tree-ssa-alias.c (nonoverlapping_component_refs_since_match_p): Rename to ...
[gcc.git] / gcc / tree-ssa-alias.c
1 /* Alias analysis for trees.
2 Copyright (C) 2004-2019 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "timevar.h" /* for TV_ALIAS_STMT_WALK */
30 #include "ssa.h"
31 #include "cgraph.h"
32 #include "tree-pretty-print.h"
33 #include "alias.h"
34 #include "fold-const.h"
35 #include "langhooks.h"
36 #include "dumpfile.h"
37 #include "tree-eh.h"
38 #include "tree-dfa.h"
39 #include "ipa-reference.h"
40 #include "varasm.h"
41
42 /* Broad overview of how alias analysis on gimple works:
43
44 Statements clobbering or using memory are linked through the
45 virtual operand factored use-def chain. The virtual operand
46 is unique per function, its symbol is accessible via gimple_vop (cfun).
47 Virtual operands are used for efficiently walking memory statements
48 in the gimple IL and are useful for things like value-numbering as
49 a generation count for memory references.
50
51 SSA_NAME pointers may have associated points-to information
52 accessible via the SSA_NAME_PTR_INFO macro. Flow-insensitive
53 points-to information is (re-)computed by the TODO_rebuild_alias
54 pass manager todo. Points-to information is also used for more
55 precise tracking of call-clobbered and call-used variables and
56 related disambiguations.
57
58 This file contains functions for disambiguating memory references,
59 the so called alias-oracle and tools for walking of the gimple IL.
60
61 The main alias-oracle entry-points are
62
63 bool stmt_may_clobber_ref_p (gimple *, tree)
64
65 This function queries if a statement may invalidate (parts of)
66 the memory designated by the reference tree argument.
67
68 bool ref_maybe_used_by_stmt_p (gimple *, tree)
69
70 This function queries if a statement may need (parts of) the
71 memory designated by the reference tree argument.
72
73 There are variants of these functions that only handle the call
74 part of a statement, call_may_clobber_ref_p and ref_maybe_used_by_call_p.
75 Note that these do not disambiguate against a possible call lhs.
76
77 bool refs_may_alias_p (tree, tree)
78
79 This function tries to disambiguate two reference trees.
80
81 bool ptr_deref_may_alias_global_p (tree)
82
83 This function queries if dereferencing a pointer variable may
84 alias global memory.
85
86 More low-level disambiguators are available and documented in
87 this file. Low-level disambiguators dealing with points-to
88 information are in tree-ssa-structalias.c. */
89
90 static int nonoverlapping_refs_since_match_p (tree, tree, tree, tree, bool);
91 static bool nonoverlapping_component_refs_p (const_tree, const_tree);
92
93 /* Query statistics for the different low-level disambiguators.
94 A high-level query may trigger multiple of them. */
95
96 static struct {
97 unsigned HOST_WIDE_INT refs_may_alias_p_may_alias;
98 unsigned HOST_WIDE_INT refs_may_alias_p_no_alias;
99 unsigned HOST_WIDE_INT ref_maybe_used_by_call_p_may_alias;
100 unsigned HOST_WIDE_INT ref_maybe_used_by_call_p_no_alias;
101 unsigned HOST_WIDE_INT call_may_clobber_ref_p_may_alias;
102 unsigned HOST_WIDE_INT call_may_clobber_ref_p_no_alias;
103 unsigned HOST_WIDE_INT aliasing_component_refs_p_may_alias;
104 unsigned HOST_WIDE_INT aliasing_component_refs_p_no_alias;
105 unsigned HOST_WIDE_INT nonoverlapping_component_refs_p_may_alias;
106 unsigned HOST_WIDE_INT nonoverlapping_component_refs_p_no_alias;
107 unsigned HOST_WIDE_INT nonoverlapping_refs_since_match_p_may_alias;
108 unsigned HOST_WIDE_INT nonoverlapping_refs_since_match_p_must_overlap;
109 unsigned HOST_WIDE_INT nonoverlapping_refs_since_match_p_no_alias;
110 } alias_stats;
111
112 void
113 dump_alias_stats (FILE *s)
114 {
115 fprintf (s, "\nAlias oracle query stats:\n");
116 fprintf (s, " refs_may_alias_p: "
117 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
118 HOST_WIDE_INT_PRINT_DEC" queries\n",
119 alias_stats.refs_may_alias_p_no_alias,
120 alias_stats.refs_may_alias_p_no_alias
121 + alias_stats.refs_may_alias_p_may_alias);
122 fprintf (s, " ref_maybe_used_by_call_p: "
123 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
124 HOST_WIDE_INT_PRINT_DEC" queries\n",
125 alias_stats.ref_maybe_used_by_call_p_no_alias,
126 alias_stats.refs_may_alias_p_no_alias
127 + alias_stats.ref_maybe_used_by_call_p_may_alias);
128 fprintf (s, " call_may_clobber_ref_p: "
129 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
130 HOST_WIDE_INT_PRINT_DEC" queries\n",
131 alias_stats.call_may_clobber_ref_p_no_alias,
132 alias_stats.call_may_clobber_ref_p_no_alias
133 + alias_stats.call_may_clobber_ref_p_may_alias);
134 fprintf (s, " nonoverlapping_component_refs_p: "
135 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
136 HOST_WIDE_INT_PRINT_DEC" queries\n",
137 alias_stats.nonoverlapping_component_refs_p_no_alias,
138 alias_stats.nonoverlapping_component_refs_p_no_alias
139 + alias_stats.nonoverlapping_component_refs_p_may_alias);
140 fprintf (s, " nonoverlapping_refs_since_match_p: "
141 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
142 HOST_WIDE_INT_PRINT_DEC" must overlaps, "
143 HOST_WIDE_INT_PRINT_DEC" queries\n",
144 alias_stats.nonoverlapping_refs_since_match_p_no_alias,
145 alias_stats.nonoverlapping_refs_since_match_p_must_overlap,
146 alias_stats.nonoverlapping_refs_since_match_p_no_alias
147 + alias_stats.nonoverlapping_refs_since_match_p_may_alias
148 + alias_stats.nonoverlapping_refs_since_match_p_must_overlap);
149 fprintf (s, " aliasing_component_refs_p: "
150 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
151 HOST_WIDE_INT_PRINT_DEC" queries\n",
152 alias_stats.aliasing_component_refs_p_no_alias,
153 alias_stats.aliasing_component_refs_p_no_alias
154 + alias_stats.aliasing_component_refs_p_may_alias);
155 dump_alias_stats_in_alias_c (s);
156 }
157
158
159 /* Return true, if dereferencing PTR may alias with a global variable. */
160
161 bool
162 ptr_deref_may_alias_global_p (tree ptr)
163 {
164 struct ptr_info_def *pi;
165
166 /* If we end up with a pointer constant here that may point
167 to global memory. */
168 if (TREE_CODE (ptr) != SSA_NAME)
169 return true;
170
171 pi = SSA_NAME_PTR_INFO (ptr);
172
173 /* If we do not have points-to information for this variable,
174 we have to punt. */
175 if (!pi)
176 return true;
177
178 /* ??? This does not use TBAA to prune globals ptr may not access. */
179 return pt_solution_includes_global (&pi->pt);
180 }
181
182 /* Return true if dereferencing PTR may alias DECL.
183 The caller is responsible for applying TBAA to see if PTR
184 may access DECL at all. */
185
186 static bool
187 ptr_deref_may_alias_decl_p (tree ptr, tree decl)
188 {
189 struct ptr_info_def *pi;
190
191 /* Conversions are irrelevant for points-to information and
192 data-dependence analysis can feed us those. */
193 STRIP_NOPS (ptr);
194
195 /* Anything we do not explicilty handle aliases. */
196 if ((TREE_CODE (ptr) != SSA_NAME
197 && TREE_CODE (ptr) != ADDR_EXPR
198 && TREE_CODE (ptr) != POINTER_PLUS_EXPR)
199 || !POINTER_TYPE_P (TREE_TYPE (ptr))
200 || (!VAR_P (decl)
201 && TREE_CODE (decl) != PARM_DECL
202 && TREE_CODE (decl) != RESULT_DECL))
203 return true;
204
205 /* Disregard pointer offsetting. */
206 if (TREE_CODE (ptr) == POINTER_PLUS_EXPR)
207 {
208 do
209 {
210 ptr = TREE_OPERAND (ptr, 0);
211 }
212 while (TREE_CODE (ptr) == POINTER_PLUS_EXPR);
213 return ptr_deref_may_alias_decl_p (ptr, decl);
214 }
215
216 /* ADDR_EXPR pointers either just offset another pointer or directly
217 specify the pointed-to set. */
218 if (TREE_CODE (ptr) == ADDR_EXPR)
219 {
220 tree base = get_base_address (TREE_OPERAND (ptr, 0));
221 if (base
222 && (TREE_CODE (base) == MEM_REF
223 || TREE_CODE (base) == TARGET_MEM_REF))
224 ptr = TREE_OPERAND (base, 0);
225 else if (base
226 && DECL_P (base))
227 return compare_base_decls (base, decl) != 0;
228 else if (base
229 && CONSTANT_CLASS_P (base))
230 return false;
231 else
232 return true;
233 }
234
235 /* Non-aliased variables cannot be pointed to. */
236 if (!may_be_aliased (decl))
237 return false;
238
239 /* If we do not have useful points-to information for this pointer
240 we cannot disambiguate anything else. */
241 pi = SSA_NAME_PTR_INFO (ptr);
242 if (!pi)
243 return true;
244
245 return pt_solution_includes (&pi->pt, decl);
246 }
247
248 /* Return true if dereferenced PTR1 and PTR2 may alias.
249 The caller is responsible for applying TBAA to see if accesses
250 through PTR1 and PTR2 may conflict at all. */
251
252 bool
253 ptr_derefs_may_alias_p (tree ptr1, tree ptr2)
254 {
255 struct ptr_info_def *pi1, *pi2;
256
257 /* Conversions are irrelevant for points-to information and
258 data-dependence analysis can feed us those. */
259 STRIP_NOPS (ptr1);
260 STRIP_NOPS (ptr2);
261
262 /* Disregard pointer offsetting. */
263 if (TREE_CODE (ptr1) == POINTER_PLUS_EXPR)
264 {
265 do
266 {
267 ptr1 = TREE_OPERAND (ptr1, 0);
268 }
269 while (TREE_CODE (ptr1) == POINTER_PLUS_EXPR);
270 return ptr_derefs_may_alias_p (ptr1, ptr2);
271 }
272 if (TREE_CODE (ptr2) == POINTER_PLUS_EXPR)
273 {
274 do
275 {
276 ptr2 = TREE_OPERAND (ptr2, 0);
277 }
278 while (TREE_CODE (ptr2) == POINTER_PLUS_EXPR);
279 return ptr_derefs_may_alias_p (ptr1, ptr2);
280 }
281
282 /* ADDR_EXPR pointers either just offset another pointer or directly
283 specify the pointed-to set. */
284 if (TREE_CODE (ptr1) == ADDR_EXPR)
285 {
286 tree base = get_base_address (TREE_OPERAND (ptr1, 0));
287 if (base
288 && (TREE_CODE (base) == MEM_REF
289 || TREE_CODE (base) == TARGET_MEM_REF))
290 return ptr_derefs_may_alias_p (TREE_OPERAND (base, 0), ptr2);
291 else if (base
292 && DECL_P (base))
293 return ptr_deref_may_alias_decl_p (ptr2, base);
294 else
295 return true;
296 }
297 if (TREE_CODE (ptr2) == ADDR_EXPR)
298 {
299 tree base = get_base_address (TREE_OPERAND (ptr2, 0));
300 if (base
301 && (TREE_CODE (base) == MEM_REF
302 || TREE_CODE (base) == TARGET_MEM_REF))
303 return ptr_derefs_may_alias_p (ptr1, TREE_OPERAND (base, 0));
304 else if (base
305 && DECL_P (base))
306 return ptr_deref_may_alias_decl_p (ptr1, base);
307 else
308 return true;
309 }
310
311 /* From here we require SSA name pointers. Anything else aliases. */
312 if (TREE_CODE (ptr1) != SSA_NAME
313 || TREE_CODE (ptr2) != SSA_NAME
314 || !POINTER_TYPE_P (TREE_TYPE (ptr1))
315 || !POINTER_TYPE_P (TREE_TYPE (ptr2)))
316 return true;
317
318 /* We may end up with two empty points-to solutions for two same pointers.
319 In this case we still want to say both pointers alias, so shortcut
320 that here. */
321 if (ptr1 == ptr2)
322 return true;
323
324 /* If we do not have useful points-to information for either pointer
325 we cannot disambiguate anything else. */
326 pi1 = SSA_NAME_PTR_INFO (ptr1);
327 pi2 = SSA_NAME_PTR_INFO (ptr2);
328 if (!pi1 || !pi2)
329 return true;
330
331 /* ??? This does not use TBAA to prune decls from the intersection
332 that not both pointers may access. */
333 return pt_solutions_intersect (&pi1->pt, &pi2->pt);
334 }
335
336 /* Return true if dereferencing PTR may alias *REF.
337 The caller is responsible for applying TBAA to see if PTR
338 may access *REF at all. */
339
340 static bool
341 ptr_deref_may_alias_ref_p_1 (tree ptr, ao_ref *ref)
342 {
343 tree base = ao_ref_base (ref);
344
345 if (TREE_CODE (base) == MEM_REF
346 || TREE_CODE (base) == TARGET_MEM_REF)
347 return ptr_derefs_may_alias_p (ptr, TREE_OPERAND (base, 0));
348 else if (DECL_P (base))
349 return ptr_deref_may_alias_decl_p (ptr, base);
350
351 return true;
352 }
353
354 /* Returns true if PTR1 and PTR2 compare unequal because of points-to. */
355
356 bool
357 ptrs_compare_unequal (tree ptr1, tree ptr2)
358 {
359 /* First resolve the pointers down to a SSA name pointer base or
360 a VAR_DECL, PARM_DECL or RESULT_DECL. This explicitely does
361 not yet try to handle LABEL_DECLs, FUNCTION_DECLs, CONST_DECLs
362 or STRING_CSTs which needs points-to adjustments to track them
363 in the points-to sets. */
364 tree obj1 = NULL_TREE;
365 tree obj2 = NULL_TREE;
366 if (TREE_CODE (ptr1) == ADDR_EXPR)
367 {
368 tree tem = get_base_address (TREE_OPERAND (ptr1, 0));
369 if (! tem)
370 return false;
371 if (VAR_P (tem)
372 || TREE_CODE (tem) == PARM_DECL
373 || TREE_CODE (tem) == RESULT_DECL)
374 obj1 = tem;
375 else if (TREE_CODE (tem) == MEM_REF)
376 ptr1 = TREE_OPERAND (tem, 0);
377 }
378 if (TREE_CODE (ptr2) == ADDR_EXPR)
379 {
380 tree tem = get_base_address (TREE_OPERAND (ptr2, 0));
381 if (! tem)
382 return false;
383 if (VAR_P (tem)
384 || TREE_CODE (tem) == PARM_DECL
385 || TREE_CODE (tem) == RESULT_DECL)
386 obj2 = tem;
387 else if (TREE_CODE (tem) == MEM_REF)
388 ptr2 = TREE_OPERAND (tem, 0);
389 }
390
391 /* Canonicalize ptr vs. object. */
392 if (TREE_CODE (ptr1) == SSA_NAME && obj2)
393 {
394 std::swap (ptr1, ptr2);
395 std::swap (obj1, obj2);
396 }
397
398 if (obj1 && obj2)
399 /* Other code handles this correctly, no need to duplicate it here. */;
400 else if (obj1 && TREE_CODE (ptr2) == SSA_NAME)
401 {
402 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr2);
403 /* We may not use restrict to optimize pointer comparisons.
404 See PR71062. So we have to assume that restrict-pointed-to
405 may be in fact obj1. */
406 if (!pi
407 || pi->pt.vars_contains_restrict
408 || pi->pt.vars_contains_interposable)
409 return false;
410 if (VAR_P (obj1)
411 && (TREE_STATIC (obj1) || DECL_EXTERNAL (obj1)))
412 {
413 varpool_node *node = varpool_node::get (obj1);
414 /* If obj1 may bind to NULL give up (see below). */
415 if (! node
416 || ! node->nonzero_address ()
417 || ! decl_binds_to_current_def_p (obj1))
418 return false;
419 }
420 return !pt_solution_includes (&pi->pt, obj1);
421 }
422
423 /* ??? We'd like to handle ptr1 != NULL and ptr1 != ptr2
424 but those require pt.null to be conservatively correct. */
425
426 return false;
427 }
428
429 /* Returns whether reference REF to BASE may refer to global memory. */
430
431 static bool
432 ref_may_alias_global_p_1 (tree base)
433 {
434 if (DECL_P (base))
435 return is_global_var (base);
436 else if (TREE_CODE (base) == MEM_REF
437 || TREE_CODE (base) == TARGET_MEM_REF)
438 return ptr_deref_may_alias_global_p (TREE_OPERAND (base, 0));
439 return true;
440 }
441
442 bool
443 ref_may_alias_global_p (ao_ref *ref)
444 {
445 tree base = ao_ref_base (ref);
446 return ref_may_alias_global_p_1 (base);
447 }
448
449 bool
450 ref_may_alias_global_p (tree ref)
451 {
452 tree base = get_base_address (ref);
453 return ref_may_alias_global_p_1 (base);
454 }
455
456 /* Return true whether STMT may clobber global memory. */
457
458 bool
459 stmt_may_clobber_global_p (gimple *stmt)
460 {
461 tree lhs;
462
463 if (!gimple_vdef (stmt))
464 return false;
465
466 /* ??? We can ask the oracle whether an artificial pointer
467 dereference with a pointer with points-to information covering
468 all global memory (what about non-address taken memory?) maybe
469 clobbered by this call. As there is at the moment no convenient
470 way of doing that without generating garbage do some manual
471 checking instead.
472 ??? We could make a NULL ao_ref argument to the various
473 predicates special, meaning any global memory. */
474
475 switch (gimple_code (stmt))
476 {
477 case GIMPLE_ASSIGN:
478 lhs = gimple_assign_lhs (stmt);
479 return (TREE_CODE (lhs) != SSA_NAME
480 && ref_may_alias_global_p (lhs));
481 case GIMPLE_CALL:
482 return true;
483 default:
484 return true;
485 }
486 }
487
488
489 /* Dump alias information on FILE. */
490
491 void
492 dump_alias_info (FILE *file)
493 {
494 unsigned i;
495 tree ptr;
496 const char *funcname
497 = lang_hooks.decl_printable_name (current_function_decl, 2);
498 tree var;
499
500 fprintf (file, "\n\nAlias information for %s\n\n", funcname);
501
502 fprintf (file, "Aliased symbols\n\n");
503
504 FOR_EACH_LOCAL_DECL (cfun, i, var)
505 {
506 if (may_be_aliased (var))
507 dump_variable (file, var);
508 }
509
510 fprintf (file, "\nCall clobber information\n");
511
512 fprintf (file, "\nESCAPED");
513 dump_points_to_solution (file, &cfun->gimple_df->escaped);
514
515 fprintf (file, "\n\nFlow-insensitive points-to information\n\n");
516
517 FOR_EACH_SSA_NAME (i, ptr, cfun)
518 {
519 struct ptr_info_def *pi;
520
521 if (!POINTER_TYPE_P (TREE_TYPE (ptr))
522 || SSA_NAME_IN_FREE_LIST (ptr))
523 continue;
524
525 pi = SSA_NAME_PTR_INFO (ptr);
526 if (pi)
527 dump_points_to_info_for (file, ptr);
528 }
529
530 fprintf (file, "\n");
531 }
532
533
534 /* Dump alias information on stderr. */
535
536 DEBUG_FUNCTION void
537 debug_alias_info (void)
538 {
539 dump_alias_info (stderr);
540 }
541
542
543 /* Dump the points-to set *PT into FILE. */
544
545 void
546 dump_points_to_solution (FILE *file, struct pt_solution *pt)
547 {
548 if (pt->anything)
549 fprintf (file, ", points-to anything");
550
551 if (pt->nonlocal)
552 fprintf (file, ", points-to non-local");
553
554 if (pt->escaped)
555 fprintf (file, ", points-to escaped");
556
557 if (pt->ipa_escaped)
558 fprintf (file, ", points-to unit escaped");
559
560 if (pt->null)
561 fprintf (file, ", points-to NULL");
562
563 if (pt->vars)
564 {
565 fprintf (file, ", points-to vars: ");
566 dump_decl_set (file, pt->vars);
567 if (pt->vars_contains_nonlocal
568 || pt->vars_contains_escaped
569 || pt->vars_contains_escaped_heap
570 || pt->vars_contains_restrict)
571 {
572 const char *comma = "";
573 fprintf (file, " (");
574 if (pt->vars_contains_nonlocal)
575 {
576 fprintf (file, "nonlocal");
577 comma = ", ";
578 }
579 if (pt->vars_contains_escaped)
580 {
581 fprintf (file, "%sescaped", comma);
582 comma = ", ";
583 }
584 if (pt->vars_contains_escaped_heap)
585 {
586 fprintf (file, "%sescaped heap", comma);
587 comma = ", ";
588 }
589 if (pt->vars_contains_restrict)
590 {
591 fprintf (file, "%srestrict", comma);
592 comma = ", ";
593 }
594 if (pt->vars_contains_interposable)
595 fprintf (file, "%sinterposable", comma);
596 fprintf (file, ")");
597 }
598 }
599 }
600
601
602 /* Unified dump function for pt_solution. */
603
604 DEBUG_FUNCTION void
605 debug (pt_solution &ref)
606 {
607 dump_points_to_solution (stderr, &ref);
608 }
609
610 DEBUG_FUNCTION void
611 debug (pt_solution *ptr)
612 {
613 if (ptr)
614 debug (*ptr);
615 else
616 fprintf (stderr, "<nil>\n");
617 }
618
619
620 /* Dump points-to information for SSA_NAME PTR into FILE. */
621
622 void
623 dump_points_to_info_for (FILE *file, tree ptr)
624 {
625 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
626
627 print_generic_expr (file, ptr, dump_flags);
628
629 if (pi)
630 dump_points_to_solution (file, &pi->pt);
631 else
632 fprintf (file, ", points-to anything");
633
634 fprintf (file, "\n");
635 }
636
637
638 /* Dump points-to information for VAR into stderr. */
639
640 DEBUG_FUNCTION void
641 debug_points_to_info_for (tree var)
642 {
643 dump_points_to_info_for (stderr, var);
644 }
645
646
647 /* Initializes the alias-oracle reference representation *R from REF. */
648
649 void
650 ao_ref_init (ao_ref *r, tree ref)
651 {
652 r->ref = ref;
653 r->base = NULL_TREE;
654 r->offset = 0;
655 r->size = -1;
656 r->max_size = -1;
657 r->ref_alias_set = -1;
658 r->base_alias_set = -1;
659 r->volatile_p = ref ? TREE_THIS_VOLATILE (ref) : false;
660 }
661
662 /* Returns the base object of the memory reference *REF. */
663
664 tree
665 ao_ref_base (ao_ref *ref)
666 {
667 bool reverse;
668
669 if (ref->base)
670 return ref->base;
671 ref->base = get_ref_base_and_extent (ref->ref, &ref->offset, &ref->size,
672 &ref->max_size, &reverse);
673 return ref->base;
674 }
675
676 /* Returns the base object alias set of the memory reference *REF. */
677
678 alias_set_type
679 ao_ref_base_alias_set (ao_ref *ref)
680 {
681 tree base_ref;
682 if (ref->base_alias_set != -1)
683 return ref->base_alias_set;
684 if (!ref->ref)
685 return 0;
686 base_ref = ref->ref;
687 while (handled_component_p (base_ref))
688 base_ref = TREE_OPERAND (base_ref, 0);
689 ref->base_alias_set = get_alias_set (base_ref);
690 return ref->base_alias_set;
691 }
692
693 /* Returns the reference alias set of the memory reference *REF. */
694
695 alias_set_type
696 ao_ref_alias_set (ao_ref *ref)
697 {
698 if (ref->ref_alias_set != -1)
699 return ref->ref_alias_set;
700 ref->ref_alias_set = get_alias_set (ref->ref);
701 return ref->ref_alias_set;
702 }
703
704 /* Init an alias-oracle reference representation from a gimple pointer
705 PTR and a gimple size SIZE in bytes. If SIZE is NULL_TREE then the
706 size is assumed to be unknown. The access is assumed to be only
707 to or after of the pointer target, not before it. */
708
709 void
710 ao_ref_init_from_ptr_and_size (ao_ref *ref, tree ptr, tree size)
711 {
712 poly_int64 t, size_hwi, extra_offset = 0;
713 ref->ref = NULL_TREE;
714 if (TREE_CODE (ptr) == SSA_NAME)
715 {
716 gimple *stmt = SSA_NAME_DEF_STMT (ptr);
717 if (gimple_assign_single_p (stmt)
718 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
719 ptr = gimple_assign_rhs1 (stmt);
720 else if (is_gimple_assign (stmt)
721 && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
722 && ptrdiff_tree_p (gimple_assign_rhs2 (stmt), &extra_offset))
723 {
724 ptr = gimple_assign_rhs1 (stmt);
725 extra_offset *= BITS_PER_UNIT;
726 }
727 }
728
729 if (TREE_CODE (ptr) == ADDR_EXPR)
730 {
731 ref->base = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &t);
732 if (ref->base)
733 ref->offset = BITS_PER_UNIT * t;
734 else
735 {
736 size = NULL_TREE;
737 ref->offset = 0;
738 ref->base = get_base_address (TREE_OPERAND (ptr, 0));
739 }
740 }
741 else
742 {
743 gcc_assert (POINTER_TYPE_P (TREE_TYPE (ptr)));
744 ref->base = build2 (MEM_REF, char_type_node,
745 ptr, null_pointer_node);
746 ref->offset = 0;
747 }
748 ref->offset += extra_offset;
749 if (size
750 && poly_int_tree_p (size, &size_hwi)
751 && coeffs_in_range_p (size_hwi, 0, HOST_WIDE_INT_MAX / BITS_PER_UNIT))
752 ref->max_size = ref->size = size_hwi * BITS_PER_UNIT;
753 else
754 ref->max_size = ref->size = -1;
755 ref->ref_alias_set = 0;
756 ref->base_alias_set = 0;
757 ref->volatile_p = false;
758 }
759
760 /* S1 and S2 are TYPE_SIZE or DECL_SIZE. Compare them:
761 Return -1 if S1 < S2
762 Return 1 if S1 > S2
763 Return 0 if equal or incomparable. */
764
765 static int
766 compare_sizes (tree s1, tree s2)
767 {
768 if (!s1 || !s2)
769 return 0;
770
771 poly_uint64 size1;
772 poly_uint64 size2;
773
774 if (!poly_int_tree_p (s1, &size1) || !poly_int_tree_p (s2, &size2))
775 return 0;
776 if (known_lt (size1, size2))
777 return -1;
778 if (known_lt (size2, size1))
779 return 1;
780 return 0;
781 }
782
783 /* Compare TYPE1 and TYPE2 by its size.
784 Return -1 if size of TYPE1 < size of TYPE2
785 Return 1 if size of TYPE1 > size of TYPE2
786 Return 0 if types are of equal sizes or we can not compare them. */
787
788 static int
789 compare_type_sizes (tree type1, tree type2)
790 {
791 /* Be conservative for arrays and vectors. We want to support partial
792 overlap on int[3] and int[3] as tested in gcc.dg/torture/alias-2.c. */
793 while (TREE_CODE (type1) == ARRAY_TYPE
794 || TREE_CODE (type1) == VECTOR_TYPE)
795 type1 = TREE_TYPE (type1);
796 while (TREE_CODE (type2) == ARRAY_TYPE
797 || TREE_CODE (type2) == VECTOR_TYPE)
798 type2 = TREE_TYPE (type2);
799 return compare_sizes (TYPE_SIZE (type1), TYPE_SIZE (type2));
800 }
801
802 /* Return 1 if TYPE1 and TYPE2 are to be considered equivalent for the
803 purpose of TBAA. Return 0 if they are distinct and -1 if we cannot
804 decide. */
805
806 static inline int
807 same_type_for_tbaa (tree type1, tree type2)
808 {
809 type1 = TYPE_MAIN_VARIANT (type1);
810 type2 = TYPE_MAIN_VARIANT (type2);
811
812 /* Handle the most common case first. */
813 if (type1 == type2)
814 return 1;
815
816 /* If we would have to do structural comparison bail out. */
817 if (TYPE_STRUCTURAL_EQUALITY_P (type1)
818 || TYPE_STRUCTURAL_EQUALITY_P (type2))
819 return -1;
820
821 /* Compare the canonical types. */
822 if (TYPE_CANONICAL (type1) == TYPE_CANONICAL (type2))
823 return 1;
824
825 /* ??? Array types are not properly unified in all cases as we have
826 spurious changes in the index types for example. Removing this
827 causes all sorts of problems with the Fortran frontend. */
828 if (TREE_CODE (type1) == ARRAY_TYPE
829 && TREE_CODE (type2) == ARRAY_TYPE)
830 return -1;
831
832 /* ??? In Ada, an lvalue of an unconstrained type can be used to access an
833 object of one of its constrained subtypes, e.g. when a function with an
834 unconstrained parameter passed by reference is called on an object and
835 inlined. But, even in the case of a fixed size, type and subtypes are
836 not equivalent enough as to share the same TYPE_CANONICAL, since this
837 would mean that conversions between them are useless, whereas they are
838 not (e.g. type and subtypes can have different modes). So, in the end,
839 they are only guaranteed to have the same alias set. */
840 if (get_alias_set (type1) == get_alias_set (type2))
841 return -1;
842
843 /* The types are known to be not equal. */
844 return 0;
845 }
846
847 /* Return true if TYPE is a composite type (i.e. we may apply one of handled
848 components on it). */
849
850 static bool
851 type_has_components_p (tree type)
852 {
853 return AGGREGATE_TYPE_P (type) || VECTOR_TYPE_P (type)
854 || TREE_CODE (type) == COMPLEX_TYPE;
855 }
856
857 /* MATCH1 and MATCH2 which are part of access path of REF1 and REF2
858 respectively are either pointing to same address or are completely
859 disjoint. If PARITAL_OVERLAP is true, assume that outermost arrays may
860 just partly overlap.
861
862 Try to disambiguate using the access path starting from the match
863 and return false if there is no conflict.
864
865 Helper for aliasing_component_refs_p. */
866
867 static bool
868 aliasing_matching_component_refs_p (tree match1, tree ref1,
869 poly_int64 offset1, poly_int64 max_size1,
870 tree match2, tree ref2,
871 poly_int64 offset2, poly_int64 max_size2,
872 bool partial_overlap)
873 {
874 poly_int64 offadj, sztmp, msztmp;
875 bool reverse;
876
877 if (!partial_overlap)
878 {
879 get_ref_base_and_extent (match2, &offadj, &sztmp, &msztmp, &reverse);
880 offset2 -= offadj;
881 get_ref_base_and_extent (match1, &offadj, &sztmp, &msztmp, &reverse);
882 offset1 -= offadj;
883 if (!ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
884 {
885 ++alias_stats.aliasing_component_refs_p_no_alias;
886 return false;
887 }
888 }
889
890 int cmp = nonoverlapping_refs_since_match_p (match1, ref1, match2, ref2,
891 partial_overlap);
892 if (cmp == 1
893 || (cmp == -1 && nonoverlapping_component_refs_p (ref1, ref2)))
894 {
895 ++alias_stats.aliasing_component_refs_p_no_alias;
896 return false;
897 }
898 ++alias_stats.aliasing_component_refs_p_may_alias;
899 return true;
900 }
901
902 /* Return true if REF is reference to zero sized trailing array. I.e.
903 struct foo {int bar; int array[0];} *fooptr;
904 fooptr->array. */
905
906 static bool
907 component_ref_to_zero_sized_trailing_array_p (tree ref)
908 {
909 return (TREE_CODE (ref) == COMPONENT_REF
910 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 1))) == ARRAY_TYPE
911 && (!TYPE_SIZE (TREE_TYPE (TREE_OPERAND (ref, 1)))
912 || integer_zerop (TYPE_SIZE (TREE_TYPE (TREE_OPERAND (ref, 1)))))
913 && array_at_struct_end_p (ref));
914 }
915
916 /* Worker for aliasing_component_refs_p. Most parameters match parameters of
917 aliasing_component_refs_p.
918
919 Walk access path REF2 and try to find type matching TYPE1
920 (which is a start of possibly aliasing access path REF1).
921 If match is found, try to disambiguate.
922
923 Return 0 for sucessful disambiguation.
924 Return 1 if match was found but disambiguation failed
925 Return -1 if there is no match.
926 In this case MAYBE_MATCH is set to 0 if there is no type matching TYPE1
927 in access patch REF2 and -1 if we are not sure. */
928
929 static int
930 aliasing_component_refs_walk (tree ref1, tree type1, tree base1,
931 poly_int64 offset1, poly_int64 max_size1,
932 tree end_struct_ref1,
933 tree ref2, tree base2,
934 poly_int64 offset2, poly_int64 max_size2,
935 bool *maybe_match)
936 {
937 tree ref = ref2;
938 int same_p = 0;
939
940 while (true)
941 {
942 /* We walk from inner type to the outer types. If type we see is
943 already too large to be part of type1, terminate the search. */
944 int cmp = compare_type_sizes (type1, TREE_TYPE (ref));
945
946 if (cmp < 0
947 && (!end_struct_ref1
948 || compare_type_sizes (TREE_TYPE (end_struct_ref1),
949 TREE_TYPE (ref)) < 0))
950 break;
951 /* If types may be of same size, see if we can decide about their
952 equality. */
953 if (cmp == 0)
954 {
955 same_p = same_type_for_tbaa (TREE_TYPE (ref), type1);
956 if (same_p == 1)
957 break;
958 /* In case we can't decide whether types are same try to
959 continue looking for the exact match.
960 Remember however that we possibly saw a match
961 to bypass the access path continuations tests we do later. */
962 if (same_p == -1)
963 *maybe_match = true;
964 }
965 if (!handled_component_p (ref))
966 break;
967 ref = TREE_OPERAND (ref, 0);
968 }
969 if (same_p == 1)
970 {
971 bool partial_overlap = false;
972
973 /* We assume that arrays can overlap by multiple of their elements
974 size as tested in gcc.dg/torture/alias-2.c.
975 This partial overlap happen only when both arrays are bases of
976 the access and not contained within another component ref.
977 To be safe we also assume partial overlap for VLAs. */
978 if (TREE_CODE (TREE_TYPE (base1)) == ARRAY_TYPE
979 && (!TYPE_SIZE (TREE_TYPE (base1))
980 || TREE_CODE (TYPE_SIZE (TREE_TYPE (base1))) != INTEGER_CST
981 || ref == base2))
982 {
983 /* Setting maybe_match to true triggers
984 nonoverlapping_component_refs_p test later that still may do
985 useful disambiguation. */
986 *maybe_match = true;
987 partial_overlap = true;
988 }
989 return aliasing_matching_component_refs_p (base1, ref1,
990 offset1, max_size1,
991 ref, ref2,
992 offset2, max_size2,
993 partial_overlap);
994 }
995 return -1;
996 }
997
998 /* Determine if the two component references REF1 and REF2 which are
999 based on access types TYPE1 and TYPE2 and of which at least one is based
1000 on an indirect reference may alias.
1001 REF1_ALIAS_SET, BASE1_ALIAS_SET, REF2_ALIAS_SET and BASE2_ALIAS_SET
1002 are the respective alias sets. */
1003
1004 static bool
1005 aliasing_component_refs_p (tree ref1,
1006 alias_set_type ref1_alias_set,
1007 alias_set_type base1_alias_set,
1008 poly_int64 offset1, poly_int64 max_size1,
1009 tree ref2,
1010 alias_set_type ref2_alias_set,
1011 alias_set_type base2_alias_set,
1012 poly_int64 offset2, poly_int64 max_size2)
1013 {
1014 /* If one reference is a component references through pointers try to find a
1015 common base and apply offset based disambiguation. This handles
1016 for example
1017 struct A { int i; int j; } *q;
1018 struct B { struct A a; int k; } *p;
1019 disambiguating q->i and p->a.j. */
1020 tree base1, base2;
1021 tree type1, type2;
1022 bool maybe_match = false;
1023 tree end_struct_ref1 = NULL, end_struct_ref2 = NULL;
1024
1025 /* Choose bases and base types to search for. */
1026 base1 = ref1;
1027 while (handled_component_p (base1))
1028 {
1029 /* Generally access paths are monotous in the size of object. The
1030 exception are trailing arrays of structures. I.e.
1031 struct a {int array[0];};
1032 or
1033 struct a {int array1[0]; int array[];};
1034 Such struct has size 0 but accesses to a.array may have non-zero size.
1035 In this case the size of TREE_TYPE (base1) is smaller than
1036 size of TREE_TYPE (TREE_OPERNAD (base1, 0)).
1037
1038 Because we compare sizes of arrays just by sizes of their elements,
1039 we only need to care about zero sized array fields here. */
1040 if (component_ref_to_zero_sized_trailing_array_p (base1))
1041 {
1042 gcc_checking_assert (!end_struct_ref1);
1043 end_struct_ref1 = base1;
1044 }
1045 if (TREE_CODE (base1) == VIEW_CONVERT_EXPR
1046 || TREE_CODE (base1) == BIT_FIELD_REF)
1047 ref1 = TREE_OPERAND (base1, 0);
1048 base1 = TREE_OPERAND (base1, 0);
1049 }
1050 type1 = TREE_TYPE (base1);
1051 base2 = ref2;
1052 while (handled_component_p (base2))
1053 {
1054 if (component_ref_to_zero_sized_trailing_array_p (base2))
1055 {
1056 gcc_checking_assert (!end_struct_ref2);
1057 end_struct_ref2 = base2;
1058 }
1059 if (TREE_CODE (base2) == VIEW_CONVERT_EXPR
1060 || TREE_CODE (base2) == BIT_FIELD_REF)
1061 ref2 = TREE_OPERAND (base2, 0);
1062 base2 = TREE_OPERAND (base2, 0);
1063 }
1064 type2 = TREE_TYPE (base2);
1065
1066 /* Now search for the type1 in the access path of ref2. This
1067 would be a common base for doing offset based disambiguation on.
1068 This however only makes sense if type2 is big enough to hold type1. */
1069 int cmp_outer = compare_type_sizes (type2, type1);
1070
1071 /* If type2 is big enough to contain type1 walk its access path.
1072 We also need to care of arrays at the end of structs that may extend
1073 beyond the end of structure. */
1074 if (cmp_outer >= 0
1075 || (end_struct_ref2
1076 && compare_type_sizes (TREE_TYPE (end_struct_ref2), type1) >= 0))
1077 {
1078 int res = aliasing_component_refs_walk (ref1, type1, base1,
1079 offset1, max_size1,
1080 end_struct_ref1,
1081 ref2, base2, offset2, max_size2,
1082 &maybe_match);
1083 if (res != -1)
1084 return res;
1085 }
1086
1087 /* If we didn't find a common base, try the other way around. */
1088 if (cmp_outer <= 0
1089 || (end_struct_ref1
1090 && compare_type_sizes (TREE_TYPE (end_struct_ref1), type1) <= 0))
1091 {
1092 int res = aliasing_component_refs_walk (ref2, type2, base2,
1093 offset2, max_size2,
1094 end_struct_ref2,
1095 ref1, base1, offset1, max_size1,
1096 &maybe_match);
1097 if (res != -1)
1098 return res;
1099 }
1100
1101 /* In the following code we make an assumption that the types in access
1102 paths do not overlap and thus accesses alias only if one path can be
1103 continuation of another. If we was not able to decide about equivalence,
1104 we need to give up. */
1105 if (maybe_match)
1106 {
1107 if (!nonoverlapping_component_refs_p (ref1, ref2))
1108 {
1109 ++alias_stats.aliasing_component_refs_p_may_alias;
1110 return true;
1111 }
1112 ++alias_stats.aliasing_component_refs_p_no_alias;
1113 return false;
1114 }
1115
1116 /* If we have two type access paths B1.path1 and B2.path2 they may
1117 only alias if either B1 is in B2.path2 or B2 is in B1.path1.
1118 But we can still have a path that goes B1.path1...B2.path2 with
1119 a part that we do not see. So we can only disambiguate now
1120 if there is no B2 in the tail of path1 and no B1 on the
1121 tail of path2. */
1122 if (compare_type_sizes (TREE_TYPE (ref2), type1) >= 0
1123 && (!end_struct_ref1
1124 || compare_type_sizes (TREE_TYPE (ref2),
1125 TREE_TYPE (end_struct_ref1)) >= 0)
1126 && type_has_components_p (TREE_TYPE (ref2))
1127 && (base1_alias_set == ref2_alias_set
1128 || alias_set_subset_of (base1_alias_set, ref2_alias_set)))
1129 {
1130 ++alias_stats.aliasing_component_refs_p_may_alias;
1131 return true;
1132 }
1133 /* If this is ptr vs. decl then we know there is no ptr ... decl path. */
1134 if (compare_type_sizes (TREE_TYPE (ref1), type2) >= 0
1135 && (!end_struct_ref2
1136 || compare_type_sizes (TREE_TYPE (ref1),
1137 TREE_TYPE (end_struct_ref2)) >= 0)
1138 && type_has_components_p (TREE_TYPE (ref1))
1139 && (base2_alias_set == ref1_alias_set
1140 || alias_set_subset_of (base2_alias_set, ref1_alias_set)))
1141 {
1142 ++alias_stats.aliasing_component_refs_p_may_alias;
1143 return true;
1144 }
1145 ++alias_stats.aliasing_component_refs_p_no_alias;
1146 return false;
1147 }
1148
1149 /* FIELD1 and FIELD2 are two fields of component refs. We assume
1150 that bases of both component refs are either equivalent or nonoverlapping.
1151 We do not assume that the containers of FIELD1 and FIELD2 are of the
1152 same type or size.
1153
1154 Return 0 in case the base address of component_refs are same then
1155 FIELD1 and FIELD2 have same address. Note that FIELD1 and FIELD2
1156 may not be of same type or size.
1157
1158 Return 1 if FIELD1 and FIELD2 are non-overlapping.
1159
1160 Return -1 otherwise.
1161
1162 Main difference between 0 and -1 is to let
1163 nonoverlapping_component_refs_since_match_p discover the semantically
1164 equivalent part of the access path.
1165
1166 Note that this function is used even with -fno-strict-aliasing
1167 and makes use of no TBAA assumptions. */
1168
1169 static int
1170 nonoverlapping_component_refs_p_1 (const_tree field1, const_tree field2)
1171 {
1172 /* If both fields are of the same type, we could save hard work of
1173 comparing offsets. */
1174 tree type1 = DECL_CONTEXT (field1);
1175 tree type2 = DECL_CONTEXT (field2);
1176
1177 if (TREE_CODE (type1) == RECORD_TYPE
1178 && DECL_BIT_FIELD_REPRESENTATIVE (field1))
1179 field1 = DECL_BIT_FIELD_REPRESENTATIVE (field1);
1180 if (TREE_CODE (type2) == RECORD_TYPE
1181 && DECL_BIT_FIELD_REPRESENTATIVE (field2))
1182 field2 = DECL_BIT_FIELD_REPRESENTATIVE (field2);
1183
1184 /* ??? Bitfields can overlap at RTL level so punt on them.
1185 FIXME: RTL expansion should be fixed by adjusting the access path
1186 when producing MEM_ATTRs for MEMs which are wider than
1187 the bitfields similarly as done in set_mem_attrs_minus_bitpos. */
1188 if (DECL_BIT_FIELD (field1) && DECL_BIT_FIELD (field2))
1189 return -1;
1190
1191 /* Assume that different FIELD_DECLs never overlap within a RECORD_TYPE. */
1192 if (type1 == type2 && TREE_CODE (type1) == RECORD_TYPE)
1193 return field1 != field2;
1194
1195 /* In common case the offsets and bit offsets will be the same.
1196 However if frontends do not agree on the alignment, they may be
1197 different even if they actually represent same address.
1198 Try the common case first and if that fails calcualte the
1199 actual bit offset. */
1200 if (tree_int_cst_equal (DECL_FIELD_OFFSET (field1),
1201 DECL_FIELD_OFFSET (field2))
1202 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (field1),
1203 DECL_FIELD_BIT_OFFSET (field2)))
1204 return 0;
1205
1206 /* Note that it may be possible to use component_ref_field_offset
1207 which would provide offsets as trees. However constructing and folding
1208 trees is expensive and does not seem to be worth the compile time
1209 cost. */
1210
1211 poly_uint64 offset1, offset2;
1212 poly_uint64 bit_offset1, bit_offset2;
1213
1214 if (poly_int_tree_p (DECL_FIELD_OFFSET (field1), &offset1)
1215 && poly_int_tree_p (DECL_FIELD_OFFSET (field2), &offset2)
1216 && poly_int_tree_p (DECL_FIELD_BIT_OFFSET (field1), &bit_offset1)
1217 && poly_int_tree_p (DECL_FIELD_BIT_OFFSET (field2), &bit_offset2))
1218 {
1219 offset1 = (offset1 << LOG2_BITS_PER_UNIT) + bit_offset1;
1220 offset2 = (offset2 << LOG2_BITS_PER_UNIT) + bit_offset2;
1221
1222 if (known_eq (offset1, offset2))
1223 return 0;
1224
1225 poly_uint64 size1, size2;
1226
1227 if (poly_int_tree_p (DECL_SIZE (field1), &size1)
1228 && poly_int_tree_p (DECL_SIZE (field2), &size2)
1229 && !ranges_maybe_overlap_p (offset1, size1, offset2, size2))
1230 return 1;
1231 }
1232 /* Resort to slower overlap checking by looking for matching types in
1233 the middle of access path. */
1234 return -1;
1235 }
1236
1237 /* Return low bound of array. Do not produce new trees
1238 and thus do not care about particular type of integer constant
1239 and placeholder exprs. */
1240
1241 static tree
1242 cheap_array_ref_low_bound (tree ref)
1243 {
1244 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (ref, 0)));
1245
1246 /* Avoid expensive array_ref_low_bound.
1247 low bound is either stored in operand2, or it is TYPE_MIN_VALUE of domain
1248 type or it is zero. */
1249 if (TREE_OPERAND (ref, 2))
1250 return TREE_OPERAND (ref, 2);
1251 else if (domain_type && TYPE_MIN_VALUE (domain_type))
1252 return TYPE_MIN_VALUE (domain_type);
1253 else
1254 return integer_zero_node;
1255 }
1256
1257 /* REF1 and REF2 are ARRAY_REFs with either same base address or which are
1258 completely disjoint.
1259
1260 Return 1 if the refs are non-overlapping.
1261 Return 0 if they are possibly overlapping but if so the overlap again
1262 starts on the same address.
1263 Return -1 otherwise. */
1264
1265 int
1266 nonoverlapping_array_refs_p (tree ref1, tree ref2)
1267 {
1268 tree index1 = TREE_OPERAND (ref1, 1);
1269 tree index2 = TREE_OPERAND (ref2, 1);
1270 tree low_bound1 = cheap_array_ref_low_bound(ref1);
1271 tree low_bound2 = cheap_array_ref_low_bound(ref2);
1272
1273 /* Handle zero offsets first: we do not need to match type size in this
1274 case. */
1275 if (operand_equal_p (index1, low_bound1, 0)
1276 && operand_equal_p (index2, low_bound2, 0))
1277 return 0;
1278
1279 /* If type sizes are different, give up.
1280
1281 Avoid expensive array_ref_element_size.
1282 If operand 3 is present it denotes size in the alignmnet units.
1283 Otherwise size is TYPE_SIZE of the element type.
1284 Handle only common cases where types are of the same "kind". */
1285 if ((TREE_OPERAND (ref1, 3) == NULL) != (TREE_OPERAND (ref2, 3) == NULL))
1286 return -1;
1287
1288 tree elmt_type1 = TREE_TYPE (TREE_TYPE (TREE_OPERAND (ref1, 0)));
1289 tree elmt_type2 = TREE_TYPE (TREE_TYPE (TREE_OPERAND (ref2, 0)));
1290
1291 if (TREE_OPERAND (ref1, 3))
1292 {
1293 if (TYPE_ALIGN (elmt_type1) != TYPE_ALIGN (elmt_type2)
1294 || !operand_equal_p (TREE_OPERAND (ref1, 3),
1295 TREE_OPERAND (ref2, 3), 0))
1296 return -1;
1297 }
1298 else
1299 {
1300 if (!operand_equal_p (TYPE_SIZE_UNIT (elmt_type1),
1301 TYPE_SIZE_UNIT (elmt_type2), 0))
1302 return -1;
1303 }
1304
1305 /* Since we know that type sizes are the same, there is no need to return
1306 -1 after this point. Partial overlap can not be introduced. */
1307
1308 /* We may need to fold trees in this case.
1309 TODO: Handle integer constant case at least. */
1310 if (!operand_equal_p (low_bound1, low_bound2, 0))
1311 return 0;
1312
1313 if (TREE_CODE (index1) == INTEGER_CST && TREE_CODE (index2) == INTEGER_CST)
1314 {
1315 if (tree_int_cst_equal (index1, index2))
1316 return 0;
1317 return 1;
1318 }
1319 /* TODO: We can use VRP to further disambiguate here. */
1320 return 0;
1321 }
1322
1323 /* Try to disambiguate REF1 and REF2 under the assumption that MATCH1 and
1324 MATCH2 either point to the same address or are disjoint.
1325 MATCH1 and MATCH2 are assumed to be ref in the access path of REF1 and REF2
1326 respectively or NULL in the case we established equivalence of bases.
1327 If PARTIAL_OVERLAP is true assume that the toplevel arrays may actually
1328 overlap by exact multiply of their element size.
1329
1330 This test works by matching the initial segment of the access path
1331 and does not rely on TBAA thus is safe for !flag_strict_aliasing if
1332 match was determined without use of TBAA oracle.
1333
1334 Return 1 if we can determine that component references REF1 and REF2,
1335 that are within a common DECL, cannot overlap.
1336
1337 Return 0 if paths are same and thus there is nothing to disambiguate more
1338 (i.e. there is must alias assuming there is must alias between MATCH1 and
1339 MATCH2)
1340
1341 Return -1 if we can not determine 0 or 1 - this happens when we met
1342 non-matching types was met in the path.
1343 In this case it may make sense to continue by other disambiguation
1344 oracles. */
1345
1346 static int
1347 nonoverlapping_refs_since_match_p (tree match1, tree ref1,
1348 tree match2, tree ref2,
1349 bool partial_overlap)
1350 {
1351 /* Early return if there are no references to match, we do not need
1352 to walk the access paths.
1353
1354 Do not consider this as may-alias for stats - it is more useful
1355 to have information how many disambiguations happened provided that
1356 the query was meaningful. */
1357
1358 if (match1 == ref1 || !handled_component_p (ref1)
1359 || match2 == ref2 || !handled_component_p (ref2))
1360 return -1;
1361
1362 auto_vec<tree, 16> component_refs1;
1363 auto_vec<tree, 16> component_refs2;
1364
1365 /* Create the stack of handled components for REF1. */
1366 while (handled_component_p (ref1) && ref1 != match1)
1367 {
1368 if (TREE_CODE (ref1) == VIEW_CONVERT_EXPR
1369 || TREE_CODE (ref1) == BIT_FIELD_REF)
1370 component_refs1.truncate (0);
1371 else
1372 component_refs1.safe_push (ref1);
1373 ref1 = TREE_OPERAND (ref1, 0);
1374 }
1375
1376 /* Create the stack of handled components for REF2. */
1377 while (handled_component_p (ref2) && ref2 != match2)
1378 {
1379 if (TREE_CODE (ref2) == VIEW_CONVERT_EXPR
1380 || TREE_CODE (ref2) == BIT_FIELD_REF)
1381 component_refs2.truncate (0);
1382 else
1383 component_refs2.safe_push (ref2);
1384 ref2 = TREE_OPERAND (ref2, 0);
1385 }
1386
1387 bool mem_ref1 = TREE_CODE (ref1) == MEM_REF && ref1 != match1;
1388 bool mem_ref2 = TREE_CODE (ref2) == MEM_REF && ref2 != match2;
1389
1390 /* If only one of access path starts with MEM_REF check that offset is 0
1391 so the addresses stays the same after stripping it.
1392 TODO: In this case we may walk the other access path until we get same
1393 offset.
1394
1395 If both starts with MEM_REF, offset has to be same. */
1396 if ((mem_ref1 && !mem_ref2 && !integer_zerop (TREE_OPERAND (ref1, 1)))
1397 || (mem_ref2 && !mem_ref1 && !integer_zerop (TREE_OPERAND (ref2, 1)))
1398 || (mem_ref1 && mem_ref2
1399 && !tree_int_cst_equal (TREE_OPERAND (ref1, 1),
1400 TREE_OPERAND (ref2, 1))))
1401 {
1402 ++alias_stats.nonoverlapping_refs_since_match_p_may_alias;
1403 return -1;
1404 }
1405
1406 /* TARGET_MEM_REF are never wrapped in handled components, so we do not need
1407 to handle them here at all. */
1408 gcc_checking_assert (TREE_CODE (ref1) != TARGET_MEM_REF
1409 && TREE_CODE (ref2) != TARGET_MEM_REF);
1410
1411 /* Pop the stacks in parallel and examine the COMPONENT_REFs of the same
1412 rank. This is sufficient because we start from the same DECL and you
1413 cannot reference several fields at a time with COMPONENT_REFs (unlike
1414 with ARRAY_RANGE_REFs for arrays) so you always need the same number
1415 of them to access a sub-component, unless you're in a union, in which
1416 case the return value will precisely be false. */
1417 while (true)
1418 {
1419 /* Track if we seen unmatched ref with non-zero offset. In this case
1420 we must look for partial overlaps. */
1421 bool seen_unmatched_ref_p = false;
1422
1423 /* First match ARRAY_REFs an try to disambiguate. */
1424 if (!component_refs1.is_empty ()
1425 && !component_refs2.is_empty ())
1426 {
1427 unsigned int narray_refs1=0, narray_refs2=0;
1428
1429 /* We generally assume that both access paths starts by same sequence
1430 of refs. However if number of array refs is not in sync, try
1431 to recover and pop elts until number match. This helps the case
1432 where one access path starts by array and other by element. */
1433 for (narray_refs1 = 0; narray_refs1 < component_refs1.length ();
1434 narray_refs1++)
1435 if (TREE_CODE (component_refs1 [component_refs1.length()
1436 - 1 - narray_refs1]) != ARRAY_REF)
1437 break;
1438
1439 for (narray_refs2 = 0; narray_refs2 < component_refs2.length ();
1440 narray_refs2++)
1441 if (TREE_CODE (component_refs2 [component_refs2.length()
1442 - 1 - narray_refs2]) != ARRAY_REF)
1443 break;
1444 for (; narray_refs1 > narray_refs2; narray_refs1--)
1445 {
1446 ref1 = component_refs1.pop ();
1447 /* Track whether we possibly introduced partial overlap assuming
1448 that innermost type sizes does not match. This only can
1449 happen if the offset introduced by the ARRAY_REF
1450 is non-zero. */
1451 if (!operand_equal_p (TREE_OPERAND (ref1, 1),
1452 cheap_array_ref_low_bound (ref1), 0))
1453 seen_unmatched_ref_p = true;
1454 }
1455 for (; narray_refs2 > narray_refs1; narray_refs2--)
1456 {
1457 ref2 = component_refs2.pop ();
1458 if (!operand_equal_p (TREE_OPERAND (ref2, 1),
1459 cheap_array_ref_low_bound (ref2), 0))
1460 seen_unmatched_ref_p = true;
1461 }
1462 /* Try to disambiguate matched arrays. */
1463 for (unsigned int i = 0; i < narray_refs1; i++)
1464 {
1465 int cmp = nonoverlapping_array_refs_p (component_refs1.pop (),
1466 component_refs2.pop ());
1467 if (cmp == 1 && !partial_overlap)
1468 {
1469 ++alias_stats
1470 .nonoverlapping_refs_since_match_p_no_alias;
1471 return 1;
1472 }
1473 partial_overlap = false;
1474 if (cmp == -1)
1475 seen_unmatched_ref_p = true;
1476 }
1477 }
1478
1479 /* Next look for component_refs. */
1480 do
1481 {
1482 if (component_refs1.is_empty ())
1483 {
1484 ++alias_stats
1485 .nonoverlapping_refs_since_match_p_must_overlap;
1486 return 0;
1487 }
1488 ref1 = component_refs1.pop ();
1489 if (TREE_CODE (ref1) != COMPONENT_REF)
1490 seen_unmatched_ref_p = true;
1491 }
1492 while (!RECORD_OR_UNION_TYPE_P (TREE_TYPE (TREE_OPERAND (ref1, 0))));
1493
1494 do
1495 {
1496 if (component_refs2.is_empty ())
1497 {
1498 ++alias_stats
1499 .nonoverlapping_refs_since_match_p_must_overlap;
1500 return 0;
1501 }
1502 ref2 = component_refs2.pop ();
1503 if (TREE_CODE (ref2) != COMPONENT_REF)
1504 seen_unmatched_ref_p = true;
1505 }
1506 while (!RECORD_OR_UNION_TYPE_P (TREE_TYPE (TREE_OPERAND (ref2, 0))));
1507
1508 /* BIT_FIELD_REF and VIEW_CONVERT_EXPR are taken off the vectors
1509 earlier. */
1510 gcc_checking_assert (TREE_CODE (ref1) == COMPONENT_REF
1511 && TREE_CODE (ref2) == COMPONENT_REF);
1512
1513 tree field1 = TREE_OPERAND (ref1, 1);
1514 tree field2 = TREE_OPERAND (ref2, 1);
1515
1516 /* ??? We cannot simply use the type of operand #0 of the refs here
1517 as the Fortran compiler smuggles type punning into COMPONENT_REFs
1518 for common blocks instead of using unions like everyone else. */
1519 tree type1 = DECL_CONTEXT (field1);
1520 tree type2 = DECL_CONTEXT (field2);
1521
1522 partial_overlap = false;
1523
1524 /* If we skipped array refs on type of different sizes, we can
1525 no longer be sure that there are not partial overlaps. */
1526 if (seen_unmatched_ref_p
1527 && !operand_equal_p (TYPE_SIZE (type1), TYPE_SIZE (type2), 0))
1528 {
1529 ++alias_stats
1530 .nonoverlapping_refs_since_match_p_may_alias;
1531 return -1;
1532 }
1533
1534 int cmp = nonoverlapping_component_refs_p_1 (field1, field2);
1535 if (cmp == -1)
1536 {
1537 ++alias_stats
1538 .nonoverlapping_refs_since_match_p_may_alias;
1539 return -1;
1540 }
1541 else if (cmp == 1)
1542 {
1543 ++alias_stats
1544 .nonoverlapping_refs_since_match_p_no_alias;
1545 return 1;
1546 }
1547 }
1548
1549 ++alias_stats.nonoverlapping_refs_since_match_p_must_overlap;
1550 return 0;
1551 }
1552
1553 /* Return TYPE_UID which can be used to match record types we consider
1554 same for TBAA purposes. */
1555
1556 static inline int
1557 ncr_type_uid (const_tree field)
1558 {
1559 /* ??? We cannot simply use the type of operand #0 of the refs here
1560 as the Fortran compiler smuggles type punning into COMPONENT_REFs
1561 for common blocks instead of using unions like everyone else. */
1562 tree type = DECL_FIELD_CONTEXT (field);
1563 /* With LTO types considered same_type_for_tbaa_p
1564 from different translation unit may not have same
1565 main variant. They however have same TYPE_CANONICAL. */
1566 if (TYPE_CANONICAL (type))
1567 return TYPE_UID (TYPE_CANONICAL (type));
1568 return TYPE_UID (type);
1569 }
1570
1571 /* qsort compare function to sort FIELD_DECLs after their
1572 DECL_FIELD_CONTEXT TYPE_UID. */
1573
1574 static inline int
1575 ncr_compar (const void *field1_, const void *field2_)
1576 {
1577 const_tree field1 = *(const_tree *) const_cast <void *>(field1_);
1578 const_tree field2 = *(const_tree *) const_cast <void *>(field2_);
1579 unsigned int uid1 = ncr_type_uid (field1);
1580 unsigned int uid2 = ncr_type_uid (field2);
1581
1582 if (uid1 < uid2)
1583 return -1;
1584 else if (uid1 > uid2)
1585 return 1;
1586 return 0;
1587 }
1588
1589 /* Return true if we can determine that the fields referenced cannot
1590 overlap for any pair of objects. This relies on TBAA. */
1591
1592 static bool
1593 nonoverlapping_component_refs_p (const_tree x, const_tree y)
1594 {
1595 /* Early return if we have nothing to do.
1596
1597 Do not consider this as may-alias for stats - it is more useful
1598 to have information how many disambiguations happened provided that
1599 the query was meaningful. */
1600 if (!flag_strict_aliasing
1601 || !x || !y
1602 || !handled_component_p (x)
1603 || !handled_component_p (y))
1604 return false;
1605
1606 auto_vec<const_tree, 16> fieldsx;
1607 while (handled_component_p (x))
1608 {
1609 if (TREE_CODE (x) == COMPONENT_REF)
1610 {
1611 tree field = TREE_OPERAND (x, 1);
1612 tree type = DECL_FIELD_CONTEXT (field);
1613 if (TREE_CODE (type) == RECORD_TYPE)
1614 fieldsx.safe_push (field);
1615 }
1616 else if (TREE_CODE (x) == VIEW_CONVERT_EXPR
1617 || TREE_CODE (x) == BIT_FIELD_REF)
1618 fieldsx.truncate (0);
1619 x = TREE_OPERAND (x, 0);
1620 }
1621 if (fieldsx.length () == 0)
1622 return false;
1623 auto_vec<const_tree, 16> fieldsy;
1624 while (handled_component_p (y))
1625 {
1626 if (TREE_CODE (y) == COMPONENT_REF)
1627 {
1628 tree field = TREE_OPERAND (y, 1);
1629 tree type = DECL_FIELD_CONTEXT (field);
1630 if (TREE_CODE (type) == RECORD_TYPE)
1631 fieldsy.safe_push (TREE_OPERAND (y, 1));
1632 }
1633 else if (TREE_CODE (y) == VIEW_CONVERT_EXPR
1634 || TREE_CODE (y) == BIT_FIELD_REF)
1635 fieldsy.truncate (0);
1636 y = TREE_OPERAND (y, 0);
1637 }
1638 if (fieldsy.length () == 0)
1639 {
1640 ++alias_stats.nonoverlapping_component_refs_p_may_alias;
1641 return false;
1642 }
1643
1644 /* Most common case first. */
1645 if (fieldsx.length () == 1
1646 && fieldsy.length () == 1)
1647 {
1648 if (same_type_for_tbaa (DECL_FIELD_CONTEXT (fieldsx[0]),
1649 DECL_FIELD_CONTEXT (fieldsy[0])) == 1
1650 && nonoverlapping_component_refs_p_1 (fieldsx[0], fieldsy[0]) == 1)
1651 {
1652 ++alias_stats.nonoverlapping_component_refs_p_no_alias;
1653 return true;
1654 }
1655 else
1656 {
1657 ++alias_stats.nonoverlapping_component_refs_p_may_alias;
1658 return false;
1659 }
1660 }
1661
1662 if (fieldsx.length () == 2)
1663 {
1664 if (ncr_compar (&fieldsx[0], &fieldsx[1]) == 1)
1665 std::swap (fieldsx[0], fieldsx[1]);
1666 }
1667 else
1668 fieldsx.qsort (ncr_compar);
1669
1670 if (fieldsy.length () == 2)
1671 {
1672 if (ncr_compar (&fieldsy[0], &fieldsy[1]) == 1)
1673 std::swap (fieldsy[0], fieldsy[1]);
1674 }
1675 else
1676 fieldsy.qsort (ncr_compar);
1677
1678 unsigned i = 0, j = 0;
1679 do
1680 {
1681 const_tree fieldx = fieldsx[i];
1682 const_tree fieldy = fieldsy[j];
1683
1684 /* We're left with accessing different fields of a structure,
1685 no possible overlap. */
1686 if (same_type_for_tbaa (DECL_FIELD_CONTEXT (fieldx),
1687 DECL_FIELD_CONTEXT (fieldy)) == 1
1688 && nonoverlapping_component_refs_p_1 (fieldx, fieldy) == 1)
1689 {
1690 ++alias_stats.nonoverlapping_component_refs_p_no_alias;
1691 return true;
1692 }
1693
1694 if (ncr_type_uid (fieldx) < ncr_type_uid (fieldy))
1695 {
1696 i++;
1697 if (i == fieldsx.length ())
1698 break;
1699 }
1700 else
1701 {
1702 j++;
1703 if (j == fieldsy.length ())
1704 break;
1705 }
1706 }
1707 while (1);
1708
1709 ++alias_stats.nonoverlapping_component_refs_p_may_alias;
1710 return false;
1711 }
1712
1713
1714 /* Return true if two memory references based on the variables BASE1
1715 and BASE2 constrained to [OFFSET1, OFFSET1 + MAX_SIZE1) and
1716 [OFFSET2, OFFSET2 + MAX_SIZE2) may alias. REF1 and REF2
1717 if non-NULL are the complete memory reference trees. */
1718
1719 static bool
1720 decl_refs_may_alias_p (tree ref1, tree base1,
1721 poly_int64 offset1, poly_int64 max_size1,
1722 poly_int64 size1,
1723 tree ref2, tree base2,
1724 poly_int64 offset2, poly_int64 max_size2,
1725 poly_int64 size2)
1726 {
1727 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
1728
1729 /* If both references are based on different variables, they cannot alias. */
1730 if (compare_base_decls (base1, base2) == 0)
1731 return false;
1732
1733 /* If both references are based on the same variable, they cannot alias if
1734 the accesses do not overlap. */
1735 if (!ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
1736 return false;
1737
1738 /* If there is must alias, there is no use disambiguating further. */
1739 if (known_eq (size1, max_size1) && known_eq (size2, max_size2))
1740 return true;
1741
1742 /* For components with variable position, the above test isn't sufficient,
1743 so we disambiguate component references manually. */
1744 if (ref1 && ref2
1745 && handled_component_p (ref1) && handled_component_p (ref2)
1746 && nonoverlapping_refs_since_match_p (NULL, ref1, NULL, ref2, false) == 1)
1747 return false;
1748
1749 return true;
1750 }
1751
1752 /* Return true if an indirect reference based on *PTR1 constrained
1753 to [OFFSET1, OFFSET1 + MAX_SIZE1) may alias a variable based on BASE2
1754 constrained to [OFFSET2, OFFSET2 + MAX_SIZE2). *PTR1 and BASE2 have
1755 the alias sets BASE1_ALIAS_SET and BASE2_ALIAS_SET which can be -1
1756 in which case they are computed on-demand. REF1 and REF2
1757 if non-NULL are the complete memory reference trees. */
1758
1759 static bool
1760 indirect_ref_may_alias_decl_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
1761 poly_int64 offset1, poly_int64 max_size1,
1762 poly_int64 size1,
1763 alias_set_type ref1_alias_set,
1764 alias_set_type base1_alias_set,
1765 tree ref2 ATTRIBUTE_UNUSED, tree base2,
1766 poly_int64 offset2, poly_int64 max_size2,
1767 poly_int64 size2,
1768 alias_set_type ref2_alias_set,
1769 alias_set_type base2_alias_set, bool tbaa_p)
1770 {
1771 tree ptr1;
1772 tree ptrtype1, dbase2;
1773
1774 gcc_checking_assert ((TREE_CODE (base1) == MEM_REF
1775 || TREE_CODE (base1) == TARGET_MEM_REF)
1776 && DECL_P (base2));
1777
1778 ptr1 = TREE_OPERAND (base1, 0);
1779 poly_offset_int moff = mem_ref_offset (base1) << LOG2_BITS_PER_UNIT;
1780
1781 /* If only one reference is based on a variable, they cannot alias if
1782 the pointer access is beyond the extent of the variable access.
1783 (the pointer base cannot validly point to an offset less than zero
1784 of the variable).
1785 ??? IVOPTs creates bases that do not honor this restriction,
1786 so do not apply this optimization for TARGET_MEM_REFs. */
1787 if (TREE_CODE (base1) != TARGET_MEM_REF
1788 && !ranges_maybe_overlap_p (offset1 + moff, -1, offset2, max_size2))
1789 return false;
1790 /* They also cannot alias if the pointer may not point to the decl. */
1791 if (!ptr_deref_may_alias_decl_p (ptr1, base2))
1792 return false;
1793
1794 /* Disambiguations that rely on strict aliasing rules follow. */
1795 if (!flag_strict_aliasing || !tbaa_p)
1796 return true;
1797
1798 /* If the alias set for a pointer access is zero all bets are off. */
1799 if (base1_alias_set == 0 || base2_alias_set == 0)
1800 return true;
1801
1802 /* When we are trying to disambiguate an access with a pointer dereference
1803 as base versus one with a decl as base we can use both the size
1804 of the decl and its dynamic type for extra disambiguation.
1805 ??? We do not know anything about the dynamic type of the decl
1806 other than that its alias-set contains base2_alias_set as a subset
1807 which does not help us here. */
1808 /* As we know nothing useful about the dynamic type of the decl just
1809 use the usual conflict check rather than a subset test.
1810 ??? We could introduce -fvery-strict-aliasing when the language
1811 does not allow decls to have a dynamic type that differs from their
1812 static type. Then we can check
1813 !alias_set_subset_of (base1_alias_set, base2_alias_set) instead. */
1814 if (base1_alias_set != base2_alias_set
1815 && !alias_sets_conflict_p (base1_alias_set, base2_alias_set))
1816 return false;
1817
1818 ptrtype1 = TREE_TYPE (TREE_OPERAND (base1, 1));
1819
1820 /* If the size of the access relevant for TBAA through the pointer
1821 is bigger than the size of the decl we can't possibly access the
1822 decl via that pointer. */
1823 if (/* ??? This in turn may run afoul when a decl of type T which is
1824 a member of union type U is accessed through a pointer to
1825 type U and sizeof T is smaller than sizeof U. */
1826 TREE_CODE (TREE_TYPE (ptrtype1)) != UNION_TYPE
1827 && TREE_CODE (TREE_TYPE (ptrtype1)) != QUAL_UNION_TYPE
1828 && compare_sizes (DECL_SIZE (base2),
1829 TYPE_SIZE (TREE_TYPE (ptrtype1))) < 0)
1830 return false;
1831
1832 if (!ref2)
1833 return true;
1834
1835 /* If the decl is accessed via a MEM_REF, reconstruct the base
1836 we can use for TBAA and an appropriately adjusted offset. */
1837 dbase2 = ref2;
1838 while (handled_component_p (dbase2))
1839 dbase2 = TREE_OPERAND (dbase2, 0);
1840 poly_int64 doffset1 = offset1;
1841 poly_offset_int doffset2 = offset2;
1842 if (TREE_CODE (dbase2) == MEM_REF
1843 || TREE_CODE (dbase2) == TARGET_MEM_REF)
1844 {
1845 doffset2 -= mem_ref_offset (dbase2) << LOG2_BITS_PER_UNIT;
1846 tree ptrtype2 = TREE_TYPE (TREE_OPERAND (dbase2, 1));
1847 /* If second reference is view-converted, give up now. */
1848 if (same_type_for_tbaa (TREE_TYPE (dbase2), TREE_TYPE (ptrtype2)) != 1)
1849 return true;
1850 }
1851
1852 /* If first reference is view-converted, give up now. */
1853 if (same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) != 1)
1854 return true;
1855
1856 /* If both references are through the same type, they do not alias
1857 if the accesses do not overlap. This does extra disambiguation
1858 for mixed/pointer accesses but requires strict aliasing.
1859 For MEM_REFs we require that the component-ref offset we computed
1860 is relative to the start of the type which we ensure by
1861 comparing rvalue and access type and disregarding the constant
1862 pointer offset.
1863
1864 But avoid treating variable length arrays as "objects", instead assume they
1865 can overlap by an exact multiple of their element size.
1866 See gcc.dg/torture/alias-2.c. */
1867 if (((TREE_CODE (base1) != TARGET_MEM_REF
1868 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
1869 && (TREE_CODE (dbase2) != TARGET_MEM_REF
1870 || (!TMR_INDEX (dbase2) && !TMR_INDEX2 (dbase2))))
1871 && same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (dbase2)) == 1)
1872 {
1873 bool partial_overlap = (TREE_CODE (TREE_TYPE (base1)) == ARRAY_TYPE
1874 && (TYPE_SIZE (TREE_TYPE (base1))
1875 && TREE_CODE (TYPE_SIZE (TREE_TYPE (base1)))
1876 != INTEGER_CST));
1877 if (!partial_overlap
1878 && !ranges_maybe_overlap_p (doffset1, max_size1, doffset2, max_size2))
1879 return false;
1880 if (!ref1 || !ref2
1881 /* If there is must alias, there is no use disambiguating further. */
1882 || (!partial_overlap
1883 && known_eq (size1, max_size1) && known_eq (size2, max_size2)))
1884 return true;
1885 int res = nonoverlapping_refs_since_match_p (base1, ref1, base2, ref2,
1886 partial_overlap);
1887 if (res == -1)
1888 return !nonoverlapping_component_refs_p (ref1, ref2);
1889 return !res;
1890 }
1891
1892 /* Do access-path based disambiguation. */
1893 if (ref1 && ref2
1894 && (handled_component_p (ref1) || handled_component_p (ref2)))
1895 return aliasing_component_refs_p (ref1,
1896 ref1_alias_set, base1_alias_set,
1897 offset1, max_size1,
1898 ref2,
1899 ref2_alias_set, base2_alias_set,
1900 offset2, max_size2);
1901
1902 return true;
1903 }
1904
1905 /* Return true if two indirect references based on *PTR1
1906 and *PTR2 constrained to [OFFSET1, OFFSET1 + MAX_SIZE1) and
1907 [OFFSET2, OFFSET2 + MAX_SIZE2) may alias. *PTR1 and *PTR2 have
1908 the alias sets BASE1_ALIAS_SET and BASE2_ALIAS_SET which can be -1
1909 in which case they are computed on-demand. REF1 and REF2
1910 if non-NULL are the complete memory reference trees. */
1911
1912 static bool
1913 indirect_refs_may_alias_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
1914 poly_int64 offset1, poly_int64 max_size1,
1915 poly_int64 size1,
1916 alias_set_type ref1_alias_set,
1917 alias_set_type base1_alias_set,
1918 tree ref2 ATTRIBUTE_UNUSED, tree base2,
1919 poly_int64 offset2, poly_int64 max_size2,
1920 poly_int64 size2,
1921 alias_set_type ref2_alias_set,
1922 alias_set_type base2_alias_set, bool tbaa_p)
1923 {
1924 tree ptr1;
1925 tree ptr2;
1926 tree ptrtype1, ptrtype2;
1927
1928 gcc_checking_assert ((TREE_CODE (base1) == MEM_REF
1929 || TREE_CODE (base1) == TARGET_MEM_REF)
1930 && (TREE_CODE (base2) == MEM_REF
1931 || TREE_CODE (base2) == TARGET_MEM_REF));
1932
1933 ptr1 = TREE_OPERAND (base1, 0);
1934 ptr2 = TREE_OPERAND (base2, 0);
1935
1936 /* If both bases are based on pointers they cannot alias if they may not
1937 point to the same memory object or if they point to the same object
1938 and the accesses do not overlap. */
1939 if ((!cfun || gimple_in_ssa_p (cfun))
1940 && operand_equal_p (ptr1, ptr2, 0)
1941 && (((TREE_CODE (base1) != TARGET_MEM_REF
1942 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
1943 && (TREE_CODE (base2) != TARGET_MEM_REF
1944 || (!TMR_INDEX (base2) && !TMR_INDEX2 (base2))))
1945 || (TREE_CODE (base1) == TARGET_MEM_REF
1946 && TREE_CODE (base2) == TARGET_MEM_REF
1947 && (TMR_STEP (base1) == TMR_STEP (base2)
1948 || (TMR_STEP (base1) && TMR_STEP (base2)
1949 && operand_equal_p (TMR_STEP (base1),
1950 TMR_STEP (base2), 0)))
1951 && (TMR_INDEX (base1) == TMR_INDEX (base2)
1952 || (TMR_INDEX (base1) && TMR_INDEX (base2)
1953 && operand_equal_p (TMR_INDEX (base1),
1954 TMR_INDEX (base2), 0)))
1955 && (TMR_INDEX2 (base1) == TMR_INDEX2 (base2)
1956 || (TMR_INDEX2 (base1) && TMR_INDEX2 (base2)
1957 && operand_equal_p (TMR_INDEX2 (base1),
1958 TMR_INDEX2 (base2), 0))))))
1959 {
1960 poly_offset_int moff1 = mem_ref_offset (base1) << LOG2_BITS_PER_UNIT;
1961 poly_offset_int moff2 = mem_ref_offset (base2) << LOG2_BITS_PER_UNIT;
1962 if (!ranges_maybe_overlap_p (offset1 + moff1, max_size1,
1963 offset2 + moff2, max_size2))
1964 return false;
1965 /* If there is must alias, there is no use disambiguating further. */
1966 if (known_eq (size1, max_size1) && known_eq (size2, max_size2))
1967 return true;
1968 if (ref1 && ref2)
1969 {
1970 int res = nonoverlapping_refs_since_match_p (NULL, ref1, NULL, ref2,
1971 false);
1972 if (res != -1)
1973 return !res;
1974 }
1975 }
1976 if (!ptr_derefs_may_alias_p (ptr1, ptr2))
1977 return false;
1978
1979 /* Disambiguations that rely on strict aliasing rules follow. */
1980 if (!flag_strict_aliasing || !tbaa_p)
1981 return true;
1982
1983 ptrtype1 = TREE_TYPE (TREE_OPERAND (base1, 1));
1984 ptrtype2 = TREE_TYPE (TREE_OPERAND (base2, 1));
1985
1986 /* If the alias set for a pointer access is zero all bets are off. */
1987 if (base1_alias_set == 0
1988 || base2_alias_set == 0)
1989 return true;
1990
1991 /* Do type-based disambiguation. */
1992 if (base1_alias_set != base2_alias_set
1993 && !alias_sets_conflict_p (base1_alias_set, base2_alias_set))
1994 return false;
1995
1996 /* If either reference is view-converted, give up now. */
1997 if (same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) != 1
1998 || same_type_for_tbaa (TREE_TYPE (base2), TREE_TYPE (ptrtype2)) != 1)
1999 return true;
2000
2001 /* If both references are through the same type, they do not alias
2002 if the accesses do not overlap. This does extra disambiguation
2003 for mixed/pointer accesses but requires strict aliasing. */
2004 if ((TREE_CODE (base1) != TARGET_MEM_REF
2005 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
2006 && (TREE_CODE (base2) != TARGET_MEM_REF
2007 || (!TMR_INDEX (base2) && !TMR_INDEX2 (base2)))
2008 && same_type_for_tbaa (TREE_TYPE (ptrtype1),
2009 TREE_TYPE (ptrtype2)) == 1)
2010 {
2011 /* But avoid treating arrays as "objects", instead assume they
2012 can overlap by an exact multiple of their element size.
2013 See gcc.dg/torture/alias-2.c. */
2014 bool partial_overlap = TREE_CODE (TREE_TYPE (ptrtype1)) == ARRAY_TYPE;
2015
2016 if (!partial_overlap
2017 && !ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
2018 return false;
2019 if (!ref1 || !ref2
2020 || (!partial_overlap
2021 && known_eq (size1, max_size1) && known_eq (size2, max_size2)))
2022 return true;
2023 int res = nonoverlapping_refs_since_match_p (base1, ref1, base2, ref2,
2024 partial_overlap);
2025 if (res == -1)
2026 return !nonoverlapping_component_refs_p (ref1, ref2);
2027 return !res;
2028 }
2029
2030 /* Do access-path based disambiguation. */
2031 if (ref1 && ref2
2032 && (handled_component_p (ref1) || handled_component_p (ref2)))
2033 return aliasing_component_refs_p (ref1,
2034 ref1_alias_set, base1_alias_set,
2035 offset1, max_size1,
2036 ref2,
2037 ref2_alias_set, base2_alias_set,
2038 offset2, max_size2);
2039
2040 return true;
2041 }
2042
2043 /* Return true, if the two memory references REF1 and REF2 may alias. */
2044
2045 static bool
2046 refs_may_alias_p_2 (ao_ref *ref1, ao_ref *ref2, bool tbaa_p)
2047 {
2048 tree base1, base2;
2049 poly_int64 offset1 = 0, offset2 = 0;
2050 poly_int64 max_size1 = -1, max_size2 = -1;
2051 bool var1_p, var2_p, ind1_p, ind2_p;
2052
2053 gcc_checking_assert ((!ref1->ref
2054 || TREE_CODE (ref1->ref) == SSA_NAME
2055 || DECL_P (ref1->ref)
2056 || TREE_CODE (ref1->ref) == STRING_CST
2057 || handled_component_p (ref1->ref)
2058 || TREE_CODE (ref1->ref) == MEM_REF
2059 || TREE_CODE (ref1->ref) == TARGET_MEM_REF)
2060 && (!ref2->ref
2061 || TREE_CODE (ref2->ref) == SSA_NAME
2062 || DECL_P (ref2->ref)
2063 || TREE_CODE (ref2->ref) == STRING_CST
2064 || handled_component_p (ref2->ref)
2065 || TREE_CODE (ref2->ref) == MEM_REF
2066 || TREE_CODE (ref2->ref) == TARGET_MEM_REF));
2067
2068 /* Decompose the references into their base objects and the access. */
2069 base1 = ao_ref_base (ref1);
2070 offset1 = ref1->offset;
2071 max_size1 = ref1->max_size;
2072 base2 = ao_ref_base (ref2);
2073 offset2 = ref2->offset;
2074 max_size2 = ref2->max_size;
2075
2076 /* We can end up with registers or constants as bases for example from
2077 *D.1663_44 = VIEW_CONVERT_EXPR<struct DB_LSN>(__tmp$B0F64_59);
2078 which is seen as a struct copy. */
2079 if (TREE_CODE (base1) == SSA_NAME
2080 || TREE_CODE (base1) == CONST_DECL
2081 || TREE_CODE (base1) == CONSTRUCTOR
2082 || TREE_CODE (base1) == ADDR_EXPR
2083 || CONSTANT_CLASS_P (base1)
2084 || TREE_CODE (base2) == SSA_NAME
2085 || TREE_CODE (base2) == CONST_DECL
2086 || TREE_CODE (base2) == CONSTRUCTOR
2087 || TREE_CODE (base2) == ADDR_EXPR
2088 || CONSTANT_CLASS_P (base2))
2089 return false;
2090
2091 /* We can end up referring to code via function and label decls.
2092 As we likely do not properly track code aliases conservatively
2093 bail out. */
2094 if (TREE_CODE (base1) == FUNCTION_DECL
2095 || TREE_CODE (base1) == LABEL_DECL
2096 || TREE_CODE (base2) == FUNCTION_DECL
2097 || TREE_CODE (base2) == LABEL_DECL)
2098 return true;
2099
2100 /* Two volatile accesses always conflict. */
2101 if (ref1->volatile_p
2102 && ref2->volatile_p)
2103 return true;
2104
2105 /* Defer to simple offset based disambiguation if we have
2106 references based on two decls. Do this before defering to
2107 TBAA to handle must-alias cases in conformance with the
2108 GCC extension of allowing type-punning through unions. */
2109 var1_p = DECL_P (base1);
2110 var2_p = DECL_P (base2);
2111 if (var1_p && var2_p)
2112 return decl_refs_may_alias_p (ref1->ref, base1, offset1, max_size1,
2113 ref1->size,
2114 ref2->ref, base2, offset2, max_size2,
2115 ref2->size);
2116
2117 /* Handle restrict based accesses.
2118 ??? ao_ref_base strips inner MEM_REF [&decl], recover from that
2119 here. */
2120 tree rbase1 = base1;
2121 tree rbase2 = base2;
2122 if (var1_p)
2123 {
2124 rbase1 = ref1->ref;
2125 if (rbase1)
2126 while (handled_component_p (rbase1))
2127 rbase1 = TREE_OPERAND (rbase1, 0);
2128 }
2129 if (var2_p)
2130 {
2131 rbase2 = ref2->ref;
2132 if (rbase2)
2133 while (handled_component_p (rbase2))
2134 rbase2 = TREE_OPERAND (rbase2, 0);
2135 }
2136 if (rbase1 && rbase2
2137 && (TREE_CODE (base1) == MEM_REF || TREE_CODE (base1) == TARGET_MEM_REF)
2138 && (TREE_CODE (base2) == MEM_REF || TREE_CODE (base2) == TARGET_MEM_REF)
2139 /* If the accesses are in the same restrict clique... */
2140 && MR_DEPENDENCE_CLIQUE (base1) == MR_DEPENDENCE_CLIQUE (base2)
2141 /* But based on different pointers they do not alias. */
2142 && MR_DEPENDENCE_BASE (base1) != MR_DEPENDENCE_BASE (base2))
2143 return false;
2144
2145 ind1_p = (TREE_CODE (base1) == MEM_REF
2146 || TREE_CODE (base1) == TARGET_MEM_REF);
2147 ind2_p = (TREE_CODE (base2) == MEM_REF
2148 || TREE_CODE (base2) == TARGET_MEM_REF);
2149
2150 /* Canonicalize the pointer-vs-decl case. */
2151 if (ind1_p && var2_p)
2152 {
2153 std::swap (offset1, offset2);
2154 std::swap (max_size1, max_size2);
2155 std::swap (base1, base2);
2156 std::swap (ref1, ref2);
2157 var1_p = true;
2158 ind1_p = false;
2159 var2_p = false;
2160 ind2_p = true;
2161 }
2162
2163 /* First defer to TBAA if possible. */
2164 if (tbaa_p
2165 && flag_strict_aliasing
2166 && !alias_sets_conflict_p (ao_ref_alias_set (ref1),
2167 ao_ref_alias_set (ref2)))
2168 return false;
2169
2170 /* If the reference is based on a pointer that points to memory
2171 that may not be written to then the other reference cannot possibly
2172 clobber it. */
2173 if ((TREE_CODE (TREE_OPERAND (base2, 0)) == SSA_NAME
2174 && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base2, 0)))
2175 || (ind1_p
2176 && TREE_CODE (TREE_OPERAND (base1, 0)) == SSA_NAME
2177 && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base1, 0))))
2178 return false;
2179
2180 /* Dispatch to the pointer-vs-decl or pointer-vs-pointer disambiguators. */
2181 if (var1_p && ind2_p)
2182 return indirect_ref_may_alias_decl_p (ref2->ref, base2,
2183 offset2, max_size2, ref2->size,
2184 ao_ref_alias_set (ref2),
2185 ao_ref_base_alias_set (ref2),
2186 ref1->ref, base1,
2187 offset1, max_size1, ref1->size,
2188 ao_ref_alias_set (ref1),
2189 ao_ref_base_alias_set (ref1),
2190 tbaa_p);
2191 else if (ind1_p && ind2_p)
2192 return indirect_refs_may_alias_p (ref1->ref, base1,
2193 offset1, max_size1, ref1->size,
2194 ao_ref_alias_set (ref1),
2195 ao_ref_base_alias_set (ref1),
2196 ref2->ref, base2,
2197 offset2, max_size2, ref2->size,
2198 ao_ref_alias_set (ref2),
2199 ao_ref_base_alias_set (ref2),
2200 tbaa_p);
2201
2202 gcc_unreachable ();
2203 }
2204
2205 /* Return true, if the two memory references REF1 and REF2 may alias
2206 and update statistics. */
2207
2208 bool
2209 refs_may_alias_p_1 (ao_ref *ref1, ao_ref *ref2, bool tbaa_p)
2210 {
2211 bool res = refs_may_alias_p_2 (ref1, ref2, tbaa_p);
2212 if (res)
2213 ++alias_stats.refs_may_alias_p_may_alias;
2214 else
2215 ++alias_stats.refs_may_alias_p_no_alias;
2216 return res;
2217 }
2218
2219 static bool
2220 refs_may_alias_p (tree ref1, ao_ref *ref2, bool tbaa_p)
2221 {
2222 ao_ref r1;
2223 ao_ref_init (&r1, ref1);
2224 return refs_may_alias_p_1 (&r1, ref2, tbaa_p);
2225 }
2226
2227 bool
2228 refs_may_alias_p (tree ref1, tree ref2, bool tbaa_p)
2229 {
2230 ao_ref r1, r2;
2231 ao_ref_init (&r1, ref1);
2232 ao_ref_init (&r2, ref2);
2233 return refs_may_alias_p_1 (&r1, &r2, tbaa_p);
2234 }
2235
2236 /* Returns true if there is a anti-dependence for the STORE that
2237 executes after the LOAD. */
2238
2239 bool
2240 refs_anti_dependent_p (tree load, tree store)
2241 {
2242 ao_ref r1, r2;
2243 ao_ref_init (&r1, load);
2244 ao_ref_init (&r2, store);
2245 return refs_may_alias_p_1 (&r1, &r2, false);
2246 }
2247
2248 /* Returns true if there is a output dependence for the stores
2249 STORE1 and STORE2. */
2250
2251 bool
2252 refs_output_dependent_p (tree store1, tree store2)
2253 {
2254 ao_ref r1, r2;
2255 ao_ref_init (&r1, store1);
2256 ao_ref_init (&r2, store2);
2257 return refs_may_alias_p_1 (&r1, &r2, false);
2258 }
2259
2260 /* If the call CALL may use the memory reference REF return true,
2261 otherwise return false. */
2262
2263 static bool
2264 ref_maybe_used_by_call_p_1 (gcall *call, ao_ref *ref, bool tbaa_p)
2265 {
2266 tree base, callee;
2267 unsigned i;
2268 int flags = gimple_call_flags (call);
2269
2270 /* Const functions without a static chain do not implicitly use memory. */
2271 if (!gimple_call_chain (call)
2272 && (flags & (ECF_CONST|ECF_NOVOPS)))
2273 goto process_args;
2274
2275 base = ao_ref_base (ref);
2276 if (!base)
2277 return true;
2278
2279 /* A call that is not without side-effects might involve volatile
2280 accesses and thus conflicts with all other volatile accesses. */
2281 if (ref->volatile_p)
2282 return true;
2283
2284 /* If the reference is based on a decl that is not aliased the call
2285 cannot possibly use it. */
2286 if (DECL_P (base)
2287 && !may_be_aliased (base)
2288 /* But local statics can be used through recursion. */
2289 && !is_global_var (base))
2290 goto process_args;
2291
2292 callee = gimple_call_fndecl (call);
2293
2294 /* Handle those builtin functions explicitly that do not act as
2295 escape points. See tree-ssa-structalias.c:find_func_aliases
2296 for the list of builtins we might need to handle here. */
2297 if (callee != NULL_TREE
2298 && gimple_call_builtin_p (call, BUILT_IN_NORMAL))
2299 switch (DECL_FUNCTION_CODE (callee))
2300 {
2301 /* All the following functions read memory pointed to by
2302 their second argument. strcat/strncat additionally
2303 reads memory pointed to by the first argument. */
2304 case BUILT_IN_STRCAT:
2305 case BUILT_IN_STRNCAT:
2306 {
2307 ao_ref dref;
2308 ao_ref_init_from_ptr_and_size (&dref,
2309 gimple_call_arg (call, 0),
2310 NULL_TREE);
2311 if (refs_may_alias_p_1 (&dref, ref, false))
2312 return true;
2313 }
2314 /* FALLTHRU */
2315 case BUILT_IN_STRCPY:
2316 case BUILT_IN_STRNCPY:
2317 case BUILT_IN_MEMCPY:
2318 case BUILT_IN_MEMMOVE:
2319 case BUILT_IN_MEMPCPY:
2320 case BUILT_IN_STPCPY:
2321 case BUILT_IN_STPNCPY:
2322 case BUILT_IN_TM_MEMCPY:
2323 case BUILT_IN_TM_MEMMOVE:
2324 {
2325 ao_ref dref;
2326 tree size = NULL_TREE;
2327 if (gimple_call_num_args (call) == 3)
2328 size = gimple_call_arg (call, 2);
2329 ao_ref_init_from_ptr_and_size (&dref,
2330 gimple_call_arg (call, 1),
2331 size);
2332 return refs_may_alias_p_1 (&dref, ref, false);
2333 }
2334 case BUILT_IN_STRCAT_CHK:
2335 case BUILT_IN_STRNCAT_CHK:
2336 {
2337 ao_ref dref;
2338 ao_ref_init_from_ptr_and_size (&dref,
2339 gimple_call_arg (call, 0),
2340 NULL_TREE);
2341 if (refs_may_alias_p_1 (&dref, ref, false))
2342 return true;
2343 }
2344 /* FALLTHRU */
2345 case BUILT_IN_STRCPY_CHK:
2346 case BUILT_IN_STRNCPY_CHK:
2347 case BUILT_IN_MEMCPY_CHK:
2348 case BUILT_IN_MEMMOVE_CHK:
2349 case BUILT_IN_MEMPCPY_CHK:
2350 case BUILT_IN_STPCPY_CHK:
2351 case BUILT_IN_STPNCPY_CHK:
2352 {
2353 ao_ref dref;
2354 tree size = NULL_TREE;
2355 if (gimple_call_num_args (call) == 4)
2356 size = gimple_call_arg (call, 2);
2357 ao_ref_init_from_ptr_and_size (&dref,
2358 gimple_call_arg (call, 1),
2359 size);
2360 return refs_may_alias_p_1 (&dref, ref, false);
2361 }
2362 case BUILT_IN_BCOPY:
2363 {
2364 ao_ref dref;
2365 tree size = gimple_call_arg (call, 2);
2366 ao_ref_init_from_ptr_and_size (&dref,
2367 gimple_call_arg (call, 0),
2368 size);
2369 return refs_may_alias_p_1 (&dref, ref, false);
2370 }
2371
2372 /* The following functions read memory pointed to by their
2373 first argument. */
2374 CASE_BUILT_IN_TM_LOAD (1):
2375 CASE_BUILT_IN_TM_LOAD (2):
2376 CASE_BUILT_IN_TM_LOAD (4):
2377 CASE_BUILT_IN_TM_LOAD (8):
2378 CASE_BUILT_IN_TM_LOAD (FLOAT):
2379 CASE_BUILT_IN_TM_LOAD (DOUBLE):
2380 CASE_BUILT_IN_TM_LOAD (LDOUBLE):
2381 CASE_BUILT_IN_TM_LOAD (M64):
2382 CASE_BUILT_IN_TM_LOAD (M128):
2383 CASE_BUILT_IN_TM_LOAD (M256):
2384 case BUILT_IN_TM_LOG:
2385 case BUILT_IN_TM_LOG_1:
2386 case BUILT_IN_TM_LOG_2:
2387 case BUILT_IN_TM_LOG_4:
2388 case BUILT_IN_TM_LOG_8:
2389 case BUILT_IN_TM_LOG_FLOAT:
2390 case BUILT_IN_TM_LOG_DOUBLE:
2391 case BUILT_IN_TM_LOG_LDOUBLE:
2392 case BUILT_IN_TM_LOG_M64:
2393 case BUILT_IN_TM_LOG_M128:
2394 case BUILT_IN_TM_LOG_M256:
2395 return ptr_deref_may_alias_ref_p_1 (gimple_call_arg (call, 0), ref);
2396
2397 /* These read memory pointed to by the first argument. */
2398 case BUILT_IN_STRDUP:
2399 case BUILT_IN_STRNDUP:
2400 case BUILT_IN_REALLOC:
2401 {
2402 ao_ref dref;
2403 tree size = NULL_TREE;
2404 if (gimple_call_num_args (call) == 2)
2405 size = gimple_call_arg (call, 1);
2406 ao_ref_init_from_ptr_and_size (&dref,
2407 gimple_call_arg (call, 0),
2408 size);
2409 return refs_may_alias_p_1 (&dref, ref, false);
2410 }
2411 /* These read memory pointed to by the first argument. */
2412 case BUILT_IN_INDEX:
2413 case BUILT_IN_STRCHR:
2414 case BUILT_IN_STRRCHR:
2415 {
2416 ao_ref dref;
2417 ao_ref_init_from_ptr_and_size (&dref,
2418 gimple_call_arg (call, 0),
2419 NULL_TREE);
2420 return refs_may_alias_p_1 (&dref, ref, false);
2421 }
2422 /* These read memory pointed to by the first argument with size
2423 in the third argument. */
2424 case BUILT_IN_MEMCHR:
2425 {
2426 ao_ref dref;
2427 ao_ref_init_from_ptr_and_size (&dref,
2428 gimple_call_arg (call, 0),
2429 gimple_call_arg (call, 2));
2430 return refs_may_alias_p_1 (&dref, ref, false);
2431 }
2432 /* These read memory pointed to by the first and second arguments. */
2433 case BUILT_IN_STRSTR:
2434 case BUILT_IN_STRPBRK:
2435 {
2436 ao_ref dref;
2437 ao_ref_init_from_ptr_and_size (&dref,
2438 gimple_call_arg (call, 0),
2439 NULL_TREE);
2440 if (refs_may_alias_p_1 (&dref, ref, false))
2441 return true;
2442 ao_ref_init_from_ptr_and_size (&dref,
2443 gimple_call_arg (call, 1),
2444 NULL_TREE);
2445 return refs_may_alias_p_1 (&dref, ref, false);
2446 }
2447
2448 /* The following builtins do not read from memory. */
2449 case BUILT_IN_FREE:
2450 case BUILT_IN_MALLOC:
2451 case BUILT_IN_POSIX_MEMALIGN:
2452 case BUILT_IN_ALIGNED_ALLOC:
2453 case BUILT_IN_CALLOC:
2454 CASE_BUILT_IN_ALLOCA:
2455 case BUILT_IN_STACK_SAVE:
2456 case BUILT_IN_STACK_RESTORE:
2457 case BUILT_IN_MEMSET:
2458 case BUILT_IN_TM_MEMSET:
2459 case BUILT_IN_MEMSET_CHK:
2460 case BUILT_IN_FREXP:
2461 case BUILT_IN_FREXPF:
2462 case BUILT_IN_FREXPL:
2463 case BUILT_IN_GAMMA_R:
2464 case BUILT_IN_GAMMAF_R:
2465 case BUILT_IN_GAMMAL_R:
2466 case BUILT_IN_LGAMMA_R:
2467 case BUILT_IN_LGAMMAF_R:
2468 case BUILT_IN_LGAMMAL_R:
2469 case BUILT_IN_MODF:
2470 case BUILT_IN_MODFF:
2471 case BUILT_IN_MODFL:
2472 case BUILT_IN_REMQUO:
2473 case BUILT_IN_REMQUOF:
2474 case BUILT_IN_REMQUOL:
2475 case BUILT_IN_SINCOS:
2476 case BUILT_IN_SINCOSF:
2477 case BUILT_IN_SINCOSL:
2478 case BUILT_IN_ASSUME_ALIGNED:
2479 case BUILT_IN_VA_END:
2480 return false;
2481 /* __sync_* builtins and some OpenMP builtins act as threading
2482 barriers. */
2483 #undef DEF_SYNC_BUILTIN
2484 #define DEF_SYNC_BUILTIN(ENUM, NAME, TYPE, ATTRS) case ENUM:
2485 #include "sync-builtins.def"
2486 #undef DEF_SYNC_BUILTIN
2487 case BUILT_IN_GOMP_ATOMIC_START:
2488 case BUILT_IN_GOMP_ATOMIC_END:
2489 case BUILT_IN_GOMP_BARRIER:
2490 case BUILT_IN_GOMP_BARRIER_CANCEL:
2491 case BUILT_IN_GOMP_TASKWAIT:
2492 case BUILT_IN_GOMP_TASKGROUP_END:
2493 case BUILT_IN_GOMP_CRITICAL_START:
2494 case BUILT_IN_GOMP_CRITICAL_END:
2495 case BUILT_IN_GOMP_CRITICAL_NAME_START:
2496 case BUILT_IN_GOMP_CRITICAL_NAME_END:
2497 case BUILT_IN_GOMP_LOOP_END:
2498 case BUILT_IN_GOMP_LOOP_END_CANCEL:
2499 case BUILT_IN_GOMP_ORDERED_START:
2500 case BUILT_IN_GOMP_ORDERED_END:
2501 case BUILT_IN_GOMP_SECTIONS_END:
2502 case BUILT_IN_GOMP_SECTIONS_END_CANCEL:
2503 case BUILT_IN_GOMP_SINGLE_COPY_START:
2504 case BUILT_IN_GOMP_SINGLE_COPY_END:
2505 return true;
2506
2507 default:
2508 /* Fallthru to general call handling. */;
2509 }
2510
2511 /* Check if base is a global static variable that is not read
2512 by the function. */
2513 if (callee != NULL_TREE && VAR_P (base) && TREE_STATIC (base))
2514 {
2515 struct cgraph_node *node = cgraph_node::get (callee);
2516 bitmap not_read;
2517
2518 /* FIXME: Callee can be an OMP builtin that does not have a call graph
2519 node yet. We should enforce that there are nodes for all decls in the
2520 IL and remove this check instead. */
2521 if (node
2522 && (not_read = ipa_reference_get_not_read_global (node))
2523 && bitmap_bit_p (not_read, ipa_reference_var_uid (base)))
2524 goto process_args;
2525 }
2526
2527 /* Check if the base variable is call-used. */
2528 if (DECL_P (base))
2529 {
2530 if (pt_solution_includes (gimple_call_use_set (call), base))
2531 return true;
2532 }
2533 else if ((TREE_CODE (base) == MEM_REF
2534 || TREE_CODE (base) == TARGET_MEM_REF)
2535 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
2536 {
2537 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (TREE_OPERAND (base, 0));
2538 if (!pi)
2539 return true;
2540
2541 if (pt_solutions_intersect (gimple_call_use_set (call), &pi->pt))
2542 return true;
2543 }
2544 else
2545 return true;
2546
2547 /* Inspect call arguments for passed-by-value aliases. */
2548 process_args:
2549 for (i = 0; i < gimple_call_num_args (call); ++i)
2550 {
2551 tree op = gimple_call_arg (call, i);
2552 int flags = gimple_call_arg_flags (call, i);
2553
2554 if (flags & EAF_UNUSED)
2555 continue;
2556
2557 if (TREE_CODE (op) == WITH_SIZE_EXPR)
2558 op = TREE_OPERAND (op, 0);
2559
2560 if (TREE_CODE (op) != SSA_NAME
2561 && !is_gimple_min_invariant (op))
2562 {
2563 ao_ref r;
2564 ao_ref_init (&r, op);
2565 if (refs_may_alias_p_1 (&r, ref, tbaa_p))
2566 return true;
2567 }
2568 }
2569
2570 return false;
2571 }
2572
2573 static bool
2574 ref_maybe_used_by_call_p (gcall *call, ao_ref *ref, bool tbaa_p)
2575 {
2576 bool res;
2577 res = ref_maybe_used_by_call_p_1 (call, ref, tbaa_p);
2578 if (res)
2579 ++alias_stats.ref_maybe_used_by_call_p_may_alias;
2580 else
2581 ++alias_stats.ref_maybe_used_by_call_p_no_alias;
2582 return res;
2583 }
2584
2585
2586 /* If the statement STMT may use the memory reference REF return
2587 true, otherwise return false. */
2588
2589 bool
2590 ref_maybe_used_by_stmt_p (gimple *stmt, ao_ref *ref, bool tbaa_p)
2591 {
2592 if (is_gimple_assign (stmt))
2593 {
2594 tree rhs;
2595
2596 /* All memory assign statements are single. */
2597 if (!gimple_assign_single_p (stmt))
2598 return false;
2599
2600 rhs = gimple_assign_rhs1 (stmt);
2601 if (is_gimple_reg (rhs)
2602 || is_gimple_min_invariant (rhs)
2603 || gimple_assign_rhs_code (stmt) == CONSTRUCTOR)
2604 return false;
2605
2606 return refs_may_alias_p (rhs, ref, tbaa_p);
2607 }
2608 else if (is_gimple_call (stmt))
2609 return ref_maybe_used_by_call_p (as_a <gcall *> (stmt), ref, tbaa_p);
2610 else if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
2611 {
2612 tree retval = gimple_return_retval (return_stmt);
2613 if (retval
2614 && TREE_CODE (retval) != SSA_NAME
2615 && !is_gimple_min_invariant (retval)
2616 && refs_may_alias_p (retval, ref, tbaa_p))
2617 return true;
2618 /* If ref escapes the function then the return acts as a use. */
2619 tree base = ao_ref_base (ref);
2620 if (!base)
2621 ;
2622 else if (DECL_P (base))
2623 return is_global_var (base);
2624 else if (TREE_CODE (base) == MEM_REF
2625 || TREE_CODE (base) == TARGET_MEM_REF)
2626 return ptr_deref_may_alias_global_p (TREE_OPERAND (base, 0));
2627 return false;
2628 }
2629
2630 return true;
2631 }
2632
2633 bool
2634 ref_maybe_used_by_stmt_p (gimple *stmt, tree ref, bool tbaa_p)
2635 {
2636 ao_ref r;
2637 ao_ref_init (&r, ref);
2638 return ref_maybe_used_by_stmt_p (stmt, &r, tbaa_p);
2639 }
2640
2641 /* If the call in statement CALL may clobber the memory reference REF
2642 return true, otherwise return false. */
2643
2644 bool
2645 call_may_clobber_ref_p_1 (gcall *call, ao_ref *ref)
2646 {
2647 tree base;
2648 tree callee;
2649
2650 /* If the call is pure or const it cannot clobber anything. */
2651 if (gimple_call_flags (call)
2652 & (ECF_PURE|ECF_CONST|ECF_LOOPING_CONST_OR_PURE|ECF_NOVOPS))
2653 return false;
2654 if (gimple_call_internal_p (call))
2655 switch (gimple_call_internal_fn (call))
2656 {
2657 /* Treat these internal calls like ECF_PURE for aliasing,
2658 they don't write to any memory the program should care about.
2659 They have important other side-effects, and read memory,
2660 so can't be ECF_NOVOPS. */
2661 case IFN_UBSAN_NULL:
2662 case IFN_UBSAN_BOUNDS:
2663 case IFN_UBSAN_VPTR:
2664 case IFN_UBSAN_OBJECT_SIZE:
2665 case IFN_UBSAN_PTR:
2666 case IFN_ASAN_CHECK:
2667 return false;
2668 default:
2669 break;
2670 }
2671
2672 base = ao_ref_base (ref);
2673 if (!base)
2674 return true;
2675
2676 if (TREE_CODE (base) == SSA_NAME
2677 || CONSTANT_CLASS_P (base))
2678 return false;
2679
2680 /* A call that is not without side-effects might involve volatile
2681 accesses and thus conflicts with all other volatile accesses. */
2682 if (ref->volatile_p)
2683 return true;
2684
2685 /* If the reference is based on a decl that is not aliased the call
2686 cannot possibly clobber it. */
2687 if (DECL_P (base)
2688 && !may_be_aliased (base)
2689 /* But local non-readonly statics can be modified through recursion
2690 or the call may implement a threading barrier which we must
2691 treat as may-def. */
2692 && (TREE_READONLY (base)
2693 || !is_global_var (base)))
2694 return false;
2695
2696 /* If the reference is based on a pointer that points to memory
2697 that may not be written to then the call cannot possibly clobber it. */
2698 if ((TREE_CODE (base) == MEM_REF
2699 || TREE_CODE (base) == TARGET_MEM_REF)
2700 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME
2701 && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base, 0)))
2702 return false;
2703
2704 callee = gimple_call_fndecl (call);
2705
2706 /* Handle those builtin functions explicitly that do not act as
2707 escape points. See tree-ssa-structalias.c:find_func_aliases
2708 for the list of builtins we might need to handle here. */
2709 if (callee != NULL_TREE
2710 && gimple_call_builtin_p (call, BUILT_IN_NORMAL))
2711 switch (DECL_FUNCTION_CODE (callee))
2712 {
2713 /* All the following functions clobber memory pointed to by
2714 their first argument. */
2715 case BUILT_IN_STRCPY:
2716 case BUILT_IN_STRNCPY:
2717 case BUILT_IN_MEMCPY:
2718 case BUILT_IN_MEMMOVE:
2719 case BUILT_IN_MEMPCPY:
2720 case BUILT_IN_STPCPY:
2721 case BUILT_IN_STPNCPY:
2722 case BUILT_IN_STRCAT:
2723 case BUILT_IN_STRNCAT:
2724 case BUILT_IN_MEMSET:
2725 case BUILT_IN_TM_MEMSET:
2726 CASE_BUILT_IN_TM_STORE (1):
2727 CASE_BUILT_IN_TM_STORE (2):
2728 CASE_BUILT_IN_TM_STORE (4):
2729 CASE_BUILT_IN_TM_STORE (8):
2730 CASE_BUILT_IN_TM_STORE (FLOAT):
2731 CASE_BUILT_IN_TM_STORE (DOUBLE):
2732 CASE_BUILT_IN_TM_STORE (LDOUBLE):
2733 CASE_BUILT_IN_TM_STORE (M64):
2734 CASE_BUILT_IN_TM_STORE (M128):
2735 CASE_BUILT_IN_TM_STORE (M256):
2736 case BUILT_IN_TM_MEMCPY:
2737 case BUILT_IN_TM_MEMMOVE:
2738 {
2739 ao_ref dref;
2740 tree size = NULL_TREE;
2741 /* Don't pass in size for strncat, as the maximum size
2742 is strlen (dest) + n + 1 instead of n, resp.
2743 n + 1 at dest + strlen (dest), but strlen (dest) isn't
2744 known. */
2745 if (gimple_call_num_args (call) == 3
2746 && DECL_FUNCTION_CODE (callee) != BUILT_IN_STRNCAT)
2747 size = gimple_call_arg (call, 2);
2748 ao_ref_init_from_ptr_and_size (&dref,
2749 gimple_call_arg (call, 0),
2750 size);
2751 return refs_may_alias_p_1 (&dref, ref, false);
2752 }
2753 case BUILT_IN_STRCPY_CHK:
2754 case BUILT_IN_STRNCPY_CHK:
2755 case BUILT_IN_MEMCPY_CHK:
2756 case BUILT_IN_MEMMOVE_CHK:
2757 case BUILT_IN_MEMPCPY_CHK:
2758 case BUILT_IN_STPCPY_CHK:
2759 case BUILT_IN_STPNCPY_CHK:
2760 case BUILT_IN_STRCAT_CHK:
2761 case BUILT_IN_STRNCAT_CHK:
2762 case BUILT_IN_MEMSET_CHK:
2763 {
2764 ao_ref dref;
2765 tree size = NULL_TREE;
2766 /* Don't pass in size for __strncat_chk, as the maximum size
2767 is strlen (dest) + n + 1 instead of n, resp.
2768 n + 1 at dest + strlen (dest), but strlen (dest) isn't
2769 known. */
2770 if (gimple_call_num_args (call) == 4
2771 && DECL_FUNCTION_CODE (callee) != BUILT_IN_STRNCAT_CHK)
2772 size = gimple_call_arg (call, 2);
2773 ao_ref_init_from_ptr_and_size (&dref,
2774 gimple_call_arg (call, 0),
2775 size);
2776 return refs_may_alias_p_1 (&dref, ref, false);
2777 }
2778 case BUILT_IN_BCOPY:
2779 {
2780 ao_ref dref;
2781 tree size = gimple_call_arg (call, 2);
2782 ao_ref_init_from_ptr_and_size (&dref,
2783 gimple_call_arg (call, 1),
2784 size);
2785 return refs_may_alias_p_1 (&dref, ref, false);
2786 }
2787 /* Allocating memory does not have any side-effects apart from
2788 being the definition point for the pointer. */
2789 case BUILT_IN_MALLOC:
2790 case BUILT_IN_ALIGNED_ALLOC:
2791 case BUILT_IN_CALLOC:
2792 case BUILT_IN_STRDUP:
2793 case BUILT_IN_STRNDUP:
2794 /* Unix98 specifies that errno is set on allocation failure. */
2795 if (flag_errno_math
2796 && targetm.ref_may_alias_errno (ref))
2797 return true;
2798 return false;
2799 case BUILT_IN_STACK_SAVE:
2800 CASE_BUILT_IN_ALLOCA:
2801 case BUILT_IN_ASSUME_ALIGNED:
2802 return false;
2803 /* But posix_memalign stores a pointer into the memory pointed to
2804 by its first argument. */
2805 case BUILT_IN_POSIX_MEMALIGN:
2806 {
2807 tree ptrptr = gimple_call_arg (call, 0);
2808 ao_ref dref;
2809 ao_ref_init_from_ptr_and_size (&dref, ptrptr,
2810 TYPE_SIZE_UNIT (ptr_type_node));
2811 return (refs_may_alias_p_1 (&dref, ref, false)
2812 || (flag_errno_math
2813 && targetm.ref_may_alias_errno (ref)));
2814 }
2815 /* Freeing memory kills the pointed-to memory. More importantly
2816 the call has to serve as a barrier for moving loads and stores
2817 across it. */
2818 case BUILT_IN_FREE:
2819 case BUILT_IN_VA_END:
2820 {
2821 tree ptr = gimple_call_arg (call, 0);
2822 return ptr_deref_may_alias_ref_p_1 (ptr, ref);
2823 }
2824 /* Realloc serves both as allocation point and deallocation point. */
2825 case BUILT_IN_REALLOC:
2826 {
2827 tree ptr = gimple_call_arg (call, 0);
2828 /* Unix98 specifies that errno is set on allocation failure. */
2829 return ((flag_errno_math
2830 && targetm.ref_may_alias_errno (ref))
2831 || ptr_deref_may_alias_ref_p_1 (ptr, ref));
2832 }
2833 case BUILT_IN_GAMMA_R:
2834 case BUILT_IN_GAMMAF_R:
2835 case BUILT_IN_GAMMAL_R:
2836 case BUILT_IN_LGAMMA_R:
2837 case BUILT_IN_LGAMMAF_R:
2838 case BUILT_IN_LGAMMAL_R:
2839 {
2840 tree out = gimple_call_arg (call, 1);
2841 if (ptr_deref_may_alias_ref_p_1 (out, ref))
2842 return true;
2843 if (flag_errno_math)
2844 break;
2845 return false;
2846 }
2847 case BUILT_IN_FREXP:
2848 case BUILT_IN_FREXPF:
2849 case BUILT_IN_FREXPL:
2850 case BUILT_IN_MODF:
2851 case BUILT_IN_MODFF:
2852 case BUILT_IN_MODFL:
2853 {
2854 tree out = gimple_call_arg (call, 1);
2855 return ptr_deref_may_alias_ref_p_1 (out, ref);
2856 }
2857 case BUILT_IN_REMQUO:
2858 case BUILT_IN_REMQUOF:
2859 case BUILT_IN_REMQUOL:
2860 {
2861 tree out = gimple_call_arg (call, 2);
2862 if (ptr_deref_may_alias_ref_p_1 (out, ref))
2863 return true;
2864 if (flag_errno_math)
2865 break;
2866 return false;
2867 }
2868 case BUILT_IN_SINCOS:
2869 case BUILT_IN_SINCOSF:
2870 case BUILT_IN_SINCOSL:
2871 {
2872 tree sin = gimple_call_arg (call, 1);
2873 tree cos = gimple_call_arg (call, 2);
2874 return (ptr_deref_may_alias_ref_p_1 (sin, ref)
2875 || ptr_deref_may_alias_ref_p_1 (cos, ref));
2876 }
2877 /* __sync_* builtins and some OpenMP builtins act as threading
2878 barriers. */
2879 #undef DEF_SYNC_BUILTIN
2880 #define DEF_SYNC_BUILTIN(ENUM, NAME, TYPE, ATTRS) case ENUM:
2881 #include "sync-builtins.def"
2882 #undef DEF_SYNC_BUILTIN
2883 case BUILT_IN_GOMP_ATOMIC_START:
2884 case BUILT_IN_GOMP_ATOMIC_END:
2885 case BUILT_IN_GOMP_BARRIER:
2886 case BUILT_IN_GOMP_BARRIER_CANCEL:
2887 case BUILT_IN_GOMP_TASKWAIT:
2888 case BUILT_IN_GOMP_TASKGROUP_END:
2889 case BUILT_IN_GOMP_CRITICAL_START:
2890 case BUILT_IN_GOMP_CRITICAL_END:
2891 case BUILT_IN_GOMP_CRITICAL_NAME_START:
2892 case BUILT_IN_GOMP_CRITICAL_NAME_END:
2893 case BUILT_IN_GOMP_LOOP_END:
2894 case BUILT_IN_GOMP_LOOP_END_CANCEL:
2895 case BUILT_IN_GOMP_ORDERED_START:
2896 case BUILT_IN_GOMP_ORDERED_END:
2897 case BUILT_IN_GOMP_SECTIONS_END:
2898 case BUILT_IN_GOMP_SECTIONS_END_CANCEL:
2899 case BUILT_IN_GOMP_SINGLE_COPY_START:
2900 case BUILT_IN_GOMP_SINGLE_COPY_END:
2901 return true;
2902 default:
2903 /* Fallthru to general call handling. */;
2904 }
2905
2906 /* Check if base is a global static variable that is not written
2907 by the function. */
2908 if (callee != NULL_TREE && VAR_P (base) && TREE_STATIC (base))
2909 {
2910 struct cgraph_node *node = cgraph_node::get (callee);
2911 bitmap not_written;
2912
2913 if (node
2914 && (not_written = ipa_reference_get_not_written_global (node))
2915 && bitmap_bit_p (not_written, ipa_reference_var_uid (base)))
2916 return false;
2917 }
2918
2919 /* Check if the base variable is call-clobbered. */
2920 if (DECL_P (base))
2921 return pt_solution_includes (gimple_call_clobber_set (call), base);
2922 else if ((TREE_CODE (base) == MEM_REF
2923 || TREE_CODE (base) == TARGET_MEM_REF)
2924 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
2925 {
2926 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (TREE_OPERAND (base, 0));
2927 if (!pi)
2928 return true;
2929
2930 return pt_solutions_intersect (gimple_call_clobber_set (call), &pi->pt);
2931 }
2932
2933 return true;
2934 }
2935
2936 /* If the call in statement CALL may clobber the memory reference REF
2937 return true, otherwise return false. */
2938
2939 bool
2940 call_may_clobber_ref_p (gcall *call, tree ref)
2941 {
2942 bool res;
2943 ao_ref r;
2944 ao_ref_init (&r, ref);
2945 res = call_may_clobber_ref_p_1 (call, &r);
2946 if (res)
2947 ++alias_stats.call_may_clobber_ref_p_may_alias;
2948 else
2949 ++alias_stats.call_may_clobber_ref_p_no_alias;
2950 return res;
2951 }
2952
2953
2954 /* If the statement STMT may clobber the memory reference REF return true,
2955 otherwise return false. */
2956
2957 bool
2958 stmt_may_clobber_ref_p_1 (gimple *stmt, ao_ref *ref, bool tbaa_p)
2959 {
2960 if (is_gimple_call (stmt))
2961 {
2962 tree lhs = gimple_call_lhs (stmt);
2963 if (lhs
2964 && TREE_CODE (lhs) != SSA_NAME)
2965 {
2966 ao_ref r;
2967 ao_ref_init (&r, lhs);
2968 if (refs_may_alias_p_1 (ref, &r, tbaa_p))
2969 return true;
2970 }
2971
2972 return call_may_clobber_ref_p_1 (as_a <gcall *> (stmt), ref);
2973 }
2974 else if (gimple_assign_single_p (stmt))
2975 {
2976 tree lhs = gimple_assign_lhs (stmt);
2977 if (TREE_CODE (lhs) != SSA_NAME)
2978 {
2979 ao_ref r;
2980 ao_ref_init (&r, lhs);
2981 return refs_may_alias_p_1 (ref, &r, tbaa_p);
2982 }
2983 }
2984 else if (gimple_code (stmt) == GIMPLE_ASM)
2985 return true;
2986
2987 return false;
2988 }
2989
2990 bool
2991 stmt_may_clobber_ref_p (gimple *stmt, tree ref, bool tbaa_p)
2992 {
2993 ao_ref r;
2994 ao_ref_init (&r, ref);
2995 return stmt_may_clobber_ref_p_1 (stmt, &r, tbaa_p);
2996 }
2997
2998 /* Return true if store1 and store2 described by corresponding tuples
2999 <BASE, OFFSET, SIZE, MAX_SIZE> have the same size and store to the same
3000 address. */
3001
3002 static bool
3003 same_addr_size_stores_p (tree base1, poly_int64 offset1, poly_int64 size1,
3004 poly_int64 max_size1,
3005 tree base2, poly_int64 offset2, poly_int64 size2,
3006 poly_int64 max_size2)
3007 {
3008 /* Offsets need to be 0. */
3009 if (maybe_ne (offset1, 0)
3010 || maybe_ne (offset2, 0))
3011 return false;
3012
3013 bool base1_obj_p = SSA_VAR_P (base1);
3014 bool base2_obj_p = SSA_VAR_P (base2);
3015
3016 /* We need one object. */
3017 if (base1_obj_p == base2_obj_p)
3018 return false;
3019 tree obj = base1_obj_p ? base1 : base2;
3020
3021 /* And we need one MEM_REF. */
3022 bool base1_memref_p = TREE_CODE (base1) == MEM_REF;
3023 bool base2_memref_p = TREE_CODE (base2) == MEM_REF;
3024 if (base1_memref_p == base2_memref_p)
3025 return false;
3026 tree memref = base1_memref_p ? base1 : base2;
3027
3028 /* Sizes need to be valid. */
3029 if (!known_size_p (max_size1)
3030 || !known_size_p (max_size2)
3031 || !known_size_p (size1)
3032 || !known_size_p (size2))
3033 return false;
3034
3035 /* Max_size needs to match size. */
3036 if (maybe_ne (max_size1, size1)
3037 || maybe_ne (max_size2, size2))
3038 return false;
3039
3040 /* Sizes need to match. */
3041 if (maybe_ne (size1, size2))
3042 return false;
3043
3044
3045 /* Check that memref is a store to pointer with singleton points-to info. */
3046 if (!integer_zerop (TREE_OPERAND (memref, 1)))
3047 return false;
3048 tree ptr = TREE_OPERAND (memref, 0);
3049 if (TREE_CODE (ptr) != SSA_NAME)
3050 return false;
3051 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
3052 unsigned int pt_uid;
3053 if (pi == NULL
3054 || !pt_solution_singleton_or_null_p (&pi->pt, &pt_uid))
3055 return false;
3056
3057 /* Be conservative with non-call exceptions when the address might
3058 be NULL. */
3059 if (cfun->can_throw_non_call_exceptions && pi->pt.null)
3060 return false;
3061
3062 /* Check that ptr points relative to obj. */
3063 unsigned int obj_uid = DECL_PT_UID (obj);
3064 if (obj_uid != pt_uid)
3065 return false;
3066
3067 /* Check that the object size is the same as the store size. That ensures us
3068 that ptr points to the start of obj. */
3069 return (DECL_SIZE (obj)
3070 && poly_int_tree_p (DECL_SIZE (obj))
3071 && known_eq (wi::to_poly_offset (DECL_SIZE (obj)), size1));
3072 }
3073
3074 /* If STMT kills the memory reference REF return true, otherwise
3075 return false. */
3076
3077 bool
3078 stmt_kills_ref_p (gimple *stmt, ao_ref *ref)
3079 {
3080 if (!ao_ref_base (ref))
3081 return false;
3082
3083 if (gimple_has_lhs (stmt)
3084 && TREE_CODE (gimple_get_lhs (stmt)) != SSA_NAME
3085 /* The assignment is not necessarily carried out if it can throw
3086 and we can catch it in the current function where we could inspect
3087 the previous value.
3088 ??? We only need to care about the RHS throwing. For aggregate
3089 assignments or similar calls and non-call exceptions the LHS
3090 might throw as well. */
3091 && !stmt_can_throw_internal (cfun, stmt))
3092 {
3093 tree lhs = gimple_get_lhs (stmt);
3094 /* If LHS is literally a base of the access we are done. */
3095 if (ref->ref)
3096 {
3097 tree base = ref->ref;
3098 tree innermost_dropped_array_ref = NULL_TREE;
3099 if (handled_component_p (base))
3100 {
3101 tree saved_lhs0 = NULL_TREE;
3102 if (handled_component_p (lhs))
3103 {
3104 saved_lhs0 = TREE_OPERAND (lhs, 0);
3105 TREE_OPERAND (lhs, 0) = integer_zero_node;
3106 }
3107 do
3108 {
3109 /* Just compare the outermost handled component, if
3110 they are equal we have found a possible common
3111 base. */
3112 tree saved_base0 = TREE_OPERAND (base, 0);
3113 TREE_OPERAND (base, 0) = integer_zero_node;
3114 bool res = operand_equal_p (lhs, base, 0);
3115 TREE_OPERAND (base, 0) = saved_base0;
3116 if (res)
3117 break;
3118 /* Remember if we drop an array-ref that we need to
3119 double-check not being at struct end. */
3120 if (TREE_CODE (base) == ARRAY_REF
3121 || TREE_CODE (base) == ARRAY_RANGE_REF)
3122 innermost_dropped_array_ref = base;
3123 /* Otherwise drop handled components of the access. */
3124 base = saved_base0;
3125 }
3126 while (handled_component_p (base));
3127 if (saved_lhs0)
3128 TREE_OPERAND (lhs, 0) = saved_lhs0;
3129 }
3130 /* Finally check if the lhs has the same address and size as the
3131 base candidate of the access. Watch out if we have dropped
3132 an array-ref that was at struct end, this means ref->ref may
3133 be outside of the TYPE_SIZE of its base. */
3134 if ((! innermost_dropped_array_ref
3135 || ! array_at_struct_end_p (innermost_dropped_array_ref))
3136 && (lhs == base
3137 || (((TYPE_SIZE (TREE_TYPE (lhs))
3138 == TYPE_SIZE (TREE_TYPE (base)))
3139 || (TYPE_SIZE (TREE_TYPE (lhs))
3140 && TYPE_SIZE (TREE_TYPE (base))
3141 && operand_equal_p (TYPE_SIZE (TREE_TYPE (lhs)),
3142 TYPE_SIZE (TREE_TYPE (base)),
3143 0)))
3144 && operand_equal_p (lhs, base,
3145 OEP_ADDRESS_OF
3146 | OEP_MATCH_SIDE_EFFECTS))))
3147 return true;
3148 }
3149
3150 /* Now look for non-literal equal bases with the restriction of
3151 handling constant offset and size. */
3152 /* For a must-alias check we need to be able to constrain
3153 the access properly. */
3154 if (!ref->max_size_known_p ())
3155 return false;
3156 poly_int64 size, offset, max_size, ref_offset = ref->offset;
3157 bool reverse;
3158 tree base = get_ref_base_and_extent (lhs, &offset, &size, &max_size,
3159 &reverse);
3160 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
3161 so base == ref->base does not always hold. */
3162 if (base != ref->base)
3163 {
3164 /* Try using points-to info. */
3165 if (same_addr_size_stores_p (base, offset, size, max_size, ref->base,
3166 ref->offset, ref->size, ref->max_size))
3167 return true;
3168
3169 /* If both base and ref->base are MEM_REFs, only compare the
3170 first operand, and if the second operand isn't equal constant,
3171 try to add the offsets into offset and ref_offset. */
3172 if (TREE_CODE (base) == MEM_REF && TREE_CODE (ref->base) == MEM_REF
3173 && TREE_OPERAND (base, 0) == TREE_OPERAND (ref->base, 0))
3174 {
3175 if (!tree_int_cst_equal (TREE_OPERAND (base, 1),
3176 TREE_OPERAND (ref->base, 1)))
3177 {
3178 poly_offset_int off1 = mem_ref_offset (base);
3179 off1 <<= LOG2_BITS_PER_UNIT;
3180 off1 += offset;
3181 poly_offset_int off2 = mem_ref_offset (ref->base);
3182 off2 <<= LOG2_BITS_PER_UNIT;
3183 off2 += ref_offset;
3184 if (!off1.to_shwi (&offset) || !off2.to_shwi (&ref_offset))
3185 size = -1;
3186 }
3187 }
3188 else
3189 size = -1;
3190 }
3191 /* For a must-alias check we need to be able to constrain
3192 the access properly. */
3193 if (known_eq (size, max_size)
3194 && known_subrange_p (ref_offset, ref->max_size, offset, size))
3195 return true;
3196 }
3197
3198 if (is_gimple_call (stmt))
3199 {
3200 tree callee = gimple_call_fndecl (stmt);
3201 if (callee != NULL_TREE
3202 && gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
3203 switch (DECL_FUNCTION_CODE (callee))
3204 {
3205 case BUILT_IN_FREE:
3206 {
3207 tree ptr = gimple_call_arg (stmt, 0);
3208 tree base = ao_ref_base (ref);
3209 if (base && TREE_CODE (base) == MEM_REF
3210 && TREE_OPERAND (base, 0) == ptr)
3211 return true;
3212 break;
3213 }
3214
3215 case BUILT_IN_MEMCPY:
3216 case BUILT_IN_MEMPCPY:
3217 case BUILT_IN_MEMMOVE:
3218 case BUILT_IN_MEMSET:
3219 case BUILT_IN_MEMCPY_CHK:
3220 case BUILT_IN_MEMPCPY_CHK:
3221 case BUILT_IN_MEMMOVE_CHK:
3222 case BUILT_IN_MEMSET_CHK:
3223 case BUILT_IN_STRNCPY:
3224 case BUILT_IN_STPNCPY:
3225 case BUILT_IN_CALLOC:
3226 {
3227 /* For a must-alias check we need to be able to constrain
3228 the access properly. */
3229 if (!ref->max_size_known_p ())
3230 return false;
3231 tree dest;
3232 tree len;
3233
3234 /* In execution order a calloc call will never kill
3235 anything. However, DSE will (ab)use this interface
3236 to ask if a calloc call writes the same memory locations
3237 as a later assignment, memset, etc. So handle calloc
3238 in the expected way. */
3239 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_CALLOC)
3240 {
3241 tree arg0 = gimple_call_arg (stmt, 0);
3242 tree arg1 = gimple_call_arg (stmt, 1);
3243 if (TREE_CODE (arg0) != INTEGER_CST
3244 || TREE_CODE (arg1) != INTEGER_CST)
3245 return false;
3246
3247 dest = gimple_call_lhs (stmt);
3248 len = fold_build2 (MULT_EXPR, TREE_TYPE (arg0), arg0, arg1);
3249 }
3250 else
3251 {
3252 dest = gimple_call_arg (stmt, 0);
3253 len = gimple_call_arg (stmt, 2);
3254 }
3255 if (!poly_int_tree_p (len))
3256 return false;
3257 tree rbase = ref->base;
3258 poly_offset_int roffset = ref->offset;
3259 ao_ref dref;
3260 ao_ref_init_from_ptr_and_size (&dref, dest, len);
3261 tree base = ao_ref_base (&dref);
3262 poly_offset_int offset = dref.offset;
3263 if (!base || !known_size_p (dref.size))
3264 return false;
3265 if (TREE_CODE (base) == MEM_REF)
3266 {
3267 if (TREE_CODE (rbase) != MEM_REF)
3268 return false;
3269 // Compare pointers.
3270 offset += mem_ref_offset (base) << LOG2_BITS_PER_UNIT;
3271 roffset += mem_ref_offset (rbase) << LOG2_BITS_PER_UNIT;
3272 base = TREE_OPERAND (base, 0);
3273 rbase = TREE_OPERAND (rbase, 0);
3274 }
3275 if (base == rbase
3276 && known_subrange_p (roffset, ref->max_size, offset,
3277 wi::to_poly_offset (len)
3278 << LOG2_BITS_PER_UNIT))
3279 return true;
3280 break;
3281 }
3282
3283 case BUILT_IN_VA_END:
3284 {
3285 tree ptr = gimple_call_arg (stmt, 0);
3286 if (TREE_CODE (ptr) == ADDR_EXPR)
3287 {
3288 tree base = ao_ref_base (ref);
3289 if (TREE_OPERAND (ptr, 0) == base)
3290 return true;
3291 }
3292 break;
3293 }
3294
3295 default:;
3296 }
3297 }
3298 return false;
3299 }
3300
3301 bool
3302 stmt_kills_ref_p (gimple *stmt, tree ref)
3303 {
3304 ao_ref r;
3305 ao_ref_init (&r, ref);
3306 return stmt_kills_ref_p (stmt, &r);
3307 }
3308
3309
3310 /* Walk the virtual use-def chain of VUSE until hitting the virtual operand
3311 TARGET or a statement clobbering the memory reference REF in which
3312 case false is returned. The walk starts with VUSE, one argument of PHI. */
3313
3314 static bool
3315 maybe_skip_until (gimple *phi, tree &target, basic_block target_bb,
3316 ao_ref *ref, tree vuse, bool tbaa_p, unsigned int &limit,
3317 bitmap *visited, bool abort_on_visited,
3318 void *(*translate)(ao_ref *, tree, void *, translate_flags *),
3319 translate_flags disambiguate_only,
3320 void *data)
3321 {
3322 basic_block bb = gimple_bb (phi);
3323
3324 if (!*visited)
3325 *visited = BITMAP_ALLOC (NULL);
3326
3327 bitmap_set_bit (*visited, SSA_NAME_VERSION (PHI_RESULT (phi)));
3328
3329 /* Walk until we hit the target. */
3330 while (vuse != target)
3331 {
3332 gimple *def_stmt = SSA_NAME_DEF_STMT (vuse);
3333 /* If we are searching for the target VUSE by walking up to
3334 TARGET_BB dominating the original PHI we are finished once
3335 we reach a default def or a definition in a block dominating
3336 that block. Update TARGET and return. */
3337 if (!target
3338 && (gimple_nop_p (def_stmt)
3339 || dominated_by_p (CDI_DOMINATORS,
3340 target_bb, gimple_bb (def_stmt))))
3341 {
3342 target = vuse;
3343 return true;
3344 }
3345
3346 /* Recurse for PHI nodes. */
3347 if (gimple_code (def_stmt) == GIMPLE_PHI)
3348 {
3349 /* An already visited PHI node ends the walk successfully. */
3350 if (bitmap_bit_p (*visited, SSA_NAME_VERSION (PHI_RESULT (def_stmt))))
3351 return !abort_on_visited;
3352 vuse = get_continuation_for_phi (def_stmt, ref, tbaa_p, limit,
3353 visited, abort_on_visited,
3354 translate, data, disambiguate_only);
3355 if (!vuse)
3356 return false;
3357 continue;
3358 }
3359 else if (gimple_nop_p (def_stmt))
3360 return false;
3361 else
3362 {
3363 /* A clobbering statement or the end of the IL ends it failing. */
3364 if ((int)limit <= 0)
3365 return false;
3366 --limit;
3367 if (stmt_may_clobber_ref_p_1 (def_stmt, ref, tbaa_p))
3368 {
3369 translate_flags tf = disambiguate_only;
3370 if (translate
3371 && (*translate) (ref, vuse, data, &tf) == NULL)
3372 ;
3373 else
3374 return false;
3375 }
3376 }
3377 /* If we reach a new basic-block see if we already skipped it
3378 in a previous walk that ended successfully. */
3379 if (gimple_bb (def_stmt) != bb)
3380 {
3381 if (!bitmap_set_bit (*visited, SSA_NAME_VERSION (vuse)))
3382 return !abort_on_visited;
3383 bb = gimple_bb (def_stmt);
3384 }
3385 vuse = gimple_vuse (def_stmt);
3386 }
3387 return true;
3388 }
3389
3390
3391 /* Starting from a PHI node for the virtual operand of the memory reference
3392 REF find a continuation virtual operand that allows to continue walking
3393 statements dominating PHI skipping only statements that cannot possibly
3394 clobber REF. Decrements LIMIT for each alias disambiguation done
3395 and aborts the walk, returning NULL_TREE if it reaches zero.
3396 Returns NULL_TREE if no suitable virtual operand can be found. */
3397
3398 tree
3399 get_continuation_for_phi (gimple *phi, ao_ref *ref, bool tbaa_p,
3400 unsigned int &limit, bitmap *visited,
3401 bool abort_on_visited,
3402 void *(*translate)(ao_ref *, tree, void *,
3403 translate_flags *),
3404 void *data,
3405 translate_flags disambiguate_only)
3406 {
3407 unsigned nargs = gimple_phi_num_args (phi);
3408
3409 /* Through a single-argument PHI we can simply look through. */
3410 if (nargs == 1)
3411 return PHI_ARG_DEF (phi, 0);
3412
3413 /* For two or more arguments try to pairwise skip non-aliasing code
3414 until we hit the phi argument definition that dominates the other one. */
3415 basic_block phi_bb = gimple_bb (phi);
3416 tree arg0, arg1;
3417 unsigned i;
3418
3419 /* Find a candidate for the virtual operand which definition
3420 dominates those of all others. */
3421 /* First look if any of the args themselves satisfy this. */
3422 for (i = 0; i < nargs; ++i)
3423 {
3424 arg0 = PHI_ARG_DEF (phi, i);
3425 if (SSA_NAME_IS_DEFAULT_DEF (arg0))
3426 break;
3427 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (arg0));
3428 if (def_bb != phi_bb
3429 && dominated_by_p (CDI_DOMINATORS, phi_bb, def_bb))
3430 break;
3431 arg0 = NULL_TREE;
3432 }
3433 /* If not, look if we can reach such candidate by walking defs
3434 until we hit the immediate dominator. maybe_skip_until will
3435 do that for us. */
3436 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, phi_bb);
3437
3438 /* Then check against the (to be) found candidate. */
3439 for (i = 0; i < nargs; ++i)
3440 {
3441 arg1 = PHI_ARG_DEF (phi, i);
3442 if (arg1 == arg0)
3443 ;
3444 else if (! maybe_skip_until (phi, arg0, dom, ref, arg1, tbaa_p,
3445 limit, visited,
3446 abort_on_visited,
3447 translate,
3448 /* Do not valueize when walking over
3449 backedges. */
3450 dominated_by_p
3451 (CDI_DOMINATORS,
3452 gimple_bb (SSA_NAME_DEF_STMT (arg1)),
3453 phi_bb)
3454 ? TR_DISAMBIGUATE
3455 : disambiguate_only, data))
3456 return NULL_TREE;
3457 }
3458
3459 return arg0;
3460 }
3461
3462 /* Based on the memory reference REF and its virtual use VUSE call
3463 WALKER for each virtual use that is equivalent to VUSE, including VUSE
3464 itself. That is, for each virtual use for which its defining statement
3465 does not clobber REF.
3466
3467 WALKER is called with REF, the current virtual use and DATA. If
3468 WALKER returns non-NULL the walk stops and its result is returned.
3469 At the end of a non-successful walk NULL is returned.
3470
3471 TRANSLATE if non-NULL is called with a pointer to REF, the virtual
3472 use which definition is a statement that may clobber REF and DATA.
3473 If TRANSLATE returns (void *)-1 the walk stops and NULL is returned.
3474 If TRANSLATE returns non-NULL the walk stops and its result is returned.
3475 If TRANSLATE returns NULL the walk continues and TRANSLATE is supposed
3476 to adjust REF and *DATA to make that valid.
3477
3478 VALUEIZE if non-NULL is called with the next VUSE that is considered
3479 and return value is substituted for that. This can be used to
3480 implement optimistic value-numbering for example. Note that the
3481 VUSE argument is assumed to be valueized already.
3482
3483 LIMIT specifies the number of alias queries we are allowed to do,
3484 the walk stops when it reaches zero and NULL is returned. LIMIT
3485 is decremented by the number of alias queries (plus adjustments
3486 done by the callbacks) upon return.
3487
3488 TODO: Cache the vector of equivalent vuses per ref, vuse pair. */
3489
3490 void *
3491 walk_non_aliased_vuses (ao_ref *ref, tree vuse, bool tbaa_p,
3492 void *(*walker)(ao_ref *, tree, void *),
3493 void *(*translate)(ao_ref *, tree, void *,
3494 translate_flags *),
3495 tree (*valueize)(tree),
3496 unsigned &limit, void *data)
3497 {
3498 bitmap visited = NULL;
3499 void *res;
3500 bool translated = false;
3501
3502 timevar_push (TV_ALIAS_STMT_WALK);
3503
3504 do
3505 {
3506 gimple *def_stmt;
3507
3508 /* ??? Do we want to account this to TV_ALIAS_STMT_WALK? */
3509 res = (*walker) (ref, vuse, data);
3510 /* Abort walk. */
3511 if (res == (void *)-1)
3512 {
3513 res = NULL;
3514 break;
3515 }
3516 /* Lookup succeeded. */
3517 else if (res != NULL)
3518 break;
3519
3520 if (valueize)
3521 {
3522 vuse = valueize (vuse);
3523 if (!vuse)
3524 {
3525 res = NULL;
3526 break;
3527 }
3528 }
3529 def_stmt = SSA_NAME_DEF_STMT (vuse);
3530 if (gimple_nop_p (def_stmt))
3531 break;
3532 else if (gimple_code (def_stmt) == GIMPLE_PHI)
3533 vuse = get_continuation_for_phi (def_stmt, ref, tbaa_p, limit,
3534 &visited, translated, translate, data);
3535 else
3536 {
3537 if ((int)limit <= 0)
3538 {
3539 res = NULL;
3540 break;
3541 }
3542 --limit;
3543 if (stmt_may_clobber_ref_p_1 (def_stmt, ref, tbaa_p))
3544 {
3545 if (!translate)
3546 break;
3547 translate_flags disambiguate_only = TR_TRANSLATE;
3548 res = (*translate) (ref, vuse, data, &disambiguate_only);
3549 /* Failed lookup and translation. */
3550 if (res == (void *)-1)
3551 {
3552 res = NULL;
3553 break;
3554 }
3555 /* Lookup succeeded. */
3556 else if (res != NULL)
3557 break;
3558 /* Translation succeeded, continue walking. */
3559 translated = translated || disambiguate_only == TR_TRANSLATE;
3560 }
3561 vuse = gimple_vuse (def_stmt);
3562 }
3563 }
3564 while (vuse);
3565
3566 if (visited)
3567 BITMAP_FREE (visited);
3568
3569 timevar_pop (TV_ALIAS_STMT_WALK);
3570
3571 return res;
3572 }
3573
3574
3575 /* Based on the memory reference REF call WALKER for each vdef which
3576 defining statement may clobber REF, starting with VDEF. If REF
3577 is NULL_TREE, each defining statement is visited.
3578
3579 WALKER is called with REF, the current vdef and DATA. If WALKER
3580 returns true the walk is stopped, otherwise it continues.
3581
3582 If function entry is reached, FUNCTION_ENTRY_REACHED is set to true.
3583 The pointer may be NULL and then we do not track this information.
3584
3585 At PHI nodes walk_aliased_vdefs forks into one walk for reach
3586 PHI argument (but only one walk continues on merge points), the
3587 return value is true if any of the walks was successful.
3588
3589 The function returns the number of statements walked or -1 if
3590 LIMIT stmts were walked and the walk was aborted at this point.
3591 If LIMIT is zero the walk is not aborted. */
3592
3593 static int
3594 walk_aliased_vdefs_1 (ao_ref *ref, tree vdef,
3595 bool (*walker)(ao_ref *, tree, void *), void *data,
3596 bitmap *visited, unsigned int cnt,
3597 bool *function_entry_reached, unsigned limit)
3598 {
3599 do
3600 {
3601 gimple *def_stmt = SSA_NAME_DEF_STMT (vdef);
3602
3603 if (*visited
3604 && !bitmap_set_bit (*visited, SSA_NAME_VERSION (vdef)))
3605 return cnt;
3606
3607 if (gimple_nop_p (def_stmt))
3608 {
3609 if (function_entry_reached)
3610 *function_entry_reached = true;
3611 return cnt;
3612 }
3613 else if (gimple_code (def_stmt) == GIMPLE_PHI)
3614 {
3615 unsigned i;
3616 if (!*visited)
3617 *visited = BITMAP_ALLOC (NULL);
3618 for (i = 0; i < gimple_phi_num_args (def_stmt); ++i)
3619 {
3620 int res = walk_aliased_vdefs_1 (ref,
3621 gimple_phi_arg_def (def_stmt, i),
3622 walker, data, visited, cnt,
3623 function_entry_reached, limit);
3624 if (res == -1)
3625 return -1;
3626 cnt = res;
3627 }
3628 return cnt;
3629 }
3630
3631 /* ??? Do we want to account this to TV_ALIAS_STMT_WALK? */
3632 cnt++;
3633 if (cnt == limit)
3634 return -1;
3635 if ((!ref
3636 || stmt_may_clobber_ref_p_1 (def_stmt, ref))
3637 && (*walker) (ref, vdef, data))
3638 return cnt;
3639
3640 vdef = gimple_vuse (def_stmt);
3641 }
3642 while (1);
3643 }
3644
3645 int
3646 walk_aliased_vdefs (ao_ref *ref, tree vdef,
3647 bool (*walker)(ao_ref *, tree, void *), void *data,
3648 bitmap *visited,
3649 bool *function_entry_reached, unsigned int limit)
3650 {
3651 bitmap local_visited = NULL;
3652 int ret;
3653
3654 timevar_push (TV_ALIAS_STMT_WALK);
3655
3656 if (function_entry_reached)
3657 *function_entry_reached = false;
3658
3659 ret = walk_aliased_vdefs_1 (ref, vdef, walker, data,
3660 visited ? visited : &local_visited, 0,
3661 function_entry_reached, limit);
3662 if (local_visited)
3663 BITMAP_FREE (local_visited);
3664
3665 timevar_pop (TV_ALIAS_STMT_WALK);
3666
3667 return ret;
3668 }
3669