openmp: Implement OpenMP 5.0 base-pointer attachement and clause ordering
[gcc.git] / gcc / tree-ssa-ccp.c
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2020 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
28 following values:
29
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
37
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
41 or not.
42
43 CONSTANT -> V_i has been found to hold a constant
44 value C.
45
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
48 at compile time.
49
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
51
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
59 can be visited.
60
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
65
66
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
72
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
75
76 if (PRED)
77 a_9 = 3;
78 else
79 a_10 = 100;
80 a_11 = PHI (a_9, a_10)
81
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
86
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
94
95
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
100
101 This algorithm uses wide-ints at the max precision of the target.
102 This means that, with one uninteresting exception, variables with
103 UNSIGNED types never go to VARYING because the bits above the
104 precision of the type of the variable are always zero. The
105 uninteresting case is a variable of UNSIGNED type that has the
106 maximum precision of the target. Such variables can go to VARYING,
107 but this causes no loss of infomation since these variables will
108 never be extended.
109
110 References:
111
112 Constant propagation with conditional branches,
113 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
114
115 Building an Optimizing Compiler,
116 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
117
118 Advanced Compiler Design and Implementation,
119 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
120
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "backend.h"
125 #include "target.h"
126 #include "tree.h"
127 #include "gimple.h"
128 #include "tree-pass.h"
129 #include "ssa.h"
130 #include "gimple-pretty-print.h"
131 #include "fold-const.h"
132 #include "gimple-fold.h"
133 #include "tree-eh.h"
134 #include "gimplify.h"
135 #include "gimple-iterator.h"
136 #include "tree-cfg.h"
137 #include "tree-ssa-propagate.h"
138 #include "dbgcnt.h"
139 #include "builtins.h"
140 #include "cfgloop.h"
141 #include "stor-layout.h"
142 #include "optabs-query.h"
143 #include "tree-ssa-ccp.h"
144 #include "tree-dfa.h"
145 #include "diagnostic-core.h"
146 #include "stringpool.h"
147 #include "attribs.h"
148 #include "tree-vector-builder.h"
149 #include "cgraph.h"
150 #include "alloc-pool.h"
151 #include "symbol-summary.h"
152 #include "ipa-utils.h"
153 #include "ipa-prop.h"
154
155 /* Possible lattice values. */
156 typedef enum
157 {
158 UNINITIALIZED,
159 UNDEFINED,
160 CONSTANT,
161 VARYING
162 } ccp_lattice_t;
163
164 class ccp_prop_value_t {
165 public:
166 /* Lattice value. */
167 ccp_lattice_t lattice_val;
168
169 /* Propagated value. */
170 tree value;
171
172 /* Mask that applies to the propagated value during CCP. For X
173 with a CONSTANT lattice value X & ~mask == value & ~mask. The
174 zero bits in the mask cover constant values. The ones mean no
175 information. */
176 widest_int mask;
177 };
178
179 class ccp_propagate : public ssa_propagation_engine
180 {
181 public:
182 enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE;
183 enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE;
184 };
185
186 /* Array of propagated constant values. After propagation,
187 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
188 the constant is held in an SSA name representing a memory store
189 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
190 memory reference used to store (i.e., the LHS of the assignment
191 doing the store). */
192 static ccp_prop_value_t *const_val;
193 static unsigned n_const_val;
194
195 static void canonicalize_value (ccp_prop_value_t *);
196 static void ccp_lattice_meet (ccp_prop_value_t *, ccp_prop_value_t *);
197
198 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
199
200 static void
201 dump_lattice_value (FILE *outf, const char *prefix, ccp_prop_value_t val)
202 {
203 switch (val.lattice_val)
204 {
205 case UNINITIALIZED:
206 fprintf (outf, "%sUNINITIALIZED", prefix);
207 break;
208 case UNDEFINED:
209 fprintf (outf, "%sUNDEFINED", prefix);
210 break;
211 case VARYING:
212 fprintf (outf, "%sVARYING", prefix);
213 break;
214 case CONSTANT:
215 if (TREE_CODE (val.value) != INTEGER_CST
216 || val.mask == 0)
217 {
218 fprintf (outf, "%sCONSTANT ", prefix);
219 print_generic_expr (outf, val.value, dump_flags);
220 }
221 else
222 {
223 widest_int cval = wi::bit_and_not (wi::to_widest (val.value),
224 val.mask);
225 fprintf (outf, "%sCONSTANT ", prefix);
226 print_hex (cval, outf);
227 fprintf (outf, " (");
228 print_hex (val.mask, outf);
229 fprintf (outf, ")");
230 }
231 break;
232 default:
233 gcc_unreachable ();
234 }
235 }
236
237
238 /* Print lattice value VAL to stderr. */
239
240 void debug_lattice_value (ccp_prop_value_t val);
241
242 DEBUG_FUNCTION void
243 debug_lattice_value (ccp_prop_value_t val)
244 {
245 dump_lattice_value (stderr, "", val);
246 fprintf (stderr, "\n");
247 }
248
249 /* Extend NONZERO_BITS to a full mask, based on sgn. */
250
251 static widest_int
252 extend_mask (const wide_int &nonzero_bits, signop sgn)
253 {
254 return widest_int::from (nonzero_bits, sgn);
255 }
256
257 /* Compute a default value for variable VAR and store it in the
258 CONST_VAL array. The following rules are used to get default
259 values:
260
261 1- Global and static variables that are declared constant are
262 considered CONSTANT.
263
264 2- Any other value is considered UNDEFINED. This is useful when
265 considering PHI nodes. PHI arguments that are undefined do not
266 change the constant value of the PHI node, which allows for more
267 constants to be propagated.
268
269 3- Variables defined by statements other than assignments and PHI
270 nodes are considered VARYING.
271
272 4- Initial values of variables that are not GIMPLE registers are
273 considered VARYING. */
274
275 static ccp_prop_value_t
276 get_default_value (tree var)
277 {
278 ccp_prop_value_t val = { UNINITIALIZED, NULL_TREE, 0 };
279 gimple *stmt;
280
281 stmt = SSA_NAME_DEF_STMT (var);
282
283 if (gimple_nop_p (stmt))
284 {
285 /* Variables defined by an empty statement are those used
286 before being initialized. If VAR is a local variable, we
287 can assume initially that it is UNDEFINED, otherwise we must
288 consider it VARYING. */
289 if (!virtual_operand_p (var)
290 && SSA_NAME_VAR (var)
291 && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
292 val.lattice_val = UNDEFINED;
293 else
294 {
295 val.lattice_val = VARYING;
296 val.mask = -1;
297 if (flag_tree_bit_ccp)
298 {
299 wide_int nonzero_bits = get_nonzero_bits (var);
300 tree value;
301 widest_int mask;
302
303 if (SSA_NAME_VAR (var)
304 && TREE_CODE (SSA_NAME_VAR (var)) == PARM_DECL
305 && ipcp_get_parm_bits (SSA_NAME_VAR (var), &value, &mask))
306 {
307 val.lattice_val = CONSTANT;
308 val.value = value;
309 widest_int ipa_value = wi::to_widest (value);
310 /* Unknown bits from IPA CP must be equal to zero. */
311 gcc_assert (wi::bit_and (ipa_value, mask) == 0);
312 val.mask = mask;
313 if (nonzero_bits != -1)
314 val.mask &= extend_mask (nonzero_bits,
315 TYPE_SIGN (TREE_TYPE (var)));
316 }
317 else if (nonzero_bits != -1)
318 {
319 val.lattice_val = CONSTANT;
320 val.value = build_zero_cst (TREE_TYPE (var));
321 val.mask = extend_mask (nonzero_bits,
322 TYPE_SIGN (TREE_TYPE (var)));
323 }
324 }
325 }
326 }
327 else if (is_gimple_assign (stmt))
328 {
329 tree cst;
330 if (gimple_assign_single_p (stmt)
331 && DECL_P (gimple_assign_rhs1 (stmt))
332 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
333 {
334 val.lattice_val = CONSTANT;
335 val.value = cst;
336 }
337 else
338 {
339 /* Any other variable defined by an assignment is considered
340 UNDEFINED. */
341 val.lattice_val = UNDEFINED;
342 }
343 }
344 else if ((is_gimple_call (stmt)
345 && gimple_call_lhs (stmt) != NULL_TREE)
346 || gimple_code (stmt) == GIMPLE_PHI)
347 {
348 /* A variable defined by a call or a PHI node is considered
349 UNDEFINED. */
350 val.lattice_val = UNDEFINED;
351 }
352 else
353 {
354 /* Otherwise, VAR will never take on a constant value. */
355 val.lattice_val = VARYING;
356 val.mask = -1;
357 }
358
359 return val;
360 }
361
362
363 /* Get the constant value associated with variable VAR. */
364
365 static inline ccp_prop_value_t *
366 get_value (tree var)
367 {
368 ccp_prop_value_t *val;
369
370 if (const_val == NULL
371 || SSA_NAME_VERSION (var) >= n_const_val)
372 return NULL;
373
374 val = &const_val[SSA_NAME_VERSION (var)];
375 if (val->lattice_val == UNINITIALIZED)
376 *val = get_default_value (var);
377
378 canonicalize_value (val);
379
380 return val;
381 }
382
383 /* Return the constant tree value associated with VAR. */
384
385 static inline tree
386 get_constant_value (tree var)
387 {
388 ccp_prop_value_t *val;
389 if (TREE_CODE (var) != SSA_NAME)
390 {
391 if (is_gimple_min_invariant (var))
392 return var;
393 return NULL_TREE;
394 }
395 val = get_value (var);
396 if (val
397 && val->lattice_val == CONSTANT
398 && (TREE_CODE (val->value) != INTEGER_CST
399 || val->mask == 0))
400 return val->value;
401 return NULL_TREE;
402 }
403
404 /* Sets the value associated with VAR to VARYING. */
405
406 static inline void
407 set_value_varying (tree var)
408 {
409 ccp_prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
410
411 val->lattice_val = VARYING;
412 val->value = NULL_TREE;
413 val->mask = -1;
414 }
415
416 /* For integer constants, make sure to drop TREE_OVERFLOW. */
417
418 static void
419 canonicalize_value (ccp_prop_value_t *val)
420 {
421 if (val->lattice_val != CONSTANT)
422 return;
423
424 if (TREE_OVERFLOW_P (val->value))
425 val->value = drop_tree_overflow (val->value);
426 }
427
428 /* Return whether the lattice transition is valid. */
429
430 static bool
431 valid_lattice_transition (ccp_prop_value_t old_val, ccp_prop_value_t new_val)
432 {
433 /* Lattice transitions must always be monotonically increasing in
434 value. */
435 if (old_val.lattice_val < new_val.lattice_val)
436 return true;
437
438 if (old_val.lattice_val != new_val.lattice_val)
439 return false;
440
441 if (!old_val.value && !new_val.value)
442 return true;
443
444 /* Now both lattice values are CONSTANT. */
445
446 /* Allow arbitrary copy changes as we might look through PHI <a_1, ...>
447 when only a single copy edge is executable. */
448 if (TREE_CODE (old_val.value) == SSA_NAME
449 && TREE_CODE (new_val.value) == SSA_NAME)
450 return true;
451
452 /* Allow transitioning from a constant to a copy. */
453 if (is_gimple_min_invariant (old_val.value)
454 && TREE_CODE (new_val.value) == SSA_NAME)
455 return true;
456
457 /* Allow transitioning from PHI <&x, not executable> == &x
458 to PHI <&x, &y> == common alignment. */
459 if (TREE_CODE (old_val.value) != INTEGER_CST
460 && TREE_CODE (new_val.value) == INTEGER_CST)
461 return true;
462
463 /* Bit-lattices have to agree in the still valid bits. */
464 if (TREE_CODE (old_val.value) == INTEGER_CST
465 && TREE_CODE (new_val.value) == INTEGER_CST)
466 return (wi::bit_and_not (wi::to_widest (old_val.value), new_val.mask)
467 == wi::bit_and_not (wi::to_widest (new_val.value), new_val.mask));
468
469 /* Otherwise constant values have to agree. */
470 if (operand_equal_p (old_val.value, new_val.value, 0))
471 return true;
472
473 /* At least the kinds and types should agree now. */
474 if (TREE_CODE (old_val.value) != TREE_CODE (new_val.value)
475 || !types_compatible_p (TREE_TYPE (old_val.value),
476 TREE_TYPE (new_val.value)))
477 return false;
478
479 /* For floats and !HONOR_NANS allow transitions from (partial) NaN
480 to non-NaN. */
481 tree type = TREE_TYPE (new_val.value);
482 if (SCALAR_FLOAT_TYPE_P (type)
483 && !HONOR_NANS (type))
484 {
485 if (REAL_VALUE_ISNAN (TREE_REAL_CST (old_val.value)))
486 return true;
487 }
488 else if (VECTOR_FLOAT_TYPE_P (type)
489 && !HONOR_NANS (type))
490 {
491 unsigned int count
492 = tree_vector_builder::binary_encoded_nelts (old_val.value,
493 new_val.value);
494 for (unsigned int i = 0; i < count; ++i)
495 if (!REAL_VALUE_ISNAN
496 (TREE_REAL_CST (VECTOR_CST_ENCODED_ELT (old_val.value, i)))
497 && !operand_equal_p (VECTOR_CST_ENCODED_ELT (old_val.value, i),
498 VECTOR_CST_ENCODED_ELT (new_val.value, i), 0))
499 return false;
500 return true;
501 }
502 else if (COMPLEX_FLOAT_TYPE_P (type)
503 && !HONOR_NANS (type))
504 {
505 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_REALPART (old_val.value)))
506 && !operand_equal_p (TREE_REALPART (old_val.value),
507 TREE_REALPART (new_val.value), 0))
508 return false;
509 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_IMAGPART (old_val.value)))
510 && !operand_equal_p (TREE_IMAGPART (old_val.value),
511 TREE_IMAGPART (new_val.value), 0))
512 return false;
513 return true;
514 }
515 return false;
516 }
517
518 /* Set the value for variable VAR to NEW_VAL. Return true if the new
519 value is different from VAR's previous value. */
520
521 static bool
522 set_lattice_value (tree var, ccp_prop_value_t *new_val)
523 {
524 /* We can deal with old UNINITIALIZED values just fine here. */
525 ccp_prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
526
527 canonicalize_value (new_val);
528
529 /* We have to be careful to not go up the bitwise lattice
530 represented by the mask. Instead of dropping to VARYING
531 use the meet operator to retain a conservative value.
532 Missed optimizations like PR65851 makes this necessary.
533 It also ensures we converge to a stable lattice solution. */
534 if (old_val->lattice_val != UNINITIALIZED)
535 ccp_lattice_meet (new_val, old_val);
536
537 gcc_checking_assert (valid_lattice_transition (*old_val, *new_val));
538
539 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
540 caller that this was a non-transition. */
541 if (old_val->lattice_val != new_val->lattice_val
542 || (new_val->lattice_val == CONSTANT
543 && (TREE_CODE (new_val->value) != TREE_CODE (old_val->value)
544 || (TREE_CODE (new_val->value) == INTEGER_CST
545 && (new_val->mask != old_val->mask
546 || (wi::bit_and_not (wi::to_widest (old_val->value),
547 new_val->mask)
548 != wi::bit_and_not (wi::to_widest (new_val->value),
549 new_val->mask))))
550 || (TREE_CODE (new_val->value) != INTEGER_CST
551 && !operand_equal_p (new_val->value, old_val->value, 0)))))
552 {
553 /* ??? We would like to delay creation of INTEGER_CSTs from
554 partially constants here. */
555
556 if (dump_file && (dump_flags & TDF_DETAILS))
557 {
558 dump_lattice_value (dump_file, "Lattice value changed to ", *new_val);
559 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
560 }
561
562 *old_val = *new_val;
563
564 gcc_assert (new_val->lattice_val != UNINITIALIZED);
565 return true;
566 }
567
568 return false;
569 }
570
571 static ccp_prop_value_t get_value_for_expr (tree, bool);
572 static ccp_prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
573 void bit_value_binop (enum tree_code, signop, int, widest_int *, widest_int *,
574 signop, int, const widest_int &, const widest_int &,
575 signop, int, const widest_int &, const widest_int &);
576
577 /* Return a widest_int that can be used for bitwise simplifications
578 from VAL. */
579
580 static widest_int
581 value_to_wide_int (ccp_prop_value_t val)
582 {
583 if (val.value
584 && TREE_CODE (val.value) == INTEGER_CST)
585 return wi::to_widest (val.value);
586
587 return 0;
588 }
589
590 /* Return the value for the address expression EXPR based on alignment
591 information. */
592
593 static ccp_prop_value_t
594 get_value_from_alignment (tree expr)
595 {
596 tree type = TREE_TYPE (expr);
597 ccp_prop_value_t val;
598 unsigned HOST_WIDE_INT bitpos;
599 unsigned int align;
600
601 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
602
603 get_pointer_alignment_1 (expr, &align, &bitpos);
604 val.mask = wi::bit_and_not
605 (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
606 ? wi::mask <widest_int> (TYPE_PRECISION (type), false)
607 : -1,
608 align / BITS_PER_UNIT - 1);
609 val.lattice_val
610 = wi::sext (val.mask, TYPE_PRECISION (type)) == -1 ? VARYING : CONSTANT;
611 if (val.lattice_val == CONSTANT)
612 val.value = build_int_cstu (type, bitpos / BITS_PER_UNIT);
613 else
614 val.value = NULL_TREE;
615
616 return val;
617 }
618
619 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
620 return constant bits extracted from alignment information for
621 invariant addresses. */
622
623 static ccp_prop_value_t
624 get_value_for_expr (tree expr, bool for_bits_p)
625 {
626 ccp_prop_value_t val;
627
628 if (TREE_CODE (expr) == SSA_NAME)
629 {
630 ccp_prop_value_t *val_ = get_value (expr);
631 if (val_)
632 val = *val_;
633 else
634 {
635 val.lattice_val = VARYING;
636 val.value = NULL_TREE;
637 val.mask = -1;
638 }
639 if (for_bits_p
640 && val.lattice_val == CONSTANT)
641 {
642 if (TREE_CODE (val.value) == ADDR_EXPR)
643 val = get_value_from_alignment (val.value);
644 else if (TREE_CODE (val.value) != INTEGER_CST)
645 {
646 val.lattice_val = VARYING;
647 val.value = NULL_TREE;
648 val.mask = -1;
649 }
650 }
651 /* Fall back to a copy value. */
652 if (!for_bits_p
653 && val.lattice_val == VARYING
654 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr))
655 {
656 val.lattice_val = CONSTANT;
657 val.value = expr;
658 val.mask = -1;
659 }
660 }
661 else if (is_gimple_min_invariant (expr)
662 && (!for_bits_p || TREE_CODE (expr) == INTEGER_CST))
663 {
664 val.lattice_val = CONSTANT;
665 val.value = expr;
666 val.mask = 0;
667 canonicalize_value (&val);
668 }
669 else if (TREE_CODE (expr) == ADDR_EXPR)
670 val = get_value_from_alignment (expr);
671 else
672 {
673 val.lattice_val = VARYING;
674 val.mask = -1;
675 val.value = NULL_TREE;
676 }
677
678 if (val.lattice_val == VARYING
679 && TYPE_UNSIGNED (TREE_TYPE (expr)))
680 val.mask = wi::zext (val.mask, TYPE_PRECISION (TREE_TYPE (expr)));
681
682 return val;
683 }
684
685 /* Return the likely CCP lattice value for STMT.
686
687 If STMT has no operands, then return CONSTANT.
688
689 Else if undefinedness of operands of STMT cause its value to be
690 undefined, then return UNDEFINED.
691
692 Else if any operands of STMT are constants, then return CONSTANT.
693
694 Else return VARYING. */
695
696 static ccp_lattice_t
697 likely_value (gimple *stmt)
698 {
699 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
700 bool has_nsa_operand;
701 tree use;
702 ssa_op_iter iter;
703 unsigned i;
704
705 enum gimple_code code = gimple_code (stmt);
706
707 /* This function appears to be called only for assignments, calls,
708 conditionals, and switches, due to the logic in visit_stmt. */
709 gcc_assert (code == GIMPLE_ASSIGN
710 || code == GIMPLE_CALL
711 || code == GIMPLE_COND
712 || code == GIMPLE_SWITCH);
713
714 /* If the statement has volatile operands, it won't fold to a
715 constant value. */
716 if (gimple_has_volatile_ops (stmt))
717 return VARYING;
718
719 /* Arrive here for more complex cases. */
720 has_constant_operand = false;
721 has_undefined_operand = false;
722 all_undefined_operands = true;
723 has_nsa_operand = false;
724 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
725 {
726 ccp_prop_value_t *val = get_value (use);
727
728 if (val && val->lattice_val == UNDEFINED)
729 has_undefined_operand = true;
730 else
731 all_undefined_operands = false;
732
733 if (val && val->lattice_val == CONSTANT)
734 has_constant_operand = true;
735
736 if (SSA_NAME_IS_DEFAULT_DEF (use)
737 || !prop_simulate_again_p (SSA_NAME_DEF_STMT (use)))
738 has_nsa_operand = true;
739 }
740
741 /* There may be constants in regular rhs operands. For calls we
742 have to ignore lhs, fndecl and static chain, otherwise only
743 the lhs. */
744 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
745 i < gimple_num_ops (stmt); ++i)
746 {
747 tree op = gimple_op (stmt, i);
748 if (!op || TREE_CODE (op) == SSA_NAME)
749 continue;
750 if (is_gimple_min_invariant (op))
751 has_constant_operand = true;
752 }
753
754 if (has_constant_operand)
755 all_undefined_operands = false;
756
757 if (has_undefined_operand
758 && code == GIMPLE_CALL
759 && gimple_call_internal_p (stmt))
760 switch (gimple_call_internal_fn (stmt))
761 {
762 /* These 3 builtins use the first argument just as a magic
763 way how to find out a decl uid. */
764 case IFN_GOMP_SIMD_LANE:
765 case IFN_GOMP_SIMD_VF:
766 case IFN_GOMP_SIMD_LAST_LANE:
767 has_undefined_operand = false;
768 break;
769 default:
770 break;
771 }
772
773 /* If the operation combines operands like COMPLEX_EXPR make sure to
774 not mark the result UNDEFINED if only one part of the result is
775 undefined. */
776 if (has_undefined_operand && all_undefined_operands)
777 return UNDEFINED;
778 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
779 {
780 switch (gimple_assign_rhs_code (stmt))
781 {
782 /* Unary operators are handled with all_undefined_operands. */
783 case PLUS_EXPR:
784 case MINUS_EXPR:
785 case POINTER_PLUS_EXPR:
786 case BIT_XOR_EXPR:
787 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
788 Not bitwise operators, one VARYING operand may specify the
789 result completely.
790 Not logical operators for the same reason, apart from XOR.
791 Not COMPLEX_EXPR as one VARYING operand makes the result partly
792 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
793 the undefined operand may be promoted. */
794 return UNDEFINED;
795
796 case ADDR_EXPR:
797 /* If any part of an address is UNDEFINED, like the index
798 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
799 return UNDEFINED;
800
801 default:
802 ;
803 }
804 }
805 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
806 fall back to CONSTANT. During iteration UNDEFINED may still drop
807 to CONSTANT. */
808 if (has_undefined_operand)
809 return CONSTANT;
810
811 /* We do not consider virtual operands here -- load from read-only
812 memory may have only VARYING virtual operands, but still be
813 constant. Also we can combine the stmt with definitions from
814 operands whose definitions are not simulated again. */
815 if (has_constant_operand
816 || has_nsa_operand
817 || gimple_references_memory_p (stmt))
818 return CONSTANT;
819
820 return VARYING;
821 }
822
823 /* Returns true if STMT cannot be constant. */
824
825 static bool
826 surely_varying_stmt_p (gimple *stmt)
827 {
828 /* If the statement has operands that we cannot handle, it cannot be
829 constant. */
830 if (gimple_has_volatile_ops (stmt))
831 return true;
832
833 /* If it is a call and does not return a value or is not a
834 builtin and not an indirect call or a call to function with
835 assume_aligned/alloc_align attribute, it is varying. */
836 if (is_gimple_call (stmt))
837 {
838 tree fndecl, fntype = gimple_call_fntype (stmt);
839 if (!gimple_call_lhs (stmt)
840 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
841 && !fndecl_built_in_p (fndecl)
842 && !lookup_attribute ("assume_aligned",
843 TYPE_ATTRIBUTES (fntype))
844 && !lookup_attribute ("alloc_align",
845 TYPE_ATTRIBUTES (fntype))))
846 return true;
847 }
848
849 /* Any other store operation is not interesting. */
850 else if (gimple_vdef (stmt))
851 return true;
852
853 /* Anything other than assignments and conditional jumps are not
854 interesting for CCP. */
855 if (gimple_code (stmt) != GIMPLE_ASSIGN
856 && gimple_code (stmt) != GIMPLE_COND
857 && gimple_code (stmt) != GIMPLE_SWITCH
858 && gimple_code (stmt) != GIMPLE_CALL)
859 return true;
860
861 return false;
862 }
863
864 /* Initialize local data structures for CCP. */
865
866 static void
867 ccp_initialize (void)
868 {
869 basic_block bb;
870
871 n_const_val = num_ssa_names;
872 const_val = XCNEWVEC (ccp_prop_value_t, n_const_val);
873
874 /* Initialize simulation flags for PHI nodes and statements. */
875 FOR_EACH_BB_FN (bb, cfun)
876 {
877 gimple_stmt_iterator i;
878
879 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
880 {
881 gimple *stmt = gsi_stmt (i);
882 bool is_varying;
883
884 /* If the statement is a control insn, then we do not
885 want to avoid simulating the statement once. Failure
886 to do so means that those edges will never get added. */
887 if (stmt_ends_bb_p (stmt))
888 is_varying = false;
889 else
890 is_varying = surely_varying_stmt_p (stmt);
891
892 if (is_varying)
893 {
894 tree def;
895 ssa_op_iter iter;
896
897 /* If the statement will not produce a constant, mark
898 all its outputs VARYING. */
899 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
900 set_value_varying (def);
901 }
902 prop_set_simulate_again (stmt, !is_varying);
903 }
904 }
905
906 /* Now process PHI nodes. We never clear the simulate_again flag on
907 phi nodes, since we do not know which edges are executable yet,
908 except for phi nodes for virtual operands when we do not do store ccp. */
909 FOR_EACH_BB_FN (bb, cfun)
910 {
911 gphi_iterator i;
912
913 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
914 {
915 gphi *phi = i.phi ();
916
917 if (virtual_operand_p (gimple_phi_result (phi)))
918 prop_set_simulate_again (phi, false);
919 else
920 prop_set_simulate_again (phi, true);
921 }
922 }
923 }
924
925 /* Debug count support. Reset the values of ssa names
926 VARYING when the total number ssa names analyzed is
927 beyond the debug count specified. */
928
929 static void
930 do_dbg_cnt (void)
931 {
932 unsigned i;
933 for (i = 0; i < num_ssa_names; i++)
934 {
935 if (!dbg_cnt (ccp))
936 {
937 const_val[i].lattice_val = VARYING;
938 const_val[i].mask = -1;
939 const_val[i].value = NULL_TREE;
940 }
941 }
942 }
943
944
945 /* We want to provide our own GET_VALUE and FOLD_STMT virtual methods. */
946 class ccp_folder : public substitute_and_fold_engine
947 {
948 public:
949 tree value_of_expr (tree, gimple *) FINAL OVERRIDE;
950 bool fold_stmt (gimple_stmt_iterator *) FINAL OVERRIDE;
951 };
952
953 /* This method just wraps GET_CONSTANT_VALUE for now. Over time
954 naked calls to GET_CONSTANT_VALUE should be eliminated in favor
955 of calling member functions. */
956
957 tree
958 ccp_folder::value_of_expr (tree op, gimple *)
959 {
960 return get_constant_value (op);
961 }
962
963 /* Do final substitution of propagated values, cleanup the flowgraph and
964 free allocated storage. If NONZERO_P, record nonzero bits.
965
966 Return TRUE when something was optimized. */
967
968 static bool
969 ccp_finalize (bool nonzero_p)
970 {
971 bool something_changed;
972 unsigned i;
973 tree name;
974
975 do_dbg_cnt ();
976
977 /* Derive alignment and misalignment information from partially
978 constant pointers in the lattice or nonzero bits from partially
979 constant integers. */
980 FOR_EACH_SSA_NAME (i, name, cfun)
981 {
982 ccp_prop_value_t *val;
983 unsigned int tem, align;
984
985 if (!POINTER_TYPE_P (TREE_TYPE (name))
986 && (!INTEGRAL_TYPE_P (TREE_TYPE (name))
987 /* Don't record nonzero bits before IPA to avoid
988 using too much memory. */
989 || !nonzero_p))
990 continue;
991
992 val = get_value (name);
993 if (val->lattice_val != CONSTANT
994 || TREE_CODE (val->value) != INTEGER_CST
995 || val->mask == 0)
996 continue;
997
998 if (POINTER_TYPE_P (TREE_TYPE (name)))
999 {
1000 /* Trailing mask bits specify the alignment, trailing value
1001 bits the misalignment. */
1002 tem = val->mask.to_uhwi ();
1003 align = least_bit_hwi (tem);
1004 if (align > 1)
1005 set_ptr_info_alignment (get_ptr_info (name), align,
1006 (TREE_INT_CST_LOW (val->value)
1007 & (align - 1)));
1008 }
1009 else
1010 {
1011 unsigned int precision = TYPE_PRECISION (TREE_TYPE (val->value));
1012 wide_int nonzero_bits
1013 = (wide_int::from (val->mask, precision, UNSIGNED)
1014 | wi::to_wide (val->value));
1015 nonzero_bits &= get_nonzero_bits (name);
1016 set_nonzero_bits (name, nonzero_bits);
1017 }
1018 }
1019
1020 /* Perform substitutions based on the known constant values. */
1021 class ccp_folder ccp_folder;
1022 something_changed = ccp_folder.substitute_and_fold ();
1023
1024 free (const_val);
1025 const_val = NULL;
1026 return something_changed;
1027 }
1028
1029
1030 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
1031 in VAL1.
1032
1033 any M UNDEFINED = any
1034 any M VARYING = VARYING
1035 Ci M Cj = Ci if (i == j)
1036 Ci M Cj = VARYING if (i != j)
1037 */
1038
1039 static void
1040 ccp_lattice_meet (ccp_prop_value_t *val1, ccp_prop_value_t *val2)
1041 {
1042 if (val1->lattice_val == UNDEFINED
1043 /* For UNDEFINED M SSA we can't always SSA because its definition
1044 may not dominate the PHI node. Doing optimistic copy propagation
1045 also causes a lot of gcc.dg/uninit-pred*.c FAILs. */
1046 && (val2->lattice_val != CONSTANT
1047 || TREE_CODE (val2->value) != SSA_NAME))
1048 {
1049 /* UNDEFINED M any = any */
1050 *val1 = *val2;
1051 }
1052 else if (val2->lattice_val == UNDEFINED
1053 /* See above. */
1054 && (val1->lattice_val != CONSTANT
1055 || TREE_CODE (val1->value) != SSA_NAME))
1056 {
1057 /* any M UNDEFINED = any
1058 Nothing to do. VAL1 already contains the value we want. */
1059 ;
1060 }
1061 else if (val1->lattice_val == VARYING
1062 || val2->lattice_val == VARYING)
1063 {
1064 /* any M VARYING = VARYING. */
1065 val1->lattice_val = VARYING;
1066 val1->mask = -1;
1067 val1->value = NULL_TREE;
1068 }
1069 else if (val1->lattice_val == CONSTANT
1070 && val2->lattice_val == CONSTANT
1071 && TREE_CODE (val1->value) == INTEGER_CST
1072 && TREE_CODE (val2->value) == INTEGER_CST)
1073 {
1074 /* Ci M Cj = Ci if (i == j)
1075 Ci M Cj = VARYING if (i != j)
1076
1077 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
1078 drop to varying. */
1079 val1->mask = (val1->mask | val2->mask
1080 | (wi::to_widest (val1->value)
1081 ^ wi::to_widest (val2->value)));
1082 if (wi::sext (val1->mask, TYPE_PRECISION (TREE_TYPE (val1->value))) == -1)
1083 {
1084 val1->lattice_val = VARYING;
1085 val1->value = NULL_TREE;
1086 }
1087 }
1088 else if (val1->lattice_val == CONSTANT
1089 && val2->lattice_val == CONSTANT
1090 && operand_equal_p (val1->value, val2->value, 0))
1091 {
1092 /* Ci M Cj = Ci if (i == j)
1093 Ci M Cj = VARYING if (i != j)
1094
1095 VAL1 already contains the value we want for equivalent values. */
1096 }
1097 else if (val1->lattice_val == CONSTANT
1098 && val2->lattice_val == CONSTANT
1099 && (TREE_CODE (val1->value) == ADDR_EXPR
1100 || TREE_CODE (val2->value) == ADDR_EXPR))
1101 {
1102 /* When not equal addresses are involved try meeting for
1103 alignment. */
1104 ccp_prop_value_t tem = *val2;
1105 if (TREE_CODE (val1->value) == ADDR_EXPR)
1106 *val1 = get_value_for_expr (val1->value, true);
1107 if (TREE_CODE (val2->value) == ADDR_EXPR)
1108 tem = get_value_for_expr (val2->value, true);
1109 ccp_lattice_meet (val1, &tem);
1110 }
1111 else
1112 {
1113 /* Any other combination is VARYING. */
1114 val1->lattice_val = VARYING;
1115 val1->mask = -1;
1116 val1->value = NULL_TREE;
1117 }
1118 }
1119
1120
1121 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
1122 lattice values to determine PHI_NODE's lattice value. The value of a
1123 PHI node is determined calling ccp_lattice_meet with all the arguments
1124 of the PHI node that are incoming via executable edges. */
1125
1126 enum ssa_prop_result
1127 ccp_propagate::visit_phi (gphi *phi)
1128 {
1129 unsigned i;
1130 ccp_prop_value_t new_val;
1131
1132 if (dump_file && (dump_flags & TDF_DETAILS))
1133 {
1134 fprintf (dump_file, "\nVisiting PHI node: ");
1135 print_gimple_stmt (dump_file, phi, 0, dump_flags);
1136 }
1137
1138 new_val.lattice_val = UNDEFINED;
1139 new_val.value = NULL_TREE;
1140 new_val.mask = 0;
1141
1142 bool first = true;
1143 bool non_exec_edge = false;
1144 for (i = 0; i < gimple_phi_num_args (phi); i++)
1145 {
1146 /* Compute the meet operator over all the PHI arguments flowing
1147 through executable edges. */
1148 edge e = gimple_phi_arg_edge (phi, i);
1149
1150 if (dump_file && (dump_flags & TDF_DETAILS))
1151 {
1152 fprintf (dump_file,
1153 "\tArgument #%d (%d -> %d %sexecutable)\n",
1154 i, e->src->index, e->dest->index,
1155 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
1156 }
1157
1158 /* If the incoming edge is executable, Compute the meet operator for
1159 the existing value of the PHI node and the current PHI argument. */
1160 if (e->flags & EDGE_EXECUTABLE)
1161 {
1162 tree arg = gimple_phi_arg (phi, i)->def;
1163 ccp_prop_value_t arg_val = get_value_for_expr (arg, false);
1164
1165 if (first)
1166 {
1167 new_val = arg_val;
1168 first = false;
1169 }
1170 else
1171 ccp_lattice_meet (&new_val, &arg_val);
1172
1173 if (dump_file && (dump_flags & TDF_DETAILS))
1174 {
1175 fprintf (dump_file, "\t");
1176 print_generic_expr (dump_file, arg, dump_flags);
1177 dump_lattice_value (dump_file, "\tValue: ", arg_val);
1178 fprintf (dump_file, "\n");
1179 }
1180
1181 if (new_val.lattice_val == VARYING)
1182 break;
1183 }
1184 else
1185 non_exec_edge = true;
1186 }
1187
1188 /* In case there were non-executable edges and the value is a copy
1189 make sure its definition dominates the PHI node. */
1190 if (non_exec_edge
1191 && new_val.lattice_val == CONSTANT
1192 && TREE_CODE (new_val.value) == SSA_NAME
1193 && ! SSA_NAME_IS_DEFAULT_DEF (new_val.value)
1194 && ! dominated_by_p (CDI_DOMINATORS, gimple_bb (phi),
1195 gimple_bb (SSA_NAME_DEF_STMT (new_val.value))))
1196 {
1197 new_val.lattice_val = VARYING;
1198 new_val.value = NULL_TREE;
1199 new_val.mask = -1;
1200 }
1201
1202 if (dump_file && (dump_flags & TDF_DETAILS))
1203 {
1204 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
1205 fprintf (dump_file, "\n\n");
1206 }
1207
1208 /* Make the transition to the new value. */
1209 if (set_lattice_value (gimple_phi_result (phi), &new_val))
1210 {
1211 if (new_val.lattice_val == VARYING)
1212 return SSA_PROP_VARYING;
1213 else
1214 return SSA_PROP_INTERESTING;
1215 }
1216 else
1217 return SSA_PROP_NOT_INTERESTING;
1218 }
1219
1220 /* Return the constant value for OP or OP otherwise. */
1221
1222 static tree
1223 valueize_op (tree op)
1224 {
1225 if (TREE_CODE (op) == SSA_NAME)
1226 {
1227 tree tem = get_constant_value (op);
1228 if (tem)
1229 return tem;
1230 }
1231 return op;
1232 }
1233
1234 /* Return the constant value for OP, but signal to not follow SSA
1235 edges if the definition may be simulated again. */
1236
1237 static tree
1238 valueize_op_1 (tree op)
1239 {
1240 if (TREE_CODE (op) == SSA_NAME)
1241 {
1242 /* If the definition may be simulated again we cannot follow
1243 this SSA edge as the SSA propagator does not necessarily
1244 re-visit the use. */
1245 gimple *def_stmt = SSA_NAME_DEF_STMT (op);
1246 if (!gimple_nop_p (def_stmt)
1247 && prop_simulate_again_p (def_stmt))
1248 return NULL_TREE;
1249 tree tem = get_constant_value (op);
1250 if (tem)
1251 return tem;
1252 }
1253 return op;
1254 }
1255
1256 /* CCP specific front-end to the non-destructive constant folding
1257 routines.
1258
1259 Attempt to simplify the RHS of STMT knowing that one or more
1260 operands are constants.
1261
1262 If simplification is possible, return the simplified RHS,
1263 otherwise return the original RHS or NULL_TREE. */
1264
1265 static tree
1266 ccp_fold (gimple *stmt)
1267 {
1268 location_t loc = gimple_location (stmt);
1269 switch (gimple_code (stmt))
1270 {
1271 case GIMPLE_COND:
1272 {
1273 /* Handle comparison operators that can appear in GIMPLE form. */
1274 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1275 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1276 enum tree_code code = gimple_cond_code (stmt);
1277 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1278 }
1279
1280 case GIMPLE_SWITCH:
1281 {
1282 /* Return the constant switch index. */
1283 return valueize_op (gimple_switch_index (as_a <gswitch *> (stmt)));
1284 }
1285
1286 case GIMPLE_ASSIGN:
1287 case GIMPLE_CALL:
1288 return gimple_fold_stmt_to_constant_1 (stmt,
1289 valueize_op, valueize_op_1);
1290
1291 default:
1292 gcc_unreachable ();
1293 }
1294 }
1295
1296 /* Apply the operation CODE in type TYPE to the value, mask pair
1297 RVAL and RMASK representing a value of type RTYPE and set
1298 the value, mask pair *VAL and *MASK to the result. */
1299
1300 void
1301 bit_value_unop (enum tree_code code, signop type_sgn, int type_precision,
1302 widest_int *val, widest_int *mask,
1303 signop rtype_sgn, int rtype_precision,
1304 const widest_int &rval, const widest_int &rmask)
1305 {
1306 switch (code)
1307 {
1308 case BIT_NOT_EXPR:
1309 *mask = rmask;
1310 *val = ~rval;
1311 break;
1312
1313 case NEGATE_EXPR:
1314 {
1315 widest_int temv, temm;
1316 /* Return ~rval + 1. */
1317 bit_value_unop (BIT_NOT_EXPR, type_sgn, type_precision, &temv, &temm,
1318 type_sgn, type_precision, rval, rmask);
1319 bit_value_binop (PLUS_EXPR, type_sgn, type_precision, val, mask,
1320 type_sgn, type_precision, temv, temm,
1321 type_sgn, type_precision, 1, 0);
1322 break;
1323 }
1324
1325 CASE_CONVERT:
1326 {
1327 /* First extend mask and value according to the original type. */
1328 *mask = wi::ext (rmask, rtype_precision, rtype_sgn);
1329 *val = wi::ext (rval, rtype_precision, rtype_sgn);
1330
1331 /* Then extend mask and value according to the target type. */
1332 *mask = wi::ext (*mask, type_precision, type_sgn);
1333 *val = wi::ext (*val, type_precision, type_sgn);
1334 break;
1335 }
1336
1337 default:
1338 *mask = -1;
1339 break;
1340 }
1341 }
1342
1343 /* Apply the operation CODE in type TYPE to the value, mask pairs
1344 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1345 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1346
1347 void
1348 bit_value_binop (enum tree_code code, signop sgn, int width,
1349 widest_int *val, widest_int *mask,
1350 signop r1type_sgn, int r1type_precision,
1351 const widest_int &r1val, const widest_int &r1mask,
1352 signop r2type_sgn, int r2type_precision,
1353 const widest_int &r2val, const widest_int &r2mask)
1354 {
1355 bool swap_p = false;
1356
1357 /* Assume we'll get a constant result. Use an initial non varying
1358 value, we fall back to varying in the end if necessary. */
1359 *mask = -1;
1360
1361 switch (code)
1362 {
1363 case BIT_AND_EXPR:
1364 /* The mask is constant where there is a known not
1365 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1366 *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
1367 *val = r1val & r2val;
1368 break;
1369
1370 case BIT_IOR_EXPR:
1371 /* The mask is constant where there is a known
1372 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1373 *mask = wi::bit_and_not (r1mask | r2mask,
1374 wi::bit_and_not (r1val, r1mask)
1375 | wi::bit_and_not (r2val, r2mask));
1376 *val = r1val | r2val;
1377 break;
1378
1379 case BIT_XOR_EXPR:
1380 /* m1 | m2 */
1381 *mask = r1mask | r2mask;
1382 *val = r1val ^ r2val;
1383 break;
1384
1385 case LROTATE_EXPR:
1386 case RROTATE_EXPR:
1387 if (r2mask == 0)
1388 {
1389 widest_int shift = r2val;
1390 if (shift == 0)
1391 {
1392 *mask = r1mask;
1393 *val = r1val;
1394 }
1395 else
1396 {
1397 if (wi::neg_p (shift))
1398 {
1399 shift = -shift;
1400 if (code == RROTATE_EXPR)
1401 code = LROTATE_EXPR;
1402 else
1403 code = RROTATE_EXPR;
1404 }
1405 if (code == RROTATE_EXPR)
1406 {
1407 *mask = wi::rrotate (r1mask, shift, width);
1408 *val = wi::rrotate (r1val, shift, width);
1409 }
1410 else
1411 {
1412 *mask = wi::lrotate (r1mask, shift, width);
1413 *val = wi::lrotate (r1val, shift, width);
1414 }
1415 }
1416 }
1417 break;
1418
1419 case LSHIFT_EXPR:
1420 case RSHIFT_EXPR:
1421 /* ??? We can handle partially known shift counts if we know
1422 its sign. That way we can tell that (x << (y | 8)) & 255
1423 is zero. */
1424 if (r2mask == 0)
1425 {
1426 widest_int shift = r2val;
1427 if (shift == 0)
1428 {
1429 *mask = r1mask;
1430 *val = r1val;
1431 }
1432 else
1433 {
1434 if (wi::neg_p (shift))
1435 {
1436 shift = -shift;
1437 if (code == RSHIFT_EXPR)
1438 code = LSHIFT_EXPR;
1439 else
1440 code = RSHIFT_EXPR;
1441 }
1442 if (code == RSHIFT_EXPR)
1443 {
1444 *mask = wi::rshift (wi::ext (r1mask, width, sgn), shift, sgn);
1445 *val = wi::rshift (wi::ext (r1val, width, sgn), shift, sgn);
1446 }
1447 else
1448 {
1449 *mask = wi::ext (r1mask << shift, width, sgn);
1450 *val = wi::ext (r1val << shift, width, sgn);
1451 }
1452 }
1453 }
1454 break;
1455
1456 case PLUS_EXPR:
1457 case POINTER_PLUS_EXPR:
1458 {
1459 /* Do the addition with unknown bits set to zero, to give carry-ins of
1460 zero wherever possible. */
1461 widest_int lo = (wi::bit_and_not (r1val, r1mask)
1462 + wi::bit_and_not (r2val, r2mask));
1463 lo = wi::ext (lo, width, sgn);
1464 /* Do the addition with unknown bits set to one, to give carry-ins of
1465 one wherever possible. */
1466 widest_int hi = (r1val | r1mask) + (r2val | r2mask);
1467 hi = wi::ext (hi, width, sgn);
1468 /* Each bit in the result is known if (a) the corresponding bits in
1469 both inputs are known, and (b) the carry-in to that bit position
1470 is known. We can check condition (b) by seeing if we got the same
1471 result with minimised carries as with maximised carries. */
1472 *mask = r1mask | r2mask | (lo ^ hi);
1473 *mask = wi::ext (*mask, width, sgn);
1474 /* It shouldn't matter whether we choose lo or hi here. */
1475 *val = lo;
1476 break;
1477 }
1478
1479 case MINUS_EXPR:
1480 {
1481 widest_int temv, temm;
1482 bit_value_unop (NEGATE_EXPR, r2type_sgn, r2type_precision, &temv, &temm,
1483 r2type_sgn, r2type_precision, r2val, r2mask);
1484 bit_value_binop (PLUS_EXPR, sgn, width, val, mask,
1485 r1type_sgn, r1type_precision, r1val, r1mask,
1486 r2type_sgn, r2type_precision, temv, temm);
1487 break;
1488 }
1489
1490 case MULT_EXPR:
1491 {
1492 /* Just track trailing zeros in both operands and transfer
1493 them to the other. */
1494 int r1tz = wi::ctz (r1val | r1mask);
1495 int r2tz = wi::ctz (r2val | r2mask);
1496 if (r1tz + r2tz >= width)
1497 {
1498 *mask = 0;
1499 *val = 0;
1500 }
1501 else if (r1tz + r2tz > 0)
1502 {
1503 *mask = wi::ext (wi::mask <widest_int> (r1tz + r2tz, true),
1504 width, sgn);
1505 *val = 0;
1506 }
1507 break;
1508 }
1509
1510 case EQ_EXPR:
1511 case NE_EXPR:
1512 {
1513 widest_int m = r1mask | r2mask;
1514 if (wi::bit_and_not (r1val, m) != wi::bit_and_not (r2val, m))
1515 {
1516 *mask = 0;
1517 *val = ((code == EQ_EXPR) ? 0 : 1);
1518 }
1519 else
1520 {
1521 /* We know the result of a comparison is always one or zero. */
1522 *mask = 1;
1523 *val = 0;
1524 }
1525 break;
1526 }
1527
1528 case GE_EXPR:
1529 case GT_EXPR:
1530 swap_p = true;
1531 code = swap_tree_comparison (code);
1532 /* Fall through. */
1533 case LT_EXPR:
1534 case LE_EXPR:
1535 {
1536 int minmax, maxmin;
1537
1538 const widest_int &o1val = swap_p ? r2val : r1val;
1539 const widest_int &o1mask = swap_p ? r2mask : r1mask;
1540 const widest_int &o2val = swap_p ? r1val : r2val;
1541 const widest_int &o2mask = swap_p ? r1mask : r2mask;
1542
1543 /* If the most significant bits are not known we know nothing. */
1544 if (wi::neg_p (o1mask) || wi::neg_p (o2mask))
1545 break;
1546
1547 /* For comparisons the signedness is in the comparison operands. */
1548 sgn = r1type_sgn;
1549
1550 /* If we know the most significant bits we know the values
1551 value ranges by means of treating varying bits as zero
1552 or one. Do a cross comparison of the max/min pairs. */
1553 maxmin = wi::cmp (o1val | o1mask,
1554 wi::bit_and_not (o2val, o2mask), sgn);
1555 minmax = wi::cmp (wi::bit_and_not (o1val, o1mask),
1556 o2val | o2mask, sgn);
1557 if (maxmin < 0) /* o1 is less than o2. */
1558 {
1559 *mask = 0;
1560 *val = 1;
1561 }
1562 else if (minmax > 0) /* o1 is not less or equal to o2. */
1563 {
1564 *mask = 0;
1565 *val = 0;
1566 }
1567 else if (maxmin == minmax) /* o1 and o2 are equal. */
1568 {
1569 /* This probably should never happen as we'd have
1570 folded the thing during fully constant value folding. */
1571 *mask = 0;
1572 *val = (code == LE_EXPR ? 1 : 0);
1573 }
1574 else
1575 {
1576 /* We know the result of a comparison is always one or zero. */
1577 *mask = 1;
1578 *val = 0;
1579 }
1580 break;
1581 }
1582
1583 default:;
1584 }
1585 }
1586
1587 /* Return the propagation value when applying the operation CODE to
1588 the value RHS yielding type TYPE. */
1589
1590 static ccp_prop_value_t
1591 bit_value_unop (enum tree_code code, tree type, tree rhs)
1592 {
1593 ccp_prop_value_t rval = get_value_for_expr (rhs, true);
1594 widest_int value, mask;
1595 ccp_prop_value_t val;
1596
1597 if (rval.lattice_val == UNDEFINED)
1598 return rval;
1599
1600 gcc_assert ((rval.lattice_val == CONSTANT
1601 && TREE_CODE (rval.value) == INTEGER_CST)
1602 || wi::sext (rval.mask, TYPE_PRECISION (TREE_TYPE (rhs))) == -1);
1603 bit_value_unop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1604 TYPE_SIGN (TREE_TYPE (rhs)), TYPE_PRECISION (TREE_TYPE (rhs)),
1605 value_to_wide_int (rval), rval.mask);
1606 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1607 {
1608 val.lattice_val = CONSTANT;
1609 val.mask = mask;
1610 /* ??? Delay building trees here. */
1611 val.value = wide_int_to_tree (type, value);
1612 }
1613 else
1614 {
1615 val.lattice_val = VARYING;
1616 val.value = NULL_TREE;
1617 val.mask = -1;
1618 }
1619 return val;
1620 }
1621
1622 /* Return the propagation value when applying the operation CODE to
1623 the values RHS1 and RHS2 yielding type TYPE. */
1624
1625 static ccp_prop_value_t
1626 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
1627 {
1628 ccp_prop_value_t r1val = get_value_for_expr (rhs1, true);
1629 ccp_prop_value_t r2val = get_value_for_expr (rhs2, true);
1630 widest_int value, mask;
1631 ccp_prop_value_t val;
1632
1633 if (r1val.lattice_val == UNDEFINED
1634 || r2val.lattice_val == UNDEFINED)
1635 {
1636 val.lattice_val = VARYING;
1637 val.value = NULL_TREE;
1638 val.mask = -1;
1639 return val;
1640 }
1641
1642 gcc_assert ((r1val.lattice_val == CONSTANT
1643 && TREE_CODE (r1val.value) == INTEGER_CST)
1644 || wi::sext (r1val.mask,
1645 TYPE_PRECISION (TREE_TYPE (rhs1))) == -1);
1646 gcc_assert ((r2val.lattice_val == CONSTANT
1647 && TREE_CODE (r2val.value) == INTEGER_CST)
1648 || wi::sext (r2val.mask,
1649 TYPE_PRECISION (TREE_TYPE (rhs2))) == -1);
1650 bit_value_binop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1651 TYPE_SIGN (TREE_TYPE (rhs1)), TYPE_PRECISION (TREE_TYPE (rhs1)),
1652 value_to_wide_int (r1val), r1val.mask,
1653 TYPE_SIGN (TREE_TYPE (rhs2)), TYPE_PRECISION (TREE_TYPE (rhs2)),
1654 value_to_wide_int (r2val), r2val.mask);
1655
1656 /* (x * x) & 2 == 0. */
1657 if (code == MULT_EXPR && rhs1 == rhs2 && TYPE_PRECISION (type) > 1)
1658 {
1659 widest_int m = 2;
1660 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1661 value = wi::bit_and_not (value, m);
1662 else
1663 value = 0;
1664 mask = wi::bit_and_not (mask, m);
1665 }
1666
1667 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1668 {
1669 val.lattice_val = CONSTANT;
1670 val.mask = mask;
1671 /* ??? Delay building trees here. */
1672 val.value = wide_int_to_tree (type, value);
1673 }
1674 else
1675 {
1676 val.lattice_val = VARYING;
1677 val.value = NULL_TREE;
1678 val.mask = -1;
1679 }
1680 return val;
1681 }
1682
1683 /* Return the propagation value for __builtin_assume_aligned
1684 and functions with assume_aligned or alloc_aligned attribute.
1685 For __builtin_assume_aligned, ATTR is NULL_TREE,
1686 for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED
1687 is false, for alloc_aligned attribute ATTR is non-NULL and
1688 ALLOC_ALIGNED is true. */
1689
1690 static ccp_prop_value_t
1691 bit_value_assume_aligned (gimple *stmt, tree attr, ccp_prop_value_t ptrval,
1692 bool alloc_aligned)
1693 {
1694 tree align, misalign = NULL_TREE, type;
1695 unsigned HOST_WIDE_INT aligni, misaligni = 0;
1696 ccp_prop_value_t alignval;
1697 widest_int value, mask;
1698 ccp_prop_value_t val;
1699
1700 if (attr == NULL_TREE)
1701 {
1702 tree ptr = gimple_call_arg (stmt, 0);
1703 type = TREE_TYPE (ptr);
1704 ptrval = get_value_for_expr (ptr, true);
1705 }
1706 else
1707 {
1708 tree lhs = gimple_call_lhs (stmt);
1709 type = TREE_TYPE (lhs);
1710 }
1711
1712 if (ptrval.lattice_val == UNDEFINED)
1713 return ptrval;
1714 gcc_assert ((ptrval.lattice_val == CONSTANT
1715 && TREE_CODE (ptrval.value) == INTEGER_CST)
1716 || wi::sext (ptrval.mask, TYPE_PRECISION (type)) == -1);
1717 if (attr == NULL_TREE)
1718 {
1719 /* Get aligni and misaligni from __builtin_assume_aligned. */
1720 align = gimple_call_arg (stmt, 1);
1721 if (!tree_fits_uhwi_p (align))
1722 return ptrval;
1723 aligni = tree_to_uhwi (align);
1724 if (gimple_call_num_args (stmt) > 2)
1725 {
1726 misalign = gimple_call_arg (stmt, 2);
1727 if (!tree_fits_uhwi_p (misalign))
1728 return ptrval;
1729 misaligni = tree_to_uhwi (misalign);
1730 }
1731 }
1732 else
1733 {
1734 /* Get aligni and misaligni from assume_aligned or
1735 alloc_align attributes. */
1736 if (TREE_VALUE (attr) == NULL_TREE)
1737 return ptrval;
1738 attr = TREE_VALUE (attr);
1739 align = TREE_VALUE (attr);
1740 if (!tree_fits_uhwi_p (align))
1741 return ptrval;
1742 aligni = tree_to_uhwi (align);
1743 if (alloc_aligned)
1744 {
1745 if (aligni == 0 || aligni > gimple_call_num_args (stmt))
1746 return ptrval;
1747 align = gimple_call_arg (stmt, aligni - 1);
1748 if (!tree_fits_uhwi_p (align))
1749 return ptrval;
1750 aligni = tree_to_uhwi (align);
1751 }
1752 else if (TREE_CHAIN (attr) && TREE_VALUE (TREE_CHAIN (attr)))
1753 {
1754 misalign = TREE_VALUE (TREE_CHAIN (attr));
1755 if (!tree_fits_uhwi_p (misalign))
1756 return ptrval;
1757 misaligni = tree_to_uhwi (misalign);
1758 }
1759 }
1760 if (aligni <= 1 || (aligni & (aligni - 1)) != 0 || misaligni >= aligni)
1761 return ptrval;
1762
1763 align = build_int_cst_type (type, -aligni);
1764 alignval = get_value_for_expr (align, true);
1765 bit_value_binop (BIT_AND_EXPR, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1766 TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (ptrval), ptrval.mask,
1767 TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (alignval), alignval.mask);
1768
1769 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1770 {
1771 val.lattice_val = CONSTANT;
1772 val.mask = mask;
1773 gcc_assert ((mask.to_uhwi () & (aligni - 1)) == 0);
1774 gcc_assert ((value.to_uhwi () & (aligni - 1)) == 0);
1775 value |= misaligni;
1776 /* ??? Delay building trees here. */
1777 val.value = wide_int_to_tree (type, value);
1778 }
1779 else
1780 {
1781 val.lattice_val = VARYING;
1782 val.value = NULL_TREE;
1783 val.mask = -1;
1784 }
1785 return val;
1786 }
1787
1788 /* Evaluate statement STMT.
1789 Valid only for assignments, calls, conditionals, and switches. */
1790
1791 static ccp_prop_value_t
1792 evaluate_stmt (gimple *stmt)
1793 {
1794 ccp_prop_value_t val;
1795 tree simplified = NULL_TREE;
1796 ccp_lattice_t likelyvalue = likely_value (stmt);
1797 bool is_constant = false;
1798 unsigned int align;
1799 bool ignore_return_flags = false;
1800
1801 if (dump_file && (dump_flags & TDF_DETAILS))
1802 {
1803 fprintf (dump_file, "which is likely ");
1804 switch (likelyvalue)
1805 {
1806 case CONSTANT:
1807 fprintf (dump_file, "CONSTANT");
1808 break;
1809 case UNDEFINED:
1810 fprintf (dump_file, "UNDEFINED");
1811 break;
1812 case VARYING:
1813 fprintf (dump_file, "VARYING");
1814 break;
1815 default:;
1816 }
1817 fprintf (dump_file, "\n");
1818 }
1819
1820 /* If the statement is likely to have a CONSTANT result, then try
1821 to fold the statement to determine the constant value. */
1822 /* FIXME. This is the only place that we call ccp_fold.
1823 Since likely_value never returns CONSTANT for calls, we will
1824 not attempt to fold them, including builtins that may profit. */
1825 if (likelyvalue == CONSTANT)
1826 {
1827 fold_defer_overflow_warnings ();
1828 simplified = ccp_fold (stmt);
1829 if (simplified
1830 && TREE_CODE (simplified) == SSA_NAME)
1831 {
1832 /* We may not use values of something that may be simulated again,
1833 see valueize_op_1. */
1834 if (SSA_NAME_IS_DEFAULT_DEF (simplified)
1835 || ! prop_simulate_again_p (SSA_NAME_DEF_STMT (simplified)))
1836 {
1837 ccp_prop_value_t *val = get_value (simplified);
1838 if (val && val->lattice_val != VARYING)
1839 {
1840 fold_undefer_overflow_warnings (true, stmt, 0);
1841 return *val;
1842 }
1843 }
1844 else
1845 /* We may also not place a non-valueized copy in the lattice
1846 as that might become stale if we never re-visit this stmt. */
1847 simplified = NULL_TREE;
1848 }
1849 is_constant = simplified && is_gimple_min_invariant (simplified);
1850 fold_undefer_overflow_warnings (is_constant, stmt, 0);
1851 if (is_constant)
1852 {
1853 /* The statement produced a constant value. */
1854 val.lattice_val = CONSTANT;
1855 val.value = simplified;
1856 val.mask = 0;
1857 return val;
1858 }
1859 }
1860 /* If the statement is likely to have a VARYING result, then do not
1861 bother folding the statement. */
1862 else if (likelyvalue == VARYING)
1863 {
1864 enum gimple_code code = gimple_code (stmt);
1865 if (code == GIMPLE_ASSIGN)
1866 {
1867 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1868
1869 /* Other cases cannot satisfy is_gimple_min_invariant
1870 without folding. */
1871 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
1872 simplified = gimple_assign_rhs1 (stmt);
1873 }
1874 else if (code == GIMPLE_SWITCH)
1875 simplified = gimple_switch_index (as_a <gswitch *> (stmt));
1876 else
1877 /* These cannot satisfy is_gimple_min_invariant without folding. */
1878 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
1879 is_constant = simplified && is_gimple_min_invariant (simplified);
1880 if (is_constant)
1881 {
1882 /* The statement produced a constant value. */
1883 val.lattice_val = CONSTANT;
1884 val.value = simplified;
1885 val.mask = 0;
1886 }
1887 }
1888 /* If the statement result is likely UNDEFINED, make it so. */
1889 else if (likelyvalue == UNDEFINED)
1890 {
1891 val.lattice_val = UNDEFINED;
1892 val.value = NULL_TREE;
1893 val.mask = 0;
1894 return val;
1895 }
1896
1897 /* Resort to simplification for bitwise tracking. */
1898 if (flag_tree_bit_ccp
1899 && (likelyvalue == CONSTANT || is_gimple_call (stmt)
1900 || (gimple_assign_single_p (stmt)
1901 && gimple_assign_rhs_code (stmt) == ADDR_EXPR))
1902 && !is_constant)
1903 {
1904 enum gimple_code code = gimple_code (stmt);
1905 val.lattice_val = VARYING;
1906 val.value = NULL_TREE;
1907 val.mask = -1;
1908 if (code == GIMPLE_ASSIGN)
1909 {
1910 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1911 tree rhs1 = gimple_assign_rhs1 (stmt);
1912 tree lhs = gimple_assign_lhs (stmt);
1913 if ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
1914 || POINTER_TYPE_P (TREE_TYPE (lhs)))
1915 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1916 || POINTER_TYPE_P (TREE_TYPE (rhs1))))
1917 switch (get_gimple_rhs_class (subcode))
1918 {
1919 case GIMPLE_SINGLE_RHS:
1920 val = get_value_for_expr (rhs1, true);
1921 break;
1922
1923 case GIMPLE_UNARY_RHS:
1924 val = bit_value_unop (subcode, TREE_TYPE (lhs), rhs1);
1925 break;
1926
1927 case GIMPLE_BINARY_RHS:
1928 val = bit_value_binop (subcode, TREE_TYPE (lhs), rhs1,
1929 gimple_assign_rhs2 (stmt));
1930 break;
1931
1932 default:;
1933 }
1934 }
1935 else if (code == GIMPLE_COND)
1936 {
1937 enum tree_code code = gimple_cond_code (stmt);
1938 tree rhs1 = gimple_cond_lhs (stmt);
1939 tree rhs2 = gimple_cond_rhs (stmt);
1940 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1941 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1942 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
1943 }
1944 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1945 {
1946 tree fndecl = gimple_call_fndecl (stmt);
1947 switch (DECL_FUNCTION_CODE (fndecl))
1948 {
1949 case BUILT_IN_MALLOC:
1950 case BUILT_IN_REALLOC:
1951 case BUILT_IN_CALLOC:
1952 case BUILT_IN_STRDUP:
1953 case BUILT_IN_STRNDUP:
1954 val.lattice_val = CONSTANT;
1955 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1956 val.mask = ~((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT
1957 / BITS_PER_UNIT - 1);
1958 break;
1959
1960 CASE_BUILT_IN_ALLOCA:
1961 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
1962 ? BIGGEST_ALIGNMENT
1963 : TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
1964 val.lattice_val = CONSTANT;
1965 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1966 val.mask = ~((HOST_WIDE_INT) align / BITS_PER_UNIT - 1);
1967 break;
1968
1969 case BUILT_IN_ASSUME_ALIGNED:
1970 val = bit_value_assume_aligned (stmt, NULL_TREE, val, false);
1971 ignore_return_flags = true;
1972 break;
1973
1974 case BUILT_IN_ALIGNED_ALLOC:
1975 {
1976 tree align = get_constant_value (gimple_call_arg (stmt, 0));
1977 if (align
1978 && tree_fits_uhwi_p (align))
1979 {
1980 unsigned HOST_WIDE_INT aligni = tree_to_uhwi (align);
1981 if (aligni > 1
1982 /* align must be power-of-two */
1983 && (aligni & (aligni - 1)) == 0)
1984 {
1985 val.lattice_val = CONSTANT;
1986 val.value = build_int_cst (ptr_type_node, 0);
1987 val.mask = -aligni;
1988 }
1989 }
1990 break;
1991 }
1992
1993 case BUILT_IN_BSWAP16:
1994 case BUILT_IN_BSWAP32:
1995 case BUILT_IN_BSWAP64:
1996 case BUILT_IN_BSWAP128:
1997 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1998 if (val.lattice_val == UNDEFINED)
1999 break;
2000 else if (val.lattice_val == CONSTANT
2001 && val.value
2002 && TREE_CODE (val.value) == INTEGER_CST)
2003 {
2004 tree type = TREE_TYPE (gimple_call_lhs (stmt));
2005 int prec = TYPE_PRECISION (type);
2006 wide_int wval = wi::to_wide (val.value);
2007 val.value
2008 = wide_int_to_tree (type,
2009 wide_int::from (wval, prec,
2010 UNSIGNED).bswap ());
2011 val.mask
2012 = widest_int::from (wide_int::from (val.mask, prec,
2013 UNSIGNED).bswap (),
2014 UNSIGNED);
2015 if (wi::sext (val.mask, prec) != -1)
2016 break;
2017 }
2018 val.lattice_val = VARYING;
2019 val.value = NULL_TREE;
2020 val.mask = -1;
2021 break;
2022
2023 default:;
2024 }
2025 }
2026 if (is_gimple_call (stmt) && gimple_call_lhs (stmt))
2027 {
2028 tree fntype = gimple_call_fntype (stmt);
2029 if (fntype)
2030 {
2031 tree attrs = lookup_attribute ("assume_aligned",
2032 TYPE_ATTRIBUTES (fntype));
2033 if (attrs)
2034 val = bit_value_assume_aligned (stmt, attrs, val, false);
2035 attrs = lookup_attribute ("alloc_align",
2036 TYPE_ATTRIBUTES (fntype));
2037 if (attrs)
2038 val = bit_value_assume_aligned (stmt, attrs, val, true);
2039 }
2040 int flags = ignore_return_flags
2041 ? 0 : gimple_call_return_flags (as_a <gcall *> (stmt));
2042 if (flags & ERF_RETURNS_ARG
2043 && (flags & ERF_RETURN_ARG_MASK) < gimple_call_num_args (stmt))
2044 {
2045 val = get_value_for_expr
2046 (gimple_call_arg (stmt,
2047 flags & ERF_RETURN_ARG_MASK), true);
2048 }
2049 }
2050 is_constant = (val.lattice_val == CONSTANT);
2051 }
2052
2053 if (flag_tree_bit_ccp
2054 && ((is_constant && TREE_CODE (val.value) == INTEGER_CST)
2055 || !is_constant)
2056 && gimple_get_lhs (stmt)
2057 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME)
2058 {
2059 tree lhs = gimple_get_lhs (stmt);
2060 wide_int nonzero_bits = get_nonzero_bits (lhs);
2061 if (nonzero_bits != -1)
2062 {
2063 if (!is_constant)
2064 {
2065 val.lattice_val = CONSTANT;
2066 val.value = build_zero_cst (TREE_TYPE (lhs));
2067 val.mask = extend_mask (nonzero_bits, TYPE_SIGN (TREE_TYPE (lhs)));
2068 is_constant = true;
2069 }
2070 else
2071 {
2072 if (wi::bit_and_not (wi::to_wide (val.value), nonzero_bits) != 0)
2073 val.value = wide_int_to_tree (TREE_TYPE (lhs),
2074 nonzero_bits
2075 & wi::to_wide (val.value));
2076 if (nonzero_bits == 0)
2077 val.mask = 0;
2078 else
2079 val.mask = val.mask & extend_mask (nonzero_bits,
2080 TYPE_SIGN (TREE_TYPE (lhs)));
2081 }
2082 }
2083 }
2084
2085 /* The statement produced a nonconstant value. */
2086 if (!is_constant)
2087 {
2088 /* The statement produced a copy. */
2089 if (simplified && TREE_CODE (simplified) == SSA_NAME
2090 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (simplified))
2091 {
2092 val.lattice_val = CONSTANT;
2093 val.value = simplified;
2094 val.mask = -1;
2095 }
2096 /* The statement is VARYING. */
2097 else
2098 {
2099 val.lattice_val = VARYING;
2100 val.value = NULL_TREE;
2101 val.mask = -1;
2102 }
2103 }
2104
2105 return val;
2106 }
2107
2108 typedef hash_table<nofree_ptr_hash<gimple> > gimple_htab;
2109
2110 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
2111 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
2112
2113 static void
2114 insert_clobber_before_stack_restore (tree saved_val, tree var,
2115 gimple_htab **visited)
2116 {
2117 gimple *stmt;
2118 gassign *clobber_stmt;
2119 tree clobber;
2120 imm_use_iterator iter;
2121 gimple_stmt_iterator i;
2122 gimple **slot;
2123
2124 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
2125 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
2126 {
2127 clobber = build_clobber (TREE_TYPE (var));
2128 clobber_stmt = gimple_build_assign (var, clobber);
2129
2130 i = gsi_for_stmt (stmt);
2131 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
2132 }
2133 else if (gimple_code (stmt) == GIMPLE_PHI)
2134 {
2135 if (!*visited)
2136 *visited = new gimple_htab (10);
2137
2138 slot = (*visited)->find_slot (stmt, INSERT);
2139 if (*slot != NULL)
2140 continue;
2141
2142 *slot = stmt;
2143 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
2144 visited);
2145 }
2146 else if (gimple_assign_ssa_name_copy_p (stmt))
2147 insert_clobber_before_stack_restore (gimple_assign_lhs (stmt), var,
2148 visited);
2149 }
2150
2151 /* Advance the iterator to the previous non-debug gimple statement in the same
2152 or dominating basic block. */
2153
2154 static inline void
2155 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
2156 {
2157 basic_block dom;
2158
2159 gsi_prev_nondebug (i);
2160 while (gsi_end_p (*i))
2161 {
2162 dom = get_immediate_dominator (CDI_DOMINATORS, gsi_bb (*i));
2163 if (dom == NULL || dom == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2164 return;
2165
2166 *i = gsi_last_bb (dom);
2167 }
2168 }
2169
2170 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
2171 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
2172
2173 It is possible that BUILT_IN_STACK_SAVE cannot be found in a dominator when
2174 a previous pass (such as DOM) duplicated it along multiple paths to a BB.
2175 In that case the function gives up without inserting the clobbers. */
2176
2177 static void
2178 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
2179 {
2180 gimple *stmt;
2181 tree saved_val;
2182 gimple_htab *visited = NULL;
2183
2184 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
2185 {
2186 stmt = gsi_stmt (i);
2187
2188 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
2189 continue;
2190
2191 saved_val = gimple_call_lhs (stmt);
2192 if (saved_val == NULL_TREE)
2193 continue;
2194
2195 insert_clobber_before_stack_restore (saved_val, var, &visited);
2196 break;
2197 }
2198
2199 delete visited;
2200 }
2201
2202 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
2203 fixed-size array and returns the address, if found, otherwise returns
2204 NULL_TREE. */
2205
2206 static tree
2207 fold_builtin_alloca_with_align (gimple *stmt)
2208 {
2209 unsigned HOST_WIDE_INT size, threshold, n_elem;
2210 tree lhs, arg, block, var, elem_type, array_type;
2211
2212 /* Get lhs. */
2213 lhs = gimple_call_lhs (stmt);
2214 if (lhs == NULL_TREE)
2215 return NULL_TREE;
2216
2217 /* Detect constant argument. */
2218 arg = get_constant_value (gimple_call_arg (stmt, 0));
2219 if (arg == NULL_TREE
2220 || TREE_CODE (arg) != INTEGER_CST
2221 || !tree_fits_uhwi_p (arg))
2222 return NULL_TREE;
2223
2224 size = tree_to_uhwi (arg);
2225
2226 /* Heuristic: don't fold large allocas. */
2227 threshold = (unsigned HOST_WIDE_INT)param_large_stack_frame;
2228 /* In case the alloca is located at function entry, it has the same lifetime
2229 as a declared array, so we allow a larger size. */
2230 block = gimple_block (stmt);
2231 if (!(cfun->after_inlining
2232 && block
2233 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
2234 threshold /= 10;
2235 if (size > threshold)
2236 return NULL_TREE;
2237
2238 /* We have to be able to move points-to info. We used to assert
2239 that we can but IPA PTA might end up with two UIDs here
2240 as it might need to handle more than one instance being
2241 live at the same time. Instead of trying to detect this case
2242 (using the first UID would be OK) just give up for now. */
2243 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
2244 unsigned uid = 0;
2245 if (pi != NULL
2246 && !pi->pt.anything
2247 && !pt_solution_singleton_or_null_p (&pi->pt, &uid))
2248 return NULL_TREE;
2249
2250 /* Declare array. */
2251 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
2252 n_elem = size * 8 / BITS_PER_UNIT;
2253 array_type = build_array_type_nelts (elem_type, n_elem);
2254
2255 if (tree ssa_name = SSA_NAME_IDENTIFIER (lhs))
2256 {
2257 /* Give the temporary a name derived from the name of the VLA
2258 declaration so it can be referenced in diagnostics. */
2259 const char *name = IDENTIFIER_POINTER (ssa_name);
2260 var = create_tmp_var (array_type, name);
2261 }
2262 else
2263 var = create_tmp_var (array_type);
2264
2265 if (gimple *lhsdef = SSA_NAME_DEF_STMT (lhs))
2266 {
2267 /* Set the temporary's location to that of the VLA declaration
2268 so it can be pointed to in diagnostics. */
2269 location_t loc = gimple_location (lhsdef);
2270 DECL_SOURCE_LOCATION (var) = loc;
2271 }
2272
2273 SET_DECL_ALIGN (var, TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
2274 if (uid != 0)
2275 SET_DECL_PT_UID (var, uid);
2276
2277 /* Fold alloca to the address of the array. */
2278 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
2279 }
2280
2281 /* Fold the stmt at *GSI with CCP specific information that propagating
2282 and regular folding does not catch. */
2283
2284 bool
2285 ccp_folder::fold_stmt (gimple_stmt_iterator *gsi)
2286 {
2287 gimple *stmt = gsi_stmt (*gsi);
2288
2289 switch (gimple_code (stmt))
2290 {
2291 case GIMPLE_COND:
2292 {
2293 gcond *cond_stmt = as_a <gcond *> (stmt);
2294 ccp_prop_value_t val;
2295 /* Statement evaluation will handle type mismatches in constants
2296 more gracefully than the final propagation. This allows us to
2297 fold more conditionals here. */
2298 val = evaluate_stmt (stmt);
2299 if (val.lattice_val != CONSTANT
2300 || val.mask != 0)
2301 return false;
2302
2303 if (dump_file)
2304 {
2305 fprintf (dump_file, "Folding predicate ");
2306 print_gimple_expr (dump_file, stmt, 0);
2307 fprintf (dump_file, " to ");
2308 print_generic_expr (dump_file, val.value);
2309 fprintf (dump_file, "\n");
2310 }
2311
2312 if (integer_zerop (val.value))
2313 gimple_cond_make_false (cond_stmt);
2314 else
2315 gimple_cond_make_true (cond_stmt);
2316
2317 return true;
2318 }
2319
2320 case GIMPLE_CALL:
2321 {
2322 tree lhs = gimple_call_lhs (stmt);
2323 int flags = gimple_call_flags (stmt);
2324 tree val;
2325 tree argt;
2326 bool changed = false;
2327 unsigned i;
2328
2329 /* If the call was folded into a constant make sure it goes
2330 away even if we cannot propagate into all uses because of
2331 type issues. */
2332 if (lhs
2333 && TREE_CODE (lhs) == SSA_NAME
2334 && (val = get_constant_value (lhs))
2335 /* Don't optimize away calls that have side-effects. */
2336 && (flags & (ECF_CONST|ECF_PURE)) != 0
2337 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
2338 {
2339 tree new_rhs = unshare_expr (val);
2340 bool res;
2341 if (!useless_type_conversion_p (TREE_TYPE (lhs),
2342 TREE_TYPE (new_rhs)))
2343 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
2344 res = update_call_from_tree (gsi, new_rhs);
2345 gcc_assert (res);
2346 return true;
2347 }
2348
2349 /* Internal calls provide no argument types, so the extra laxity
2350 for normal calls does not apply. */
2351 if (gimple_call_internal_p (stmt))
2352 return false;
2353
2354 /* The heuristic of fold_builtin_alloca_with_align differs before and
2355 after inlining, so we don't require the arg to be changed into a
2356 constant for folding, but just to be constant. */
2357 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN)
2358 || gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX))
2359 {
2360 tree new_rhs = fold_builtin_alloca_with_align (stmt);
2361 if (new_rhs)
2362 {
2363 bool res = update_call_from_tree (gsi, new_rhs);
2364 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
2365 gcc_assert (res);
2366 insert_clobbers_for_var (*gsi, var);
2367 return true;
2368 }
2369 }
2370
2371 /* If there's no extra info from an assume_aligned call,
2372 drop it so it doesn't act as otherwise useless dataflow
2373 barrier. */
2374 if (gimple_call_builtin_p (stmt, BUILT_IN_ASSUME_ALIGNED))
2375 {
2376 tree ptr = gimple_call_arg (stmt, 0);
2377 ccp_prop_value_t ptrval = get_value_for_expr (ptr, true);
2378 if (ptrval.lattice_val == CONSTANT
2379 && TREE_CODE (ptrval.value) == INTEGER_CST
2380 && ptrval.mask != 0)
2381 {
2382 ccp_prop_value_t val
2383 = bit_value_assume_aligned (stmt, NULL_TREE, ptrval, false);
2384 unsigned int ptralign = least_bit_hwi (ptrval.mask.to_uhwi ());
2385 unsigned int align = least_bit_hwi (val.mask.to_uhwi ());
2386 if (ptralign == align
2387 && ((TREE_INT_CST_LOW (ptrval.value) & (align - 1))
2388 == (TREE_INT_CST_LOW (val.value) & (align - 1))))
2389 {
2390 bool res = update_call_from_tree (gsi, ptr);
2391 gcc_assert (res);
2392 return true;
2393 }
2394 }
2395 }
2396
2397 /* Propagate into the call arguments. Compared to replace_uses_in
2398 this can use the argument slot types for type verification
2399 instead of the current argument type. We also can safely
2400 drop qualifiers here as we are dealing with constants anyway. */
2401 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
2402 for (i = 0; i < gimple_call_num_args (stmt) && argt;
2403 ++i, argt = TREE_CHAIN (argt))
2404 {
2405 tree arg = gimple_call_arg (stmt, i);
2406 if (TREE_CODE (arg) == SSA_NAME
2407 && (val = get_constant_value (arg))
2408 && useless_type_conversion_p
2409 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
2410 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2411 {
2412 gimple_call_set_arg (stmt, i, unshare_expr (val));
2413 changed = true;
2414 }
2415 }
2416
2417 return changed;
2418 }
2419
2420 case GIMPLE_ASSIGN:
2421 {
2422 tree lhs = gimple_assign_lhs (stmt);
2423 tree val;
2424
2425 /* If we have a load that turned out to be constant replace it
2426 as we cannot propagate into all uses in all cases. */
2427 if (gimple_assign_single_p (stmt)
2428 && TREE_CODE (lhs) == SSA_NAME
2429 && (val = get_constant_value (lhs)))
2430 {
2431 tree rhs = unshare_expr (val);
2432 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2433 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
2434 gimple_assign_set_rhs_from_tree (gsi, rhs);
2435 return true;
2436 }
2437
2438 return false;
2439 }
2440
2441 default:
2442 return false;
2443 }
2444 }
2445
2446 /* Visit the assignment statement STMT. Set the value of its LHS to the
2447 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2448 creates virtual definitions, set the value of each new name to that
2449 of the RHS (if we can derive a constant out of the RHS).
2450 Value-returning call statements also perform an assignment, and
2451 are handled here. */
2452
2453 static enum ssa_prop_result
2454 visit_assignment (gimple *stmt, tree *output_p)
2455 {
2456 ccp_prop_value_t val;
2457 enum ssa_prop_result retval = SSA_PROP_NOT_INTERESTING;
2458
2459 tree lhs = gimple_get_lhs (stmt);
2460 if (TREE_CODE (lhs) == SSA_NAME)
2461 {
2462 /* Evaluate the statement, which could be
2463 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2464 val = evaluate_stmt (stmt);
2465
2466 /* If STMT is an assignment to an SSA_NAME, we only have one
2467 value to set. */
2468 if (set_lattice_value (lhs, &val))
2469 {
2470 *output_p = lhs;
2471 if (val.lattice_val == VARYING)
2472 retval = SSA_PROP_VARYING;
2473 else
2474 retval = SSA_PROP_INTERESTING;
2475 }
2476 }
2477
2478 return retval;
2479 }
2480
2481
2482 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2483 if it can determine which edge will be taken. Otherwise, return
2484 SSA_PROP_VARYING. */
2485
2486 static enum ssa_prop_result
2487 visit_cond_stmt (gimple *stmt, edge *taken_edge_p)
2488 {
2489 ccp_prop_value_t val;
2490 basic_block block;
2491
2492 block = gimple_bb (stmt);
2493 val = evaluate_stmt (stmt);
2494 if (val.lattice_val != CONSTANT
2495 || val.mask != 0)
2496 return SSA_PROP_VARYING;
2497
2498 /* Find which edge out of the conditional block will be taken and add it
2499 to the worklist. If no single edge can be determined statically,
2500 return SSA_PROP_VARYING to feed all the outgoing edges to the
2501 propagation engine. */
2502 *taken_edge_p = find_taken_edge (block, val.value);
2503 if (*taken_edge_p)
2504 return SSA_PROP_INTERESTING;
2505 else
2506 return SSA_PROP_VARYING;
2507 }
2508
2509
2510 /* Evaluate statement STMT. If the statement produces an output value and
2511 its evaluation changes the lattice value of its output, return
2512 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2513 output value.
2514
2515 If STMT is a conditional branch and we can determine its truth
2516 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2517 value, return SSA_PROP_VARYING. */
2518
2519 enum ssa_prop_result
2520 ccp_propagate::visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
2521 {
2522 tree def;
2523 ssa_op_iter iter;
2524
2525 if (dump_file && (dump_flags & TDF_DETAILS))
2526 {
2527 fprintf (dump_file, "\nVisiting statement:\n");
2528 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2529 }
2530
2531 switch (gimple_code (stmt))
2532 {
2533 case GIMPLE_ASSIGN:
2534 /* If the statement is an assignment that produces a single
2535 output value, evaluate its RHS to see if the lattice value of
2536 its output has changed. */
2537 return visit_assignment (stmt, output_p);
2538
2539 case GIMPLE_CALL:
2540 /* A value-returning call also performs an assignment. */
2541 if (gimple_call_lhs (stmt) != NULL_TREE)
2542 return visit_assignment (stmt, output_p);
2543 break;
2544
2545 case GIMPLE_COND:
2546 case GIMPLE_SWITCH:
2547 /* If STMT is a conditional branch, see if we can determine
2548 which branch will be taken. */
2549 /* FIXME. It appears that we should be able to optimize
2550 computed GOTOs here as well. */
2551 return visit_cond_stmt (stmt, taken_edge_p);
2552
2553 default:
2554 break;
2555 }
2556
2557 /* Any other kind of statement is not interesting for constant
2558 propagation and, therefore, not worth simulating. */
2559 if (dump_file && (dump_flags & TDF_DETAILS))
2560 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2561
2562 /* Definitions made by statements other than assignments to
2563 SSA_NAMEs represent unknown modifications to their outputs.
2564 Mark them VARYING. */
2565 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2566 set_value_varying (def);
2567
2568 return SSA_PROP_VARYING;
2569 }
2570
2571
2572 /* Main entry point for SSA Conditional Constant Propagation. If NONZERO_P,
2573 record nonzero bits. */
2574
2575 static unsigned int
2576 do_ssa_ccp (bool nonzero_p)
2577 {
2578 unsigned int todo = 0;
2579 calculate_dominance_info (CDI_DOMINATORS);
2580
2581 ccp_initialize ();
2582 class ccp_propagate ccp_propagate;
2583 ccp_propagate.ssa_propagate ();
2584 if (ccp_finalize (nonzero_p || flag_ipa_bit_cp))
2585 {
2586 todo = (TODO_cleanup_cfg | TODO_update_ssa);
2587
2588 /* ccp_finalize does not preserve loop-closed ssa. */
2589 loops_state_clear (LOOP_CLOSED_SSA);
2590 }
2591
2592 free_dominance_info (CDI_DOMINATORS);
2593 return todo;
2594 }
2595
2596
2597 namespace {
2598
2599 const pass_data pass_data_ccp =
2600 {
2601 GIMPLE_PASS, /* type */
2602 "ccp", /* name */
2603 OPTGROUP_NONE, /* optinfo_flags */
2604 TV_TREE_CCP, /* tv_id */
2605 ( PROP_cfg | PROP_ssa ), /* properties_required */
2606 0, /* properties_provided */
2607 0, /* properties_destroyed */
2608 0, /* todo_flags_start */
2609 TODO_update_address_taken, /* todo_flags_finish */
2610 };
2611
2612 class pass_ccp : public gimple_opt_pass
2613 {
2614 public:
2615 pass_ccp (gcc::context *ctxt)
2616 : gimple_opt_pass (pass_data_ccp, ctxt), nonzero_p (false)
2617 {}
2618
2619 /* opt_pass methods: */
2620 opt_pass * clone () { return new pass_ccp (m_ctxt); }
2621 void set_pass_param (unsigned int n, bool param)
2622 {
2623 gcc_assert (n == 0);
2624 nonzero_p = param;
2625 }
2626 virtual bool gate (function *) { return flag_tree_ccp != 0; }
2627 virtual unsigned int execute (function *) { return do_ssa_ccp (nonzero_p); }
2628
2629 private:
2630 /* Determines whether the pass instance records nonzero bits. */
2631 bool nonzero_p;
2632 }; // class pass_ccp
2633
2634 } // anon namespace
2635
2636 gimple_opt_pass *
2637 make_pass_ccp (gcc::context *ctxt)
2638 {
2639 return new pass_ccp (ctxt);
2640 }
2641
2642
2643
2644 /* Try to optimize out __builtin_stack_restore. Optimize it out
2645 if there is another __builtin_stack_restore in the same basic
2646 block and no calls or ASM_EXPRs are in between, or if this block's
2647 only outgoing edge is to EXIT_BLOCK and there are no calls or
2648 ASM_EXPRs after this __builtin_stack_restore. */
2649
2650 static tree
2651 optimize_stack_restore (gimple_stmt_iterator i)
2652 {
2653 tree callee;
2654 gimple *stmt;
2655
2656 basic_block bb = gsi_bb (i);
2657 gimple *call = gsi_stmt (i);
2658
2659 if (gimple_code (call) != GIMPLE_CALL
2660 || gimple_call_num_args (call) != 1
2661 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2662 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2663 return NULL_TREE;
2664
2665 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2666 {
2667 stmt = gsi_stmt (i);
2668 if (gimple_code (stmt) == GIMPLE_ASM)
2669 return NULL_TREE;
2670 if (gimple_code (stmt) != GIMPLE_CALL)
2671 continue;
2672
2673 callee = gimple_call_fndecl (stmt);
2674 if (!callee
2675 || !fndecl_built_in_p (callee, BUILT_IN_NORMAL)
2676 /* All regular builtins are ok, just obviously not alloca. */
2677 || ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (callee)))
2678 return NULL_TREE;
2679
2680 if (fndecl_built_in_p (callee, BUILT_IN_STACK_RESTORE))
2681 goto second_stack_restore;
2682 }
2683
2684 if (!gsi_end_p (i))
2685 return NULL_TREE;
2686
2687 /* Allow one successor of the exit block, or zero successors. */
2688 switch (EDGE_COUNT (bb->succs))
2689 {
2690 case 0:
2691 break;
2692 case 1:
2693 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2694 return NULL_TREE;
2695 break;
2696 default:
2697 return NULL_TREE;
2698 }
2699 second_stack_restore:
2700
2701 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2702 If there are multiple uses, then the last one should remove the call.
2703 In any case, whether the call to __builtin_stack_save can be removed
2704 or not is irrelevant to removing the call to __builtin_stack_restore. */
2705 if (has_single_use (gimple_call_arg (call, 0)))
2706 {
2707 gimple *stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2708 if (is_gimple_call (stack_save))
2709 {
2710 callee = gimple_call_fndecl (stack_save);
2711 if (callee && fndecl_built_in_p (callee, BUILT_IN_STACK_SAVE))
2712 {
2713 gimple_stmt_iterator stack_save_gsi;
2714 tree rhs;
2715
2716 stack_save_gsi = gsi_for_stmt (stack_save);
2717 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2718 update_call_from_tree (&stack_save_gsi, rhs);
2719 }
2720 }
2721 }
2722
2723 /* No effect, so the statement will be deleted. */
2724 return integer_zero_node;
2725 }
2726
2727 /* If va_list type is a simple pointer and nothing special is needed,
2728 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2729 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2730 pointer assignment. */
2731
2732 static tree
2733 optimize_stdarg_builtin (gimple *call)
2734 {
2735 tree callee, lhs, rhs, cfun_va_list;
2736 bool va_list_simple_ptr;
2737 location_t loc = gimple_location (call);
2738
2739 callee = gimple_call_fndecl (call);
2740
2741 cfun_va_list = targetm.fn_abi_va_list (callee);
2742 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2743 && (TREE_TYPE (cfun_va_list) == void_type_node
2744 || TREE_TYPE (cfun_va_list) == char_type_node);
2745
2746 switch (DECL_FUNCTION_CODE (callee))
2747 {
2748 case BUILT_IN_VA_START:
2749 if (!va_list_simple_ptr
2750 || targetm.expand_builtin_va_start != NULL
2751 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
2752 return NULL_TREE;
2753
2754 if (gimple_call_num_args (call) != 2)
2755 return NULL_TREE;
2756
2757 lhs = gimple_call_arg (call, 0);
2758 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2759 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2760 != TYPE_MAIN_VARIANT (cfun_va_list))
2761 return NULL_TREE;
2762
2763 lhs = build_fold_indirect_ref_loc (loc, lhs);
2764 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
2765 1, integer_zero_node);
2766 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2767 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2768
2769 case BUILT_IN_VA_COPY:
2770 if (!va_list_simple_ptr)
2771 return NULL_TREE;
2772
2773 if (gimple_call_num_args (call) != 2)
2774 return NULL_TREE;
2775
2776 lhs = gimple_call_arg (call, 0);
2777 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2778 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2779 != TYPE_MAIN_VARIANT (cfun_va_list))
2780 return NULL_TREE;
2781
2782 lhs = build_fold_indirect_ref_loc (loc, lhs);
2783 rhs = gimple_call_arg (call, 1);
2784 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2785 != TYPE_MAIN_VARIANT (cfun_va_list))
2786 return NULL_TREE;
2787
2788 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2789 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2790
2791 case BUILT_IN_VA_END:
2792 /* No effect, so the statement will be deleted. */
2793 return integer_zero_node;
2794
2795 default:
2796 gcc_unreachable ();
2797 }
2798 }
2799
2800 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2801 the incoming jumps. Return true if at least one jump was changed. */
2802
2803 static bool
2804 optimize_unreachable (gimple_stmt_iterator i)
2805 {
2806 basic_block bb = gsi_bb (i);
2807 gimple_stmt_iterator gsi;
2808 gimple *stmt;
2809 edge_iterator ei;
2810 edge e;
2811 bool ret;
2812
2813 if (flag_sanitize & SANITIZE_UNREACHABLE)
2814 return false;
2815
2816 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2817 {
2818 stmt = gsi_stmt (gsi);
2819
2820 if (is_gimple_debug (stmt))
2821 continue;
2822
2823 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2824 {
2825 /* Verify we do not need to preserve the label. */
2826 if (FORCED_LABEL (gimple_label_label (label_stmt)))
2827 return false;
2828
2829 continue;
2830 }
2831
2832 /* Only handle the case that __builtin_unreachable is the first statement
2833 in the block. We rely on DCE to remove stmts without side-effects
2834 before __builtin_unreachable. */
2835 if (gsi_stmt (gsi) != gsi_stmt (i))
2836 return false;
2837 }
2838
2839 ret = false;
2840 FOR_EACH_EDGE (e, ei, bb->preds)
2841 {
2842 gsi = gsi_last_bb (e->src);
2843 if (gsi_end_p (gsi))
2844 continue;
2845
2846 stmt = gsi_stmt (gsi);
2847 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
2848 {
2849 if (e->flags & EDGE_TRUE_VALUE)
2850 gimple_cond_make_false (cond_stmt);
2851 else if (e->flags & EDGE_FALSE_VALUE)
2852 gimple_cond_make_true (cond_stmt);
2853 else
2854 gcc_unreachable ();
2855 update_stmt (cond_stmt);
2856 }
2857 else
2858 {
2859 /* Todo: handle other cases. Note that unreachable switch case
2860 statements have already been removed. */
2861 continue;
2862 }
2863
2864 ret = true;
2865 }
2866
2867 return ret;
2868 }
2869
2870 /* Optimize
2871 mask_2 = 1 << cnt_1;
2872 _4 = __atomic_fetch_or_* (ptr_6, mask_2, _3);
2873 _5 = _4 & mask_2;
2874 to
2875 _4 = ATOMIC_BIT_TEST_AND_SET (ptr_6, cnt_1, 0, _3);
2876 _5 = _4;
2877 If _5 is only used in _5 != 0 or _5 == 0 comparisons, 1
2878 is passed instead of 0, and the builtin just returns a zero
2879 or 1 value instead of the actual bit.
2880 Similarly for __sync_fetch_and_or_* (without the ", _3" part
2881 in there), and/or if mask_2 is a power of 2 constant.
2882 Similarly for xor instead of or, use ATOMIC_BIT_TEST_AND_COMPLEMENT
2883 in that case. And similarly for and instead of or, except that
2884 the second argument to the builtin needs to be one's complement
2885 of the mask instead of mask. */
2886
2887 static void
2888 optimize_atomic_bit_test_and (gimple_stmt_iterator *gsip,
2889 enum internal_fn fn, bool has_model_arg,
2890 bool after)
2891 {
2892 gimple *call = gsi_stmt (*gsip);
2893 tree lhs = gimple_call_lhs (call);
2894 use_operand_p use_p;
2895 gimple *use_stmt;
2896 tree mask, bit;
2897 optab optab;
2898
2899 if (!flag_inline_atomics
2900 || optimize_debug
2901 || !gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2902 || !lhs
2903 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)
2904 || !single_imm_use (lhs, &use_p, &use_stmt)
2905 || !is_gimple_assign (use_stmt)
2906 || gimple_assign_rhs_code (use_stmt) != BIT_AND_EXPR
2907 || !gimple_vdef (call))
2908 return;
2909
2910 switch (fn)
2911 {
2912 case IFN_ATOMIC_BIT_TEST_AND_SET:
2913 optab = atomic_bit_test_and_set_optab;
2914 break;
2915 case IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT:
2916 optab = atomic_bit_test_and_complement_optab;
2917 break;
2918 case IFN_ATOMIC_BIT_TEST_AND_RESET:
2919 optab = atomic_bit_test_and_reset_optab;
2920 break;
2921 default:
2922 return;
2923 }
2924
2925 if (optab_handler (optab, TYPE_MODE (TREE_TYPE (lhs))) == CODE_FOR_nothing)
2926 return;
2927
2928 mask = gimple_call_arg (call, 1);
2929 tree use_lhs = gimple_assign_lhs (use_stmt);
2930 if (!use_lhs)
2931 return;
2932
2933 if (TREE_CODE (mask) == INTEGER_CST)
2934 {
2935 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
2936 mask = const_unop (BIT_NOT_EXPR, TREE_TYPE (mask), mask);
2937 mask = fold_convert (TREE_TYPE (lhs), mask);
2938 int ibit = tree_log2 (mask);
2939 if (ibit < 0)
2940 return;
2941 bit = build_int_cst (TREE_TYPE (lhs), ibit);
2942 }
2943 else if (TREE_CODE (mask) == SSA_NAME)
2944 {
2945 gimple *g = SSA_NAME_DEF_STMT (mask);
2946 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
2947 {
2948 if (!is_gimple_assign (g)
2949 || gimple_assign_rhs_code (g) != BIT_NOT_EXPR)
2950 return;
2951 mask = gimple_assign_rhs1 (g);
2952 if (TREE_CODE (mask) != SSA_NAME)
2953 return;
2954 g = SSA_NAME_DEF_STMT (mask);
2955 }
2956 if (!is_gimple_assign (g)
2957 || gimple_assign_rhs_code (g) != LSHIFT_EXPR
2958 || !integer_onep (gimple_assign_rhs1 (g)))
2959 return;
2960 bit = gimple_assign_rhs2 (g);
2961 }
2962 else
2963 return;
2964
2965 if (gimple_assign_rhs1 (use_stmt) == lhs)
2966 {
2967 if (!operand_equal_p (gimple_assign_rhs2 (use_stmt), mask, 0))
2968 return;
2969 }
2970 else if (gimple_assign_rhs2 (use_stmt) != lhs
2971 || !operand_equal_p (gimple_assign_rhs1 (use_stmt), mask, 0))
2972 return;
2973
2974 bool use_bool = true;
2975 bool has_debug_uses = false;
2976 imm_use_iterator iter;
2977 gimple *g;
2978
2979 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs))
2980 use_bool = false;
2981 FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
2982 {
2983 enum tree_code code = ERROR_MARK;
2984 tree op0 = NULL_TREE, op1 = NULL_TREE;
2985 if (is_gimple_debug (g))
2986 {
2987 has_debug_uses = true;
2988 continue;
2989 }
2990 else if (is_gimple_assign (g))
2991 switch (gimple_assign_rhs_code (g))
2992 {
2993 case COND_EXPR:
2994 op1 = gimple_assign_rhs1 (g);
2995 code = TREE_CODE (op1);
2996 op0 = TREE_OPERAND (op1, 0);
2997 op1 = TREE_OPERAND (op1, 1);
2998 break;
2999 case EQ_EXPR:
3000 case NE_EXPR:
3001 code = gimple_assign_rhs_code (g);
3002 op0 = gimple_assign_rhs1 (g);
3003 op1 = gimple_assign_rhs2 (g);
3004 break;
3005 default:
3006 break;
3007 }
3008 else if (gimple_code (g) == GIMPLE_COND)
3009 {
3010 code = gimple_cond_code (g);
3011 op0 = gimple_cond_lhs (g);
3012 op1 = gimple_cond_rhs (g);
3013 }
3014
3015 if ((code == EQ_EXPR || code == NE_EXPR)
3016 && op0 == use_lhs
3017 && integer_zerop (op1))
3018 {
3019 use_operand_p use_p;
3020 int n = 0;
3021 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3022 n++;
3023 if (n == 1)
3024 continue;
3025 }
3026
3027 use_bool = false;
3028 BREAK_FROM_IMM_USE_STMT (iter);
3029 }
3030
3031 tree new_lhs = make_ssa_name (TREE_TYPE (lhs));
3032 tree flag = build_int_cst (TREE_TYPE (lhs), use_bool);
3033 if (has_model_arg)
3034 g = gimple_build_call_internal (fn, 4, gimple_call_arg (call, 0),
3035 bit, flag, gimple_call_arg (call, 2));
3036 else
3037 g = gimple_build_call_internal (fn, 3, gimple_call_arg (call, 0),
3038 bit, flag);
3039 gimple_call_set_lhs (g, new_lhs);
3040 gimple_set_location (g, gimple_location (call));
3041 gimple_move_vops (g, call);
3042 bool throws = stmt_can_throw_internal (cfun, call);
3043 gimple_call_set_nothrow (as_a <gcall *> (g),
3044 gimple_call_nothrow_p (as_a <gcall *> (call)));
3045 gimple_stmt_iterator gsi = *gsip;
3046 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3047 edge e = NULL;
3048 if (throws)
3049 {
3050 maybe_clean_or_replace_eh_stmt (call, g);
3051 if (after || (use_bool && has_debug_uses))
3052 e = find_fallthru_edge (gsi_bb (gsi)->succs);
3053 }
3054 if (after)
3055 {
3056 /* The internal function returns the value of the specified bit
3057 before the atomic operation. If we are interested in the value
3058 of the specified bit after the atomic operation (makes only sense
3059 for xor, otherwise the bit content is compile time known),
3060 we need to invert the bit. */
3061 g = gimple_build_assign (make_ssa_name (TREE_TYPE (lhs)),
3062 BIT_XOR_EXPR, new_lhs,
3063 use_bool ? build_int_cst (TREE_TYPE (lhs), 1)
3064 : mask);
3065 new_lhs = gimple_assign_lhs (g);
3066 if (throws)
3067 {
3068 gsi_insert_on_edge_immediate (e, g);
3069 gsi = gsi_for_stmt (g);
3070 }
3071 else
3072 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3073 }
3074 if (use_bool && has_debug_uses)
3075 {
3076 tree temp = NULL_TREE;
3077 if (!throws || after || single_pred_p (e->dest))
3078 {
3079 temp = make_node (DEBUG_EXPR_DECL);
3080 DECL_ARTIFICIAL (temp) = 1;
3081 TREE_TYPE (temp) = TREE_TYPE (lhs);
3082 SET_DECL_MODE (temp, TYPE_MODE (TREE_TYPE (lhs)));
3083 tree t = build2 (LSHIFT_EXPR, TREE_TYPE (lhs), new_lhs, bit);
3084 g = gimple_build_debug_bind (temp, t, g);
3085 if (throws && !after)
3086 {
3087 gsi = gsi_after_labels (e->dest);
3088 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
3089 }
3090 else
3091 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3092 }
3093 FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
3094 if (is_gimple_debug (g))
3095 {
3096 use_operand_p use_p;
3097 if (temp == NULL_TREE)
3098 gimple_debug_bind_reset_value (g);
3099 else
3100 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3101 SET_USE (use_p, temp);
3102 update_stmt (g);
3103 }
3104 }
3105 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_lhs)
3106 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs);
3107 replace_uses_by (use_lhs, new_lhs);
3108 gsi = gsi_for_stmt (use_stmt);
3109 gsi_remove (&gsi, true);
3110 release_defs (use_stmt);
3111 gsi_remove (gsip, true);
3112 release_ssa_name (lhs);
3113 }
3114
3115 /* Optimize
3116 a = {};
3117 b = a;
3118 into
3119 a = {};
3120 b = {};
3121 Similarly for memset (&a, ..., sizeof (a)); instead of a = {};
3122 and/or memcpy (&b, &a, sizeof (a)); instead of b = a; */
3123
3124 static void
3125 optimize_memcpy (gimple_stmt_iterator *gsip, tree dest, tree src, tree len)
3126 {
3127 gimple *stmt = gsi_stmt (*gsip);
3128 if (gimple_has_volatile_ops (stmt))
3129 return;
3130
3131 tree vuse = gimple_vuse (stmt);
3132 if (vuse == NULL)
3133 return;
3134
3135 gimple *defstmt = SSA_NAME_DEF_STMT (vuse);
3136 tree src2 = NULL_TREE, len2 = NULL_TREE;
3137 poly_int64 offset, offset2;
3138 tree val = integer_zero_node;
3139 if (gimple_store_p (defstmt)
3140 && gimple_assign_single_p (defstmt)
3141 && TREE_CODE (gimple_assign_rhs1 (defstmt)) == CONSTRUCTOR
3142 && !gimple_clobber_p (defstmt))
3143 src2 = gimple_assign_lhs (defstmt);
3144 else if (gimple_call_builtin_p (defstmt, BUILT_IN_MEMSET)
3145 && TREE_CODE (gimple_call_arg (defstmt, 0)) == ADDR_EXPR
3146 && TREE_CODE (gimple_call_arg (defstmt, 1)) == INTEGER_CST)
3147 {
3148 src2 = TREE_OPERAND (gimple_call_arg (defstmt, 0), 0);
3149 len2 = gimple_call_arg (defstmt, 2);
3150 val = gimple_call_arg (defstmt, 1);
3151 /* For non-0 val, we'd have to transform stmt from assignment
3152 into memset (only if dest is addressable). */
3153 if (!integer_zerop (val) && is_gimple_assign (stmt))
3154 src2 = NULL_TREE;
3155 }
3156
3157 if (src2 == NULL_TREE)
3158 return;
3159
3160 if (len == NULL_TREE)
3161 len = (TREE_CODE (src) == COMPONENT_REF
3162 ? DECL_SIZE_UNIT (TREE_OPERAND (src, 1))
3163 : TYPE_SIZE_UNIT (TREE_TYPE (src)));
3164 if (len2 == NULL_TREE)
3165 len2 = (TREE_CODE (src2) == COMPONENT_REF
3166 ? DECL_SIZE_UNIT (TREE_OPERAND (src2, 1))
3167 : TYPE_SIZE_UNIT (TREE_TYPE (src2)));
3168 if (len == NULL_TREE
3169 || !poly_int_tree_p (len)
3170 || len2 == NULL_TREE
3171 || !poly_int_tree_p (len2))
3172 return;
3173
3174 src = get_addr_base_and_unit_offset (src, &offset);
3175 src2 = get_addr_base_and_unit_offset (src2, &offset2);
3176 if (src == NULL_TREE
3177 || src2 == NULL_TREE
3178 || maybe_lt (offset, offset2))
3179 return;
3180
3181 if (!operand_equal_p (src, src2, 0))
3182 return;
3183
3184 /* [ src + offset2, src + offset2 + len2 - 1 ] is set to val.
3185 Make sure that
3186 [ src + offset, src + offset + len - 1 ] is a subset of that. */
3187 if (maybe_gt (wi::to_poly_offset (len) + (offset - offset2),
3188 wi::to_poly_offset (len2)))
3189 return;
3190
3191 if (dump_file && (dump_flags & TDF_DETAILS))
3192 {
3193 fprintf (dump_file, "Simplified\n ");
3194 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3195 fprintf (dump_file, "after previous\n ");
3196 print_gimple_stmt (dump_file, defstmt, 0, dump_flags);
3197 }
3198
3199 /* For simplicity, don't change the kind of the stmt,
3200 turn dest = src; into dest = {}; and memcpy (&dest, &src, len);
3201 into memset (&dest, val, len);
3202 In theory we could change dest = src into memset if dest
3203 is addressable (maybe beneficial if val is not 0), or
3204 memcpy (&dest, &src, len) into dest = {} if len is the size
3205 of dest, dest isn't volatile. */
3206 if (is_gimple_assign (stmt))
3207 {
3208 tree ctor = build_constructor (TREE_TYPE (dest), NULL);
3209 gimple_assign_set_rhs_from_tree (gsip, ctor);
3210 update_stmt (stmt);
3211 }
3212 else /* If stmt is memcpy, transform it into memset. */
3213 {
3214 gcall *call = as_a <gcall *> (stmt);
3215 tree fndecl = builtin_decl_implicit (BUILT_IN_MEMSET);
3216 gimple_call_set_fndecl (call, fndecl);
3217 gimple_call_set_fntype (call, TREE_TYPE (fndecl));
3218 gimple_call_set_arg (call, 1, val);
3219 update_stmt (stmt);
3220 }
3221
3222 if (dump_file && (dump_flags & TDF_DETAILS))
3223 {
3224 fprintf (dump_file, "into\n ");
3225 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3226 }
3227 }
3228
3229 /* A simple pass that attempts to fold all builtin functions. This pass
3230 is run after we've propagated as many constants as we can. */
3231
3232 namespace {
3233
3234 const pass_data pass_data_fold_builtins =
3235 {
3236 GIMPLE_PASS, /* type */
3237 "fab", /* name */
3238 OPTGROUP_NONE, /* optinfo_flags */
3239 TV_NONE, /* tv_id */
3240 ( PROP_cfg | PROP_ssa ), /* properties_required */
3241 0, /* properties_provided */
3242 0, /* properties_destroyed */
3243 0, /* todo_flags_start */
3244 TODO_update_ssa, /* todo_flags_finish */
3245 };
3246
3247 class pass_fold_builtins : public gimple_opt_pass
3248 {
3249 public:
3250 pass_fold_builtins (gcc::context *ctxt)
3251 : gimple_opt_pass (pass_data_fold_builtins, ctxt)
3252 {}
3253
3254 /* opt_pass methods: */
3255 opt_pass * clone () { return new pass_fold_builtins (m_ctxt); }
3256 virtual unsigned int execute (function *);
3257
3258 }; // class pass_fold_builtins
3259
3260 unsigned int
3261 pass_fold_builtins::execute (function *fun)
3262 {
3263 bool cfg_changed = false;
3264 basic_block bb;
3265 unsigned int todoflags = 0;
3266
3267 FOR_EACH_BB_FN (bb, fun)
3268 {
3269 gimple_stmt_iterator i;
3270 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
3271 {
3272 gimple *stmt, *old_stmt;
3273 tree callee;
3274 enum built_in_function fcode;
3275
3276 stmt = gsi_stmt (i);
3277
3278 if (gimple_code (stmt) != GIMPLE_CALL)
3279 {
3280 /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
3281 after the last GIMPLE DSE they aren't needed and might
3282 unnecessarily keep the SSA_NAMEs live. */
3283 if (gimple_clobber_p (stmt))
3284 {
3285 tree lhs = gimple_assign_lhs (stmt);
3286 if (TREE_CODE (lhs) == MEM_REF
3287 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME)
3288 {
3289 unlink_stmt_vdef (stmt);
3290 gsi_remove (&i, true);
3291 release_defs (stmt);
3292 continue;
3293 }
3294 }
3295 else if (gimple_assign_load_p (stmt) && gimple_store_p (stmt))
3296 optimize_memcpy (&i, gimple_assign_lhs (stmt),
3297 gimple_assign_rhs1 (stmt), NULL_TREE);
3298 gsi_next (&i);
3299 continue;
3300 }
3301
3302 callee = gimple_call_fndecl (stmt);
3303 if (!callee || !fndecl_built_in_p (callee, BUILT_IN_NORMAL))
3304 {
3305 gsi_next (&i);
3306 continue;
3307 }
3308
3309 fcode = DECL_FUNCTION_CODE (callee);
3310 if (fold_stmt (&i))
3311 ;
3312 else
3313 {
3314 tree result = NULL_TREE;
3315 switch (DECL_FUNCTION_CODE (callee))
3316 {
3317 case BUILT_IN_CONSTANT_P:
3318 /* Resolve __builtin_constant_p. If it hasn't been
3319 folded to integer_one_node by now, it's fairly
3320 certain that the value simply isn't constant. */
3321 result = integer_zero_node;
3322 break;
3323
3324 case BUILT_IN_ASSUME_ALIGNED:
3325 /* Remove __builtin_assume_aligned. */
3326 result = gimple_call_arg (stmt, 0);
3327 break;
3328
3329 case BUILT_IN_STACK_RESTORE:
3330 result = optimize_stack_restore (i);
3331 if (result)
3332 break;
3333 gsi_next (&i);
3334 continue;
3335
3336 case BUILT_IN_UNREACHABLE:
3337 if (optimize_unreachable (i))
3338 cfg_changed = true;
3339 break;
3340
3341 case BUILT_IN_ATOMIC_FETCH_OR_1:
3342 case BUILT_IN_ATOMIC_FETCH_OR_2:
3343 case BUILT_IN_ATOMIC_FETCH_OR_4:
3344 case BUILT_IN_ATOMIC_FETCH_OR_8:
3345 case BUILT_IN_ATOMIC_FETCH_OR_16:
3346 optimize_atomic_bit_test_and (&i,
3347 IFN_ATOMIC_BIT_TEST_AND_SET,
3348 true, false);
3349 break;
3350 case BUILT_IN_SYNC_FETCH_AND_OR_1:
3351 case BUILT_IN_SYNC_FETCH_AND_OR_2:
3352 case BUILT_IN_SYNC_FETCH_AND_OR_4:
3353 case BUILT_IN_SYNC_FETCH_AND_OR_8:
3354 case BUILT_IN_SYNC_FETCH_AND_OR_16:
3355 optimize_atomic_bit_test_and (&i,
3356 IFN_ATOMIC_BIT_TEST_AND_SET,
3357 false, false);
3358 break;
3359
3360 case BUILT_IN_ATOMIC_FETCH_XOR_1:
3361 case BUILT_IN_ATOMIC_FETCH_XOR_2:
3362 case BUILT_IN_ATOMIC_FETCH_XOR_4:
3363 case BUILT_IN_ATOMIC_FETCH_XOR_8:
3364 case BUILT_IN_ATOMIC_FETCH_XOR_16:
3365 optimize_atomic_bit_test_and
3366 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, false);
3367 break;
3368 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
3369 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
3370 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
3371 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
3372 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
3373 optimize_atomic_bit_test_and
3374 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, false);
3375 break;
3376
3377 case BUILT_IN_ATOMIC_XOR_FETCH_1:
3378 case BUILT_IN_ATOMIC_XOR_FETCH_2:
3379 case BUILT_IN_ATOMIC_XOR_FETCH_4:
3380 case BUILT_IN_ATOMIC_XOR_FETCH_8:
3381 case BUILT_IN_ATOMIC_XOR_FETCH_16:
3382 optimize_atomic_bit_test_and
3383 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, true);
3384 break;
3385 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
3386 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
3387 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
3388 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
3389 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
3390 optimize_atomic_bit_test_and
3391 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, true);
3392 break;
3393
3394 case BUILT_IN_ATOMIC_FETCH_AND_1:
3395 case BUILT_IN_ATOMIC_FETCH_AND_2:
3396 case BUILT_IN_ATOMIC_FETCH_AND_4:
3397 case BUILT_IN_ATOMIC_FETCH_AND_8:
3398 case BUILT_IN_ATOMIC_FETCH_AND_16:
3399 optimize_atomic_bit_test_and (&i,
3400 IFN_ATOMIC_BIT_TEST_AND_RESET,
3401 true, false);
3402 break;
3403 case BUILT_IN_SYNC_FETCH_AND_AND_1:
3404 case BUILT_IN_SYNC_FETCH_AND_AND_2:
3405 case BUILT_IN_SYNC_FETCH_AND_AND_4:
3406 case BUILT_IN_SYNC_FETCH_AND_AND_8:
3407 case BUILT_IN_SYNC_FETCH_AND_AND_16:
3408 optimize_atomic_bit_test_and (&i,
3409 IFN_ATOMIC_BIT_TEST_AND_RESET,
3410 false, false);
3411 break;
3412
3413 case BUILT_IN_MEMCPY:
3414 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL)
3415 && TREE_CODE (gimple_call_arg (stmt, 0)) == ADDR_EXPR
3416 && TREE_CODE (gimple_call_arg (stmt, 1)) == ADDR_EXPR
3417 && TREE_CODE (gimple_call_arg (stmt, 2)) == INTEGER_CST)
3418 {
3419 tree dest = TREE_OPERAND (gimple_call_arg (stmt, 0), 0);
3420 tree src = TREE_OPERAND (gimple_call_arg (stmt, 1), 0);
3421 tree len = gimple_call_arg (stmt, 2);
3422 optimize_memcpy (&i, dest, src, len);
3423 }
3424 break;
3425
3426 case BUILT_IN_VA_START:
3427 case BUILT_IN_VA_END:
3428 case BUILT_IN_VA_COPY:
3429 /* These shouldn't be folded before pass_stdarg. */
3430 result = optimize_stdarg_builtin (stmt);
3431 break;
3432
3433 default:;
3434 }
3435
3436 if (!result)
3437 {
3438 gsi_next (&i);
3439 continue;
3440 }
3441
3442 if (!update_call_from_tree (&i, result))
3443 gimplify_and_update_call_from_tree (&i, result);
3444 }
3445
3446 todoflags |= TODO_update_address_taken;
3447
3448 if (dump_file && (dump_flags & TDF_DETAILS))
3449 {
3450 fprintf (dump_file, "Simplified\n ");
3451 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3452 }
3453
3454 old_stmt = stmt;
3455 stmt = gsi_stmt (i);
3456 update_stmt (stmt);
3457
3458 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
3459 && gimple_purge_dead_eh_edges (bb))
3460 cfg_changed = true;
3461
3462 if (dump_file && (dump_flags & TDF_DETAILS))
3463 {
3464 fprintf (dump_file, "to\n ");
3465 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3466 fprintf (dump_file, "\n");
3467 }
3468
3469 /* Retry the same statement if it changed into another
3470 builtin, there might be new opportunities now. */
3471 if (gimple_code (stmt) != GIMPLE_CALL)
3472 {
3473 gsi_next (&i);
3474 continue;
3475 }
3476 callee = gimple_call_fndecl (stmt);
3477 if (!callee
3478 || !fndecl_built_in_p (callee, fcode))
3479 gsi_next (&i);
3480 }
3481 }
3482
3483 /* Delete unreachable blocks. */
3484 if (cfg_changed)
3485 todoflags |= TODO_cleanup_cfg;
3486
3487 return todoflags;
3488 }
3489
3490 } // anon namespace
3491
3492 gimple_opt_pass *
3493 make_pass_fold_builtins (gcc::context *ctxt)
3494 {
3495 return new pass_fold_builtins (ctxt);
3496 }
3497
3498 /* A simple pass that emits some warnings post IPA. */
3499
3500 namespace {
3501
3502 const pass_data pass_data_post_ipa_warn =
3503 {
3504 GIMPLE_PASS, /* type */
3505 "post_ipa_warn", /* name */
3506 OPTGROUP_NONE, /* optinfo_flags */
3507 TV_NONE, /* tv_id */
3508 ( PROP_cfg | PROP_ssa ), /* properties_required */
3509 0, /* properties_provided */
3510 0, /* properties_destroyed */
3511 0, /* todo_flags_start */
3512 0, /* todo_flags_finish */
3513 };
3514
3515 class pass_post_ipa_warn : public gimple_opt_pass
3516 {
3517 public:
3518 pass_post_ipa_warn (gcc::context *ctxt)
3519 : gimple_opt_pass (pass_data_post_ipa_warn, ctxt)
3520 {}
3521
3522 /* opt_pass methods: */
3523 opt_pass * clone () { return new pass_post_ipa_warn (m_ctxt); }
3524 virtual bool gate (function *) { return warn_nonnull != 0; }
3525 virtual unsigned int execute (function *);
3526
3527 }; // class pass_fold_builtins
3528
3529 unsigned int
3530 pass_post_ipa_warn::execute (function *fun)
3531 {
3532 basic_block bb;
3533
3534 FOR_EACH_BB_FN (bb, fun)
3535 {
3536 gimple_stmt_iterator gsi;
3537 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3538 {
3539 gimple *stmt = gsi_stmt (gsi);
3540 if (!is_gimple_call (stmt) || gimple_no_warning_p (stmt))
3541 continue;
3542
3543 tree fntype = gimple_call_fntype (stmt);
3544 bitmap nonnullargs = get_nonnull_args (fntype);
3545 if (!nonnullargs)
3546 continue;
3547
3548 tree fndecl = gimple_call_fndecl (stmt);
3549
3550 for (unsigned i = 0; i < gimple_call_num_args (stmt); i++)
3551 {
3552 tree arg = gimple_call_arg (stmt, i);
3553 if (TREE_CODE (TREE_TYPE (arg)) != POINTER_TYPE)
3554 continue;
3555 if (!integer_zerop (arg))
3556 continue;
3557 if (!bitmap_empty_p (nonnullargs)
3558 && !bitmap_bit_p (nonnullargs, i))
3559 continue;
3560
3561 /* In C++ non-static member functions argument 0 refers
3562 to the implicit this pointer. Use the same one-based
3563 numbering for ordinary arguments. */
3564 unsigned argno = TREE_CODE (fntype) == METHOD_TYPE ? i : i + 1;
3565 location_t loc = (EXPR_HAS_LOCATION (arg)
3566 ? EXPR_LOCATION (arg)
3567 : gimple_location (stmt));
3568 auto_diagnostic_group d;
3569 if (argno == 0)
3570 {
3571 if (warning_at (loc, OPT_Wnonnull,
3572 "%G%qs pointer null", stmt, "this")
3573 && fndecl)
3574 inform (DECL_SOURCE_LOCATION (fndecl),
3575 "in a call to non-static member function %qD",
3576 fndecl);
3577 continue;
3578 }
3579
3580 if (!warning_at (loc, OPT_Wnonnull,
3581 "%Gargument %u null where non-null "
3582 "expected", stmt, argno))
3583 continue;
3584
3585 tree fndecl = gimple_call_fndecl (stmt);
3586 if (fndecl && DECL_IS_UNDECLARED_BUILTIN (fndecl))
3587 inform (loc, "in a call to built-in function %qD",
3588 fndecl);
3589 else if (fndecl)
3590 inform (DECL_SOURCE_LOCATION (fndecl),
3591 "in a call to function %qD declared %qs",
3592 fndecl, "nonnull");
3593 }
3594 BITMAP_FREE (nonnullargs);
3595 }
3596 }
3597 return 0;
3598 }
3599
3600 } // anon namespace
3601
3602 gimple_opt_pass *
3603 make_pass_post_ipa_warn (gcc::context *ctxt)
3604 {
3605 return new pass_post_ipa_warn (ctxt);
3606 }