re PR tree-optimization/90869 (Non-disambiguated memory accesses)
[gcc.git] / gcc / tree-ssa-alias.c
1 /* Alias analysis for trees.
2 Copyright (C) 2004-2019 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "timevar.h" /* for TV_ALIAS_STMT_WALK */
30 #include "ssa.h"
31 #include "cgraph.h"
32 #include "tree-pretty-print.h"
33 #include "alias.h"
34 #include "fold-const.h"
35 #include "langhooks.h"
36 #include "dumpfile.h"
37 #include "tree-eh.h"
38 #include "tree-dfa.h"
39 #include "ipa-reference.h"
40 #include "varasm.h"
41
42 /* Broad overview of how alias analysis on gimple works:
43
44 Statements clobbering or using memory are linked through the
45 virtual operand factored use-def chain. The virtual operand
46 is unique per function, its symbol is accessible via gimple_vop (cfun).
47 Virtual operands are used for efficiently walking memory statements
48 in the gimple IL and are useful for things like value-numbering as
49 a generation count for memory references.
50
51 SSA_NAME pointers may have associated points-to information
52 accessible via the SSA_NAME_PTR_INFO macro. Flow-insensitive
53 points-to information is (re-)computed by the TODO_rebuild_alias
54 pass manager todo. Points-to information is also used for more
55 precise tracking of call-clobbered and call-used variables and
56 related disambiguations.
57
58 This file contains functions for disambiguating memory references,
59 the so called alias-oracle and tools for walking of the gimple IL.
60
61 The main alias-oracle entry-points are
62
63 bool stmt_may_clobber_ref_p (gimple *, tree)
64
65 This function queries if a statement may invalidate (parts of)
66 the memory designated by the reference tree argument.
67
68 bool ref_maybe_used_by_stmt_p (gimple *, tree)
69
70 This function queries if a statement may need (parts of) the
71 memory designated by the reference tree argument.
72
73 There are variants of these functions that only handle the call
74 part of a statement, call_may_clobber_ref_p and ref_maybe_used_by_call_p.
75 Note that these do not disambiguate against a possible call lhs.
76
77 bool refs_may_alias_p (tree, tree)
78
79 This function tries to disambiguate two reference trees.
80
81 bool ptr_deref_may_alias_global_p (tree)
82
83 This function queries if dereferencing a pointer variable may
84 alias global memory.
85
86 More low-level disambiguators are available and documented in
87 this file. Low-level disambiguators dealing with points-to
88 information are in tree-ssa-structalias.c. */
89
90
91 /* Query statistics for the different low-level disambiguators.
92 A high-level query may trigger multiple of them. */
93
94 static struct {
95 unsigned HOST_WIDE_INT refs_may_alias_p_may_alias;
96 unsigned HOST_WIDE_INT refs_may_alias_p_no_alias;
97 unsigned HOST_WIDE_INT ref_maybe_used_by_call_p_may_alias;
98 unsigned HOST_WIDE_INT ref_maybe_used_by_call_p_no_alias;
99 unsigned HOST_WIDE_INT call_may_clobber_ref_p_may_alias;
100 unsigned HOST_WIDE_INT call_may_clobber_ref_p_no_alias;
101 unsigned HOST_WIDE_INT aliasing_component_refs_p_may_alias;
102 unsigned HOST_WIDE_INT aliasing_component_refs_p_no_alias;
103 } alias_stats;
104
105 void
106 dump_alias_stats (FILE *s)
107 {
108 fprintf (s, "\nAlias oracle query stats:\n");
109 fprintf (s, " refs_may_alias_p: "
110 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
111 HOST_WIDE_INT_PRINT_DEC" queries\n",
112 alias_stats.refs_may_alias_p_no_alias,
113 alias_stats.refs_may_alias_p_no_alias
114 + alias_stats.refs_may_alias_p_may_alias);
115 fprintf (s, " ref_maybe_used_by_call_p: "
116 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
117 HOST_WIDE_INT_PRINT_DEC" queries\n",
118 alias_stats.ref_maybe_used_by_call_p_no_alias,
119 alias_stats.refs_may_alias_p_no_alias
120 + alias_stats.ref_maybe_used_by_call_p_may_alias);
121 fprintf (s, " call_may_clobber_ref_p: "
122 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
123 HOST_WIDE_INT_PRINT_DEC" queries\n",
124 alias_stats.call_may_clobber_ref_p_no_alias,
125 alias_stats.call_may_clobber_ref_p_no_alias
126 + alias_stats.call_may_clobber_ref_p_may_alias);
127 fprintf (s, " aliasing_component_ref_p: "
128 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
129 HOST_WIDE_INT_PRINT_DEC" queries\n",
130 alias_stats.aliasing_component_refs_p_no_alias,
131 alias_stats.aliasing_component_refs_p_no_alias
132 + alias_stats.aliasing_component_refs_p_may_alias);
133 dump_alias_stats_in_alias_c (s);
134 }
135
136
137 /* Return true, if dereferencing PTR may alias with a global variable. */
138
139 bool
140 ptr_deref_may_alias_global_p (tree ptr)
141 {
142 struct ptr_info_def *pi;
143
144 /* If we end up with a pointer constant here that may point
145 to global memory. */
146 if (TREE_CODE (ptr) != SSA_NAME)
147 return true;
148
149 pi = SSA_NAME_PTR_INFO (ptr);
150
151 /* If we do not have points-to information for this variable,
152 we have to punt. */
153 if (!pi)
154 return true;
155
156 /* ??? This does not use TBAA to prune globals ptr may not access. */
157 return pt_solution_includes_global (&pi->pt);
158 }
159
160 /* Return true if dereferencing PTR may alias DECL.
161 The caller is responsible for applying TBAA to see if PTR
162 may access DECL at all. */
163
164 static bool
165 ptr_deref_may_alias_decl_p (tree ptr, tree decl)
166 {
167 struct ptr_info_def *pi;
168
169 /* Conversions are irrelevant for points-to information and
170 data-dependence analysis can feed us those. */
171 STRIP_NOPS (ptr);
172
173 /* Anything we do not explicilty handle aliases. */
174 if ((TREE_CODE (ptr) != SSA_NAME
175 && TREE_CODE (ptr) != ADDR_EXPR
176 && TREE_CODE (ptr) != POINTER_PLUS_EXPR)
177 || !POINTER_TYPE_P (TREE_TYPE (ptr))
178 || (!VAR_P (decl)
179 && TREE_CODE (decl) != PARM_DECL
180 && TREE_CODE (decl) != RESULT_DECL))
181 return true;
182
183 /* Disregard pointer offsetting. */
184 if (TREE_CODE (ptr) == POINTER_PLUS_EXPR)
185 {
186 do
187 {
188 ptr = TREE_OPERAND (ptr, 0);
189 }
190 while (TREE_CODE (ptr) == POINTER_PLUS_EXPR);
191 return ptr_deref_may_alias_decl_p (ptr, decl);
192 }
193
194 /* ADDR_EXPR pointers either just offset another pointer or directly
195 specify the pointed-to set. */
196 if (TREE_CODE (ptr) == ADDR_EXPR)
197 {
198 tree base = get_base_address (TREE_OPERAND (ptr, 0));
199 if (base
200 && (TREE_CODE (base) == MEM_REF
201 || TREE_CODE (base) == TARGET_MEM_REF))
202 ptr = TREE_OPERAND (base, 0);
203 else if (base
204 && DECL_P (base))
205 return compare_base_decls (base, decl) != 0;
206 else if (base
207 && CONSTANT_CLASS_P (base))
208 return false;
209 else
210 return true;
211 }
212
213 /* Non-aliased variables cannot be pointed to. */
214 if (!may_be_aliased (decl))
215 return false;
216
217 /* If we do not have useful points-to information for this pointer
218 we cannot disambiguate anything else. */
219 pi = SSA_NAME_PTR_INFO (ptr);
220 if (!pi)
221 return true;
222
223 return pt_solution_includes (&pi->pt, decl);
224 }
225
226 /* Return true if dereferenced PTR1 and PTR2 may alias.
227 The caller is responsible for applying TBAA to see if accesses
228 through PTR1 and PTR2 may conflict at all. */
229
230 bool
231 ptr_derefs_may_alias_p (tree ptr1, tree ptr2)
232 {
233 struct ptr_info_def *pi1, *pi2;
234
235 /* Conversions are irrelevant for points-to information and
236 data-dependence analysis can feed us those. */
237 STRIP_NOPS (ptr1);
238 STRIP_NOPS (ptr2);
239
240 /* Disregard pointer offsetting. */
241 if (TREE_CODE (ptr1) == POINTER_PLUS_EXPR)
242 {
243 do
244 {
245 ptr1 = TREE_OPERAND (ptr1, 0);
246 }
247 while (TREE_CODE (ptr1) == POINTER_PLUS_EXPR);
248 return ptr_derefs_may_alias_p (ptr1, ptr2);
249 }
250 if (TREE_CODE (ptr2) == POINTER_PLUS_EXPR)
251 {
252 do
253 {
254 ptr2 = TREE_OPERAND (ptr2, 0);
255 }
256 while (TREE_CODE (ptr2) == POINTER_PLUS_EXPR);
257 return ptr_derefs_may_alias_p (ptr1, ptr2);
258 }
259
260 /* ADDR_EXPR pointers either just offset another pointer or directly
261 specify the pointed-to set. */
262 if (TREE_CODE (ptr1) == ADDR_EXPR)
263 {
264 tree base = get_base_address (TREE_OPERAND (ptr1, 0));
265 if (base
266 && (TREE_CODE (base) == MEM_REF
267 || TREE_CODE (base) == TARGET_MEM_REF))
268 return ptr_derefs_may_alias_p (TREE_OPERAND (base, 0), ptr2);
269 else if (base
270 && DECL_P (base))
271 return ptr_deref_may_alias_decl_p (ptr2, base);
272 else
273 return true;
274 }
275 if (TREE_CODE (ptr2) == ADDR_EXPR)
276 {
277 tree base = get_base_address (TREE_OPERAND (ptr2, 0));
278 if (base
279 && (TREE_CODE (base) == MEM_REF
280 || TREE_CODE (base) == TARGET_MEM_REF))
281 return ptr_derefs_may_alias_p (ptr1, TREE_OPERAND (base, 0));
282 else if (base
283 && DECL_P (base))
284 return ptr_deref_may_alias_decl_p (ptr1, base);
285 else
286 return true;
287 }
288
289 /* From here we require SSA name pointers. Anything else aliases. */
290 if (TREE_CODE (ptr1) != SSA_NAME
291 || TREE_CODE (ptr2) != SSA_NAME
292 || !POINTER_TYPE_P (TREE_TYPE (ptr1))
293 || !POINTER_TYPE_P (TREE_TYPE (ptr2)))
294 return true;
295
296 /* We may end up with two empty points-to solutions for two same pointers.
297 In this case we still want to say both pointers alias, so shortcut
298 that here. */
299 if (ptr1 == ptr2)
300 return true;
301
302 /* If we do not have useful points-to information for either pointer
303 we cannot disambiguate anything else. */
304 pi1 = SSA_NAME_PTR_INFO (ptr1);
305 pi2 = SSA_NAME_PTR_INFO (ptr2);
306 if (!pi1 || !pi2)
307 return true;
308
309 /* ??? This does not use TBAA to prune decls from the intersection
310 that not both pointers may access. */
311 return pt_solutions_intersect (&pi1->pt, &pi2->pt);
312 }
313
314 /* Return true if dereferencing PTR may alias *REF.
315 The caller is responsible for applying TBAA to see if PTR
316 may access *REF at all. */
317
318 static bool
319 ptr_deref_may_alias_ref_p_1 (tree ptr, ao_ref *ref)
320 {
321 tree base = ao_ref_base (ref);
322
323 if (TREE_CODE (base) == MEM_REF
324 || TREE_CODE (base) == TARGET_MEM_REF)
325 return ptr_derefs_may_alias_p (ptr, TREE_OPERAND (base, 0));
326 else if (DECL_P (base))
327 return ptr_deref_may_alias_decl_p (ptr, base);
328
329 return true;
330 }
331
332 /* Returns true if PTR1 and PTR2 compare unequal because of points-to. */
333
334 bool
335 ptrs_compare_unequal (tree ptr1, tree ptr2)
336 {
337 /* First resolve the pointers down to a SSA name pointer base or
338 a VAR_DECL, PARM_DECL or RESULT_DECL. This explicitely does
339 not yet try to handle LABEL_DECLs, FUNCTION_DECLs, CONST_DECLs
340 or STRING_CSTs which needs points-to adjustments to track them
341 in the points-to sets. */
342 tree obj1 = NULL_TREE;
343 tree obj2 = NULL_TREE;
344 if (TREE_CODE (ptr1) == ADDR_EXPR)
345 {
346 tree tem = get_base_address (TREE_OPERAND (ptr1, 0));
347 if (! tem)
348 return false;
349 if (VAR_P (tem)
350 || TREE_CODE (tem) == PARM_DECL
351 || TREE_CODE (tem) == RESULT_DECL)
352 obj1 = tem;
353 else if (TREE_CODE (tem) == MEM_REF)
354 ptr1 = TREE_OPERAND (tem, 0);
355 }
356 if (TREE_CODE (ptr2) == ADDR_EXPR)
357 {
358 tree tem = get_base_address (TREE_OPERAND (ptr2, 0));
359 if (! tem)
360 return false;
361 if (VAR_P (tem)
362 || TREE_CODE (tem) == PARM_DECL
363 || TREE_CODE (tem) == RESULT_DECL)
364 obj2 = tem;
365 else if (TREE_CODE (tem) == MEM_REF)
366 ptr2 = TREE_OPERAND (tem, 0);
367 }
368
369 /* Canonicalize ptr vs. object. */
370 if (TREE_CODE (ptr1) == SSA_NAME && obj2)
371 {
372 std::swap (ptr1, ptr2);
373 std::swap (obj1, obj2);
374 }
375
376 if (obj1 && obj2)
377 /* Other code handles this correctly, no need to duplicate it here. */;
378 else if (obj1 && TREE_CODE (ptr2) == SSA_NAME)
379 {
380 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr2);
381 /* We may not use restrict to optimize pointer comparisons.
382 See PR71062. So we have to assume that restrict-pointed-to
383 may be in fact obj1. */
384 if (!pi
385 || pi->pt.vars_contains_restrict
386 || pi->pt.vars_contains_interposable)
387 return false;
388 if (VAR_P (obj1)
389 && (TREE_STATIC (obj1) || DECL_EXTERNAL (obj1)))
390 {
391 varpool_node *node = varpool_node::get (obj1);
392 /* If obj1 may bind to NULL give up (see below). */
393 if (! node
394 || ! node->nonzero_address ()
395 || ! decl_binds_to_current_def_p (obj1))
396 return false;
397 }
398 return !pt_solution_includes (&pi->pt, obj1);
399 }
400
401 /* ??? We'd like to handle ptr1 != NULL and ptr1 != ptr2
402 but those require pt.null to be conservatively correct. */
403
404 return false;
405 }
406
407 /* Returns whether reference REF to BASE may refer to global memory. */
408
409 static bool
410 ref_may_alias_global_p_1 (tree base)
411 {
412 if (DECL_P (base))
413 return is_global_var (base);
414 else if (TREE_CODE (base) == MEM_REF
415 || TREE_CODE (base) == TARGET_MEM_REF)
416 return ptr_deref_may_alias_global_p (TREE_OPERAND (base, 0));
417 return true;
418 }
419
420 bool
421 ref_may_alias_global_p (ao_ref *ref)
422 {
423 tree base = ao_ref_base (ref);
424 return ref_may_alias_global_p_1 (base);
425 }
426
427 bool
428 ref_may_alias_global_p (tree ref)
429 {
430 tree base = get_base_address (ref);
431 return ref_may_alias_global_p_1 (base);
432 }
433
434 /* Return true whether STMT may clobber global memory. */
435
436 bool
437 stmt_may_clobber_global_p (gimple *stmt)
438 {
439 tree lhs;
440
441 if (!gimple_vdef (stmt))
442 return false;
443
444 /* ??? We can ask the oracle whether an artificial pointer
445 dereference with a pointer with points-to information covering
446 all global memory (what about non-address taken memory?) maybe
447 clobbered by this call. As there is at the moment no convenient
448 way of doing that without generating garbage do some manual
449 checking instead.
450 ??? We could make a NULL ao_ref argument to the various
451 predicates special, meaning any global memory. */
452
453 switch (gimple_code (stmt))
454 {
455 case GIMPLE_ASSIGN:
456 lhs = gimple_assign_lhs (stmt);
457 return (TREE_CODE (lhs) != SSA_NAME
458 && ref_may_alias_global_p (lhs));
459 case GIMPLE_CALL:
460 return true;
461 default:
462 return true;
463 }
464 }
465
466
467 /* Dump alias information on FILE. */
468
469 void
470 dump_alias_info (FILE *file)
471 {
472 unsigned i;
473 tree ptr;
474 const char *funcname
475 = lang_hooks.decl_printable_name (current_function_decl, 2);
476 tree var;
477
478 fprintf (file, "\n\nAlias information for %s\n\n", funcname);
479
480 fprintf (file, "Aliased symbols\n\n");
481
482 FOR_EACH_LOCAL_DECL (cfun, i, var)
483 {
484 if (may_be_aliased (var))
485 dump_variable (file, var);
486 }
487
488 fprintf (file, "\nCall clobber information\n");
489
490 fprintf (file, "\nESCAPED");
491 dump_points_to_solution (file, &cfun->gimple_df->escaped);
492
493 fprintf (file, "\n\nFlow-insensitive points-to information\n\n");
494
495 FOR_EACH_SSA_NAME (i, ptr, cfun)
496 {
497 struct ptr_info_def *pi;
498
499 if (!POINTER_TYPE_P (TREE_TYPE (ptr))
500 || SSA_NAME_IN_FREE_LIST (ptr))
501 continue;
502
503 pi = SSA_NAME_PTR_INFO (ptr);
504 if (pi)
505 dump_points_to_info_for (file, ptr);
506 }
507
508 fprintf (file, "\n");
509 }
510
511
512 /* Dump alias information on stderr. */
513
514 DEBUG_FUNCTION void
515 debug_alias_info (void)
516 {
517 dump_alias_info (stderr);
518 }
519
520
521 /* Dump the points-to set *PT into FILE. */
522
523 void
524 dump_points_to_solution (FILE *file, struct pt_solution *pt)
525 {
526 if (pt->anything)
527 fprintf (file, ", points-to anything");
528
529 if (pt->nonlocal)
530 fprintf (file, ", points-to non-local");
531
532 if (pt->escaped)
533 fprintf (file, ", points-to escaped");
534
535 if (pt->ipa_escaped)
536 fprintf (file, ", points-to unit escaped");
537
538 if (pt->null)
539 fprintf (file, ", points-to NULL");
540
541 if (pt->vars)
542 {
543 fprintf (file, ", points-to vars: ");
544 dump_decl_set (file, pt->vars);
545 if (pt->vars_contains_nonlocal
546 || pt->vars_contains_escaped
547 || pt->vars_contains_escaped_heap
548 || pt->vars_contains_restrict)
549 {
550 const char *comma = "";
551 fprintf (file, " (");
552 if (pt->vars_contains_nonlocal)
553 {
554 fprintf (file, "nonlocal");
555 comma = ", ";
556 }
557 if (pt->vars_contains_escaped)
558 {
559 fprintf (file, "%sescaped", comma);
560 comma = ", ";
561 }
562 if (pt->vars_contains_escaped_heap)
563 {
564 fprintf (file, "%sescaped heap", comma);
565 comma = ", ";
566 }
567 if (pt->vars_contains_restrict)
568 {
569 fprintf (file, "%srestrict", comma);
570 comma = ", ";
571 }
572 if (pt->vars_contains_interposable)
573 fprintf (file, "%sinterposable", comma);
574 fprintf (file, ")");
575 }
576 }
577 }
578
579
580 /* Unified dump function for pt_solution. */
581
582 DEBUG_FUNCTION void
583 debug (pt_solution &ref)
584 {
585 dump_points_to_solution (stderr, &ref);
586 }
587
588 DEBUG_FUNCTION void
589 debug (pt_solution *ptr)
590 {
591 if (ptr)
592 debug (*ptr);
593 else
594 fprintf (stderr, "<nil>\n");
595 }
596
597
598 /* Dump points-to information for SSA_NAME PTR into FILE. */
599
600 void
601 dump_points_to_info_for (FILE *file, tree ptr)
602 {
603 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
604
605 print_generic_expr (file, ptr, dump_flags);
606
607 if (pi)
608 dump_points_to_solution (file, &pi->pt);
609 else
610 fprintf (file, ", points-to anything");
611
612 fprintf (file, "\n");
613 }
614
615
616 /* Dump points-to information for VAR into stderr. */
617
618 DEBUG_FUNCTION void
619 debug_points_to_info_for (tree var)
620 {
621 dump_points_to_info_for (stderr, var);
622 }
623
624
625 /* Initializes the alias-oracle reference representation *R from REF. */
626
627 void
628 ao_ref_init (ao_ref *r, tree ref)
629 {
630 r->ref = ref;
631 r->base = NULL_TREE;
632 r->offset = 0;
633 r->size = -1;
634 r->max_size = -1;
635 r->ref_alias_set = -1;
636 r->base_alias_set = -1;
637 r->volatile_p = ref ? TREE_THIS_VOLATILE (ref) : false;
638 }
639
640 /* Returns the base object of the memory reference *REF. */
641
642 tree
643 ao_ref_base (ao_ref *ref)
644 {
645 bool reverse;
646
647 if (ref->base)
648 return ref->base;
649 ref->base = get_ref_base_and_extent (ref->ref, &ref->offset, &ref->size,
650 &ref->max_size, &reverse);
651 return ref->base;
652 }
653
654 /* Returns the base object alias set of the memory reference *REF. */
655
656 alias_set_type
657 ao_ref_base_alias_set (ao_ref *ref)
658 {
659 tree base_ref;
660 if (ref->base_alias_set != -1)
661 return ref->base_alias_set;
662 if (!ref->ref)
663 return 0;
664 base_ref = ref->ref;
665 while (handled_component_p (base_ref))
666 base_ref = TREE_OPERAND (base_ref, 0);
667 ref->base_alias_set = get_alias_set (base_ref);
668 return ref->base_alias_set;
669 }
670
671 /* Returns the reference alias set of the memory reference *REF. */
672
673 alias_set_type
674 ao_ref_alias_set (ao_ref *ref)
675 {
676 if (ref->ref_alias_set != -1)
677 return ref->ref_alias_set;
678 ref->ref_alias_set = get_alias_set (ref->ref);
679 return ref->ref_alias_set;
680 }
681
682 /* Init an alias-oracle reference representation from a gimple pointer
683 PTR and a gimple size SIZE in bytes. If SIZE is NULL_TREE then the
684 size is assumed to be unknown. The access is assumed to be only
685 to or after of the pointer target, not before it. */
686
687 void
688 ao_ref_init_from_ptr_and_size (ao_ref *ref, tree ptr, tree size)
689 {
690 poly_int64 t, size_hwi, extra_offset = 0;
691 ref->ref = NULL_TREE;
692 if (TREE_CODE (ptr) == SSA_NAME)
693 {
694 gimple *stmt = SSA_NAME_DEF_STMT (ptr);
695 if (gimple_assign_single_p (stmt)
696 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
697 ptr = gimple_assign_rhs1 (stmt);
698 else if (is_gimple_assign (stmt)
699 && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
700 && ptrdiff_tree_p (gimple_assign_rhs2 (stmt), &extra_offset))
701 {
702 ptr = gimple_assign_rhs1 (stmt);
703 extra_offset *= BITS_PER_UNIT;
704 }
705 }
706
707 if (TREE_CODE (ptr) == ADDR_EXPR)
708 {
709 ref->base = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &t);
710 if (ref->base)
711 ref->offset = BITS_PER_UNIT * t;
712 else
713 {
714 size = NULL_TREE;
715 ref->offset = 0;
716 ref->base = get_base_address (TREE_OPERAND (ptr, 0));
717 }
718 }
719 else
720 {
721 gcc_assert (POINTER_TYPE_P (TREE_TYPE (ptr)));
722 ref->base = build2 (MEM_REF, char_type_node,
723 ptr, null_pointer_node);
724 ref->offset = 0;
725 }
726 ref->offset += extra_offset;
727 if (size
728 && poly_int_tree_p (size, &size_hwi)
729 && coeffs_in_range_p (size_hwi, 0, HOST_WIDE_INT_MAX / BITS_PER_UNIT))
730 ref->max_size = ref->size = size_hwi * BITS_PER_UNIT;
731 else
732 ref->max_size = ref->size = -1;
733 ref->ref_alias_set = 0;
734 ref->base_alias_set = 0;
735 ref->volatile_p = false;
736 }
737
738 /* S1 and S2 are TYPE_SIZE or DECL_SIZE. Compare them:
739 Return -1 if S1 < S2
740 Return 1 if S1 > S2
741 Return 0 if equal or incomparable. */
742
743 static int
744 compare_sizes (tree s1, tree s2)
745 {
746 if (!s1 || !s2)
747 return 0;
748
749 poly_uint64 size1;
750 poly_uint64 size2;
751
752 if (!poly_int_tree_p (s1, &size1) || !poly_int_tree_p (s2, &size2))
753 return 0;
754 if (known_lt (size1, size2))
755 return -1;
756 if (known_lt (size2, size1))
757 return 1;
758 return 0;
759 }
760
761 /* Compare TYPE1 and TYPE2 by its size.
762 Return -1 if size of TYPE1 < size of TYPE2
763 Return 1 if size of TYPE1 > size of TYPE2
764 Return 0 if types are of equal sizes or we can not compare them. */
765
766 static int
767 compare_type_sizes (tree type1, tree type2)
768 {
769 /* Be conservative for arrays and vectors. We want to support partial
770 overlap on int[3] and int[3] as tested in gcc.dg/torture/alias-2.c. */
771 while (TREE_CODE (type1) == ARRAY_TYPE
772 || TREE_CODE (type1) == VECTOR_TYPE)
773 type1 = TREE_TYPE (type1);
774 while (TREE_CODE (type2) == ARRAY_TYPE
775 || TREE_CODE (type2) == VECTOR_TYPE)
776 type2 = TREE_TYPE (type2);
777 return compare_sizes (TYPE_SIZE (type1), TYPE_SIZE (type2));
778 }
779
780 /* Return 1 if TYPE1 and TYPE2 are to be considered equivalent for the
781 purpose of TBAA. Return 0 if they are distinct and -1 if we cannot
782 decide. */
783
784 static inline int
785 same_type_for_tbaa (tree type1, tree type2)
786 {
787 type1 = TYPE_MAIN_VARIANT (type1);
788 type2 = TYPE_MAIN_VARIANT (type2);
789
790 /* Handle the most common case first. */
791 if (type1 == type2)
792 return 1;
793
794 /* If we would have to do structural comparison bail out. */
795 if (TYPE_STRUCTURAL_EQUALITY_P (type1)
796 || TYPE_STRUCTURAL_EQUALITY_P (type2))
797 return -1;
798
799 /* Compare the canonical types. */
800 if (TYPE_CANONICAL (type1) == TYPE_CANONICAL (type2))
801 return 1;
802
803 /* ??? Array types are not properly unified in all cases as we have
804 spurious changes in the index types for example. Removing this
805 causes all sorts of problems with the Fortran frontend. */
806 if (TREE_CODE (type1) == ARRAY_TYPE
807 && TREE_CODE (type2) == ARRAY_TYPE)
808 return -1;
809
810 /* ??? In Ada, an lvalue of an unconstrained type can be used to access an
811 object of one of its constrained subtypes, e.g. when a function with an
812 unconstrained parameter passed by reference is called on an object and
813 inlined. But, even in the case of a fixed size, type and subtypes are
814 not equivalent enough as to share the same TYPE_CANONICAL, since this
815 would mean that conversions between them are useless, whereas they are
816 not (e.g. type and subtypes can have different modes). So, in the end,
817 they are only guaranteed to have the same alias set. */
818 if (get_alias_set (type1) == get_alias_set (type2))
819 return -1;
820
821 /* The types are known to be not equal. */
822 return 0;
823 }
824
825 /* Return true if TYPE is a composite type (i.e. we may apply one of handled
826 components on it). */
827
828 static bool
829 type_has_components_p (tree type)
830 {
831 return AGGREGATE_TYPE_P (type) || VECTOR_TYPE_P (type)
832 || TREE_CODE (type) == COMPLEX_TYPE;
833 }
834
835 /* Determine if the two component references REF1 and REF2 which are
836 based on access types TYPE1 and TYPE2 and of which at least one is based
837 on an indirect reference may alias. REF2 is the only one that can
838 be a decl in which case REF2_IS_DECL is true.
839 REF1_ALIAS_SET, BASE1_ALIAS_SET, REF2_ALIAS_SET and BASE2_ALIAS_SET
840 are the respective alias sets. */
841
842 static bool
843 aliasing_component_refs_p (tree ref1,
844 alias_set_type ref1_alias_set,
845 alias_set_type base1_alias_set,
846 poly_int64 offset1, poly_int64 max_size1,
847 tree ref2,
848 alias_set_type ref2_alias_set,
849 alias_set_type base2_alias_set,
850 poly_int64 offset2, poly_int64 max_size2,
851 bool ref2_is_decl)
852 {
853 /* If one reference is a component references through pointers try to find a
854 common base and apply offset based disambiguation. This handles
855 for example
856 struct A { int i; int j; } *q;
857 struct B { struct A a; int k; } *p;
858 disambiguating q->i and p->a.j. */
859 tree base1, base2;
860 tree type1, type2;
861 tree *refp;
862 int same_p1 = 0, same_p2 = 0;
863 bool maybe_match = false;
864
865 /* Choose bases and base types to search for. */
866 base1 = ref1;
867 while (handled_component_p (base1))
868 base1 = TREE_OPERAND (base1, 0);
869 type1 = TREE_TYPE (base1);
870 base2 = ref2;
871 while (handled_component_p (base2))
872 base2 = TREE_OPERAND (base2, 0);
873 type2 = TREE_TYPE (base2);
874
875 /* Now search for the type1 in the access path of ref2. This
876 would be a common base for doing offset based disambiguation on.
877 This however only makes sense if type2 is big enough to hold type1. */
878 int cmp_outer = compare_type_sizes (type2, type1);
879 if (cmp_outer >= 0)
880 {
881 refp = &ref2;
882 while (true)
883 {
884 /* We walk from inner type to the outer types. If type we see is
885 already too large to be part of type1, terminate the search. */
886 int cmp = compare_type_sizes (type1, TREE_TYPE (*refp));
887 if (cmp < 0)
888 break;
889 /* If types may be of same size, see if we can decide about their
890 equality. */
891 if (cmp == 0)
892 {
893 same_p2 = same_type_for_tbaa (TREE_TYPE (*refp), type1);
894 if (same_p2 == 1)
895 break;
896 /* In case we can't decide whether types are same try to
897 continue looking for the exact match.
898 Remember however that we possibly saw a match
899 to bypass the access path continuations tests we do later. */
900 if (same_p2 == -1)
901 maybe_match = true;
902 }
903 if (!handled_component_p (*refp))
904 break;
905 refp = &TREE_OPERAND (*refp, 0);
906 }
907 if (same_p2 == 1)
908 {
909 poly_int64 offadj, sztmp, msztmp;
910 bool reverse;
911
912 /* We assume that arrays can overlap by multiple of their elements
913 size as tested in gcc.dg/torture/alias-2.c.
914 This partial overlap happen only when both arrays are bases of
915 the access and not contained within another component ref.
916 To be safe we also assume partial overlap for VLAs. */
917 if (TREE_CODE (TREE_TYPE (base1)) == ARRAY_TYPE
918 && (!TYPE_SIZE (TREE_TYPE (base1))
919 || TREE_CODE (TYPE_SIZE (TREE_TYPE (base1))) != INTEGER_CST
920 || (*refp == base2 && !ref2_is_decl)))
921 {
922 ++alias_stats.aliasing_component_refs_p_may_alias;
923 return true;
924 }
925
926 get_ref_base_and_extent (*refp, &offadj, &sztmp, &msztmp, &reverse);
927 offset2 -= offadj;
928 get_ref_base_and_extent (base1, &offadj, &sztmp, &msztmp, &reverse);
929 offset1 -= offadj;
930 if (ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
931 {
932 ++alias_stats.aliasing_component_refs_p_may_alias;
933 return true;
934 }
935 else
936 {
937 ++alias_stats.aliasing_component_refs_p_no_alias;
938 return false;
939 }
940 }
941 }
942
943 /* If we didn't find a common base, try the other way around. */
944 if (cmp_outer <= 0)
945 {
946 refp = &ref1;
947 while (true)
948 {
949 int cmp = compare_type_sizes (type2, TREE_TYPE (*refp));
950 if (cmp < 0)
951 break;
952 /* If types may be of same size, see if we can decide about their
953 equality. */
954 if (cmp == 0)
955 {
956 same_p1 = same_type_for_tbaa (TREE_TYPE (*refp), type2);
957 if (same_p1 == 1)
958 break;
959 if (same_p1 == -1)
960 maybe_match = true;
961 }
962 if (!handled_component_p (*refp))
963 break;
964 refp = &TREE_OPERAND (*refp, 0);
965 }
966 if (same_p1 == 1)
967 {
968 poly_int64 offadj, sztmp, msztmp;
969 bool reverse;
970
971 if (TREE_CODE (TREE_TYPE (base2)) == ARRAY_TYPE
972 && (!TYPE_SIZE (TREE_TYPE (base2))
973 || TREE_CODE (TYPE_SIZE (TREE_TYPE (base2))) != INTEGER_CST
974 || (*refp == base1 && !ref2_is_decl)))
975 {
976 ++alias_stats.aliasing_component_refs_p_may_alias;
977 return true;
978 }
979
980 get_ref_base_and_extent (*refp, &offadj, &sztmp, &msztmp, &reverse);
981 offset1 -= offadj;
982 get_ref_base_and_extent (base2, &offadj, &sztmp, &msztmp, &reverse);
983 offset2 -= offadj;
984 if (ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
985 {
986 ++alias_stats.aliasing_component_refs_p_may_alias;
987 return true;
988 }
989 else
990 {
991 ++alias_stats.aliasing_component_refs_p_no_alias;
992 return false;
993 }
994 }
995 }
996
997 /* In the following code we make an assumption that the types in access
998 paths do not overlap and thus accesses alias only if one path can be
999 continuation of another. If we was not able to decide about equivalence,
1000 we need to give up. */
1001 if (maybe_match)
1002 return true;
1003
1004 /* If we have two type access paths B1.path1 and B2.path2 they may
1005 only alias if either B1 is in B2.path2 or B2 is in B1.path1.
1006 But we can still have a path that goes B1.path1...B2.path2 with
1007 a part that we do not see. So we can only disambiguate now
1008 if there is no B2 in the tail of path1 and no B1 on the
1009 tail of path2. */
1010 if (compare_type_sizes (TREE_TYPE (ref2), type1) >= 0
1011 && type_has_components_p (TREE_TYPE (ref2))
1012 && (base1_alias_set == ref2_alias_set
1013 || alias_set_subset_of (base1_alias_set, ref2_alias_set)))
1014 {
1015 ++alias_stats.aliasing_component_refs_p_may_alias;
1016 return true;
1017 }
1018 /* If this is ptr vs. decl then we know there is no ptr ... decl path. */
1019 if (!ref2_is_decl
1020 && compare_type_sizes (TREE_TYPE (ref1), type2) >= 0
1021 && type_has_components_p (TREE_TYPE (ref1))
1022 && (base2_alias_set == ref1_alias_set
1023 || alias_set_subset_of (base2_alias_set, ref1_alias_set)))
1024 {
1025 ++alias_stats.aliasing_component_refs_p_may_alias;
1026 return true;
1027 }
1028 ++alias_stats.aliasing_component_refs_p_no_alias;
1029 return false;
1030 }
1031
1032 /* Return true if we can determine that component references REF1 and REF2,
1033 that are within a common DECL, cannot overlap. */
1034
1035 static bool
1036 nonoverlapping_component_refs_of_decl_p (tree ref1, tree ref2)
1037 {
1038 auto_vec<tree, 16> component_refs1;
1039 auto_vec<tree, 16> component_refs2;
1040
1041 /* Create the stack of handled components for REF1. */
1042 while (handled_component_p (ref1))
1043 {
1044 component_refs1.safe_push (ref1);
1045 ref1 = TREE_OPERAND (ref1, 0);
1046 }
1047 if (TREE_CODE (ref1) == MEM_REF)
1048 {
1049 if (!integer_zerop (TREE_OPERAND (ref1, 1)))
1050 return false;
1051 ref1 = TREE_OPERAND (TREE_OPERAND (ref1, 0), 0);
1052 }
1053
1054 /* Create the stack of handled components for REF2. */
1055 while (handled_component_p (ref2))
1056 {
1057 component_refs2.safe_push (ref2);
1058 ref2 = TREE_OPERAND (ref2, 0);
1059 }
1060 if (TREE_CODE (ref2) == MEM_REF)
1061 {
1062 if (!integer_zerop (TREE_OPERAND (ref2, 1)))
1063 return false;
1064 ref2 = TREE_OPERAND (TREE_OPERAND (ref2, 0), 0);
1065 }
1066
1067 /* Bases must be either same or uncomparable. */
1068 gcc_checking_assert (ref1 == ref2
1069 || (DECL_P (ref1) && DECL_P (ref2)
1070 && compare_base_decls (ref1, ref2) != 0));
1071
1072 /* Pop the stacks in parallel and examine the COMPONENT_REFs of the same
1073 rank. This is sufficient because we start from the same DECL and you
1074 cannot reference several fields at a time with COMPONENT_REFs (unlike
1075 with ARRAY_RANGE_REFs for arrays) so you always need the same number
1076 of them to access a sub-component, unless you're in a union, in which
1077 case the return value will precisely be false. */
1078 while (true)
1079 {
1080 do
1081 {
1082 if (component_refs1.is_empty ())
1083 return false;
1084 ref1 = component_refs1.pop ();
1085 }
1086 while (!RECORD_OR_UNION_TYPE_P (TREE_TYPE (TREE_OPERAND (ref1, 0))));
1087
1088 do
1089 {
1090 if (component_refs2.is_empty ())
1091 return false;
1092 ref2 = component_refs2.pop ();
1093 }
1094 while (!RECORD_OR_UNION_TYPE_P (TREE_TYPE (TREE_OPERAND (ref2, 0))));
1095
1096 /* Beware of BIT_FIELD_REF. */
1097 if (TREE_CODE (ref1) != COMPONENT_REF
1098 || TREE_CODE (ref2) != COMPONENT_REF)
1099 return false;
1100
1101 tree field1 = TREE_OPERAND (ref1, 1);
1102 tree field2 = TREE_OPERAND (ref2, 1);
1103
1104 /* ??? We cannot simply use the type of operand #0 of the refs here
1105 as the Fortran compiler smuggles type punning into COMPONENT_REFs
1106 for common blocks instead of using unions like everyone else. */
1107 tree type1 = DECL_CONTEXT (field1);
1108 tree type2 = DECL_CONTEXT (field2);
1109
1110 /* We cannot disambiguate fields in a union or qualified union. */
1111 if (type1 != type2 || TREE_CODE (type1) != RECORD_TYPE)
1112 return false;
1113
1114 if (field1 != field2)
1115 {
1116 /* A field and its representative need to be considered the
1117 same. */
1118 if (DECL_BIT_FIELD_REPRESENTATIVE (field1) == field2
1119 || DECL_BIT_FIELD_REPRESENTATIVE (field2) == field1)
1120 return false;
1121 /* Different fields of the same record type cannot overlap.
1122 ??? Bitfields can overlap at RTL level so punt on them. */
1123 if (DECL_BIT_FIELD (field1) && DECL_BIT_FIELD (field2))
1124 return false;
1125 return true;
1126 }
1127 }
1128
1129 return false;
1130 }
1131
1132 /* qsort compare function to sort FIELD_DECLs after their
1133 DECL_FIELD_CONTEXT TYPE_UID. */
1134
1135 static inline int
1136 ncr_compar (const void *field1_, const void *field2_)
1137 {
1138 const_tree field1 = *(const_tree *) const_cast <void *>(field1_);
1139 const_tree field2 = *(const_tree *) const_cast <void *>(field2_);
1140 unsigned int uid1 = TYPE_UID (DECL_FIELD_CONTEXT (field1));
1141 unsigned int uid2 = TYPE_UID (DECL_FIELD_CONTEXT (field2));
1142 if (uid1 < uid2)
1143 return -1;
1144 else if (uid1 > uid2)
1145 return 1;
1146 return 0;
1147 }
1148
1149 /* Return true if we can determine that the fields referenced cannot
1150 overlap for any pair of objects. */
1151
1152 static bool
1153 nonoverlapping_component_refs_p (const_tree x, const_tree y)
1154 {
1155 if (!flag_strict_aliasing
1156 || !x || !y
1157 || TREE_CODE (x) != COMPONENT_REF
1158 || TREE_CODE (y) != COMPONENT_REF)
1159 return false;
1160
1161 auto_vec<const_tree, 16> fieldsx;
1162 while (TREE_CODE (x) == COMPONENT_REF)
1163 {
1164 tree field = TREE_OPERAND (x, 1);
1165 tree type = DECL_FIELD_CONTEXT (field);
1166 if (TREE_CODE (type) == RECORD_TYPE)
1167 fieldsx.safe_push (field);
1168 x = TREE_OPERAND (x, 0);
1169 }
1170 if (fieldsx.length () == 0)
1171 return false;
1172 auto_vec<const_tree, 16> fieldsy;
1173 while (TREE_CODE (y) == COMPONENT_REF)
1174 {
1175 tree field = TREE_OPERAND (y, 1);
1176 tree type = DECL_FIELD_CONTEXT (field);
1177 if (TREE_CODE (type) == RECORD_TYPE)
1178 fieldsy.safe_push (TREE_OPERAND (y, 1));
1179 y = TREE_OPERAND (y, 0);
1180 }
1181 if (fieldsy.length () == 0)
1182 return false;
1183
1184 /* Most common case first. */
1185 if (fieldsx.length () == 1
1186 && fieldsy.length () == 1)
1187 return ((DECL_FIELD_CONTEXT (fieldsx[0])
1188 == DECL_FIELD_CONTEXT (fieldsy[0]))
1189 && fieldsx[0] != fieldsy[0]
1190 && !(DECL_BIT_FIELD (fieldsx[0]) && DECL_BIT_FIELD (fieldsy[0])));
1191
1192 if (fieldsx.length () == 2)
1193 {
1194 if (ncr_compar (&fieldsx[0], &fieldsx[1]) == 1)
1195 std::swap (fieldsx[0], fieldsx[1]);
1196 }
1197 else
1198 fieldsx.qsort (ncr_compar);
1199
1200 if (fieldsy.length () == 2)
1201 {
1202 if (ncr_compar (&fieldsy[0], &fieldsy[1]) == 1)
1203 std::swap (fieldsy[0], fieldsy[1]);
1204 }
1205 else
1206 fieldsy.qsort (ncr_compar);
1207
1208 unsigned i = 0, j = 0;
1209 do
1210 {
1211 const_tree fieldx = fieldsx[i];
1212 const_tree fieldy = fieldsy[j];
1213 tree typex = DECL_FIELD_CONTEXT (fieldx);
1214 tree typey = DECL_FIELD_CONTEXT (fieldy);
1215 if (typex == typey)
1216 {
1217 /* We're left with accessing different fields of a structure,
1218 no possible overlap. */
1219 if (fieldx != fieldy)
1220 {
1221 /* A field and its representative need to be considered the
1222 same. */
1223 if (DECL_BIT_FIELD_REPRESENTATIVE (fieldx) == fieldy
1224 || DECL_BIT_FIELD_REPRESENTATIVE (fieldy) == fieldx)
1225 return false;
1226 /* Different fields of the same record type cannot overlap.
1227 ??? Bitfields can overlap at RTL level so punt on them. */
1228 if (DECL_BIT_FIELD (fieldx) && DECL_BIT_FIELD (fieldy))
1229 return false;
1230 return true;
1231 }
1232 }
1233 if (TYPE_UID (typex) < TYPE_UID (typey))
1234 {
1235 i++;
1236 if (i == fieldsx.length ())
1237 break;
1238 }
1239 else
1240 {
1241 j++;
1242 if (j == fieldsy.length ())
1243 break;
1244 }
1245 }
1246 while (1);
1247
1248 return false;
1249 }
1250
1251
1252 /* Return true if two memory references based on the variables BASE1
1253 and BASE2 constrained to [OFFSET1, OFFSET1 + MAX_SIZE1) and
1254 [OFFSET2, OFFSET2 + MAX_SIZE2) may alias. REF1 and REF2
1255 if non-NULL are the complete memory reference trees. */
1256
1257 static bool
1258 decl_refs_may_alias_p (tree ref1, tree base1,
1259 poly_int64 offset1, poly_int64 max_size1,
1260 tree ref2, tree base2,
1261 poly_int64 offset2, poly_int64 max_size2)
1262 {
1263 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
1264
1265 /* If both references are based on different variables, they cannot alias. */
1266 if (compare_base_decls (base1, base2) == 0)
1267 return false;
1268
1269 /* If both references are based on the same variable, they cannot alias if
1270 the accesses do not overlap. */
1271 if (!ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
1272 return false;
1273
1274 /* For components with variable position, the above test isn't sufficient,
1275 so we disambiguate component references manually. */
1276 if (ref1 && ref2
1277 && handled_component_p (ref1) && handled_component_p (ref2)
1278 && nonoverlapping_component_refs_of_decl_p (ref1, ref2))
1279 return false;
1280
1281 return true;
1282 }
1283
1284 /* Return true if an indirect reference based on *PTR1 constrained
1285 to [OFFSET1, OFFSET1 + MAX_SIZE1) may alias a variable based on BASE2
1286 constrained to [OFFSET2, OFFSET2 + MAX_SIZE2). *PTR1 and BASE2 have
1287 the alias sets BASE1_ALIAS_SET and BASE2_ALIAS_SET which can be -1
1288 in which case they are computed on-demand. REF1 and REF2
1289 if non-NULL are the complete memory reference trees. */
1290
1291 static bool
1292 indirect_ref_may_alias_decl_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
1293 poly_int64 offset1, poly_int64 max_size1,
1294 alias_set_type ref1_alias_set,
1295 alias_set_type base1_alias_set,
1296 tree ref2 ATTRIBUTE_UNUSED, tree base2,
1297 poly_int64 offset2, poly_int64 max_size2,
1298 alias_set_type ref2_alias_set,
1299 alias_set_type base2_alias_set, bool tbaa_p)
1300 {
1301 tree ptr1;
1302 tree ptrtype1, dbase2;
1303
1304 gcc_checking_assert ((TREE_CODE (base1) == MEM_REF
1305 || TREE_CODE (base1) == TARGET_MEM_REF)
1306 && DECL_P (base2));
1307
1308 ptr1 = TREE_OPERAND (base1, 0);
1309 poly_offset_int moff = mem_ref_offset (base1) << LOG2_BITS_PER_UNIT;
1310
1311 /* If only one reference is based on a variable, they cannot alias if
1312 the pointer access is beyond the extent of the variable access.
1313 (the pointer base cannot validly point to an offset less than zero
1314 of the variable).
1315 ??? IVOPTs creates bases that do not honor this restriction,
1316 so do not apply this optimization for TARGET_MEM_REFs. */
1317 if (TREE_CODE (base1) != TARGET_MEM_REF
1318 && !ranges_maybe_overlap_p (offset1 + moff, -1, offset2, max_size2))
1319 return false;
1320 /* They also cannot alias if the pointer may not point to the decl. */
1321 if (!ptr_deref_may_alias_decl_p (ptr1, base2))
1322 return false;
1323
1324 /* Disambiguations that rely on strict aliasing rules follow. */
1325 if (!flag_strict_aliasing || !tbaa_p)
1326 return true;
1327
1328 ptrtype1 = TREE_TYPE (TREE_OPERAND (base1, 1));
1329
1330 /* If the alias set for a pointer access is zero all bets are off. */
1331 if (base1_alias_set == 0)
1332 return true;
1333
1334 /* When we are trying to disambiguate an access with a pointer dereference
1335 as base versus one with a decl as base we can use both the size
1336 of the decl and its dynamic type for extra disambiguation.
1337 ??? We do not know anything about the dynamic type of the decl
1338 other than that its alias-set contains base2_alias_set as a subset
1339 which does not help us here. */
1340 /* As we know nothing useful about the dynamic type of the decl just
1341 use the usual conflict check rather than a subset test.
1342 ??? We could introduce -fvery-strict-aliasing when the language
1343 does not allow decls to have a dynamic type that differs from their
1344 static type. Then we can check
1345 !alias_set_subset_of (base1_alias_set, base2_alias_set) instead. */
1346 if (base1_alias_set != base2_alias_set
1347 && !alias_sets_conflict_p (base1_alias_set, base2_alias_set))
1348 return false;
1349 /* If the size of the access relevant for TBAA through the pointer
1350 is bigger than the size of the decl we can't possibly access the
1351 decl via that pointer. */
1352 if (/* ??? This in turn may run afoul when a decl of type T which is
1353 a member of union type U is accessed through a pointer to
1354 type U and sizeof T is smaller than sizeof U. */
1355 TREE_CODE (TREE_TYPE (ptrtype1)) != UNION_TYPE
1356 && TREE_CODE (TREE_TYPE (ptrtype1)) != QUAL_UNION_TYPE
1357 && compare_sizes (DECL_SIZE (base2),
1358 TYPE_SIZE (TREE_TYPE (ptrtype1))) < 0)
1359 return false;
1360
1361 if (!ref2)
1362 return true;
1363
1364 /* If the decl is accessed via a MEM_REF, reconstruct the base
1365 we can use for TBAA and an appropriately adjusted offset. */
1366 dbase2 = ref2;
1367 while (handled_component_p (dbase2))
1368 dbase2 = TREE_OPERAND (dbase2, 0);
1369 poly_int64 doffset1 = offset1;
1370 poly_offset_int doffset2 = offset2;
1371 if (TREE_CODE (dbase2) == MEM_REF
1372 || TREE_CODE (dbase2) == TARGET_MEM_REF)
1373 {
1374 doffset2 -= mem_ref_offset (dbase2) << LOG2_BITS_PER_UNIT;
1375 tree ptrtype2 = TREE_TYPE (TREE_OPERAND (dbase2, 1));
1376 /* If second reference is view-converted, give up now. */
1377 if (same_type_for_tbaa (TREE_TYPE (dbase2), TREE_TYPE (ptrtype2)) != 1)
1378 return true;
1379 }
1380
1381 /* If first reference is view-converted, give up now. */
1382 if (same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) != 1)
1383 return true;
1384
1385 /* If both references are through the same type, they do not alias
1386 if the accesses do not overlap. This does extra disambiguation
1387 for mixed/pointer accesses but requires strict aliasing.
1388 For MEM_REFs we require that the component-ref offset we computed
1389 is relative to the start of the type which we ensure by
1390 comparing rvalue and access type and disregarding the constant
1391 pointer offset.
1392
1393 But avoid treating variable length arrays as "objects", instead assume they
1394 can overlap by an exact multiple of their element size.
1395 See gcc.dg/torture/alias-2.c. */
1396 if ((TREE_CODE (base1) != TARGET_MEM_REF
1397 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
1398 && same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (dbase2)) == 1
1399 && (TREE_CODE (TREE_TYPE (base1)) != ARRAY_TYPE
1400 || (TYPE_SIZE (TREE_TYPE (base1))
1401 && TREE_CODE (TYPE_SIZE (TREE_TYPE (base1))) == INTEGER_CST)))
1402 return ranges_maybe_overlap_p (doffset1, max_size1, doffset2, max_size2);
1403
1404 if (ref1 && ref2
1405 && nonoverlapping_component_refs_p (ref1, ref2))
1406 return false;
1407
1408 /* Do access-path based disambiguation. */
1409 if (ref1 && ref2
1410 && (handled_component_p (ref1) || handled_component_p (ref2)))
1411 return aliasing_component_refs_p (ref1,
1412 ref1_alias_set, base1_alias_set,
1413 offset1, max_size1,
1414 ref2,
1415 ref2_alias_set, base2_alias_set,
1416 offset2, max_size2,
1417 /* Only if the other reference is actual
1418 decl we can safely check only toplevel
1419 part of access path 1. */
1420 same_type_for_tbaa (TREE_TYPE (dbase2),
1421 TREE_TYPE (base2))
1422 == 1);
1423
1424 return true;
1425 }
1426
1427 /* Return true if two indirect references based on *PTR1
1428 and *PTR2 constrained to [OFFSET1, OFFSET1 + MAX_SIZE1) and
1429 [OFFSET2, OFFSET2 + MAX_SIZE2) may alias. *PTR1 and *PTR2 have
1430 the alias sets BASE1_ALIAS_SET and BASE2_ALIAS_SET which can be -1
1431 in which case they are computed on-demand. REF1 and REF2
1432 if non-NULL are the complete memory reference trees. */
1433
1434 static bool
1435 indirect_refs_may_alias_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
1436 poly_int64 offset1, poly_int64 max_size1,
1437 alias_set_type ref1_alias_set,
1438 alias_set_type base1_alias_set,
1439 tree ref2 ATTRIBUTE_UNUSED, tree base2,
1440 poly_int64 offset2, poly_int64 max_size2,
1441 alias_set_type ref2_alias_set,
1442 alias_set_type base2_alias_set, bool tbaa_p)
1443 {
1444 tree ptr1;
1445 tree ptr2;
1446 tree ptrtype1, ptrtype2;
1447
1448 gcc_checking_assert ((TREE_CODE (base1) == MEM_REF
1449 || TREE_CODE (base1) == TARGET_MEM_REF)
1450 && (TREE_CODE (base2) == MEM_REF
1451 || TREE_CODE (base2) == TARGET_MEM_REF));
1452
1453 ptr1 = TREE_OPERAND (base1, 0);
1454 ptr2 = TREE_OPERAND (base2, 0);
1455
1456 /* If both bases are based on pointers they cannot alias if they may not
1457 point to the same memory object or if they point to the same object
1458 and the accesses do not overlap. */
1459 if ((!cfun || gimple_in_ssa_p (cfun))
1460 && operand_equal_p (ptr1, ptr2, 0)
1461 && (((TREE_CODE (base1) != TARGET_MEM_REF
1462 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
1463 && (TREE_CODE (base2) != TARGET_MEM_REF
1464 || (!TMR_INDEX (base2) && !TMR_INDEX2 (base2))))
1465 || (TREE_CODE (base1) == TARGET_MEM_REF
1466 && TREE_CODE (base2) == TARGET_MEM_REF
1467 && (TMR_STEP (base1) == TMR_STEP (base2)
1468 || (TMR_STEP (base1) && TMR_STEP (base2)
1469 && operand_equal_p (TMR_STEP (base1),
1470 TMR_STEP (base2), 0)))
1471 && (TMR_INDEX (base1) == TMR_INDEX (base2)
1472 || (TMR_INDEX (base1) && TMR_INDEX (base2)
1473 && operand_equal_p (TMR_INDEX (base1),
1474 TMR_INDEX (base2), 0)))
1475 && (TMR_INDEX2 (base1) == TMR_INDEX2 (base2)
1476 || (TMR_INDEX2 (base1) && TMR_INDEX2 (base2)
1477 && operand_equal_p (TMR_INDEX2 (base1),
1478 TMR_INDEX2 (base2), 0))))))
1479 {
1480 poly_offset_int moff1 = mem_ref_offset (base1) << LOG2_BITS_PER_UNIT;
1481 poly_offset_int moff2 = mem_ref_offset (base2) << LOG2_BITS_PER_UNIT;
1482 return ranges_maybe_overlap_p (offset1 + moff1, max_size1,
1483 offset2 + moff2, max_size2);
1484 }
1485 if (!ptr_derefs_may_alias_p (ptr1, ptr2))
1486 return false;
1487
1488 /* Disambiguations that rely on strict aliasing rules follow. */
1489 if (!flag_strict_aliasing || !tbaa_p)
1490 return true;
1491
1492 ptrtype1 = TREE_TYPE (TREE_OPERAND (base1, 1));
1493 ptrtype2 = TREE_TYPE (TREE_OPERAND (base2, 1));
1494
1495 /* If the alias set for a pointer access is zero all bets are off. */
1496 if (base1_alias_set == 0
1497 || base2_alias_set == 0)
1498 return true;
1499
1500 /* Do type-based disambiguation. */
1501 if (base1_alias_set != base2_alias_set
1502 && !alias_sets_conflict_p (base1_alias_set, base2_alias_set))
1503 return false;
1504
1505 /* If either reference is view-converted, give up now. */
1506 if (same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) != 1
1507 || same_type_for_tbaa (TREE_TYPE (base2), TREE_TYPE (ptrtype2)) != 1)
1508 return true;
1509
1510 /* If both references are through the same type, they do not alias
1511 if the accesses do not overlap. This does extra disambiguation
1512 for mixed/pointer accesses but requires strict aliasing. */
1513 if ((TREE_CODE (base1) != TARGET_MEM_REF
1514 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
1515 && (TREE_CODE (base2) != TARGET_MEM_REF
1516 || (!TMR_INDEX (base2) && !TMR_INDEX2 (base2)))
1517 && same_type_for_tbaa (TREE_TYPE (ptrtype1),
1518 TREE_TYPE (ptrtype2)) == 1
1519 /* But avoid treating arrays as "objects", instead assume they
1520 can overlap by an exact multiple of their element size.
1521 See gcc.dg/torture/alias-2.c. */
1522 && TREE_CODE (TREE_TYPE (ptrtype1)) != ARRAY_TYPE)
1523 return ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2);
1524
1525 if (ref1 && ref2
1526 && nonoverlapping_component_refs_p (ref1, ref2))
1527 return false;
1528
1529 /* Do access-path based disambiguation. */
1530 if (ref1 && ref2
1531 && (handled_component_p (ref1) || handled_component_p (ref2)))
1532 return aliasing_component_refs_p (ref1,
1533 ref1_alias_set, base1_alias_set,
1534 offset1, max_size1,
1535 ref2,
1536 ref2_alias_set, base2_alias_set,
1537 offset2, max_size2, false);
1538
1539 return true;
1540 }
1541
1542 /* Return true, if the two memory references REF1 and REF2 may alias. */
1543
1544 static bool
1545 refs_may_alias_p_2 (ao_ref *ref1, ao_ref *ref2, bool tbaa_p)
1546 {
1547 tree base1, base2;
1548 poly_int64 offset1 = 0, offset2 = 0;
1549 poly_int64 max_size1 = -1, max_size2 = -1;
1550 bool var1_p, var2_p, ind1_p, ind2_p;
1551
1552 gcc_checking_assert ((!ref1->ref
1553 || TREE_CODE (ref1->ref) == SSA_NAME
1554 || DECL_P (ref1->ref)
1555 || TREE_CODE (ref1->ref) == STRING_CST
1556 || handled_component_p (ref1->ref)
1557 || TREE_CODE (ref1->ref) == MEM_REF
1558 || TREE_CODE (ref1->ref) == TARGET_MEM_REF)
1559 && (!ref2->ref
1560 || TREE_CODE (ref2->ref) == SSA_NAME
1561 || DECL_P (ref2->ref)
1562 || TREE_CODE (ref2->ref) == STRING_CST
1563 || handled_component_p (ref2->ref)
1564 || TREE_CODE (ref2->ref) == MEM_REF
1565 || TREE_CODE (ref2->ref) == TARGET_MEM_REF));
1566
1567 /* Decompose the references into their base objects and the access. */
1568 base1 = ao_ref_base (ref1);
1569 offset1 = ref1->offset;
1570 max_size1 = ref1->max_size;
1571 base2 = ao_ref_base (ref2);
1572 offset2 = ref2->offset;
1573 max_size2 = ref2->max_size;
1574
1575 /* We can end up with registers or constants as bases for example from
1576 *D.1663_44 = VIEW_CONVERT_EXPR<struct DB_LSN>(__tmp$B0F64_59);
1577 which is seen as a struct copy. */
1578 if (TREE_CODE (base1) == SSA_NAME
1579 || TREE_CODE (base1) == CONST_DECL
1580 || TREE_CODE (base1) == CONSTRUCTOR
1581 || TREE_CODE (base1) == ADDR_EXPR
1582 || CONSTANT_CLASS_P (base1)
1583 || TREE_CODE (base2) == SSA_NAME
1584 || TREE_CODE (base2) == CONST_DECL
1585 || TREE_CODE (base2) == CONSTRUCTOR
1586 || TREE_CODE (base2) == ADDR_EXPR
1587 || CONSTANT_CLASS_P (base2))
1588 return false;
1589
1590 /* We can end up referring to code via function and label decls.
1591 As we likely do not properly track code aliases conservatively
1592 bail out. */
1593 if (TREE_CODE (base1) == FUNCTION_DECL
1594 || TREE_CODE (base1) == LABEL_DECL
1595 || TREE_CODE (base2) == FUNCTION_DECL
1596 || TREE_CODE (base2) == LABEL_DECL)
1597 return true;
1598
1599 /* Two volatile accesses always conflict. */
1600 if (ref1->volatile_p
1601 && ref2->volatile_p)
1602 return true;
1603
1604 /* Defer to simple offset based disambiguation if we have
1605 references based on two decls. Do this before defering to
1606 TBAA to handle must-alias cases in conformance with the
1607 GCC extension of allowing type-punning through unions. */
1608 var1_p = DECL_P (base1);
1609 var2_p = DECL_P (base2);
1610 if (var1_p && var2_p)
1611 return decl_refs_may_alias_p (ref1->ref, base1, offset1, max_size1,
1612 ref2->ref, base2, offset2, max_size2);
1613
1614 /* Handle restrict based accesses.
1615 ??? ao_ref_base strips inner MEM_REF [&decl], recover from that
1616 here. */
1617 tree rbase1 = base1;
1618 tree rbase2 = base2;
1619 if (var1_p)
1620 {
1621 rbase1 = ref1->ref;
1622 if (rbase1)
1623 while (handled_component_p (rbase1))
1624 rbase1 = TREE_OPERAND (rbase1, 0);
1625 }
1626 if (var2_p)
1627 {
1628 rbase2 = ref2->ref;
1629 if (rbase2)
1630 while (handled_component_p (rbase2))
1631 rbase2 = TREE_OPERAND (rbase2, 0);
1632 }
1633 if (rbase1 && rbase2
1634 && (TREE_CODE (base1) == MEM_REF || TREE_CODE (base1) == TARGET_MEM_REF)
1635 && (TREE_CODE (base2) == MEM_REF || TREE_CODE (base2) == TARGET_MEM_REF)
1636 /* If the accesses are in the same restrict clique... */
1637 && MR_DEPENDENCE_CLIQUE (base1) == MR_DEPENDENCE_CLIQUE (base2)
1638 /* But based on different pointers they do not alias. */
1639 && MR_DEPENDENCE_BASE (base1) != MR_DEPENDENCE_BASE (base2))
1640 return false;
1641
1642 ind1_p = (TREE_CODE (base1) == MEM_REF
1643 || TREE_CODE (base1) == TARGET_MEM_REF);
1644 ind2_p = (TREE_CODE (base2) == MEM_REF
1645 || TREE_CODE (base2) == TARGET_MEM_REF);
1646
1647 /* Canonicalize the pointer-vs-decl case. */
1648 if (ind1_p && var2_p)
1649 {
1650 std::swap (offset1, offset2);
1651 std::swap (max_size1, max_size2);
1652 std::swap (base1, base2);
1653 std::swap (ref1, ref2);
1654 var1_p = true;
1655 ind1_p = false;
1656 var2_p = false;
1657 ind2_p = true;
1658 }
1659
1660 /* First defer to TBAA if possible. */
1661 if (tbaa_p
1662 && flag_strict_aliasing
1663 && !alias_sets_conflict_p (ao_ref_alias_set (ref1),
1664 ao_ref_alias_set (ref2)))
1665 return false;
1666
1667 /* If the reference is based on a pointer that points to memory
1668 that may not be written to then the other reference cannot possibly
1669 clobber it. */
1670 if ((TREE_CODE (TREE_OPERAND (base2, 0)) == SSA_NAME
1671 && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base2, 0)))
1672 || (ind1_p
1673 && TREE_CODE (TREE_OPERAND (base1, 0)) == SSA_NAME
1674 && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base1, 0))))
1675 return false;
1676
1677 /* Dispatch to the pointer-vs-decl or pointer-vs-pointer disambiguators. */
1678 if (var1_p && ind2_p)
1679 return indirect_ref_may_alias_decl_p (ref2->ref, base2,
1680 offset2, max_size2,
1681 ao_ref_alias_set (ref2),
1682 ao_ref_base_alias_set (ref2),
1683 ref1->ref, base1,
1684 offset1, max_size1,
1685 ao_ref_alias_set (ref1),
1686 ao_ref_base_alias_set (ref1),
1687 tbaa_p);
1688 else if (ind1_p && ind2_p)
1689 return indirect_refs_may_alias_p (ref1->ref, base1,
1690 offset1, max_size1,
1691 ao_ref_alias_set (ref1),
1692 ao_ref_base_alias_set (ref1),
1693 ref2->ref, base2,
1694 offset2, max_size2,
1695 ao_ref_alias_set (ref2),
1696 ao_ref_base_alias_set (ref2),
1697 tbaa_p);
1698
1699 gcc_unreachable ();
1700 }
1701
1702 /* Return true, if the two memory references REF1 and REF2 may alias
1703 and update statistics. */
1704
1705 bool
1706 refs_may_alias_p_1 (ao_ref *ref1, ao_ref *ref2, bool tbaa_p)
1707 {
1708 bool res = refs_may_alias_p_2 (ref1, ref2, tbaa_p);
1709 if (res)
1710 ++alias_stats.refs_may_alias_p_may_alias;
1711 else
1712 ++alias_stats.refs_may_alias_p_no_alias;
1713 return res;
1714 }
1715
1716 static bool
1717 refs_may_alias_p (tree ref1, ao_ref *ref2, bool tbaa_p)
1718 {
1719 ao_ref r1;
1720 ao_ref_init (&r1, ref1);
1721 return refs_may_alias_p_1 (&r1, ref2, tbaa_p);
1722 }
1723
1724 bool
1725 refs_may_alias_p (tree ref1, tree ref2, bool tbaa_p)
1726 {
1727 ao_ref r1, r2;
1728 ao_ref_init (&r1, ref1);
1729 ao_ref_init (&r2, ref2);
1730 return refs_may_alias_p_1 (&r1, &r2, tbaa_p);
1731 }
1732
1733 /* Returns true if there is a anti-dependence for the STORE that
1734 executes after the LOAD. */
1735
1736 bool
1737 refs_anti_dependent_p (tree load, tree store)
1738 {
1739 ao_ref r1, r2;
1740 ao_ref_init (&r1, load);
1741 ao_ref_init (&r2, store);
1742 return refs_may_alias_p_1 (&r1, &r2, false);
1743 }
1744
1745 /* Returns true if there is a output dependence for the stores
1746 STORE1 and STORE2. */
1747
1748 bool
1749 refs_output_dependent_p (tree store1, tree store2)
1750 {
1751 ao_ref r1, r2;
1752 ao_ref_init (&r1, store1);
1753 ao_ref_init (&r2, store2);
1754 return refs_may_alias_p_1 (&r1, &r2, false);
1755 }
1756
1757 /* If the call CALL may use the memory reference REF return true,
1758 otherwise return false. */
1759
1760 static bool
1761 ref_maybe_used_by_call_p_1 (gcall *call, ao_ref *ref, bool tbaa_p)
1762 {
1763 tree base, callee;
1764 unsigned i;
1765 int flags = gimple_call_flags (call);
1766
1767 /* Const functions without a static chain do not implicitly use memory. */
1768 if (!gimple_call_chain (call)
1769 && (flags & (ECF_CONST|ECF_NOVOPS)))
1770 goto process_args;
1771
1772 base = ao_ref_base (ref);
1773 if (!base)
1774 return true;
1775
1776 /* A call that is not without side-effects might involve volatile
1777 accesses and thus conflicts with all other volatile accesses. */
1778 if (ref->volatile_p)
1779 return true;
1780
1781 /* If the reference is based on a decl that is not aliased the call
1782 cannot possibly use it. */
1783 if (DECL_P (base)
1784 && !may_be_aliased (base)
1785 /* But local statics can be used through recursion. */
1786 && !is_global_var (base))
1787 goto process_args;
1788
1789 callee = gimple_call_fndecl (call);
1790
1791 /* Handle those builtin functions explicitly that do not act as
1792 escape points. See tree-ssa-structalias.c:find_func_aliases
1793 for the list of builtins we might need to handle here. */
1794 if (callee != NULL_TREE
1795 && gimple_call_builtin_p (call, BUILT_IN_NORMAL))
1796 switch (DECL_FUNCTION_CODE (callee))
1797 {
1798 /* All the following functions read memory pointed to by
1799 their second argument. strcat/strncat additionally
1800 reads memory pointed to by the first argument. */
1801 case BUILT_IN_STRCAT:
1802 case BUILT_IN_STRNCAT:
1803 {
1804 ao_ref dref;
1805 ao_ref_init_from_ptr_and_size (&dref,
1806 gimple_call_arg (call, 0),
1807 NULL_TREE);
1808 if (refs_may_alias_p_1 (&dref, ref, false))
1809 return true;
1810 }
1811 /* FALLTHRU */
1812 case BUILT_IN_STRCPY:
1813 case BUILT_IN_STRNCPY:
1814 case BUILT_IN_MEMCPY:
1815 case BUILT_IN_MEMMOVE:
1816 case BUILT_IN_MEMPCPY:
1817 case BUILT_IN_STPCPY:
1818 case BUILT_IN_STPNCPY:
1819 case BUILT_IN_TM_MEMCPY:
1820 case BUILT_IN_TM_MEMMOVE:
1821 {
1822 ao_ref dref;
1823 tree size = NULL_TREE;
1824 if (gimple_call_num_args (call) == 3)
1825 size = gimple_call_arg (call, 2);
1826 ao_ref_init_from_ptr_and_size (&dref,
1827 gimple_call_arg (call, 1),
1828 size);
1829 return refs_may_alias_p_1 (&dref, ref, false);
1830 }
1831 case BUILT_IN_STRCAT_CHK:
1832 case BUILT_IN_STRNCAT_CHK:
1833 {
1834 ao_ref dref;
1835 ao_ref_init_from_ptr_and_size (&dref,
1836 gimple_call_arg (call, 0),
1837 NULL_TREE);
1838 if (refs_may_alias_p_1 (&dref, ref, false))
1839 return true;
1840 }
1841 /* FALLTHRU */
1842 case BUILT_IN_STRCPY_CHK:
1843 case BUILT_IN_STRNCPY_CHK:
1844 case BUILT_IN_MEMCPY_CHK:
1845 case BUILT_IN_MEMMOVE_CHK:
1846 case BUILT_IN_MEMPCPY_CHK:
1847 case BUILT_IN_STPCPY_CHK:
1848 case BUILT_IN_STPNCPY_CHK:
1849 {
1850 ao_ref dref;
1851 tree size = NULL_TREE;
1852 if (gimple_call_num_args (call) == 4)
1853 size = gimple_call_arg (call, 2);
1854 ao_ref_init_from_ptr_and_size (&dref,
1855 gimple_call_arg (call, 1),
1856 size);
1857 return refs_may_alias_p_1 (&dref, ref, false);
1858 }
1859 case BUILT_IN_BCOPY:
1860 {
1861 ao_ref dref;
1862 tree size = gimple_call_arg (call, 2);
1863 ao_ref_init_from_ptr_and_size (&dref,
1864 gimple_call_arg (call, 0),
1865 size);
1866 return refs_may_alias_p_1 (&dref, ref, false);
1867 }
1868
1869 /* The following functions read memory pointed to by their
1870 first argument. */
1871 CASE_BUILT_IN_TM_LOAD (1):
1872 CASE_BUILT_IN_TM_LOAD (2):
1873 CASE_BUILT_IN_TM_LOAD (4):
1874 CASE_BUILT_IN_TM_LOAD (8):
1875 CASE_BUILT_IN_TM_LOAD (FLOAT):
1876 CASE_BUILT_IN_TM_LOAD (DOUBLE):
1877 CASE_BUILT_IN_TM_LOAD (LDOUBLE):
1878 CASE_BUILT_IN_TM_LOAD (M64):
1879 CASE_BUILT_IN_TM_LOAD (M128):
1880 CASE_BUILT_IN_TM_LOAD (M256):
1881 case BUILT_IN_TM_LOG:
1882 case BUILT_IN_TM_LOG_1:
1883 case BUILT_IN_TM_LOG_2:
1884 case BUILT_IN_TM_LOG_4:
1885 case BUILT_IN_TM_LOG_8:
1886 case BUILT_IN_TM_LOG_FLOAT:
1887 case BUILT_IN_TM_LOG_DOUBLE:
1888 case BUILT_IN_TM_LOG_LDOUBLE:
1889 case BUILT_IN_TM_LOG_M64:
1890 case BUILT_IN_TM_LOG_M128:
1891 case BUILT_IN_TM_LOG_M256:
1892 return ptr_deref_may_alias_ref_p_1 (gimple_call_arg (call, 0), ref);
1893
1894 /* These read memory pointed to by the first argument. */
1895 case BUILT_IN_STRDUP:
1896 case BUILT_IN_STRNDUP:
1897 case BUILT_IN_REALLOC:
1898 {
1899 ao_ref dref;
1900 tree size = NULL_TREE;
1901 if (gimple_call_num_args (call) == 2)
1902 size = gimple_call_arg (call, 1);
1903 ao_ref_init_from_ptr_and_size (&dref,
1904 gimple_call_arg (call, 0),
1905 size);
1906 return refs_may_alias_p_1 (&dref, ref, false);
1907 }
1908 /* These read memory pointed to by the first argument. */
1909 case BUILT_IN_INDEX:
1910 case BUILT_IN_STRCHR:
1911 case BUILT_IN_STRRCHR:
1912 {
1913 ao_ref dref;
1914 ao_ref_init_from_ptr_and_size (&dref,
1915 gimple_call_arg (call, 0),
1916 NULL_TREE);
1917 return refs_may_alias_p_1 (&dref, ref, false);
1918 }
1919 /* These read memory pointed to by the first argument with size
1920 in the third argument. */
1921 case BUILT_IN_MEMCHR:
1922 {
1923 ao_ref dref;
1924 ao_ref_init_from_ptr_and_size (&dref,
1925 gimple_call_arg (call, 0),
1926 gimple_call_arg (call, 2));
1927 return refs_may_alias_p_1 (&dref, ref, false);
1928 }
1929 /* These read memory pointed to by the first and second arguments. */
1930 case BUILT_IN_STRSTR:
1931 case BUILT_IN_STRPBRK:
1932 {
1933 ao_ref dref;
1934 ao_ref_init_from_ptr_and_size (&dref,
1935 gimple_call_arg (call, 0),
1936 NULL_TREE);
1937 if (refs_may_alias_p_1 (&dref, ref, false))
1938 return true;
1939 ao_ref_init_from_ptr_and_size (&dref,
1940 gimple_call_arg (call, 1),
1941 NULL_TREE);
1942 return refs_may_alias_p_1 (&dref, ref, false);
1943 }
1944
1945 /* The following builtins do not read from memory. */
1946 case BUILT_IN_FREE:
1947 case BUILT_IN_MALLOC:
1948 case BUILT_IN_POSIX_MEMALIGN:
1949 case BUILT_IN_ALIGNED_ALLOC:
1950 case BUILT_IN_CALLOC:
1951 CASE_BUILT_IN_ALLOCA:
1952 case BUILT_IN_STACK_SAVE:
1953 case BUILT_IN_STACK_RESTORE:
1954 case BUILT_IN_MEMSET:
1955 case BUILT_IN_TM_MEMSET:
1956 case BUILT_IN_MEMSET_CHK:
1957 case BUILT_IN_FREXP:
1958 case BUILT_IN_FREXPF:
1959 case BUILT_IN_FREXPL:
1960 case BUILT_IN_GAMMA_R:
1961 case BUILT_IN_GAMMAF_R:
1962 case BUILT_IN_GAMMAL_R:
1963 case BUILT_IN_LGAMMA_R:
1964 case BUILT_IN_LGAMMAF_R:
1965 case BUILT_IN_LGAMMAL_R:
1966 case BUILT_IN_MODF:
1967 case BUILT_IN_MODFF:
1968 case BUILT_IN_MODFL:
1969 case BUILT_IN_REMQUO:
1970 case BUILT_IN_REMQUOF:
1971 case BUILT_IN_REMQUOL:
1972 case BUILT_IN_SINCOS:
1973 case BUILT_IN_SINCOSF:
1974 case BUILT_IN_SINCOSL:
1975 case BUILT_IN_ASSUME_ALIGNED:
1976 case BUILT_IN_VA_END:
1977 return false;
1978 /* __sync_* builtins and some OpenMP builtins act as threading
1979 barriers. */
1980 #undef DEF_SYNC_BUILTIN
1981 #define DEF_SYNC_BUILTIN(ENUM, NAME, TYPE, ATTRS) case ENUM:
1982 #include "sync-builtins.def"
1983 #undef DEF_SYNC_BUILTIN
1984 case BUILT_IN_GOMP_ATOMIC_START:
1985 case BUILT_IN_GOMP_ATOMIC_END:
1986 case BUILT_IN_GOMP_BARRIER:
1987 case BUILT_IN_GOMP_BARRIER_CANCEL:
1988 case BUILT_IN_GOMP_TASKWAIT:
1989 case BUILT_IN_GOMP_TASKGROUP_END:
1990 case BUILT_IN_GOMP_CRITICAL_START:
1991 case BUILT_IN_GOMP_CRITICAL_END:
1992 case BUILT_IN_GOMP_CRITICAL_NAME_START:
1993 case BUILT_IN_GOMP_CRITICAL_NAME_END:
1994 case BUILT_IN_GOMP_LOOP_END:
1995 case BUILT_IN_GOMP_LOOP_END_CANCEL:
1996 case BUILT_IN_GOMP_ORDERED_START:
1997 case BUILT_IN_GOMP_ORDERED_END:
1998 case BUILT_IN_GOMP_SECTIONS_END:
1999 case BUILT_IN_GOMP_SECTIONS_END_CANCEL:
2000 case BUILT_IN_GOMP_SINGLE_COPY_START:
2001 case BUILT_IN_GOMP_SINGLE_COPY_END:
2002 return true;
2003
2004 default:
2005 /* Fallthru to general call handling. */;
2006 }
2007
2008 /* Check if base is a global static variable that is not read
2009 by the function. */
2010 if (callee != NULL_TREE && VAR_P (base) && TREE_STATIC (base))
2011 {
2012 struct cgraph_node *node = cgraph_node::get (callee);
2013 bitmap not_read;
2014
2015 /* FIXME: Callee can be an OMP builtin that does not have a call graph
2016 node yet. We should enforce that there are nodes for all decls in the
2017 IL and remove this check instead. */
2018 if (node
2019 && (not_read = ipa_reference_get_not_read_global (node))
2020 && bitmap_bit_p (not_read, ipa_reference_var_uid (base)))
2021 goto process_args;
2022 }
2023
2024 /* Check if the base variable is call-used. */
2025 if (DECL_P (base))
2026 {
2027 if (pt_solution_includes (gimple_call_use_set (call), base))
2028 return true;
2029 }
2030 else if ((TREE_CODE (base) == MEM_REF
2031 || TREE_CODE (base) == TARGET_MEM_REF)
2032 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
2033 {
2034 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (TREE_OPERAND (base, 0));
2035 if (!pi)
2036 return true;
2037
2038 if (pt_solutions_intersect (gimple_call_use_set (call), &pi->pt))
2039 return true;
2040 }
2041 else
2042 return true;
2043
2044 /* Inspect call arguments for passed-by-value aliases. */
2045 process_args:
2046 for (i = 0; i < gimple_call_num_args (call); ++i)
2047 {
2048 tree op = gimple_call_arg (call, i);
2049 int flags = gimple_call_arg_flags (call, i);
2050
2051 if (flags & EAF_UNUSED)
2052 continue;
2053
2054 if (TREE_CODE (op) == WITH_SIZE_EXPR)
2055 op = TREE_OPERAND (op, 0);
2056
2057 if (TREE_CODE (op) != SSA_NAME
2058 && !is_gimple_min_invariant (op))
2059 {
2060 ao_ref r;
2061 ao_ref_init (&r, op);
2062 if (refs_may_alias_p_1 (&r, ref, tbaa_p))
2063 return true;
2064 }
2065 }
2066
2067 return false;
2068 }
2069
2070 static bool
2071 ref_maybe_used_by_call_p (gcall *call, ao_ref *ref, bool tbaa_p)
2072 {
2073 bool res;
2074 res = ref_maybe_used_by_call_p_1 (call, ref, tbaa_p);
2075 if (res)
2076 ++alias_stats.ref_maybe_used_by_call_p_may_alias;
2077 else
2078 ++alias_stats.ref_maybe_used_by_call_p_no_alias;
2079 return res;
2080 }
2081
2082
2083 /* If the statement STMT may use the memory reference REF return
2084 true, otherwise return false. */
2085
2086 bool
2087 ref_maybe_used_by_stmt_p (gimple *stmt, ao_ref *ref, bool tbaa_p)
2088 {
2089 if (is_gimple_assign (stmt))
2090 {
2091 tree rhs;
2092
2093 /* All memory assign statements are single. */
2094 if (!gimple_assign_single_p (stmt))
2095 return false;
2096
2097 rhs = gimple_assign_rhs1 (stmt);
2098 if (is_gimple_reg (rhs)
2099 || is_gimple_min_invariant (rhs)
2100 || gimple_assign_rhs_code (stmt) == CONSTRUCTOR)
2101 return false;
2102
2103 return refs_may_alias_p (rhs, ref, tbaa_p);
2104 }
2105 else if (is_gimple_call (stmt))
2106 return ref_maybe_used_by_call_p (as_a <gcall *> (stmt), ref, tbaa_p);
2107 else if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
2108 {
2109 tree retval = gimple_return_retval (return_stmt);
2110 if (retval
2111 && TREE_CODE (retval) != SSA_NAME
2112 && !is_gimple_min_invariant (retval)
2113 && refs_may_alias_p (retval, ref, tbaa_p))
2114 return true;
2115 /* If ref escapes the function then the return acts as a use. */
2116 tree base = ao_ref_base (ref);
2117 if (!base)
2118 ;
2119 else if (DECL_P (base))
2120 return is_global_var (base);
2121 else if (TREE_CODE (base) == MEM_REF
2122 || TREE_CODE (base) == TARGET_MEM_REF)
2123 return ptr_deref_may_alias_global_p (TREE_OPERAND (base, 0));
2124 return false;
2125 }
2126
2127 return true;
2128 }
2129
2130 bool
2131 ref_maybe_used_by_stmt_p (gimple *stmt, tree ref, bool tbaa_p)
2132 {
2133 ao_ref r;
2134 ao_ref_init (&r, ref);
2135 return ref_maybe_used_by_stmt_p (stmt, &r, tbaa_p);
2136 }
2137
2138 /* If the call in statement CALL may clobber the memory reference REF
2139 return true, otherwise return false. */
2140
2141 bool
2142 call_may_clobber_ref_p_1 (gcall *call, ao_ref *ref)
2143 {
2144 tree base;
2145 tree callee;
2146
2147 /* If the call is pure or const it cannot clobber anything. */
2148 if (gimple_call_flags (call)
2149 & (ECF_PURE|ECF_CONST|ECF_LOOPING_CONST_OR_PURE|ECF_NOVOPS))
2150 return false;
2151 if (gimple_call_internal_p (call))
2152 switch (gimple_call_internal_fn (call))
2153 {
2154 /* Treat these internal calls like ECF_PURE for aliasing,
2155 they don't write to any memory the program should care about.
2156 They have important other side-effects, and read memory,
2157 so can't be ECF_NOVOPS. */
2158 case IFN_UBSAN_NULL:
2159 case IFN_UBSAN_BOUNDS:
2160 case IFN_UBSAN_VPTR:
2161 case IFN_UBSAN_OBJECT_SIZE:
2162 case IFN_UBSAN_PTR:
2163 case IFN_ASAN_CHECK:
2164 return false;
2165 default:
2166 break;
2167 }
2168
2169 base = ao_ref_base (ref);
2170 if (!base)
2171 return true;
2172
2173 if (TREE_CODE (base) == SSA_NAME
2174 || CONSTANT_CLASS_P (base))
2175 return false;
2176
2177 /* A call that is not without side-effects might involve volatile
2178 accesses and thus conflicts with all other volatile accesses. */
2179 if (ref->volatile_p)
2180 return true;
2181
2182 /* If the reference is based on a decl that is not aliased the call
2183 cannot possibly clobber it. */
2184 if (DECL_P (base)
2185 && !may_be_aliased (base)
2186 /* But local non-readonly statics can be modified through recursion
2187 or the call may implement a threading barrier which we must
2188 treat as may-def. */
2189 && (TREE_READONLY (base)
2190 || !is_global_var (base)))
2191 return false;
2192
2193 /* If the reference is based on a pointer that points to memory
2194 that may not be written to then the call cannot possibly clobber it. */
2195 if ((TREE_CODE (base) == MEM_REF
2196 || TREE_CODE (base) == TARGET_MEM_REF)
2197 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME
2198 && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base, 0)))
2199 return false;
2200
2201 callee = gimple_call_fndecl (call);
2202
2203 /* Handle those builtin functions explicitly that do not act as
2204 escape points. See tree-ssa-structalias.c:find_func_aliases
2205 for the list of builtins we might need to handle here. */
2206 if (callee != NULL_TREE
2207 && gimple_call_builtin_p (call, BUILT_IN_NORMAL))
2208 switch (DECL_FUNCTION_CODE (callee))
2209 {
2210 /* All the following functions clobber memory pointed to by
2211 their first argument. */
2212 case BUILT_IN_STRCPY:
2213 case BUILT_IN_STRNCPY:
2214 case BUILT_IN_MEMCPY:
2215 case BUILT_IN_MEMMOVE:
2216 case BUILT_IN_MEMPCPY:
2217 case BUILT_IN_STPCPY:
2218 case BUILT_IN_STPNCPY:
2219 case BUILT_IN_STRCAT:
2220 case BUILT_IN_STRNCAT:
2221 case BUILT_IN_MEMSET:
2222 case BUILT_IN_TM_MEMSET:
2223 CASE_BUILT_IN_TM_STORE (1):
2224 CASE_BUILT_IN_TM_STORE (2):
2225 CASE_BUILT_IN_TM_STORE (4):
2226 CASE_BUILT_IN_TM_STORE (8):
2227 CASE_BUILT_IN_TM_STORE (FLOAT):
2228 CASE_BUILT_IN_TM_STORE (DOUBLE):
2229 CASE_BUILT_IN_TM_STORE (LDOUBLE):
2230 CASE_BUILT_IN_TM_STORE (M64):
2231 CASE_BUILT_IN_TM_STORE (M128):
2232 CASE_BUILT_IN_TM_STORE (M256):
2233 case BUILT_IN_TM_MEMCPY:
2234 case BUILT_IN_TM_MEMMOVE:
2235 {
2236 ao_ref dref;
2237 tree size = NULL_TREE;
2238 /* Don't pass in size for strncat, as the maximum size
2239 is strlen (dest) + n + 1 instead of n, resp.
2240 n + 1 at dest + strlen (dest), but strlen (dest) isn't
2241 known. */
2242 if (gimple_call_num_args (call) == 3
2243 && DECL_FUNCTION_CODE (callee) != BUILT_IN_STRNCAT)
2244 size = gimple_call_arg (call, 2);
2245 ao_ref_init_from_ptr_and_size (&dref,
2246 gimple_call_arg (call, 0),
2247 size);
2248 return refs_may_alias_p_1 (&dref, ref, false);
2249 }
2250 case BUILT_IN_STRCPY_CHK:
2251 case BUILT_IN_STRNCPY_CHK:
2252 case BUILT_IN_MEMCPY_CHK:
2253 case BUILT_IN_MEMMOVE_CHK:
2254 case BUILT_IN_MEMPCPY_CHK:
2255 case BUILT_IN_STPCPY_CHK:
2256 case BUILT_IN_STPNCPY_CHK:
2257 case BUILT_IN_STRCAT_CHK:
2258 case BUILT_IN_STRNCAT_CHK:
2259 case BUILT_IN_MEMSET_CHK:
2260 {
2261 ao_ref dref;
2262 tree size = NULL_TREE;
2263 /* Don't pass in size for __strncat_chk, as the maximum size
2264 is strlen (dest) + n + 1 instead of n, resp.
2265 n + 1 at dest + strlen (dest), but strlen (dest) isn't
2266 known. */
2267 if (gimple_call_num_args (call) == 4
2268 && DECL_FUNCTION_CODE (callee) != BUILT_IN_STRNCAT_CHK)
2269 size = gimple_call_arg (call, 2);
2270 ao_ref_init_from_ptr_and_size (&dref,
2271 gimple_call_arg (call, 0),
2272 size);
2273 return refs_may_alias_p_1 (&dref, ref, false);
2274 }
2275 case BUILT_IN_BCOPY:
2276 {
2277 ao_ref dref;
2278 tree size = gimple_call_arg (call, 2);
2279 ao_ref_init_from_ptr_and_size (&dref,
2280 gimple_call_arg (call, 1),
2281 size);
2282 return refs_may_alias_p_1 (&dref, ref, false);
2283 }
2284 /* Allocating memory does not have any side-effects apart from
2285 being the definition point for the pointer. */
2286 case BUILT_IN_MALLOC:
2287 case BUILT_IN_ALIGNED_ALLOC:
2288 case BUILT_IN_CALLOC:
2289 case BUILT_IN_STRDUP:
2290 case BUILT_IN_STRNDUP:
2291 /* Unix98 specifies that errno is set on allocation failure. */
2292 if (flag_errno_math
2293 && targetm.ref_may_alias_errno (ref))
2294 return true;
2295 return false;
2296 case BUILT_IN_STACK_SAVE:
2297 CASE_BUILT_IN_ALLOCA:
2298 case BUILT_IN_ASSUME_ALIGNED:
2299 return false;
2300 /* But posix_memalign stores a pointer into the memory pointed to
2301 by its first argument. */
2302 case BUILT_IN_POSIX_MEMALIGN:
2303 {
2304 tree ptrptr = gimple_call_arg (call, 0);
2305 ao_ref dref;
2306 ao_ref_init_from_ptr_and_size (&dref, ptrptr,
2307 TYPE_SIZE_UNIT (ptr_type_node));
2308 return (refs_may_alias_p_1 (&dref, ref, false)
2309 || (flag_errno_math
2310 && targetm.ref_may_alias_errno (ref)));
2311 }
2312 /* Freeing memory kills the pointed-to memory. More importantly
2313 the call has to serve as a barrier for moving loads and stores
2314 across it. */
2315 case BUILT_IN_FREE:
2316 case BUILT_IN_VA_END:
2317 {
2318 tree ptr = gimple_call_arg (call, 0);
2319 return ptr_deref_may_alias_ref_p_1 (ptr, ref);
2320 }
2321 /* Realloc serves both as allocation point and deallocation point. */
2322 case BUILT_IN_REALLOC:
2323 {
2324 tree ptr = gimple_call_arg (call, 0);
2325 /* Unix98 specifies that errno is set on allocation failure. */
2326 return ((flag_errno_math
2327 && targetm.ref_may_alias_errno (ref))
2328 || ptr_deref_may_alias_ref_p_1 (ptr, ref));
2329 }
2330 case BUILT_IN_GAMMA_R:
2331 case BUILT_IN_GAMMAF_R:
2332 case BUILT_IN_GAMMAL_R:
2333 case BUILT_IN_LGAMMA_R:
2334 case BUILT_IN_LGAMMAF_R:
2335 case BUILT_IN_LGAMMAL_R:
2336 {
2337 tree out = gimple_call_arg (call, 1);
2338 if (ptr_deref_may_alias_ref_p_1 (out, ref))
2339 return true;
2340 if (flag_errno_math)
2341 break;
2342 return false;
2343 }
2344 case BUILT_IN_FREXP:
2345 case BUILT_IN_FREXPF:
2346 case BUILT_IN_FREXPL:
2347 case BUILT_IN_MODF:
2348 case BUILT_IN_MODFF:
2349 case BUILT_IN_MODFL:
2350 {
2351 tree out = gimple_call_arg (call, 1);
2352 return ptr_deref_may_alias_ref_p_1 (out, ref);
2353 }
2354 case BUILT_IN_REMQUO:
2355 case BUILT_IN_REMQUOF:
2356 case BUILT_IN_REMQUOL:
2357 {
2358 tree out = gimple_call_arg (call, 2);
2359 if (ptr_deref_may_alias_ref_p_1 (out, ref))
2360 return true;
2361 if (flag_errno_math)
2362 break;
2363 return false;
2364 }
2365 case BUILT_IN_SINCOS:
2366 case BUILT_IN_SINCOSF:
2367 case BUILT_IN_SINCOSL:
2368 {
2369 tree sin = gimple_call_arg (call, 1);
2370 tree cos = gimple_call_arg (call, 2);
2371 return (ptr_deref_may_alias_ref_p_1 (sin, ref)
2372 || ptr_deref_may_alias_ref_p_1 (cos, ref));
2373 }
2374 /* __sync_* builtins and some OpenMP builtins act as threading
2375 barriers. */
2376 #undef DEF_SYNC_BUILTIN
2377 #define DEF_SYNC_BUILTIN(ENUM, NAME, TYPE, ATTRS) case ENUM:
2378 #include "sync-builtins.def"
2379 #undef DEF_SYNC_BUILTIN
2380 case BUILT_IN_GOMP_ATOMIC_START:
2381 case BUILT_IN_GOMP_ATOMIC_END:
2382 case BUILT_IN_GOMP_BARRIER:
2383 case BUILT_IN_GOMP_BARRIER_CANCEL:
2384 case BUILT_IN_GOMP_TASKWAIT:
2385 case BUILT_IN_GOMP_TASKGROUP_END:
2386 case BUILT_IN_GOMP_CRITICAL_START:
2387 case BUILT_IN_GOMP_CRITICAL_END:
2388 case BUILT_IN_GOMP_CRITICAL_NAME_START:
2389 case BUILT_IN_GOMP_CRITICAL_NAME_END:
2390 case BUILT_IN_GOMP_LOOP_END:
2391 case BUILT_IN_GOMP_LOOP_END_CANCEL:
2392 case BUILT_IN_GOMP_ORDERED_START:
2393 case BUILT_IN_GOMP_ORDERED_END:
2394 case BUILT_IN_GOMP_SECTIONS_END:
2395 case BUILT_IN_GOMP_SECTIONS_END_CANCEL:
2396 case BUILT_IN_GOMP_SINGLE_COPY_START:
2397 case BUILT_IN_GOMP_SINGLE_COPY_END:
2398 return true;
2399 default:
2400 /* Fallthru to general call handling. */;
2401 }
2402
2403 /* Check if base is a global static variable that is not written
2404 by the function. */
2405 if (callee != NULL_TREE && VAR_P (base) && TREE_STATIC (base))
2406 {
2407 struct cgraph_node *node = cgraph_node::get (callee);
2408 bitmap not_written;
2409
2410 if (node
2411 && (not_written = ipa_reference_get_not_written_global (node))
2412 && bitmap_bit_p (not_written, ipa_reference_var_uid (base)))
2413 return false;
2414 }
2415
2416 /* Check if the base variable is call-clobbered. */
2417 if (DECL_P (base))
2418 return pt_solution_includes (gimple_call_clobber_set (call), base);
2419 else if ((TREE_CODE (base) == MEM_REF
2420 || TREE_CODE (base) == TARGET_MEM_REF)
2421 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
2422 {
2423 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (TREE_OPERAND (base, 0));
2424 if (!pi)
2425 return true;
2426
2427 return pt_solutions_intersect (gimple_call_clobber_set (call), &pi->pt);
2428 }
2429
2430 return true;
2431 }
2432
2433 /* If the call in statement CALL may clobber the memory reference REF
2434 return true, otherwise return false. */
2435
2436 bool
2437 call_may_clobber_ref_p (gcall *call, tree ref)
2438 {
2439 bool res;
2440 ao_ref r;
2441 ao_ref_init (&r, ref);
2442 res = call_may_clobber_ref_p_1 (call, &r);
2443 if (res)
2444 ++alias_stats.call_may_clobber_ref_p_may_alias;
2445 else
2446 ++alias_stats.call_may_clobber_ref_p_no_alias;
2447 return res;
2448 }
2449
2450
2451 /* If the statement STMT may clobber the memory reference REF return true,
2452 otherwise return false. */
2453
2454 bool
2455 stmt_may_clobber_ref_p_1 (gimple *stmt, ao_ref *ref, bool tbaa_p)
2456 {
2457 if (is_gimple_call (stmt))
2458 {
2459 tree lhs = gimple_call_lhs (stmt);
2460 if (lhs
2461 && TREE_CODE (lhs) != SSA_NAME)
2462 {
2463 ao_ref r;
2464 ao_ref_init (&r, lhs);
2465 if (refs_may_alias_p_1 (ref, &r, tbaa_p))
2466 return true;
2467 }
2468
2469 return call_may_clobber_ref_p_1 (as_a <gcall *> (stmt), ref);
2470 }
2471 else if (gimple_assign_single_p (stmt))
2472 {
2473 tree lhs = gimple_assign_lhs (stmt);
2474 if (TREE_CODE (lhs) != SSA_NAME)
2475 {
2476 ao_ref r;
2477 ao_ref_init (&r, lhs);
2478 return refs_may_alias_p_1 (ref, &r, tbaa_p);
2479 }
2480 }
2481 else if (gimple_code (stmt) == GIMPLE_ASM)
2482 return true;
2483
2484 return false;
2485 }
2486
2487 bool
2488 stmt_may_clobber_ref_p (gimple *stmt, tree ref, bool tbaa_p)
2489 {
2490 ao_ref r;
2491 ao_ref_init (&r, ref);
2492 return stmt_may_clobber_ref_p_1 (stmt, &r, tbaa_p);
2493 }
2494
2495 /* Return true if store1 and store2 described by corresponding tuples
2496 <BASE, OFFSET, SIZE, MAX_SIZE> have the same size and store to the same
2497 address. */
2498
2499 static bool
2500 same_addr_size_stores_p (tree base1, poly_int64 offset1, poly_int64 size1,
2501 poly_int64 max_size1,
2502 tree base2, poly_int64 offset2, poly_int64 size2,
2503 poly_int64 max_size2)
2504 {
2505 /* Offsets need to be 0. */
2506 if (maybe_ne (offset1, 0)
2507 || maybe_ne (offset2, 0))
2508 return false;
2509
2510 bool base1_obj_p = SSA_VAR_P (base1);
2511 bool base2_obj_p = SSA_VAR_P (base2);
2512
2513 /* We need one object. */
2514 if (base1_obj_p == base2_obj_p)
2515 return false;
2516 tree obj = base1_obj_p ? base1 : base2;
2517
2518 /* And we need one MEM_REF. */
2519 bool base1_memref_p = TREE_CODE (base1) == MEM_REF;
2520 bool base2_memref_p = TREE_CODE (base2) == MEM_REF;
2521 if (base1_memref_p == base2_memref_p)
2522 return false;
2523 tree memref = base1_memref_p ? base1 : base2;
2524
2525 /* Sizes need to be valid. */
2526 if (!known_size_p (max_size1)
2527 || !known_size_p (max_size2)
2528 || !known_size_p (size1)
2529 || !known_size_p (size2))
2530 return false;
2531
2532 /* Max_size needs to match size. */
2533 if (maybe_ne (max_size1, size1)
2534 || maybe_ne (max_size2, size2))
2535 return false;
2536
2537 /* Sizes need to match. */
2538 if (maybe_ne (size1, size2))
2539 return false;
2540
2541
2542 /* Check that memref is a store to pointer with singleton points-to info. */
2543 if (!integer_zerop (TREE_OPERAND (memref, 1)))
2544 return false;
2545 tree ptr = TREE_OPERAND (memref, 0);
2546 if (TREE_CODE (ptr) != SSA_NAME)
2547 return false;
2548 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
2549 unsigned int pt_uid;
2550 if (pi == NULL
2551 || !pt_solution_singleton_or_null_p (&pi->pt, &pt_uid))
2552 return false;
2553
2554 /* Be conservative with non-call exceptions when the address might
2555 be NULL. */
2556 if (cfun->can_throw_non_call_exceptions && pi->pt.null)
2557 return false;
2558
2559 /* Check that ptr points relative to obj. */
2560 unsigned int obj_uid = DECL_PT_UID (obj);
2561 if (obj_uid != pt_uid)
2562 return false;
2563
2564 /* Check that the object size is the same as the store size. That ensures us
2565 that ptr points to the start of obj. */
2566 return (DECL_SIZE (obj)
2567 && poly_int_tree_p (DECL_SIZE (obj))
2568 && known_eq (wi::to_poly_offset (DECL_SIZE (obj)), size1));
2569 }
2570
2571 /* If STMT kills the memory reference REF return true, otherwise
2572 return false. */
2573
2574 bool
2575 stmt_kills_ref_p (gimple *stmt, ao_ref *ref)
2576 {
2577 if (!ao_ref_base (ref))
2578 return false;
2579
2580 if (gimple_has_lhs (stmt)
2581 && TREE_CODE (gimple_get_lhs (stmt)) != SSA_NAME
2582 /* The assignment is not necessarily carried out if it can throw
2583 and we can catch it in the current function where we could inspect
2584 the previous value.
2585 ??? We only need to care about the RHS throwing. For aggregate
2586 assignments or similar calls and non-call exceptions the LHS
2587 might throw as well. */
2588 && !stmt_can_throw_internal (cfun, stmt))
2589 {
2590 tree lhs = gimple_get_lhs (stmt);
2591 /* If LHS is literally a base of the access we are done. */
2592 if (ref->ref)
2593 {
2594 tree base = ref->ref;
2595 tree innermost_dropped_array_ref = NULL_TREE;
2596 if (handled_component_p (base))
2597 {
2598 tree saved_lhs0 = NULL_TREE;
2599 if (handled_component_p (lhs))
2600 {
2601 saved_lhs0 = TREE_OPERAND (lhs, 0);
2602 TREE_OPERAND (lhs, 0) = integer_zero_node;
2603 }
2604 do
2605 {
2606 /* Just compare the outermost handled component, if
2607 they are equal we have found a possible common
2608 base. */
2609 tree saved_base0 = TREE_OPERAND (base, 0);
2610 TREE_OPERAND (base, 0) = integer_zero_node;
2611 bool res = operand_equal_p (lhs, base, 0);
2612 TREE_OPERAND (base, 0) = saved_base0;
2613 if (res)
2614 break;
2615 /* Remember if we drop an array-ref that we need to
2616 double-check not being at struct end. */
2617 if (TREE_CODE (base) == ARRAY_REF
2618 || TREE_CODE (base) == ARRAY_RANGE_REF)
2619 innermost_dropped_array_ref = base;
2620 /* Otherwise drop handled components of the access. */
2621 base = saved_base0;
2622 }
2623 while (handled_component_p (base));
2624 if (saved_lhs0)
2625 TREE_OPERAND (lhs, 0) = saved_lhs0;
2626 }
2627 /* Finally check if the lhs has the same address and size as the
2628 base candidate of the access. Watch out if we have dropped
2629 an array-ref that was at struct end, this means ref->ref may
2630 be outside of the TYPE_SIZE of its base. */
2631 if ((! innermost_dropped_array_ref
2632 || ! array_at_struct_end_p (innermost_dropped_array_ref))
2633 && (lhs == base
2634 || (((TYPE_SIZE (TREE_TYPE (lhs))
2635 == TYPE_SIZE (TREE_TYPE (base)))
2636 || (TYPE_SIZE (TREE_TYPE (lhs))
2637 && TYPE_SIZE (TREE_TYPE (base))
2638 && operand_equal_p (TYPE_SIZE (TREE_TYPE (lhs)),
2639 TYPE_SIZE (TREE_TYPE (base)),
2640 0)))
2641 && operand_equal_p (lhs, base,
2642 OEP_ADDRESS_OF
2643 | OEP_MATCH_SIDE_EFFECTS))))
2644 return true;
2645 }
2646
2647 /* Now look for non-literal equal bases with the restriction of
2648 handling constant offset and size. */
2649 /* For a must-alias check we need to be able to constrain
2650 the access properly. */
2651 if (!ref->max_size_known_p ())
2652 return false;
2653 poly_int64 size, offset, max_size, ref_offset = ref->offset;
2654 bool reverse;
2655 tree base = get_ref_base_and_extent (lhs, &offset, &size, &max_size,
2656 &reverse);
2657 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
2658 so base == ref->base does not always hold. */
2659 if (base != ref->base)
2660 {
2661 /* Try using points-to info. */
2662 if (same_addr_size_stores_p (base, offset, size, max_size, ref->base,
2663 ref->offset, ref->size, ref->max_size))
2664 return true;
2665
2666 /* If both base and ref->base are MEM_REFs, only compare the
2667 first operand, and if the second operand isn't equal constant,
2668 try to add the offsets into offset and ref_offset. */
2669 if (TREE_CODE (base) == MEM_REF && TREE_CODE (ref->base) == MEM_REF
2670 && TREE_OPERAND (base, 0) == TREE_OPERAND (ref->base, 0))
2671 {
2672 if (!tree_int_cst_equal (TREE_OPERAND (base, 1),
2673 TREE_OPERAND (ref->base, 1)))
2674 {
2675 poly_offset_int off1 = mem_ref_offset (base);
2676 off1 <<= LOG2_BITS_PER_UNIT;
2677 off1 += offset;
2678 poly_offset_int off2 = mem_ref_offset (ref->base);
2679 off2 <<= LOG2_BITS_PER_UNIT;
2680 off2 += ref_offset;
2681 if (!off1.to_shwi (&offset) || !off2.to_shwi (&ref_offset))
2682 size = -1;
2683 }
2684 }
2685 else
2686 size = -1;
2687 }
2688 /* For a must-alias check we need to be able to constrain
2689 the access properly. */
2690 if (known_eq (size, max_size)
2691 && known_subrange_p (ref_offset, ref->max_size, offset, size))
2692 return true;
2693 }
2694
2695 if (is_gimple_call (stmt))
2696 {
2697 tree callee = gimple_call_fndecl (stmt);
2698 if (callee != NULL_TREE
2699 && gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
2700 switch (DECL_FUNCTION_CODE (callee))
2701 {
2702 case BUILT_IN_FREE:
2703 {
2704 tree ptr = gimple_call_arg (stmt, 0);
2705 tree base = ao_ref_base (ref);
2706 if (base && TREE_CODE (base) == MEM_REF
2707 && TREE_OPERAND (base, 0) == ptr)
2708 return true;
2709 break;
2710 }
2711
2712 case BUILT_IN_MEMCPY:
2713 case BUILT_IN_MEMPCPY:
2714 case BUILT_IN_MEMMOVE:
2715 case BUILT_IN_MEMSET:
2716 case BUILT_IN_MEMCPY_CHK:
2717 case BUILT_IN_MEMPCPY_CHK:
2718 case BUILT_IN_MEMMOVE_CHK:
2719 case BUILT_IN_MEMSET_CHK:
2720 case BUILT_IN_STRNCPY:
2721 case BUILT_IN_STPNCPY:
2722 {
2723 /* For a must-alias check we need to be able to constrain
2724 the access properly. */
2725 if (!ref->max_size_known_p ())
2726 return false;
2727 tree dest = gimple_call_arg (stmt, 0);
2728 tree len = gimple_call_arg (stmt, 2);
2729 if (!poly_int_tree_p (len))
2730 return false;
2731 tree rbase = ref->base;
2732 poly_offset_int roffset = ref->offset;
2733 ao_ref dref;
2734 ao_ref_init_from_ptr_and_size (&dref, dest, len);
2735 tree base = ao_ref_base (&dref);
2736 poly_offset_int offset = dref.offset;
2737 if (!base || !known_size_p (dref.size))
2738 return false;
2739 if (TREE_CODE (base) == MEM_REF)
2740 {
2741 if (TREE_CODE (rbase) != MEM_REF)
2742 return false;
2743 // Compare pointers.
2744 offset += mem_ref_offset (base) << LOG2_BITS_PER_UNIT;
2745 roffset += mem_ref_offset (rbase) << LOG2_BITS_PER_UNIT;
2746 base = TREE_OPERAND (base, 0);
2747 rbase = TREE_OPERAND (rbase, 0);
2748 }
2749 if (base == rbase
2750 && known_subrange_p (roffset, ref->max_size, offset,
2751 wi::to_poly_offset (len)
2752 << LOG2_BITS_PER_UNIT))
2753 return true;
2754 break;
2755 }
2756
2757 case BUILT_IN_VA_END:
2758 {
2759 tree ptr = gimple_call_arg (stmt, 0);
2760 if (TREE_CODE (ptr) == ADDR_EXPR)
2761 {
2762 tree base = ao_ref_base (ref);
2763 if (TREE_OPERAND (ptr, 0) == base)
2764 return true;
2765 }
2766 break;
2767 }
2768
2769 default:;
2770 }
2771 }
2772 return false;
2773 }
2774
2775 bool
2776 stmt_kills_ref_p (gimple *stmt, tree ref)
2777 {
2778 ao_ref r;
2779 ao_ref_init (&r, ref);
2780 return stmt_kills_ref_p (stmt, &r);
2781 }
2782
2783
2784 /* Walk the virtual use-def chain of VUSE until hitting the virtual operand
2785 TARGET or a statement clobbering the memory reference REF in which
2786 case false is returned. The walk starts with VUSE, one argument of PHI. */
2787
2788 static bool
2789 maybe_skip_until (gimple *phi, tree &target, basic_block target_bb,
2790 ao_ref *ref, tree vuse, unsigned int &limit, bitmap *visited,
2791 bool abort_on_visited,
2792 void *(*translate)(ao_ref *, tree, void *, bool *),
2793 void *data)
2794 {
2795 basic_block bb = gimple_bb (phi);
2796
2797 if (!*visited)
2798 *visited = BITMAP_ALLOC (NULL);
2799
2800 bitmap_set_bit (*visited, SSA_NAME_VERSION (PHI_RESULT (phi)));
2801
2802 /* Walk until we hit the target. */
2803 while (vuse != target)
2804 {
2805 gimple *def_stmt = SSA_NAME_DEF_STMT (vuse);
2806 /* If we are searching for the target VUSE by walking up to
2807 TARGET_BB dominating the original PHI we are finished once
2808 we reach a default def or a definition in a block dominating
2809 that block. Update TARGET and return. */
2810 if (!target
2811 && (gimple_nop_p (def_stmt)
2812 || dominated_by_p (CDI_DOMINATORS,
2813 target_bb, gimple_bb (def_stmt))))
2814 {
2815 target = vuse;
2816 return true;
2817 }
2818
2819 /* Recurse for PHI nodes. */
2820 if (gimple_code (def_stmt) == GIMPLE_PHI)
2821 {
2822 /* An already visited PHI node ends the walk successfully. */
2823 if (bitmap_bit_p (*visited, SSA_NAME_VERSION (PHI_RESULT (def_stmt))))
2824 return !abort_on_visited;
2825 vuse = get_continuation_for_phi (def_stmt, ref, limit,
2826 visited, abort_on_visited,
2827 translate, data);
2828 if (!vuse)
2829 return false;
2830 continue;
2831 }
2832 else if (gimple_nop_p (def_stmt))
2833 return false;
2834 else
2835 {
2836 /* A clobbering statement or the end of the IL ends it failing. */
2837 if ((int)limit <= 0)
2838 return false;
2839 --limit;
2840 if (stmt_may_clobber_ref_p_1 (def_stmt, ref))
2841 {
2842 bool disambiguate_only = true;
2843 if (translate
2844 && (*translate) (ref, vuse, data, &disambiguate_only) == NULL)
2845 ;
2846 else
2847 return false;
2848 }
2849 }
2850 /* If we reach a new basic-block see if we already skipped it
2851 in a previous walk that ended successfully. */
2852 if (gimple_bb (def_stmt) != bb)
2853 {
2854 if (!bitmap_set_bit (*visited, SSA_NAME_VERSION (vuse)))
2855 return !abort_on_visited;
2856 bb = gimple_bb (def_stmt);
2857 }
2858 vuse = gimple_vuse (def_stmt);
2859 }
2860 return true;
2861 }
2862
2863
2864 /* Starting from a PHI node for the virtual operand of the memory reference
2865 REF find a continuation virtual operand that allows to continue walking
2866 statements dominating PHI skipping only statements that cannot possibly
2867 clobber REF. Decrements LIMIT for each alias disambiguation done
2868 and aborts the walk, returning NULL_TREE if it reaches zero.
2869 Returns NULL_TREE if no suitable virtual operand can be found. */
2870
2871 tree
2872 get_continuation_for_phi (gimple *phi, ao_ref *ref,
2873 unsigned int &limit, bitmap *visited,
2874 bool abort_on_visited,
2875 void *(*translate)(ao_ref *, tree, void *, bool *),
2876 void *data)
2877 {
2878 unsigned nargs = gimple_phi_num_args (phi);
2879
2880 /* Through a single-argument PHI we can simply look through. */
2881 if (nargs == 1)
2882 return PHI_ARG_DEF (phi, 0);
2883
2884 /* For two or more arguments try to pairwise skip non-aliasing code
2885 until we hit the phi argument definition that dominates the other one. */
2886 basic_block phi_bb = gimple_bb (phi);
2887 tree arg0, arg1;
2888 unsigned i;
2889
2890 /* Find a candidate for the virtual operand which definition
2891 dominates those of all others. */
2892 /* First look if any of the args themselves satisfy this. */
2893 for (i = 0; i < nargs; ++i)
2894 {
2895 arg0 = PHI_ARG_DEF (phi, i);
2896 if (SSA_NAME_IS_DEFAULT_DEF (arg0))
2897 break;
2898 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (arg0));
2899 if (def_bb != phi_bb
2900 && dominated_by_p (CDI_DOMINATORS, phi_bb, def_bb))
2901 break;
2902 arg0 = NULL_TREE;
2903 }
2904 /* If not, look if we can reach such candidate by walking defs
2905 until we hit the immediate dominator. maybe_skip_until will
2906 do that for us. */
2907 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, phi_bb);
2908
2909 /* Then check against the (to be) found candidate. */
2910 for (i = 0; i < nargs; ++i)
2911 {
2912 arg1 = PHI_ARG_DEF (phi, i);
2913 if (arg1 == arg0)
2914 ;
2915 else if (! maybe_skip_until (phi, arg0, dom, ref, arg1, limit, visited,
2916 abort_on_visited,
2917 /* Do not translate when walking over
2918 backedges. */
2919 dominated_by_p
2920 (CDI_DOMINATORS,
2921 gimple_bb (SSA_NAME_DEF_STMT (arg1)),
2922 phi_bb)
2923 ? NULL : translate, data))
2924 return NULL_TREE;
2925 }
2926
2927 return arg0;
2928 }
2929
2930 /* Based on the memory reference REF and its virtual use VUSE call
2931 WALKER for each virtual use that is equivalent to VUSE, including VUSE
2932 itself. That is, for each virtual use for which its defining statement
2933 does not clobber REF.
2934
2935 WALKER is called with REF, the current virtual use and DATA. If
2936 WALKER returns non-NULL the walk stops and its result is returned.
2937 At the end of a non-successful walk NULL is returned.
2938
2939 TRANSLATE if non-NULL is called with a pointer to REF, the virtual
2940 use which definition is a statement that may clobber REF and DATA.
2941 If TRANSLATE returns (void *)-1 the walk stops and NULL is returned.
2942 If TRANSLATE returns non-NULL the walk stops and its result is returned.
2943 If TRANSLATE returns NULL the walk continues and TRANSLATE is supposed
2944 to adjust REF and *DATA to make that valid.
2945
2946 VALUEIZE if non-NULL is called with the next VUSE that is considered
2947 and return value is substituted for that. This can be used to
2948 implement optimistic value-numbering for example. Note that the
2949 VUSE argument is assumed to be valueized already.
2950
2951 LIMIT specifies the number of alias queries we are allowed to do,
2952 the walk stops when it reaches zero and NULL is returned. LIMIT
2953 is decremented by the number of alias queries (plus adjustments
2954 done by the callbacks) upon return.
2955
2956 TODO: Cache the vector of equivalent vuses per ref, vuse pair. */
2957
2958 void *
2959 walk_non_aliased_vuses (ao_ref *ref, tree vuse,
2960 void *(*walker)(ao_ref *, tree, void *),
2961 void *(*translate)(ao_ref *, tree, void *, bool *),
2962 tree (*valueize)(tree),
2963 unsigned &limit, void *data)
2964 {
2965 bitmap visited = NULL;
2966 void *res;
2967 bool translated = false;
2968
2969 timevar_push (TV_ALIAS_STMT_WALK);
2970
2971 do
2972 {
2973 gimple *def_stmt;
2974
2975 /* ??? Do we want to account this to TV_ALIAS_STMT_WALK? */
2976 res = (*walker) (ref, vuse, data);
2977 /* Abort walk. */
2978 if (res == (void *)-1)
2979 {
2980 res = NULL;
2981 break;
2982 }
2983 /* Lookup succeeded. */
2984 else if (res != NULL)
2985 break;
2986
2987 if (valueize)
2988 {
2989 vuse = valueize (vuse);
2990 if (!vuse)
2991 {
2992 res = NULL;
2993 break;
2994 }
2995 }
2996 def_stmt = SSA_NAME_DEF_STMT (vuse);
2997 if (gimple_nop_p (def_stmt))
2998 break;
2999 else if (gimple_code (def_stmt) == GIMPLE_PHI)
3000 vuse = get_continuation_for_phi (def_stmt, ref, limit,
3001 &visited, translated, translate, data);
3002 else
3003 {
3004 if ((int)limit <= 0)
3005 {
3006 res = NULL;
3007 break;
3008 }
3009 if (stmt_may_clobber_ref_p_1 (def_stmt, ref))
3010 {
3011 if (!translate)
3012 break;
3013 bool disambiguate_only = false;
3014 res = (*translate) (ref, vuse, data, &disambiguate_only);
3015 /* Failed lookup and translation. */
3016 if (res == (void *)-1)
3017 {
3018 res = NULL;
3019 break;
3020 }
3021 /* Lookup succeeded. */
3022 else if (res != NULL)
3023 break;
3024 /* Translation succeeded, continue walking. */
3025 translated = translated || !disambiguate_only;
3026 }
3027 vuse = gimple_vuse (def_stmt);
3028 }
3029 }
3030 while (vuse);
3031
3032 if (visited)
3033 BITMAP_FREE (visited);
3034
3035 timevar_pop (TV_ALIAS_STMT_WALK);
3036
3037 return res;
3038 }
3039
3040
3041 /* Based on the memory reference REF call WALKER for each vdef which
3042 defining statement may clobber REF, starting with VDEF. If REF
3043 is NULL_TREE, each defining statement is visited.
3044
3045 WALKER is called with REF, the current vdef and DATA. If WALKER
3046 returns true the walk is stopped, otherwise it continues.
3047
3048 If function entry is reached, FUNCTION_ENTRY_REACHED is set to true.
3049 The pointer may be NULL and then we do not track this information.
3050
3051 At PHI nodes walk_aliased_vdefs forks into one walk for reach
3052 PHI argument (but only one walk continues on merge points), the
3053 return value is true if any of the walks was successful.
3054
3055 The function returns the number of statements walked or -1 if
3056 LIMIT stmts were walked and the walk was aborted at this point.
3057 If LIMIT is zero the walk is not aborted. */
3058
3059 static int
3060 walk_aliased_vdefs_1 (ao_ref *ref, tree vdef,
3061 bool (*walker)(ao_ref *, tree, void *), void *data,
3062 bitmap *visited, unsigned int cnt,
3063 bool *function_entry_reached, unsigned limit)
3064 {
3065 do
3066 {
3067 gimple *def_stmt = SSA_NAME_DEF_STMT (vdef);
3068
3069 if (*visited
3070 && !bitmap_set_bit (*visited, SSA_NAME_VERSION (vdef)))
3071 return cnt;
3072
3073 if (gimple_nop_p (def_stmt))
3074 {
3075 if (function_entry_reached)
3076 *function_entry_reached = true;
3077 return cnt;
3078 }
3079 else if (gimple_code (def_stmt) == GIMPLE_PHI)
3080 {
3081 unsigned i;
3082 if (!*visited)
3083 *visited = BITMAP_ALLOC (NULL);
3084 for (i = 0; i < gimple_phi_num_args (def_stmt); ++i)
3085 {
3086 int res = walk_aliased_vdefs_1 (ref,
3087 gimple_phi_arg_def (def_stmt, i),
3088 walker, data, visited, cnt,
3089 function_entry_reached, limit);
3090 if (res == -1)
3091 return -1;
3092 cnt = res;
3093 }
3094 return cnt;
3095 }
3096
3097 /* ??? Do we want to account this to TV_ALIAS_STMT_WALK? */
3098 cnt++;
3099 if (cnt == limit)
3100 return -1;
3101 if ((!ref
3102 || stmt_may_clobber_ref_p_1 (def_stmt, ref))
3103 && (*walker) (ref, vdef, data))
3104 return cnt;
3105
3106 vdef = gimple_vuse (def_stmt);
3107 }
3108 while (1);
3109 }
3110
3111 int
3112 walk_aliased_vdefs (ao_ref *ref, tree vdef,
3113 bool (*walker)(ao_ref *, tree, void *), void *data,
3114 bitmap *visited,
3115 bool *function_entry_reached, unsigned int limit)
3116 {
3117 bitmap local_visited = NULL;
3118 int ret;
3119
3120 timevar_push (TV_ALIAS_STMT_WALK);
3121
3122 if (function_entry_reached)
3123 *function_entry_reached = false;
3124
3125 ret = walk_aliased_vdefs_1 (ref, vdef, walker, data,
3126 visited ? visited : &local_visited, 0,
3127 function_entry_reached, limit);
3128 if (local_visited)
3129 BITMAP_FREE (local_visited);
3130
3131 timevar_pop (TV_ALIAS_STMT_WALK);
3132
3133 return ret;
3134 }
3135