tree-ssa-alias.c (refs_may_alias_p_2): Break out from ...
[gcc.git] / gcc / tree-ssa-alias.c
1 /* Alias analysis for trees.
2 Copyright (C) 2004-2019 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "timevar.h" /* for TV_ALIAS_STMT_WALK */
30 #include "ssa.h"
31 #include "cgraph.h"
32 #include "tree-pretty-print.h"
33 #include "alias.h"
34 #include "fold-const.h"
35 #include "langhooks.h"
36 #include "dumpfile.h"
37 #include "tree-eh.h"
38 #include "tree-dfa.h"
39 #include "ipa-reference.h"
40 #include "varasm.h"
41
42 /* Broad overview of how alias analysis on gimple works:
43
44 Statements clobbering or using memory are linked through the
45 virtual operand factored use-def chain. The virtual operand
46 is unique per function, its symbol is accessible via gimple_vop (cfun).
47 Virtual operands are used for efficiently walking memory statements
48 in the gimple IL and are useful for things like value-numbering as
49 a generation count for memory references.
50
51 SSA_NAME pointers may have associated points-to information
52 accessible via the SSA_NAME_PTR_INFO macro. Flow-insensitive
53 points-to information is (re-)computed by the TODO_rebuild_alias
54 pass manager todo. Points-to information is also used for more
55 precise tracking of call-clobbered and call-used variables and
56 related disambiguations.
57
58 This file contains functions for disambiguating memory references,
59 the so called alias-oracle and tools for walking of the gimple IL.
60
61 The main alias-oracle entry-points are
62
63 bool stmt_may_clobber_ref_p (gimple *, tree)
64
65 This function queries if a statement may invalidate (parts of)
66 the memory designated by the reference tree argument.
67
68 bool ref_maybe_used_by_stmt_p (gimple *, tree)
69
70 This function queries if a statement may need (parts of) the
71 memory designated by the reference tree argument.
72
73 There are variants of these functions that only handle the call
74 part of a statement, call_may_clobber_ref_p and ref_maybe_used_by_call_p.
75 Note that these do not disambiguate against a possible call lhs.
76
77 bool refs_may_alias_p (tree, tree)
78
79 This function tries to disambiguate two reference trees.
80
81 bool ptr_deref_may_alias_global_p (tree)
82
83 This function queries if dereferencing a pointer variable may
84 alias global memory.
85
86 More low-level disambiguators are available and documented in
87 this file. Low-level disambiguators dealing with points-to
88 information are in tree-ssa-structalias.c. */
89
90
91 /* Query statistics for the different low-level disambiguators.
92 A high-level query may trigger multiple of them. */
93
94 static struct {
95 unsigned HOST_WIDE_INT refs_may_alias_p_may_alias;
96 unsigned HOST_WIDE_INT refs_may_alias_p_no_alias;
97 unsigned HOST_WIDE_INT ref_maybe_used_by_call_p_may_alias;
98 unsigned HOST_WIDE_INT ref_maybe_used_by_call_p_no_alias;
99 unsigned HOST_WIDE_INT call_may_clobber_ref_p_may_alias;
100 unsigned HOST_WIDE_INT call_may_clobber_ref_p_no_alias;
101 unsigned HOST_WIDE_INT aliasing_component_refs_p_may_alias;
102 unsigned HOST_WIDE_INT aliasing_component_refs_p_no_alias;
103 } alias_stats;
104
105 void
106 dump_alias_stats (FILE *s)
107 {
108 fprintf (s, "\nAlias oracle query stats:\n");
109 fprintf (s, " refs_may_alias_p: "
110 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
111 HOST_WIDE_INT_PRINT_DEC" queries\n",
112 alias_stats.refs_may_alias_p_no_alias,
113 alias_stats.refs_may_alias_p_no_alias
114 + alias_stats.refs_may_alias_p_may_alias);
115 fprintf (s, " ref_maybe_used_by_call_p: "
116 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
117 HOST_WIDE_INT_PRINT_DEC" queries\n",
118 alias_stats.ref_maybe_used_by_call_p_no_alias,
119 alias_stats.refs_may_alias_p_no_alias
120 + alias_stats.ref_maybe_used_by_call_p_may_alias);
121 fprintf (s, " call_may_clobber_ref_p: "
122 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
123 HOST_WIDE_INT_PRINT_DEC" queries\n",
124 alias_stats.call_may_clobber_ref_p_no_alias,
125 alias_stats.call_may_clobber_ref_p_no_alias
126 + alias_stats.call_may_clobber_ref_p_may_alias);
127 fprintf (s, " aliasing_component_ref_p: "
128 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
129 HOST_WIDE_INT_PRINT_DEC" queries\n",
130 alias_stats.aliasing_component_refs_p_no_alias,
131 alias_stats.aliasing_component_refs_p_no_alias
132 + alias_stats.aliasing_component_refs_p_may_alias);
133 dump_alias_stats_in_alias_c (s);
134 }
135
136
137 /* Return true, if dereferencing PTR may alias with a global variable. */
138
139 bool
140 ptr_deref_may_alias_global_p (tree ptr)
141 {
142 struct ptr_info_def *pi;
143
144 /* If we end up with a pointer constant here that may point
145 to global memory. */
146 if (TREE_CODE (ptr) != SSA_NAME)
147 return true;
148
149 pi = SSA_NAME_PTR_INFO (ptr);
150
151 /* If we do not have points-to information for this variable,
152 we have to punt. */
153 if (!pi)
154 return true;
155
156 /* ??? This does not use TBAA to prune globals ptr may not access. */
157 return pt_solution_includes_global (&pi->pt);
158 }
159
160 /* Return true if dereferencing PTR may alias DECL.
161 The caller is responsible for applying TBAA to see if PTR
162 may access DECL at all. */
163
164 static bool
165 ptr_deref_may_alias_decl_p (tree ptr, tree decl)
166 {
167 struct ptr_info_def *pi;
168
169 /* Conversions are irrelevant for points-to information and
170 data-dependence analysis can feed us those. */
171 STRIP_NOPS (ptr);
172
173 /* Anything we do not explicilty handle aliases. */
174 if ((TREE_CODE (ptr) != SSA_NAME
175 && TREE_CODE (ptr) != ADDR_EXPR
176 && TREE_CODE (ptr) != POINTER_PLUS_EXPR)
177 || !POINTER_TYPE_P (TREE_TYPE (ptr))
178 || (!VAR_P (decl)
179 && TREE_CODE (decl) != PARM_DECL
180 && TREE_CODE (decl) != RESULT_DECL))
181 return true;
182
183 /* Disregard pointer offsetting. */
184 if (TREE_CODE (ptr) == POINTER_PLUS_EXPR)
185 {
186 do
187 {
188 ptr = TREE_OPERAND (ptr, 0);
189 }
190 while (TREE_CODE (ptr) == POINTER_PLUS_EXPR);
191 return ptr_deref_may_alias_decl_p (ptr, decl);
192 }
193
194 /* ADDR_EXPR pointers either just offset another pointer or directly
195 specify the pointed-to set. */
196 if (TREE_CODE (ptr) == ADDR_EXPR)
197 {
198 tree base = get_base_address (TREE_OPERAND (ptr, 0));
199 if (base
200 && (TREE_CODE (base) == MEM_REF
201 || TREE_CODE (base) == TARGET_MEM_REF))
202 ptr = TREE_OPERAND (base, 0);
203 else if (base
204 && DECL_P (base))
205 return compare_base_decls (base, decl) != 0;
206 else if (base
207 && CONSTANT_CLASS_P (base))
208 return false;
209 else
210 return true;
211 }
212
213 /* Non-aliased variables cannot be pointed to. */
214 if (!may_be_aliased (decl))
215 return false;
216
217 /* If we do not have useful points-to information for this pointer
218 we cannot disambiguate anything else. */
219 pi = SSA_NAME_PTR_INFO (ptr);
220 if (!pi)
221 return true;
222
223 return pt_solution_includes (&pi->pt, decl);
224 }
225
226 /* Return true if dereferenced PTR1 and PTR2 may alias.
227 The caller is responsible for applying TBAA to see if accesses
228 through PTR1 and PTR2 may conflict at all. */
229
230 bool
231 ptr_derefs_may_alias_p (tree ptr1, tree ptr2)
232 {
233 struct ptr_info_def *pi1, *pi2;
234
235 /* Conversions are irrelevant for points-to information and
236 data-dependence analysis can feed us those. */
237 STRIP_NOPS (ptr1);
238 STRIP_NOPS (ptr2);
239
240 /* Disregard pointer offsetting. */
241 if (TREE_CODE (ptr1) == POINTER_PLUS_EXPR)
242 {
243 do
244 {
245 ptr1 = TREE_OPERAND (ptr1, 0);
246 }
247 while (TREE_CODE (ptr1) == POINTER_PLUS_EXPR);
248 return ptr_derefs_may_alias_p (ptr1, ptr2);
249 }
250 if (TREE_CODE (ptr2) == POINTER_PLUS_EXPR)
251 {
252 do
253 {
254 ptr2 = TREE_OPERAND (ptr2, 0);
255 }
256 while (TREE_CODE (ptr2) == POINTER_PLUS_EXPR);
257 return ptr_derefs_may_alias_p (ptr1, ptr2);
258 }
259
260 /* ADDR_EXPR pointers either just offset another pointer or directly
261 specify the pointed-to set. */
262 if (TREE_CODE (ptr1) == ADDR_EXPR)
263 {
264 tree base = get_base_address (TREE_OPERAND (ptr1, 0));
265 if (base
266 && (TREE_CODE (base) == MEM_REF
267 || TREE_CODE (base) == TARGET_MEM_REF))
268 return ptr_derefs_may_alias_p (TREE_OPERAND (base, 0), ptr2);
269 else if (base
270 && DECL_P (base))
271 return ptr_deref_may_alias_decl_p (ptr2, base);
272 else
273 return true;
274 }
275 if (TREE_CODE (ptr2) == ADDR_EXPR)
276 {
277 tree base = get_base_address (TREE_OPERAND (ptr2, 0));
278 if (base
279 && (TREE_CODE (base) == MEM_REF
280 || TREE_CODE (base) == TARGET_MEM_REF))
281 return ptr_derefs_may_alias_p (ptr1, TREE_OPERAND (base, 0));
282 else if (base
283 && DECL_P (base))
284 return ptr_deref_may_alias_decl_p (ptr1, base);
285 else
286 return true;
287 }
288
289 /* From here we require SSA name pointers. Anything else aliases. */
290 if (TREE_CODE (ptr1) != SSA_NAME
291 || TREE_CODE (ptr2) != SSA_NAME
292 || !POINTER_TYPE_P (TREE_TYPE (ptr1))
293 || !POINTER_TYPE_P (TREE_TYPE (ptr2)))
294 return true;
295
296 /* We may end up with two empty points-to solutions for two same pointers.
297 In this case we still want to say both pointers alias, so shortcut
298 that here. */
299 if (ptr1 == ptr2)
300 return true;
301
302 /* If we do not have useful points-to information for either pointer
303 we cannot disambiguate anything else. */
304 pi1 = SSA_NAME_PTR_INFO (ptr1);
305 pi2 = SSA_NAME_PTR_INFO (ptr2);
306 if (!pi1 || !pi2)
307 return true;
308
309 /* ??? This does not use TBAA to prune decls from the intersection
310 that not both pointers may access. */
311 return pt_solutions_intersect (&pi1->pt, &pi2->pt);
312 }
313
314 /* Return true if dereferencing PTR may alias *REF.
315 The caller is responsible for applying TBAA to see if PTR
316 may access *REF at all. */
317
318 static bool
319 ptr_deref_may_alias_ref_p_1 (tree ptr, ao_ref *ref)
320 {
321 tree base = ao_ref_base (ref);
322
323 if (TREE_CODE (base) == MEM_REF
324 || TREE_CODE (base) == TARGET_MEM_REF)
325 return ptr_derefs_may_alias_p (ptr, TREE_OPERAND (base, 0));
326 else if (DECL_P (base))
327 return ptr_deref_may_alias_decl_p (ptr, base);
328
329 return true;
330 }
331
332 /* Returns true if PTR1 and PTR2 compare unequal because of points-to. */
333
334 bool
335 ptrs_compare_unequal (tree ptr1, tree ptr2)
336 {
337 /* First resolve the pointers down to a SSA name pointer base or
338 a VAR_DECL, PARM_DECL or RESULT_DECL. This explicitely does
339 not yet try to handle LABEL_DECLs, FUNCTION_DECLs, CONST_DECLs
340 or STRING_CSTs which needs points-to adjustments to track them
341 in the points-to sets. */
342 tree obj1 = NULL_TREE;
343 tree obj2 = NULL_TREE;
344 if (TREE_CODE (ptr1) == ADDR_EXPR)
345 {
346 tree tem = get_base_address (TREE_OPERAND (ptr1, 0));
347 if (! tem)
348 return false;
349 if (VAR_P (tem)
350 || TREE_CODE (tem) == PARM_DECL
351 || TREE_CODE (tem) == RESULT_DECL)
352 obj1 = tem;
353 else if (TREE_CODE (tem) == MEM_REF)
354 ptr1 = TREE_OPERAND (tem, 0);
355 }
356 if (TREE_CODE (ptr2) == ADDR_EXPR)
357 {
358 tree tem = get_base_address (TREE_OPERAND (ptr2, 0));
359 if (! tem)
360 return false;
361 if (VAR_P (tem)
362 || TREE_CODE (tem) == PARM_DECL
363 || TREE_CODE (tem) == RESULT_DECL)
364 obj2 = tem;
365 else if (TREE_CODE (tem) == MEM_REF)
366 ptr2 = TREE_OPERAND (tem, 0);
367 }
368
369 /* Canonicalize ptr vs. object. */
370 if (TREE_CODE (ptr1) == SSA_NAME && obj2)
371 {
372 std::swap (ptr1, ptr2);
373 std::swap (obj1, obj2);
374 }
375
376 if (obj1 && obj2)
377 /* Other code handles this correctly, no need to duplicate it here. */;
378 else if (obj1 && TREE_CODE (ptr2) == SSA_NAME)
379 {
380 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr2);
381 /* We may not use restrict to optimize pointer comparisons.
382 See PR71062. So we have to assume that restrict-pointed-to
383 may be in fact obj1. */
384 if (!pi
385 || pi->pt.vars_contains_restrict
386 || pi->pt.vars_contains_interposable)
387 return false;
388 if (VAR_P (obj1)
389 && (TREE_STATIC (obj1) || DECL_EXTERNAL (obj1)))
390 {
391 varpool_node *node = varpool_node::get (obj1);
392 /* If obj1 may bind to NULL give up (see below). */
393 if (! node
394 || ! node->nonzero_address ()
395 || ! decl_binds_to_current_def_p (obj1))
396 return false;
397 }
398 return !pt_solution_includes (&pi->pt, obj1);
399 }
400
401 /* ??? We'd like to handle ptr1 != NULL and ptr1 != ptr2
402 but those require pt.null to be conservatively correct. */
403
404 return false;
405 }
406
407 /* Returns whether reference REF to BASE may refer to global memory. */
408
409 static bool
410 ref_may_alias_global_p_1 (tree base)
411 {
412 if (DECL_P (base))
413 return is_global_var (base);
414 else if (TREE_CODE (base) == MEM_REF
415 || TREE_CODE (base) == TARGET_MEM_REF)
416 return ptr_deref_may_alias_global_p (TREE_OPERAND (base, 0));
417 return true;
418 }
419
420 bool
421 ref_may_alias_global_p (ao_ref *ref)
422 {
423 tree base = ao_ref_base (ref);
424 return ref_may_alias_global_p_1 (base);
425 }
426
427 bool
428 ref_may_alias_global_p (tree ref)
429 {
430 tree base = get_base_address (ref);
431 return ref_may_alias_global_p_1 (base);
432 }
433
434 /* Return true whether STMT may clobber global memory. */
435
436 bool
437 stmt_may_clobber_global_p (gimple *stmt)
438 {
439 tree lhs;
440
441 if (!gimple_vdef (stmt))
442 return false;
443
444 /* ??? We can ask the oracle whether an artificial pointer
445 dereference with a pointer with points-to information covering
446 all global memory (what about non-address taken memory?) maybe
447 clobbered by this call. As there is at the moment no convenient
448 way of doing that without generating garbage do some manual
449 checking instead.
450 ??? We could make a NULL ao_ref argument to the various
451 predicates special, meaning any global memory. */
452
453 switch (gimple_code (stmt))
454 {
455 case GIMPLE_ASSIGN:
456 lhs = gimple_assign_lhs (stmt);
457 return (TREE_CODE (lhs) != SSA_NAME
458 && ref_may_alias_global_p (lhs));
459 case GIMPLE_CALL:
460 return true;
461 default:
462 return true;
463 }
464 }
465
466
467 /* Dump alias information on FILE. */
468
469 void
470 dump_alias_info (FILE *file)
471 {
472 unsigned i;
473 tree ptr;
474 const char *funcname
475 = lang_hooks.decl_printable_name (current_function_decl, 2);
476 tree var;
477
478 fprintf (file, "\n\nAlias information for %s\n\n", funcname);
479
480 fprintf (file, "Aliased symbols\n\n");
481
482 FOR_EACH_LOCAL_DECL (cfun, i, var)
483 {
484 if (may_be_aliased (var))
485 dump_variable (file, var);
486 }
487
488 fprintf (file, "\nCall clobber information\n");
489
490 fprintf (file, "\nESCAPED");
491 dump_points_to_solution (file, &cfun->gimple_df->escaped);
492
493 fprintf (file, "\n\nFlow-insensitive points-to information\n\n");
494
495 FOR_EACH_SSA_NAME (i, ptr, cfun)
496 {
497 struct ptr_info_def *pi;
498
499 if (!POINTER_TYPE_P (TREE_TYPE (ptr))
500 || SSA_NAME_IN_FREE_LIST (ptr))
501 continue;
502
503 pi = SSA_NAME_PTR_INFO (ptr);
504 if (pi)
505 dump_points_to_info_for (file, ptr);
506 }
507
508 fprintf (file, "\n");
509 }
510
511
512 /* Dump alias information on stderr. */
513
514 DEBUG_FUNCTION void
515 debug_alias_info (void)
516 {
517 dump_alias_info (stderr);
518 }
519
520
521 /* Dump the points-to set *PT into FILE. */
522
523 void
524 dump_points_to_solution (FILE *file, struct pt_solution *pt)
525 {
526 if (pt->anything)
527 fprintf (file, ", points-to anything");
528
529 if (pt->nonlocal)
530 fprintf (file, ", points-to non-local");
531
532 if (pt->escaped)
533 fprintf (file, ", points-to escaped");
534
535 if (pt->ipa_escaped)
536 fprintf (file, ", points-to unit escaped");
537
538 if (pt->null)
539 fprintf (file, ", points-to NULL");
540
541 if (pt->vars)
542 {
543 fprintf (file, ", points-to vars: ");
544 dump_decl_set (file, pt->vars);
545 if (pt->vars_contains_nonlocal
546 || pt->vars_contains_escaped
547 || pt->vars_contains_escaped_heap
548 || pt->vars_contains_restrict)
549 {
550 const char *comma = "";
551 fprintf (file, " (");
552 if (pt->vars_contains_nonlocal)
553 {
554 fprintf (file, "nonlocal");
555 comma = ", ";
556 }
557 if (pt->vars_contains_escaped)
558 {
559 fprintf (file, "%sescaped", comma);
560 comma = ", ";
561 }
562 if (pt->vars_contains_escaped_heap)
563 {
564 fprintf (file, "%sescaped heap", comma);
565 comma = ", ";
566 }
567 if (pt->vars_contains_restrict)
568 {
569 fprintf (file, "%srestrict", comma);
570 comma = ", ";
571 }
572 if (pt->vars_contains_interposable)
573 fprintf (file, "%sinterposable", comma);
574 fprintf (file, ")");
575 }
576 }
577 }
578
579
580 /* Unified dump function for pt_solution. */
581
582 DEBUG_FUNCTION void
583 debug (pt_solution &ref)
584 {
585 dump_points_to_solution (stderr, &ref);
586 }
587
588 DEBUG_FUNCTION void
589 debug (pt_solution *ptr)
590 {
591 if (ptr)
592 debug (*ptr);
593 else
594 fprintf (stderr, "<nil>\n");
595 }
596
597
598 /* Dump points-to information for SSA_NAME PTR into FILE. */
599
600 void
601 dump_points_to_info_for (FILE *file, tree ptr)
602 {
603 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
604
605 print_generic_expr (file, ptr, dump_flags);
606
607 if (pi)
608 dump_points_to_solution (file, &pi->pt);
609 else
610 fprintf (file, ", points-to anything");
611
612 fprintf (file, "\n");
613 }
614
615
616 /* Dump points-to information for VAR into stderr. */
617
618 DEBUG_FUNCTION void
619 debug_points_to_info_for (tree var)
620 {
621 dump_points_to_info_for (stderr, var);
622 }
623
624
625 /* Initializes the alias-oracle reference representation *R from REF. */
626
627 void
628 ao_ref_init (ao_ref *r, tree ref)
629 {
630 r->ref = ref;
631 r->base = NULL_TREE;
632 r->offset = 0;
633 r->size = -1;
634 r->max_size = -1;
635 r->ref_alias_set = -1;
636 r->base_alias_set = -1;
637 r->volatile_p = ref ? TREE_THIS_VOLATILE (ref) : false;
638 }
639
640 /* Returns the base object of the memory reference *REF. */
641
642 tree
643 ao_ref_base (ao_ref *ref)
644 {
645 bool reverse;
646
647 if (ref->base)
648 return ref->base;
649 ref->base = get_ref_base_and_extent (ref->ref, &ref->offset, &ref->size,
650 &ref->max_size, &reverse);
651 return ref->base;
652 }
653
654 /* Returns the base object alias set of the memory reference *REF. */
655
656 alias_set_type
657 ao_ref_base_alias_set (ao_ref *ref)
658 {
659 tree base_ref;
660 if (ref->base_alias_set != -1)
661 return ref->base_alias_set;
662 if (!ref->ref)
663 return 0;
664 base_ref = ref->ref;
665 while (handled_component_p (base_ref))
666 base_ref = TREE_OPERAND (base_ref, 0);
667 ref->base_alias_set = get_alias_set (base_ref);
668 return ref->base_alias_set;
669 }
670
671 /* Returns the reference alias set of the memory reference *REF. */
672
673 alias_set_type
674 ao_ref_alias_set (ao_ref *ref)
675 {
676 if (ref->ref_alias_set != -1)
677 return ref->ref_alias_set;
678 ref->ref_alias_set = get_alias_set (ref->ref);
679 return ref->ref_alias_set;
680 }
681
682 /* Init an alias-oracle reference representation from a gimple pointer
683 PTR and a gimple size SIZE in bytes. If SIZE is NULL_TREE then the
684 size is assumed to be unknown. The access is assumed to be only
685 to or after of the pointer target, not before it. */
686
687 void
688 ao_ref_init_from_ptr_and_size (ao_ref *ref, tree ptr, tree size)
689 {
690 poly_int64 t, size_hwi, extra_offset = 0;
691 ref->ref = NULL_TREE;
692 if (TREE_CODE (ptr) == SSA_NAME)
693 {
694 gimple *stmt = SSA_NAME_DEF_STMT (ptr);
695 if (gimple_assign_single_p (stmt)
696 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
697 ptr = gimple_assign_rhs1 (stmt);
698 else if (is_gimple_assign (stmt)
699 && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
700 && ptrdiff_tree_p (gimple_assign_rhs2 (stmt), &extra_offset))
701 {
702 ptr = gimple_assign_rhs1 (stmt);
703 extra_offset *= BITS_PER_UNIT;
704 }
705 }
706
707 if (TREE_CODE (ptr) == ADDR_EXPR)
708 {
709 ref->base = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &t);
710 if (ref->base)
711 ref->offset = BITS_PER_UNIT * t;
712 else
713 {
714 size = NULL_TREE;
715 ref->offset = 0;
716 ref->base = get_base_address (TREE_OPERAND (ptr, 0));
717 }
718 }
719 else
720 {
721 gcc_assert (POINTER_TYPE_P (TREE_TYPE (ptr)));
722 ref->base = build2 (MEM_REF, char_type_node,
723 ptr, null_pointer_node);
724 ref->offset = 0;
725 }
726 ref->offset += extra_offset;
727 if (size
728 && poly_int_tree_p (size, &size_hwi)
729 && coeffs_in_range_p (size_hwi, 0, HOST_WIDE_INT_MAX / BITS_PER_UNIT))
730 ref->max_size = ref->size = size_hwi * BITS_PER_UNIT;
731 else
732 ref->max_size = ref->size = -1;
733 ref->ref_alias_set = 0;
734 ref->base_alias_set = 0;
735 ref->volatile_p = false;
736 }
737
738 /* S1 and S2 are TYPE_SIZE or DECL_SIZE. Compare them:
739 Return -1 if S1 < S2
740 Return 1 if S1 > S2
741 Return 0 if equal or incomparable. */
742
743 static int
744 compare_sizes (tree s1, tree s2)
745 {
746 if (!s1 || !s2)
747 return 0;
748
749 poly_uint64 size1 = poly_int_tree_p (s1, &size1);
750 poly_uint64 size2 = poly_int_tree_p (s2, &size2);
751
752 if (!poly_int_tree_p (s1, &size1) || !poly_int_tree_p (s2, &size2))
753 return 0;
754 if (known_lt (size1, size2))
755 return -1;
756 if (known_lt (size2, size1))
757 return 1;
758 return 0;
759 }
760
761 /* Compare TYPE1 and TYPE2 by its size.
762 Return -1 if size of TYPE1 < size of TYPE2
763 Return 1 if size of TYPE1 > size of TYPE2
764 Return 0 if types are of equal sizes or we can not compare them. */
765
766 static int
767 compare_type_sizes (tree type1, tree type2)
768 {
769 /* Be conservative for arrays and vectors. We want to support partial
770 overlap on int[3] and int[3] as tested in gcc.dg/torture/alias-2.c. */
771 while (TREE_CODE (type1) == ARRAY_TYPE
772 || TREE_CODE (type1) == VECTOR_TYPE)
773 type1 = TREE_TYPE (type1);
774 while (TREE_CODE (type2) == ARRAY_TYPE
775 || TREE_CODE (type2) == VECTOR_TYPE)
776 type2 = TREE_TYPE (type2);
777 return compare_sizes (TYPE_SIZE (type1), TYPE_SIZE (type2));
778 }
779
780 /* Return 1 if TYPE1 and TYPE2 are to be considered equivalent for the
781 purpose of TBAA. Return 0 if they are distinct and -1 if we cannot
782 decide. */
783
784 static inline int
785 same_type_for_tbaa (tree type1, tree type2)
786 {
787 type1 = TYPE_MAIN_VARIANT (type1);
788 type2 = TYPE_MAIN_VARIANT (type2);
789
790 /* If we would have to do structural comparison bail out. */
791 if (TYPE_STRUCTURAL_EQUALITY_P (type1)
792 || TYPE_STRUCTURAL_EQUALITY_P (type2))
793 return -1;
794
795 /* Compare the canonical types. */
796 if (TYPE_CANONICAL (type1) == TYPE_CANONICAL (type2))
797 return 1;
798
799 /* ??? Array types are not properly unified in all cases as we have
800 spurious changes in the index types for example. Removing this
801 causes all sorts of problems with the Fortran frontend. */
802 if (TREE_CODE (type1) == ARRAY_TYPE
803 && TREE_CODE (type2) == ARRAY_TYPE)
804 return -1;
805
806 /* ??? In Ada, an lvalue of an unconstrained type can be used to access an
807 object of one of its constrained subtypes, e.g. when a function with an
808 unconstrained parameter passed by reference is called on an object and
809 inlined. But, even in the case of a fixed size, type and subtypes are
810 not equivalent enough as to share the same TYPE_CANONICAL, since this
811 would mean that conversions between them are useless, whereas they are
812 not (e.g. type and subtypes can have different modes). So, in the end,
813 they are only guaranteed to have the same alias set. */
814 if (get_alias_set (type1) == get_alias_set (type2))
815 return -1;
816
817 /* The types are known to be not equal. */
818 return 0;
819 }
820
821 /* Determine if the two component references REF1 and REF2 which are
822 based on access types TYPE1 and TYPE2 and of which at least one is based
823 on an indirect reference may alias. REF2 is the only one that can
824 be a decl in which case REF2_IS_DECL is true.
825 REF1_ALIAS_SET, BASE1_ALIAS_SET, REF2_ALIAS_SET and BASE2_ALIAS_SET
826 are the respective alias sets. */
827
828 static bool
829 aliasing_component_refs_p (tree ref1,
830 alias_set_type ref1_alias_set,
831 alias_set_type base1_alias_set,
832 poly_int64 offset1, poly_int64 max_size1,
833 tree ref2,
834 alias_set_type ref2_alias_set,
835 alias_set_type base2_alias_set,
836 poly_int64 offset2, poly_int64 max_size2,
837 bool ref2_is_decl)
838 {
839 /* If one reference is a component references through pointers try to find a
840 common base and apply offset based disambiguation. This handles
841 for example
842 struct A { int i; int j; } *q;
843 struct B { struct A a; int k; } *p;
844 disambiguating q->i and p->a.j. */
845 tree base1, base2;
846 tree type1, type2;
847 tree *refp;
848 int same_p1 = 0, same_p2 = 0;
849
850 /* Choose bases and base types to search for. */
851 base1 = ref1;
852 while (handled_component_p (base1))
853 base1 = TREE_OPERAND (base1, 0);
854 type1 = TREE_TYPE (base1);
855 base2 = ref2;
856 while (handled_component_p (base2))
857 base2 = TREE_OPERAND (base2, 0);
858 type2 = TREE_TYPE (base2);
859
860 /* Now search for the type1 in the access path of ref2. This
861 would be a common base for doing offset based disambiguation on.
862 This however only makes sense if type2 is big enough to hold type1. */
863 int cmp_outer = compare_type_sizes (type2, type1);
864 if (cmp_outer >= 0)
865 {
866 refp = &ref2;
867 while (true)
868 {
869 /* We walk from inner type to the outer types. If type we see is
870 already too large to be part of type1, terminate the search. */
871 int cmp = compare_type_sizes (type1, TREE_TYPE (*refp));
872 if (cmp < 0)
873 break;
874 /* If types may be of same size, see if we can decide about their
875 equality. */
876 if (cmp >= 0)
877 {
878 same_p2 = same_type_for_tbaa (TREE_TYPE (*refp), type1);
879 if (same_p2 != 0)
880 break;
881 }
882 if (!handled_component_p (*refp))
883 break;
884 refp = &TREE_OPERAND (*refp, 0);
885 }
886 if (same_p2 == 1)
887 {
888 poly_int64 offadj, sztmp, msztmp;
889 bool reverse;
890 get_ref_base_and_extent (*refp, &offadj, &sztmp, &msztmp, &reverse);
891 offset2 -= offadj;
892 get_ref_base_and_extent (base1, &offadj, &sztmp, &msztmp, &reverse);
893 offset1 -= offadj;
894 if (ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
895 {
896 ++alias_stats.aliasing_component_refs_p_may_alias;
897 return true;
898 }
899 else
900 {
901 ++alias_stats.aliasing_component_refs_p_no_alias;
902 return false;
903 }
904 }
905 }
906
907 /* If we didn't find a common base, try the other way around. */
908 if (cmp_outer <= 0)
909 {
910 refp = &ref1;
911 while (true)
912 {
913 int cmp = compare_type_sizes (type2, TREE_TYPE (*refp));
914 if (cmp < 0)
915 break;
916 /* If types may be of same size, see if we can decide about their
917 equality. */
918 if (cmp >= 0)
919 {
920 same_p1 = same_type_for_tbaa (TREE_TYPE (*refp), type2);
921 if (same_p1 != 0)
922 break;
923 }
924 if (!handled_component_p (*refp))
925 break;
926 refp = &TREE_OPERAND (*refp, 0);
927 }
928 if (same_p1 == 1)
929 {
930 poly_int64 offadj, sztmp, msztmp;
931 bool reverse;
932
933 get_ref_base_and_extent (*refp, &offadj, &sztmp, &msztmp, &reverse);
934 offset1 -= offadj;
935 get_ref_base_and_extent (base2, &offadj, &sztmp, &msztmp, &reverse);
936 offset2 -= offadj;
937 if (ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
938 {
939 ++alias_stats.aliasing_component_refs_p_may_alias;
940 return true;
941 }
942 else
943 {
944 ++alias_stats.aliasing_component_refs_p_no_alias;
945 return false;
946 }
947 }
948 }
949
950 /* If we have two type access paths B1.path1 and B2.path2 they may
951 only alias if either B1 is in B2.path2 or B2 is in B1.path1.
952 But we can still have a path that goes B1.path1...B2.path2 with
953 a part that we do not see. So we can only disambiguate now
954 if there is no B2 in the tail of path1 and no B1 on the
955 tail of path2. */
956 if (compare_type_sizes (TREE_TYPE (ref2), type1) >= 0
957 && (same_p2 == -1
958 || base1_alias_set == ref2_alias_set
959 || alias_set_subset_of (base1_alias_set, ref2_alias_set)))
960 {
961 ++alias_stats.aliasing_component_refs_p_may_alias;
962 return true;
963 }
964 /* If this is ptr vs. decl then we know there is no ptr ... decl path. */
965 if (!ref2_is_decl
966 && compare_type_sizes (TREE_TYPE (ref1), type2) >= 0
967 && (same_p1 == -1
968 || base2_alias_set == ref1_alias_set
969 || alias_set_subset_of (base2_alias_set, ref1_alias_set)))
970 {
971 ++alias_stats.aliasing_component_refs_p_may_alias;
972 return true;
973 }
974 ++alias_stats.aliasing_component_refs_p_no_alias;
975 return false;
976 }
977
978 /* Return true if we can determine that component references REF1 and REF2,
979 that are within a common DECL, cannot overlap. */
980
981 static bool
982 nonoverlapping_component_refs_of_decl_p (tree ref1, tree ref2)
983 {
984 auto_vec<tree, 16> component_refs1;
985 auto_vec<tree, 16> component_refs2;
986
987 /* Create the stack of handled components for REF1. */
988 while (handled_component_p (ref1))
989 {
990 component_refs1.safe_push (ref1);
991 ref1 = TREE_OPERAND (ref1, 0);
992 }
993 if (TREE_CODE (ref1) == MEM_REF)
994 {
995 if (!integer_zerop (TREE_OPERAND (ref1, 1)))
996 return false;
997 ref1 = TREE_OPERAND (TREE_OPERAND (ref1, 0), 0);
998 }
999
1000 /* Create the stack of handled components for REF2. */
1001 while (handled_component_p (ref2))
1002 {
1003 component_refs2.safe_push (ref2);
1004 ref2 = TREE_OPERAND (ref2, 0);
1005 }
1006 if (TREE_CODE (ref2) == MEM_REF)
1007 {
1008 if (!integer_zerop (TREE_OPERAND (ref2, 1)))
1009 return false;
1010 ref2 = TREE_OPERAND (TREE_OPERAND (ref2, 0), 0);
1011 }
1012
1013 /* Bases must be either same or uncomparable. */
1014 gcc_checking_assert (ref1 == ref2
1015 || (DECL_P (ref1) && DECL_P (ref2)
1016 && compare_base_decls (ref1, ref2) != 0));
1017
1018 /* Pop the stacks in parallel and examine the COMPONENT_REFs of the same
1019 rank. This is sufficient because we start from the same DECL and you
1020 cannot reference several fields at a time with COMPONENT_REFs (unlike
1021 with ARRAY_RANGE_REFs for arrays) so you always need the same number
1022 of them to access a sub-component, unless you're in a union, in which
1023 case the return value will precisely be false. */
1024 while (true)
1025 {
1026 do
1027 {
1028 if (component_refs1.is_empty ())
1029 return false;
1030 ref1 = component_refs1.pop ();
1031 }
1032 while (!RECORD_OR_UNION_TYPE_P (TREE_TYPE (TREE_OPERAND (ref1, 0))));
1033
1034 do
1035 {
1036 if (component_refs2.is_empty ())
1037 return false;
1038 ref2 = component_refs2.pop ();
1039 }
1040 while (!RECORD_OR_UNION_TYPE_P (TREE_TYPE (TREE_OPERAND (ref2, 0))));
1041
1042 /* Beware of BIT_FIELD_REF. */
1043 if (TREE_CODE (ref1) != COMPONENT_REF
1044 || TREE_CODE (ref2) != COMPONENT_REF)
1045 return false;
1046
1047 tree field1 = TREE_OPERAND (ref1, 1);
1048 tree field2 = TREE_OPERAND (ref2, 1);
1049
1050 /* ??? We cannot simply use the type of operand #0 of the refs here
1051 as the Fortran compiler smuggles type punning into COMPONENT_REFs
1052 for common blocks instead of using unions like everyone else. */
1053 tree type1 = DECL_CONTEXT (field1);
1054 tree type2 = DECL_CONTEXT (field2);
1055
1056 /* We cannot disambiguate fields in a union or qualified union. */
1057 if (type1 != type2 || TREE_CODE (type1) != RECORD_TYPE)
1058 return false;
1059
1060 if (field1 != field2)
1061 {
1062 /* A field and its representative need to be considered the
1063 same. */
1064 if (DECL_BIT_FIELD_REPRESENTATIVE (field1) == field2
1065 || DECL_BIT_FIELD_REPRESENTATIVE (field2) == field1)
1066 return false;
1067 /* Different fields of the same record type cannot overlap.
1068 ??? Bitfields can overlap at RTL level so punt on them. */
1069 if (DECL_BIT_FIELD (field1) && DECL_BIT_FIELD (field2))
1070 return false;
1071 return true;
1072 }
1073 }
1074
1075 return false;
1076 }
1077
1078 /* qsort compare function to sort FIELD_DECLs after their
1079 DECL_FIELD_CONTEXT TYPE_UID. */
1080
1081 static inline int
1082 ncr_compar (const void *field1_, const void *field2_)
1083 {
1084 const_tree field1 = *(const_tree *) const_cast <void *>(field1_);
1085 const_tree field2 = *(const_tree *) const_cast <void *>(field2_);
1086 unsigned int uid1 = TYPE_UID (DECL_FIELD_CONTEXT (field1));
1087 unsigned int uid2 = TYPE_UID (DECL_FIELD_CONTEXT (field2));
1088 if (uid1 < uid2)
1089 return -1;
1090 else if (uid1 > uid2)
1091 return 1;
1092 return 0;
1093 }
1094
1095 /* Return true if we can determine that the fields referenced cannot
1096 overlap for any pair of objects. */
1097
1098 static bool
1099 nonoverlapping_component_refs_p (const_tree x, const_tree y)
1100 {
1101 if (!flag_strict_aliasing
1102 || !x || !y
1103 || TREE_CODE (x) != COMPONENT_REF
1104 || TREE_CODE (y) != COMPONENT_REF)
1105 return false;
1106
1107 auto_vec<const_tree, 16> fieldsx;
1108 while (TREE_CODE (x) == COMPONENT_REF)
1109 {
1110 tree field = TREE_OPERAND (x, 1);
1111 tree type = DECL_FIELD_CONTEXT (field);
1112 if (TREE_CODE (type) == RECORD_TYPE)
1113 fieldsx.safe_push (field);
1114 x = TREE_OPERAND (x, 0);
1115 }
1116 if (fieldsx.length () == 0)
1117 return false;
1118 auto_vec<const_tree, 16> fieldsy;
1119 while (TREE_CODE (y) == COMPONENT_REF)
1120 {
1121 tree field = TREE_OPERAND (y, 1);
1122 tree type = DECL_FIELD_CONTEXT (field);
1123 if (TREE_CODE (type) == RECORD_TYPE)
1124 fieldsy.safe_push (TREE_OPERAND (y, 1));
1125 y = TREE_OPERAND (y, 0);
1126 }
1127 if (fieldsy.length () == 0)
1128 return false;
1129
1130 /* Most common case first. */
1131 if (fieldsx.length () == 1
1132 && fieldsy.length () == 1)
1133 return ((DECL_FIELD_CONTEXT (fieldsx[0])
1134 == DECL_FIELD_CONTEXT (fieldsy[0]))
1135 && fieldsx[0] != fieldsy[0]
1136 && !(DECL_BIT_FIELD (fieldsx[0]) && DECL_BIT_FIELD (fieldsy[0])));
1137
1138 if (fieldsx.length () == 2)
1139 {
1140 if (ncr_compar (&fieldsx[0], &fieldsx[1]) == 1)
1141 std::swap (fieldsx[0], fieldsx[1]);
1142 }
1143 else
1144 fieldsx.qsort (ncr_compar);
1145
1146 if (fieldsy.length () == 2)
1147 {
1148 if (ncr_compar (&fieldsy[0], &fieldsy[1]) == 1)
1149 std::swap (fieldsy[0], fieldsy[1]);
1150 }
1151 else
1152 fieldsy.qsort (ncr_compar);
1153
1154 unsigned i = 0, j = 0;
1155 do
1156 {
1157 const_tree fieldx = fieldsx[i];
1158 const_tree fieldy = fieldsy[j];
1159 tree typex = DECL_FIELD_CONTEXT (fieldx);
1160 tree typey = DECL_FIELD_CONTEXT (fieldy);
1161 if (typex == typey)
1162 {
1163 /* We're left with accessing different fields of a structure,
1164 no possible overlap. */
1165 if (fieldx != fieldy)
1166 {
1167 /* A field and its representative need to be considered the
1168 same. */
1169 if (DECL_BIT_FIELD_REPRESENTATIVE (fieldx) == fieldy
1170 || DECL_BIT_FIELD_REPRESENTATIVE (fieldy) == fieldx)
1171 return false;
1172 /* Different fields of the same record type cannot overlap.
1173 ??? Bitfields can overlap at RTL level so punt on them. */
1174 if (DECL_BIT_FIELD (fieldx) && DECL_BIT_FIELD (fieldy))
1175 return false;
1176 return true;
1177 }
1178 }
1179 if (TYPE_UID (typex) < TYPE_UID (typey))
1180 {
1181 i++;
1182 if (i == fieldsx.length ())
1183 break;
1184 }
1185 else
1186 {
1187 j++;
1188 if (j == fieldsy.length ())
1189 break;
1190 }
1191 }
1192 while (1);
1193
1194 return false;
1195 }
1196
1197
1198 /* Return true if two memory references based on the variables BASE1
1199 and BASE2 constrained to [OFFSET1, OFFSET1 + MAX_SIZE1) and
1200 [OFFSET2, OFFSET2 + MAX_SIZE2) may alias. REF1 and REF2
1201 if non-NULL are the complete memory reference trees. */
1202
1203 static bool
1204 decl_refs_may_alias_p (tree ref1, tree base1,
1205 poly_int64 offset1, poly_int64 max_size1,
1206 tree ref2, tree base2,
1207 poly_int64 offset2, poly_int64 max_size2)
1208 {
1209 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
1210
1211 /* If both references are based on different variables, they cannot alias. */
1212 if (compare_base_decls (base1, base2) == 0)
1213 return false;
1214
1215 /* If both references are based on the same variable, they cannot alias if
1216 the accesses do not overlap. */
1217 if (!ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
1218 return false;
1219
1220 /* For components with variable position, the above test isn't sufficient,
1221 so we disambiguate component references manually. */
1222 if (ref1 && ref2
1223 && handled_component_p (ref1) && handled_component_p (ref2)
1224 && nonoverlapping_component_refs_of_decl_p (ref1, ref2))
1225 return false;
1226
1227 return true;
1228 }
1229
1230 /* Return true if an indirect reference based on *PTR1 constrained
1231 to [OFFSET1, OFFSET1 + MAX_SIZE1) may alias a variable based on BASE2
1232 constrained to [OFFSET2, OFFSET2 + MAX_SIZE2). *PTR1 and BASE2 have
1233 the alias sets BASE1_ALIAS_SET and BASE2_ALIAS_SET which can be -1
1234 in which case they are computed on-demand. REF1 and REF2
1235 if non-NULL are the complete memory reference trees. */
1236
1237 static bool
1238 indirect_ref_may_alias_decl_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
1239 poly_int64 offset1, poly_int64 max_size1,
1240 alias_set_type ref1_alias_set,
1241 alias_set_type base1_alias_set,
1242 tree ref2 ATTRIBUTE_UNUSED, tree base2,
1243 poly_int64 offset2, poly_int64 max_size2,
1244 alias_set_type ref2_alias_set,
1245 alias_set_type base2_alias_set, bool tbaa_p)
1246 {
1247 tree ptr1;
1248 tree ptrtype1, dbase2;
1249
1250 gcc_checking_assert ((TREE_CODE (base1) == MEM_REF
1251 || TREE_CODE (base1) == TARGET_MEM_REF)
1252 && DECL_P (base2));
1253
1254 ptr1 = TREE_OPERAND (base1, 0);
1255 poly_offset_int moff = mem_ref_offset (base1) << LOG2_BITS_PER_UNIT;
1256
1257 /* If only one reference is based on a variable, they cannot alias if
1258 the pointer access is beyond the extent of the variable access.
1259 (the pointer base cannot validly point to an offset less than zero
1260 of the variable).
1261 ??? IVOPTs creates bases that do not honor this restriction,
1262 so do not apply this optimization for TARGET_MEM_REFs. */
1263 if (TREE_CODE (base1) != TARGET_MEM_REF
1264 && !ranges_maybe_overlap_p (offset1 + moff, -1, offset2, max_size2))
1265 return false;
1266 /* They also cannot alias if the pointer may not point to the decl. */
1267 if (!ptr_deref_may_alias_decl_p (ptr1, base2))
1268 return false;
1269
1270 /* Disambiguations that rely on strict aliasing rules follow. */
1271 if (!flag_strict_aliasing || !tbaa_p)
1272 return true;
1273
1274 ptrtype1 = TREE_TYPE (TREE_OPERAND (base1, 1));
1275
1276 /* If the alias set for a pointer access is zero all bets are off. */
1277 if (base1_alias_set == 0)
1278 return true;
1279
1280 /* When we are trying to disambiguate an access with a pointer dereference
1281 as base versus one with a decl as base we can use both the size
1282 of the decl and its dynamic type for extra disambiguation.
1283 ??? We do not know anything about the dynamic type of the decl
1284 other than that its alias-set contains base2_alias_set as a subset
1285 which does not help us here. */
1286 /* As we know nothing useful about the dynamic type of the decl just
1287 use the usual conflict check rather than a subset test.
1288 ??? We could introduce -fvery-strict-aliasing when the language
1289 does not allow decls to have a dynamic type that differs from their
1290 static type. Then we can check
1291 !alias_set_subset_of (base1_alias_set, base2_alias_set) instead. */
1292 if (base1_alias_set != base2_alias_set
1293 && !alias_sets_conflict_p (base1_alias_set, base2_alias_set))
1294 return false;
1295 /* If the size of the access relevant for TBAA through the pointer
1296 is bigger than the size of the decl we can't possibly access the
1297 decl via that pointer. */
1298 if (/* ??? This in turn may run afoul when a decl of type T which is
1299 a member of union type U is accessed through a pointer to
1300 type U and sizeof T is smaller than sizeof U. */
1301 TREE_CODE (TREE_TYPE (ptrtype1)) != UNION_TYPE
1302 && TREE_CODE (TREE_TYPE (ptrtype1)) != QUAL_UNION_TYPE
1303 && compare_sizes (DECL_SIZE (base2),
1304 TYPE_SIZE (TREE_TYPE (ptrtype1))) < 0)
1305 return false;
1306
1307 if (!ref2)
1308 return true;
1309
1310 /* If the decl is accessed via a MEM_REF, reconstruct the base
1311 we can use for TBAA and an appropriately adjusted offset. */
1312 dbase2 = ref2;
1313 while (handled_component_p (dbase2))
1314 dbase2 = TREE_OPERAND (dbase2, 0);
1315 poly_int64 doffset1 = offset1;
1316 poly_offset_int doffset2 = offset2;
1317 if (TREE_CODE (dbase2) == MEM_REF
1318 || TREE_CODE (dbase2) == TARGET_MEM_REF)
1319 doffset2 -= mem_ref_offset (dbase2) << LOG2_BITS_PER_UNIT;
1320
1321 /* If either reference is view-converted, give up now. */
1322 if (same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) != 1
1323 || same_type_for_tbaa (TREE_TYPE (dbase2), TREE_TYPE (base2)) != 1)
1324 return true;
1325
1326 /* If both references are through the same type, they do not alias
1327 if the accesses do not overlap. This does extra disambiguation
1328 for mixed/pointer accesses but requires strict aliasing.
1329 For MEM_REFs we require that the component-ref offset we computed
1330 is relative to the start of the type which we ensure by
1331 comparing rvalue and access type and disregarding the constant
1332 pointer offset. */
1333 if ((TREE_CODE (base1) != TARGET_MEM_REF
1334 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
1335 && same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (dbase2)) == 1)
1336 return ranges_maybe_overlap_p (doffset1, max_size1, doffset2, max_size2);
1337
1338 if (ref1 && ref2
1339 && nonoverlapping_component_refs_p (ref1, ref2))
1340 return false;
1341
1342 /* Do access-path based disambiguation. */
1343 if (ref1 && ref2
1344 && (handled_component_p (ref1) || handled_component_p (ref2)))
1345 return aliasing_component_refs_p (ref1,
1346 ref1_alias_set, base1_alias_set,
1347 offset1, max_size1,
1348 ref2,
1349 ref2_alias_set, base2_alias_set,
1350 offset2, max_size2, true);
1351
1352 return true;
1353 }
1354
1355 /* Return true if two indirect references based on *PTR1
1356 and *PTR2 constrained to [OFFSET1, OFFSET1 + MAX_SIZE1) and
1357 [OFFSET2, OFFSET2 + MAX_SIZE2) may alias. *PTR1 and *PTR2 have
1358 the alias sets BASE1_ALIAS_SET and BASE2_ALIAS_SET which can be -1
1359 in which case they are computed on-demand. REF1 and REF2
1360 if non-NULL are the complete memory reference trees. */
1361
1362 static bool
1363 indirect_refs_may_alias_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
1364 poly_int64 offset1, poly_int64 max_size1,
1365 alias_set_type ref1_alias_set,
1366 alias_set_type base1_alias_set,
1367 tree ref2 ATTRIBUTE_UNUSED, tree base2,
1368 poly_int64 offset2, poly_int64 max_size2,
1369 alias_set_type ref2_alias_set,
1370 alias_set_type base2_alias_set, bool tbaa_p)
1371 {
1372 tree ptr1;
1373 tree ptr2;
1374 tree ptrtype1, ptrtype2;
1375
1376 gcc_checking_assert ((TREE_CODE (base1) == MEM_REF
1377 || TREE_CODE (base1) == TARGET_MEM_REF)
1378 && (TREE_CODE (base2) == MEM_REF
1379 || TREE_CODE (base2) == TARGET_MEM_REF));
1380
1381 ptr1 = TREE_OPERAND (base1, 0);
1382 ptr2 = TREE_OPERAND (base2, 0);
1383
1384 /* If both bases are based on pointers they cannot alias if they may not
1385 point to the same memory object or if they point to the same object
1386 and the accesses do not overlap. */
1387 if ((!cfun || gimple_in_ssa_p (cfun))
1388 && operand_equal_p (ptr1, ptr2, 0)
1389 && (((TREE_CODE (base1) != TARGET_MEM_REF
1390 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
1391 && (TREE_CODE (base2) != TARGET_MEM_REF
1392 || (!TMR_INDEX (base2) && !TMR_INDEX2 (base2))))
1393 || (TREE_CODE (base1) == TARGET_MEM_REF
1394 && TREE_CODE (base2) == TARGET_MEM_REF
1395 && (TMR_STEP (base1) == TMR_STEP (base2)
1396 || (TMR_STEP (base1) && TMR_STEP (base2)
1397 && operand_equal_p (TMR_STEP (base1),
1398 TMR_STEP (base2), 0)))
1399 && (TMR_INDEX (base1) == TMR_INDEX (base2)
1400 || (TMR_INDEX (base1) && TMR_INDEX (base2)
1401 && operand_equal_p (TMR_INDEX (base1),
1402 TMR_INDEX (base2), 0)))
1403 && (TMR_INDEX2 (base1) == TMR_INDEX2 (base2)
1404 || (TMR_INDEX2 (base1) && TMR_INDEX2 (base2)
1405 && operand_equal_p (TMR_INDEX2 (base1),
1406 TMR_INDEX2 (base2), 0))))))
1407 {
1408 poly_offset_int moff1 = mem_ref_offset (base1) << LOG2_BITS_PER_UNIT;
1409 poly_offset_int moff2 = mem_ref_offset (base2) << LOG2_BITS_PER_UNIT;
1410 return ranges_maybe_overlap_p (offset1 + moff1, max_size1,
1411 offset2 + moff2, max_size2);
1412 }
1413 if (!ptr_derefs_may_alias_p (ptr1, ptr2))
1414 return false;
1415
1416 /* Disambiguations that rely on strict aliasing rules follow. */
1417 if (!flag_strict_aliasing || !tbaa_p)
1418 return true;
1419
1420 ptrtype1 = TREE_TYPE (TREE_OPERAND (base1, 1));
1421 ptrtype2 = TREE_TYPE (TREE_OPERAND (base2, 1));
1422
1423 /* If the alias set for a pointer access is zero all bets are off. */
1424 if (base1_alias_set == 0
1425 || base2_alias_set == 0)
1426 return true;
1427
1428 /* If both references are through the same type, they do not alias
1429 if the accesses do not overlap. This does extra disambiguation
1430 for mixed/pointer accesses but requires strict aliasing. */
1431 if ((TREE_CODE (base1) != TARGET_MEM_REF
1432 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
1433 && (TREE_CODE (base2) != TARGET_MEM_REF
1434 || (!TMR_INDEX (base2) && !TMR_INDEX2 (base2)))
1435 && same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) == 1
1436 && same_type_for_tbaa (TREE_TYPE (base2), TREE_TYPE (ptrtype2)) == 1
1437 && same_type_for_tbaa (TREE_TYPE (ptrtype1),
1438 TREE_TYPE (ptrtype2)) == 1
1439 /* But avoid treating arrays as "objects", instead assume they
1440 can overlap by an exact multiple of their element size. */
1441 && TREE_CODE (TREE_TYPE (ptrtype1)) != ARRAY_TYPE)
1442 return ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2);
1443
1444 /* Do type-based disambiguation. */
1445 if (base1_alias_set != base2_alias_set
1446 && !alias_sets_conflict_p (base1_alias_set, base2_alias_set))
1447 return false;
1448
1449 /* If either reference is view-converted, give up now. */
1450 if (same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) != 1
1451 || same_type_for_tbaa (TREE_TYPE (base2), TREE_TYPE (ptrtype2)) != 1)
1452 return true;
1453
1454 if (ref1 && ref2
1455 && nonoverlapping_component_refs_p (ref1, ref2))
1456 return false;
1457
1458 /* Do access-path based disambiguation. */
1459 if (ref1 && ref2
1460 && (handled_component_p (ref1) || handled_component_p (ref2)))
1461 return aliasing_component_refs_p (ref1,
1462 ref1_alias_set, base1_alias_set,
1463 offset1, max_size1,
1464 ref2,
1465 ref2_alias_set, base2_alias_set,
1466 offset2, max_size2, false);
1467
1468 return true;
1469 }
1470
1471 /* Return true, if the two memory references REF1 and REF2 may alias. */
1472
1473 static bool
1474 refs_may_alias_p_2 (ao_ref *ref1, ao_ref *ref2, bool tbaa_p)
1475 {
1476 tree base1, base2;
1477 poly_int64 offset1 = 0, offset2 = 0;
1478 poly_int64 max_size1 = -1, max_size2 = -1;
1479 bool var1_p, var2_p, ind1_p, ind2_p;
1480
1481 gcc_checking_assert ((!ref1->ref
1482 || TREE_CODE (ref1->ref) == SSA_NAME
1483 || DECL_P (ref1->ref)
1484 || TREE_CODE (ref1->ref) == STRING_CST
1485 || handled_component_p (ref1->ref)
1486 || TREE_CODE (ref1->ref) == MEM_REF
1487 || TREE_CODE (ref1->ref) == TARGET_MEM_REF)
1488 && (!ref2->ref
1489 || TREE_CODE (ref2->ref) == SSA_NAME
1490 || DECL_P (ref2->ref)
1491 || TREE_CODE (ref2->ref) == STRING_CST
1492 || handled_component_p (ref2->ref)
1493 || TREE_CODE (ref2->ref) == MEM_REF
1494 || TREE_CODE (ref2->ref) == TARGET_MEM_REF));
1495
1496 /* Decompose the references into their base objects and the access. */
1497 base1 = ao_ref_base (ref1);
1498 offset1 = ref1->offset;
1499 max_size1 = ref1->max_size;
1500 base2 = ao_ref_base (ref2);
1501 offset2 = ref2->offset;
1502 max_size2 = ref2->max_size;
1503
1504 /* We can end up with registers or constants as bases for example from
1505 *D.1663_44 = VIEW_CONVERT_EXPR<struct DB_LSN>(__tmp$B0F64_59);
1506 which is seen as a struct copy. */
1507 if (TREE_CODE (base1) == SSA_NAME
1508 || TREE_CODE (base1) == CONST_DECL
1509 || TREE_CODE (base1) == CONSTRUCTOR
1510 || TREE_CODE (base1) == ADDR_EXPR
1511 || CONSTANT_CLASS_P (base1)
1512 || TREE_CODE (base2) == SSA_NAME
1513 || TREE_CODE (base2) == CONST_DECL
1514 || TREE_CODE (base2) == CONSTRUCTOR
1515 || TREE_CODE (base2) == ADDR_EXPR
1516 || CONSTANT_CLASS_P (base2))
1517 return false;
1518
1519 /* We can end up referring to code via function and label decls.
1520 As we likely do not properly track code aliases conservatively
1521 bail out. */
1522 if (TREE_CODE (base1) == FUNCTION_DECL
1523 || TREE_CODE (base1) == LABEL_DECL
1524 || TREE_CODE (base2) == FUNCTION_DECL
1525 || TREE_CODE (base2) == LABEL_DECL)
1526 return true;
1527
1528 /* Two volatile accesses always conflict. */
1529 if (ref1->volatile_p
1530 && ref2->volatile_p)
1531 return true;
1532
1533 /* Defer to simple offset based disambiguation if we have
1534 references based on two decls. Do this before defering to
1535 TBAA to handle must-alias cases in conformance with the
1536 GCC extension of allowing type-punning through unions. */
1537 var1_p = DECL_P (base1);
1538 var2_p = DECL_P (base2);
1539 if (var1_p && var2_p)
1540 return decl_refs_may_alias_p (ref1->ref, base1, offset1, max_size1,
1541 ref2->ref, base2, offset2, max_size2);
1542
1543 /* Handle restrict based accesses.
1544 ??? ao_ref_base strips inner MEM_REF [&decl], recover from that
1545 here. */
1546 tree rbase1 = base1;
1547 tree rbase2 = base2;
1548 if (var1_p)
1549 {
1550 rbase1 = ref1->ref;
1551 if (rbase1)
1552 while (handled_component_p (rbase1))
1553 rbase1 = TREE_OPERAND (rbase1, 0);
1554 }
1555 if (var2_p)
1556 {
1557 rbase2 = ref2->ref;
1558 if (rbase2)
1559 while (handled_component_p (rbase2))
1560 rbase2 = TREE_OPERAND (rbase2, 0);
1561 }
1562 if (rbase1 && rbase2
1563 && (TREE_CODE (base1) == MEM_REF || TREE_CODE (base1) == TARGET_MEM_REF)
1564 && (TREE_CODE (base2) == MEM_REF || TREE_CODE (base2) == TARGET_MEM_REF)
1565 /* If the accesses are in the same restrict clique... */
1566 && MR_DEPENDENCE_CLIQUE (base1) == MR_DEPENDENCE_CLIQUE (base2)
1567 /* But based on different pointers they do not alias. */
1568 && MR_DEPENDENCE_BASE (base1) != MR_DEPENDENCE_BASE (base2))
1569 return false;
1570
1571 ind1_p = (TREE_CODE (base1) == MEM_REF
1572 || TREE_CODE (base1) == TARGET_MEM_REF);
1573 ind2_p = (TREE_CODE (base2) == MEM_REF
1574 || TREE_CODE (base2) == TARGET_MEM_REF);
1575
1576 /* Canonicalize the pointer-vs-decl case. */
1577 if (ind1_p && var2_p)
1578 {
1579 std::swap (offset1, offset2);
1580 std::swap (max_size1, max_size2);
1581 std::swap (base1, base2);
1582 std::swap (ref1, ref2);
1583 var1_p = true;
1584 ind1_p = false;
1585 var2_p = false;
1586 ind2_p = true;
1587 }
1588
1589 /* First defer to TBAA if possible. */
1590 if (tbaa_p
1591 && flag_strict_aliasing
1592 && !alias_sets_conflict_p (ao_ref_alias_set (ref1),
1593 ao_ref_alias_set (ref2)))
1594 return false;
1595
1596 /* If the reference is based on a pointer that points to memory
1597 that may not be written to then the other reference cannot possibly
1598 clobber it. */
1599 if ((TREE_CODE (TREE_OPERAND (base2, 0)) == SSA_NAME
1600 && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base2, 0)))
1601 || (ind1_p
1602 && TREE_CODE (TREE_OPERAND (base1, 0)) == SSA_NAME
1603 && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base1, 0))))
1604 return false;
1605
1606 /* Dispatch to the pointer-vs-decl or pointer-vs-pointer disambiguators. */
1607 if (var1_p && ind2_p)
1608 return indirect_ref_may_alias_decl_p (ref2->ref, base2,
1609 offset2, max_size2,
1610 ao_ref_alias_set (ref2),
1611 ao_ref_base_alias_set (ref2),
1612 ref1->ref, base1,
1613 offset1, max_size1,
1614 ao_ref_alias_set (ref1),
1615 ao_ref_base_alias_set (ref1),
1616 tbaa_p);
1617 else if (ind1_p && ind2_p)
1618 return indirect_refs_may_alias_p (ref1->ref, base1,
1619 offset1, max_size1,
1620 ao_ref_alias_set (ref1),
1621 ao_ref_base_alias_set (ref1),
1622 ref2->ref, base2,
1623 offset2, max_size2,
1624 ao_ref_alias_set (ref2),
1625 ao_ref_base_alias_set (ref2),
1626 tbaa_p);
1627
1628 gcc_unreachable ();
1629 }
1630
1631 /* Return true, if the two memory references REF1 and REF2 may alias
1632 and update statistics. */
1633
1634 bool
1635 refs_may_alias_p_1 (ao_ref *ref1, ao_ref *ref2, bool tbaa_p)
1636 {
1637 bool res = refs_may_alias_p_2 (ref1, ref2, tbaa_p);
1638 if (res)
1639 ++alias_stats.refs_may_alias_p_may_alias;
1640 else
1641 ++alias_stats.refs_may_alias_p_no_alias;
1642 return res;
1643 }
1644
1645 static bool
1646 refs_may_alias_p (tree ref1, ao_ref *ref2, bool tbaa_p)
1647 {
1648 ao_ref r1;
1649 ao_ref_init (&r1, ref1);
1650 return refs_may_alias_p_1 (&r1, ref2, tbaa_p);
1651 }
1652
1653 bool
1654 refs_may_alias_p (tree ref1, tree ref2, bool tbaa_p)
1655 {
1656 ao_ref r1, r2;
1657 ao_ref_init (&r1, ref1);
1658 ao_ref_init (&r2, ref2);
1659 return refs_may_alias_p_1 (&r1, &r2, tbaa_p);
1660 }
1661
1662 /* Returns true if there is a anti-dependence for the STORE that
1663 executes after the LOAD. */
1664
1665 bool
1666 refs_anti_dependent_p (tree load, tree store)
1667 {
1668 ao_ref r1, r2;
1669 ao_ref_init (&r1, load);
1670 ao_ref_init (&r2, store);
1671 return refs_may_alias_p_1 (&r1, &r2, false);
1672 }
1673
1674 /* Returns true if there is a output dependence for the stores
1675 STORE1 and STORE2. */
1676
1677 bool
1678 refs_output_dependent_p (tree store1, tree store2)
1679 {
1680 ao_ref r1, r2;
1681 ao_ref_init (&r1, store1);
1682 ao_ref_init (&r2, store2);
1683 return refs_may_alias_p_1 (&r1, &r2, false);
1684 }
1685
1686 /* If the call CALL may use the memory reference REF return true,
1687 otherwise return false. */
1688
1689 static bool
1690 ref_maybe_used_by_call_p_1 (gcall *call, ao_ref *ref, bool tbaa_p)
1691 {
1692 tree base, callee;
1693 unsigned i;
1694 int flags = gimple_call_flags (call);
1695
1696 /* Const functions without a static chain do not implicitly use memory. */
1697 if (!gimple_call_chain (call)
1698 && (flags & (ECF_CONST|ECF_NOVOPS)))
1699 goto process_args;
1700
1701 base = ao_ref_base (ref);
1702 if (!base)
1703 return true;
1704
1705 /* A call that is not without side-effects might involve volatile
1706 accesses and thus conflicts with all other volatile accesses. */
1707 if (ref->volatile_p)
1708 return true;
1709
1710 /* If the reference is based on a decl that is not aliased the call
1711 cannot possibly use it. */
1712 if (DECL_P (base)
1713 && !may_be_aliased (base)
1714 /* But local statics can be used through recursion. */
1715 && !is_global_var (base))
1716 goto process_args;
1717
1718 callee = gimple_call_fndecl (call);
1719
1720 /* Handle those builtin functions explicitly that do not act as
1721 escape points. See tree-ssa-structalias.c:find_func_aliases
1722 for the list of builtins we might need to handle here. */
1723 if (callee != NULL_TREE
1724 && gimple_call_builtin_p (call, BUILT_IN_NORMAL))
1725 switch (DECL_FUNCTION_CODE (callee))
1726 {
1727 /* All the following functions read memory pointed to by
1728 their second argument. strcat/strncat additionally
1729 reads memory pointed to by the first argument. */
1730 case BUILT_IN_STRCAT:
1731 case BUILT_IN_STRNCAT:
1732 {
1733 ao_ref dref;
1734 ao_ref_init_from_ptr_and_size (&dref,
1735 gimple_call_arg (call, 0),
1736 NULL_TREE);
1737 if (refs_may_alias_p_1 (&dref, ref, false))
1738 return true;
1739 }
1740 /* FALLTHRU */
1741 case BUILT_IN_STRCPY:
1742 case BUILT_IN_STRNCPY:
1743 case BUILT_IN_MEMCPY:
1744 case BUILT_IN_MEMMOVE:
1745 case BUILT_IN_MEMPCPY:
1746 case BUILT_IN_STPCPY:
1747 case BUILT_IN_STPNCPY:
1748 case BUILT_IN_TM_MEMCPY:
1749 case BUILT_IN_TM_MEMMOVE:
1750 {
1751 ao_ref dref;
1752 tree size = NULL_TREE;
1753 if (gimple_call_num_args (call) == 3)
1754 size = gimple_call_arg (call, 2);
1755 ao_ref_init_from_ptr_and_size (&dref,
1756 gimple_call_arg (call, 1),
1757 size);
1758 return refs_may_alias_p_1 (&dref, ref, false);
1759 }
1760 case BUILT_IN_STRCAT_CHK:
1761 case BUILT_IN_STRNCAT_CHK:
1762 {
1763 ao_ref dref;
1764 ao_ref_init_from_ptr_and_size (&dref,
1765 gimple_call_arg (call, 0),
1766 NULL_TREE);
1767 if (refs_may_alias_p_1 (&dref, ref, false))
1768 return true;
1769 }
1770 /* FALLTHRU */
1771 case BUILT_IN_STRCPY_CHK:
1772 case BUILT_IN_STRNCPY_CHK:
1773 case BUILT_IN_MEMCPY_CHK:
1774 case BUILT_IN_MEMMOVE_CHK:
1775 case BUILT_IN_MEMPCPY_CHK:
1776 case BUILT_IN_STPCPY_CHK:
1777 case BUILT_IN_STPNCPY_CHK:
1778 {
1779 ao_ref dref;
1780 tree size = NULL_TREE;
1781 if (gimple_call_num_args (call) == 4)
1782 size = gimple_call_arg (call, 2);
1783 ao_ref_init_from_ptr_and_size (&dref,
1784 gimple_call_arg (call, 1),
1785 size);
1786 return refs_may_alias_p_1 (&dref, ref, false);
1787 }
1788 case BUILT_IN_BCOPY:
1789 {
1790 ao_ref dref;
1791 tree size = gimple_call_arg (call, 2);
1792 ao_ref_init_from_ptr_and_size (&dref,
1793 gimple_call_arg (call, 0),
1794 size);
1795 return refs_may_alias_p_1 (&dref, ref, false);
1796 }
1797
1798 /* The following functions read memory pointed to by their
1799 first argument. */
1800 CASE_BUILT_IN_TM_LOAD (1):
1801 CASE_BUILT_IN_TM_LOAD (2):
1802 CASE_BUILT_IN_TM_LOAD (4):
1803 CASE_BUILT_IN_TM_LOAD (8):
1804 CASE_BUILT_IN_TM_LOAD (FLOAT):
1805 CASE_BUILT_IN_TM_LOAD (DOUBLE):
1806 CASE_BUILT_IN_TM_LOAD (LDOUBLE):
1807 CASE_BUILT_IN_TM_LOAD (M64):
1808 CASE_BUILT_IN_TM_LOAD (M128):
1809 CASE_BUILT_IN_TM_LOAD (M256):
1810 case BUILT_IN_TM_LOG:
1811 case BUILT_IN_TM_LOG_1:
1812 case BUILT_IN_TM_LOG_2:
1813 case BUILT_IN_TM_LOG_4:
1814 case BUILT_IN_TM_LOG_8:
1815 case BUILT_IN_TM_LOG_FLOAT:
1816 case BUILT_IN_TM_LOG_DOUBLE:
1817 case BUILT_IN_TM_LOG_LDOUBLE:
1818 case BUILT_IN_TM_LOG_M64:
1819 case BUILT_IN_TM_LOG_M128:
1820 case BUILT_IN_TM_LOG_M256:
1821 return ptr_deref_may_alias_ref_p_1 (gimple_call_arg (call, 0), ref);
1822
1823 /* These read memory pointed to by the first argument. */
1824 case BUILT_IN_STRDUP:
1825 case BUILT_IN_STRNDUP:
1826 case BUILT_IN_REALLOC:
1827 {
1828 ao_ref dref;
1829 tree size = NULL_TREE;
1830 if (gimple_call_num_args (call) == 2)
1831 size = gimple_call_arg (call, 1);
1832 ao_ref_init_from_ptr_and_size (&dref,
1833 gimple_call_arg (call, 0),
1834 size);
1835 return refs_may_alias_p_1 (&dref, ref, false);
1836 }
1837 /* These read memory pointed to by the first argument. */
1838 case BUILT_IN_INDEX:
1839 case BUILT_IN_STRCHR:
1840 case BUILT_IN_STRRCHR:
1841 {
1842 ao_ref dref;
1843 ao_ref_init_from_ptr_and_size (&dref,
1844 gimple_call_arg (call, 0),
1845 NULL_TREE);
1846 return refs_may_alias_p_1 (&dref, ref, false);
1847 }
1848 /* These read memory pointed to by the first argument with size
1849 in the third argument. */
1850 case BUILT_IN_MEMCHR:
1851 {
1852 ao_ref dref;
1853 ao_ref_init_from_ptr_and_size (&dref,
1854 gimple_call_arg (call, 0),
1855 gimple_call_arg (call, 2));
1856 return refs_may_alias_p_1 (&dref, ref, false);
1857 }
1858 /* These read memory pointed to by the first and second arguments. */
1859 case BUILT_IN_STRSTR:
1860 case BUILT_IN_STRPBRK:
1861 {
1862 ao_ref dref;
1863 ao_ref_init_from_ptr_and_size (&dref,
1864 gimple_call_arg (call, 0),
1865 NULL_TREE);
1866 if (refs_may_alias_p_1 (&dref, ref, false))
1867 return true;
1868 ao_ref_init_from_ptr_and_size (&dref,
1869 gimple_call_arg (call, 1),
1870 NULL_TREE);
1871 return refs_may_alias_p_1 (&dref, ref, false);
1872 }
1873
1874 /* The following builtins do not read from memory. */
1875 case BUILT_IN_FREE:
1876 case BUILT_IN_MALLOC:
1877 case BUILT_IN_POSIX_MEMALIGN:
1878 case BUILT_IN_ALIGNED_ALLOC:
1879 case BUILT_IN_CALLOC:
1880 CASE_BUILT_IN_ALLOCA:
1881 case BUILT_IN_STACK_SAVE:
1882 case BUILT_IN_STACK_RESTORE:
1883 case BUILT_IN_MEMSET:
1884 case BUILT_IN_TM_MEMSET:
1885 case BUILT_IN_MEMSET_CHK:
1886 case BUILT_IN_FREXP:
1887 case BUILT_IN_FREXPF:
1888 case BUILT_IN_FREXPL:
1889 case BUILT_IN_GAMMA_R:
1890 case BUILT_IN_GAMMAF_R:
1891 case BUILT_IN_GAMMAL_R:
1892 case BUILT_IN_LGAMMA_R:
1893 case BUILT_IN_LGAMMAF_R:
1894 case BUILT_IN_LGAMMAL_R:
1895 case BUILT_IN_MODF:
1896 case BUILT_IN_MODFF:
1897 case BUILT_IN_MODFL:
1898 case BUILT_IN_REMQUO:
1899 case BUILT_IN_REMQUOF:
1900 case BUILT_IN_REMQUOL:
1901 case BUILT_IN_SINCOS:
1902 case BUILT_IN_SINCOSF:
1903 case BUILT_IN_SINCOSL:
1904 case BUILT_IN_ASSUME_ALIGNED:
1905 case BUILT_IN_VA_END:
1906 return false;
1907 /* __sync_* builtins and some OpenMP builtins act as threading
1908 barriers. */
1909 #undef DEF_SYNC_BUILTIN
1910 #define DEF_SYNC_BUILTIN(ENUM, NAME, TYPE, ATTRS) case ENUM:
1911 #include "sync-builtins.def"
1912 #undef DEF_SYNC_BUILTIN
1913 case BUILT_IN_GOMP_ATOMIC_START:
1914 case BUILT_IN_GOMP_ATOMIC_END:
1915 case BUILT_IN_GOMP_BARRIER:
1916 case BUILT_IN_GOMP_BARRIER_CANCEL:
1917 case BUILT_IN_GOMP_TASKWAIT:
1918 case BUILT_IN_GOMP_TASKGROUP_END:
1919 case BUILT_IN_GOMP_CRITICAL_START:
1920 case BUILT_IN_GOMP_CRITICAL_END:
1921 case BUILT_IN_GOMP_CRITICAL_NAME_START:
1922 case BUILT_IN_GOMP_CRITICAL_NAME_END:
1923 case BUILT_IN_GOMP_LOOP_END:
1924 case BUILT_IN_GOMP_LOOP_END_CANCEL:
1925 case BUILT_IN_GOMP_ORDERED_START:
1926 case BUILT_IN_GOMP_ORDERED_END:
1927 case BUILT_IN_GOMP_SECTIONS_END:
1928 case BUILT_IN_GOMP_SECTIONS_END_CANCEL:
1929 case BUILT_IN_GOMP_SINGLE_COPY_START:
1930 case BUILT_IN_GOMP_SINGLE_COPY_END:
1931 return true;
1932
1933 default:
1934 /* Fallthru to general call handling. */;
1935 }
1936
1937 /* Check if base is a global static variable that is not read
1938 by the function. */
1939 if (callee != NULL_TREE && VAR_P (base) && TREE_STATIC (base))
1940 {
1941 struct cgraph_node *node = cgraph_node::get (callee);
1942 bitmap not_read;
1943
1944 /* FIXME: Callee can be an OMP builtin that does not have a call graph
1945 node yet. We should enforce that there are nodes for all decls in the
1946 IL and remove this check instead. */
1947 if (node
1948 && (not_read = ipa_reference_get_not_read_global (node))
1949 && bitmap_bit_p (not_read, ipa_reference_var_uid (base)))
1950 goto process_args;
1951 }
1952
1953 /* Check if the base variable is call-used. */
1954 if (DECL_P (base))
1955 {
1956 if (pt_solution_includes (gimple_call_use_set (call), base))
1957 return true;
1958 }
1959 else if ((TREE_CODE (base) == MEM_REF
1960 || TREE_CODE (base) == TARGET_MEM_REF)
1961 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1962 {
1963 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (TREE_OPERAND (base, 0));
1964 if (!pi)
1965 return true;
1966
1967 if (pt_solutions_intersect (gimple_call_use_set (call), &pi->pt))
1968 return true;
1969 }
1970 else
1971 return true;
1972
1973 /* Inspect call arguments for passed-by-value aliases. */
1974 process_args:
1975 for (i = 0; i < gimple_call_num_args (call); ++i)
1976 {
1977 tree op = gimple_call_arg (call, i);
1978 int flags = gimple_call_arg_flags (call, i);
1979
1980 if (flags & EAF_UNUSED)
1981 continue;
1982
1983 if (TREE_CODE (op) == WITH_SIZE_EXPR)
1984 op = TREE_OPERAND (op, 0);
1985
1986 if (TREE_CODE (op) != SSA_NAME
1987 && !is_gimple_min_invariant (op))
1988 {
1989 ao_ref r;
1990 ao_ref_init (&r, op);
1991 if (refs_may_alias_p_1 (&r, ref, tbaa_p))
1992 return true;
1993 }
1994 }
1995
1996 return false;
1997 }
1998
1999 static bool
2000 ref_maybe_used_by_call_p (gcall *call, ao_ref *ref, bool tbaa_p)
2001 {
2002 bool res;
2003 res = ref_maybe_used_by_call_p_1 (call, ref, tbaa_p);
2004 if (res)
2005 ++alias_stats.ref_maybe_used_by_call_p_may_alias;
2006 else
2007 ++alias_stats.ref_maybe_used_by_call_p_no_alias;
2008 return res;
2009 }
2010
2011
2012 /* If the statement STMT may use the memory reference REF return
2013 true, otherwise return false. */
2014
2015 bool
2016 ref_maybe_used_by_stmt_p (gimple *stmt, ao_ref *ref, bool tbaa_p)
2017 {
2018 if (is_gimple_assign (stmt))
2019 {
2020 tree rhs;
2021
2022 /* All memory assign statements are single. */
2023 if (!gimple_assign_single_p (stmt))
2024 return false;
2025
2026 rhs = gimple_assign_rhs1 (stmt);
2027 if (is_gimple_reg (rhs)
2028 || is_gimple_min_invariant (rhs)
2029 || gimple_assign_rhs_code (stmt) == CONSTRUCTOR)
2030 return false;
2031
2032 return refs_may_alias_p (rhs, ref, tbaa_p);
2033 }
2034 else if (is_gimple_call (stmt))
2035 return ref_maybe_used_by_call_p (as_a <gcall *> (stmt), ref, tbaa_p);
2036 else if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
2037 {
2038 tree retval = gimple_return_retval (return_stmt);
2039 if (retval
2040 && TREE_CODE (retval) != SSA_NAME
2041 && !is_gimple_min_invariant (retval)
2042 && refs_may_alias_p (retval, ref, tbaa_p))
2043 return true;
2044 /* If ref escapes the function then the return acts as a use. */
2045 tree base = ao_ref_base (ref);
2046 if (!base)
2047 ;
2048 else if (DECL_P (base))
2049 return is_global_var (base);
2050 else if (TREE_CODE (base) == MEM_REF
2051 || TREE_CODE (base) == TARGET_MEM_REF)
2052 return ptr_deref_may_alias_global_p (TREE_OPERAND (base, 0));
2053 return false;
2054 }
2055
2056 return true;
2057 }
2058
2059 bool
2060 ref_maybe_used_by_stmt_p (gimple *stmt, tree ref, bool tbaa_p)
2061 {
2062 ao_ref r;
2063 ao_ref_init (&r, ref);
2064 return ref_maybe_used_by_stmt_p (stmt, &r, tbaa_p);
2065 }
2066
2067 /* If the call in statement CALL may clobber the memory reference REF
2068 return true, otherwise return false. */
2069
2070 bool
2071 call_may_clobber_ref_p_1 (gcall *call, ao_ref *ref)
2072 {
2073 tree base;
2074 tree callee;
2075
2076 /* If the call is pure or const it cannot clobber anything. */
2077 if (gimple_call_flags (call)
2078 & (ECF_PURE|ECF_CONST|ECF_LOOPING_CONST_OR_PURE|ECF_NOVOPS))
2079 return false;
2080 if (gimple_call_internal_p (call))
2081 switch (gimple_call_internal_fn (call))
2082 {
2083 /* Treat these internal calls like ECF_PURE for aliasing,
2084 they don't write to any memory the program should care about.
2085 They have important other side-effects, and read memory,
2086 so can't be ECF_NOVOPS. */
2087 case IFN_UBSAN_NULL:
2088 case IFN_UBSAN_BOUNDS:
2089 case IFN_UBSAN_VPTR:
2090 case IFN_UBSAN_OBJECT_SIZE:
2091 case IFN_UBSAN_PTR:
2092 case IFN_ASAN_CHECK:
2093 return false;
2094 default:
2095 break;
2096 }
2097
2098 base = ao_ref_base (ref);
2099 if (!base)
2100 return true;
2101
2102 if (TREE_CODE (base) == SSA_NAME
2103 || CONSTANT_CLASS_P (base))
2104 return false;
2105
2106 /* A call that is not without side-effects might involve volatile
2107 accesses and thus conflicts with all other volatile accesses. */
2108 if (ref->volatile_p)
2109 return true;
2110
2111 /* If the reference is based on a decl that is not aliased the call
2112 cannot possibly clobber it. */
2113 if (DECL_P (base)
2114 && !may_be_aliased (base)
2115 /* But local non-readonly statics can be modified through recursion
2116 or the call may implement a threading barrier which we must
2117 treat as may-def. */
2118 && (TREE_READONLY (base)
2119 || !is_global_var (base)))
2120 return false;
2121
2122 /* If the reference is based on a pointer that points to memory
2123 that may not be written to then the call cannot possibly clobber it. */
2124 if ((TREE_CODE (base) == MEM_REF
2125 || TREE_CODE (base) == TARGET_MEM_REF)
2126 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME
2127 && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base, 0)))
2128 return false;
2129
2130 callee = gimple_call_fndecl (call);
2131
2132 /* Handle those builtin functions explicitly that do not act as
2133 escape points. See tree-ssa-structalias.c:find_func_aliases
2134 for the list of builtins we might need to handle here. */
2135 if (callee != NULL_TREE
2136 && gimple_call_builtin_p (call, BUILT_IN_NORMAL))
2137 switch (DECL_FUNCTION_CODE (callee))
2138 {
2139 /* All the following functions clobber memory pointed to by
2140 their first argument. */
2141 case BUILT_IN_STRCPY:
2142 case BUILT_IN_STRNCPY:
2143 case BUILT_IN_MEMCPY:
2144 case BUILT_IN_MEMMOVE:
2145 case BUILT_IN_MEMPCPY:
2146 case BUILT_IN_STPCPY:
2147 case BUILT_IN_STPNCPY:
2148 case BUILT_IN_STRCAT:
2149 case BUILT_IN_STRNCAT:
2150 case BUILT_IN_MEMSET:
2151 case BUILT_IN_TM_MEMSET:
2152 CASE_BUILT_IN_TM_STORE (1):
2153 CASE_BUILT_IN_TM_STORE (2):
2154 CASE_BUILT_IN_TM_STORE (4):
2155 CASE_BUILT_IN_TM_STORE (8):
2156 CASE_BUILT_IN_TM_STORE (FLOAT):
2157 CASE_BUILT_IN_TM_STORE (DOUBLE):
2158 CASE_BUILT_IN_TM_STORE (LDOUBLE):
2159 CASE_BUILT_IN_TM_STORE (M64):
2160 CASE_BUILT_IN_TM_STORE (M128):
2161 CASE_BUILT_IN_TM_STORE (M256):
2162 case BUILT_IN_TM_MEMCPY:
2163 case BUILT_IN_TM_MEMMOVE:
2164 {
2165 ao_ref dref;
2166 tree size = NULL_TREE;
2167 /* Don't pass in size for strncat, as the maximum size
2168 is strlen (dest) + n + 1 instead of n, resp.
2169 n + 1 at dest + strlen (dest), but strlen (dest) isn't
2170 known. */
2171 if (gimple_call_num_args (call) == 3
2172 && DECL_FUNCTION_CODE (callee) != BUILT_IN_STRNCAT)
2173 size = gimple_call_arg (call, 2);
2174 ao_ref_init_from_ptr_and_size (&dref,
2175 gimple_call_arg (call, 0),
2176 size);
2177 return refs_may_alias_p_1 (&dref, ref, false);
2178 }
2179 case BUILT_IN_STRCPY_CHK:
2180 case BUILT_IN_STRNCPY_CHK:
2181 case BUILT_IN_MEMCPY_CHK:
2182 case BUILT_IN_MEMMOVE_CHK:
2183 case BUILT_IN_MEMPCPY_CHK:
2184 case BUILT_IN_STPCPY_CHK:
2185 case BUILT_IN_STPNCPY_CHK:
2186 case BUILT_IN_STRCAT_CHK:
2187 case BUILT_IN_STRNCAT_CHK:
2188 case BUILT_IN_MEMSET_CHK:
2189 {
2190 ao_ref dref;
2191 tree size = NULL_TREE;
2192 /* Don't pass in size for __strncat_chk, as the maximum size
2193 is strlen (dest) + n + 1 instead of n, resp.
2194 n + 1 at dest + strlen (dest), but strlen (dest) isn't
2195 known. */
2196 if (gimple_call_num_args (call) == 4
2197 && DECL_FUNCTION_CODE (callee) != BUILT_IN_STRNCAT_CHK)
2198 size = gimple_call_arg (call, 2);
2199 ao_ref_init_from_ptr_and_size (&dref,
2200 gimple_call_arg (call, 0),
2201 size);
2202 return refs_may_alias_p_1 (&dref, ref, false);
2203 }
2204 case BUILT_IN_BCOPY:
2205 {
2206 ao_ref dref;
2207 tree size = gimple_call_arg (call, 2);
2208 ao_ref_init_from_ptr_and_size (&dref,
2209 gimple_call_arg (call, 1),
2210 size);
2211 return refs_may_alias_p_1 (&dref, ref, false);
2212 }
2213 /* Allocating memory does not have any side-effects apart from
2214 being the definition point for the pointer. */
2215 case BUILT_IN_MALLOC:
2216 case BUILT_IN_ALIGNED_ALLOC:
2217 case BUILT_IN_CALLOC:
2218 case BUILT_IN_STRDUP:
2219 case BUILT_IN_STRNDUP:
2220 /* Unix98 specifies that errno is set on allocation failure. */
2221 if (flag_errno_math
2222 && targetm.ref_may_alias_errno (ref))
2223 return true;
2224 return false;
2225 case BUILT_IN_STACK_SAVE:
2226 CASE_BUILT_IN_ALLOCA:
2227 case BUILT_IN_ASSUME_ALIGNED:
2228 return false;
2229 /* But posix_memalign stores a pointer into the memory pointed to
2230 by its first argument. */
2231 case BUILT_IN_POSIX_MEMALIGN:
2232 {
2233 tree ptrptr = gimple_call_arg (call, 0);
2234 ao_ref dref;
2235 ao_ref_init_from_ptr_and_size (&dref, ptrptr,
2236 TYPE_SIZE_UNIT (ptr_type_node));
2237 return (refs_may_alias_p_1 (&dref, ref, false)
2238 || (flag_errno_math
2239 && targetm.ref_may_alias_errno (ref)));
2240 }
2241 /* Freeing memory kills the pointed-to memory. More importantly
2242 the call has to serve as a barrier for moving loads and stores
2243 across it. */
2244 case BUILT_IN_FREE:
2245 case BUILT_IN_VA_END:
2246 {
2247 tree ptr = gimple_call_arg (call, 0);
2248 return ptr_deref_may_alias_ref_p_1 (ptr, ref);
2249 }
2250 /* Realloc serves both as allocation point and deallocation point. */
2251 case BUILT_IN_REALLOC:
2252 {
2253 tree ptr = gimple_call_arg (call, 0);
2254 /* Unix98 specifies that errno is set on allocation failure. */
2255 return ((flag_errno_math
2256 && targetm.ref_may_alias_errno (ref))
2257 || ptr_deref_may_alias_ref_p_1 (ptr, ref));
2258 }
2259 case BUILT_IN_GAMMA_R:
2260 case BUILT_IN_GAMMAF_R:
2261 case BUILT_IN_GAMMAL_R:
2262 case BUILT_IN_LGAMMA_R:
2263 case BUILT_IN_LGAMMAF_R:
2264 case BUILT_IN_LGAMMAL_R:
2265 {
2266 tree out = gimple_call_arg (call, 1);
2267 if (ptr_deref_may_alias_ref_p_1 (out, ref))
2268 return true;
2269 if (flag_errno_math)
2270 break;
2271 return false;
2272 }
2273 case BUILT_IN_FREXP:
2274 case BUILT_IN_FREXPF:
2275 case BUILT_IN_FREXPL:
2276 case BUILT_IN_MODF:
2277 case BUILT_IN_MODFF:
2278 case BUILT_IN_MODFL:
2279 {
2280 tree out = gimple_call_arg (call, 1);
2281 return ptr_deref_may_alias_ref_p_1 (out, ref);
2282 }
2283 case BUILT_IN_REMQUO:
2284 case BUILT_IN_REMQUOF:
2285 case BUILT_IN_REMQUOL:
2286 {
2287 tree out = gimple_call_arg (call, 2);
2288 if (ptr_deref_may_alias_ref_p_1 (out, ref))
2289 return true;
2290 if (flag_errno_math)
2291 break;
2292 return false;
2293 }
2294 case BUILT_IN_SINCOS:
2295 case BUILT_IN_SINCOSF:
2296 case BUILT_IN_SINCOSL:
2297 {
2298 tree sin = gimple_call_arg (call, 1);
2299 tree cos = gimple_call_arg (call, 2);
2300 return (ptr_deref_may_alias_ref_p_1 (sin, ref)
2301 || ptr_deref_may_alias_ref_p_1 (cos, ref));
2302 }
2303 /* __sync_* builtins and some OpenMP builtins act as threading
2304 barriers. */
2305 #undef DEF_SYNC_BUILTIN
2306 #define DEF_SYNC_BUILTIN(ENUM, NAME, TYPE, ATTRS) case ENUM:
2307 #include "sync-builtins.def"
2308 #undef DEF_SYNC_BUILTIN
2309 case BUILT_IN_GOMP_ATOMIC_START:
2310 case BUILT_IN_GOMP_ATOMIC_END:
2311 case BUILT_IN_GOMP_BARRIER:
2312 case BUILT_IN_GOMP_BARRIER_CANCEL:
2313 case BUILT_IN_GOMP_TASKWAIT:
2314 case BUILT_IN_GOMP_TASKGROUP_END:
2315 case BUILT_IN_GOMP_CRITICAL_START:
2316 case BUILT_IN_GOMP_CRITICAL_END:
2317 case BUILT_IN_GOMP_CRITICAL_NAME_START:
2318 case BUILT_IN_GOMP_CRITICAL_NAME_END:
2319 case BUILT_IN_GOMP_LOOP_END:
2320 case BUILT_IN_GOMP_LOOP_END_CANCEL:
2321 case BUILT_IN_GOMP_ORDERED_START:
2322 case BUILT_IN_GOMP_ORDERED_END:
2323 case BUILT_IN_GOMP_SECTIONS_END:
2324 case BUILT_IN_GOMP_SECTIONS_END_CANCEL:
2325 case BUILT_IN_GOMP_SINGLE_COPY_START:
2326 case BUILT_IN_GOMP_SINGLE_COPY_END:
2327 return true;
2328 default:
2329 /* Fallthru to general call handling. */;
2330 }
2331
2332 /* Check if base is a global static variable that is not written
2333 by the function. */
2334 if (callee != NULL_TREE && VAR_P (base) && TREE_STATIC (base))
2335 {
2336 struct cgraph_node *node = cgraph_node::get (callee);
2337 bitmap not_written;
2338
2339 if (node
2340 && (not_written = ipa_reference_get_not_written_global (node))
2341 && bitmap_bit_p (not_written, ipa_reference_var_uid (base)))
2342 return false;
2343 }
2344
2345 /* Check if the base variable is call-clobbered. */
2346 if (DECL_P (base))
2347 return pt_solution_includes (gimple_call_clobber_set (call), base);
2348 else if ((TREE_CODE (base) == MEM_REF
2349 || TREE_CODE (base) == TARGET_MEM_REF)
2350 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
2351 {
2352 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (TREE_OPERAND (base, 0));
2353 if (!pi)
2354 return true;
2355
2356 return pt_solutions_intersect (gimple_call_clobber_set (call), &pi->pt);
2357 }
2358
2359 return true;
2360 }
2361
2362 /* If the call in statement CALL may clobber the memory reference REF
2363 return true, otherwise return false. */
2364
2365 bool
2366 call_may_clobber_ref_p (gcall *call, tree ref)
2367 {
2368 bool res;
2369 ao_ref r;
2370 ao_ref_init (&r, ref);
2371 res = call_may_clobber_ref_p_1 (call, &r);
2372 if (res)
2373 ++alias_stats.call_may_clobber_ref_p_may_alias;
2374 else
2375 ++alias_stats.call_may_clobber_ref_p_no_alias;
2376 return res;
2377 }
2378
2379
2380 /* If the statement STMT may clobber the memory reference REF return true,
2381 otherwise return false. */
2382
2383 bool
2384 stmt_may_clobber_ref_p_1 (gimple *stmt, ao_ref *ref, bool tbaa_p)
2385 {
2386 if (is_gimple_call (stmt))
2387 {
2388 tree lhs = gimple_call_lhs (stmt);
2389 if (lhs
2390 && TREE_CODE (lhs) != SSA_NAME)
2391 {
2392 ao_ref r;
2393 ao_ref_init (&r, lhs);
2394 if (refs_may_alias_p_1 (ref, &r, tbaa_p))
2395 return true;
2396 }
2397
2398 return call_may_clobber_ref_p_1 (as_a <gcall *> (stmt), ref);
2399 }
2400 else if (gimple_assign_single_p (stmt))
2401 {
2402 tree lhs = gimple_assign_lhs (stmt);
2403 if (TREE_CODE (lhs) != SSA_NAME)
2404 {
2405 ao_ref r;
2406 ao_ref_init (&r, lhs);
2407 return refs_may_alias_p_1 (ref, &r, tbaa_p);
2408 }
2409 }
2410 else if (gimple_code (stmt) == GIMPLE_ASM)
2411 return true;
2412
2413 return false;
2414 }
2415
2416 bool
2417 stmt_may_clobber_ref_p (gimple *stmt, tree ref, bool tbaa_p)
2418 {
2419 ao_ref r;
2420 ao_ref_init (&r, ref);
2421 return stmt_may_clobber_ref_p_1 (stmt, &r, tbaa_p);
2422 }
2423
2424 /* Return true if store1 and store2 described by corresponding tuples
2425 <BASE, OFFSET, SIZE, MAX_SIZE> have the same size and store to the same
2426 address. */
2427
2428 static bool
2429 same_addr_size_stores_p (tree base1, poly_int64 offset1, poly_int64 size1,
2430 poly_int64 max_size1,
2431 tree base2, poly_int64 offset2, poly_int64 size2,
2432 poly_int64 max_size2)
2433 {
2434 /* Offsets need to be 0. */
2435 if (maybe_ne (offset1, 0)
2436 || maybe_ne (offset2, 0))
2437 return false;
2438
2439 bool base1_obj_p = SSA_VAR_P (base1);
2440 bool base2_obj_p = SSA_VAR_P (base2);
2441
2442 /* We need one object. */
2443 if (base1_obj_p == base2_obj_p)
2444 return false;
2445 tree obj = base1_obj_p ? base1 : base2;
2446
2447 /* And we need one MEM_REF. */
2448 bool base1_memref_p = TREE_CODE (base1) == MEM_REF;
2449 bool base2_memref_p = TREE_CODE (base2) == MEM_REF;
2450 if (base1_memref_p == base2_memref_p)
2451 return false;
2452 tree memref = base1_memref_p ? base1 : base2;
2453
2454 /* Sizes need to be valid. */
2455 if (!known_size_p (max_size1)
2456 || !known_size_p (max_size2)
2457 || !known_size_p (size1)
2458 || !known_size_p (size2))
2459 return false;
2460
2461 /* Max_size needs to match size. */
2462 if (maybe_ne (max_size1, size1)
2463 || maybe_ne (max_size2, size2))
2464 return false;
2465
2466 /* Sizes need to match. */
2467 if (maybe_ne (size1, size2))
2468 return false;
2469
2470
2471 /* Check that memref is a store to pointer with singleton points-to info. */
2472 if (!integer_zerop (TREE_OPERAND (memref, 1)))
2473 return false;
2474 tree ptr = TREE_OPERAND (memref, 0);
2475 if (TREE_CODE (ptr) != SSA_NAME)
2476 return false;
2477 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
2478 unsigned int pt_uid;
2479 if (pi == NULL
2480 || !pt_solution_singleton_or_null_p (&pi->pt, &pt_uid))
2481 return false;
2482
2483 /* Be conservative with non-call exceptions when the address might
2484 be NULL. */
2485 if (cfun->can_throw_non_call_exceptions && pi->pt.null)
2486 return false;
2487
2488 /* Check that ptr points relative to obj. */
2489 unsigned int obj_uid = DECL_PT_UID (obj);
2490 if (obj_uid != pt_uid)
2491 return false;
2492
2493 /* Check that the object size is the same as the store size. That ensures us
2494 that ptr points to the start of obj. */
2495 return (DECL_SIZE (obj)
2496 && poly_int_tree_p (DECL_SIZE (obj))
2497 && known_eq (wi::to_poly_offset (DECL_SIZE (obj)), size1));
2498 }
2499
2500 /* If STMT kills the memory reference REF return true, otherwise
2501 return false. */
2502
2503 bool
2504 stmt_kills_ref_p (gimple *stmt, ao_ref *ref)
2505 {
2506 if (!ao_ref_base (ref))
2507 return false;
2508
2509 if (gimple_has_lhs (stmt)
2510 && TREE_CODE (gimple_get_lhs (stmt)) != SSA_NAME
2511 /* The assignment is not necessarily carried out if it can throw
2512 and we can catch it in the current function where we could inspect
2513 the previous value.
2514 ??? We only need to care about the RHS throwing. For aggregate
2515 assignments or similar calls and non-call exceptions the LHS
2516 might throw as well. */
2517 && !stmt_can_throw_internal (cfun, stmt))
2518 {
2519 tree lhs = gimple_get_lhs (stmt);
2520 /* If LHS is literally a base of the access we are done. */
2521 if (ref->ref)
2522 {
2523 tree base = ref->ref;
2524 tree innermost_dropped_array_ref = NULL_TREE;
2525 if (handled_component_p (base))
2526 {
2527 tree saved_lhs0 = NULL_TREE;
2528 if (handled_component_p (lhs))
2529 {
2530 saved_lhs0 = TREE_OPERAND (lhs, 0);
2531 TREE_OPERAND (lhs, 0) = integer_zero_node;
2532 }
2533 do
2534 {
2535 /* Just compare the outermost handled component, if
2536 they are equal we have found a possible common
2537 base. */
2538 tree saved_base0 = TREE_OPERAND (base, 0);
2539 TREE_OPERAND (base, 0) = integer_zero_node;
2540 bool res = operand_equal_p (lhs, base, 0);
2541 TREE_OPERAND (base, 0) = saved_base0;
2542 if (res)
2543 break;
2544 /* Remember if we drop an array-ref that we need to
2545 double-check not being at struct end. */
2546 if (TREE_CODE (base) == ARRAY_REF
2547 || TREE_CODE (base) == ARRAY_RANGE_REF)
2548 innermost_dropped_array_ref = base;
2549 /* Otherwise drop handled components of the access. */
2550 base = saved_base0;
2551 }
2552 while (handled_component_p (base));
2553 if (saved_lhs0)
2554 TREE_OPERAND (lhs, 0) = saved_lhs0;
2555 }
2556 /* Finally check if the lhs has the same address and size as the
2557 base candidate of the access. Watch out if we have dropped
2558 an array-ref that was at struct end, this means ref->ref may
2559 be outside of the TYPE_SIZE of its base. */
2560 if ((! innermost_dropped_array_ref
2561 || ! array_at_struct_end_p (innermost_dropped_array_ref))
2562 && (lhs == base
2563 || (((TYPE_SIZE (TREE_TYPE (lhs))
2564 == TYPE_SIZE (TREE_TYPE (base)))
2565 || (TYPE_SIZE (TREE_TYPE (lhs))
2566 && TYPE_SIZE (TREE_TYPE (base))
2567 && operand_equal_p (TYPE_SIZE (TREE_TYPE (lhs)),
2568 TYPE_SIZE (TREE_TYPE (base)),
2569 0)))
2570 && operand_equal_p (lhs, base,
2571 OEP_ADDRESS_OF
2572 | OEP_MATCH_SIDE_EFFECTS))))
2573 return true;
2574 }
2575
2576 /* Now look for non-literal equal bases with the restriction of
2577 handling constant offset and size. */
2578 /* For a must-alias check we need to be able to constrain
2579 the access properly. */
2580 if (!ref->max_size_known_p ())
2581 return false;
2582 poly_int64 size, offset, max_size, ref_offset = ref->offset;
2583 bool reverse;
2584 tree base = get_ref_base_and_extent (lhs, &offset, &size, &max_size,
2585 &reverse);
2586 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
2587 so base == ref->base does not always hold. */
2588 if (base != ref->base)
2589 {
2590 /* Try using points-to info. */
2591 if (same_addr_size_stores_p (base, offset, size, max_size, ref->base,
2592 ref->offset, ref->size, ref->max_size))
2593 return true;
2594
2595 /* If both base and ref->base are MEM_REFs, only compare the
2596 first operand, and if the second operand isn't equal constant,
2597 try to add the offsets into offset and ref_offset. */
2598 if (TREE_CODE (base) == MEM_REF && TREE_CODE (ref->base) == MEM_REF
2599 && TREE_OPERAND (base, 0) == TREE_OPERAND (ref->base, 0))
2600 {
2601 if (!tree_int_cst_equal (TREE_OPERAND (base, 1),
2602 TREE_OPERAND (ref->base, 1)))
2603 {
2604 poly_offset_int off1 = mem_ref_offset (base);
2605 off1 <<= LOG2_BITS_PER_UNIT;
2606 off1 += offset;
2607 poly_offset_int off2 = mem_ref_offset (ref->base);
2608 off2 <<= LOG2_BITS_PER_UNIT;
2609 off2 += ref_offset;
2610 if (!off1.to_shwi (&offset) || !off2.to_shwi (&ref_offset))
2611 size = -1;
2612 }
2613 }
2614 else
2615 size = -1;
2616 }
2617 /* For a must-alias check we need to be able to constrain
2618 the access properly. */
2619 if (known_eq (size, max_size)
2620 && known_subrange_p (ref_offset, ref->max_size, offset, size))
2621 return true;
2622 }
2623
2624 if (is_gimple_call (stmt))
2625 {
2626 tree callee = gimple_call_fndecl (stmt);
2627 if (callee != NULL_TREE
2628 && gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
2629 switch (DECL_FUNCTION_CODE (callee))
2630 {
2631 case BUILT_IN_FREE:
2632 {
2633 tree ptr = gimple_call_arg (stmt, 0);
2634 tree base = ao_ref_base (ref);
2635 if (base && TREE_CODE (base) == MEM_REF
2636 && TREE_OPERAND (base, 0) == ptr)
2637 return true;
2638 break;
2639 }
2640
2641 case BUILT_IN_MEMCPY:
2642 case BUILT_IN_MEMPCPY:
2643 case BUILT_IN_MEMMOVE:
2644 case BUILT_IN_MEMSET:
2645 case BUILT_IN_MEMCPY_CHK:
2646 case BUILT_IN_MEMPCPY_CHK:
2647 case BUILT_IN_MEMMOVE_CHK:
2648 case BUILT_IN_MEMSET_CHK:
2649 case BUILT_IN_STRNCPY:
2650 case BUILT_IN_STPNCPY:
2651 {
2652 /* For a must-alias check we need to be able to constrain
2653 the access properly. */
2654 if (!ref->max_size_known_p ())
2655 return false;
2656 tree dest = gimple_call_arg (stmt, 0);
2657 tree len = gimple_call_arg (stmt, 2);
2658 if (!poly_int_tree_p (len))
2659 return false;
2660 tree rbase = ref->base;
2661 poly_offset_int roffset = ref->offset;
2662 ao_ref dref;
2663 ao_ref_init_from_ptr_and_size (&dref, dest, len);
2664 tree base = ao_ref_base (&dref);
2665 poly_offset_int offset = dref.offset;
2666 if (!base || !known_size_p (dref.size))
2667 return false;
2668 if (TREE_CODE (base) == MEM_REF)
2669 {
2670 if (TREE_CODE (rbase) != MEM_REF)
2671 return false;
2672 // Compare pointers.
2673 offset += mem_ref_offset (base) << LOG2_BITS_PER_UNIT;
2674 roffset += mem_ref_offset (rbase) << LOG2_BITS_PER_UNIT;
2675 base = TREE_OPERAND (base, 0);
2676 rbase = TREE_OPERAND (rbase, 0);
2677 }
2678 if (base == rbase
2679 && known_subrange_p (roffset, ref->max_size, offset,
2680 wi::to_poly_offset (len)
2681 << LOG2_BITS_PER_UNIT))
2682 return true;
2683 break;
2684 }
2685
2686 case BUILT_IN_VA_END:
2687 {
2688 tree ptr = gimple_call_arg (stmt, 0);
2689 if (TREE_CODE (ptr) == ADDR_EXPR)
2690 {
2691 tree base = ao_ref_base (ref);
2692 if (TREE_OPERAND (ptr, 0) == base)
2693 return true;
2694 }
2695 break;
2696 }
2697
2698 default:;
2699 }
2700 }
2701 return false;
2702 }
2703
2704 bool
2705 stmt_kills_ref_p (gimple *stmt, tree ref)
2706 {
2707 ao_ref r;
2708 ao_ref_init (&r, ref);
2709 return stmt_kills_ref_p (stmt, &r);
2710 }
2711
2712
2713 /* Walk the virtual use-def chain of VUSE until hitting the virtual operand
2714 TARGET or a statement clobbering the memory reference REF in which
2715 case false is returned. The walk starts with VUSE, one argument of PHI. */
2716
2717 static bool
2718 maybe_skip_until (gimple *phi, tree &target, basic_block target_bb,
2719 ao_ref *ref, tree vuse, unsigned int &limit, bitmap *visited,
2720 bool abort_on_visited,
2721 void *(*translate)(ao_ref *, tree, void *, bool *),
2722 void *data)
2723 {
2724 basic_block bb = gimple_bb (phi);
2725
2726 if (!*visited)
2727 *visited = BITMAP_ALLOC (NULL);
2728
2729 bitmap_set_bit (*visited, SSA_NAME_VERSION (PHI_RESULT (phi)));
2730
2731 /* Walk until we hit the target. */
2732 while (vuse != target)
2733 {
2734 gimple *def_stmt = SSA_NAME_DEF_STMT (vuse);
2735 /* If we are searching for the target VUSE by walking up to
2736 TARGET_BB dominating the original PHI we are finished once
2737 we reach a default def or a definition in a block dominating
2738 that block. Update TARGET and return. */
2739 if (!target
2740 && (gimple_nop_p (def_stmt)
2741 || dominated_by_p (CDI_DOMINATORS,
2742 target_bb, gimple_bb (def_stmt))))
2743 {
2744 target = vuse;
2745 return true;
2746 }
2747
2748 /* Recurse for PHI nodes. */
2749 if (gimple_code (def_stmt) == GIMPLE_PHI)
2750 {
2751 /* An already visited PHI node ends the walk successfully. */
2752 if (bitmap_bit_p (*visited, SSA_NAME_VERSION (PHI_RESULT (def_stmt))))
2753 return !abort_on_visited;
2754 vuse = get_continuation_for_phi (def_stmt, ref, limit,
2755 visited, abort_on_visited,
2756 translate, data);
2757 if (!vuse)
2758 return false;
2759 continue;
2760 }
2761 else if (gimple_nop_p (def_stmt))
2762 return false;
2763 else
2764 {
2765 /* A clobbering statement or the end of the IL ends it failing. */
2766 if ((int)limit <= 0)
2767 return false;
2768 --limit;
2769 if (stmt_may_clobber_ref_p_1 (def_stmt, ref))
2770 {
2771 bool disambiguate_only = true;
2772 if (translate
2773 && (*translate) (ref, vuse, data, &disambiguate_only) == NULL)
2774 ;
2775 else
2776 return false;
2777 }
2778 }
2779 /* If we reach a new basic-block see if we already skipped it
2780 in a previous walk that ended successfully. */
2781 if (gimple_bb (def_stmt) != bb)
2782 {
2783 if (!bitmap_set_bit (*visited, SSA_NAME_VERSION (vuse)))
2784 return !abort_on_visited;
2785 bb = gimple_bb (def_stmt);
2786 }
2787 vuse = gimple_vuse (def_stmt);
2788 }
2789 return true;
2790 }
2791
2792
2793 /* Starting from a PHI node for the virtual operand of the memory reference
2794 REF find a continuation virtual operand that allows to continue walking
2795 statements dominating PHI skipping only statements that cannot possibly
2796 clobber REF. Decrements LIMIT for each alias disambiguation done
2797 and aborts the walk, returning NULL_TREE if it reaches zero.
2798 Returns NULL_TREE if no suitable virtual operand can be found. */
2799
2800 tree
2801 get_continuation_for_phi (gimple *phi, ao_ref *ref,
2802 unsigned int &limit, bitmap *visited,
2803 bool abort_on_visited,
2804 void *(*translate)(ao_ref *, tree, void *, bool *),
2805 void *data)
2806 {
2807 unsigned nargs = gimple_phi_num_args (phi);
2808
2809 /* Through a single-argument PHI we can simply look through. */
2810 if (nargs == 1)
2811 return PHI_ARG_DEF (phi, 0);
2812
2813 /* For two or more arguments try to pairwise skip non-aliasing code
2814 until we hit the phi argument definition that dominates the other one. */
2815 basic_block phi_bb = gimple_bb (phi);
2816 tree arg0, arg1;
2817 unsigned i;
2818
2819 /* Find a candidate for the virtual operand which definition
2820 dominates those of all others. */
2821 /* First look if any of the args themselves satisfy this. */
2822 for (i = 0; i < nargs; ++i)
2823 {
2824 arg0 = PHI_ARG_DEF (phi, i);
2825 if (SSA_NAME_IS_DEFAULT_DEF (arg0))
2826 break;
2827 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (arg0));
2828 if (def_bb != phi_bb
2829 && dominated_by_p (CDI_DOMINATORS, phi_bb, def_bb))
2830 break;
2831 arg0 = NULL_TREE;
2832 }
2833 /* If not, look if we can reach such candidate by walking defs
2834 until we hit the immediate dominator. maybe_skip_until will
2835 do that for us. */
2836 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, phi_bb);
2837
2838 /* Then check against the (to be) found candidate. */
2839 for (i = 0; i < nargs; ++i)
2840 {
2841 arg1 = PHI_ARG_DEF (phi, i);
2842 if (arg1 == arg0)
2843 ;
2844 else if (! maybe_skip_until (phi, arg0, dom, ref, arg1, limit, visited,
2845 abort_on_visited,
2846 /* Do not translate when walking over
2847 backedges. */
2848 dominated_by_p
2849 (CDI_DOMINATORS,
2850 gimple_bb (SSA_NAME_DEF_STMT (arg1)),
2851 phi_bb)
2852 ? NULL : translate, data))
2853 return NULL_TREE;
2854 }
2855
2856 return arg0;
2857 }
2858
2859 /* Based on the memory reference REF and its virtual use VUSE call
2860 WALKER for each virtual use that is equivalent to VUSE, including VUSE
2861 itself. That is, for each virtual use for which its defining statement
2862 does not clobber REF.
2863
2864 WALKER is called with REF, the current virtual use and DATA. If
2865 WALKER returns non-NULL the walk stops and its result is returned.
2866 At the end of a non-successful walk NULL is returned.
2867
2868 TRANSLATE if non-NULL is called with a pointer to REF, the virtual
2869 use which definition is a statement that may clobber REF and DATA.
2870 If TRANSLATE returns (void *)-1 the walk stops and NULL is returned.
2871 If TRANSLATE returns non-NULL the walk stops and its result is returned.
2872 If TRANSLATE returns NULL the walk continues and TRANSLATE is supposed
2873 to adjust REF and *DATA to make that valid.
2874
2875 VALUEIZE if non-NULL is called with the next VUSE that is considered
2876 and return value is substituted for that. This can be used to
2877 implement optimistic value-numbering for example. Note that the
2878 VUSE argument is assumed to be valueized already.
2879
2880 LIMIT specifies the number of alias queries we are allowed to do,
2881 the walk stops when it reaches zero and NULL is returned. LIMIT
2882 is decremented by the number of alias queries (plus adjustments
2883 done by the callbacks) upon return.
2884
2885 TODO: Cache the vector of equivalent vuses per ref, vuse pair. */
2886
2887 void *
2888 walk_non_aliased_vuses (ao_ref *ref, tree vuse,
2889 void *(*walker)(ao_ref *, tree, void *),
2890 void *(*translate)(ao_ref *, tree, void *, bool *),
2891 tree (*valueize)(tree),
2892 unsigned &limit, void *data)
2893 {
2894 bitmap visited = NULL;
2895 void *res;
2896 bool translated = false;
2897
2898 timevar_push (TV_ALIAS_STMT_WALK);
2899
2900 do
2901 {
2902 gimple *def_stmt;
2903
2904 /* ??? Do we want to account this to TV_ALIAS_STMT_WALK? */
2905 res = (*walker) (ref, vuse, data);
2906 /* Abort walk. */
2907 if (res == (void *)-1)
2908 {
2909 res = NULL;
2910 break;
2911 }
2912 /* Lookup succeeded. */
2913 else if (res != NULL)
2914 break;
2915
2916 if (valueize)
2917 {
2918 vuse = valueize (vuse);
2919 if (!vuse)
2920 {
2921 res = NULL;
2922 break;
2923 }
2924 }
2925 def_stmt = SSA_NAME_DEF_STMT (vuse);
2926 if (gimple_nop_p (def_stmt))
2927 break;
2928 else if (gimple_code (def_stmt) == GIMPLE_PHI)
2929 vuse = get_continuation_for_phi (def_stmt, ref, limit,
2930 &visited, translated, translate, data);
2931 else
2932 {
2933 if ((int)limit <= 0)
2934 {
2935 res = NULL;
2936 break;
2937 }
2938 if (stmt_may_clobber_ref_p_1 (def_stmt, ref))
2939 {
2940 if (!translate)
2941 break;
2942 bool disambiguate_only = false;
2943 res = (*translate) (ref, vuse, data, &disambiguate_only);
2944 /* Failed lookup and translation. */
2945 if (res == (void *)-1)
2946 {
2947 res = NULL;
2948 break;
2949 }
2950 /* Lookup succeeded. */
2951 else if (res != NULL)
2952 break;
2953 /* Translation succeeded, continue walking. */
2954 translated = translated || !disambiguate_only;
2955 }
2956 vuse = gimple_vuse (def_stmt);
2957 }
2958 }
2959 while (vuse);
2960
2961 if (visited)
2962 BITMAP_FREE (visited);
2963
2964 timevar_pop (TV_ALIAS_STMT_WALK);
2965
2966 return res;
2967 }
2968
2969
2970 /* Based on the memory reference REF call WALKER for each vdef which
2971 defining statement may clobber REF, starting with VDEF. If REF
2972 is NULL_TREE, each defining statement is visited.
2973
2974 WALKER is called with REF, the current vdef and DATA. If WALKER
2975 returns true the walk is stopped, otherwise it continues.
2976
2977 If function entry is reached, FUNCTION_ENTRY_REACHED is set to true.
2978 The pointer may be NULL and then we do not track this information.
2979
2980 At PHI nodes walk_aliased_vdefs forks into one walk for reach
2981 PHI argument (but only one walk continues on merge points), the
2982 return value is true if any of the walks was successful.
2983
2984 The function returns the number of statements walked or -1 if
2985 LIMIT stmts were walked and the walk was aborted at this point.
2986 If LIMIT is zero the walk is not aborted. */
2987
2988 static int
2989 walk_aliased_vdefs_1 (ao_ref *ref, tree vdef,
2990 bool (*walker)(ao_ref *, tree, void *), void *data,
2991 bitmap *visited, unsigned int cnt,
2992 bool *function_entry_reached, unsigned limit)
2993 {
2994 do
2995 {
2996 gimple *def_stmt = SSA_NAME_DEF_STMT (vdef);
2997
2998 if (*visited
2999 && !bitmap_set_bit (*visited, SSA_NAME_VERSION (vdef)))
3000 return cnt;
3001
3002 if (gimple_nop_p (def_stmt))
3003 {
3004 if (function_entry_reached)
3005 *function_entry_reached = true;
3006 return cnt;
3007 }
3008 else if (gimple_code (def_stmt) == GIMPLE_PHI)
3009 {
3010 unsigned i;
3011 if (!*visited)
3012 *visited = BITMAP_ALLOC (NULL);
3013 for (i = 0; i < gimple_phi_num_args (def_stmt); ++i)
3014 {
3015 int res = walk_aliased_vdefs_1 (ref,
3016 gimple_phi_arg_def (def_stmt, i),
3017 walker, data, visited, cnt,
3018 function_entry_reached, limit);
3019 if (res == -1)
3020 return -1;
3021 cnt = res;
3022 }
3023 return cnt;
3024 }
3025
3026 /* ??? Do we want to account this to TV_ALIAS_STMT_WALK? */
3027 cnt++;
3028 if (cnt == limit)
3029 return -1;
3030 if ((!ref
3031 || stmt_may_clobber_ref_p_1 (def_stmt, ref))
3032 && (*walker) (ref, vdef, data))
3033 return cnt;
3034
3035 vdef = gimple_vuse (def_stmt);
3036 }
3037 while (1);
3038 }
3039
3040 int
3041 walk_aliased_vdefs (ao_ref *ref, tree vdef,
3042 bool (*walker)(ao_ref *, tree, void *), void *data,
3043 bitmap *visited,
3044 bool *function_entry_reached, unsigned int limit)
3045 {
3046 bitmap local_visited = NULL;
3047 int ret;
3048
3049 timevar_push (TV_ALIAS_STMT_WALK);
3050
3051 if (function_entry_reached)
3052 *function_entry_reached = false;
3053
3054 ret = walk_aliased_vdefs_1 (ref, vdef, walker, data,
3055 visited ? visited : &local_visited, 0,
3056 function_entry_reached, limit);
3057 if (local_visited)
3058 BITMAP_FREE (local_visited);
3059
3060 timevar_pop (TV_ALIAS_STMT_WALK);
3061
3062 return ret;
3063 }
3064