tree-ssa-alias.c (free_used_part_map): Add missing free.
[gcc.git] / gcc / tree-ssa-alias.c
1 /* Alias analysis for trees.
2 Copyright (C) 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "timevar.h"
32 #include "expr.h"
33 #include "ggc.h"
34 #include "langhooks.h"
35 #include "flags.h"
36 #include "function.h"
37 #include "diagnostic.h"
38 #include "tree-dump.h"
39 #include "tree-gimple.h"
40 #include "tree-flow.h"
41 #include "tree-inline.h"
42 #include "tree-pass.h"
43 #include "tree-ssa-structalias.h"
44 #include "convert.h"
45 #include "params.h"
46 #include "vec.h"
47 #include "bitmap.h"
48
49 /* Obstack used to hold grouping bitmaps and other temporary bitmaps used by
50 aliasing */
51 static bitmap_obstack alias_obstack;
52
53 /* 'true' after aliases have been computed (see compute_may_aliases). */
54 bool aliases_computed_p;
55
56 /* Structure to map a variable to its alias set and keep track of the
57 virtual operands that will be needed to represent it. */
58 struct alias_map_d
59 {
60 /* Variable and its alias set. */
61 tree var;
62 HOST_WIDE_INT set;
63
64 /* Total number of virtual operands that will be needed to represent
65 all the aliases of VAR. */
66 long total_alias_vops;
67
68 /* Nonzero if the aliases for this memory tag have been grouped
69 already. Used in group_aliases. */
70 unsigned int grouped_p : 1;
71
72 /* Set of variables aliased with VAR. This is the exact same
73 information contained in VAR_ANN (VAR)->MAY_ALIASES, but in
74 bitmap form to speed up alias grouping. */
75 bitmap may_aliases;
76 };
77
78
79 /* Counters used to display statistics on alias analysis. */
80 struct alias_stats_d
81 {
82 unsigned int alias_queries;
83 unsigned int alias_mayalias;
84 unsigned int alias_noalias;
85 unsigned int simple_queries;
86 unsigned int simple_resolved;
87 unsigned int tbaa_queries;
88 unsigned int tbaa_resolved;
89 };
90
91
92 /* Local variables. */
93 static struct alias_stats_d alias_stats;
94
95 /* Local functions. */
96 static void compute_flow_insensitive_aliasing (struct alias_info *);
97 static void dump_alias_stats (FILE *);
98 static bool may_alias_p (tree, HOST_WIDE_INT, tree, HOST_WIDE_INT);
99 static tree create_memory_tag (tree type, bool is_type_tag);
100 static tree get_tmt_for (tree, struct alias_info *);
101 static tree get_nmt_for (tree);
102 static void add_may_alias (tree, tree);
103 static void replace_may_alias (tree, size_t, tree);
104 static struct alias_info *init_alias_info (void);
105 static void delete_alias_info (struct alias_info *);
106 static void compute_flow_sensitive_aliasing (struct alias_info *);
107 static void setup_pointers_and_addressables (struct alias_info *);
108 static void create_global_var (void);
109 static void maybe_create_global_var (struct alias_info *ai);
110 static void group_aliases (struct alias_info *);
111 static void set_pt_anything (tree ptr);
112
113 /* Global declarations. */
114
115 /* Call clobbered variables in the function. If bit I is set, then
116 REFERENCED_VARS (I) is call-clobbered. */
117 bitmap call_clobbered_vars;
118
119 /* Addressable variables in the function. If bit I is set, then
120 REFERENCED_VARS (I) has had its address taken. Note that
121 CALL_CLOBBERED_VARS and ADDRESSABLE_VARS are not related. An
122 addressable variable is not necessarily call-clobbered (e.g., a
123 local addressable whose address does not escape) and not all
124 call-clobbered variables are addressable (e.g., a local static
125 variable). */
126 bitmap addressable_vars;
127
128 /* When the program has too many call-clobbered variables and call-sites,
129 this variable is used to represent the clobbering effects of function
130 calls. In these cases, all the call clobbered variables in the program
131 are forced to alias this variable. This reduces compile times by not
132 having to keep track of too many V_MAY_DEF expressions at call sites. */
133 tree global_var;
134
135
136 /* Compute may-alias information for every variable referenced in function
137 FNDECL.
138
139 Alias analysis proceeds in 3 main phases:
140
141 1- Points-to and escape analysis.
142
143 This phase walks the use-def chains in the SSA web looking for three
144 things:
145
146 * Assignments of the form P_i = &VAR
147 * Assignments of the form P_i = malloc()
148 * Pointers and ADDR_EXPR that escape the current function.
149
150 The concept of 'escaping' is the same one used in the Java world. When
151 a pointer or an ADDR_EXPR escapes, it means that it has been exposed
152 outside of the current function. So, assignment to global variables,
153 function arguments and returning a pointer are all escape sites, as are
154 conversions between pointers and integers.
155
156 This is where we are currently limited. Since not everything is renamed
157 into SSA, we lose track of escape properties when a pointer is stashed
158 inside a field in a structure, for instance. In those cases, we are
159 assuming that the pointer does escape.
160
161 We use escape analysis to determine whether a variable is
162 call-clobbered. Simply put, if an ADDR_EXPR escapes, then the variable
163 is call-clobbered. If a pointer P_i escapes, then all the variables
164 pointed-to by P_i (and its memory tag) also escape.
165
166 2- Compute flow-sensitive aliases
167
168 We have two classes of memory tags. Memory tags associated with the
169 pointed-to data type of the pointers in the program. These tags are
170 called "type memory tag" (TMT). The other class are those associated
171 with SSA_NAMEs, called "name memory tag" (NMT). The basic idea is that
172 when adding operands for an INDIRECT_REF *P_i, we will first check
173 whether P_i has a name tag, if it does we use it, because that will have
174 more precise aliasing information. Otherwise, we use the standard type
175 tag.
176
177 In this phase, we go through all the pointers we found in points-to
178 analysis and create alias sets for the name memory tags associated with
179 each pointer P_i. If P_i escapes, we mark call-clobbered the variables
180 it points to and its tag.
181
182
183 3- Compute flow-insensitive aliases
184
185 This pass will compare the alias set of every type memory tag and every
186 addressable variable found in the program. Given a type memory tag TMT
187 and an addressable variable V. If the alias sets of TMT and V conflict
188 (as computed by may_alias_p), then V is marked as an alias tag and added
189 to the alias set of TMT.
190
191 For instance, consider the following function:
192
193 foo (int i)
194 {
195 int *p, a, b;
196
197 if (i > 10)
198 p = &a;
199 else
200 p = &b;
201
202 *p = 3;
203 a = b + 2;
204 return *p;
205 }
206
207 After aliasing analysis has finished, the type memory tag for pointer
208 'p' will have two aliases, namely variables 'a' and 'b'. Every time
209 pointer 'p' is dereferenced, we want to mark the operation as a
210 potential reference to 'a' and 'b'.
211
212 foo (int i)
213 {
214 int *p, a, b;
215
216 if (i_2 > 10)
217 p_4 = &a;
218 else
219 p_6 = &b;
220 # p_1 = PHI <p_4(1), p_6(2)>;
221
222 # a_7 = V_MAY_DEF <a_3>;
223 # b_8 = V_MAY_DEF <b_5>;
224 *p_1 = 3;
225
226 # a_9 = V_MAY_DEF <a_7>
227 # VUSE <b_8>
228 a_9 = b_8 + 2;
229
230 # VUSE <a_9>;
231 # VUSE <b_8>;
232 return *p_1;
233 }
234
235 In certain cases, the list of may aliases for a pointer may grow too
236 large. This may cause an explosion in the number of virtual operands
237 inserted in the code. Resulting in increased memory consumption and
238 compilation time.
239
240 When the number of virtual operands needed to represent aliased
241 loads and stores grows too large (configurable with @option{--param
242 max-aliased-vops}), alias sets are grouped to avoid severe
243 compile-time slow downs and memory consumption. See group_aliases. */
244
245 static void
246 compute_may_aliases (void)
247 {
248 struct alias_info *ai;
249
250 memset (&alias_stats, 0, sizeof (alias_stats));
251
252 /* Initialize aliasing information. */
253 ai = init_alias_info ();
254
255 /* For each pointer P_i, determine the sets of variables that P_i may
256 point-to. For every addressable variable V, determine whether the
257 address of V escapes the current function, making V call-clobbered
258 (i.e., whether &V is stored in a global variable or if its passed as a
259 function call argument). */
260 compute_points_to_sets (ai);
261
262 /* Collect all pointers and addressable variables, compute alias sets,
263 create memory tags for pointers and promote variables whose address is
264 not needed anymore. */
265 setup_pointers_and_addressables (ai);
266
267 /* Compute flow-sensitive, points-to based aliasing for all the name
268 memory tags. Note that this pass needs to be done before flow
269 insensitive analysis because it uses the points-to information
270 gathered before to mark call-clobbered type tags. */
271 compute_flow_sensitive_aliasing (ai);
272
273 /* Compute type-based flow-insensitive aliasing for all the type
274 memory tags. */
275 compute_flow_insensitive_aliasing (ai);
276
277 /* If the program has too many call-clobbered variables and/or function
278 calls, create .GLOBAL_VAR and use it to model call-clobbering
279 semantics at call sites. This reduces the number of virtual operands
280 considerably, improving compile times at the expense of lost
281 aliasing precision. */
282 maybe_create_global_var (ai);
283
284 /* Debugging dumps. */
285 if (dump_file)
286 {
287 dump_referenced_vars (dump_file);
288 if (dump_flags & TDF_STATS)
289 dump_alias_stats (dump_file);
290 dump_points_to_info (dump_file);
291 dump_alias_info (dump_file);
292 }
293
294 /* Deallocate memory used by aliasing data structures. */
295 delete_alias_info (ai);
296
297 {
298 block_stmt_iterator bsi;
299 basic_block bb;
300 FOR_EACH_BB (bb)
301 {
302 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
303 {
304 update_stmt_if_modified (bsi_stmt (bsi));
305 }
306 }
307 }
308
309 }
310
311 struct tree_opt_pass pass_may_alias =
312 {
313 "alias", /* name */
314 NULL, /* gate */
315 compute_may_aliases, /* execute */
316 NULL, /* sub */
317 NULL, /* next */
318 0, /* static_pass_number */
319 TV_TREE_MAY_ALIAS, /* tv_id */
320 PROP_cfg | PROP_ssa, /* properties_required */
321 PROP_alias, /* properties_provided */
322 0, /* properties_destroyed */
323 0, /* todo_flags_start */
324 TODO_dump_func | TODO_update_ssa
325 | TODO_ggc_collect | TODO_verify_ssa
326 | TODO_verify_stmts, /* todo_flags_finish */
327 0 /* letter */
328 };
329
330
331 /* Data structure used to count the number of dereferences to PTR
332 inside an expression. */
333 struct count_ptr_d
334 {
335 tree ptr;
336 unsigned count;
337 };
338
339
340 /* Helper for count_uses_and_derefs. Called by walk_tree to look for
341 (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
342
343 static tree
344 count_ptr_derefs (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED, void *data)
345 {
346 struct count_ptr_d *count_p = (struct count_ptr_d *) data;
347
348 if (INDIRECT_REF_P (*tp) && TREE_OPERAND (*tp, 0) == count_p->ptr)
349 count_p->count++;
350
351 return NULL_TREE;
352 }
353
354
355 /* Count the number of direct and indirect uses for pointer PTR in
356 statement STMT. The two counts are stored in *NUM_USES_P and
357 *NUM_DEREFS_P respectively. *IS_STORE_P is set to 'true' if at
358 least one of those dereferences is a store operation. */
359
360 void
361 count_uses_and_derefs (tree ptr, tree stmt, unsigned *num_uses_p,
362 unsigned *num_derefs_p, bool *is_store)
363 {
364 ssa_op_iter i;
365 tree use;
366
367 *num_uses_p = 0;
368 *num_derefs_p = 0;
369 *is_store = false;
370
371 /* Find out the total number of uses of PTR in STMT. */
372 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
373 if (use == ptr)
374 (*num_uses_p)++;
375
376 /* Now count the number of indirect references to PTR. This is
377 truly awful, but we don't have much choice. There are no parent
378 pointers inside INDIRECT_REFs, so an expression like
379 '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
380 find all the indirect and direct uses of x_1 inside. The only
381 shortcut we can take is the fact that GIMPLE only allows
382 INDIRECT_REFs inside the expressions below. */
383 if (TREE_CODE (stmt) == MODIFY_EXPR
384 || (TREE_CODE (stmt) == RETURN_EXPR
385 && TREE_CODE (TREE_OPERAND (stmt, 0)) == MODIFY_EXPR)
386 || TREE_CODE (stmt) == ASM_EXPR
387 || TREE_CODE (stmt) == CALL_EXPR)
388 {
389 tree lhs, rhs;
390
391 if (TREE_CODE (stmt) == MODIFY_EXPR)
392 {
393 lhs = TREE_OPERAND (stmt, 0);
394 rhs = TREE_OPERAND (stmt, 1);
395 }
396 else if (TREE_CODE (stmt) == RETURN_EXPR)
397 {
398 tree e = TREE_OPERAND (stmt, 0);
399 lhs = TREE_OPERAND (e, 0);
400 rhs = TREE_OPERAND (e, 1);
401 }
402 else if (TREE_CODE (stmt) == ASM_EXPR)
403 {
404 lhs = ASM_OUTPUTS (stmt);
405 rhs = ASM_INPUTS (stmt);
406 }
407 else
408 {
409 lhs = NULL_TREE;
410 rhs = stmt;
411 }
412
413 if (lhs && (TREE_CODE (lhs) == TREE_LIST || EXPR_P (lhs)))
414 {
415 struct count_ptr_d count;
416 count.ptr = ptr;
417 count.count = 0;
418 walk_tree (&lhs, count_ptr_derefs, &count, NULL);
419 *is_store = true;
420 *num_derefs_p = count.count;
421 }
422
423 if (rhs && (TREE_CODE (rhs) == TREE_LIST || EXPR_P (rhs)))
424 {
425 struct count_ptr_d count;
426 count.ptr = ptr;
427 count.count = 0;
428 walk_tree (&rhs, count_ptr_derefs, &count, NULL);
429 *num_derefs_p += count.count;
430 }
431 }
432
433 gcc_assert (*num_uses_p >= *num_derefs_p);
434 }
435
436
437 /* Initialize the data structures used for alias analysis. */
438
439 static struct alias_info *
440 init_alias_info (void)
441 {
442 struct alias_info *ai;
443 referenced_var_iterator rvi;
444 tree var;
445
446 bitmap_obstack_initialize (&alias_obstack);
447 ai = xcalloc (1, sizeof (struct alias_info));
448 ai->ssa_names_visited = sbitmap_alloc (num_ssa_names);
449 sbitmap_zero (ai->ssa_names_visited);
450 VARRAY_TREE_INIT (ai->processed_ptrs, 50, "processed_ptrs");
451 ai->written_vars = BITMAP_ALLOC (&alias_obstack);
452 ai->dereferenced_ptrs_store = BITMAP_ALLOC (&alias_obstack);
453 ai->dereferenced_ptrs_load = BITMAP_ALLOC (&alias_obstack);
454
455 /* If aliases have been computed before, clear existing information. */
456 if (aliases_computed_p)
457 {
458 unsigned i;
459
460 /* Similarly, clear the set of addressable variables. In this
461 case, we can just clear the set because addressability is
462 only computed here. */
463 bitmap_clear (addressable_vars);
464
465 /* Clear flow-insensitive alias information from each symbol. */
466 FOR_EACH_REFERENCED_VAR (var, rvi)
467 {
468 var_ann_t ann = var_ann (var);
469
470 ann->is_alias_tag = 0;
471 ann->may_aliases = NULL;
472 NUM_REFERENCES_CLEAR (ann);
473
474 /* Since we are about to re-discover call-clobbered
475 variables, clear the call-clobbered flag. Variables that
476 are intrinsically call-clobbered (globals, local statics,
477 etc) will not be marked by the aliasing code, so we can't
478 remove them from CALL_CLOBBERED_VARS.
479
480 NB: STRUCT_FIELDS are still call clobbered if they are for
481 a global variable, so we *don't* clear their call clobberedness
482 just because they are tags, though we will clear it if they
483 aren't for global variables. */
484 if (ann->mem_tag_kind == NAME_TAG
485 || ann->mem_tag_kind == TYPE_TAG
486 || !is_global_var (var))
487 clear_call_clobbered (var);
488 }
489
490 /* Clear flow-sensitive points-to information from each SSA name. */
491 for (i = 1; i < num_ssa_names; i++)
492 {
493 tree name = ssa_name (i);
494
495 if (!name || !POINTER_TYPE_P (TREE_TYPE (name)))
496 continue;
497
498 if (SSA_NAME_PTR_INFO (name))
499 {
500 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (name);
501
502 /* Clear all the flags but keep the name tag to
503 avoid creating new temporaries unnecessarily. If
504 this pointer is found to point to a subset or
505 superset of its former points-to set, then a new
506 tag will need to be created in create_name_tags. */
507 pi->pt_anything = 0;
508 pi->pt_null = 0;
509 pi->value_escapes_p = 0;
510 pi->is_dereferenced = 0;
511 if (pi->pt_vars)
512 bitmap_clear (pi->pt_vars);
513 }
514 }
515 }
516
517 /* Next time, we will need to reset alias information. */
518 aliases_computed_p = true;
519
520 return ai;
521 }
522
523
524 /* Deallocate memory used by alias analysis. */
525
526 static void
527 delete_alias_info (struct alias_info *ai)
528 {
529 size_t i;
530 referenced_var_iterator rvi;
531 tree var;
532
533 sbitmap_free (ai->ssa_names_visited);
534 ai->processed_ptrs = NULL;
535
536 for (i = 0; i < ai->num_addressable_vars; i++)
537 free (ai->addressable_vars[i]);
538
539 FOR_EACH_REFERENCED_VAR(var, rvi)
540 {
541 var_ann_t ann = var_ann (var);
542 NUM_REFERENCES_CLEAR (ann);
543 }
544
545 free (ai->addressable_vars);
546
547 for (i = 0; i < ai->num_pointers; i++)
548 free (ai->pointers[i]);
549 free (ai->pointers);
550
551 BITMAP_FREE (ai->written_vars);
552 BITMAP_FREE (ai->dereferenced_ptrs_store);
553 BITMAP_FREE (ai->dereferenced_ptrs_load);
554 bitmap_obstack_release (&alias_obstack);
555 free (ai);
556
557 delete_points_to_sets ();
558 }
559
560
561 /* Create name tags for all the pointers that have been dereferenced.
562 We only create a name tag for a pointer P if P is found to point to
563 a set of variables (so that we can alias them to *P) or if it is
564 the result of a call to malloc (which means that P cannot point to
565 anything else nor alias any other variable).
566
567 If two pointers P and Q point to the same set of variables, they
568 are assigned the same name tag. */
569
570 static void
571 create_name_tags (void)
572 {
573 size_t i;
574
575 for (i = 1; i < num_ssa_names; i++)
576 {
577 tree ptr = ssa_name (i);
578 struct ptr_info_def *pi;
579
580 if (!ptr
581 || !POINTER_TYPE_P (TREE_TYPE (ptr))
582 || !SSA_NAME_PTR_INFO (ptr))
583 continue;
584
585 pi = SSA_NAME_PTR_INFO (ptr);
586
587 if (pi->pt_anything || !pi->is_dereferenced)
588 {
589 /* No name tags for pointers that have not been
590 dereferenced or point to an arbitrary location. */
591 pi->name_mem_tag = NULL_TREE;
592 continue;
593 }
594
595 if (pi->pt_vars && !bitmap_empty_p (pi->pt_vars))
596 {
597 size_t j;
598 tree old_name_tag = pi->name_mem_tag;
599
600 /* If PTR points to a set of variables, check if we don't
601 have another pointer Q with the same points-to set before
602 creating a tag. If so, use Q's tag instead of creating a
603 new one.
604
605 This is important for not creating unnecessary symbols
606 and also for copy propagation. If we ever need to
607 propagate PTR into Q or vice-versa, we would run into
608 problems if they both had different name tags because
609 they would have different SSA version numbers (which
610 would force us to take the name tags in and out of SSA). */
611 for (j = 1; j < i; j++)
612 {
613 tree q = ssa_name (j);
614 struct ptr_info_def *qi;
615
616 if (!q || !POINTER_TYPE_P (TREE_TYPE (q)))
617 continue;
618
619 qi = SSA_NAME_PTR_INFO (q);
620
621 if (qi
622 && qi->pt_vars
623 && qi->name_mem_tag
624 && bitmap_equal_p (pi->pt_vars, qi->pt_vars))
625 {
626 pi->name_mem_tag = qi->name_mem_tag;
627 break;
628 }
629 }
630
631 /* If we didn't find a pointer with the same points-to set
632 as PTR, create a new name tag if needed. */
633 if (pi->name_mem_tag == NULL_TREE)
634 pi->name_mem_tag = get_nmt_for (ptr);
635
636 /* If the new name tag computed for PTR is different than
637 the old name tag that it used to have, then the old tag
638 needs to be removed from the IL, so we mark it for
639 renaming. */
640 if (old_name_tag && old_name_tag != pi->name_mem_tag)
641 mark_sym_for_renaming (old_name_tag);
642 }
643 else
644 {
645 /* If the pointer does not point to a known spot, we should
646 use type tags. */
647 set_pt_anything (ptr);
648 continue;
649 }
650
651 TREE_THIS_VOLATILE (pi->name_mem_tag)
652 |= TREE_THIS_VOLATILE (TREE_TYPE (TREE_TYPE (ptr)));
653
654 /* Mark the new name tag for renaming. */
655 mark_sym_for_renaming (pi->name_mem_tag);
656 }
657 }
658
659
660 /* For every pointer P_i in AI->PROCESSED_PTRS, create may-alias sets for
661 the name memory tag (NMT) associated with P_i. If P_i escapes, then its
662 name tag and the variables it points-to are call-clobbered. Finally, if
663 P_i escapes and we could not determine where it points to, then all the
664 variables in the same alias set as *P_i are marked call-clobbered. This
665 is necessary because we must assume that P_i may take the address of any
666 variable in the same alias set. */
667
668 static void
669 compute_flow_sensitive_aliasing (struct alias_info *ai)
670 {
671 size_t i;
672
673 for (i = 0; i < VARRAY_ACTIVE_SIZE (ai->processed_ptrs); i++)
674 {
675 tree ptr = VARRAY_TREE (ai->processed_ptrs, i);
676 if (!find_what_p_points_to (ptr))
677 set_pt_anything (ptr);
678 }
679
680 create_name_tags ();
681
682 for (i = 0; i < VARRAY_ACTIVE_SIZE (ai->processed_ptrs); i++)
683 {
684 unsigned j;
685 tree ptr = VARRAY_TREE (ai->processed_ptrs, i);
686 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
687 var_ann_t v_ann = var_ann (SSA_NAME_VAR (ptr));
688 bitmap_iterator bi;
689
690 if (pi->value_escapes_p || pi->pt_anything)
691 {
692 /* If PTR escapes or may point to anything, then its associated
693 memory tags and pointed-to variables are call-clobbered. */
694 if (pi->name_mem_tag)
695 mark_call_clobbered (pi->name_mem_tag);
696
697 if (v_ann->type_mem_tag)
698 mark_call_clobbered (v_ann->type_mem_tag);
699
700 if (pi->pt_vars)
701 EXECUTE_IF_SET_IN_BITMAP (pi->pt_vars, 0, j, bi)
702 mark_call_clobbered (referenced_var (j));
703 }
704
705 /* Set up aliasing information for PTR's name memory tag (if it has
706 one). Note that only pointers that have been dereferenced will
707 have a name memory tag. */
708 if (pi->name_mem_tag && pi->pt_vars)
709 EXECUTE_IF_SET_IN_BITMAP (pi->pt_vars, 0, j, bi)
710 {
711 add_may_alias (pi->name_mem_tag, referenced_var (j));
712 add_may_alias (v_ann->type_mem_tag, referenced_var (j));
713 }
714
715 /* If the name tag is call clobbered, so is the type tag
716 associated with the base VAR_DECL. */
717 if (pi->name_mem_tag
718 && v_ann->type_mem_tag
719 && is_call_clobbered (pi->name_mem_tag))
720 mark_call_clobbered (v_ann->type_mem_tag);
721 }
722 }
723
724
725 /* Compute type-based alias sets. Traverse all the pointers and
726 addressable variables found in setup_pointers_and_addressables.
727
728 For every pointer P in AI->POINTERS and addressable variable V in
729 AI->ADDRESSABLE_VARS, add V to the may-alias sets of P's type
730 memory tag (TMT) if their alias sets conflict. V is then marked as
731 an alias tag so that the operand scanner knows that statements
732 containing V have aliased operands. */
733
734 static void
735 compute_flow_insensitive_aliasing (struct alias_info *ai)
736 {
737 size_t i;
738
739 /* Initialize counter for the total number of virtual operands that
740 aliasing will introduce. When AI->TOTAL_ALIAS_VOPS goes beyond the
741 threshold set by --params max-alias-vops, we enable alias
742 grouping. */
743 ai->total_alias_vops = 0;
744
745 /* For every pointer P, determine which addressable variables may alias
746 with P's type memory tag. */
747 for (i = 0; i < ai->num_pointers; i++)
748 {
749 size_t j;
750 struct alias_map_d *p_map = ai->pointers[i];
751 tree tag = var_ann (p_map->var)->type_mem_tag;
752 var_ann_t tag_ann = var_ann (tag);
753
754 p_map->total_alias_vops = 0;
755 p_map->may_aliases = BITMAP_ALLOC (&alias_obstack);
756
757 for (j = 0; j < ai->num_addressable_vars; j++)
758 {
759 struct alias_map_d *v_map;
760 var_ann_t v_ann;
761 tree var;
762 bool tag_stored_p, var_stored_p;
763
764 v_map = ai->addressable_vars[j];
765 var = v_map->var;
766 v_ann = var_ann (var);
767
768 /* Skip memory tags and variables that have never been
769 written to. We also need to check if the variables are
770 call-clobbered because they may be overwritten by
771 function calls.
772
773 Note this is effectively random accessing elements in
774 the sparse bitset, which can be highly inefficient.
775 So we first check the call_clobbered status of the
776 tag and variable before querying the bitmap. */
777 tag_stored_p = is_call_clobbered (tag)
778 || bitmap_bit_p (ai->written_vars, DECL_UID (tag));
779 var_stored_p = is_call_clobbered (var)
780 || bitmap_bit_p (ai->written_vars, DECL_UID (var));
781 if (!tag_stored_p && !var_stored_p)
782 continue;
783
784 if (may_alias_p (p_map->var, p_map->set, var, v_map->set))
785 {
786 subvar_t svars;
787 size_t num_tag_refs, num_var_refs;
788
789 num_tag_refs = NUM_REFERENCES (tag_ann);
790 num_var_refs = NUM_REFERENCES (v_ann);
791
792 /* Add VAR to TAG's may-aliases set. */
793
794 /* If this is an aggregate, we may have subvariables for it
795 that need to be pointed to. */
796 if (var_can_have_subvars (var)
797 && (svars = get_subvars_for_var (var)))
798 {
799 subvar_t sv;
800
801 for (sv = svars; sv; sv = sv->next)
802 {
803 add_may_alias (tag, sv->var);
804 /* Update the bitmap used to represent TAG's alias set
805 in case we need to group aliases. */
806 bitmap_set_bit (p_map->may_aliases, DECL_UID (sv->var));
807 }
808 }
809 else
810 {
811 add_may_alias (tag, var);
812 /* Update the bitmap used to represent TAG's alias set
813 in case we need to group aliases. */
814 bitmap_set_bit (p_map->may_aliases, DECL_UID (var));
815 }
816
817 /* Update the total number of virtual operands due to
818 aliasing. Since we are adding one more alias to TAG's
819 may-aliases set, the total number of virtual operands due
820 to aliasing will be increased by the number of references
821 made to VAR and TAG (every reference to TAG will also
822 count as a reference to VAR). */
823 ai->total_alias_vops += (num_var_refs + num_tag_refs);
824 p_map->total_alias_vops += (num_var_refs + num_tag_refs);
825
826
827 }
828 }
829 }
830
831 /* Since this analysis is based exclusively on symbols, it fails to
832 handle cases where two pointers P and Q have different memory
833 tags with conflicting alias set numbers but no aliased symbols in
834 common.
835
836 For example, suppose that we have two memory tags TMT.1 and TMT.2
837 such that
838
839 may-aliases (TMT.1) = { a }
840 may-aliases (TMT.2) = { b }
841
842 and the alias set number of TMT.1 conflicts with that of TMT.2.
843 Since they don't have symbols in common, loads and stores from
844 TMT.1 and TMT.2 will seem independent of each other, which will
845 lead to the optimizers making invalid transformations (see
846 testsuite/gcc.c-torture/execute/pr15262-[12].c).
847
848 To avoid this problem, we do a final traversal of AI->POINTERS
849 looking for pairs of pointers that have no aliased symbols in
850 common and yet have conflicting alias set numbers. */
851 for (i = 0; i < ai->num_pointers; i++)
852 {
853 size_t j;
854 struct alias_map_d *p_map1 = ai->pointers[i];
855 tree tag1 = var_ann (p_map1->var)->type_mem_tag;
856 bitmap may_aliases1 = p_map1->may_aliases;
857
858 for (j = i + 1; j < ai->num_pointers; j++)
859 {
860 struct alias_map_d *p_map2 = ai->pointers[j];
861 tree tag2 = var_ann (p_map2->var)->type_mem_tag;
862 bitmap may_aliases2 = p_map2->may_aliases;
863
864 /* If the pointers may not point to each other, do nothing. */
865 if (!may_alias_p (p_map1->var, p_map1->set, tag2, p_map2->set))
866 continue;
867
868 /* The two pointers may alias each other. If they already have
869 symbols in common, do nothing. */
870 if (bitmap_intersect_p (may_aliases1, may_aliases2))
871 continue;
872
873 if (!bitmap_empty_p (may_aliases2))
874 {
875 unsigned int k;
876 bitmap_iterator bi;
877
878 /* Add all the aliases for TAG2 into TAG1's alias set.
879 FIXME, update grouping heuristic counters. */
880 EXECUTE_IF_SET_IN_BITMAP (may_aliases2, 0, k, bi)
881 add_may_alias (tag1, referenced_var (k));
882 bitmap_ior_into (may_aliases1, may_aliases2);
883 }
884 else
885 {
886 /* Since TAG2 does not have any aliases of its own, add
887 TAG2 itself to the alias set of TAG1. */
888 add_may_alias (tag1, tag2);
889 bitmap_set_bit (may_aliases1, DECL_UID (tag2));
890 }
891 }
892 }
893
894 if (dump_file)
895 fprintf (dump_file, "\n%s: Total number of aliased vops: %ld\n",
896 get_name (current_function_decl),
897 ai->total_alias_vops);
898
899 /* Determine if we need to enable alias grouping. */
900 if (ai->total_alias_vops >= MAX_ALIASED_VOPS)
901 group_aliases (ai);
902 }
903
904
905 /* Comparison function for qsort used in group_aliases. */
906
907 static int
908 total_alias_vops_cmp (const void *p, const void *q)
909 {
910 const struct alias_map_d **p1 = (const struct alias_map_d **)p;
911 const struct alias_map_d **p2 = (const struct alias_map_d **)q;
912 long n1 = (*p1)->total_alias_vops;
913 long n2 = (*p2)->total_alias_vops;
914
915 /* We want to sort in descending order. */
916 return (n1 > n2 ? -1 : (n1 == n2) ? 0 : 1);
917 }
918
919 /* Group all the aliases for TAG to make TAG represent all the
920 variables in its alias set. Update the total number
921 of virtual operands due to aliasing (AI->TOTAL_ALIAS_VOPS). This
922 function will make TAG be the unique alias tag for all the
923 variables in its may-aliases. So, given:
924
925 may-aliases(TAG) = { V1, V2, V3 }
926
927 This function will group the variables into:
928
929 may-aliases(V1) = { TAG }
930 may-aliases(V2) = { TAG }
931 may-aliases(V2) = { TAG } */
932
933 static void
934 group_aliases_into (tree tag, bitmap tag_aliases, struct alias_info *ai)
935 {
936 unsigned int i;
937 var_ann_t tag_ann = var_ann (tag);
938 size_t num_tag_refs = NUM_REFERENCES (tag_ann);
939 bitmap_iterator bi;
940
941 EXECUTE_IF_SET_IN_BITMAP (tag_aliases, 0, i, bi)
942 {
943 tree var = referenced_var (i);
944 var_ann_t ann = var_ann (var);
945
946 /* Make TAG the unique alias of VAR. */
947 ann->is_alias_tag = 0;
948 ann->may_aliases = NULL;
949
950 /* Note that VAR and TAG may be the same if the function has no
951 addressable variables (see the discussion at the end of
952 setup_pointers_and_addressables). */
953 if (var != tag)
954 add_may_alias (var, tag);
955
956 /* Reduce total number of virtual operands contributed
957 by TAG on behalf of VAR. Notice that the references to VAR
958 itself won't be removed. We will merely replace them with
959 references to TAG. */
960 ai->total_alias_vops -= num_tag_refs;
961 }
962
963 /* We have reduced the number of virtual operands that TAG makes on
964 behalf of all the variables formerly aliased with it. However,
965 we have also "removed" all the virtual operands for TAG itself,
966 so we add them back. */
967 ai->total_alias_vops += num_tag_refs;
968
969 /* TAG no longer has any aliases. */
970 tag_ann->may_aliases = NULL;
971 }
972
973
974 /* Group may-aliases sets to reduce the number of virtual operands due
975 to aliasing.
976
977 1- Sort the list of pointers in decreasing number of contributed
978 virtual operands.
979
980 2- Take the first entry in AI->POINTERS and revert the role of
981 the memory tag and its aliases. Usually, whenever an aliased
982 variable Vi is found to alias with a memory tag T, we add Vi
983 to the may-aliases set for T. Meaning that after alias
984 analysis, we will have:
985
986 may-aliases(T) = { V1, V2, V3, ..., Vn }
987
988 This means that every statement that references T, will get 'n'
989 virtual operands for each of the Vi tags. But, when alias
990 grouping is enabled, we make T an alias tag and add it to the
991 alias set of all the Vi variables:
992
993 may-aliases(V1) = { T }
994 may-aliases(V2) = { T }
995 ...
996 may-aliases(Vn) = { T }
997
998 This has two effects: (a) statements referencing T will only get
999 a single virtual operand, and, (b) all the variables Vi will now
1000 appear to alias each other. So, we lose alias precision to
1001 improve compile time. But, in theory, a program with such a high
1002 level of aliasing should not be very optimizable in the first
1003 place.
1004
1005 3- Since variables may be in the alias set of more than one
1006 memory tag, the grouping done in step (2) needs to be extended
1007 to all the memory tags that have a non-empty intersection with
1008 the may-aliases set of tag T. For instance, if we originally
1009 had these may-aliases sets:
1010
1011 may-aliases(T) = { V1, V2, V3 }
1012 may-aliases(R) = { V2, V4 }
1013
1014 In step (2) we would have reverted the aliases for T as:
1015
1016 may-aliases(V1) = { T }
1017 may-aliases(V2) = { T }
1018 may-aliases(V3) = { T }
1019
1020 But note that now V2 is no longer aliased with R. We could
1021 add R to may-aliases(V2), but we are in the process of
1022 grouping aliases to reduce virtual operands so what we do is
1023 add V4 to the grouping to obtain:
1024
1025 may-aliases(V1) = { T }
1026 may-aliases(V2) = { T }
1027 may-aliases(V3) = { T }
1028 may-aliases(V4) = { T }
1029
1030 4- If the total number of virtual operands due to aliasing is
1031 still above the threshold set by max-alias-vops, go back to (2). */
1032
1033 static void
1034 group_aliases (struct alias_info *ai)
1035 {
1036 size_t i;
1037
1038 /* Sort the POINTERS array in descending order of contributed
1039 virtual operands. */
1040 qsort (ai->pointers, ai->num_pointers, sizeof (struct alias_map_d *),
1041 total_alias_vops_cmp);
1042
1043 /* For every pointer in AI->POINTERS, reverse the roles of its tag
1044 and the tag's may-aliases set. */
1045 for (i = 0; i < ai->num_pointers; i++)
1046 {
1047 size_t j;
1048 tree tag1 = var_ann (ai->pointers[i]->var)->type_mem_tag;
1049 bitmap tag1_aliases = ai->pointers[i]->may_aliases;
1050
1051 /* Skip tags that have been grouped already. */
1052 if (ai->pointers[i]->grouped_p)
1053 continue;
1054
1055 /* See if TAG1 had any aliases in common with other type tags.
1056 If we find a TAG2 with common aliases with TAG1, add TAG2's
1057 aliases into TAG1. */
1058 for (j = i + 1; j < ai->num_pointers; j++)
1059 {
1060 bitmap tag2_aliases = ai->pointers[j]->may_aliases;
1061
1062 if (bitmap_intersect_p (tag1_aliases, tag2_aliases))
1063 {
1064 tree tag2 = var_ann (ai->pointers[j]->var)->type_mem_tag;
1065
1066 bitmap_ior_into (tag1_aliases, tag2_aliases);
1067
1068 /* TAG2 does not need its aliases anymore. */
1069 bitmap_clear (tag2_aliases);
1070 var_ann (tag2)->may_aliases = NULL;
1071
1072 /* TAG1 is the unique alias of TAG2. */
1073 add_may_alias (tag2, tag1);
1074
1075 ai->pointers[j]->grouped_p = true;
1076 }
1077 }
1078
1079 /* Now group all the aliases we collected into TAG1. */
1080 group_aliases_into (tag1, tag1_aliases, ai);
1081
1082 /* If we've reduced total number of virtual operands below the
1083 threshold, stop. */
1084 if (ai->total_alias_vops < MAX_ALIASED_VOPS)
1085 break;
1086 }
1087
1088 /* Finally, all the variables that have been grouped cannot be in
1089 the may-alias set of name memory tags. Suppose that we have
1090 grouped the aliases in this code so that may-aliases(a) = TMT.20
1091
1092 p_5 = &a;
1093 ...
1094 # a_9 = V_MAY_DEF <a_8>
1095 p_5->field = 0
1096 ... Several modifications to TMT.20 ...
1097 # VUSE <a_9>
1098 x_30 = p_5->field
1099
1100 Since p_5 points to 'a', the optimizers will try to propagate 0
1101 into p_5->field, but that is wrong because there have been
1102 modifications to 'TMT.20' in between. To prevent this we have to
1103 replace 'a' with 'TMT.20' in the name tag of p_5. */
1104 for (i = 0; i < VARRAY_ACTIVE_SIZE (ai->processed_ptrs); i++)
1105 {
1106 size_t j;
1107 tree ptr = VARRAY_TREE (ai->processed_ptrs, i);
1108 tree name_tag = SSA_NAME_PTR_INFO (ptr)->name_mem_tag;
1109 varray_type aliases;
1110
1111 if (name_tag == NULL_TREE)
1112 continue;
1113
1114 aliases = var_ann (name_tag)->may_aliases;
1115 for (j = 0; aliases && j < VARRAY_ACTIVE_SIZE (aliases); j++)
1116 {
1117 tree alias = VARRAY_TREE (aliases, j);
1118 var_ann_t ann = var_ann (alias);
1119
1120 if ((ann->mem_tag_kind == NOT_A_TAG
1121 || ann->mem_tag_kind == STRUCT_FIELD)
1122 && ann->may_aliases)
1123 {
1124 tree new_alias;
1125
1126 gcc_assert (VARRAY_ACTIVE_SIZE (ann->may_aliases) == 1);
1127
1128 new_alias = VARRAY_TREE (ann->may_aliases, 0);
1129 replace_may_alias (name_tag, j, new_alias);
1130 }
1131 }
1132 }
1133
1134 if (dump_file)
1135 fprintf (dump_file,
1136 "%s: Total number of aliased vops after grouping: %ld%s\n",
1137 get_name (current_function_decl),
1138 ai->total_alias_vops,
1139 (ai->total_alias_vops < 0) ? " (negative values are OK)" : "");
1140 }
1141
1142
1143 /* Create a new alias set entry for VAR in AI->ADDRESSABLE_VARS. */
1144
1145 static void
1146 create_alias_map_for (tree var, struct alias_info *ai)
1147 {
1148 struct alias_map_d *alias_map;
1149 alias_map = xcalloc (1, sizeof (*alias_map));
1150 alias_map->var = var;
1151 alias_map->set = get_alias_set (var);
1152 ai->addressable_vars[ai->num_addressable_vars++] = alias_map;
1153 }
1154
1155
1156 /* Create memory tags for all the dereferenced pointers and build the
1157 ADDRESSABLE_VARS and POINTERS arrays used for building the may-alias
1158 sets. Based on the address escape and points-to information collected
1159 earlier, this pass will also clear the TREE_ADDRESSABLE flag from those
1160 variables whose address is not needed anymore. */
1161
1162 static void
1163 setup_pointers_and_addressables (struct alias_info *ai)
1164 {
1165 size_t n_vars, num_addressable_vars, num_pointers;
1166 referenced_var_iterator rvi;
1167 tree var;
1168
1169 /* Size up the arrays ADDRESSABLE_VARS and POINTERS. */
1170 num_addressable_vars = num_pointers = 0;
1171
1172 FOR_EACH_REFERENCED_VAR (var, rvi)
1173 {
1174 if (may_be_aliased (var))
1175 num_addressable_vars++;
1176
1177 if (POINTER_TYPE_P (TREE_TYPE (var)))
1178 {
1179 /* Since we don't keep track of volatile variables, assume that
1180 these pointers are used in indirect store operations. */
1181 if (TREE_THIS_VOLATILE (var))
1182 bitmap_set_bit (ai->dereferenced_ptrs_store, DECL_UID (var));
1183
1184 num_pointers++;
1185 }
1186 }
1187
1188 /* Create ADDRESSABLE_VARS and POINTERS. Note that these arrays are
1189 always going to be slightly bigger than we actually need them
1190 because some TREE_ADDRESSABLE variables will be marked
1191 non-addressable below and only pointers with unique type tags are
1192 going to be added to POINTERS. */
1193 ai->addressable_vars = xcalloc (num_addressable_vars,
1194 sizeof (struct alias_map_d *));
1195 ai->pointers = xcalloc (num_pointers, sizeof (struct alias_map_d *));
1196 ai->num_addressable_vars = 0;
1197 ai->num_pointers = 0;
1198
1199 /* Since we will be creating type memory tags within this loop, cache the
1200 value of NUM_REFERENCED_VARS to avoid processing the additional tags
1201 unnecessarily. */
1202 n_vars = num_referenced_vars;
1203
1204 FOR_EACH_REFERENCED_VAR (var, rvi)
1205 {
1206 var_ann_t v_ann = var_ann (var);
1207 subvar_t svars;
1208
1209 /* Name memory tags already have flow-sensitive aliasing
1210 information, so they need not be processed by
1211 compute_flow_insensitive_aliasing. Similarly, type memory
1212 tags are already accounted for when we process their
1213 associated pointer.
1214
1215 Structure fields, on the other hand, have to have some of this
1216 information processed for them, but it's pointless to mark them
1217 non-addressable (since they are fake variables anyway). */
1218 if (v_ann->mem_tag_kind != NOT_A_TAG
1219 && v_ann->mem_tag_kind != STRUCT_FIELD)
1220 continue;
1221
1222 /* Remove the ADDRESSABLE flag from every addressable variable whose
1223 address is not needed anymore. This is caused by the propagation
1224 of ADDR_EXPR constants into INDIRECT_REF expressions and the
1225 removal of dead pointer assignments done by the early scalar
1226 cleanup passes. */
1227 if (TREE_ADDRESSABLE (var))
1228 {
1229 if (!bitmap_bit_p (addressable_vars, DECL_UID (var))
1230 && TREE_CODE (var) != RESULT_DECL
1231 && !is_global_var (var))
1232 {
1233 bool okay_to_mark = true;
1234
1235 /* Since VAR is now a regular GIMPLE register, we will need
1236 to rename VAR into SSA afterwards. */
1237 mark_sym_for_renaming (var);
1238
1239 /* If VAR can have sub-variables, and any of its
1240 sub-variables has its address taken, then we cannot
1241 remove the addressable flag from VAR. */
1242 if (var_can_have_subvars (var)
1243 && (svars = get_subvars_for_var (var)))
1244 {
1245 subvar_t sv;
1246
1247 for (sv = svars; sv; sv = sv->next)
1248 {
1249 if (bitmap_bit_p (addressable_vars, DECL_UID (sv->var)))
1250 okay_to_mark = false;
1251 mark_sym_for_renaming (sv->var);
1252 }
1253 }
1254
1255 /* The address of VAR is not needed, remove the
1256 addressable bit, so that it can be optimized as a
1257 regular variable. */
1258 if (okay_to_mark)
1259 mark_non_addressable (var);
1260 }
1261 }
1262
1263 /* Global variables and addressable locals may be aliased. Create an
1264 entry in ADDRESSABLE_VARS for VAR. */
1265 if (may_be_aliased (var))
1266 {
1267 create_alias_map_for (var, ai);
1268 mark_sym_for_renaming (var);
1269 }
1270
1271 /* Add pointer variables that have been dereferenced to the POINTERS
1272 array and create a type memory tag for them. */
1273 if (POINTER_TYPE_P (TREE_TYPE (var)))
1274 {
1275 if ((bitmap_bit_p (ai->dereferenced_ptrs_store, DECL_UID (var))
1276 || bitmap_bit_p (ai->dereferenced_ptrs_load, DECL_UID (var))))
1277 {
1278 tree tag;
1279 var_ann_t t_ann;
1280
1281 /* If pointer VAR still doesn't have a memory tag
1282 associated with it, create it now or re-use an
1283 existing one. */
1284 tag = get_tmt_for (var, ai);
1285 t_ann = var_ann (tag);
1286
1287 /* The type tag will need to be renamed into SSA
1288 afterwards. Note that we cannot do this inside
1289 get_tmt_for because aliasing may run multiple times
1290 and we only create type tags the first time. */
1291 mark_sym_for_renaming (tag);
1292
1293 /* Similarly, if pointer VAR used to have another type
1294 tag, we will need to process it in the renamer to
1295 remove the stale virtual operands. */
1296 if (v_ann->type_mem_tag)
1297 mark_sym_for_renaming (v_ann->type_mem_tag);
1298
1299 /* Associate the tag with pointer VAR. */
1300 v_ann->type_mem_tag = tag;
1301
1302 /* If pointer VAR has been used in a store operation,
1303 then its memory tag must be marked as written-to. */
1304 if (bitmap_bit_p (ai->dereferenced_ptrs_store, DECL_UID (var)))
1305 bitmap_set_bit (ai->written_vars, DECL_UID (tag));
1306
1307 /* If pointer VAR is a global variable or a PARM_DECL,
1308 then its memory tag should be considered a global
1309 variable. */
1310 if (TREE_CODE (var) == PARM_DECL || is_global_var (var))
1311 mark_call_clobbered (tag);
1312
1313 /* All the dereferences of pointer VAR count as
1314 references of TAG. Since TAG can be associated with
1315 several pointers, add the dereferences of VAR to the
1316 TAG. */
1317 NUM_REFERENCES_SET (t_ann,
1318 NUM_REFERENCES (t_ann)
1319 + NUM_REFERENCES (v_ann));
1320 }
1321 else
1322 {
1323 /* The pointer has not been dereferenced. If it had a
1324 type memory tag, remove it and mark the old tag for
1325 renaming to remove it out of the IL. */
1326 var_ann_t ann = var_ann (var);
1327 tree tag = ann->type_mem_tag;
1328 if (tag)
1329 {
1330 mark_sym_for_renaming (tag);
1331 ann->type_mem_tag = NULL_TREE;
1332 }
1333 }
1334 }
1335 }
1336 }
1337
1338
1339 /* Determine whether to use .GLOBAL_VAR to model call clobbering semantics. At
1340 every call site, we need to emit V_MAY_DEF expressions to represent the
1341 clobbering effects of the call for variables whose address escapes the
1342 current function.
1343
1344 One approach is to group all call-clobbered variables into a single
1345 representative that is used as an alias of every call-clobbered variable
1346 (.GLOBAL_VAR). This works well, but it ties the optimizer hands because
1347 references to any call clobbered variable is a reference to .GLOBAL_VAR.
1348
1349 The second approach is to emit a clobbering V_MAY_DEF for every
1350 call-clobbered variable at call sites. This is the preferred way in terms
1351 of optimization opportunities but it may create too many V_MAY_DEF operands
1352 if there are many call clobbered variables and function calls in the
1353 function.
1354
1355 To decide whether or not to use .GLOBAL_VAR we multiply the number of
1356 function calls found by the number of call-clobbered variables. If that
1357 product is beyond a certain threshold, as determined by the parameterized
1358 values shown below, we use .GLOBAL_VAR.
1359
1360 FIXME. This heuristic should be improved. One idea is to use several
1361 .GLOBAL_VARs of different types instead of a single one. The thresholds
1362 have been derived from a typical bootstrap cycle, including all target
1363 libraries. Compile times were found increase by ~1% compared to using
1364 .GLOBAL_VAR. */
1365
1366 static void
1367 maybe_create_global_var (struct alias_info *ai)
1368 {
1369 unsigned i, n_clobbered;
1370 bitmap_iterator bi;
1371
1372 /* No need to create it, if we have one already. */
1373 if (global_var == NULL_TREE)
1374 {
1375 /* Count all the call-clobbered variables. */
1376 n_clobbered = 0;
1377 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
1378 {
1379 n_clobbered++;
1380 }
1381
1382 /* If the number of virtual operands that would be needed to
1383 model all the call-clobbered variables is larger than
1384 GLOBAL_VAR_THRESHOLD, create .GLOBAL_VAR.
1385
1386 Also create .GLOBAL_VAR if there are no call-clobbered
1387 variables and the program contains a mixture of pure/const
1388 and regular function calls. This is to avoid the problem
1389 described in PR 20115:
1390
1391 int X;
1392 int func_pure (void) { return X; }
1393 int func_non_pure (int a) { X += a; }
1394 int foo ()
1395 {
1396 int a = func_pure ();
1397 func_non_pure (a);
1398 a = func_pure ();
1399 return a;
1400 }
1401
1402 Since foo() has no call-clobbered variables, there is
1403 no relationship between the calls to func_pure and
1404 func_non_pure. Since func_pure has no side-effects, value
1405 numbering optimizations elide the second call to func_pure.
1406 So, if we have some pure/const and some regular calls in the
1407 program we create .GLOBAL_VAR to avoid missing these
1408 relations. */
1409 if (ai->num_calls_found * n_clobbered >= (size_t) GLOBAL_VAR_THRESHOLD
1410 || (n_clobbered == 0
1411 && ai->num_calls_found > 0
1412 && ai->num_pure_const_calls_found > 0
1413 && ai->num_calls_found > ai->num_pure_const_calls_found))
1414 create_global_var ();
1415 }
1416
1417 /* Mark all call-clobbered symbols for renaming. Since the initial
1418 rewrite into SSA ignored all call sites, we may need to rename
1419 .GLOBAL_VAR and the call-clobbered variables. */
1420 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
1421 {
1422 tree var = referenced_var (i);
1423
1424 /* If the function has calls to clobbering functions and
1425 .GLOBAL_VAR has been created, make it an alias for all
1426 call-clobbered variables. */
1427 if (global_var && var != global_var)
1428 {
1429 subvar_t svars;
1430 add_may_alias (var, global_var);
1431 if (var_can_have_subvars (var)
1432 && (svars = get_subvars_for_var (var)))
1433 {
1434 subvar_t sv;
1435 for (sv = svars; sv; sv = sv->next)
1436 mark_sym_for_renaming (sv->var);
1437 }
1438 }
1439
1440 mark_sym_for_renaming (var);
1441 }
1442 }
1443
1444
1445 /* Return TRUE if pointer PTR may point to variable VAR.
1446
1447 MEM_ALIAS_SET is the alias set for the memory location pointed-to by PTR
1448 This is needed because when checking for type conflicts we are
1449 interested in the alias set of the memory location pointed-to by
1450 PTR. The alias set of PTR itself is irrelevant.
1451
1452 VAR_ALIAS_SET is the alias set for VAR. */
1453
1454 static bool
1455 may_alias_p (tree ptr, HOST_WIDE_INT mem_alias_set,
1456 tree var, HOST_WIDE_INT var_alias_set)
1457 {
1458 tree mem;
1459 var_ann_t m_ann;
1460
1461 alias_stats.alias_queries++;
1462 alias_stats.simple_queries++;
1463
1464 /* By convention, a variable cannot alias itself. */
1465 mem = var_ann (ptr)->type_mem_tag;
1466 if (mem == var)
1467 {
1468 alias_stats.alias_noalias++;
1469 alias_stats.simple_resolved++;
1470 return false;
1471 }
1472
1473 /* If -fargument-noalias-global is >1, pointer arguments may
1474 not point to global variables. */
1475 if (flag_argument_noalias > 1 && is_global_var (var)
1476 && TREE_CODE (ptr) == PARM_DECL)
1477 {
1478 alias_stats.alias_noalias++;
1479 alias_stats.simple_resolved++;
1480 return false;
1481 }
1482
1483 /* If either MEM or VAR is a read-only global and the other one
1484 isn't, then PTR cannot point to VAR. */
1485 if ((unmodifiable_var_p (mem) && !unmodifiable_var_p (var))
1486 || (unmodifiable_var_p (var) && !unmodifiable_var_p (mem)))
1487 {
1488 alias_stats.alias_noalias++;
1489 alias_stats.simple_resolved++;
1490 return false;
1491 }
1492
1493 m_ann = var_ann (mem);
1494
1495 gcc_assert (m_ann->mem_tag_kind == TYPE_TAG);
1496
1497 alias_stats.tbaa_queries++;
1498
1499 /* If VAR is a pointer with the same alias set as PTR, then dereferencing
1500 PTR can't possibly affect VAR. Note, that we are specifically testing
1501 for PTR's alias set here, not its pointed-to type. We also can't
1502 do this check with relaxed aliasing enabled. */
1503 if (POINTER_TYPE_P (TREE_TYPE (var))
1504 && var_alias_set != 0
1505 && mem_alias_set != 0)
1506 {
1507 HOST_WIDE_INT ptr_alias_set = get_alias_set (ptr);
1508 if (ptr_alias_set == var_alias_set)
1509 {
1510 alias_stats.alias_noalias++;
1511 alias_stats.tbaa_resolved++;
1512 return false;
1513 }
1514 }
1515
1516 /* If the alias sets don't conflict then MEM cannot alias VAR. */
1517 if (!alias_sets_conflict_p (mem_alias_set, var_alias_set))
1518 {
1519 alias_stats.alias_noalias++;
1520 alias_stats.tbaa_resolved++;
1521 return false;
1522 }
1523 alias_stats.alias_mayalias++;
1524 return true;
1525 }
1526
1527
1528 /* Add ALIAS to the set of variables that may alias VAR. */
1529
1530 static void
1531 add_may_alias (tree var, tree alias)
1532 {
1533 size_t i;
1534 var_ann_t v_ann = get_var_ann (var);
1535 var_ann_t a_ann = get_var_ann (alias);
1536
1537 /* Don't allow self-referential aliases. */
1538 gcc_assert (var != alias);
1539
1540 /* ALIAS must be addressable if it's being added to an alias set. */
1541 #if 1
1542 TREE_ADDRESSABLE (alias) = 1;
1543 #else
1544 gcc_assert (may_be_aliased (alias));
1545 #endif
1546
1547 if (v_ann->may_aliases == NULL)
1548 VARRAY_TREE_INIT (v_ann->may_aliases, 2, "aliases");
1549
1550 /* Avoid adding duplicates. */
1551 for (i = 0; i < VARRAY_ACTIVE_SIZE (v_ann->may_aliases); i++)
1552 if (alias == VARRAY_TREE (v_ann->may_aliases, i))
1553 return;
1554
1555 /* If VAR is a call-clobbered variable, so is its new ALIAS.
1556 FIXME, call-clobbering should only depend on whether an address
1557 escapes. It should be independent of aliasing. */
1558 if (is_call_clobbered (var))
1559 mark_call_clobbered (alias);
1560
1561 /* Likewise. If ALIAS is call-clobbered, so is VAR. */
1562 else if (is_call_clobbered (alias))
1563 mark_call_clobbered (var);
1564
1565 VARRAY_PUSH_TREE (v_ann->may_aliases, alias);
1566 a_ann->is_alias_tag = 1;
1567 }
1568
1569
1570 /* Replace alias I in the alias sets of VAR with NEW_ALIAS. */
1571
1572 static void
1573 replace_may_alias (tree var, size_t i, tree new_alias)
1574 {
1575 var_ann_t v_ann = var_ann (var);
1576 VARRAY_TREE (v_ann->may_aliases, i) = new_alias;
1577
1578 /* If VAR is a call-clobbered variable, so is NEW_ALIAS.
1579 FIXME, call-clobbering should only depend on whether an address
1580 escapes. It should be independent of aliasing. */
1581 if (is_call_clobbered (var))
1582 mark_call_clobbered (new_alias);
1583
1584 /* Likewise. If NEW_ALIAS is call-clobbered, so is VAR. */
1585 else if (is_call_clobbered (new_alias))
1586 mark_call_clobbered (var);
1587 }
1588
1589
1590 /* Mark pointer PTR as pointing to an arbitrary memory location. */
1591
1592 static void
1593 set_pt_anything (tree ptr)
1594 {
1595 struct ptr_info_def *pi = get_ptr_info (ptr);
1596
1597 pi->pt_anything = 1;
1598 pi->pt_vars = NULL;
1599
1600 /* The pointer used to have a name tag, but we now found it pointing
1601 to an arbitrary location. The name tag needs to be renamed and
1602 disassociated from PTR. */
1603 if (pi->name_mem_tag)
1604 {
1605 mark_sym_for_renaming (pi->name_mem_tag);
1606 pi->name_mem_tag = NULL_TREE;
1607 }
1608 }
1609
1610
1611 /* Return true if STMT is an "escape" site from the current function. Escape
1612 sites those statements which might expose the address of a variable
1613 outside the current function. STMT is an escape site iff:
1614
1615 1- STMT is a function call, or
1616 2- STMT is an __asm__ expression, or
1617 3- STMT is an assignment to a non-local variable, or
1618 4- STMT is a return statement.
1619
1620 AI points to the alias information collected so far. */
1621
1622 bool
1623 is_escape_site (tree stmt, struct alias_info *ai)
1624 {
1625 tree call = get_call_expr_in (stmt);
1626 if (call != NULL_TREE)
1627 {
1628 ai->num_calls_found++;
1629
1630 if (!TREE_SIDE_EFFECTS (call))
1631 ai->num_pure_const_calls_found++;
1632
1633 return true;
1634 }
1635 else if (TREE_CODE (stmt) == ASM_EXPR)
1636 return true;
1637 else if (TREE_CODE (stmt) == MODIFY_EXPR)
1638 {
1639 tree lhs = TREE_OPERAND (stmt, 0);
1640
1641 /* Get to the base of _REF nodes. */
1642 if (TREE_CODE (lhs) != SSA_NAME)
1643 lhs = get_base_address (lhs);
1644
1645 /* If we couldn't recognize the LHS of the assignment, assume that it
1646 is a non-local store. */
1647 if (lhs == NULL_TREE)
1648 return true;
1649
1650 /* If the RHS is a conversion between a pointer and an integer, the
1651 pointer escapes since we can't track the integer. */
1652 if ((TREE_CODE (TREE_OPERAND (stmt, 1)) == NOP_EXPR
1653 || TREE_CODE (TREE_OPERAND (stmt, 1)) == CONVERT_EXPR
1654 || TREE_CODE (TREE_OPERAND (stmt, 1)) == VIEW_CONVERT_EXPR)
1655 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND
1656 (TREE_OPERAND (stmt, 1), 0)))
1657 && !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (stmt, 1))))
1658 return true;
1659
1660 /* If the LHS is an SSA name, it can't possibly represent a non-local
1661 memory store. */
1662 if (TREE_CODE (lhs) == SSA_NAME)
1663 return false;
1664
1665 /* FIXME: LHS is not an SSA_NAME. Even if it's an assignment to a
1666 local variables we cannot be sure if it will escape, because we
1667 don't have information about objects not in SSA form. Need to
1668 implement something along the lines of
1669
1670 J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P.
1671 Midkiff, ``Escape analysis for java,'' in Proceedings of the
1672 Conference on Object-Oriented Programming Systems, Languages, and
1673 Applications (OOPSLA), pp. 1-19, 1999. */
1674 return true;
1675 }
1676 else if (TREE_CODE (stmt) == RETURN_EXPR)
1677 return true;
1678
1679 return false;
1680 }
1681
1682
1683 /* Create a new memory tag of type TYPE. If IS_TYPE_TAG is true, the tag
1684 is considered to represent all the pointers whose pointed-to types are
1685 in the same alias set class. Otherwise, the tag represents a single
1686 SSA_NAME pointer variable. */
1687
1688 static tree
1689 create_memory_tag (tree type, bool is_type_tag)
1690 {
1691 var_ann_t ann;
1692 tree tag = create_tmp_var_raw (type, (is_type_tag) ? "TMT" : "NMT");
1693
1694 /* By default, memory tags are local variables. Alias analysis will
1695 determine whether they should be considered globals. */
1696 DECL_CONTEXT (tag) = current_function_decl;
1697
1698 /* Memory tags are by definition addressable. */
1699 TREE_ADDRESSABLE (tag) = 1;
1700
1701 ann = get_var_ann (tag);
1702 ann->mem_tag_kind = (is_type_tag) ? TYPE_TAG : NAME_TAG;
1703 ann->type_mem_tag = NULL_TREE;
1704
1705 /* Add the tag to the symbol table. */
1706 add_referenced_tmp_var (tag);
1707
1708 return tag;
1709 }
1710
1711
1712 /* Create a name memory tag to represent a specific SSA_NAME pointer P_i.
1713 This is used if P_i has been found to point to a specific set of
1714 variables or to a non-aliased memory location like the address returned
1715 by malloc functions. */
1716
1717 static tree
1718 get_nmt_for (tree ptr)
1719 {
1720 struct ptr_info_def *pi = get_ptr_info (ptr);
1721 tree tag = pi->name_mem_tag;
1722
1723 if (tag == NULL_TREE)
1724 tag = create_memory_tag (TREE_TYPE (TREE_TYPE (ptr)), false);
1725
1726 /* If PTR is a PARM_DECL, it points to a global variable or malloc,
1727 then its name tag should be considered a global variable. */
1728 if (TREE_CODE (SSA_NAME_VAR (ptr)) == PARM_DECL
1729 || pi->pt_global_mem)
1730 mark_call_clobbered (tag);
1731
1732 return tag;
1733 }
1734
1735
1736 /* Return the type memory tag associated to pointer PTR. A memory tag is an
1737 artificial variable that represents the memory location pointed-to by
1738 PTR. It is used to model the effects of pointer de-references on
1739 addressable variables.
1740
1741 AI points to the data gathered during alias analysis. This function
1742 populates the array AI->POINTERS. */
1743
1744 static tree
1745 get_tmt_for (tree ptr, struct alias_info *ai)
1746 {
1747 size_t i;
1748 tree tag;
1749 tree tag_type = TREE_TYPE (TREE_TYPE (ptr));
1750 HOST_WIDE_INT tag_set = get_alias_set (tag_type);
1751
1752 /* To avoid creating unnecessary memory tags, only create one memory tag
1753 per alias set class. Note that it may be tempting to group
1754 memory tags based on conflicting alias sets instead of
1755 equivalence. That would be wrong because alias sets are not
1756 necessarily transitive (as demonstrated by the libstdc++ test
1757 23_containers/vector/cons/4.cc). Given three alias sets A, B, C
1758 such that conflicts (A, B) == true and conflicts (A, C) == true,
1759 it does not necessarily follow that conflicts (B, C) == true. */
1760 for (i = 0, tag = NULL_TREE; i < ai->num_pointers; i++)
1761 {
1762 struct alias_map_d *curr = ai->pointers[i];
1763 tree curr_tag = var_ann (curr->var)->type_mem_tag;
1764 if (tag_set == curr->set
1765 && TYPE_READONLY (tag_type) == TYPE_READONLY (TREE_TYPE (curr_tag)))
1766 {
1767 tag = curr_tag;
1768 break;
1769 }
1770 }
1771
1772 /* If VAR cannot alias with any of the existing memory tags, create a new
1773 tag for PTR and add it to the POINTERS array. */
1774 if (tag == NULL_TREE)
1775 {
1776 struct alias_map_d *alias_map;
1777
1778 /* If PTR did not have a type tag already, create a new TMT.*
1779 artificial variable representing the memory location
1780 pointed-to by PTR. */
1781 if (var_ann (ptr)->type_mem_tag == NULL_TREE)
1782 tag = create_memory_tag (tag_type, true);
1783 else
1784 tag = var_ann (ptr)->type_mem_tag;
1785
1786 /* Add PTR to the POINTERS array. Note that we are not interested in
1787 PTR's alias set. Instead, we cache the alias set for the memory that
1788 PTR points to. */
1789 alias_map = xcalloc (1, sizeof (*alias_map));
1790 alias_map->var = ptr;
1791 alias_map->set = tag_set;
1792 ai->pointers[ai->num_pointers++] = alias_map;
1793 }
1794
1795 /* If the pointed-to type is volatile, so is the tag. */
1796 TREE_THIS_VOLATILE (tag) |= TREE_THIS_VOLATILE (tag_type);
1797
1798 /* Make sure that the type tag has the same alias set as the
1799 pointed-to type. */
1800 gcc_assert (tag_set == get_alias_set (tag));
1801
1802 /* If PTR's pointed-to type is read-only, then TAG's type must also
1803 be read-only. */
1804 gcc_assert (TYPE_READONLY (tag_type) == TYPE_READONLY (TREE_TYPE (tag)));
1805
1806 return tag;
1807 }
1808
1809
1810 /* Create GLOBAL_VAR, an artificial global variable to act as a
1811 representative of all the variables that may be clobbered by function
1812 calls. */
1813
1814 static void
1815 create_global_var (void)
1816 {
1817 global_var = build_decl (VAR_DECL, get_identifier (".GLOBAL_VAR"),
1818 void_type_node);
1819 DECL_ARTIFICIAL (global_var) = 1;
1820 TREE_READONLY (global_var) = 0;
1821 DECL_EXTERNAL (global_var) = 1;
1822 TREE_STATIC (global_var) = 1;
1823 TREE_USED (global_var) = 1;
1824 DECL_CONTEXT (global_var) = NULL_TREE;
1825 TREE_THIS_VOLATILE (global_var) = 0;
1826 TREE_ADDRESSABLE (global_var) = 0;
1827
1828 add_referenced_tmp_var (global_var);
1829 mark_sym_for_renaming (global_var);
1830 }
1831
1832
1833 /* Dump alias statistics on FILE. */
1834
1835 static void
1836 dump_alias_stats (FILE *file)
1837 {
1838 const char *funcname
1839 = lang_hooks.decl_printable_name (current_function_decl, 2);
1840 fprintf (file, "\nAlias statistics for %s\n\n", funcname);
1841 fprintf (file, "Total alias queries:\t%u\n", alias_stats.alias_queries);
1842 fprintf (file, "Total alias mayalias results:\t%u\n",
1843 alias_stats.alias_mayalias);
1844 fprintf (file, "Total alias noalias results:\t%u\n",
1845 alias_stats.alias_noalias);
1846 fprintf (file, "Total simple queries:\t%u\n",
1847 alias_stats.simple_queries);
1848 fprintf (file, "Total simple resolved:\t%u\n",
1849 alias_stats.simple_resolved);
1850 fprintf (file, "Total TBAA queries:\t%u\n",
1851 alias_stats.tbaa_queries);
1852 fprintf (file, "Total TBAA resolved:\t%u\n",
1853 alias_stats.tbaa_resolved);
1854 }
1855
1856
1857 /* Dump alias information on FILE. */
1858
1859 void
1860 dump_alias_info (FILE *file)
1861 {
1862 size_t i;
1863 const char *funcname
1864 = lang_hooks.decl_printable_name (current_function_decl, 2);
1865 referenced_var_iterator rvi;
1866 tree var;
1867
1868 fprintf (file, "\nFlow-insensitive alias information for %s\n\n", funcname);
1869
1870 fprintf (file, "Aliased symbols\n\n");
1871
1872 FOR_EACH_REFERENCED_VAR (var, rvi)
1873 {
1874 if (may_be_aliased (var))
1875 dump_variable (file, var);
1876 }
1877
1878 fprintf (file, "\nDereferenced pointers\n\n");
1879
1880 FOR_EACH_REFERENCED_VAR (var, rvi)
1881 {
1882 var_ann_t ann = var_ann (var);
1883 if (ann->type_mem_tag)
1884 dump_variable (file, var);
1885 }
1886
1887 fprintf (file, "\nType memory tags\n\n");
1888
1889 FOR_EACH_REFERENCED_VAR (var, rvi)
1890 {
1891 var_ann_t ann = var_ann (var);
1892 if (ann->mem_tag_kind == TYPE_TAG)
1893 dump_variable (file, var);
1894 }
1895
1896 fprintf (file, "\n\nFlow-sensitive alias information for %s\n\n", funcname);
1897
1898 fprintf (file, "SSA_NAME pointers\n\n");
1899 for (i = 1; i < num_ssa_names; i++)
1900 {
1901 tree ptr = ssa_name (i);
1902 struct ptr_info_def *pi;
1903
1904 if (ptr == NULL_TREE)
1905 continue;
1906
1907 pi = SSA_NAME_PTR_INFO (ptr);
1908 if (!SSA_NAME_IN_FREE_LIST (ptr)
1909 && pi
1910 && pi->name_mem_tag)
1911 dump_points_to_info_for (file, ptr);
1912 }
1913
1914 fprintf (file, "\nName memory tags\n\n");
1915
1916 FOR_EACH_REFERENCED_VAR (var, rvi)
1917 {
1918 var_ann_t ann = var_ann (var);
1919 if (ann->mem_tag_kind == NAME_TAG)
1920 dump_variable (file, var);
1921 }
1922
1923 fprintf (file, "\n");
1924 }
1925
1926
1927 /* Dump alias information on stderr. */
1928
1929 void
1930 debug_alias_info (void)
1931 {
1932 dump_alias_info (stderr);
1933 }
1934
1935
1936 /* Return the alias information associated with pointer T. It creates a
1937 new instance if none existed. */
1938
1939 struct ptr_info_def *
1940 get_ptr_info (tree t)
1941 {
1942 struct ptr_info_def *pi;
1943
1944 gcc_assert (POINTER_TYPE_P (TREE_TYPE (t)));
1945
1946 pi = SSA_NAME_PTR_INFO (t);
1947 if (pi == NULL)
1948 {
1949 pi = ggc_alloc (sizeof (*pi));
1950 memset ((void *)pi, 0, sizeof (*pi));
1951 SSA_NAME_PTR_INFO (t) = pi;
1952 }
1953
1954 return pi;
1955 }
1956
1957
1958 /* Dump points-to information for SSA_NAME PTR into FILE. */
1959
1960 void
1961 dump_points_to_info_for (FILE *file, tree ptr)
1962 {
1963 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
1964
1965 print_generic_expr (file, ptr, dump_flags);
1966
1967 if (pi)
1968 {
1969 if (pi->name_mem_tag)
1970 {
1971 fprintf (file, ", name memory tag: ");
1972 print_generic_expr (file, pi->name_mem_tag, dump_flags);
1973 }
1974
1975 if (pi->is_dereferenced)
1976 fprintf (file, ", is dereferenced");
1977
1978 if (pi->value_escapes_p)
1979 fprintf (file, ", its value escapes");
1980
1981 if (pi->pt_anything)
1982 fprintf (file, ", points-to anything");
1983
1984 if (pi->pt_null)
1985 fprintf (file, ", points-to NULL");
1986
1987 if (pi->pt_vars)
1988 {
1989 unsigned ix;
1990 bitmap_iterator bi;
1991
1992 fprintf (file, ", points-to vars: { ");
1993 EXECUTE_IF_SET_IN_BITMAP (pi->pt_vars, 0, ix, bi)
1994 {
1995 print_generic_expr (file, referenced_var (ix), dump_flags);
1996 fprintf (file, " ");
1997 }
1998 fprintf (file, "}");
1999 }
2000 }
2001
2002 fprintf (file, "\n");
2003 }
2004
2005
2006 /* Dump points-to information for VAR into stderr. */
2007
2008 void
2009 debug_points_to_info_for (tree var)
2010 {
2011 dump_points_to_info_for (stderr, var);
2012 }
2013
2014
2015 /* Dump points-to information into FILE. NOTE: This function is slow, as
2016 it needs to traverse the whole CFG looking for pointer SSA_NAMEs. */
2017
2018 void
2019 dump_points_to_info (FILE *file)
2020 {
2021 basic_block bb;
2022 block_stmt_iterator si;
2023 ssa_op_iter iter;
2024 const char *fname =
2025 lang_hooks.decl_printable_name (current_function_decl, 2);
2026 referenced_var_iterator rvi;
2027 tree var;
2028
2029 fprintf (file, "\n\nPointed-to sets for pointers in %s\n\n", fname);
2030
2031 /* First dump points-to information for the default definitions of
2032 pointer variables. This is necessary because default definitions are
2033 not part of the code. */
2034 FOR_EACH_REFERENCED_VAR (var, rvi)
2035 {
2036 if (POINTER_TYPE_P (TREE_TYPE (var)))
2037 {
2038 var_ann_t ann = var_ann (var);
2039 if (ann->default_def)
2040 dump_points_to_info_for (file, ann->default_def);
2041 }
2042 }
2043
2044 /* Dump points-to information for every pointer defined in the program. */
2045 FOR_EACH_BB (bb)
2046 {
2047 tree phi;
2048
2049 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2050 {
2051 tree ptr = PHI_RESULT (phi);
2052 if (POINTER_TYPE_P (TREE_TYPE (ptr)))
2053 dump_points_to_info_for (file, ptr);
2054 }
2055
2056 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
2057 {
2058 tree stmt = bsi_stmt (si);
2059 tree def;
2060 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
2061 if (POINTER_TYPE_P (TREE_TYPE (def)))
2062 dump_points_to_info_for (file, def);
2063 }
2064 }
2065
2066 fprintf (file, "\n");
2067 }
2068
2069
2070 /* Dump points-to info pointed by PTO into STDERR. */
2071
2072 void
2073 debug_points_to_info (void)
2074 {
2075 dump_points_to_info (stderr);
2076 }
2077
2078 /* Dump to FILE the list of variables that may be aliasing VAR. */
2079
2080 void
2081 dump_may_aliases_for (FILE *file, tree var)
2082 {
2083 varray_type aliases;
2084
2085 if (TREE_CODE (var) == SSA_NAME)
2086 var = SSA_NAME_VAR (var);
2087
2088 aliases = var_ann (var)->may_aliases;
2089 if (aliases)
2090 {
2091 size_t i;
2092 fprintf (file, "{ ");
2093 for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
2094 {
2095 print_generic_expr (file, VARRAY_TREE (aliases, i), dump_flags);
2096 fprintf (file, " ");
2097 }
2098 fprintf (file, "}");
2099 }
2100 }
2101
2102
2103 /* Dump to stderr the list of variables that may be aliasing VAR. */
2104
2105 void
2106 debug_may_aliases_for (tree var)
2107 {
2108 dump_may_aliases_for (stderr, var);
2109 }
2110
2111 /* Return true if VAR may be aliased. */
2112
2113 bool
2114 may_be_aliased (tree var)
2115 {
2116 /* Obviously. */
2117 if (TREE_ADDRESSABLE (var))
2118 return true;
2119
2120 /* Globally visible variables can have their addresses taken by other
2121 translation units. */
2122 if (DECL_EXTERNAL (var) || TREE_PUBLIC (var))
2123 return true;
2124
2125 /* Automatic variables can't have their addresses escape any other way.
2126 This must be after the check for global variables, as extern declarations
2127 do not have TREE_STATIC set. */
2128 if (!TREE_STATIC (var))
2129 return false;
2130
2131 /* If we're in unit-at-a-time mode, then we must have seen all occurrences
2132 of address-of operators, and so we can trust TREE_ADDRESSABLE. Otherwise
2133 we can only be sure the variable isn't addressable if it's local to the
2134 current function. */
2135 if (flag_unit_at_a_time)
2136 return false;
2137 if (decl_function_context (var) == current_function_decl)
2138 return false;
2139
2140 return true;
2141 }
2142
2143
2144 /* Add VAR to the list of may-aliases of PTR's type tag. If PTR
2145 doesn't already have a type tag, create one. */
2146
2147 void
2148 add_type_alias (tree ptr, tree var)
2149 {
2150 varray_type aliases;
2151 tree tag;
2152 var_ann_t ann = var_ann (ptr);
2153 subvar_t svars;
2154
2155
2156 if (ann->type_mem_tag == NULL_TREE)
2157 {
2158 tree q = NULL_TREE;
2159 tree tag_type = TREE_TYPE (TREE_TYPE (ptr));
2160 HOST_WIDE_INT tag_set = get_alias_set (tag_type);
2161 referenced_var_iterator rvi;
2162
2163 /* PTR doesn't have a type tag, create a new one and add VAR to
2164 the new tag's alias set.
2165
2166 FIXME, This is slower than necessary. We need to determine
2167 whether there is another pointer Q with the same alias set as
2168 PTR. This could be sped up by having type tags associated
2169 with types. */
2170 FOR_EACH_REFERENCED_VAR (q, rvi)
2171 {
2172 if (POINTER_TYPE_P (TREE_TYPE (q))
2173 && tag_set == get_alias_set (TREE_TYPE (TREE_TYPE (q))))
2174 {
2175 /* Found another pointer Q with the same alias set as
2176 the PTR's pointed-to type. If Q has a type tag, use
2177 it. Otherwise, create a new memory tag for PTR. */
2178 var_ann_t ann1 = var_ann (q);
2179 if (ann1->type_mem_tag)
2180 ann->type_mem_tag = ann1->type_mem_tag;
2181 else
2182 ann->type_mem_tag = create_memory_tag (tag_type, true);
2183 goto found_tag;
2184 }
2185 }
2186
2187 /* Couldn't find any other pointer with a type tag we could use.
2188 Create a new memory tag for PTR. */
2189 ann->type_mem_tag = create_memory_tag (tag_type, true);
2190 }
2191
2192 found_tag:
2193 /* If VAR is not already PTR's type tag, add it to the may-alias set
2194 for PTR's type tag. */
2195 gcc_assert (var_ann (var)->type_mem_tag == NOT_A_TAG);
2196 tag = ann->type_mem_tag;
2197
2198 /* If VAR has subvars, add the subvars to the tag instead of the
2199 actual var. */
2200 if (var_can_have_subvars (var)
2201 && (svars = get_subvars_for_var (var)))
2202 {
2203 subvar_t sv;
2204 for (sv = svars; sv; sv = sv->next)
2205 add_may_alias (tag, sv->var);
2206 }
2207 else
2208 add_may_alias (tag, var);
2209
2210 /* TAG and its set of aliases need to be marked for renaming. */
2211 mark_sym_for_renaming (tag);
2212 if ((aliases = var_ann (tag)->may_aliases) != NULL)
2213 {
2214 size_t i;
2215 for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
2216 mark_sym_for_renaming (VARRAY_TREE (aliases, i));
2217 }
2218
2219 /* If we had grouped aliases, VAR may have aliases of its own. Mark
2220 them for renaming as well. Other statements referencing the
2221 aliases of VAR will need to be updated. */
2222 if ((aliases = var_ann (var)->may_aliases) != NULL)
2223 {
2224 size_t i;
2225 for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
2226 mark_sym_for_renaming (VARRAY_TREE (aliases, i));
2227 }
2228 }
2229
2230
2231 /* Create a new type tag for PTR. Construct the may-alias list of this type
2232 tag so that it has the aliasing of VAR.
2233
2234 Note, the set of aliases represented by the new type tag are not marked
2235 for renaming. */
2236
2237 void
2238 new_type_alias (tree ptr, tree var)
2239 {
2240 var_ann_t p_ann = var_ann (ptr);
2241 tree tag_type = TREE_TYPE (TREE_TYPE (ptr));
2242 var_ann_t v_ann = var_ann (var);
2243 tree tag;
2244 subvar_t svars;
2245
2246 gcc_assert (p_ann->type_mem_tag == NULL_TREE);
2247 gcc_assert (v_ann->mem_tag_kind == NOT_A_TAG);
2248
2249 /* Add VAR to the may-alias set of PTR's new type tag. If VAR has
2250 subvars, add the subvars to the tag instead of the actual var. */
2251 if (var_can_have_subvars (var)
2252 && (svars = get_subvars_for_var (var)))
2253 {
2254 subvar_t sv;
2255
2256 tag = create_memory_tag (tag_type, true);
2257 p_ann->type_mem_tag = tag;
2258
2259 for (sv = svars; sv; sv = sv->next)
2260 add_may_alias (tag, sv->var);
2261 }
2262 else
2263 {
2264 /* The following is based on code in add_stmt_operand to ensure that the
2265 same defs/uses/vdefs/vuses will be found after replacing a reference
2266 to var (or ARRAY_REF to var) with an INDIRECT_REF to ptr whose value
2267 is the address of var. */
2268 varray_type aliases = v_ann->may_aliases;
2269
2270 if ((aliases != NULL)
2271 && (VARRAY_ACTIVE_SIZE (aliases) == 1))
2272 {
2273 tree ali = VARRAY_TREE (aliases, 0);
2274
2275 if (get_var_ann (ali)->mem_tag_kind == TYPE_TAG)
2276 {
2277 p_ann->type_mem_tag = ali;
2278 return;
2279 }
2280 }
2281
2282 tag = create_memory_tag (tag_type, true);
2283 p_ann->type_mem_tag = tag;
2284
2285 if (aliases == NULL)
2286 add_may_alias (tag, var);
2287 else
2288 {
2289 size_t i;
2290
2291 for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
2292 add_may_alias (tag, VARRAY_TREE (aliases, i));
2293 }
2294 }
2295 }
2296
2297
2298
2299 /* This represents the used range of a variable. */
2300
2301 typedef struct used_part
2302 {
2303 HOST_WIDE_INT minused;
2304 HOST_WIDE_INT maxused;
2305 /* True if we have an explicit use/def of some portion of this variable,
2306 even if it is all of it. i.e. a.b = 5 or temp = a.b. */
2307 bool explicit_uses;
2308 /* True if we have an implicit use/def of some portion of this
2309 variable. Implicit uses occur when we can't tell what part we
2310 are referencing, and have to make conservative assumptions. */
2311 bool implicit_uses;
2312 } *used_part_t;
2313
2314 /* An array of used_part structures, indexed by variable uid. */
2315
2316 static htab_t used_portions;
2317
2318 struct used_part_map
2319 {
2320 unsigned int uid;
2321 used_part_t to;
2322 };
2323
2324 /* Return true if the uid in the two used part maps are equal. */
2325
2326 static int
2327 used_part_map_eq (const void *va, const void *vb)
2328 {
2329 const struct used_part_map *a = va, *b = vb;
2330 return (a->uid == b->uid);
2331 }
2332
2333 /* Hash a from uid in a used_part_map. */
2334
2335 static unsigned int
2336 used_part_map_hash (const void *item)
2337 {
2338 return ((const struct used_part_map *)item)->uid;
2339 }
2340
2341 /* Free a used part map element. */
2342
2343 static void
2344 free_used_part_map (void *item)
2345 {
2346 free (((struct used_part_map *)item)->to);
2347 free (item);
2348 }
2349
2350 /* Lookup a used_part structure for a UID. */
2351
2352 static used_part_t
2353 up_lookup (unsigned int uid)
2354 {
2355 struct used_part_map *h, in;
2356 in.uid = uid;
2357 h = htab_find_with_hash (used_portions, &in, uid);
2358 if (!h)
2359 return NULL;
2360 return h->to;
2361 }
2362
2363 /* Insert the pair UID, TO into the used part hashtable. */
2364
2365 static void
2366 up_insert (unsigned int uid, used_part_t to)
2367 {
2368 struct used_part_map *h;
2369 void **loc;
2370
2371 h = xmalloc (sizeof (struct used_part_map));
2372 h->uid = uid;
2373 h->to = to;
2374 loc = htab_find_slot_with_hash (used_portions, h,
2375 uid, INSERT);
2376 if (*loc != NULL)
2377 free (*loc);
2378 *(struct used_part_map **) loc = h;
2379 }
2380
2381
2382 /* Given a variable uid, UID, get or create the entry in the used portions
2383 table for the variable. */
2384
2385 static used_part_t
2386 get_or_create_used_part_for (size_t uid)
2387 {
2388 used_part_t up;
2389 if ((up = up_lookup (uid)) == NULL)
2390 {
2391 up = xcalloc (1, sizeof (struct used_part));
2392 up->minused = INT_MAX;
2393 up->maxused = 0;
2394 up->explicit_uses = false;
2395 up->implicit_uses = false;
2396 }
2397
2398 return up;
2399 }
2400
2401
2402 /* Create and return a structure sub-variable for field FIELD of
2403 variable VAR. */
2404
2405 static tree
2406 create_sft (tree var, tree field)
2407 {
2408 var_ann_t ann;
2409 tree subvar = create_tmp_var_raw (TREE_TYPE (field), "SFT");
2410
2411 /* We need to copy the various flags from VAR to SUBVAR, so that
2412 they are is_global_var iff the original variable was. */
2413 DECL_CONTEXT (subvar) = DECL_CONTEXT (var);
2414 DECL_EXTERNAL (subvar) = DECL_EXTERNAL (var);
2415 TREE_PUBLIC (subvar) = TREE_PUBLIC (var);
2416 TREE_STATIC (subvar) = TREE_STATIC (var);
2417 TREE_READONLY (subvar) = TREE_READONLY (var);
2418
2419 /* Add the new variable to REFERENCED_VARS. */
2420 ann = get_var_ann (subvar);
2421 ann->mem_tag_kind = STRUCT_FIELD;
2422 ann->type_mem_tag = NULL;
2423 add_referenced_tmp_var (subvar);
2424
2425 return subvar;
2426 }
2427
2428
2429 /* Given an aggregate VAR, create the subvariables that represent its
2430 fields. */
2431
2432 static void
2433 create_overlap_variables_for (tree var)
2434 {
2435 VEC(fieldoff_s,heap) *fieldstack = NULL;
2436 used_part_t up;
2437 size_t uid = DECL_UID (var);
2438
2439 if (!up_lookup (uid))
2440 return;
2441
2442 up = up_lookup (uid);
2443 push_fields_onto_fieldstack (TREE_TYPE (var), &fieldstack, 0, NULL);
2444 if (VEC_length (fieldoff_s, fieldstack) != 0)
2445 {
2446 subvar_t *subvars;
2447 fieldoff_s *fo;
2448 bool notokay = false;
2449 int fieldcount = 0;
2450 int i;
2451 HOST_WIDE_INT lastfooffset = -1;
2452 HOST_WIDE_INT lastfosize = -1;
2453 tree lastfotype = NULL_TREE;
2454
2455 /* Not all fields have DECL_SIZE set, and those that don't, we don't
2456 know their size, and thus, can't handle.
2457 The same is true of fields with DECL_SIZE that is not an integer
2458 constant (such as variable sized fields).
2459 Fields with offsets which are not constant will have an offset < 0
2460 We *could* handle fields that are constant sized arrays, but
2461 currently don't. Doing so would require some extra changes to
2462 tree-ssa-operands.c. */
2463
2464 for (i = 0; VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
2465 {
2466 if (!DECL_SIZE (fo->field)
2467 || TREE_CODE (DECL_SIZE (fo->field)) != INTEGER_CST
2468 || TREE_CODE (TREE_TYPE (fo->field)) == ARRAY_TYPE
2469 || fo->offset < 0)
2470 {
2471 notokay = true;
2472 break;
2473 }
2474 fieldcount++;
2475 }
2476
2477 /* The current heuristic we use is as follows:
2478 If the variable has no used portions in this function, no
2479 structure vars are created for it.
2480 Otherwise,
2481 If the variable has less than SALIAS_MAX_IMPLICIT_FIELDS,
2482 we always create structure vars for them.
2483 If the variable has more than SALIAS_MAX_IMPLICIT_FIELDS, and
2484 some explicit uses, we create structure vars for them.
2485 If the variable has more than SALIAS_MAX_IMPLICIT_FIELDS, and
2486 no explicit uses, we do not create structure vars for them.
2487 */
2488
2489 if (fieldcount >= SALIAS_MAX_IMPLICIT_FIELDS
2490 && !up->explicit_uses)
2491 {
2492 if (dump_file && (dump_flags & TDF_DETAILS))
2493 {
2494 fprintf (dump_file, "Variable ");
2495 print_generic_expr (dump_file, var, 0);
2496 fprintf (dump_file, " has no explicit uses in this function, and is > SALIAS_MAX_IMPLICIT_FIELDS, so skipping\n");
2497 }
2498 notokay = true;
2499 }
2500
2501 /* Bail out, if we can't create overlap variables. */
2502 if (notokay)
2503 {
2504 VEC_free (fieldoff_s, heap, fieldstack);
2505 return;
2506 }
2507
2508 /* Otherwise, create the variables. */
2509 subvars = lookup_subvars_for_var (var);
2510
2511 sort_fieldstack (fieldstack);
2512
2513 for (i = VEC_length (fieldoff_s, fieldstack);
2514 VEC_iterate (fieldoff_s, fieldstack, --i, fo);)
2515 {
2516 subvar_t sv;
2517 HOST_WIDE_INT fosize;
2518 tree currfotype;
2519
2520 fosize = TREE_INT_CST_LOW (DECL_SIZE (fo->field));
2521 currfotype = TREE_TYPE (fo->field);
2522
2523 /* If this field isn't in the used portion,
2524 or it has the exact same offset and size as the last
2525 field, skip it. */
2526
2527 if (((fo->offset <= up->minused
2528 && fo->offset + fosize <= up->minused)
2529 || fo->offset >= up->maxused)
2530 || (fo->offset == lastfooffset
2531 && fosize == lastfosize
2532 && currfotype == lastfotype))
2533 continue;
2534 sv = ggc_alloc (sizeof (struct subvar));
2535 sv->offset = fo->offset;
2536 sv->size = fosize;
2537 sv->next = *subvars;
2538 sv->var = create_sft (var, fo->field);
2539
2540 if (dump_file)
2541 {
2542 fprintf (dump_file, "structure field tag %s created for var %s",
2543 get_name (sv->var), get_name (var));
2544 fprintf (dump_file, " offset " HOST_WIDE_INT_PRINT_DEC,
2545 sv->offset);
2546 fprintf (dump_file, " size " HOST_WIDE_INT_PRINT_DEC,
2547 sv->size);
2548 fprintf (dump_file, "\n");
2549 }
2550
2551 lastfotype = currfotype;
2552 lastfooffset = fo->offset;
2553 lastfosize = fosize;
2554 *subvars = sv;
2555 }
2556
2557 /* Once we have created subvars, the original is no longer call
2558 clobbered on its own. Its call clobbered status depends
2559 completely on the call clobbered status of the subvars.
2560
2561 add_referenced_var in the above loop will take care of
2562 marking subvars of global variables as call clobbered for us
2563 to start, since they are global as well. */
2564 clear_call_clobbered (var);
2565 }
2566
2567 VEC_free (fieldoff_s, heap, fieldstack);
2568 }
2569
2570
2571 /* Find the conservative answer to the question of what portions of what
2572 structures are used by this statement. We assume that if we have a
2573 component ref with a known size + offset, that we only need that part
2574 of the structure. For unknown cases, or cases where we do something
2575 to the whole structure, we assume we need to create fields for the
2576 entire structure. */
2577
2578 static tree
2579 find_used_portions (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2580 {
2581 switch (TREE_CODE (*tp))
2582 {
2583 case COMPONENT_REF:
2584 {
2585 HOST_WIDE_INT bitsize;
2586 HOST_WIDE_INT bitpos;
2587 tree offset;
2588 enum machine_mode mode;
2589 int unsignedp;
2590 int volatilep;
2591 tree ref;
2592 ref = get_inner_reference (*tp, &bitsize, &bitpos, &offset, &mode,
2593 &unsignedp, &volatilep, false);
2594 if (DECL_P (ref) && offset == NULL && bitsize != -1)
2595 {
2596 size_t uid = DECL_UID (ref);
2597 used_part_t up;
2598
2599 up = get_or_create_used_part_for (uid);
2600
2601 if (bitpos <= up->minused)
2602 up->minused = bitpos;
2603 if ((bitpos + bitsize >= up->maxused))
2604 up->maxused = bitpos + bitsize;
2605
2606 up->explicit_uses = true;
2607 up_insert (uid, up);
2608
2609 *walk_subtrees = 0;
2610 return NULL_TREE;
2611 }
2612 else if (DECL_P (ref))
2613 {
2614 if (DECL_SIZE (ref)
2615 && var_can_have_subvars (ref)
2616 && TREE_CODE (DECL_SIZE (ref)) == INTEGER_CST)
2617 {
2618 used_part_t up;
2619 size_t uid = DECL_UID (ref);
2620
2621 up = get_or_create_used_part_for (uid);
2622
2623 up->minused = 0;
2624 up->maxused = TREE_INT_CST_LOW (DECL_SIZE (ref));
2625
2626 up->implicit_uses = true;
2627
2628 up_insert (uid, up);
2629
2630 *walk_subtrees = 0;
2631 return NULL_TREE;
2632 }
2633 }
2634 }
2635 break;
2636 /* This is here to make sure we mark the entire base variable as used
2637 when you take its address. Because our used portion analysis is
2638 simple, we aren't looking at casts or pointer arithmetic to see what
2639 happens when you take the address. */
2640 case ADDR_EXPR:
2641 {
2642 tree var = get_base_address (TREE_OPERAND (*tp, 0));
2643
2644 if (var
2645 && DECL_P (var)
2646 && DECL_SIZE (var)
2647 && var_can_have_subvars (var)
2648 && TREE_CODE (DECL_SIZE (var)) == INTEGER_CST)
2649 {
2650 used_part_t up;
2651 size_t uid = DECL_UID (var);
2652
2653 up = get_or_create_used_part_for (uid);
2654
2655 up->minused = 0;
2656 up->maxused = TREE_INT_CST_LOW (DECL_SIZE (var));
2657 up->implicit_uses = true;
2658
2659 up_insert (uid, up);
2660 *walk_subtrees = 0;
2661 return NULL_TREE;
2662 }
2663 }
2664 break;
2665 case VAR_DECL:
2666 case PARM_DECL:
2667 {
2668 tree var = *tp;
2669 if (DECL_SIZE (var)
2670 && var_can_have_subvars (var)
2671 && TREE_CODE (DECL_SIZE (var)) == INTEGER_CST)
2672 {
2673 used_part_t up;
2674 size_t uid = DECL_UID (var);
2675
2676 up = get_or_create_used_part_for (uid);
2677
2678 up->minused = 0;
2679 up->maxused = TREE_INT_CST_LOW (DECL_SIZE (var));
2680 up->implicit_uses = true;
2681
2682 up_insert (uid, up);
2683 *walk_subtrees = 0;
2684 return NULL_TREE;
2685 }
2686 }
2687 break;
2688
2689 default:
2690 break;
2691
2692 }
2693 return NULL_TREE;
2694 }
2695
2696 /* Create structure field variables for structures used in this function. */
2697
2698 static void
2699 create_structure_vars (void)
2700 {
2701 basic_block bb;
2702 referenced_var_iterator rvi;
2703 tree var;
2704
2705 used_portions = htab_create (10, used_part_map_hash, used_part_map_eq,
2706 free_used_part_map);
2707
2708 FOR_EACH_BB (bb)
2709 {
2710 block_stmt_iterator bsi;
2711 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
2712 {
2713 walk_tree_without_duplicates (bsi_stmt_ptr (bsi),
2714 find_used_portions,
2715 NULL);
2716 }
2717 }
2718 FOR_EACH_REFERENCED_VAR (var, rvi)
2719 {
2720 /* The C++ FE creates vars without DECL_SIZE set, for some reason. */
2721 if (var
2722 && DECL_SIZE (var)
2723 && var_can_have_subvars (var)
2724 && var_ann (var)->mem_tag_kind == NOT_A_TAG
2725 && TREE_CODE (DECL_SIZE (var)) == INTEGER_CST)
2726 create_overlap_variables_for (var);
2727 }
2728 htab_delete (used_portions);
2729
2730 }
2731
2732 static bool
2733 gate_structure_vars (void)
2734 {
2735 return flag_tree_salias != 0;
2736 }
2737
2738 struct tree_opt_pass pass_create_structure_vars =
2739 {
2740 "salias", /* name */
2741 gate_structure_vars, /* gate */
2742 create_structure_vars, /* execute */
2743 NULL, /* sub */
2744 NULL, /* next */
2745 0, /* static_pass_number */
2746 0, /* tv_id */
2747 PROP_cfg, /* properties_required */
2748 0, /* properties_provided */
2749 0, /* properties_destroyed */
2750 0, /* todo_flags_start */
2751 TODO_dump_func, /* todo_flags_finish */
2752 0 /* letter */
2753 };