (&dref,
2034 gimple_call_arg (call, 0),
2035 size);
2036 return refs_may_alias_p_1 (&dref, ref, false);
2037 }
2038 /* These read memory pointed to by the first argument. */
2039 case BUILT_IN_INDEX:
2040 case BUILT_IN_STRCHR:
2041 case BUILT_IN_STRRCHR:
2042 {
2043 ao_ref dref;
2044 ao_ref_init_from_ptr_and_size (&dref,
2045 gimple_call_arg (call, 0),
2046 NULL_TREE);
2047 return refs_may_alias_p_1 (&dref, ref, false);
2048 }
2049 /* These read memory pointed to by the first argument with size
2050 in the third argument. */
2051 case BUILT_IN_MEMCHR:
2052 {
2053 ao_ref dref;
2054 ao_ref_init_from_ptr_and_size (&dref,
2055 gimple_call_arg (call, 0),
2056 gimple_call_arg (call, 2));
2057 return refs_may_alias_p_1 (&dref, ref, false);
2058 }
2059 /* These read memory pointed to by the first and second arguments. */
2060 case BUILT_IN_STRSTR:
2061 case BUILT_IN_STRPBRK:
2062 {
2063 ao_ref dref;
2064 ao_ref_init_from_ptr_and_size (&dref,
2065 gimple_call_arg (call, 0),
2066 NULL_TREE);
2067 if (refs_may_alias_p_1 (&dref, ref, false))
2068 return true;
2069 ao_ref_init_from_ptr_and_size (&dref,
2070 gimple_call_arg (call, 1),
2071 NULL_TREE);
2072 return refs_may_alias_p_1 (&dref, ref, false);
2073 }
2074
2075 /* The following builtins do not read from memory. */
2076 case BUILT_IN_FREE:
2077 case BUILT_IN_MALLOC:
2078 case BUILT_IN_POSIX_MEMALIGN:
2079 case BUILT_IN_ALIGNED_ALLOC:
2080 case BUILT_IN_CALLOC:
2081 CASE_BUILT_IN_ALLOCA:
2082 case BUILT_IN_STACK_SAVE:
2083 case BUILT_IN_STACK_RESTORE:
2084 case BUILT_IN_MEMSET:
2085 case BUILT_IN_TM_MEMSET:
2086 case BUILT_IN_MEMSET_CHK:
2087 case BUILT_IN_FREXP:
2088 case BUILT_IN_FREXPF:
2089 case BUILT_IN_FREXPL:
2090 case BUILT_IN_GAMMA_R:
2091 case BUILT_IN_GAMMAF_R:
2092 case BUILT_IN_GAMMAL_R:
2093 case BUILT_IN_LGAMMA_R:
2094 case BUILT_IN_LGAMMAF_R:
2095 case BUILT_IN_LGAMMAL_R:
2096 case BUILT_IN_MODF:
2097 case BUILT_IN_MODFF:
2098 case BUILT_IN_MODFL:
2099 case BUILT_IN_REMQUO:
2100 case BUILT_IN_REMQUOF:
2101 case BUILT_IN_REMQUOL:
2102 case BUILT_IN_SINCOS:
2103 case BUILT_IN_SINCOSF:
2104 case BUILT_IN_SINCOSL:
2105 case BUILT_IN_ASSUME_ALIGNED:
2106 case BUILT_IN_VA_END:
2107 return false;
2108 /* __sync_* builtins and some OpenMP builtins act as threading
2109 barriers. */
2110 #undef DEF_SYNC_BUILTIN
2111 #define DEF_SYNC_BUILTIN(ENUM, NAME, TYPE, ATTRS) case ENUM:
2112 #include "sync-builtins.def"
2113 #undef DEF_SYNC_BUILTIN
2114 case BUILT_IN_GOMP_ATOMIC_START:
2115 case BUILT_IN_GOMP_ATOMIC_END:
2116 case BUILT_IN_GOMP_BARRIER:
2117 case BUILT_IN_GOMP_BARRIER_CANCEL:
2118 case BUILT_IN_GOMP_TASKWAIT:
2119 case BUILT_IN_GOMP_TASKGROUP_END:
2120 case BUILT_IN_GOMP_CRITICAL_START:
2121 case BUILT_IN_GOMP_CRITICAL_END:
2122 case BUILT_IN_GOMP_CRITICAL_NAME_START:
2123 case BUILT_IN_GOMP_CRITICAL_NAME_END:
2124 case BUILT_IN_GOMP_LOOP_END:
2125 case BUILT_IN_GOMP_LOOP_END_CANCEL:
2126 case BUILT_IN_GOMP_ORDERED_START:
2127 case BUILT_IN_GOMP_ORDERED_END:
2128 case BUILT_IN_GOMP_SECTIONS_END:
2129 case BUILT_IN_GOMP_SECTIONS_END_CANCEL:
2130 case BUILT_IN_GOMP_SINGLE_COPY_START:
2131 case BUILT_IN_GOMP_SINGLE_COPY_END:
2132 return true;
2133
2134 default:
2135 /* Fallthru to general call handling. */;
2136 }
2137
2138 /* Check if base is a global static variable that is not read
2139 by the function. */
2140 if (callee != NULL_TREE && VAR_P (base) && TREE_STATIC (base))
2141 {
2142 struct cgraph_node *node = cgraph_node::get (callee);
2143 bitmap not_read;
2144
2145 /* FIXME: Callee can be an OMP builtin that does not have a call graph
2146 node yet. We should enforce that there are nodes for all decls in the
2147 IL and remove this check instead. */
2148 if (node
2149 && (not_read = ipa_reference_get_not_read_global (node))
2150 && bitmap_bit_p (not_read, ipa_reference_var_uid (base)))
2151 goto process_args;
2152 }
2153
2154 /* Check if the base variable is call-used. */
2155 if (DECL_P (base))
2156 {
2157 if (pt_solution_includes (gimple_call_use_set (call), base))
2158 return true;
2159 }
2160 else if ((TREE_CODE (base) == MEM_REF
2161 || TREE_CODE (base) == TARGET_MEM_REF)
2162 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
2163 {
2164 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (TREE_OPERAND (base, 0));
2165 if (!pi)
2166 return true;
2167
2168 if (pt_solutions_intersect (gimple_call_use_set (call), &pi->pt))
2169 return true;
2170 }
2171 else
2172 return true;
2173
2174 /* Inspect call arguments for passed-by-value aliases. */
2175 process_args:
2176 for (i = 0; i < gimple_call_num_args (call); ++i)
2177 {
2178 tree op = gimple_call_arg (call, i);
2179 int flags = gimple_call_arg_flags (call, i);
2180
2181 if (flags & EAF_UNUSED)
2182 continue;
2183
2184 if (TREE_CODE (op) == WITH_SIZE_EXPR)
2185 op = TREE_OPERAND (op, 0);
2186
2187 if (TREE_CODE (op) != SSA_NAME
2188 && !is_gimple_min_invariant (op))
2189 {
2190 ao_ref r;
2191 ao_ref_init (&r, op);
2192 if (refs_may_alias_p_1 (&r, ref, tbaa_p))
2193 return true;
2194 }
2195 }
2196
2197 return false;
2198 }
2199
2200 static bool
2201 ref_maybe_used_by_call_p (gcall *call, ao_ref *ref, bool tbaa_p)
2202 {
2203 bool res;
2204 res = ref_maybe_used_by_call_p_1 (call, ref, tbaa_p);
2205 if (res)
2206 ++alias_stats.ref_maybe_used_by_call_p_may_alias;
2207 else
2208 ++alias_stats.ref_maybe_used_by_call_p_no_alias;
2209 return res;
2210 }
2211
2212
2213 /* If the statement STMT may use the memory reference REF return
2214 true, otherwise return false. */
2215
2216 bool
2217 ref_maybe_used_by_stmt_p (gimple *stmt, ao_ref *ref, bool tbaa_p)
2218 {
2219 if (is_gimple_assign (stmt))
2220 {
2221 tree rhs;
2222
2223 /* All memory assign statements are single. */
2224 if (!gimple_assign_single_p (stmt))
2225 return false;
2226
2227 rhs = gimple_assign_rhs1 (stmt);
2228 if (is_gimple_reg (rhs)
2229 || is_gimple_min_invariant (rhs)
2230 || gimple_assign_rhs_code (stmt) == CONSTRUCTOR)
2231 return false;
2232
2233 return refs_may_alias_p (rhs, ref, tbaa_p);
2234 }
2235 else if (is_gimple_call (stmt))
2236 return ref_maybe_used_by_call_p (as_a <gcall *> (stmt), ref, tbaa_p);
2237 else if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
2238 {
2239 tree retval = gimple_return_retval (return_stmt);
2240 if (retval
2241 && TREE_CODE (retval) != SSA_NAME
2242 && !is_gimple_min_invariant (retval)
2243 && refs_may_alias_p (retval, ref, tbaa_p))
2244 return true;
2245 /* If ref escapes the function then the return acts as a use. */
2246 tree base = ao_ref_base (ref);
2247 if (!base)
2248 ;
2249 else if (DECL_P (base))
2250 return is_global_var (base);
2251 else if (TREE_CODE (base) == MEM_REF
2252 || TREE_CODE (base) == TARGET_MEM_REF)
2253 return ptr_deref_may_alias_global_p (TREE_OPERAND (base, 0));
2254 return false;
2255 }
2256
2257 return true;
2258 }
2259
2260 bool
2261 ref_maybe_used_by_stmt_p (gimple *stmt, tree ref, bool tbaa_p)
2262 {
2263 ao_ref r;
2264 ao_ref_init (&r, ref);
2265 return ref_maybe_used_by_stmt_p (stmt, &r, tbaa_p);
2266 }
2267
2268 /* If the call in statement CALL may clobber the memory reference REF
2269 return true, otherwise return false. */
2270
2271 bool
2272 call_may_clobber_ref_p_1 (gcall *call, ao_ref *ref)
2273 {
2274 tree base;
2275 tree callee;
2276
2277 /* If the call is pure or const it cannot clobber anything. */
2278 if (gimple_call_flags (call)
2279 & (ECF_PURE|ECF_CONST|ECF_LOOPING_CONST_OR_PURE|ECF_NOVOPS))
2280 return false;
2281 if (gimple_call_internal_p (call))
2282 switch (gimple_call_internal_fn (call))
2283 {
2284 /* Treat these internal calls like ECF_PURE for aliasing,
2285 they don't write to any memory the program should care about.
2286 They have important other side-effects, and read memory,
2287 so can't be ECF_NOVOPS. */
2288 case IFN_UBSAN_NULL:
2289 case IFN_UBSAN_BOUNDS:
2290 case IFN_UBSAN_VPTR:
2291 case IFN_UBSAN_OBJECT_SIZE:
2292 case IFN_UBSAN_PTR:
2293 case IFN_ASAN_CHECK:
2294 return false;
2295 default:
2296 break;
2297 }
2298
2299 base = ao_ref_base (ref);
2300 if (!base)
2301 return true;
2302
2303 if (TREE_CODE (base) == SSA_NAME
2304 || CONSTANT_CLASS_P (base))
2305 return false;
2306
2307 /* A call that is not without side-effects might involve volatile
2308 accesses and thus conflicts with all other volatile accesses. */
2309 if (ref->volatile_p)
2310 return true;
2311
2312 /* If the reference is based on a decl that is not aliased the call
2313 cannot possibly clobber it. */
2314 if (DECL_P (base)
2315 && !may_be_aliased (base)
2316 /* But local non-readonly statics can be modified through recursion
2317 or the call may implement a threading barrier which we must
2318 treat as may-def. */
2319 && (TREE_READONLY (base)
2320 || !is_global_var (base)))
2321 return false;
2322
2323 /* If the reference is based on a pointer that points to memory
2324 that may not be written to then the call cannot possibly clobber it. */
2325 if ((TREE_CODE (base) == MEM_REF
2326 || TREE_CODE (base) == TARGET_MEM_REF)
2327 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME
2328 && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base, 0)))
2329 return false;
2330
2331 callee = gimple_call_fndecl (call);
2332
2333 /* Handle those builtin functions explicitly that do not act as
2334 escape points. See tree-ssa-structalias.c:find_func_aliases
2335 for the list of builtins we might need to handle here. */
2336 if (callee != NULL_TREE
2337 && gimple_call_builtin_p (call, BUILT_IN_NORMAL))
2338 switch (DECL_FUNCTION_CODE (callee))
2339 {
2340 /* All the following functions clobber memory pointed to by
2341 their first argument. */
2342 case BUILT_IN_STRCPY:
2343 case BUILT_IN_STRNCPY:
2344 case BUILT_IN_MEMCPY:
2345 case BUILT_IN_MEMMOVE:
2346 case BUILT_IN_MEMPCPY:
2347 case BUILT_IN_STPCPY:
2348 case BUILT_IN_STPNCPY:
2349 case BUILT_IN_STRCAT:
2350 case BUILT_IN_STRNCAT:
2351 case BUILT_IN_MEMSET:
2352 case BUILT_IN_TM_MEMSET:
2353 CASE_BUILT_IN_TM_STORE (1):
2354 CASE_BUILT_IN_TM_STORE (2):
2355 CASE_BUILT_IN_TM_STORE (4):
2356 CASE_BUILT_IN_TM_STORE (8):
2357 CASE_BUILT_IN_TM_STORE (FLOAT):
2358 CASE_BUILT_IN_TM_STORE (DOUBLE):
2359 CASE_BUILT_IN_TM_STORE (LDOUBLE):
2360 CASE_BUILT_IN_TM_STORE (M64):
2361 CASE_BUILT_IN_TM_STORE (M128):
2362 CASE_BUILT_IN_TM_STORE (M256):
2363 case BUILT_IN_TM_MEMCPY:
2364 case BUILT_IN_TM_MEMMOVE:
2365 {
2366 ao_ref dref;
2367 tree size = NULL_TREE;
2368 /* Don't pass in size for strncat, as the maximum size
2369 is strlen (dest) + n + 1 instead of n, resp.
2370 n + 1 at dest + strlen (dest), but strlen (dest) isn't
2371 known. */
2372 if (gimple_call_num_args (call) == 3
2373 && DECL_FUNCTION_CODE (callee) != BUILT_IN_STRNCAT)
2374 size = gimple_call_arg (call, 2);
2375 ao_ref_init_from_ptr_and_size (&dref,
2376 gimple_call_arg (call, 0),
2377 size);
2378 return refs_may_alias_p_1 (&dref, ref, false);
2379 }
2380 case BUILT_IN_STRCPY_CHK:
2381 case BUILT_IN_STRNCPY_CHK:
2382 case BUILT_IN_MEMCPY_CHK:
2383 case BUILT_IN_MEMMOVE_CHK:
2384 case BUILT_IN_MEMPCPY_CHK:
2385 case BUILT_IN_STPCPY_CHK:
2386 case BUILT_IN_STPNCPY_CHK:
2387 case BUILT_IN_STRCAT_CHK:
2388 case BUILT_IN_STRNCAT_CHK:
2389 case BUILT_IN_MEMSET_CHK:
2390 {
2391 ao_ref dref;
2392 tree size = NULL_TREE;
2393 /* Don't pass in size for __strncat_chk, as the maximum size
2394 is strlen (dest) + n + 1 instead of n, resp.
2395 n + 1 at dest + strlen (dest), but strlen (dest) isn't
2396 known. */
2397 if (gimple_call_num_args (call) == 4
2398 && DECL_FUNCTION_CODE (callee) != BUILT_IN_STRNCAT_CHK)
2399 size = gimple_call_arg (call, 2);
2400 ao_ref_init_from_ptr_and_size (&dref,
2401 gimple_call_arg (call, 0),
2402 size);
2403 return refs_may_alias_p_1 (&dref, ref, false);
2404 }
2405 case BUILT_IN_BCOPY:
2406 {
2407 ao_ref dref;
2408 tree size = gimple_call_arg (call, 2);
2409 ao_ref_init_from_ptr_and_size (&dref,
2410 gimple_call_arg (call, 1),
2411 size);
2412 return refs_may_alias_p_1 (&dref, ref, false);
2413 }
2414 /* Allocating memory does not have any side-effects apart from
2415 being the definition point for the pointer. */
2416 case BUILT_IN_MALLOC:
2417 case BUILT_IN_ALIGNED_ALLOC:
2418 case BUILT_IN_CALLOC:
2419 case BUILT_IN_STRDUP:
2420 case BUILT_IN_STRNDUP:
2421 /* Unix98 specifies that errno is set on allocation failure. */
2422 if (flag_errno_math
2423 && targetm.ref_may_alias_errno (ref))
2424 return true;
2425 return false;
2426 case BUILT_IN_STACK_SAVE:
2427 CASE_BUILT_IN_ALLOCA:
2428 case BUILT_IN_ASSUME_ALIGNED:
2429 return false;
2430 /* But posix_memalign stores a pointer into the memory pointed to
2431 by its first argument. */
2432 case BUILT_IN_POSIX_MEMALIGN:
2433 {
2434 tree ptrptr = gimple_call_arg (call, 0);
2435 ao_ref dref;
2436 ao_ref_init_from_ptr_and_size (&dref, ptrptr,
2437 TYPE_SIZE_UNIT (ptr_type_node));
2438 return (refs_may_alias_p_1 (&dref, ref, false)
2439 || (flag_errno_math
2440 && targetm.ref_may_alias_errno (ref)));
2441 }
2442 /* Freeing memory kills the pointed-to memory. More importantly
2443 the call has to serve as a barrier for moving loads and stores
2444 across it. */
2445 case BUILT_IN_FREE:
2446 case BUILT_IN_VA_END:
2447 {
2448 tree ptr = gimple_call_arg (call, 0);
2449 return ptr_deref_may_alias_ref_p_1 (ptr, ref);
2450 }
2451 /* Realloc serves both as allocation point and deallocation point. */
2452 case BUILT_IN_REALLOC:
2453 {
2454 tree ptr = gimple_call_arg (call, 0);
2455 /* Unix98 specifies that errno is set on allocation failure. */
2456 return ((flag_errno_math
2457 && targetm.ref_may_alias_errno (ref))
2458 || ptr_deref_may_alias_ref_p_1 (ptr, ref));
2459 }
2460 case BUILT_IN_GAMMA_R:
2461 case BUILT_IN_GAMMAF_R:
2462 case BUILT_IN_GAMMAL_R:
2463 case BUILT_IN_LGAMMA_R:
2464 case BUILT_IN_LGAMMAF_R:
2465 case BUILT_IN_LGAMMAL_R:
2466 {
2467 tree out = gimple_call_arg (call, 1);
2468 if (ptr_deref_may_alias_ref_p_1 (out, ref))
2469 return true;
2470 if (flag_errno_math)
2471 break;
2472 return false;
2473 }
2474 case BUILT_IN_FREXP:
2475 case BUILT_IN_FREXPF:
2476 case BUILT_IN_FREXPL:
2477 case BUILT_IN_MODF:
2478 case BUILT_IN_MODFF:
2479 case BUILT_IN_MODFL:
2480 {
2481 tree out = gimple_call_arg (call, 1);
2482 return ptr_deref_may_alias_ref_p_1 (out, ref);
2483 }
2484 case BUILT_IN_REMQUO:
2485 case BUILT_IN_REMQUOF:
2486 case BUILT_IN_REMQUOL:
2487 {
2488 tree out = gimple_call_arg (call, 2);
2489 if (ptr_deref_may_alias_ref_p_1 (out, ref))
2490 return true;
2491 if (flag_errno_math)
2492 break;
2493 return false;
2494 }
2495 case BUILT_IN_SINCOS:
2496 case BUILT_IN_SINCOSF:
2497 case BUILT_IN_SINCOSL:
2498 {
2499 tree sin = gimple_call_arg (call, 1);
2500 tree cos = gimple_call_arg (call, 2);
2501 return (ptr_deref_may_alias_ref_p_1 (sin, ref)
2502 || ptr_deref_may_alias_ref_p_1 (cos, ref));
2503 }
2504 /* __sync_* builtins and some OpenMP builtins act as threading
2505 barriers. */
2506 #undef DEF_SYNC_BUILTIN
2507 #define DEF_SYNC_BUILTIN(ENUM, NAME, TYPE, ATTRS) case ENUM:
2508 #include "sync-builtins.def"
2509 #undef DEF_SYNC_BUILTIN
2510 case BUILT_IN_GOMP_ATOMIC_START:
2511 case BUILT_IN_GOMP_ATOMIC_END:
2512 case BUILT_IN_GOMP_BARRIER:
2513 case BUILT_IN_GOMP_BARRIER_CANCEL:
2514 case BUILT_IN_GOMP_TASKWAIT:
2515 case BUILT_IN_GOMP_TASKGROUP_END:
2516 case BUILT_IN_GOMP_CRITICAL_START:
2517 case BUILT_IN_GOMP_CRITICAL_END:
2518 case BUILT_IN_GOMP_CRITICAL_NAME_START:
2519 case BUILT_IN_GOMP_CRITICAL_NAME_END:
2520 case BUILT_IN_GOMP_LOOP_END:
2521 case BUILT_IN_GOMP_LOOP_END_CANCEL:
2522 case BUILT_IN_GOMP_ORDERED_START:
2523 case BUILT_IN_GOMP_ORDERED_END:
2524 case BUILT_IN_GOMP_SECTIONS_END:
2525 case BUILT_IN_GOMP_SECTIONS_END_CANCEL:
2526 case BUILT_IN_GOMP_SINGLE_COPY_START:
2527 case BUILT_IN_GOMP_SINGLE_COPY_END:
2528 return true;
2529 default:
2530 /* Fallthru to general call handling. */;
2531 }
2532
2533 /* Check if base is a global static variable that is not written
2534 by the function. */
2535 if (callee != NULL_TREE && VAR_P (base) && TREE_STATIC (base))
2536 {
2537 struct cgraph_node *node = cgraph_node::get (callee);
2538 bitmap not_written;
2539
2540 if (node
2541 && (not_written = ipa_reference_get_not_written_global (node))
2542 && bitmap_bit_p (not_written, ipa_reference_var_uid (base)))
2543 return false;
2544 }
2545
2546 /* Check if the base variable is call-clobbered. */
2547 if (DECL_P (base))
2548 return pt_solution_includes (gimple_call_clobber_set (call), base);
2549 else if ((TREE_CODE (base) == MEM_REF
2550 || TREE_CODE (base) == TARGET_MEM_REF)
2551 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
2552 {
2553 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (TREE_OPERAND (base, 0));
2554 if (!pi)
2555 return true;
2556
2557 return pt_solutions_intersect (gimple_call_clobber_set (call), &pi->pt);
2558 }
2559
2560 return true;
2561 }
2562
2563 /* If the call in statement CALL may clobber the memory reference REF
2564 return true, otherwise return false. */
2565
2566 bool
2567 call_may_clobber_ref_p (gcall *call, tree ref)
2568 {
2569 bool res;
2570 ao_ref r;
2571 ao_ref_init (&r, ref);
2572 res = call_may_clobber_ref_p_1 (call, &r);
2573 if (res)
2574 ++alias_stats.call_may_clobber_ref_p_may_alias;
2575 else
2576 ++alias_stats.call_may_clobber_ref_p_no_alias;
2577 return res;
2578 }
2579
2580
2581 /* If the statement STMT may clobber the memory reference REF return true,
2582 otherwise return false. */
2583
2584 bool
2585 stmt_may_clobber_ref_p_1 (gimple *stmt, ao_ref *ref, bool tbaa_p)
2586 {
2587 if (is_gimple_call (stmt))
2588 {
2589 tree lhs = gimple_call_lhs (stmt);
2590 if (lhs
2591 && TREE_CODE (lhs) != SSA_NAME)
2592 {
2593 ao_ref r;
2594 ao_ref_init (&r, lhs);
2595 if (refs_may_alias_p_1 (ref, &r, tbaa_p))
2596 return true;
2597 }
2598
2599 return call_may_clobber_ref_p_1 (as_a <gcall *> (stmt), ref);
2600 }
2601 else if (gimple_assign_single_p (stmt))
2602 {
2603 tree lhs = gimple_assign_lhs (stmt);
2604 if (TREE_CODE (lhs) != SSA_NAME)
2605 {
2606 ao_ref r;
2607 ao_ref_init (&r, lhs);
2608 return refs_may_alias_p_1 (ref, &r, tbaa_p);
2609 }
2610 }
2611 else if (gimple_code (stmt) == GIMPLE_ASM)
2612 return true;
2613
2614 return false;
2615 }
2616
2617 bool
2618 stmt_may_clobber_ref_p (gimple *stmt, tree ref, bool tbaa_p)
2619 {
2620 ao_ref r;
2621 ao_ref_init (&r, ref);
2622 return stmt_may_clobber_ref_p_1 (stmt, &r, tbaa_p);
2623 }
2624
2625 /* Return true if store1 and store2 described by corresponding tuples
2626 <BASE, OFFSET, SIZE, MAX_SIZE> have the same size and store to the same
2627 address. */
2628
2629 static bool
2630 same_addr_size_stores_p (tree base1, poly_int64 offset1, poly_int64 size1,
2631 poly_int64 max_size1,
2632 tree base2, poly_int64 offset2, poly_int64 size2,
2633 poly_int64 max_size2)
2634 {
2635 /* Offsets need to be 0. */
2636 if (maybe_ne (offset1, 0)
2637 || maybe_ne (offset2, 0))
2638 return false;
2639
2640 bool base1_obj_p = SSA_VAR_P (base1);
2641 bool base2_obj_p = SSA_VAR_P (base2);
2642
2643 /* We need one object. */
2644 if (base1_obj_p == base2_obj_p)
2645 return false;
2646 tree obj = base1_obj_p ? base1 : base2;
2647
2648 /* And we need one MEM_REF. */
2649 bool base1_memref_p = TREE_CODE (base1) == MEM_REF;
2650 bool base2_memref_p = TREE_CODE (base2) == MEM_REF;
2651 if (base1_memref_p == base2_memref_p)
2652 return false;
2653 tree memref = base1_memref_p ? base1 : base2;
2654
2655 /* Sizes need to be valid. */
2656 if (!known_size_p (max_size1)
2657 || !known_size_p (max_size2)
2658 || !known_size_p (size1)
2659 || !known_size_p (size2))
2660 return false;
2661
2662 /* Max_size needs to match size. */
2663 if (maybe_ne (max_size1, size1)
2664 || maybe_ne (max_size2, size2))
2665 return false;
2666
2667 /* Sizes need to match. */
2668 if (maybe_ne (size1, size2))
2669 return false;
2670
2671
2672 /* Check that memref is a store to pointer with singleton points-to info. */
2673 if (!integer_zerop (TREE_OPERAND (memref, 1)))
2674 return false;
2675 tree ptr = TREE_OPERAND (memref, 0);
2676 if (TREE_CODE (ptr) != SSA_NAME)
2677 return false;
2678 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
2679 unsigned int pt_uid;
2680 if (pi == NULL
2681 || !pt_solution_singleton_or_null_p (&pi->pt, &pt_uid))
2682 return false;
2683
2684 /* Be conservative with non-call exceptions when the address might
2685 be NULL. */
2686 if (cfun->can_throw_non_call_exceptions && pi->pt.null)
2687 return false;
2688
2689 /* Check that ptr points relative to obj. */
2690 unsigned int obj_uid = DECL_PT_UID (obj);
2691 if (obj_uid != pt_uid)
2692 return false;
2693
2694 /* Check that the object size is the same as the store size. That ensures us
2695 that ptr points to the start of obj. */
2696 return (DECL_SIZE (obj)
2697 && poly_int_tree_p (DECL_SIZE (obj))
2698 && known_eq (wi::to_poly_offset (DECL_SIZE (obj)), size1));
2699 }
2700
2701 /* If STMT kills the memory reference REF return true, otherwise
2702 return false. */
2703
2704 bool
2705 stmt_kills_ref_p (gimple *stmt, ao_ref *ref)
2706 {
2707 if (!ao_ref_base (ref))
2708 return false;
2709
2710 if (gimple_has_lhs (stmt)
2711 && TREE_CODE (gimple_get_lhs (stmt)) != SSA_NAME
2712 /* The assignment is not necessarily carried out if it can throw
2713 and we can catch it in the current function where we could inspect
2714 the previous value.
2715 ??? We only need to care about the RHS throwing. For aggregate
2716 assignments or similar calls and non-call exceptions the LHS
2717 might throw as well. */
2718 && !stmt_can_throw_internal (cfun, stmt))
2719 {
2720 tree lhs = gimple_get_lhs (stmt);
2721 /* If LHS is literally a base of the access we are done. */
2722 if (ref->ref)
2723 {
2724 tree base = ref->ref;
2725 tree innermost_dropped_array_ref = NULL_TREE;
2726 if (handled_component_p (base))
2727 {
2728 tree saved_lhs0 = NULL_TREE;
2729 if (handled_component_p (lhs))
2730 {
2731 saved_lhs0 = TREE_OPERAND (lhs, 0);
2732 TREE_OPERAND (lhs, 0) = integer_zero_node;
2733 }
2734 do
2735 {
2736 /* Just compare the outermost handled component, if
2737 they are equal we have found a possible common
2738 base. */
2739 tree saved_base0 = TREE_OPERAND (base, 0);
2740 TREE_OPERAND (base, 0) = integer_zero_node;
2741 bool res = operand_equal_p (lhs, base, 0);
2742 TREE_OPERAND (base, 0) = saved_base0;
2743 if (res)
2744 break;
2745 /* Remember if we drop an array-ref that we need to
2746 double-check not being at struct end. */
2747 if (TREE_CODE (base) == ARRAY_REF
2748 || TREE_CODE (base) == ARRAY_RANGE_REF)
2749 innermost_dropped_array_ref = base;
2750 /* Otherwise drop handled components of the access. */
2751 base = saved_base0;
2752 }
2753 while (handled_component_p (base));
2754 if (saved_lhs0)
2755 TREE_OPERAND (lhs, 0) = saved_lhs0;
2756 }
2757 /* Finally check if the lhs has the same address and size as the
2758 base candidate of the access. Watch out if we have dropped
2759 an array-ref that was at struct end, this means ref->ref may
2760 be outside of the TYPE_SIZE of its base. */
2761 if ((! innermost_dropped_array_ref
2762 || ! array_at_struct_end_p (innermost_dropped_array_ref))
2763 && (lhs == base
2764 || (((TYPE_SIZE (TREE_TYPE (lhs))
2765 == TYPE_SIZE (TREE_TYPE (base)))
2766 || (TYPE_SIZE (TREE_TYPE (lhs))
2767 && TYPE_SIZE (TREE_TYPE (base))
2768 && operand_equal_p (TYPE_SIZE (TREE_TYPE (lhs)),
2769 TYPE_SIZE (TREE_TYPE (base)),
2770 0)))
2771 && operand_equal_p (lhs, base,
2772 OEP_ADDRESS_OF
2773 | OEP_MATCH_SIDE_EFFECTS))))
2774 return true;
2775 }
2776
2777 /* Now look for non-literal equal bases with the restriction of
2778 handling constant offset and size. */
2779 /* For a must-alias check we need to be able to constrain
2780 the access properly. */
2781 if (!ref->max_size_known_p ())
2782 return false;
2783 poly_int64 size, offset, max_size, ref_offset = ref->offset;
2784 bool reverse;
2785 tree base = get_ref_base_and_extent (lhs, &offset, &size, &max_size,
2786 &reverse);
2787 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
2788 so base == ref->base does not always hold. */
2789 if (base != ref->base)
2790 {
2791 /* Try using points-to info. */
2792 if (same_addr_size_stores_p (base, offset, size, max_size, ref->base,
2793 ref->offset, ref->size, ref->max_size))
2794 return true;
2795
2796 /* If both base and ref->base are MEM_REFs, only compare the
2797 first operand, and if the second operand isn't equal constant,
2798 try to add the offsets into offset and ref_offset. */
2799 if (TREE_CODE (base) == MEM_REF && TREE_CODE (ref->base) == MEM_REF
2800 && TREE_OPERAND (base, 0) == TREE_OPERAND (ref->base, 0))
2801 {
2802 if (!tree_int_cst_equal (TREE_OPERAND (base, 1),
2803 TREE_OPERAND (ref->base, 1)))
2804 {
2805 poly_offset_int off1 = mem_ref_offset (base);
2806 off1 <<= LOG2_BITS_PER_UNIT;
2807 off1 += offset;
2808 poly_offset_int off2 = mem_ref_offset (ref->base);
2809 off2 <<= LOG2_BITS_PER_UNIT;
2810 off2 += ref_offset;
2811 if (!off1.to_shwi (&offset) || !off2.to_shwi (&ref_offset))
2812 size = -1;
2813 }
2814 }
2815 else
2816 size = -1;
2817 }
2818 /* For a must-alias check we need to be able to constrain
2819 the access properly. */
2820 if (known_eq (size, max_size)
2821 && known_subrange_p (ref_offset, ref->max_size, offset, size))
2822 return true;
2823 }
2824
2825 if (is_gimple_call (stmt))
2826 {
2827 tree callee = gimple_call_fndecl (stmt);
2828 if (callee != NULL_TREE
2829 && gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
2830 switch (DECL_FUNCTION_CODE (callee))
2831 {
2832 case BUILT_IN_FREE:
2833 {
2834 tree ptr = gimple_call_arg (stmt, 0);
2835 tree base = ao_ref_base (ref);
2836 if (base && TREE_CODE (base) == MEM_REF
2837 && TREE_OPERAND (base, 0) == ptr)
2838 return true;
2839 break;
2840 }
2841
2842 case BUILT_IN_MEMCPY:
2843 case BUILT_IN_MEMPCPY:
2844 case BUILT_IN_MEMMOVE:
2845 case BUILT_IN_MEMSET:
2846 case BUILT_IN_MEMCPY_CHK:
2847 case BUILT_IN_MEMPCPY_CHK:
2848 case BUILT_IN_MEMMOVE_CHK:
2849 case BUILT_IN_MEMSET_CHK:
2850 case BUILT_IN_STRNCPY:
2851 case BUILT_IN_STPNCPY:
2852 case BUILT_IN_CALLOC:
2853 {
2854 /* For a must-alias check we need to be able to constrain
2855 the access properly. */
2856 if (!ref->max_size_known_p ())
2857 return false;
2858 tree dest;
2859 tree len;
2860
2861 /* In execution order a calloc call will never kill
2862 anything. However, DSE will (ab)use this interface
2863 to ask if a calloc call writes the same memory locations
2864 as a later assignment, memset, etc. So handle calloc
2865 in the expected way. */
2866 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_CALLOC)
2867 {
2868 tree arg0 = gimple_call_arg (stmt, 0);
2869 tree arg1 = gimple_call_arg (stmt, 1);
2870 if (TREE_CODE (arg0) != INTEGER_CST
2871 || TREE_CODE (arg1) != INTEGER_CST)
2872 return false;
2873
2874 dest = gimple_call_lhs (stmt);
2875 len = fold_build2 (MULT_EXPR, TREE_TYPE (arg0), arg0, arg1);
2876 }
2877 else
2878 {
2879 dest = gimple_call_arg (stmt, 0);
2880 len = gimple_call_arg (stmt, 2);
2881 }
2882 if (!poly_int_tree_p (len))
2883 return false;
2884 tree rbase = ref->base;
2885 poly_offset_int roffset = ref->offset;
2886 ao_ref dref;
2887 ao_ref_init_from_ptr_and_size (&dref, dest, len);
2888 tree base = ao_ref_base (&dref);
2889 poly_offset_int offset = dref.offset;
2890 if (!base || !known_size_p (dref.size))
2891 return false;
2892 if (TREE_CODE (base) == MEM_REF)
2893 {
2894 if (TREE_CODE (rbase) != MEM_REF)
2895 return false;
2896 // Compare pointers.
2897 offset += mem_ref_offset (base) << LOG2_BITS_PER_UNIT;
2898 roffset += mem_ref_offset (rbase) << LOG2_BITS_PER_UNIT;
2899 base = TREE_OPERAND (base, 0);
2900 rbase = TREE_OPERAND (rbase, 0);
2901 }
2902 if (base == rbase
2903 && known_subrange_p (roffset, ref->max_size, offset,
2904 wi::to_poly_offset (len)
2905 << LOG2_BITS_PER_UNIT))
2906 return true;
2907 break;
2908 }
2909
2910 case BUILT_IN_VA_END:
2911 {
2912 tree ptr = gimple_call_arg (stmt, 0);
2913 if (TREE_CODE (ptr) == ADDR_EXPR)
2914 {
2915 tree base = ao_ref_base (ref);
2916 if (TREE_OPERAND (ptr, 0) == base)
2917 return true;
2918 }
2919 break;
2920 }
2921
2922 default:;
2923 }
2924 }
2925 return false;
2926 }
2927
2928 bool
2929 stmt_kills_ref_p (gimple *stmt, tree ref)
2930 {
2931 ao_ref r;
2932 ao_ref_init (&r, ref);
2933 return stmt_kills_ref_p (stmt, &r);
2934 }
2935
2936
2937 /* Walk the virtual use-def chain of VUSE until hitting the virtual operand
2938 TARGET or a statement clobbering the memory reference REF in which
2939 case false is returned. The walk starts with VUSE, one argument of PHI. */
2940
2941 static bool
2942 maybe_skip_until (gimple *phi, tree &target, basic_block target_bb,
2943 ao_ref *ref, tree vuse, unsigned int &limit, bitmap *visited,
2944 bool abort_on_visited,
2945 void *(*translate)(ao_ref *, tree, void *, bool *),
2946 void *data)
2947 {
2948 basic_block bb = gimple_bb (phi);
2949
2950 if (!*visited)
2951 *visited = BITMAP_ALLOC (NULL);
2952
2953 bitmap_set_bit (*visited, SSA_NAME_VERSION (PHI_RESULT (phi)));
2954
2955 /* Walk until we hit the target. */
2956 while (vuse != target)
2957 {
2958 gimple *def_stmt = SSA_NAME_DEF_STMT (vuse);
2959 /* If we are searching for the target VUSE by walking up to
2960 TARGET_BB dominating the original PHI we are finished once
2961 we reach a default def or a definition in a block dominating
2962 that block. Update TARGET and return. */
2963 if (!target
2964 && (gimple_nop_p (def_stmt)
2965 || dominated_by_p (CDI_DOMINATORS,
2966 target_bb, gimple_bb (def_stmt))))
2967 {
2968 target = vuse;
2969 return true;
2970 }
2971
2972 /* Recurse for PHI nodes. */
2973 if (gimple_code (def_stmt) == GIMPLE_PHI)
2974 {
2975 /* An already visited PHI node ends the walk successfully. */
2976 if (bitmap_bit_p (*visited, SSA_NAME_VERSION (PHI_RESULT (def_stmt))))
2977 return !abort_on_visited;
2978 vuse = get_continuation_for_phi (def_stmt, ref, limit,
2979 visited, abort_on_visited,
2980 translate, data);
2981 if (!vuse)
2982 return false;
2983 continue;
2984 }
2985 else if (gimple_nop_p (def_stmt))
2986 return false;
2987 else
2988 {
2989 /* A clobbering statement or the end of the IL ends it failing. */
2990 if ((int)limit <= 0)
2991 return false;
2992 --limit;
2993 if (stmt_may_clobber_ref_p_1 (def_stmt, ref))
2994 {
2995 bool disambiguate_only = true;
2996 if (translate
2997 && (*translate) (ref, vuse, data, &disambiguate_only) == NULL)
2998 ;
2999 else
3000 return false;
3001 }
3002 }
3003 /* If we reach a new basic-block see if we already skipped it
3004 in a previous walk that ended successfully. */
3005 if (gimple_bb (def_stmt) != bb)
3006 {
3007 if (!bitmap_set_bit (*visited, SSA_NAME_VERSION (vuse)))
3008 return !abort_on_visited;
3009 bb = gimple_bb (def_stmt);
3010 }
3011 vuse = gimple_vuse (def_stmt);
3012 }
3013 return true;
3014 }
3015
3016
3017 /* Starting from a PHI node for the virtual operand of the memory reference
3018 REF find a continuation virtual operand that allows to continue walking
3019 statements dominating PHI skipping only statements that cannot possibly
3020 clobber REF. Decrements LIMIT for each alias disambiguation done
3021 and aborts the walk, returning NULL_TREE if it reaches zero.
3022 Returns NULL_TREE if no suitable virtual operand can be found. */
3023
3024 tree
3025 get_continuation_for_phi (gimple *phi, ao_ref *ref,
3026 unsigned int &limit, bitmap *visited,
3027 bool abort_on_visited,
3028 void *(*translate)(ao_ref *, tree, void *, bool *),
3029 void *data)
3030 {
3031 unsigned nargs = gimple_phi_num_args (phi);
3032
3033 /* Through a single-argument PHI we can simply look through. */
3034 if (nargs == 1)
3035 return PHI_ARG_DEF (phi, 0);
3036
3037 /* For two or more arguments try to pairwise skip non-aliasing code
3038 until we hit the phi argument definition that dominates the other one. */
3039 basic_block phi_bb = gimple_bb (phi);
3040 tree arg0, arg1;
3041 unsigned i;
3042
3043 /* Find a candidate for the virtual operand which definition
3044 dominates those of all others. */
3045 /* First look if any of the args themselves satisfy this. */
3046 for (i = 0; i < nargs; ++i)
3047 {
3048 arg0 = PHI_ARG_DEF (phi, i);
3049 if (SSA_NAME_IS_DEFAULT_DEF (arg0))
3050 break;
3051 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (arg0));
3052 if (def_bb != phi_bb
3053 && dominated_by_p (CDI_DOMINATORS, phi_bb, def_bb))
3054 break;
3055 arg0 = NULL_TREE;
3056 }
3057 /* If not, look if we can reach such candidate by walking defs
3058 until we hit the immediate dominator. maybe_skip_until will
3059 do that for us. */
3060 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, phi_bb);
3061
3062 /* Then check against the (to be) found candidate. */
3063 for (i = 0; i < nargs; ++i)
3064 {
3065 arg1 = PHI_ARG_DEF (phi, i);
3066 if (arg1 == arg0)
3067 ;
3068 else if (! maybe_skip_until (phi, arg0, dom, ref, arg1, limit, visited,
3069 abort_on_visited,
3070 /* Do not translate when walking over
3071 backedges. */
3072 dominated_by_p
3073 (CDI_DOMINATORS,
3074 gimple_bb (SSA_NAME_DEF_STMT (arg1)),
3075 phi_bb)
3076 ? NULL : translate, data))
3077 return NULL_TREE;
3078 }
3079
3080 return arg0;
3081 }
3082
3083 /* Based on the memory reference REF and its virtual use VUSE call
3084 WALKER for each virtual use that is equivalent to VUSE, including VUSE
3085 itself. That is, for each virtual use for which its defining statement
3086 does not clobber REF.
3087
3088 WALKER is called with REF, the current virtual use and DATA. If
3089 WALKER returns non-NULL the walk stops and its result is returned.
3090 At the end of a non-successful walk NULL is returned.
3091
3092 TRANSLATE if non-NULL is called with a pointer to REF, the virtual
3093 use which definition is a statement that may clobber REF and DATA.
3094 If TRANSLATE returns (void *)-1 the walk stops and NULL is returned.
3095 If TRANSLATE returns non-NULL the walk stops and its result is returned.
3096 If TRANSLATE returns NULL the walk continues and TRANSLATE is supposed
3097 to adjust REF and *DATA to make that valid.
3098
3099 VALUEIZE if non-NULL is called with the next VUSE that is considered
3100 and return value is substituted for that. This can be used to
3101 implement optimistic value-numbering for example. Note that the
3102 VUSE argument is assumed to be valueized already.
3103
3104 LIMIT specifies the number of alias queries we are allowed to do,
3105 the walk stops when it reaches zero and NULL is returned. LIMIT
3106 is decremented by the number of alias queries (plus adjustments
3107 done by the callbacks) upon return.
3108
3109 TODO: Cache the vector of equivalent vuses per ref, vuse pair. */
3110
3111 void *
3112 walk_non_aliased_vuses (ao_ref *ref, tree vuse,
3113 void *(*walker)(ao_ref *, tree, void *),
3114 void *(*translate)(ao_ref *, tree, void *, bool *),
3115 tree (*valueize)(tree),
3116 unsigned &limit, void *data)
3117 {
3118 bitmap visited = NULL;
3119 void *res;
3120 bool translated = false;
3121
3122 timevar_push (TV_ALIAS_STMT_WALK);
3123
3124 do
3125 {
3126 gimple *def_stmt;
3127
3128 /* ??? Do we want to account this to TV_ALIAS_STMT_WALK? */
3129 res = (*walker) (ref, vuse, data);
3130 /* Abort walk. */
3131 if (res == (void *)-1)
3132 {
3133 res = NULL;
3134 break;
3135 }
3136 /* Lookup succeeded. */
3137 else if (res != NULL)
3138 break;
3139
3140 if (valueize)
3141 {
3142 vuse = valueize (vuse);
3143 if (!vuse)
3144 {
3145 res = NULL;
3146 break;
3147 }
3148 }
3149 def_stmt = SSA_NAME_DEF_STMT (vuse);
3150 if (gimple_nop_p (def_stmt))
3151 break;
3152 else if (gimple_code (def_stmt) == GIMPLE_PHI)
3153 vuse = get_continuation_for_phi (def_stmt, ref, limit,
3154 &visited, translated, translate, data);
3155 else
3156 {
3157 if ((int)limit <= 0)
3158 {
3159 res = NULL;
3160 break;
3161 }
3162 --limit;
3163 if (stmt_may_clobber_ref_p_1 (def_stmt, ref))
3164 {
3165 if (!translate)
3166 break;
3167 bool disambiguate_only = false;
3168 res = (*translate) (ref, vuse, data, &disambiguate_only);
3169 /* Failed lookup and translation. */
3170 if (res == (void *)-1)
3171 {
3172 res = NULL;
3173 break;
3174 }
3175 /* Lookup succeeded. */
3176 else if (res != NULL)
3177 break;
3178 /* Translation succeeded, continue walking. */
3179 translated = translated || !disambiguate_only;
3180 }
3181 vuse = gimple_vuse (def_stmt);
3182 }
3183 }
3184 while (vuse);
3185
3186 if (visited)
3187 BITMAP_FREE (visited);
3188
3189 timevar_pop (TV_ALIAS_STMT_WALK);
3190
3191 return res;
3192 }
3193
3194
3195 /* Based on the memory reference REF call WALKER for each vdef which
3196 defining statement may clobber REF, starting with VDEF. If REF
3197 is NULL_TREE, each defining statement is visited.
3198
3199 WALKER is called with REF, the current vdef and DATA. If WALKER
3200 returns true the walk is stopped, otherwise it continues.
3201
3202 If function entry is reached, FUNCTION_ENTRY_REACHED is set to true.
3203 The pointer may be NULL and then we do not track this information.
3204
3205 At PHI nodes walk_aliased_vdefs forks into one walk for reach
3206 PHI argument (but only one walk continues on merge points), the
3207 return value is true if any of the walks was successful.
3208
3209 The function returns the number of statements walked or -1 if
3210 LIMIT stmts were walked and the walk was aborted at this point.
3211 If LIMIT is zero the walk is not aborted. */
3212
3213 static int
3214 walk_aliased_vdefs_1 (ao_ref *ref, tree vdef,
3215 bool (*walker)(ao_ref *, tree, void *), void *data,
3216 bitmap *visited, unsigned int cnt,
3217 bool *function_entry_reached, unsigned limit)
3218 {
3219 do
3220 {
3221 gimple *def_stmt = SSA_NAME_DEF_STMT (vdef);
3222
3223 if (*visited
3224 && !bitmap_set_bit (*visited, SSA_NAME_VERSION (vdef)))
3225 return cnt;
3226
3227 if (gimple_nop_p (def_stmt))
3228 {
3229 if (function_entry_reached)
3230 *function_entry_reached = true;
3231 return cnt;
3232 }
3233 else if (gimple_code (def_stmt) == GIMPLE_PHI)
3234 {
3235 unsigned i;
3236 if (!*visited)
3237 *visited = BITMAP_ALLOC (NULL);
3238 for (i = 0; i < gimple_phi_num_args (def_stmt); ++i)
3239 {
3240 int res = walk_aliased_vdefs_1 (ref,
3241 gimple_phi_arg_def (def_stmt, i),
3242 walker, data, visited, cnt,
3243 function_entry_reached, limit);
3244 if (res == -1)
3245 return -1;
3246 cnt = res;
3247 }
3248 return cnt;
3249 }
3250
3251 /* ??? Do we want to account this to TV_ALIAS_STMT_WALK? */
3252 cnt++;
3253 if (cnt == limit)
3254 return -1;
3255 if ((!ref
3256 || stmt_may_clobber_ref_p_1 (def_stmt, ref))
3257 && (*walker) (ref, vdef, data))
3258 return cnt;
3259
3260 vdef = gimple_vuse (def_stmt);
3261 }
3262 while (1);
3263 }
3264
3265 int
3266 walk_aliased_vdefs (ao_ref *ref, tree vdef,
3267 bool (*walker)(ao_ref *, tree, void *), void *data,
3268 bitmap *visited,
3269 bool *function_entry_reached, unsigned int limit)
3270 {
3271 bitmap local_visited = NULL;
3272 int ret;
3273
3274 timevar_push (TV_ALIAS_STMT_WALK);
3275
3276 if (function_entry_reached)
3277 *function_entry_reached = false;
3278
3279 ret = walk_aliased_vdefs_1 (ref, vdef, walker, data,
3280 visited ? visited : &local_visited, 0,
3281 function_entry_reached, limit);
3282 if (local_visited)
3283 BITMAP_FREE (local_visited);
3284
3285 timevar_pop (TV_ALIAS_STMT_WALK);
3286
3287 return ret;
3288 }
3289