tree-ssa-alias.c (nonoverlapping_component_refs_p_1): Break out from ...; work also...
[gcc.git] / gcc / tree-ssa-alias.c
1 /* Alias analysis for trees.
2 Copyright (C) 2004-2019 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "timevar.h" /* for TV_ALIAS_STMT_WALK */
30 #include "ssa.h"
31 #include "cgraph.h"
32 #include "tree-pretty-print.h"
33 #include "alias.h"
34 #include "fold-const.h"
35 #include "langhooks.h"
36 #include "dumpfile.h"
37 #include "tree-eh.h"
38 #include "tree-dfa.h"
39 #include "ipa-reference.h"
40 #include "varasm.h"
41
42 /* Broad overview of how alias analysis on gimple works:
43
44 Statements clobbering or using memory are linked through the
45 virtual operand factored use-def chain. The virtual operand
46 is unique per function, its symbol is accessible via gimple_vop (cfun).
47 Virtual operands are used for efficiently walking memory statements
48 in the gimple IL and are useful for things like value-numbering as
49 a generation count for memory references.
50
51 SSA_NAME pointers may have associated points-to information
52 accessible via the SSA_NAME_PTR_INFO macro. Flow-insensitive
53 points-to information is (re-)computed by the TODO_rebuild_alias
54 pass manager todo. Points-to information is also used for more
55 precise tracking of call-clobbered and call-used variables and
56 related disambiguations.
57
58 This file contains functions for disambiguating memory references,
59 the so called alias-oracle and tools for walking of the gimple IL.
60
61 The main alias-oracle entry-points are
62
63 bool stmt_may_clobber_ref_p (gimple *, tree)
64
65 This function queries if a statement may invalidate (parts of)
66 the memory designated by the reference tree argument.
67
68 bool ref_maybe_used_by_stmt_p (gimple *, tree)
69
70 This function queries if a statement may need (parts of) the
71 memory designated by the reference tree argument.
72
73 There are variants of these functions that only handle the call
74 part of a statement, call_may_clobber_ref_p and ref_maybe_used_by_call_p.
75 Note that these do not disambiguate against a possible call lhs.
76
77 bool refs_may_alias_p (tree, tree)
78
79 This function tries to disambiguate two reference trees.
80
81 bool ptr_deref_may_alias_global_p (tree)
82
83 This function queries if dereferencing a pointer variable may
84 alias global memory.
85
86 More low-level disambiguators are available and documented in
87 this file. Low-level disambiguators dealing with points-to
88 information are in tree-ssa-structalias.c. */
89
90 static int nonoverlapping_component_refs_since_match_p (tree, tree, tree, tree);
91 static bool nonoverlapping_component_refs_p (const_tree, const_tree);
92
93 /* Query statistics for the different low-level disambiguators.
94 A high-level query may trigger multiple of them. */
95
96 static struct {
97 unsigned HOST_WIDE_INT refs_may_alias_p_may_alias;
98 unsigned HOST_WIDE_INT refs_may_alias_p_no_alias;
99 unsigned HOST_WIDE_INT ref_maybe_used_by_call_p_may_alias;
100 unsigned HOST_WIDE_INT ref_maybe_used_by_call_p_no_alias;
101 unsigned HOST_WIDE_INT call_may_clobber_ref_p_may_alias;
102 unsigned HOST_WIDE_INT call_may_clobber_ref_p_no_alias;
103 unsigned HOST_WIDE_INT aliasing_component_refs_p_may_alias;
104 unsigned HOST_WIDE_INT aliasing_component_refs_p_no_alias;
105 unsigned HOST_WIDE_INT nonoverlapping_component_refs_p_may_alias;
106 unsigned HOST_WIDE_INT nonoverlapping_component_refs_p_no_alias;
107 unsigned HOST_WIDE_INT nonoverlapping_component_refs_since_match_p_may_alias;
108 unsigned HOST_WIDE_INT nonoverlapping_component_refs_since_match_p_must_overlap;
109 unsigned HOST_WIDE_INT nonoverlapping_component_refs_since_match_p_no_alias;
110 } alias_stats;
111
112 void
113 dump_alias_stats (FILE *s)
114 {
115 fprintf (s, "\nAlias oracle query stats:\n");
116 fprintf (s, " refs_may_alias_p: "
117 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
118 HOST_WIDE_INT_PRINT_DEC" queries\n",
119 alias_stats.refs_may_alias_p_no_alias,
120 alias_stats.refs_may_alias_p_no_alias
121 + alias_stats.refs_may_alias_p_may_alias);
122 fprintf (s, " ref_maybe_used_by_call_p: "
123 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
124 HOST_WIDE_INT_PRINT_DEC" queries\n",
125 alias_stats.ref_maybe_used_by_call_p_no_alias,
126 alias_stats.refs_may_alias_p_no_alias
127 + alias_stats.ref_maybe_used_by_call_p_may_alias);
128 fprintf (s, " call_may_clobber_ref_p: "
129 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
130 HOST_WIDE_INT_PRINT_DEC" queries\n",
131 alias_stats.call_may_clobber_ref_p_no_alias,
132 alias_stats.call_may_clobber_ref_p_no_alias
133 + alias_stats.call_may_clobber_ref_p_may_alias);
134 fprintf (s, " nonoverlapping_component_refs_p: "
135 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
136 HOST_WIDE_INT_PRINT_DEC" queries\n",
137 alias_stats.nonoverlapping_component_refs_p_no_alias,
138 alias_stats.nonoverlapping_component_refs_p_no_alias
139 + alias_stats.nonoverlapping_component_refs_p_may_alias);
140 fprintf (s, " nonoverlapping_component_refs_since_match_p: "
141 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
142 HOST_WIDE_INT_PRINT_DEC" must overlaps, "
143 HOST_WIDE_INT_PRINT_DEC" queries\n",
144 alias_stats.nonoverlapping_component_refs_since_match_p_no_alias,
145 alias_stats.nonoverlapping_component_refs_since_match_p_must_overlap,
146 alias_stats.nonoverlapping_component_refs_since_match_p_no_alias
147 + alias_stats.nonoverlapping_component_refs_since_match_p_may_alias
148 + alias_stats.nonoverlapping_component_refs_since_match_p_must_overlap);
149 fprintf (s, " aliasing_component_refs_p: "
150 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
151 HOST_WIDE_INT_PRINT_DEC" queries\n",
152 alias_stats.aliasing_component_refs_p_no_alias,
153 alias_stats.aliasing_component_refs_p_no_alias
154 + alias_stats.aliasing_component_refs_p_may_alias);
155 dump_alias_stats_in_alias_c (s);
156 }
157
158
159 /* Return true, if dereferencing PTR may alias with a global variable. */
160
161 bool
162 ptr_deref_may_alias_global_p (tree ptr)
163 {
164 struct ptr_info_def *pi;
165
166 /* If we end up with a pointer constant here that may point
167 to global memory. */
168 if (TREE_CODE (ptr) != SSA_NAME)
169 return true;
170
171 pi = SSA_NAME_PTR_INFO (ptr);
172
173 /* If we do not have points-to information for this variable,
174 we have to punt. */
175 if (!pi)
176 return true;
177
178 /* ??? This does not use TBAA to prune globals ptr may not access. */
179 return pt_solution_includes_global (&pi->pt);
180 }
181
182 /* Return true if dereferencing PTR may alias DECL.
183 The caller is responsible for applying TBAA to see if PTR
184 may access DECL at all. */
185
186 static bool
187 ptr_deref_may_alias_decl_p (tree ptr, tree decl)
188 {
189 struct ptr_info_def *pi;
190
191 /* Conversions are irrelevant for points-to information and
192 data-dependence analysis can feed us those. */
193 STRIP_NOPS (ptr);
194
195 /* Anything we do not explicilty handle aliases. */
196 if ((TREE_CODE (ptr) != SSA_NAME
197 && TREE_CODE (ptr) != ADDR_EXPR
198 && TREE_CODE (ptr) != POINTER_PLUS_EXPR)
199 || !POINTER_TYPE_P (TREE_TYPE (ptr))
200 || (!VAR_P (decl)
201 && TREE_CODE (decl) != PARM_DECL
202 && TREE_CODE (decl) != RESULT_DECL))
203 return true;
204
205 /* Disregard pointer offsetting. */
206 if (TREE_CODE (ptr) == POINTER_PLUS_EXPR)
207 {
208 do
209 {
210 ptr = TREE_OPERAND (ptr, 0);
211 }
212 while (TREE_CODE (ptr) == POINTER_PLUS_EXPR);
213 return ptr_deref_may_alias_decl_p (ptr, decl);
214 }
215
216 /* ADDR_EXPR pointers either just offset another pointer or directly
217 specify the pointed-to set. */
218 if (TREE_CODE (ptr) == ADDR_EXPR)
219 {
220 tree base = get_base_address (TREE_OPERAND (ptr, 0));
221 if (base
222 && (TREE_CODE (base) == MEM_REF
223 || TREE_CODE (base) == TARGET_MEM_REF))
224 ptr = TREE_OPERAND (base, 0);
225 else if (base
226 && DECL_P (base))
227 return compare_base_decls (base, decl) != 0;
228 else if (base
229 && CONSTANT_CLASS_P (base))
230 return false;
231 else
232 return true;
233 }
234
235 /* Non-aliased variables cannot be pointed to. */
236 if (!may_be_aliased (decl))
237 return false;
238
239 /* If we do not have useful points-to information for this pointer
240 we cannot disambiguate anything else. */
241 pi = SSA_NAME_PTR_INFO (ptr);
242 if (!pi)
243 return true;
244
245 return pt_solution_includes (&pi->pt, decl);
246 }
247
248 /* Return true if dereferenced PTR1 and PTR2 may alias.
249 The caller is responsible for applying TBAA to see if accesses
250 through PTR1 and PTR2 may conflict at all. */
251
252 bool
253 ptr_derefs_may_alias_p (tree ptr1, tree ptr2)
254 {
255 struct ptr_info_def *pi1, *pi2;
256
257 /* Conversions are irrelevant for points-to information and
258 data-dependence analysis can feed us those. */
259 STRIP_NOPS (ptr1);
260 STRIP_NOPS (ptr2);
261
262 /* Disregard pointer offsetting. */
263 if (TREE_CODE (ptr1) == POINTER_PLUS_EXPR)
264 {
265 do
266 {
267 ptr1 = TREE_OPERAND (ptr1, 0);
268 }
269 while (TREE_CODE (ptr1) == POINTER_PLUS_EXPR);
270 return ptr_derefs_may_alias_p (ptr1, ptr2);
271 }
272 if (TREE_CODE (ptr2) == POINTER_PLUS_EXPR)
273 {
274 do
275 {
276 ptr2 = TREE_OPERAND (ptr2, 0);
277 }
278 while (TREE_CODE (ptr2) == POINTER_PLUS_EXPR);
279 return ptr_derefs_may_alias_p (ptr1, ptr2);
280 }
281
282 /* ADDR_EXPR pointers either just offset another pointer or directly
283 specify the pointed-to set. */
284 if (TREE_CODE (ptr1) == ADDR_EXPR)
285 {
286 tree base = get_base_address (TREE_OPERAND (ptr1, 0));
287 if (base
288 && (TREE_CODE (base) == MEM_REF
289 || TREE_CODE (base) == TARGET_MEM_REF))
290 return ptr_derefs_may_alias_p (TREE_OPERAND (base, 0), ptr2);
291 else if (base
292 && DECL_P (base))
293 return ptr_deref_may_alias_decl_p (ptr2, base);
294 else
295 return true;
296 }
297 if (TREE_CODE (ptr2) == ADDR_EXPR)
298 {
299 tree base = get_base_address (TREE_OPERAND (ptr2, 0));
300 if (base
301 && (TREE_CODE (base) == MEM_REF
302 || TREE_CODE (base) == TARGET_MEM_REF))
303 return ptr_derefs_may_alias_p (ptr1, TREE_OPERAND (base, 0));
304 else if (base
305 && DECL_P (base))
306 return ptr_deref_may_alias_decl_p (ptr1, base);
307 else
308 return true;
309 }
310
311 /* From here we require SSA name pointers. Anything else aliases. */
312 if (TREE_CODE (ptr1) != SSA_NAME
313 || TREE_CODE (ptr2) != SSA_NAME
314 || !POINTER_TYPE_P (TREE_TYPE (ptr1))
315 || !POINTER_TYPE_P (TREE_TYPE (ptr2)))
316 return true;
317
318 /* We may end up with two empty points-to solutions for two same pointers.
319 In this case we still want to say both pointers alias, so shortcut
320 that here. */
321 if (ptr1 == ptr2)
322 return true;
323
324 /* If we do not have useful points-to information for either pointer
325 we cannot disambiguate anything else. */
326 pi1 = SSA_NAME_PTR_INFO (ptr1);
327 pi2 = SSA_NAME_PTR_INFO (ptr2);
328 if (!pi1 || !pi2)
329 return true;
330
331 /* ??? This does not use TBAA to prune decls from the intersection
332 that not both pointers may access. */
333 return pt_solutions_intersect (&pi1->pt, &pi2->pt);
334 }
335
336 /* Return true if dereferencing PTR may alias *REF.
337 The caller is responsible for applying TBAA to see if PTR
338 may access *REF at all. */
339
340 static bool
341 ptr_deref_may_alias_ref_p_1 (tree ptr, ao_ref *ref)
342 {
343 tree base = ao_ref_base (ref);
344
345 if (TREE_CODE (base) == MEM_REF
346 || TREE_CODE (base) == TARGET_MEM_REF)
347 return ptr_derefs_may_alias_p (ptr, TREE_OPERAND (base, 0));
348 else if (DECL_P (base))
349 return ptr_deref_may_alias_decl_p (ptr, base);
350
351 return true;
352 }
353
354 /* Returns true if PTR1 and PTR2 compare unequal because of points-to. */
355
356 bool
357 ptrs_compare_unequal (tree ptr1, tree ptr2)
358 {
359 /* First resolve the pointers down to a SSA name pointer base or
360 a VAR_DECL, PARM_DECL or RESULT_DECL. This explicitely does
361 not yet try to handle LABEL_DECLs, FUNCTION_DECLs, CONST_DECLs
362 or STRING_CSTs which needs points-to adjustments to track them
363 in the points-to sets. */
364 tree obj1 = NULL_TREE;
365 tree obj2 = NULL_TREE;
366 if (TREE_CODE (ptr1) == ADDR_EXPR)
367 {
368 tree tem = get_base_address (TREE_OPERAND (ptr1, 0));
369 if (! tem)
370 return false;
371 if (VAR_P (tem)
372 || TREE_CODE (tem) == PARM_DECL
373 || TREE_CODE (tem) == RESULT_DECL)
374 obj1 = tem;
375 else if (TREE_CODE (tem) == MEM_REF)
376 ptr1 = TREE_OPERAND (tem, 0);
377 }
378 if (TREE_CODE (ptr2) == ADDR_EXPR)
379 {
380 tree tem = get_base_address (TREE_OPERAND (ptr2, 0));
381 if (! tem)
382 return false;
383 if (VAR_P (tem)
384 || TREE_CODE (tem) == PARM_DECL
385 || TREE_CODE (tem) == RESULT_DECL)
386 obj2 = tem;
387 else if (TREE_CODE (tem) == MEM_REF)
388 ptr2 = TREE_OPERAND (tem, 0);
389 }
390
391 /* Canonicalize ptr vs. object. */
392 if (TREE_CODE (ptr1) == SSA_NAME && obj2)
393 {
394 std::swap (ptr1, ptr2);
395 std::swap (obj1, obj2);
396 }
397
398 if (obj1 && obj2)
399 /* Other code handles this correctly, no need to duplicate it here. */;
400 else if (obj1 && TREE_CODE (ptr2) == SSA_NAME)
401 {
402 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr2);
403 /* We may not use restrict to optimize pointer comparisons.
404 See PR71062. So we have to assume that restrict-pointed-to
405 may be in fact obj1. */
406 if (!pi
407 || pi->pt.vars_contains_restrict
408 || pi->pt.vars_contains_interposable)
409 return false;
410 if (VAR_P (obj1)
411 && (TREE_STATIC (obj1) || DECL_EXTERNAL (obj1)))
412 {
413 varpool_node *node = varpool_node::get (obj1);
414 /* If obj1 may bind to NULL give up (see below). */
415 if (! node
416 || ! node->nonzero_address ()
417 || ! decl_binds_to_current_def_p (obj1))
418 return false;
419 }
420 return !pt_solution_includes (&pi->pt, obj1);
421 }
422
423 /* ??? We'd like to handle ptr1 != NULL and ptr1 != ptr2
424 but those require pt.null to be conservatively correct. */
425
426 return false;
427 }
428
429 /* Returns whether reference REF to BASE may refer to global memory. */
430
431 static bool
432 ref_may_alias_global_p_1 (tree base)
433 {
434 if (DECL_P (base))
435 return is_global_var (base);
436 else if (TREE_CODE (base) == MEM_REF
437 || TREE_CODE (base) == TARGET_MEM_REF)
438 return ptr_deref_may_alias_global_p (TREE_OPERAND (base, 0));
439 return true;
440 }
441
442 bool
443 ref_may_alias_global_p (ao_ref *ref)
444 {
445 tree base = ao_ref_base (ref);
446 return ref_may_alias_global_p_1 (base);
447 }
448
449 bool
450 ref_may_alias_global_p (tree ref)
451 {
452 tree base = get_base_address (ref);
453 return ref_may_alias_global_p_1 (base);
454 }
455
456 /* Return true whether STMT may clobber global memory. */
457
458 bool
459 stmt_may_clobber_global_p (gimple *stmt)
460 {
461 tree lhs;
462
463 if (!gimple_vdef (stmt))
464 return false;
465
466 /* ??? We can ask the oracle whether an artificial pointer
467 dereference with a pointer with points-to information covering
468 all global memory (what about non-address taken memory?) maybe
469 clobbered by this call. As there is at the moment no convenient
470 way of doing that without generating garbage do some manual
471 checking instead.
472 ??? We could make a NULL ao_ref argument to the various
473 predicates special, meaning any global memory. */
474
475 switch (gimple_code (stmt))
476 {
477 case GIMPLE_ASSIGN:
478 lhs = gimple_assign_lhs (stmt);
479 return (TREE_CODE (lhs) != SSA_NAME
480 && ref_may_alias_global_p (lhs));
481 case GIMPLE_CALL:
482 return true;
483 default:
484 return true;
485 }
486 }
487
488
489 /* Dump alias information on FILE. */
490
491 void
492 dump_alias_info (FILE *file)
493 {
494 unsigned i;
495 tree ptr;
496 const char *funcname
497 = lang_hooks.decl_printable_name (current_function_decl, 2);
498 tree var;
499
500 fprintf (file, "\n\nAlias information for %s\n\n", funcname);
501
502 fprintf (file, "Aliased symbols\n\n");
503
504 FOR_EACH_LOCAL_DECL (cfun, i, var)
505 {
506 if (may_be_aliased (var))
507 dump_variable (file, var);
508 }
509
510 fprintf (file, "\nCall clobber information\n");
511
512 fprintf (file, "\nESCAPED");
513 dump_points_to_solution (file, &cfun->gimple_df->escaped);
514
515 fprintf (file, "\n\nFlow-insensitive points-to information\n\n");
516
517 FOR_EACH_SSA_NAME (i, ptr, cfun)
518 {
519 struct ptr_info_def *pi;
520
521 if (!POINTER_TYPE_P (TREE_TYPE (ptr))
522 || SSA_NAME_IN_FREE_LIST (ptr))
523 continue;
524
525 pi = SSA_NAME_PTR_INFO (ptr);
526 if (pi)
527 dump_points_to_info_for (file, ptr);
528 }
529
530 fprintf (file, "\n");
531 }
532
533
534 /* Dump alias information on stderr. */
535
536 DEBUG_FUNCTION void
537 debug_alias_info (void)
538 {
539 dump_alias_info (stderr);
540 }
541
542
543 /* Dump the points-to set *PT into FILE. */
544
545 void
546 dump_points_to_solution (FILE *file, struct pt_solution *pt)
547 {
548 if (pt->anything)
549 fprintf (file, ", points-to anything");
550
551 if (pt->nonlocal)
552 fprintf (file, ", points-to non-local");
553
554 if (pt->escaped)
555 fprintf (file, ", points-to escaped");
556
557 if (pt->ipa_escaped)
558 fprintf (file, ", points-to unit escaped");
559
560 if (pt->null)
561 fprintf (file, ", points-to NULL");
562
563 if (pt->vars)
564 {
565 fprintf (file, ", points-to vars: ");
566 dump_decl_set (file, pt->vars);
567 if (pt->vars_contains_nonlocal
568 || pt->vars_contains_escaped
569 || pt->vars_contains_escaped_heap
570 || pt->vars_contains_restrict)
571 {
572 const char *comma = "";
573 fprintf (file, " (");
574 if (pt->vars_contains_nonlocal)
575 {
576 fprintf (file, "nonlocal");
577 comma = ", ";
578 }
579 if (pt->vars_contains_escaped)
580 {
581 fprintf (file, "%sescaped", comma);
582 comma = ", ";
583 }
584 if (pt->vars_contains_escaped_heap)
585 {
586 fprintf (file, "%sescaped heap", comma);
587 comma = ", ";
588 }
589 if (pt->vars_contains_restrict)
590 {
591 fprintf (file, "%srestrict", comma);
592 comma = ", ";
593 }
594 if (pt->vars_contains_interposable)
595 fprintf (file, "%sinterposable", comma);
596 fprintf (file, ")");
597 }
598 }
599 }
600
601
602 /* Unified dump function for pt_solution. */
603
604 DEBUG_FUNCTION void
605 debug (pt_solution &ref)
606 {
607 dump_points_to_solution (stderr, &ref);
608 }
609
610 DEBUG_FUNCTION void
611 debug (pt_solution *ptr)
612 {
613 if (ptr)
614 debug (*ptr);
615 else
616 fprintf (stderr, "<nil>\n");
617 }
618
619
620 /* Dump points-to information for SSA_NAME PTR into FILE. */
621
622 void
623 dump_points_to_info_for (FILE *file, tree ptr)
624 {
625 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
626
627 print_generic_expr (file, ptr, dump_flags);
628
629 if (pi)
630 dump_points_to_solution (file, &pi->pt);
631 else
632 fprintf (file, ", points-to anything");
633
634 fprintf (file, "\n");
635 }
636
637
638 /* Dump points-to information for VAR into stderr. */
639
640 DEBUG_FUNCTION void
641 debug_points_to_info_for (tree var)
642 {
643 dump_points_to_info_for (stderr, var);
644 }
645
646
647 /* Initializes the alias-oracle reference representation *R from REF. */
648
649 void
650 ao_ref_init (ao_ref *r, tree ref)
651 {
652 r->ref = ref;
653 r->base = NULL_TREE;
654 r->offset = 0;
655 r->size = -1;
656 r->max_size = -1;
657 r->ref_alias_set = -1;
658 r->base_alias_set = -1;
659 r->volatile_p = ref ? TREE_THIS_VOLATILE (ref) : false;
660 }
661
662 /* Returns the base object of the memory reference *REF. */
663
664 tree
665 ao_ref_base (ao_ref *ref)
666 {
667 bool reverse;
668
669 if (ref->base)
670 return ref->base;
671 ref->base = get_ref_base_and_extent (ref->ref, &ref->offset, &ref->size,
672 &ref->max_size, &reverse);
673 return ref->base;
674 }
675
676 /* Returns the base object alias set of the memory reference *REF. */
677
678 alias_set_type
679 ao_ref_base_alias_set (ao_ref *ref)
680 {
681 tree base_ref;
682 if (ref->base_alias_set != -1)
683 return ref->base_alias_set;
684 if (!ref->ref)
685 return 0;
686 base_ref = ref->ref;
687 while (handled_component_p (base_ref))
688 base_ref = TREE_OPERAND (base_ref, 0);
689 ref->base_alias_set = get_alias_set (base_ref);
690 return ref->base_alias_set;
691 }
692
693 /* Returns the reference alias set of the memory reference *REF. */
694
695 alias_set_type
696 ao_ref_alias_set (ao_ref *ref)
697 {
698 if (ref->ref_alias_set != -1)
699 return ref->ref_alias_set;
700 ref->ref_alias_set = get_alias_set (ref->ref);
701 return ref->ref_alias_set;
702 }
703
704 /* Init an alias-oracle reference representation from a gimple pointer
705 PTR and a gimple size SIZE in bytes. If SIZE is NULL_TREE then the
706 size is assumed to be unknown. The access is assumed to be only
707 to or after of the pointer target, not before it. */
708
709 void
710 ao_ref_init_from_ptr_and_size (ao_ref *ref, tree ptr, tree size)
711 {
712 poly_int64 t, size_hwi, extra_offset = 0;
713 ref->ref = NULL_TREE;
714 if (TREE_CODE (ptr) == SSA_NAME)
715 {
716 gimple *stmt = SSA_NAME_DEF_STMT (ptr);
717 if (gimple_assign_single_p (stmt)
718 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
719 ptr = gimple_assign_rhs1 (stmt);
720 else if (is_gimple_assign (stmt)
721 && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
722 && ptrdiff_tree_p (gimple_assign_rhs2 (stmt), &extra_offset))
723 {
724 ptr = gimple_assign_rhs1 (stmt);
725 extra_offset *= BITS_PER_UNIT;
726 }
727 }
728
729 if (TREE_CODE (ptr) == ADDR_EXPR)
730 {
731 ref->base = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &t);
732 if (ref->base)
733 ref->offset = BITS_PER_UNIT * t;
734 else
735 {
736 size = NULL_TREE;
737 ref->offset = 0;
738 ref->base = get_base_address (TREE_OPERAND (ptr, 0));
739 }
740 }
741 else
742 {
743 gcc_assert (POINTER_TYPE_P (TREE_TYPE (ptr)));
744 ref->base = build2 (MEM_REF, char_type_node,
745 ptr, null_pointer_node);
746 ref->offset = 0;
747 }
748 ref->offset += extra_offset;
749 if (size
750 && poly_int_tree_p (size, &size_hwi)
751 && coeffs_in_range_p (size_hwi, 0, HOST_WIDE_INT_MAX / BITS_PER_UNIT))
752 ref->max_size = ref->size = size_hwi * BITS_PER_UNIT;
753 else
754 ref->max_size = ref->size = -1;
755 ref->ref_alias_set = 0;
756 ref->base_alias_set = 0;
757 ref->volatile_p = false;
758 }
759
760 /* S1 and S2 are TYPE_SIZE or DECL_SIZE. Compare them:
761 Return -1 if S1 < S2
762 Return 1 if S1 > S2
763 Return 0 if equal or incomparable. */
764
765 static int
766 compare_sizes (tree s1, tree s2)
767 {
768 if (!s1 || !s2)
769 return 0;
770
771 poly_uint64 size1;
772 poly_uint64 size2;
773
774 if (!poly_int_tree_p (s1, &size1) || !poly_int_tree_p (s2, &size2))
775 return 0;
776 if (known_lt (size1, size2))
777 return -1;
778 if (known_lt (size2, size1))
779 return 1;
780 return 0;
781 }
782
783 /* Compare TYPE1 and TYPE2 by its size.
784 Return -1 if size of TYPE1 < size of TYPE2
785 Return 1 if size of TYPE1 > size of TYPE2
786 Return 0 if types are of equal sizes or we can not compare them. */
787
788 static int
789 compare_type_sizes (tree type1, tree type2)
790 {
791 /* Be conservative for arrays and vectors. We want to support partial
792 overlap on int[3] and int[3] as tested in gcc.dg/torture/alias-2.c. */
793 while (TREE_CODE (type1) == ARRAY_TYPE
794 || TREE_CODE (type1) == VECTOR_TYPE)
795 type1 = TREE_TYPE (type1);
796 while (TREE_CODE (type2) == ARRAY_TYPE
797 || TREE_CODE (type2) == VECTOR_TYPE)
798 type2 = TREE_TYPE (type2);
799 return compare_sizes (TYPE_SIZE (type1), TYPE_SIZE (type2));
800 }
801
802 /* Return 1 if TYPE1 and TYPE2 are to be considered equivalent for the
803 purpose of TBAA. Return 0 if they are distinct and -1 if we cannot
804 decide. */
805
806 static inline int
807 same_type_for_tbaa (tree type1, tree type2)
808 {
809 type1 = TYPE_MAIN_VARIANT (type1);
810 type2 = TYPE_MAIN_VARIANT (type2);
811
812 /* Handle the most common case first. */
813 if (type1 == type2)
814 return 1;
815
816 /* If we would have to do structural comparison bail out. */
817 if (TYPE_STRUCTURAL_EQUALITY_P (type1)
818 || TYPE_STRUCTURAL_EQUALITY_P (type2))
819 return -1;
820
821 /* Compare the canonical types. */
822 if (TYPE_CANONICAL (type1) == TYPE_CANONICAL (type2))
823 return 1;
824
825 /* ??? Array types are not properly unified in all cases as we have
826 spurious changes in the index types for example. Removing this
827 causes all sorts of problems with the Fortran frontend. */
828 if (TREE_CODE (type1) == ARRAY_TYPE
829 && TREE_CODE (type2) == ARRAY_TYPE)
830 return -1;
831
832 /* ??? In Ada, an lvalue of an unconstrained type can be used to access an
833 object of one of its constrained subtypes, e.g. when a function with an
834 unconstrained parameter passed by reference is called on an object and
835 inlined. But, even in the case of a fixed size, type and subtypes are
836 not equivalent enough as to share the same TYPE_CANONICAL, since this
837 would mean that conversions between them are useless, whereas they are
838 not (e.g. type and subtypes can have different modes). So, in the end,
839 they are only guaranteed to have the same alias set. */
840 if (get_alias_set (type1) == get_alias_set (type2))
841 return -1;
842
843 /* The types are known to be not equal. */
844 return 0;
845 }
846
847 /* Return true if TYPE is a composite type (i.e. we may apply one of handled
848 components on it). */
849
850 static bool
851 type_has_components_p (tree type)
852 {
853 return AGGREGATE_TYPE_P (type) || VECTOR_TYPE_P (type)
854 || TREE_CODE (type) == COMPLEX_TYPE;
855 }
856
857 /* MATCH1 and MATCH2 which are part of access path of REF1 and REF2
858 respectively are either pointing to same address or are completely
859 disjoint.
860
861 Try to disambiguate using the access path starting from the match
862 and return false if there is no conflict.
863
864 Helper for aliasing_component_refs_p. */
865
866 static bool
867 aliasing_matching_component_refs_p (tree match1, tree ref1,
868 poly_int64 offset1, poly_int64 max_size1,
869 tree match2, tree ref2,
870 poly_int64 offset2, poly_int64 max_size2)
871 {
872 poly_int64 offadj, sztmp, msztmp;
873 bool reverse;
874
875
876 get_ref_base_and_extent (match2, &offadj, &sztmp, &msztmp, &reverse);
877 offset2 -= offadj;
878 get_ref_base_and_extent (match1, &offadj, &sztmp, &msztmp, &reverse);
879 offset1 -= offadj;
880 if (!ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
881 {
882 ++alias_stats.aliasing_component_refs_p_no_alias;
883 return false;
884 }
885
886 int cmp = nonoverlapping_component_refs_since_match_p (match1, ref1,
887 match2, ref2);
888 if (cmp == 1
889 || (cmp == -1 && nonoverlapping_component_refs_p (ref1, ref2)))
890 {
891 ++alias_stats.aliasing_component_refs_p_no_alias;
892 return false;
893 }
894 ++alias_stats.aliasing_component_refs_p_may_alias;
895 return true;
896 }
897
898 /* Determine if the two component references REF1 and REF2 which are
899 based on access types TYPE1 and TYPE2 and of which at least one is based
900 on an indirect reference may alias.
901 REF1_ALIAS_SET, BASE1_ALIAS_SET, REF2_ALIAS_SET and BASE2_ALIAS_SET
902 are the respective alias sets. */
903
904 static bool
905 aliasing_component_refs_p (tree ref1,
906 alias_set_type ref1_alias_set,
907 alias_set_type base1_alias_set,
908 poly_int64 offset1, poly_int64 max_size1,
909 tree ref2,
910 alias_set_type ref2_alias_set,
911 alias_set_type base2_alias_set,
912 poly_int64 offset2, poly_int64 max_size2)
913 {
914 /* If one reference is a component references through pointers try to find a
915 common base and apply offset based disambiguation. This handles
916 for example
917 struct A { int i; int j; } *q;
918 struct B { struct A a; int k; } *p;
919 disambiguating q->i and p->a.j. */
920 tree base1, base2;
921 tree type1, type2;
922 int same_p1 = 0, same_p2 = 0;
923 bool maybe_match = false;
924 tree end_struct_ref1 = NULL, end_struct_ref2 = NULL;
925
926 /* Choose bases and base types to search for. */
927 base1 = ref1;
928 while (handled_component_p (base1))
929 {
930 /* Generally access paths are monotous in the size of object. The
931 exception are trailing arrays of structures. I.e.
932 struct a {int array[0];};
933 or
934 struct a {int array1[0]; int array[];};
935 Such struct has size 0 but accesses to a.array may have non-zero size.
936 In this case the size of TREE_TYPE (base1) is smaller than
937 size of TREE_TYPE (TREE_OPERNAD (base1, 0)).
938
939 Because we compare sizes of arrays just by sizes of their elements,
940 we only need to care about zero sized array fields here. */
941 if (TREE_CODE (base1) == COMPONENT_REF
942 && TREE_CODE (TREE_TYPE (TREE_OPERAND (base1, 1))) == ARRAY_TYPE
943 && (!TYPE_SIZE (TREE_TYPE (TREE_OPERAND (base1, 1)))
944 || integer_zerop (TYPE_SIZE (TREE_TYPE (TREE_OPERAND (base1, 1)))))
945 && array_at_struct_end_p (base1))
946 {
947 gcc_checking_assert (!end_struct_ref1);
948 end_struct_ref1 = base1;
949 }
950 if (TREE_CODE (base1) == VIEW_CONVERT_EXPR
951 || TREE_CODE (base1) == BIT_FIELD_REF)
952 ref1 = TREE_OPERAND (base1, 0);
953 base1 = TREE_OPERAND (base1, 0);
954 }
955 type1 = TREE_TYPE (base1);
956 base2 = ref2;
957 while (handled_component_p (base2))
958 {
959 if (TREE_CODE (base2) == COMPONENT_REF
960 && TREE_CODE (TREE_TYPE (TREE_OPERAND (base2, 1))) == ARRAY_TYPE
961 && (!TYPE_SIZE (TREE_TYPE (TREE_OPERAND (base2, 1)))
962 || integer_zerop (TYPE_SIZE (TREE_TYPE (TREE_OPERAND (base2, 1)))))
963 && array_at_struct_end_p (base2))
964 {
965 gcc_checking_assert (!end_struct_ref2);
966 end_struct_ref2 = base2;
967 }
968 if (TREE_CODE (base2) == VIEW_CONVERT_EXPR
969 || TREE_CODE (base2) == BIT_FIELD_REF)
970 ref2 = TREE_OPERAND (base2, 0);
971 base2 = TREE_OPERAND (base2, 0);
972 }
973 type2 = TREE_TYPE (base2);
974
975 /* Now search for the type1 in the access path of ref2. This
976 would be a common base for doing offset based disambiguation on.
977 This however only makes sense if type2 is big enough to hold type1. */
978 int cmp_outer = compare_type_sizes (type2, type1);
979
980 /* If type2 is big enough to contain type1 walk its access path.
981 We also need to care of arrays at the end of structs that may extend
982 beyond the end of structure. */
983 if (cmp_outer >= 0
984 || (end_struct_ref2
985 && compare_type_sizes (TREE_TYPE (end_struct_ref2), type1) >= 0))
986 {
987 tree ref = ref2;
988 while (true)
989 {
990 /* We walk from inner type to the outer types. If type we see is
991 already too large to be part of type1, terminate the search. */
992 int cmp = compare_type_sizes (type1, TREE_TYPE (ref));
993
994 if (cmp < 0
995 && (!end_struct_ref1
996 || compare_type_sizes (TREE_TYPE (end_struct_ref1),
997 TREE_TYPE (ref)) < 0))
998 break;
999 /* If types may be of same size, see if we can decide about their
1000 equality. */
1001 if (cmp == 0)
1002 {
1003 same_p2 = same_type_for_tbaa (TREE_TYPE (ref), type1);
1004 if (same_p2 == 1)
1005 break;
1006 /* In case we can't decide whether types are same try to
1007 continue looking for the exact match.
1008 Remember however that we possibly saw a match
1009 to bypass the access path continuations tests we do later. */
1010 if (same_p2 == -1)
1011 maybe_match = true;
1012 }
1013 if (!handled_component_p (ref))
1014 break;
1015 ref = TREE_OPERAND (ref, 0);
1016 }
1017 if (same_p2 == 1)
1018 {
1019 /* We assume that arrays can overlap by multiple of their elements
1020 size as tested in gcc.dg/torture/alias-2.c.
1021 This partial overlap happen only when both arrays are bases of
1022 the access and not contained within another component ref.
1023 To be safe we also assume partial overlap for VLAs. */
1024 if (TREE_CODE (TREE_TYPE (base1)) == ARRAY_TYPE
1025 && (!TYPE_SIZE (TREE_TYPE (base1))
1026 || TREE_CODE (TYPE_SIZE (TREE_TYPE (base1))) != INTEGER_CST
1027 || ref == base2))
1028 /* Setting maybe_match to true triggers
1029 nonoverlapping_component_refs_p test later that still may do
1030 useful disambiguation. */
1031 maybe_match = true;
1032 else
1033 return aliasing_matching_component_refs_p (base1, ref1,
1034 offset1, max_size1,
1035 ref, ref2,
1036 offset2, max_size2);
1037 }
1038 }
1039
1040 /* If we didn't find a common base, try the other way around. */
1041 if (cmp_outer <= 0
1042 || (end_struct_ref1
1043 && compare_type_sizes (TREE_TYPE (end_struct_ref1), type1) <= 0))
1044 {
1045 tree ref = ref1;
1046 while (true)
1047 {
1048 int cmp = compare_type_sizes (type2, TREE_TYPE (ref));
1049 if (cmp < 0
1050 && (!end_struct_ref2
1051 || compare_type_sizes (TREE_TYPE (end_struct_ref2),
1052 TREE_TYPE (ref)) < 0))
1053 break;
1054 /* If types may be of same size, see if we can decide about their
1055 equality. */
1056 if (cmp == 0)
1057 {
1058 same_p1 = same_type_for_tbaa (TREE_TYPE (ref), type2);
1059 if (same_p1 == 1)
1060 break;
1061 if (same_p1 == -1)
1062 maybe_match = true;
1063 }
1064 if (!handled_component_p (ref))
1065 break;
1066 ref = TREE_OPERAND (ref, 0);
1067 }
1068 if (same_p1 == 1)
1069 {
1070 if (TREE_CODE (TREE_TYPE (base2)) == ARRAY_TYPE
1071 && (!TYPE_SIZE (TREE_TYPE (base2))
1072 || TREE_CODE (TYPE_SIZE (TREE_TYPE (base2))) != INTEGER_CST
1073 || ref == base1))
1074 maybe_match = true;
1075 else
1076 return aliasing_matching_component_refs_p (ref, ref1,
1077 offset1, max_size1,
1078 base2, ref2,
1079 offset2, max_size2);
1080 }
1081 }
1082
1083 /* In the following code we make an assumption that the types in access
1084 paths do not overlap and thus accesses alias only if one path can be
1085 continuation of another. If we was not able to decide about equivalence,
1086 we need to give up. */
1087 if (maybe_match)
1088 {
1089 if (!nonoverlapping_component_refs_p (ref1, ref2))
1090 {
1091 ++alias_stats.aliasing_component_refs_p_may_alias;
1092 return true;
1093 }
1094 ++alias_stats.aliasing_component_refs_p_no_alias;
1095 return false;
1096 }
1097
1098 /* If we have two type access paths B1.path1 and B2.path2 they may
1099 only alias if either B1 is in B2.path2 or B2 is in B1.path1.
1100 But we can still have a path that goes B1.path1...B2.path2 with
1101 a part that we do not see. So we can only disambiguate now
1102 if there is no B2 in the tail of path1 and no B1 on the
1103 tail of path2. */
1104 if (compare_type_sizes (TREE_TYPE (ref2), type1) >= 0
1105 && (!end_struct_ref1
1106 || compare_type_sizes (TREE_TYPE (ref2),
1107 TREE_TYPE (end_struct_ref1)) >= 0)
1108 && type_has_components_p (TREE_TYPE (ref2))
1109 && (base1_alias_set == ref2_alias_set
1110 || alias_set_subset_of (base1_alias_set, ref2_alias_set)))
1111 {
1112 ++alias_stats.aliasing_component_refs_p_may_alias;
1113 return true;
1114 }
1115 /* If this is ptr vs. decl then we know there is no ptr ... decl path. */
1116 if (compare_type_sizes (TREE_TYPE (ref1), type2) >= 0
1117 && (!end_struct_ref2
1118 || compare_type_sizes (TREE_TYPE (ref1),
1119 TREE_TYPE (end_struct_ref2)) >= 0)
1120 && type_has_components_p (TREE_TYPE (ref1))
1121 && (base2_alias_set == ref1_alias_set
1122 || alias_set_subset_of (base2_alias_set, ref1_alias_set)))
1123 {
1124 ++alias_stats.aliasing_component_refs_p_may_alias;
1125 return true;
1126 }
1127 ++alias_stats.aliasing_component_refs_p_no_alias;
1128 return false;
1129 }
1130
1131 /* FIELD1 and FIELD2 are two fields of component refs. We assume
1132 that bases of both component refs are either equivalent or nonoverlapping.
1133 We do not assume that the containers of FIELD1 and FIELD2 are of the
1134 same type or size.
1135
1136 Return 0 in case the base address of component_refs are same then
1137 FIELD1 and FIELD2 have same address. Note that FIELD1 and FIELD2
1138 may not be of same type or size.
1139
1140 Return 1 if FIELD1 and FIELD2 are non-overlapping.
1141
1142 Return -1 otherwise.
1143
1144 Main difference between 0 and -1 is to let
1145 nonoverlapping_component_refs_since_match_p discover the semantically
1146 equivalent part of the access path.
1147
1148 Note that this function is used even with -fno-strict-aliasing
1149 and makes use of no TBAA assumptions. */
1150
1151 static int
1152 nonoverlapping_component_refs_p_1 (const_tree field1, const_tree field2)
1153 {
1154 /* If both fields are of the same type, we could save hard work of
1155 comparing offsets. */
1156 tree type1 = DECL_CONTEXT (field1);
1157 tree type2 = DECL_CONTEXT (field2);
1158
1159 if (TREE_CODE (type1) == RECORD_TYPE
1160 && DECL_BIT_FIELD_REPRESENTATIVE (field1))
1161 field1 = DECL_BIT_FIELD_REPRESENTATIVE (field1);
1162 if (TREE_CODE (type2) == RECORD_TYPE
1163 && DECL_BIT_FIELD_REPRESENTATIVE (field2))
1164 field2 = DECL_BIT_FIELD_REPRESENTATIVE (field2);
1165
1166 /* ??? Bitfields can overlap at RTL level so punt on them.
1167 FIXME: RTL expansion should be fixed by adjusting the access path
1168 when producing MEM_ATTRs for MEMs which are wider than
1169 the bitfields similarly as done in set_mem_attrs_minus_bitpos. */
1170 if (DECL_BIT_FIELD (field1) && DECL_BIT_FIELD (field2))
1171 return -1;
1172
1173 /* Assume that different FIELD_DECLs never overlap within a RECORD_TYPE. */
1174 if (type1 == type2 && TREE_CODE (type1) == RECORD_TYPE)
1175 return field1 != field2;
1176
1177 /* In common case the offsets and bit offsets will be the same.
1178 However if frontends do not agree on the alignment, they may be
1179 different even if they actually represent same address.
1180 Try the common case first and if that fails calcualte the
1181 actual bit offset. */
1182 if (tree_int_cst_equal (DECL_FIELD_OFFSET (field1),
1183 DECL_FIELD_OFFSET (field2))
1184 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (field1),
1185 DECL_FIELD_BIT_OFFSET (field2)))
1186 return 0;
1187
1188 /* Note that it may be possible to use component_ref_field_offset
1189 which would provide offsets as trees. However constructing and folding
1190 trees is expensive and does not seem to be worth the compile time
1191 cost. */
1192
1193 poly_uint64 offset1, offset2;
1194 poly_uint64 bit_offset1, bit_offset2;
1195
1196 if (poly_int_tree_p (DECL_FIELD_OFFSET (field1), &offset1)
1197 && poly_int_tree_p (DECL_FIELD_OFFSET (field2), &offset2)
1198 && poly_int_tree_p (DECL_FIELD_BIT_OFFSET (field1), &bit_offset1)
1199 && poly_int_tree_p (DECL_FIELD_BIT_OFFSET (field2), &bit_offset2))
1200 {
1201 offset1 = (offset1 << LOG2_BITS_PER_UNIT) + bit_offset1;
1202 offset2 = (offset2 << LOG2_BITS_PER_UNIT) + bit_offset2;
1203
1204 if (known_eq (offset1, offset2))
1205 return 0;
1206
1207 poly_uint64 size1, size2;
1208
1209 if (poly_int_tree_p (DECL_SIZE (field1), &size1)
1210 && poly_int_tree_p (DECL_SIZE (field2), &size2)
1211 && !ranges_maybe_overlap_p (offset1, size1, offset2, size2))
1212 return 1;
1213 }
1214 /* Resort to slower overlap checking by looking for matching types in
1215 the middle of access path. */
1216 return -1;
1217 }
1218
1219 /* Try to disambiguate REF1 and REF2 under the assumption that MATCH1 and
1220 MATCH2 either point to the same address or are disjoint.
1221 MATCH1 and MATCH2 are assumed to be ref in the access path of REF1 and REF2
1222 respectively or NULL in the case we established equivalence of bases.
1223
1224 This test works by matching the initial segment of the access path
1225 and does not rely on TBAA thus is safe for !flag_strict_aliasing if
1226 match was determined without use of TBAA oracle.
1227
1228 Return 1 if we can determine that component references REF1 and REF2,
1229 that are within a common DECL, cannot overlap.
1230
1231 Return 0 if paths are same and thus there is nothing to disambiguate more
1232 (i.e. there is must alias assuming there is must alias between MATCH1 and
1233 MATCH2)
1234
1235 Return -1 if we can not determine 0 or 1 - this happens when we met
1236 non-matching types was met in the path.
1237 In this case it may make sense to continue by other disambiguation
1238 oracles. */
1239
1240 static int
1241 nonoverlapping_component_refs_since_match_p (tree match1, tree ref1,
1242 tree match2, tree ref2)
1243 {
1244 /* Early return if there are no references to match, we do not need
1245 to walk the access paths.
1246
1247 Do not consider this as may-alias for stats - it is more useful
1248 to have information how many disambiguations happened provided that
1249 the query was meaningful. */
1250
1251 if (match1 == ref1 || !handled_component_p (ref1)
1252 || match2 == ref2 || !handled_component_p (ref2))
1253 return -1;
1254
1255 auto_vec<tree, 16> component_refs1;
1256 auto_vec<tree, 16> component_refs2;
1257
1258 /* Create the stack of handled components for REF1. */
1259 while (handled_component_p (ref1) && ref1 != match1)
1260 {
1261 if (TREE_CODE (ref1) == VIEW_CONVERT_EXPR
1262 || TREE_CODE (ref1) == BIT_FIELD_REF)
1263 component_refs1.truncate (0);
1264 else
1265 component_refs1.safe_push (ref1);
1266 ref1 = TREE_OPERAND (ref1, 0);
1267 }
1268 if (TREE_CODE (ref1) == MEM_REF && ref1 != match1)
1269 {
1270 if (!integer_zerop (TREE_OPERAND (ref1, 1)))
1271 {
1272 ++alias_stats.nonoverlapping_component_refs_since_match_p_may_alias;
1273 return -1;
1274 }
1275 }
1276 /* TODO: Handle TARGET_MEM_REF later. */
1277 if (TREE_CODE (ref1) == TARGET_MEM_REF && ref1 != match1)
1278 {
1279 ++alias_stats.nonoverlapping_component_refs_since_match_p_may_alias;
1280 return -1;
1281 }
1282
1283 /* Create the stack of handled components for REF2. */
1284 while (handled_component_p (ref2) && ref2 != match2)
1285 {
1286 if (TREE_CODE (ref2) == VIEW_CONVERT_EXPR
1287 || TREE_CODE (ref2) == BIT_FIELD_REF)
1288 component_refs2.truncate (0);
1289 else
1290 component_refs2.safe_push (ref2);
1291 ref2 = TREE_OPERAND (ref2, 0);
1292 }
1293 if (TREE_CODE (ref2) == MEM_REF && ref2 != match2)
1294 {
1295 if (!integer_zerop (TREE_OPERAND (ref2, 1)))
1296 {
1297 ++alias_stats.nonoverlapping_component_refs_since_match_p_may_alias;
1298 return -1;
1299 }
1300 }
1301 if (TREE_CODE (ref2) == TARGET_MEM_REF && ref2 != match2)
1302 {
1303 ++alias_stats.nonoverlapping_component_refs_since_match_p_may_alias;
1304 return -1;
1305 }
1306
1307 /* Pop the stacks in parallel and examine the COMPONENT_REFs of the same
1308 rank. This is sufficient because we start from the same DECL and you
1309 cannot reference several fields at a time with COMPONENT_REFs (unlike
1310 with ARRAY_RANGE_REFs for arrays) so you always need the same number
1311 of them to access a sub-component, unless you're in a union, in which
1312 case the return value will precisely be false. */
1313 while (true)
1314 {
1315 bool seen_noncomponent_ref_p = false;
1316 do
1317 {
1318 if (component_refs1.is_empty ())
1319 {
1320 ++alias_stats
1321 .nonoverlapping_component_refs_since_match_p_must_overlap;
1322 return 0;
1323 }
1324 ref1 = component_refs1.pop ();
1325 if (TREE_CODE (ref1) != COMPONENT_REF)
1326 seen_noncomponent_ref_p = true;
1327 }
1328 while (!RECORD_OR_UNION_TYPE_P (TREE_TYPE (TREE_OPERAND (ref1, 0))));
1329
1330 do
1331 {
1332 if (component_refs2.is_empty ())
1333 {
1334 ++alias_stats
1335 .nonoverlapping_component_refs_since_match_p_must_overlap;
1336 return 0;
1337 }
1338 ref2 = component_refs2.pop ();
1339 if (TREE_CODE (ref2) != COMPONENT_REF)
1340 seen_noncomponent_ref_p = true;
1341 }
1342 while (!RECORD_OR_UNION_TYPE_P (TREE_TYPE (TREE_OPERAND (ref2, 0))));
1343
1344 /* BIT_FIELD_REF and VIEW_CONVERT_EXPR are taken off the vectors
1345 earlier. */
1346 gcc_checking_assert (TREE_CODE (ref1) == COMPONENT_REF
1347 && TREE_CODE (ref2) == COMPONENT_REF);
1348
1349 tree field1 = TREE_OPERAND (ref1, 1);
1350 tree field2 = TREE_OPERAND (ref2, 1);
1351
1352 /* ??? We cannot simply use the type of operand #0 of the refs here
1353 as the Fortran compiler smuggles type punning into COMPONENT_REFs
1354 for common blocks instead of using unions like everyone else. */
1355 tree type1 = DECL_CONTEXT (field1);
1356 tree type2 = DECL_CONTEXT (field2);
1357
1358 /* If we skipped array refs on type of different sizes, we can
1359 no longer be sure that there are not partial overlaps. */
1360 if (seen_noncomponent_ref_p
1361 && !operand_equal_p (TYPE_SIZE (type1), TYPE_SIZE (type2), 0))
1362 {
1363 ++alias_stats
1364 .nonoverlapping_component_refs_since_match_p_may_alias;
1365 return -1;
1366 }
1367
1368 int cmp = nonoverlapping_component_refs_p_1 (field1, field2);
1369 if (cmp == -1)
1370 {
1371 ++alias_stats
1372 .nonoverlapping_component_refs_since_match_p_may_alias;
1373 return -1;
1374 }
1375 else if (cmp == 1)
1376 {
1377 ++alias_stats
1378 .nonoverlapping_component_refs_since_match_p_no_alias;
1379 return 1;
1380 }
1381 }
1382
1383 ++alias_stats.nonoverlapping_component_refs_since_match_p_must_overlap;
1384 return 0;
1385 }
1386
1387 /* Return TYPE_UID which can be used to match record types we consider
1388 same for TBAA purposes. */
1389
1390 static inline int
1391 ncr_type_uid (const_tree field)
1392 {
1393 /* ??? We cannot simply use the type of operand #0 of the refs here
1394 as the Fortran compiler smuggles type punning into COMPONENT_REFs
1395 for common blocks instead of using unions like everyone else. */
1396 tree type = DECL_FIELD_CONTEXT (field);
1397 /* With LTO types considered same_type_for_tbaa_p
1398 from different translation unit may not have same
1399 main variant. They however have same TYPE_CANONICAL. */
1400 if (TYPE_CANONICAL (type))
1401 return TYPE_UID (TYPE_CANONICAL (type));
1402 return TYPE_UID (type);
1403 }
1404
1405 /* qsort compare function to sort FIELD_DECLs after their
1406 DECL_FIELD_CONTEXT TYPE_UID. */
1407
1408 static inline int
1409 ncr_compar (const void *field1_, const void *field2_)
1410 {
1411 const_tree field1 = *(const_tree *) const_cast <void *>(field1_);
1412 const_tree field2 = *(const_tree *) const_cast <void *>(field2_);
1413 unsigned int uid1 = ncr_type_uid (field1);
1414 unsigned int uid2 = ncr_type_uid (field2);
1415
1416 if (uid1 < uid2)
1417 return -1;
1418 else if (uid1 > uid2)
1419 return 1;
1420 return 0;
1421 }
1422
1423 /* Return true if we can determine that the fields referenced cannot
1424 overlap for any pair of objects. This relies on TBAA. */
1425
1426 static bool
1427 nonoverlapping_component_refs_p (const_tree x, const_tree y)
1428 {
1429 /* Early return if we have nothing to do.
1430
1431 Do not consider this as may-alias for stats - it is more useful
1432 to have information how many disambiguations happened provided that
1433 the query was meaningful. */
1434 if (!flag_strict_aliasing
1435 || !x || !y
1436 || !handled_component_p (x)
1437 || !handled_component_p (y))
1438 return false;
1439
1440 auto_vec<const_tree, 16> fieldsx;
1441 while (handled_component_p (x))
1442 {
1443 if (TREE_CODE (x) == COMPONENT_REF)
1444 {
1445 tree field = TREE_OPERAND (x, 1);
1446 tree type = DECL_FIELD_CONTEXT (field);
1447 if (TREE_CODE (type) == RECORD_TYPE)
1448 fieldsx.safe_push (field);
1449 }
1450 else if (TREE_CODE (x) == VIEW_CONVERT_EXPR
1451 || TREE_CODE (x) == BIT_FIELD_REF)
1452 fieldsx.truncate (0);
1453 x = TREE_OPERAND (x, 0);
1454 }
1455 if (fieldsx.length () == 0)
1456 return false;
1457 auto_vec<const_tree, 16> fieldsy;
1458 while (handled_component_p (y))
1459 {
1460 if (TREE_CODE (y) == COMPONENT_REF)
1461 {
1462 tree field = TREE_OPERAND (y, 1);
1463 tree type = DECL_FIELD_CONTEXT (field);
1464 if (TREE_CODE (type) == RECORD_TYPE)
1465 fieldsy.safe_push (TREE_OPERAND (y, 1));
1466 }
1467 else if (TREE_CODE (y) == VIEW_CONVERT_EXPR
1468 || TREE_CODE (y) == BIT_FIELD_REF)
1469 fieldsy.truncate (0);
1470 y = TREE_OPERAND (y, 0);
1471 }
1472 if (fieldsy.length () == 0)
1473 {
1474 ++alias_stats.nonoverlapping_component_refs_p_may_alias;
1475 return false;
1476 }
1477
1478 /* Most common case first. */
1479 if (fieldsx.length () == 1
1480 && fieldsy.length () == 1)
1481 {
1482 if (same_type_for_tbaa (DECL_FIELD_CONTEXT (fieldsx[0]),
1483 DECL_FIELD_CONTEXT (fieldsy[0])) == 1
1484 && nonoverlapping_component_refs_p_1 (fieldsx[0], fieldsy[0]) == 1)
1485 {
1486 ++alias_stats.nonoverlapping_component_refs_p_no_alias;
1487 return true;
1488 }
1489 else
1490 {
1491 ++alias_stats.nonoverlapping_component_refs_p_may_alias;
1492 return false;
1493 }
1494 }
1495
1496 if (fieldsx.length () == 2)
1497 {
1498 if (ncr_compar (&fieldsx[0], &fieldsx[1]) == 1)
1499 std::swap (fieldsx[0], fieldsx[1]);
1500 }
1501 else
1502 fieldsx.qsort (ncr_compar);
1503
1504 if (fieldsy.length () == 2)
1505 {
1506 if (ncr_compar (&fieldsy[0], &fieldsy[1]) == 1)
1507 std::swap (fieldsy[0], fieldsy[1]);
1508 }
1509 else
1510 fieldsy.qsort (ncr_compar);
1511
1512 unsigned i = 0, j = 0;
1513 do
1514 {
1515 const_tree fieldx = fieldsx[i];
1516 const_tree fieldy = fieldsy[j];
1517
1518 /* We're left with accessing different fields of a structure,
1519 no possible overlap. */
1520 if (same_type_for_tbaa (DECL_FIELD_CONTEXT (fieldx),
1521 DECL_FIELD_CONTEXT (fieldy)) == 1
1522 && nonoverlapping_component_refs_p_1 (fieldx, fieldy) == 1)
1523 {
1524 ++alias_stats.nonoverlapping_component_refs_p_no_alias;
1525 return true;
1526 }
1527
1528 if (ncr_type_uid (fieldx) < ncr_type_uid (fieldy))
1529 {
1530 i++;
1531 if (i == fieldsx.length ())
1532 break;
1533 }
1534 else
1535 {
1536 j++;
1537 if (j == fieldsy.length ())
1538 break;
1539 }
1540 }
1541 while (1);
1542
1543 ++alias_stats.nonoverlapping_component_refs_p_may_alias;
1544 return false;
1545 }
1546
1547
1548 /* Return true if two memory references based on the variables BASE1
1549 and BASE2 constrained to [OFFSET1, OFFSET1 + MAX_SIZE1) and
1550 [OFFSET2, OFFSET2 + MAX_SIZE2) may alias. REF1 and REF2
1551 if non-NULL are the complete memory reference trees. */
1552
1553 static bool
1554 decl_refs_may_alias_p (tree ref1, tree base1,
1555 poly_int64 offset1, poly_int64 max_size1,
1556 poly_int64 size1,
1557 tree ref2, tree base2,
1558 poly_int64 offset2, poly_int64 max_size2,
1559 poly_int64 size2)
1560 {
1561 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
1562
1563 /* If both references are based on different variables, they cannot alias. */
1564 if (compare_base_decls (base1, base2) == 0)
1565 return false;
1566
1567 /* If both references are based on the same variable, they cannot alias if
1568 the accesses do not overlap. */
1569 if (!ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
1570 return false;
1571
1572 /* If there is must alias, there is no use disambiguating further. */
1573 if (known_eq (size1, max_size1) && known_eq (size2, max_size2))
1574 return true;
1575
1576 /* For components with variable position, the above test isn't sufficient,
1577 so we disambiguate component references manually. */
1578 if (ref1 && ref2
1579 && handled_component_p (ref1) && handled_component_p (ref2)
1580 && nonoverlapping_component_refs_since_match_p (NULL, ref1,
1581 NULL, ref2) == 1)
1582 return false;
1583
1584 return true;
1585 }
1586
1587 /* Return true if an indirect reference based on *PTR1 constrained
1588 to [OFFSET1, OFFSET1 + MAX_SIZE1) may alias a variable based on BASE2
1589 constrained to [OFFSET2, OFFSET2 + MAX_SIZE2). *PTR1 and BASE2 have
1590 the alias sets BASE1_ALIAS_SET and BASE2_ALIAS_SET which can be -1
1591 in which case they are computed on-demand. REF1 and REF2
1592 if non-NULL are the complete memory reference trees. */
1593
1594 static bool
1595 indirect_ref_may_alias_decl_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
1596 poly_int64 offset1, poly_int64 max_size1,
1597 poly_int64 size1,
1598 alias_set_type ref1_alias_set,
1599 alias_set_type base1_alias_set,
1600 tree ref2 ATTRIBUTE_UNUSED, tree base2,
1601 poly_int64 offset2, poly_int64 max_size2,
1602 poly_int64 size2,
1603 alias_set_type ref2_alias_set,
1604 alias_set_type base2_alias_set, bool tbaa_p)
1605 {
1606 tree ptr1;
1607 tree ptrtype1, dbase2;
1608
1609 gcc_checking_assert ((TREE_CODE (base1) == MEM_REF
1610 || TREE_CODE (base1) == TARGET_MEM_REF)
1611 && DECL_P (base2));
1612
1613 ptr1 = TREE_OPERAND (base1, 0);
1614 poly_offset_int moff = mem_ref_offset (base1) << LOG2_BITS_PER_UNIT;
1615
1616 /* If only one reference is based on a variable, they cannot alias if
1617 the pointer access is beyond the extent of the variable access.
1618 (the pointer base cannot validly point to an offset less than zero
1619 of the variable).
1620 ??? IVOPTs creates bases that do not honor this restriction,
1621 so do not apply this optimization for TARGET_MEM_REFs. */
1622 if (TREE_CODE (base1) != TARGET_MEM_REF
1623 && !ranges_maybe_overlap_p (offset1 + moff, -1, offset2, max_size2))
1624 return false;
1625 /* They also cannot alias if the pointer may not point to the decl. */
1626 if (!ptr_deref_may_alias_decl_p (ptr1, base2))
1627 return false;
1628
1629 /* Disambiguations that rely on strict aliasing rules follow. */
1630 if (!flag_strict_aliasing || !tbaa_p)
1631 return true;
1632
1633 /* If the alias set for a pointer access is zero all bets are off. */
1634 if (base1_alias_set == 0 || base2_alias_set == 0)
1635 return true;
1636
1637 /* When we are trying to disambiguate an access with a pointer dereference
1638 as base versus one with a decl as base we can use both the size
1639 of the decl and its dynamic type for extra disambiguation.
1640 ??? We do not know anything about the dynamic type of the decl
1641 other than that its alias-set contains base2_alias_set as a subset
1642 which does not help us here. */
1643 /* As we know nothing useful about the dynamic type of the decl just
1644 use the usual conflict check rather than a subset test.
1645 ??? We could introduce -fvery-strict-aliasing when the language
1646 does not allow decls to have a dynamic type that differs from their
1647 static type. Then we can check
1648 !alias_set_subset_of (base1_alias_set, base2_alias_set) instead. */
1649 if (base1_alias_set != base2_alias_set
1650 && !alias_sets_conflict_p (base1_alias_set, base2_alias_set))
1651 return false;
1652
1653 ptrtype1 = TREE_TYPE (TREE_OPERAND (base1, 1));
1654
1655 /* If the size of the access relevant for TBAA through the pointer
1656 is bigger than the size of the decl we can't possibly access the
1657 decl via that pointer. */
1658 if (/* ??? This in turn may run afoul when a decl of type T which is
1659 a member of union type U is accessed through a pointer to
1660 type U and sizeof T is smaller than sizeof U. */
1661 TREE_CODE (TREE_TYPE (ptrtype1)) != UNION_TYPE
1662 && TREE_CODE (TREE_TYPE (ptrtype1)) != QUAL_UNION_TYPE
1663 && compare_sizes (DECL_SIZE (base2),
1664 TYPE_SIZE (TREE_TYPE (ptrtype1))) < 0)
1665 return false;
1666
1667 if (!ref2)
1668 return true;
1669
1670 /* If the decl is accessed via a MEM_REF, reconstruct the base
1671 we can use for TBAA and an appropriately adjusted offset. */
1672 dbase2 = ref2;
1673 while (handled_component_p (dbase2))
1674 dbase2 = TREE_OPERAND (dbase2, 0);
1675 poly_int64 doffset1 = offset1;
1676 poly_offset_int doffset2 = offset2;
1677 if (TREE_CODE (dbase2) == MEM_REF
1678 || TREE_CODE (dbase2) == TARGET_MEM_REF)
1679 {
1680 doffset2 -= mem_ref_offset (dbase2) << LOG2_BITS_PER_UNIT;
1681 tree ptrtype2 = TREE_TYPE (TREE_OPERAND (dbase2, 1));
1682 /* If second reference is view-converted, give up now. */
1683 if (same_type_for_tbaa (TREE_TYPE (dbase2), TREE_TYPE (ptrtype2)) != 1)
1684 return true;
1685 }
1686
1687 /* If first reference is view-converted, give up now. */
1688 if (same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) != 1)
1689 return true;
1690
1691 /* If both references are through the same type, they do not alias
1692 if the accesses do not overlap. This does extra disambiguation
1693 for mixed/pointer accesses but requires strict aliasing.
1694 For MEM_REFs we require that the component-ref offset we computed
1695 is relative to the start of the type which we ensure by
1696 comparing rvalue and access type and disregarding the constant
1697 pointer offset.
1698
1699 But avoid treating variable length arrays as "objects", instead assume they
1700 can overlap by an exact multiple of their element size.
1701 See gcc.dg/torture/alias-2.c. */
1702 if (((TREE_CODE (base1) != TARGET_MEM_REF
1703 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
1704 && (TREE_CODE (dbase2) != TARGET_MEM_REF
1705 || (!TMR_INDEX (dbase2) && !TMR_INDEX2 (dbase2))))
1706 && same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (dbase2)) == 1
1707 && (TREE_CODE (TREE_TYPE (base1)) != ARRAY_TYPE
1708 || (TYPE_SIZE (TREE_TYPE (base1))
1709 && TREE_CODE (TYPE_SIZE (TREE_TYPE (base1))) == INTEGER_CST)))
1710 {
1711 if (!ranges_maybe_overlap_p (doffset1, max_size1, doffset2, max_size2))
1712 return false;
1713 if (!ref1 || !ref2
1714 /* If there is must alias, there is no use disambiguating further. */
1715 || (known_eq (size1, max_size1) && known_eq (size2, max_size2)))
1716 return true;
1717 int res = nonoverlapping_component_refs_since_match_p (base1, ref1,
1718 base2, ref2);
1719 if (res == -1)
1720 return !nonoverlapping_component_refs_p (ref1, ref2);
1721 return !res;
1722 }
1723
1724 /* Do access-path based disambiguation. */
1725 if (ref1 && ref2
1726 && (handled_component_p (ref1) || handled_component_p (ref2)))
1727 return aliasing_component_refs_p (ref1,
1728 ref1_alias_set, base1_alias_set,
1729 offset1, max_size1,
1730 ref2,
1731 ref2_alias_set, base2_alias_set,
1732 offset2, max_size2);
1733
1734 return true;
1735 }
1736
1737 /* Return true if two indirect references based on *PTR1
1738 and *PTR2 constrained to [OFFSET1, OFFSET1 + MAX_SIZE1) and
1739 [OFFSET2, OFFSET2 + MAX_SIZE2) may alias. *PTR1 and *PTR2 have
1740 the alias sets BASE1_ALIAS_SET and BASE2_ALIAS_SET which can be -1
1741 in which case they are computed on-demand. REF1 and REF2
1742 if non-NULL are the complete memory reference trees. */
1743
1744 static bool
1745 indirect_refs_may_alias_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
1746 poly_int64 offset1, poly_int64 max_size1,
1747 poly_int64 size1,
1748 alias_set_type ref1_alias_set,
1749 alias_set_type base1_alias_set,
1750 tree ref2 ATTRIBUTE_UNUSED, tree base2,
1751 poly_int64 offset2, poly_int64 max_size2,
1752 poly_int64 size2,
1753 alias_set_type ref2_alias_set,
1754 alias_set_type base2_alias_set, bool tbaa_p)
1755 {
1756 tree ptr1;
1757 tree ptr2;
1758 tree ptrtype1, ptrtype2;
1759
1760 gcc_checking_assert ((TREE_CODE (base1) == MEM_REF
1761 || TREE_CODE (base1) == TARGET_MEM_REF)
1762 && (TREE_CODE (base2) == MEM_REF
1763 || TREE_CODE (base2) == TARGET_MEM_REF));
1764
1765 ptr1 = TREE_OPERAND (base1, 0);
1766 ptr2 = TREE_OPERAND (base2, 0);
1767
1768 /* If both bases are based on pointers they cannot alias if they may not
1769 point to the same memory object or if they point to the same object
1770 and the accesses do not overlap. */
1771 if ((!cfun || gimple_in_ssa_p (cfun))
1772 && operand_equal_p (ptr1, ptr2, 0)
1773 && (((TREE_CODE (base1) != TARGET_MEM_REF
1774 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
1775 && (TREE_CODE (base2) != TARGET_MEM_REF
1776 || (!TMR_INDEX (base2) && !TMR_INDEX2 (base2))))
1777 || (TREE_CODE (base1) == TARGET_MEM_REF
1778 && TREE_CODE (base2) == TARGET_MEM_REF
1779 && (TMR_STEP (base1) == TMR_STEP (base2)
1780 || (TMR_STEP (base1) && TMR_STEP (base2)
1781 && operand_equal_p (TMR_STEP (base1),
1782 TMR_STEP (base2), 0)))
1783 && (TMR_INDEX (base1) == TMR_INDEX (base2)
1784 || (TMR_INDEX (base1) && TMR_INDEX (base2)
1785 && operand_equal_p (TMR_INDEX (base1),
1786 TMR_INDEX (base2), 0)))
1787 && (TMR_INDEX2 (base1) == TMR_INDEX2 (base2)
1788 || (TMR_INDEX2 (base1) && TMR_INDEX2 (base2)
1789 && operand_equal_p (TMR_INDEX2 (base1),
1790 TMR_INDEX2 (base2), 0))))))
1791 {
1792 poly_offset_int moff1 = mem_ref_offset (base1) << LOG2_BITS_PER_UNIT;
1793 poly_offset_int moff2 = mem_ref_offset (base2) << LOG2_BITS_PER_UNIT;
1794 if (!ranges_maybe_overlap_p (offset1 + moff1, max_size1,
1795 offset2 + moff2, max_size2))
1796 return false;
1797 /* If there is must alias, there is no use disambiguating further. */
1798 if (known_eq (size1, max_size1) && known_eq (size2, max_size2))
1799 return true;
1800 if (ref1 && ref2)
1801 {
1802 int res = nonoverlapping_component_refs_since_match_p (NULL, ref1,
1803 NULL, ref2);
1804 if (res != -1)
1805 return !res;
1806 }
1807 }
1808 if (!ptr_derefs_may_alias_p (ptr1, ptr2))
1809 return false;
1810
1811 /* Disambiguations that rely on strict aliasing rules follow. */
1812 if (!flag_strict_aliasing || !tbaa_p)
1813 return true;
1814
1815 ptrtype1 = TREE_TYPE (TREE_OPERAND (base1, 1));
1816 ptrtype2 = TREE_TYPE (TREE_OPERAND (base2, 1));
1817
1818 /* If the alias set for a pointer access is zero all bets are off. */
1819 if (base1_alias_set == 0
1820 || base2_alias_set == 0)
1821 return true;
1822
1823 /* Do type-based disambiguation. */
1824 if (base1_alias_set != base2_alias_set
1825 && !alias_sets_conflict_p (base1_alias_set, base2_alias_set))
1826 return false;
1827
1828 /* If either reference is view-converted, give up now. */
1829 if (same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) != 1
1830 || same_type_for_tbaa (TREE_TYPE (base2), TREE_TYPE (ptrtype2)) != 1)
1831 return true;
1832
1833 /* If both references are through the same type, they do not alias
1834 if the accesses do not overlap. This does extra disambiguation
1835 for mixed/pointer accesses but requires strict aliasing. */
1836 if ((TREE_CODE (base1) != TARGET_MEM_REF
1837 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
1838 && (TREE_CODE (base2) != TARGET_MEM_REF
1839 || (!TMR_INDEX (base2) && !TMR_INDEX2 (base2)))
1840 && same_type_for_tbaa (TREE_TYPE (ptrtype1),
1841 TREE_TYPE (ptrtype2)) == 1
1842 /* But avoid treating arrays as "objects", instead assume they
1843 can overlap by an exact multiple of their element size.
1844 See gcc.dg/torture/alias-2.c. */
1845 && TREE_CODE (TREE_TYPE (ptrtype1)) != ARRAY_TYPE)
1846 {
1847 if (!ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
1848 return false;
1849 if (!ref1 || !ref2
1850 || (known_eq (size1, max_size1) && known_eq (size2, max_size2)))
1851 return true;
1852 int res = nonoverlapping_component_refs_since_match_p (base1, ref1,
1853 base2, ref2);
1854 if (res == -1)
1855 return !nonoverlapping_component_refs_p (ref1, ref2);
1856 return !res;
1857 }
1858
1859 /* Do access-path based disambiguation. */
1860 if (ref1 && ref2
1861 && (handled_component_p (ref1) || handled_component_p (ref2)))
1862 return aliasing_component_refs_p (ref1,
1863 ref1_alias_set, base1_alias_set,
1864 offset1, max_size1,
1865 ref2,
1866 ref2_alias_set, base2_alias_set,
1867 offset2, max_size2);
1868
1869 return true;
1870 }
1871
1872 /* Return true, if the two memory references REF1 and REF2 may alias. */
1873
1874 static bool
1875 refs_may_alias_p_2 (ao_ref *ref1, ao_ref *ref2, bool tbaa_p)
1876 {
1877 tree base1, base2;
1878 poly_int64 offset1 = 0, offset2 = 0;
1879 poly_int64 max_size1 = -1, max_size2 = -1;
1880 bool var1_p, var2_p, ind1_p, ind2_p;
1881
1882 gcc_checking_assert ((!ref1->ref
1883 || TREE_CODE (ref1->ref) == SSA_NAME
1884 || DECL_P (ref1->ref)
1885 || TREE_CODE (ref1->ref) == STRING_CST
1886 || handled_component_p (ref1->ref)
1887 || TREE_CODE (ref1->ref) == MEM_REF
1888 || TREE_CODE (ref1->ref) == TARGET_MEM_REF)
1889 && (!ref2->ref
1890 || TREE_CODE (ref2->ref) == SSA_NAME
1891 || DECL_P (ref2->ref)
1892 || TREE_CODE (ref2->ref) == STRING_CST
1893 || handled_component_p (ref2->ref)
1894 || TREE_CODE (ref2->ref) == MEM_REF
1895 || TREE_CODE (ref2->ref) == TARGET_MEM_REF));
1896
1897 /* Decompose the references into their base objects and the access. */
1898 base1 = ao_ref_base (ref1);
1899 offset1 = ref1->offset;
1900 max_size1 = ref1->max_size;
1901 base2 = ao_ref_base (ref2);
1902 offset2 = ref2->offset;
1903 max_size2 = ref2->max_size;
1904
1905 /* We can end up with registers or constants as bases for example from
1906 *D.1663_44 = VIEW_CONVERT_EXPR<struct DB_LSN>(__tmp$B0F64_59);
1907 which is seen as a struct copy. */
1908 if (TREE_CODE (base1) == SSA_NAME
1909 || TREE_CODE (base1) == CONST_DECL
1910 || TREE_CODE (base1) == CONSTRUCTOR
1911 || TREE_CODE (base1) == ADDR_EXPR
1912 || CONSTANT_CLASS_P (base1)
1913 || TREE_CODE (base2) == SSA_NAME
1914 || TREE_CODE (base2) == CONST_DECL
1915 || TREE_CODE (base2) == CONSTRUCTOR
1916 || TREE_CODE (base2) == ADDR_EXPR
1917 || CONSTANT_CLASS_P (base2))
1918 return false;
1919
1920 /* We can end up referring to code via function and label decls.
1921 As we likely do not properly track code aliases conservatively
1922 bail out. */
1923 if (TREE_CODE (base1) == FUNCTION_DECL
1924 || TREE_CODE (base1) == LABEL_DECL
1925 || TREE_CODE (base2) == FUNCTION_DECL
1926 || TREE_CODE (base2) == LABEL_DECL)
1927 return true;
1928
1929 /* Two volatile accesses always conflict. */
1930 if (ref1->volatile_p
1931 && ref2->volatile_p)
1932 return true;
1933
1934 /* Defer to simple offset based disambiguation if we have
1935 references based on two decls. Do this before defering to
1936 TBAA to handle must-alias cases in conformance with the
1937 GCC extension of allowing type-punning through unions. */
1938 var1_p = DECL_P (base1);
1939 var2_p = DECL_P (base2);
1940 if (var1_p && var2_p)
1941 return decl_refs_may_alias_p (ref1->ref, base1, offset1, max_size1,
1942 ref1->size,
1943 ref2->ref, base2, offset2, max_size2,
1944 ref2->size);
1945
1946 /* Handle restrict based accesses.
1947 ??? ao_ref_base strips inner MEM_REF [&decl], recover from that
1948 here. */
1949 tree rbase1 = base1;
1950 tree rbase2 = base2;
1951 if (var1_p)
1952 {
1953 rbase1 = ref1->ref;
1954 if (rbase1)
1955 while (handled_component_p (rbase1))
1956 rbase1 = TREE_OPERAND (rbase1, 0);
1957 }
1958 if (var2_p)
1959 {
1960 rbase2 = ref2->ref;
1961 if (rbase2)
1962 while (handled_component_p (rbase2))
1963 rbase2 = TREE_OPERAND (rbase2, 0);
1964 }
1965 if (rbase1 && rbase2
1966 && (TREE_CODE (base1) == MEM_REF || TREE_CODE (base1) == TARGET_MEM_REF)
1967 && (TREE_CODE (base2) == MEM_REF || TREE_CODE (base2) == TARGET_MEM_REF)
1968 /* If the accesses are in the same restrict clique... */
1969 && MR_DEPENDENCE_CLIQUE (base1) == MR_DEPENDENCE_CLIQUE (base2)
1970 /* But based on different pointers they do not alias. */
1971 && MR_DEPENDENCE_BASE (base1) != MR_DEPENDENCE_BASE (base2))
1972 return false;
1973
1974 ind1_p = (TREE_CODE (base1) == MEM_REF
1975 || TREE_CODE (base1) == TARGET_MEM_REF);
1976 ind2_p = (TREE_CODE (base2) == MEM_REF
1977 || TREE_CODE (base2) == TARGET_MEM_REF);
1978
1979 /* Canonicalize the pointer-vs-decl case. */
1980 if (ind1_p && var2_p)
1981 {
1982 std::swap (offset1, offset2);
1983 std::swap (max_size1, max_size2);
1984 std::swap (base1, base2);
1985 std::swap (ref1, ref2);
1986 var1_p = true;
1987 ind1_p = false;
1988 var2_p = false;
1989 ind2_p = true;
1990 }
1991
1992 /* First defer to TBAA if possible. */
1993 if (tbaa_p
1994 && flag_strict_aliasing
1995 && !alias_sets_conflict_p (ao_ref_alias_set (ref1),
1996 ao_ref_alias_set (ref2)))
1997 return false;
1998
1999 /* If the reference is based on a pointer that points to memory
2000 that may not be written to then the other reference cannot possibly
2001 clobber it. */
2002 if ((TREE_CODE (TREE_OPERAND (base2, 0)) == SSA_NAME
2003 && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base2, 0)))
2004 || (ind1_p
2005 && TREE_CODE (TREE_OPERAND (base1, 0)) == SSA_NAME
2006 && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base1, 0))))
2007 return false;
2008
2009 /* Dispatch to the pointer-vs-decl or pointer-vs-pointer disambiguators. */
2010 if (var1_p && ind2_p)
2011 return indirect_ref_may_alias_decl_p (ref2->ref, base2,
2012 offset2, max_size2, ref2->size,
2013 ao_ref_alias_set (ref2),
2014 ao_ref_base_alias_set (ref2),
2015 ref1->ref, base1,
2016 offset1, max_size1, ref1->size,
2017 ao_ref_alias_set (ref1),
2018 ao_ref_base_alias_set (ref1),
2019 tbaa_p);
2020 else if (ind1_p && ind2_p)
2021 return indirect_refs_may_alias_p (ref1->ref, base1,
2022 offset1, max_size1, ref1->size,
2023 ao_ref_alias_set (ref1),
2024 ao_ref_base_alias_set (ref1),
2025 ref2->ref, base2,
2026 offset2, max_size2, ref2->size,
2027 ao_ref_alias_set (ref2),
2028 ao_ref_base_alias_set (ref2),
2029 tbaa_p);
2030
2031 gcc_unreachable ();
2032 }
2033
2034 /* Return true, if the two memory references REF1 and REF2 may alias
2035 and update statistics. */
2036
2037 bool
2038 refs_may_alias_p_1 (ao_ref *ref1, ao_ref *ref2, bool tbaa_p)
2039 {
2040 bool res = refs_may_alias_p_2 (ref1, ref2, tbaa_p);
2041 if (res)
2042 ++alias_stats.refs_may_alias_p_may_alias;
2043 else
2044 ++alias_stats.refs_may_alias_p_no_alias;
2045 return res;
2046 }
2047
2048 static bool
2049 refs_may_alias_p (tree ref1, ao_ref *ref2, bool tbaa_p)
2050 {
2051 ao_ref r1;
2052 ao_ref_init (&r1, ref1);
2053 return refs_may_alias_p_1 (&r1, ref2, tbaa_p);
2054 }
2055
2056 bool
2057 refs_may_alias_p (tree ref1, tree ref2, bool tbaa_p)
2058 {
2059 ao_ref r1, r2;
2060 ao_ref_init (&r1, ref1);
2061 ao_ref_init (&r2, ref2);
2062 return refs_may_alias_p_1 (&r1, &r2, tbaa_p);
2063 }
2064
2065 /* Returns true if there is a anti-dependence for the STORE that
2066 executes after the LOAD. */
2067
2068 bool
2069 refs_anti_dependent_p (tree load, tree store)
2070 {
2071 ao_ref r1, r2;
2072 ao_ref_init (&r1, load);
2073 ao_ref_init (&r2, store);
2074 return refs_may_alias_p_1 (&r1, &r2, false);
2075 }
2076
2077 /* Returns true if there is a output dependence for the stores
2078 STORE1 and STORE2. */
2079
2080 bool
2081 refs_output_dependent_p (tree store1, tree store2)
2082 {
2083 ao_ref r1, r2;
2084 ao_ref_init (&r1, store1);
2085 ao_ref_init (&r2, store2);
2086 return refs_may_alias_p_1 (&r1, &r2, false);
2087 }
2088
2089 /* If the call CALL may use the memory reference REF return true,
2090 otherwise return false. */
2091
2092 static bool
2093 ref_maybe_used_by_call_p_1 (gcall *call, ao_ref *ref, bool tbaa_p)
2094 {
2095 tree base, callee;
2096 unsigned i;
2097 int flags = gimple_call_flags (call);
2098
2099 /* Const functions without a static chain do not implicitly use memory. */
2100 if (!gimple_call_chain (call)
2101 && (flags & (ECF_CONST|ECF_NOVOPS)))
2102 goto process_args;
2103
2104 base = ao_ref_base (ref);
2105 if (!base)
2106 return true;
2107
2108 /* A call that is not without side-effects might involve volatile
2109 accesses and thus conflicts with all other volatile accesses. */
2110 if (ref->volatile_p)
2111 return true;
2112
2113 /* If the reference is based on a decl that is not aliased the call
2114 cannot possibly use it. */
2115 if (DECL_P (base)
2116 && !may_be_aliased (base)
2117 /* But local statics can be used through recursion. */
2118 && !is_global_var (base))
2119 goto process_args;
2120
2121 callee = gimple_call_fndecl (call);
2122
2123 /* Handle those builtin functions explicitly that do not act as
2124 escape points. See tree-ssa-structalias.c:find_func_aliases
2125 for the list of builtins we might need to handle here. */
2126 if (callee != NULL_TREE
2127 && gimple_call_builtin_p (call, BUILT_IN_NORMAL))
2128 switch (DECL_FUNCTION_CODE (callee))
2129 {
2130 /* All the following functions read memory pointed to by
2131 their second argument. strcat/strncat additionally
2132 reads memory pointed to by the first argument. */
2133 case BUILT_IN_STRCAT:
2134 case BUILT_IN_STRNCAT:
2135 {
2136 ao_ref dref;
2137 ao_ref_init_from_ptr_and_size (&dref,
2138 gimple_call_arg (call, 0),
2139 NULL_TREE);
2140 if (refs_may_alias_p_1 (&dref, ref, false))
2141 return true;
2142 }
2143 /* FALLTHRU */
2144 case BUILT_IN_STRCPY:
2145 case BUILT_IN_STRNCPY:
2146 case BUILT_IN_MEMCPY:
2147 case BUILT_IN_MEMMOVE:
2148 case BUILT_IN_MEMPCPY:
2149 case BUILT_IN_STPCPY:
2150 case BUILT_IN_STPNCPY:
2151 case BUILT_IN_TM_MEMCPY:
2152 case BUILT_IN_TM_MEMMOVE:
2153 {
2154 ao_ref dref;
2155 tree size = NULL_TREE;
2156 if (gimple_call_num_args (call) == 3)
2157 size = gimple_call_arg (call, 2);
2158 ao_ref_init_from_ptr_and_size (&dref,
2159 gimple_call_arg (call, 1),
2160 size);
2161 return refs_may_alias_p_1 (&dref, ref, false);
2162 }
2163 case BUILT_IN_STRCAT_CHK:
2164 case BUILT_IN_STRNCAT_CHK:
2165 {
2166 ao_ref dref;
2167 ao_ref_init_from_ptr_and_size (&dref,
2168 gimple_call_arg (call, 0),
2169 NULL_TREE);
2170 if (refs_may_alias_p_1 (&dref, ref, false))
2171 return true;
2172 }
2173 /* FALLTHRU */
2174 case BUILT_IN_STRCPY_CHK:
2175 case BUILT_IN_STRNCPY_CHK:
2176 case BUILT_IN_MEMCPY_CHK:
2177 case BUILT_IN_MEMMOVE_CHK:
2178 case BUILT_IN_MEMPCPY_CHK:
2179 case BUILT_IN_STPCPY_CHK:
2180 case BUILT_IN_STPNCPY_CHK:
2181 {
2182 ao_ref dref;
2183 tree size = NULL_TREE;
2184 if (gimple_call_num_args (call) == 4)
2185 size = gimple_call_arg (call, 2);
2186 ao_ref_init_from_ptr_and_size (&dref,
2187 gimple_call_arg (call, 1),
2188 size);
2189 return refs_may_alias_p_1 (&dref, ref, false);
2190 }
2191 case BUILT_IN_BCOPY:
2192 {
2193 ao_ref dref;
2194 tree size = gimple_call_arg (call, 2);
2195 ao_ref_init_from_ptr_and_size (&dref,
2196 gimple_call_arg (call, 0),
2197 size);
2198 return refs_may_alias_p_1 (&dref, ref, false);
2199 }
2200
2201 /* The following functions read memory pointed to by their
2202 first argument. */
2203 CASE_BUILT_IN_TM_LOAD (1):
2204 CASE_BUILT_IN_TM_LOAD (2):
2205 CASE_BUILT_IN_TM_LOAD (4):
2206 CASE_BUILT_IN_TM_LOAD (8):
2207 CASE_BUILT_IN_TM_LOAD (FLOAT):
2208 CASE_BUILT_IN_TM_LOAD (DOUBLE):
2209 CASE_BUILT_IN_TM_LOAD (LDOUBLE):
2210 CASE_BUILT_IN_TM_LOAD (M64):
2211 CASE_BUILT_IN_TM_LOAD (M128):
2212 CASE_BUILT_IN_TM_LOAD (M256):
2213 case BUILT_IN_TM_LOG:
2214 case BUILT_IN_TM_LOG_1:
2215 case BUILT_IN_TM_LOG_2:
2216 case BUILT_IN_TM_LOG_4:
2217 case BUILT_IN_TM_LOG_8:
2218 case BUILT_IN_TM_LOG_FLOAT:
2219 case BUILT_IN_TM_LOG_DOUBLE:
2220 case BUILT_IN_TM_LOG_LDOUBLE:
2221 case BUILT_IN_TM_LOG_M64:
2222 case BUILT_IN_TM_LOG_M128:
2223 case BUILT_IN_TM_LOG_M256:
2224 return ptr_deref_may_alias_ref_p_1 (gimple_call_arg (call, 0), ref);
2225
2226 /* These read memory pointed to by the first argument. */
2227 case BUILT_IN_STRDUP:
2228 case BUILT_IN_STRNDUP:
2229 case BUILT_IN_REALLOC:
2230 {
2231 ao_ref dref;
2232 tree size = NULL_TREE;
2233 if (gimple_call_num_args (call) == 2)
2234 size = gimple_call_arg (call, 1);
2235 ao_ref_init_from_ptr_and_size (&dref,
2236 gimple_call_arg (call, 0),
2237 size);
2238 return refs_may_alias_p_1 (&dref, ref, false);
2239 }
2240 /* These read memory pointed to by the first argument. */
2241 case BUILT_IN_INDEX:
2242 case BUILT_IN_STRCHR:
2243 case BUILT_IN_STRRCHR:
2244 {
2245 ao_ref dref;
2246 ao_ref_init_from_ptr_and_size (&dref,
2247 gimple_call_arg (call, 0),
2248 NULL_TREE);
2249 return refs_may_alias_p_1 (&dref, ref, false);
2250 }
2251 /* These read memory pointed to by the first argument with size
2252 in the third argument. */
2253 case BUILT_IN_MEMCHR:
2254 {
2255 ao_ref dref;
2256 ao_ref_init_from_ptr_and_size (&dref,
2257 gimple_call_arg (call, 0),
2258 gimple_call_arg (call, 2));
2259 return refs_may_alias_p_1 (&dref, ref, false);
2260 }
2261 /* These read memory pointed to by the first and second arguments. */
2262 case BUILT_IN_STRSTR:
2263 case BUILT_IN_STRPBRK:
2264 {
2265 ao_ref dref;
2266 ao_ref_init_from_ptr_and_size (&dref,
2267 gimple_call_arg (call, 0),
2268 NULL_TREE);
2269 if (refs_may_alias_p_1 (&dref, ref, false))
2270 return true;
2271 ao_ref_init_from_ptr_and_size (&dref,
2272 gimple_call_arg (call, 1),
2273 NULL_TREE);
2274 return refs_may_alias_p_1 (&dref, ref, false);
2275 }
2276
2277 /* The following builtins do not read from memory. */
2278 case BUILT_IN_FREE:
2279 case BUILT_IN_MALLOC:
2280 case BUILT_IN_POSIX_MEMALIGN:
2281 case BUILT_IN_ALIGNED_ALLOC:
2282 case BUILT_IN_CALLOC:
2283 CASE_BUILT_IN_ALLOCA:
2284 case BUILT_IN_STACK_SAVE:
2285 case BUILT_IN_STACK_RESTORE:
2286 case BUILT_IN_MEMSET:
2287 case BUILT_IN_TM_MEMSET:
2288 case BUILT_IN_MEMSET_CHK:
2289 case BUILT_IN_FREXP:
2290 case BUILT_IN_FREXPF:
2291 case BUILT_IN_FREXPL:
2292 case BUILT_IN_GAMMA_R:
2293 case BUILT_IN_GAMMAF_R:
2294 case BUILT_IN_GAMMAL_R:
2295 case BUILT_IN_LGAMMA_R:
2296 case BUILT_IN_LGAMMAF_R:
2297 case BUILT_IN_LGAMMAL_R:
2298 case BUILT_IN_MODF:
2299 case BUILT_IN_MODFF:
2300 case BUILT_IN_MODFL:
2301 case BUILT_IN_REMQUO:
2302 case BUILT_IN_REMQUOF:
2303 case BUILT_IN_REMQUOL:
2304 case BUILT_IN_SINCOS:
2305 case BUILT_IN_SINCOSF:
2306 case BUILT_IN_SINCOSL:
2307 case BUILT_IN_ASSUME_ALIGNED:
2308 case BUILT_IN_VA_END:
2309 return false;
2310 /* __sync_* builtins and some OpenMP builtins act as threading
2311 barriers. */
2312 #undef DEF_SYNC_BUILTIN
2313 #define DEF_SYNC_BUILTIN(ENUM, NAME, TYPE, ATTRS) case ENUM:
2314 #include "sync-builtins.def"
2315 #undef DEF_SYNC_BUILTIN
2316 case BUILT_IN_GOMP_ATOMIC_START:
2317 case BUILT_IN_GOMP_ATOMIC_END:
2318 case BUILT_IN_GOMP_BARRIER:
2319 case BUILT_IN_GOMP_BARRIER_CANCEL:
2320 case BUILT_IN_GOMP_TASKWAIT:
2321 case BUILT_IN_GOMP_TASKGROUP_END:
2322 case BUILT_IN_GOMP_CRITICAL_START:
2323 case BUILT_IN_GOMP_CRITICAL_END:
2324 case BUILT_IN_GOMP_CRITICAL_NAME_START:
2325 case BUILT_IN_GOMP_CRITICAL_NAME_END:
2326 case BUILT_IN_GOMP_LOOP_END:
2327 case BUILT_IN_GOMP_LOOP_END_CANCEL:
2328 case BUILT_IN_GOMP_ORDERED_START:
2329 case BUILT_IN_GOMP_ORDERED_END:
2330 case BUILT_IN_GOMP_SECTIONS_END:
2331 case BUILT_IN_GOMP_SECTIONS_END_CANCEL:
2332 case BUILT_IN_GOMP_SINGLE_COPY_START:
2333 case BUILT_IN_GOMP_SINGLE_COPY_END:
2334 return true;
2335
2336 default:
2337 /* Fallthru to general call handling. */;
2338 }
2339
2340 /* Check if base is a global static variable that is not read
2341 by the function. */
2342 if (callee != NULL_TREE && VAR_P (base) && TREE_STATIC (base))
2343 {
2344 struct cgraph_node *node = cgraph_node::get (callee);
2345 bitmap not_read;
2346
2347 /* FIXME: Callee can be an OMP builtin that does not have a call graph
2348 node yet. We should enforce that there are nodes for all decls in the
2349 IL and remove this check instead. */
2350 if (node
2351 && (not_read = ipa_reference_get_not_read_global (node))
2352 && bitmap_bit_p (not_read, ipa_reference_var_uid (base)))
2353 goto process_args;
2354 }
2355
2356 /* Check if the base variable is call-used. */
2357 if (DECL_P (base))
2358 {
2359 if (pt_solution_includes (gimple_call_use_set (call), base))
2360 return true;
2361 }
2362 else if ((TREE_CODE (base) == MEM_REF
2363 || TREE_CODE (base) == TARGET_MEM_REF)
2364 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
2365 {
2366 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (TREE_OPERAND (base, 0));
2367 if (!pi)
2368 return true;
2369
2370 if (pt_solutions_intersect (gimple_call_use_set (call), &pi->pt))
2371 return true;
2372 }
2373 else
2374 return true;
2375
2376 /* Inspect call arguments for passed-by-value aliases. */
2377 process_args:
2378 for (i = 0; i < gimple_call_num_args (call); ++i)
2379 {
2380 tree op = gimple_call_arg (call, i);
2381 int flags = gimple_call_arg_flags (call, i);
2382
2383 if (flags & EAF_UNUSED)
2384 continue;
2385
2386 if (TREE_CODE (op) == WITH_SIZE_EXPR)
2387 op = TREE_OPERAND (op, 0);
2388
2389 if (TREE_CODE (op) != SSA_NAME
2390 && !is_gimple_min_invariant (op))
2391 {
2392 ao_ref r;
2393 ao_ref_init (&r, op);
2394 if (refs_may_alias_p_1 (&r, ref, tbaa_p))
2395 return true;
2396 }
2397 }
2398
2399 return false;
2400 }
2401
2402 static bool
2403 ref_maybe_used_by_call_p (gcall *call, ao_ref *ref, bool tbaa_p)
2404 {
2405 bool res;
2406 res = ref_maybe_used_by_call_p_1 (call, ref, tbaa_p);
2407 if (res)
2408 ++alias_stats.ref_maybe_used_by_call_p_may_alias;
2409 else
2410 ++alias_stats.ref_maybe_used_by_call_p_no_alias;
2411 return res;
2412 }
2413
2414
2415 /* If the statement STMT may use the memory reference REF return
2416 true, otherwise return false. */
2417
2418 bool
2419 ref_maybe_used_by_stmt_p (gimple *stmt, ao_ref *ref, bool tbaa_p)
2420 {
2421 if (is_gimple_assign (stmt))
2422 {
2423 tree rhs;
2424
2425 /* All memory assign statements are single. */
2426 if (!gimple_assign_single_p (stmt))
2427 return false;
2428
2429 rhs = gimple_assign_rhs1 (stmt);
2430 if (is_gimple_reg (rhs)
2431 || is_gimple_min_invariant (rhs)
2432 || gimple_assign_rhs_code (stmt) == CONSTRUCTOR)
2433 return false;
2434
2435 return refs_may_alias_p (rhs, ref, tbaa_p);
2436 }
2437 else if (is_gimple_call (stmt))
2438 return ref_maybe_used_by_call_p (as_a <gcall *> (stmt), ref, tbaa_p);
2439 else if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
2440 {
2441 tree retval = gimple_return_retval (return_stmt);
2442 if (retval
2443 && TREE_CODE (retval) != SSA_NAME
2444 && !is_gimple_min_invariant (retval)
2445 && refs_may_alias_p (retval, ref, tbaa_p))
2446 return true;
2447 /* If ref escapes the function then the return acts as a use. */
2448 tree base = ao_ref_base (ref);
2449 if (!base)
2450 ;
2451 else if (DECL_P (base))
2452 return is_global_var (base);
2453 else if (TREE_CODE (base) == MEM_REF
2454 || TREE_CODE (base) == TARGET_MEM_REF)
2455 return ptr_deref_may_alias_global_p (TREE_OPERAND (base, 0));
2456 return false;
2457 }
2458
2459 return true;
2460 }
2461
2462 bool
2463 ref_maybe_used_by_stmt_p (gimple *stmt, tree ref, bool tbaa_p)
2464 {
2465 ao_ref r;
2466 ao_ref_init (&r, ref);
2467 return ref_maybe_used_by_stmt_p (stmt, &r, tbaa_p);
2468 }
2469
2470 /* If the call in statement CALL may clobber the memory reference REF
2471 return true, otherwise return false. */
2472
2473 bool
2474 call_may_clobber_ref_p_1 (gcall *call, ao_ref *ref)
2475 {
2476 tree base;
2477 tree callee;
2478
2479 /* If the call is pure or const it cannot clobber anything. */
2480 if (gimple_call_flags (call)
2481 & (ECF_PURE|ECF_CONST|ECF_LOOPING_CONST_OR_PURE|ECF_NOVOPS))
2482 return false;
2483 if (gimple_call_internal_p (call))
2484 switch (gimple_call_internal_fn (call))
2485 {
2486 /* Treat these internal calls like ECF_PURE for aliasing,
2487 they don't write to any memory the program should care about.
2488 They have important other side-effects, and read memory,
2489 so can't be ECF_NOVOPS. */
2490 case IFN_UBSAN_NULL:
2491 case IFN_UBSAN_BOUNDS:
2492 case IFN_UBSAN_VPTR:
2493 case IFN_UBSAN_OBJECT_SIZE:
2494 case IFN_UBSAN_PTR:
2495 case IFN_ASAN_CHECK:
2496 return false;
2497 default:
2498 break;
2499 }
2500
2501 base = ao_ref_base (ref);
2502 if (!base)
2503 return true;
2504
2505 if (TREE_CODE (base) == SSA_NAME
2506 || CONSTANT_CLASS_P (base))
2507 return false;
2508
2509 /* A call that is not without side-effects might involve volatile
2510 accesses and thus conflicts with all other volatile accesses. */
2511 if (ref->volatile_p)
2512 return true;
2513
2514 /* If the reference is based on a decl that is not aliased the call
2515 cannot possibly clobber it. */
2516 if (DECL_P (base)
2517 && !may_be_aliased (base)
2518 /* But local non-readonly statics can be modified through recursion
2519 or the call may implement a threading barrier which we must
2520 treat as may-def. */
2521 && (TREE_READONLY (base)
2522 || !is_global_var (base)))
2523 return false;
2524
2525 /* If the reference is based on a pointer that points to memory
2526 that may not be written to then the call cannot possibly clobber it. */
2527 if ((TREE_CODE (base) == MEM_REF
2528 || TREE_CODE (base) == TARGET_MEM_REF)
2529 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME
2530 && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base, 0)))
2531 return false;
2532
2533 callee = gimple_call_fndecl (call);
2534
2535 /* Handle those builtin functions explicitly that do not act as
2536 escape points. See tree-ssa-structalias.c:find_func_aliases
2537 for the list of builtins we might need to handle here. */
2538 if (callee != NULL_TREE
2539 && gimple_call_builtin_p (call, BUILT_IN_NORMAL))
2540 switch (DECL_FUNCTION_CODE (callee))
2541 {
2542 /* All the following functions clobber memory pointed to by
2543 their first argument. */
2544 case BUILT_IN_STRCPY:
2545 case BUILT_IN_STRNCPY:
2546 case BUILT_IN_MEMCPY:
2547 case BUILT_IN_MEMMOVE:
2548 case BUILT_IN_MEMPCPY:
2549 case BUILT_IN_STPCPY:
2550 case BUILT_IN_STPNCPY:
2551 case BUILT_IN_STRCAT:
2552 case BUILT_IN_STRNCAT:
2553 case BUILT_IN_MEMSET:
2554 case BUILT_IN_TM_MEMSET:
2555 CASE_BUILT_IN_TM_STORE (1):
2556 CASE_BUILT_IN_TM_STORE (2):
2557 CASE_BUILT_IN_TM_STORE (4):
2558 CASE_BUILT_IN_TM_STORE (8):
2559 CASE_BUILT_IN_TM_STORE (FLOAT):
2560 CASE_BUILT_IN_TM_STORE (DOUBLE):
2561 CASE_BUILT_IN_TM_STORE (LDOUBLE):
2562 CASE_BUILT_IN_TM_STORE (M64):
2563 CASE_BUILT_IN_TM_STORE (M128):
2564 CASE_BUILT_IN_TM_STORE (M256):
2565 case BUILT_IN_TM_MEMCPY:
2566 case BUILT_IN_TM_MEMMOVE:
2567 {
2568 ao_ref dref;
2569 tree size = NULL_TREE;
2570 /* Don't pass in size for strncat, as the maximum size
2571 is strlen (dest) + n + 1 instead of n, resp.
2572 n + 1 at dest + strlen (dest), but strlen (dest) isn't
2573 known. */
2574 if (gimple_call_num_args (call) == 3
2575 && DECL_FUNCTION_CODE (callee) != BUILT_IN_STRNCAT)
2576 size = gimple_call_arg (call, 2);
2577 ao_ref_init_from_ptr_and_size (&dref,
2578 gimple_call_arg (call, 0),
2579 size);
2580 return refs_may_alias_p_1 (&dref, ref, false);
2581 }
2582 case BUILT_IN_STRCPY_CHK:
2583 case BUILT_IN_STRNCPY_CHK:
2584 case BUILT_IN_MEMCPY_CHK:
2585 case BUILT_IN_MEMMOVE_CHK:
2586 case BUILT_IN_MEMPCPY_CHK:
2587 case BUILT_IN_STPCPY_CHK:
2588 case BUILT_IN_STPNCPY_CHK:
2589 case BUILT_IN_STRCAT_CHK:
2590 case BUILT_IN_STRNCAT_CHK:
2591 case BUILT_IN_MEMSET_CHK:
2592 {
2593 ao_ref dref;
2594 tree size = NULL_TREE;
2595 /* Don't pass in size for __strncat_chk, as the maximum size
2596 is strlen (dest) + n + 1 instead of n, resp.
2597 n + 1 at dest + strlen (dest), but strlen (dest) isn't
2598 known. */
2599 if (gimple_call_num_args (call) == 4
2600 && DECL_FUNCTION_CODE (callee) != BUILT_IN_STRNCAT_CHK)
2601 size = gimple_call_arg (call, 2);
2602 ao_ref_init_from_ptr_and_size (&dref,
2603 gimple_call_arg (call, 0),
2604 size);
2605 return refs_may_alias_p_1 (&dref, ref, false);
2606 }
2607 case BUILT_IN_BCOPY:
2608 {
2609 ao_ref dref;
2610 tree size = gimple_call_arg (call, 2);
2611 ao_ref_init_from_ptr_and_size (&dref,
2612 gimple_call_arg (call, 1),
2613 size);
2614 return refs_may_alias_p_1 (&dref, ref, false);
2615 }
2616 /* Allocating memory does not have any side-effects apart from
2617 being the definition point for the pointer. */
2618 case BUILT_IN_MALLOC:
2619 case BUILT_IN_ALIGNED_ALLOC:
2620 case BUILT_IN_CALLOC:
2621 case BUILT_IN_STRDUP:
2622 case BUILT_IN_STRNDUP:
2623 /* Unix98 specifies that errno is set on allocation failure. */
2624 if (flag_errno_math
2625 && targetm.ref_may_alias_errno (ref))
2626 return true;
2627 return false;
2628 case BUILT_IN_STACK_SAVE:
2629 CASE_BUILT_IN_ALLOCA:
2630 case BUILT_IN_ASSUME_ALIGNED:
2631 return false;
2632 /* But posix_memalign stores a pointer into the memory pointed to
2633 by its first argument. */
2634 case BUILT_IN_POSIX_MEMALIGN:
2635 {
2636 tree ptrptr = gimple_call_arg (call, 0);
2637 ao_ref dref;
2638 ao_ref_init_from_ptr_and_size (&dref, ptrptr,
2639 TYPE_SIZE_UNIT (ptr_type_node));
2640 return (refs_may_alias_p_1 (&dref, ref, false)
2641 || (flag_errno_math
2642 && targetm.ref_may_alias_errno (ref)));
2643 }
2644 /* Freeing memory kills the pointed-to memory. More importantly
2645 the call has to serve as a barrier for moving loads and stores
2646 across it. */
2647 case BUILT_IN_FREE:
2648 case BUILT_IN_VA_END:
2649 {
2650 tree ptr = gimple_call_arg (call, 0);
2651 return ptr_deref_may_alias_ref_p_1 (ptr, ref);
2652 }
2653 /* Realloc serves both as allocation point and deallocation point. */
2654 case BUILT_IN_REALLOC:
2655 {
2656 tree ptr = gimple_call_arg (call, 0);
2657 /* Unix98 specifies that errno is set on allocation failure. */
2658 return ((flag_errno_math
2659 && targetm.ref_may_alias_errno (ref))
2660 || ptr_deref_may_alias_ref_p_1 (ptr, ref));
2661 }
2662 case BUILT_IN_GAMMA_R:
2663 case BUILT_IN_GAMMAF_R:
2664 case BUILT_IN_GAMMAL_R:
2665 case BUILT_IN_LGAMMA_R:
2666 case BUILT_IN_LGAMMAF_R:
2667 case BUILT_IN_LGAMMAL_R:
2668 {
2669 tree out = gimple_call_arg (call, 1);
2670 if (ptr_deref_may_alias_ref_p_1 (out, ref))
2671 return true;
2672 if (flag_errno_math)
2673 break;
2674 return false;
2675 }
2676 case BUILT_IN_FREXP:
2677 case BUILT_IN_FREXPF:
2678 case BUILT_IN_FREXPL:
2679 case BUILT_IN_MODF:
2680 case BUILT_IN_MODFF:
2681 case BUILT_IN_MODFL:
2682 {
2683 tree out = gimple_call_arg (call, 1);
2684 return ptr_deref_may_alias_ref_p_1 (out, ref);
2685 }
2686 case BUILT_IN_REMQUO:
2687 case BUILT_IN_REMQUOF:
2688 case BUILT_IN_REMQUOL:
2689 {
2690 tree out = gimple_call_arg (call, 2);
2691 if (ptr_deref_may_alias_ref_p_1 (out, ref))
2692 return true;
2693 if (flag_errno_math)
2694 break;
2695 return false;
2696 }
2697 case BUILT_IN_SINCOS:
2698 case BUILT_IN_SINCOSF:
2699 case BUILT_IN_SINCOSL:
2700 {
2701 tree sin = gimple_call_arg (call, 1);
2702 tree cos = gimple_call_arg (call, 2);
2703 return (ptr_deref_may_alias_ref_p_1 (sin, ref)
2704 || ptr_deref_may_alias_ref_p_1 (cos, ref));
2705 }
2706 /* __sync_* builtins and some OpenMP builtins act as threading
2707 barriers. */
2708 #undef DEF_SYNC_BUILTIN
2709 #define DEF_SYNC_BUILTIN(ENUM, NAME, TYPE, ATTRS) case ENUM:
2710 #include "sync-builtins.def"
2711 #undef DEF_SYNC_BUILTIN
2712 case BUILT_IN_GOMP_ATOMIC_START:
2713 case BUILT_IN_GOMP_ATOMIC_END:
2714 case BUILT_IN_GOMP_BARRIER:
2715 case BUILT_IN_GOMP_BARRIER_CANCEL:
2716 case BUILT_IN_GOMP_TASKWAIT:
2717 case BUILT_IN_GOMP_TASKGROUP_END:
2718 case BUILT_IN_GOMP_CRITICAL_START:
2719 case BUILT_IN_GOMP_CRITICAL_END:
2720 case BUILT_IN_GOMP_CRITICAL_NAME_START:
2721 case BUILT_IN_GOMP_CRITICAL_NAME_END:
2722 case BUILT_IN_GOMP_LOOP_END:
2723 case BUILT_IN_GOMP_LOOP_END_CANCEL:
2724 case BUILT_IN_GOMP_ORDERED_START:
2725 case BUILT_IN_GOMP_ORDERED_END:
2726 case BUILT_IN_GOMP_SECTIONS_END:
2727 case BUILT_IN_GOMP_SECTIONS_END_CANCEL:
2728 case BUILT_IN_GOMP_SINGLE_COPY_START:
2729 case BUILT_IN_GOMP_SINGLE_COPY_END:
2730 return true;
2731 default:
2732 /* Fallthru to general call handling. */;
2733 }
2734
2735 /* Check if base is a global static variable that is not written
2736 by the function. */
2737 if (callee != NULL_TREE && VAR_P (base) && TREE_STATIC (base))
2738 {
2739 struct cgraph_node *node = cgraph_node::get (callee);
2740 bitmap not_written;
2741
2742 if (node
2743 && (not_written = ipa_reference_get_not_written_global (node))
2744 && bitmap_bit_p (not_written, ipa_reference_var_uid (base)))
2745 return false;
2746 }
2747
2748 /* Check if the base variable is call-clobbered. */
2749 if (DECL_P (base))
2750 return pt_solution_includes (gimple_call_clobber_set (call), base);
2751 else if ((TREE_CODE (base) == MEM_REF
2752 || TREE_CODE (base) == TARGET_MEM_REF)
2753 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
2754 {
2755 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (TREE_OPERAND (base, 0));
2756 if (!pi)
2757 return true;
2758
2759 return pt_solutions_intersect (gimple_call_clobber_set (call), &pi->pt);
2760 }
2761
2762 return true;
2763 }
2764
2765 /* If the call in statement CALL may clobber the memory reference REF
2766 return true, otherwise return false. */
2767
2768 bool
2769 call_may_clobber_ref_p (gcall *call, tree ref)
2770 {
2771 bool res;
2772 ao_ref r;
2773 ao_ref_init (&r, ref);
2774 res = call_may_clobber_ref_p_1 (call, &r);
2775 if (res)
2776 ++alias_stats.call_may_clobber_ref_p_may_alias;
2777 else
2778 ++alias_stats.call_may_clobber_ref_p_no_alias;
2779 return res;
2780 }
2781
2782
2783 /* If the statement STMT may clobber the memory reference REF return true,
2784 otherwise return false. */
2785
2786 bool
2787 stmt_may_clobber_ref_p_1 (gimple *stmt, ao_ref *ref, bool tbaa_p)
2788 {
2789 if (is_gimple_call (stmt))
2790 {
2791 tree lhs = gimple_call_lhs (stmt);
2792 if (lhs
2793 && TREE_CODE (lhs) != SSA_NAME)
2794 {
2795 ao_ref r;
2796 ao_ref_init (&r, lhs);
2797 if (refs_may_alias_p_1 (ref, &r, tbaa_p))
2798 return true;
2799 }
2800
2801 return call_may_clobber_ref_p_1 (as_a <gcall *> (stmt), ref);
2802 }
2803 else if (gimple_assign_single_p (stmt))
2804 {
2805 tree lhs = gimple_assign_lhs (stmt);
2806 if (TREE_CODE (lhs) != SSA_NAME)
2807 {
2808 ao_ref r;
2809 ao_ref_init (&r, lhs);
2810 return refs_may_alias_p_1 (ref, &r, tbaa_p);
2811 }
2812 }
2813 else if (gimple_code (stmt) == GIMPLE_ASM)
2814 return true;
2815
2816 return false;
2817 }
2818
2819 bool
2820 stmt_may_clobber_ref_p (gimple *stmt, tree ref, bool tbaa_p)
2821 {
2822 ao_ref r;
2823 ao_ref_init (&r, ref);
2824 return stmt_may_clobber_ref_p_1 (stmt, &r, tbaa_p);
2825 }
2826
2827 /* Return true if store1 and store2 described by corresponding tuples
2828 <BASE, OFFSET, SIZE, MAX_SIZE> have the same size and store to the same
2829 address. */
2830
2831 static bool
2832 same_addr_size_stores_p (tree base1, poly_int64 offset1, poly_int64 size1,
2833 poly_int64 max_size1,
2834 tree base2, poly_int64 offset2, poly_int64 size2,
2835 poly_int64 max_size2)
2836 {
2837 /* Offsets need to be 0. */
2838 if (maybe_ne (offset1, 0)
2839 || maybe_ne (offset2, 0))
2840 return false;
2841
2842 bool base1_obj_p = SSA_VAR_P (base1);
2843 bool base2_obj_p = SSA_VAR_P (base2);
2844
2845 /* We need one object. */
2846 if (base1_obj_p == base2_obj_p)
2847 return false;
2848 tree obj = base1_obj_p ? base1 : base2;
2849
2850 /* And we need one MEM_REF. */
2851 bool base1_memref_p = TREE_CODE (base1) == MEM_REF;
2852 bool base2_memref_p = TREE_CODE (base2) == MEM_REF;
2853 if (base1_memref_p == base2_memref_p)
2854 return false;
2855 tree memref = base1_memref_p ? base1 : base2;
2856
2857 /* Sizes need to be valid. */
2858 if (!known_size_p (max_size1)
2859 || !known_size_p (max_size2)
2860 || !known_size_p (size1)
2861 || !known_size_p (size2))
2862 return false;
2863
2864 /* Max_size needs to match size. */
2865 if (maybe_ne (max_size1, size1)
2866 || maybe_ne (max_size2, size2))
2867 return false;
2868
2869 /* Sizes need to match. */
2870 if (maybe_ne (size1, size2))
2871 return false;
2872
2873
2874 /* Check that memref is a store to pointer with singleton points-to info. */
2875 if (!integer_zerop (TREE_OPERAND (memref, 1)))
2876 return false;
2877 tree ptr = TREE_OPERAND (memref, 0);
2878 if (TREE_CODE (ptr) != SSA_NAME)
2879 return false;
2880 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
2881 unsigned int pt_uid;
2882 if (pi == NULL
2883 || !pt_solution_singleton_or_null_p (&pi->pt, &pt_uid))
2884 return false;
2885
2886 /* Be conservative with non-call exceptions when the address might
2887 be NULL. */
2888 if (cfun->can_throw_non_call_exceptions && pi->pt.null)
2889 return false;
2890
2891 /* Check that ptr points relative to obj. */
2892 unsigned int obj_uid = DECL_PT_UID (obj);
2893 if (obj_uid != pt_uid)
2894 return false;
2895
2896 /* Check that the object size is the same as the store size. That ensures us
2897 that ptr points to the start of obj. */
2898 return (DECL_SIZE (obj)
2899 && poly_int_tree_p (DECL_SIZE (obj))
2900 && known_eq (wi::to_poly_offset (DECL_SIZE (obj)), size1));
2901 }
2902
2903 /* If STMT kills the memory reference REF return true, otherwise
2904 return false. */
2905
2906 bool
2907 stmt_kills_ref_p (gimple *stmt, ao_ref *ref)
2908 {
2909 if (!ao_ref_base (ref))
2910 return false;
2911
2912 if (gimple_has_lhs (stmt)
2913 && TREE_CODE (gimple_get_lhs (stmt)) != SSA_NAME
2914 /* The assignment is not necessarily carried out if it can throw
2915 and we can catch it in the current function where we could inspect
2916 the previous value.
2917 ??? We only need to care about the RHS throwing. For aggregate
2918 assignments or similar calls and non-call exceptions the LHS
2919 might throw as well. */
2920 && !stmt_can_throw_internal (cfun, stmt))
2921 {
2922 tree lhs = gimple_get_lhs (stmt);
2923 /* If LHS is literally a base of the access we are done. */
2924 if (ref->ref)
2925 {
2926 tree base = ref->ref;
2927 tree innermost_dropped_array_ref = NULL_TREE;
2928 if (handled_component_p (base))
2929 {
2930 tree saved_lhs0 = NULL_TREE;
2931 if (handled_component_p (lhs))
2932 {
2933 saved_lhs0 = TREE_OPERAND (lhs, 0);
2934 TREE_OPERAND (lhs, 0) = integer_zero_node;
2935 }
2936 do
2937 {
2938 /* Just compare the outermost handled component, if
2939 they are equal we have found a possible common
2940 base. */
2941 tree saved_base0 = TREE_OPERAND (base, 0);
2942 TREE_OPERAND (base, 0) = integer_zero_node;
2943 bool res = operand_equal_p (lhs, base, 0);
2944 TREE_OPERAND (base, 0) = saved_base0;
2945 if (res)
2946 break;
2947 /* Remember if we drop an array-ref that we need to
2948 double-check not being at struct end. */
2949 if (TREE_CODE (base) == ARRAY_REF
2950 || TREE_CODE (base) == ARRAY_RANGE_REF)
2951 innermost_dropped_array_ref = base;
2952 /* Otherwise drop handled components of the access. */
2953 base = saved_base0;
2954 }
2955 while (handled_component_p (base));
2956 if (saved_lhs0)
2957 TREE_OPERAND (lhs, 0) = saved_lhs0;
2958 }
2959 /* Finally check if the lhs has the same address and size as the
2960 base candidate of the access. Watch out if we have dropped
2961 an array-ref that was at struct end, this means ref->ref may
2962 be outside of the TYPE_SIZE of its base. */
2963 if ((! innermost_dropped_array_ref
2964 || ! array_at_struct_end_p (innermost_dropped_array_ref))
2965 && (lhs == base
2966 || (((TYPE_SIZE (TREE_TYPE (lhs))
2967 == TYPE_SIZE (TREE_TYPE (base)))
2968 || (TYPE_SIZE (TREE_TYPE (lhs))
2969 && TYPE_SIZE (TREE_TYPE (base))
2970 && operand_equal_p (TYPE_SIZE (TREE_TYPE (lhs)),
2971 TYPE_SIZE (TREE_TYPE (base)),
2972 0)))
2973 && operand_equal_p (lhs, base,
2974 OEP_ADDRESS_OF
2975 | OEP_MATCH_SIDE_EFFECTS))))
2976 return true;
2977 }
2978
2979 /* Now look for non-literal equal bases with the restriction of
2980 handling constant offset and size. */
2981 /* For a must-alias check we need to be able to constrain
2982 the access properly. */
2983 if (!ref->max_size_known_p ())
2984 return false;
2985 poly_int64 size, offset, max_size, ref_offset = ref->offset;
2986 bool reverse;
2987 tree base = get_ref_base_and_extent (lhs, &offset, &size, &max_size,
2988 &reverse);
2989 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
2990 so base == ref->base does not always hold. */
2991 if (base != ref->base)
2992 {
2993 /* Try using points-to info. */
2994 if (same_addr_size_stores_p (base, offset, size, max_size, ref->base,
2995 ref->offset, ref->size, ref->max_size))
2996 return true;
2997
2998 /* If both base and ref->base are MEM_REFs, only compare the
2999 first operand, and if the second operand isn't equal constant,
3000 try to add the offsets into offset and ref_offset. */
3001 if (TREE_CODE (base) == MEM_REF && TREE_CODE (ref->base) == MEM_REF
3002 && TREE_OPERAND (base, 0) == TREE_OPERAND (ref->base, 0))
3003 {
3004 if (!tree_int_cst_equal (TREE_OPERAND (base, 1),
3005 TREE_OPERAND (ref->base, 1)))
3006 {
3007 poly_offset_int off1 = mem_ref_offset (base);
3008 off1 <<= LOG2_BITS_PER_UNIT;
3009 off1 += offset;
3010 poly_offset_int off2 = mem_ref_offset (ref->base);
3011 off2 <<= LOG2_BITS_PER_UNIT;
3012 off2 += ref_offset;
3013 if (!off1.to_shwi (&offset) || !off2.to_shwi (&ref_offset))
3014 size = -1;
3015 }
3016 }
3017 else
3018 size = -1;
3019 }
3020 /* For a must-alias check we need to be able to constrain
3021 the access properly. */
3022 if (known_eq (size, max_size)
3023 && known_subrange_p (ref_offset, ref->max_size, offset, size))
3024 return true;
3025 }
3026
3027 if (is_gimple_call (stmt))
3028 {
3029 tree callee = gimple_call_fndecl (stmt);
3030 if (callee != NULL_TREE
3031 && gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
3032 switch (DECL_FUNCTION_CODE (callee))
3033 {
3034 case BUILT_IN_FREE:
3035 {
3036 tree ptr = gimple_call_arg (stmt, 0);
3037 tree base = ao_ref_base (ref);
3038 if (base && TREE_CODE (base) == MEM_REF
3039 && TREE_OPERAND (base, 0) == ptr)
3040 return true;
3041 break;
3042 }
3043
3044 case BUILT_IN_MEMCPY:
3045 case BUILT_IN_MEMPCPY:
3046 case BUILT_IN_MEMMOVE:
3047 case BUILT_IN_MEMSET:
3048 case BUILT_IN_MEMCPY_CHK:
3049 case BUILT_IN_MEMPCPY_CHK:
3050 case BUILT_IN_MEMMOVE_CHK:
3051 case BUILT_IN_MEMSET_CHK:
3052 case BUILT_IN_STRNCPY:
3053 case BUILT_IN_STPNCPY:
3054 case BUILT_IN_CALLOC:
3055 {
3056 /* For a must-alias check we need to be able to constrain
3057 the access properly. */
3058 if (!ref->max_size_known_p ())
3059 return false;
3060 tree dest;
3061 tree len;
3062
3063 /* In execution order a calloc call will never kill
3064 anything. However, DSE will (ab)use this interface
3065 to ask if a calloc call writes the same memory locations
3066 as a later assignment, memset, etc. So handle calloc
3067 in the expected way. */
3068 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_CALLOC)
3069 {
3070 tree arg0 = gimple_call_arg (stmt, 0);
3071 tree arg1 = gimple_call_arg (stmt, 1);
3072 if (TREE_CODE (arg0) != INTEGER_CST
3073 || TREE_CODE (arg1) != INTEGER_CST)
3074 return false;
3075
3076 dest = gimple_call_lhs (stmt);
3077 len = fold_build2 (MULT_EXPR, TREE_TYPE (arg0), arg0, arg1);
3078 }
3079 else
3080 {
3081 dest = gimple_call_arg (stmt, 0);
3082 len = gimple_call_arg (stmt, 2);
3083 }
3084 if (!poly_int_tree_p (len))
3085 return false;
3086 tree rbase = ref->base;
3087 poly_offset_int roffset = ref->offset;
3088 ao_ref dref;
3089 ao_ref_init_from_ptr_and_size (&dref, dest, len);
3090 tree base = ao_ref_base (&dref);
3091 poly_offset_int offset = dref.offset;
3092 if (!base || !known_size_p (dref.size))
3093 return false;
3094 if (TREE_CODE (base) == MEM_REF)
3095 {
3096 if (TREE_CODE (rbase) != MEM_REF)
3097 return false;
3098 // Compare pointers.
3099 offset += mem_ref_offset (base) << LOG2_BITS_PER_UNIT;
3100 roffset += mem_ref_offset (rbase) << LOG2_BITS_PER_UNIT;
3101 base = TREE_OPERAND (base, 0);
3102 rbase = TREE_OPERAND (rbase, 0);
3103 }
3104 if (base == rbase
3105 && known_subrange_p (roffset, ref->max_size, offset,
3106 wi::to_poly_offset (len)
3107 << LOG2_BITS_PER_UNIT))
3108 return true;
3109 break;
3110 }
3111
3112 case BUILT_IN_VA_END:
3113 {
3114 tree ptr = gimple_call_arg (stmt, 0);
3115 if (TREE_CODE (ptr) == ADDR_EXPR)
3116 {
3117 tree base = ao_ref_base (ref);
3118 if (TREE_OPERAND (ptr, 0) == base)
3119 return true;
3120 }
3121 break;
3122 }
3123
3124 default:;
3125 }
3126 }
3127 return false;
3128 }
3129
3130 bool
3131 stmt_kills_ref_p (gimple *stmt, tree ref)
3132 {
3133 ao_ref r;
3134 ao_ref_init (&r, ref);
3135 return stmt_kills_ref_p (stmt, &r);
3136 }
3137
3138
3139 /* Walk the virtual use-def chain of VUSE until hitting the virtual operand
3140 TARGET or a statement clobbering the memory reference REF in which
3141 case false is returned. The walk starts with VUSE, one argument of PHI. */
3142
3143 static bool
3144 maybe_skip_until (gimple *phi, tree &target, basic_block target_bb,
3145 ao_ref *ref, tree vuse, bool tbaa_p, unsigned int &limit,
3146 bitmap *visited, bool abort_on_visited,
3147 void *(*translate)(ao_ref *, tree, void *, bool *),
3148 void *data)
3149 {
3150 basic_block bb = gimple_bb (phi);
3151
3152 if (!*visited)
3153 *visited = BITMAP_ALLOC (NULL);
3154
3155 bitmap_set_bit (*visited, SSA_NAME_VERSION (PHI_RESULT (phi)));
3156
3157 /* Walk until we hit the target. */
3158 while (vuse != target)
3159 {
3160 gimple *def_stmt = SSA_NAME_DEF_STMT (vuse);
3161 /* If we are searching for the target VUSE by walking up to
3162 TARGET_BB dominating the original PHI we are finished once
3163 we reach a default def or a definition in a block dominating
3164 that block. Update TARGET and return. */
3165 if (!target
3166 && (gimple_nop_p (def_stmt)
3167 || dominated_by_p (CDI_DOMINATORS,
3168 target_bb, gimple_bb (def_stmt))))
3169 {
3170 target = vuse;
3171 return true;
3172 }
3173
3174 /* Recurse for PHI nodes. */
3175 if (gimple_code (def_stmt) == GIMPLE_PHI)
3176 {
3177 /* An already visited PHI node ends the walk successfully. */
3178 if (bitmap_bit_p (*visited, SSA_NAME_VERSION (PHI_RESULT (def_stmt))))
3179 return !abort_on_visited;
3180 vuse = get_continuation_for_phi (def_stmt, ref, tbaa_p, limit,
3181 visited, abort_on_visited,
3182 translate, data);
3183 if (!vuse)
3184 return false;
3185 continue;
3186 }
3187 else if (gimple_nop_p (def_stmt))
3188 return false;
3189 else
3190 {
3191 /* A clobbering statement or the end of the IL ends it failing. */
3192 if ((int)limit <= 0)
3193 return false;
3194 --limit;
3195 if (stmt_may_clobber_ref_p_1 (def_stmt, ref, tbaa_p))
3196 {
3197 bool disambiguate_only = true;
3198 if (translate
3199 && (*translate) (ref, vuse, data, &disambiguate_only) == NULL)
3200 ;
3201 else
3202 return false;
3203 }
3204 }
3205 /* If we reach a new basic-block see if we already skipped it
3206 in a previous walk that ended successfully. */
3207 if (gimple_bb (def_stmt) != bb)
3208 {
3209 if (!bitmap_set_bit (*visited, SSA_NAME_VERSION (vuse)))
3210 return !abort_on_visited;
3211 bb = gimple_bb (def_stmt);
3212 }
3213 vuse = gimple_vuse (def_stmt);
3214 }
3215 return true;
3216 }
3217
3218
3219 /* Starting from a PHI node for the virtual operand of the memory reference
3220 REF find a continuation virtual operand that allows to continue walking
3221 statements dominating PHI skipping only statements that cannot possibly
3222 clobber REF. Decrements LIMIT for each alias disambiguation done
3223 and aborts the walk, returning NULL_TREE if it reaches zero.
3224 Returns NULL_TREE if no suitable virtual operand can be found. */
3225
3226 tree
3227 get_continuation_for_phi (gimple *phi, ao_ref *ref, bool tbaa_p,
3228 unsigned int &limit, bitmap *visited,
3229 bool abort_on_visited,
3230 void *(*translate)(ao_ref *, tree, void *, bool *),
3231 void *data)
3232 {
3233 unsigned nargs = gimple_phi_num_args (phi);
3234
3235 /* Through a single-argument PHI we can simply look through. */
3236 if (nargs == 1)
3237 return PHI_ARG_DEF (phi, 0);
3238
3239 /* For two or more arguments try to pairwise skip non-aliasing code
3240 until we hit the phi argument definition that dominates the other one. */
3241 basic_block phi_bb = gimple_bb (phi);
3242 tree arg0, arg1;
3243 unsigned i;
3244
3245 /* Find a candidate for the virtual operand which definition
3246 dominates those of all others. */
3247 /* First look if any of the args themselves satisfy this. */
3248 for (i = 0; i < nargs; ++i)
3249 {
3250 arg0 = PHI_ARG_DEF (phi, i);
3251 if (SSA_NAME_IS_DEFAULT_DEF (arg0))
3252 break;
3253 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (arg0));
3254 if (def_bb != phi_bb
3255 && dominated_by_p (CDI_DOMINATORS, phi_bb, def_bb))
3256 break;
3257 arg0 = NULL_TREE;
3258 }
3259 /* If not, look if we can reach such candidate by walking defs
3260 until we hit the immediate dominator. maybe_skip_until will
3261 do that for us. */
3262 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, phi_bb);
3263
3264 /* Then check against the (to be) found candidate. */
3265 for (i = 0; i < nargs; ++i)
3266 {
3267 arg1 = PHI_ARG_DEF (phi, i);
3268 if (arg1 == arg0)
3269 ;
3270 else if (! maybe_skip_until (phi, arg0, dom, ref, arg1, tbaa_p,
3271 limit, visited,
3272 abort_on_visited,
3273 /* Do not translate when walking over
3274 backedges. */
3275 dominated_by_p
3276 (CDI_DOMINATORS,
3277 gimple_bb (SSA_NAME_DEF_STMT (arg1)),
3278 phi_bb)
3279 ? NULL : translate, data))
3280 return NULL_TREE;
3281 }
3282
3283 return arg0;
3284 }
3285
3286 /* Based on the memory reference REF and its virtual use VUSE call
3287 WALKER for each virtual use that is equivalent to VUSE, including VUSE
3288 itself. That is, for each virtual use for which its defining statement
3289 does not clobber REF.
3290
3291 WALKER is called with REF, the current virtual use and DATA. If
3292 WALKER returns non-NULL the walk stops and its result is returned.
3293 At the end of a non-successful walk NULL is returned.
3294
3295 TRANSLATE if non-NULL is called with a pointer to REF, the virtual
3296 use which definition is a statement that may clobber REF and DATA.
3297 If TRANSLATE returns (void *)-1 the walk stops and NULL is returned.
3298 If TRANSLATE returns non-NULL the walk stops and its result is returned.
3299 If TRANSLATE returns NULL the walk continues and TRANSLATE is supposed
3300 to adjust REF and *DATA to make that valid.
3301
3302 VALUEIZE if non-NULL is called with the next VUSE that is considered
3303 and return value is substituted for that. This can be used to
3304 implement optimistic value-numbering for example. Note that the
3305 VUSE argument is assumed to be valueized already.
3306
3307 LIMIT specifies the number of alias queries we are allowed to do,
3308 the walk stops when it reaches zero and NULL is returned. LIMIT
3309 is decremented by the number of alias queries (plus adjustments
3310 done by the callbacks) upon return.
3311
3312 TODO: Cache the vector of equivalent vuses per ref, vuse pair. */
3313
3314 void *
3315 walk_non_aliased_vuses (ao_ref *ref, tree vuse, bool tbaa_p,
3316 void *(*walker)(ao_ref *, tree, void *),
3317 void *(*translate)(ao_ref *, tree, void *, bool *),
3318 tree (*valueize)(tree),
3319 unsigned &limit, void *data)
3320 {
3321 bitmap visited = NULL;
3322 void *res;
3323 bool translated = false;
3324
3325 timevar_push (TV_ALIAS_STMT_WALK);
3326
3327 do
3328 {
3329 gimple *def_stmt;
3330
3331 /* ??? Do we want to account this to TV_ALIAS_STMT_WALK? */
3332 res = (*walker) (ref, vuse, data);
3333 /* Abort walk. */
3334 if (res == (void *)-1)
3335 {
3336 res = NULL;
3337 break;
3338 }
3339 /* Lookup succeeded. */
3340 else if (res != NULL)
3341 break;
3342
3343 if (valueize)
3344 {
3345 vuse = valueize (vuse);
3346 if (!vuse)
3347 {
3348 res = NULL;
3349 break;
3350 }
3351 }
3352 def_stmt = SSA_NAME_DEF_STMT (vuse);
3353 if (gimple_nop_p (def_stmt))
3354 break;
3355 else if (gimple_code (def_stmt) == GIMPLE_PHI)
3356 vuse = get_continuation_for_phi (def_stmt, ref, tbaa_p, limit,
3357 &visited, translated, translate, data);
3358 else
3359 {
3360 if ((int)limit <= 0)
3361 {
3362 res = NULL;
3363 break;
3364 }
3365 --limit;
3366 if (stmt_may_clobber_ref_p_1 (def_stmt, ref, tbaa_p))
3367 {
3368 if (!translate)
3369 break;
3370 bool disambiguate_only = false;
3371 res = (*translate) (ref, vuse, data, &disambiguate_only);
3372 /* Failed lookup and translation. */
3373 if (res == (void *)-1)
3374 {
3375 res = NULL;
3376 break;
3377 }
3378 /* Lookup succeeded. */
3379 else if (res != NULL)
3380 break;
3381 /* Translation succeeded, continue walking. */
3382 translated = translated || !disambiguate_only;
3383 }
3384 vuse = gimple_vuse (def_stmt);
3385 }
3386 }
3387 while (vuse);
3388
3389 if (visited)
3390 BITMAP_FREE (visited);
3391
3392 timevar_pop (TV_ALIAS_STMT_WALK);
3393
3394 return res;
3395 }
3396
3397
3398 /* Based on the memory reference REF call WALKER for each vdef which
3399 defining statement may clobber REF, starting with VDEF. If REF
3400 is NULL_TREE, each defining statement is visited.
3401
3402 WALKER is called with REF, the current vdef and DATA. If WALKER
3403 returns true the walk is stopped, otherwise it continues.
3404
3405 If function entry is reached, FUNCTION_ENTRY_REACHED is set to true.
3406 The pointer may be NULL and then we do not track this information.
3407
3408 At PHI nodes walk_aliased_vdefs forks into one walk for reach
3409 PHI argument (but only one walk continues on merge points), the
3410 return value is true if any of the walks was successful.
3411
3412 The function returns the number of statements walked or -1 if
3413 LIMIT stmts were walked and the walk was aborted at this point.
3414 If LIMIT is zero the walk is not aborted. */
3415
3416 static int
3417 walk_aliased_vdefs_1 (ao_ref *ref, tree vdef,
3418 bool (*walker)(ao_ref *, tree, void *), void *data,
3419 bitmap *visited, unsigned int cnt,
3420 bool *function_entry_reached, unsigned limit)
3421 {
3422 do
3423 {
3424 gimple *def_stmt = SSA_NAME_DEF_STMT (vdef);
3425
3426 if (*visited
3427 && !bitmap_set_bit (*visited, SSA_NAME_VERSION (vdef)))
3428 return cnt;
3429
3430 if (gimple_nop_p (def_stmt))
3431 {
3432 if (function_entry_reached)
3433 *function_entry_reached = true;
3434 return cnt;
3435 }
3436 else if (gimple_code (def_stmt) == GIMPLE_PHI)
3437 {
3438 unsigned i;
3439 if (!*visited)
3440 *visited = BITMAP_ALLOC (NULL);
3441 for (i = 0; i < gimple_phi_num_args (def_stmt); ++i)
3442 {
3443 int res = walk_aliased_vdefs_1 (ref,
3444 gimple_phi_arg_def (def_stmt, i),
3445 walker, data, visited, cnt,
3446 function_entry_reached, limit);
3447 if (res == -1)
3448 return -1;
3449 cnt = res;
3450 }
3451 return cnt;
3452 }
3453
3454 /* ??? Do we want to account this to TV_ALIAS_STMT_WALK? */
3455 cnt++;
3456 if (cnt == limit)
3457 return -1;
3458 if ((!ref
3459 || stmt_may_clobber_ref_p_1 (def_stmt, ref))
3460 && (*walker) (ref, vdef, data))
3461 return cnt;
3462
3463 vdef = gimple_vuse (def_stmt);
3464 }
3465 while (1);
3466 }
3467
3468 int
3469 walk_aliased_vdefs (ao_ref *ref, tree vdef,
3470 bool (*walker)(ao_ref *, tree, void *), void *data,
3471 bitmap *visited,
3472 bool *function_entry_reached, unsigned int limit)
3473 {
3474 bitmap local_visited = NULL;
3475 int ret;
3476
3477 timevar_push (TV_ALIAS_STMT_WALK);
3478
3479 if (function_entry_reached)
3480 *function_entry_reached = false;
3481
3482 ret = walk_aliased_vdefs_1 (ref, vdef, walker, data,
3483 visited ? visited : &local_visited, 0,
3484 function_entry_reached, limit);
3485 if (local_visited)
3486 BITMAP_FREE (local_visited);
3487
3488 timevar_pop (TV_ALIAS_STMT_WALK);
3489
3490 return ret;
3491 }
3492