2fa4726e1ea560fc10819a04c3fddd22d56ecd3b
[gcc.git] / gcc / tree-ssa-ccp.c
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010 Free Software Foundation, Inc.
4 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
5 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 3, or (at your option) any
12 later version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* Conditional constant propagation (CCP) is based on the SSA
24 propagation engine (tree-ssa-propagate.c). Constant assignments of
25 the form VAR = CST are propagated from the assignments into uses of
26 VAR, which in turn may generate new constants. The simulation uses
27 a four level lattice to keep track of constant values associated
28 with SSA names. Given an SSA name V_i, it may take one of the
29 following values:
30
31 UNINITIALIZED -> the initial state of the value. This value
32 is replaced with a correct initial value
33 the first time the value is used, so the
34 rest of the pass does not need to care about
35 it. Using this value simplifies initialization
36 of the pass, and prevents us from needlessly
37 scanning statements that are never reached.
38
39 UNDEFINED -> V_i is a local variable whose definition
40 has not been processed yet. Therefore we
41 don't yet know if its value is a constant
42 or not.
43
44 CONSTANT -> V_i has been found to hold a constant
45 value C.
46
47 VARYING -> V_i cannot take a constant value, or if it
48 does, it is not possible to determine it
49 at compile time.
50
51 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
52
53 1- In ccp_visit_stmt, we are interested in assignments whose RHS
54 evaluates into a constant and conditional jumps whose predicate
55 evaluates into a boolean true or false. When an assignment of
56 the form V_i = CONST is found, V_i's lattice value is set to
57 CONSTANT and CONST is associated with it. This causes the
58 propagation engine to add all the SSA edges coming out the
59 assignment into the worklists, so that statements that use V_i
60 can be visited.
61
62 If the statement is a conditional with a constant predicate, we
63 mark the outgoing edges as executable or not executable
64 depending on the predicate's value. This is then used when
65 visiting PHI nodes to know when a PHI argument can be ignored.
66
67
68 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
69 same constant C, then the LHS of the PHI is set to C. This
70 evaluation is known as the "meet operation". Since one of the
71 goals of this evaluation is to optimistically return constant
72 values as often as possible, it uses two main short cuts:
73
74 - If an argument is flowing in through a non-executable edge, it
75 is ignored. This is useful in cases like this:
76
77 if (PRED)
78 a_9 = 3;
79 else
80 a_10 = 100;
81 a_11 = PHI (a_9, a_10)
82
83 If PRED is known to always evaluate to false, then we can
84 assume that a_11 will always take its value from a_10, meaning
85 that instead of consider it VARYING (a_9 and a_10 have
86 different values), we can consider it CONSTANT 100.
87
88 - If an argument has an UNDEFINED value, then it does not affect
89 the outcome of the meet operation. If a variable V_i has an
90 UNDEFINED value, it means that either its defining statement
91 hasn't been visited yet or V_i has no defining statement, in
92 which case the original symbol 'V' is being used
93 uninitialized. Since 'V' is a local variable, the compiler
94 may assume any initial value for it.
95
96
97 After propagation, every variable V_i that ends up with a lattice
98 value of CONSTANT will have the associated constant value in the
99 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
100 final substitution and folding.
101
102 References:
103
104 Constant propagation with conditional branches,
105 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
106
107 Building an Optimizing Compiler,
108 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
109
110 Advanced Compiler Design and Implementation,
111 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
112
113 #include "config.h"
114 #include "system.h"
115 #include "coretypes.h"
116 #include "tm.h"
117 #include "tree.h"
118 #include "flags.h"
119 #include "tm_p.h"
120 #include "basic-block.h"
121 #include "output.h"
122 #include "function.h"
123 #include "tree-pretty-print.h"
124 #include "gimple-pretty-print.h"
125 #include "timevar.h"
126 #include "tree-dump.h"
127 #include "tree-flow.h"
128 #include "tree-pass.h"
129 #include "tree-ssa-propagate.h"
130 #include "value-prof.h"
131 #include "langhooks.h"
132 #include "target.h"
133 #include "diagnostic-core.h"
134 #include "toplev.h"
135 #include "dbgcnt.h"
136
137
138 /* Possible lattice values. */
139 typedef enum
140 {
141 UNINITIALIZED,
142 UNDEFINED,
143 CONSTANT,
144 VARYING
145 } ccp_lattice_t;
146
147 struct prop_value_d {
148 /* Lattice value. */
149 ccp_lattice_t lattice_val;
150
151 /* Propagated value. */
152 tree value;
153
154 /* Mask that applies to the propagated value during CCP. For
155 X with a CONSTANT lattice value X & ~mask == value & ~mask. */
156 double_int mask;
157 };
158
159 typedef struct prop_value_d prop_value_t;
160
161 /* Array of propagated constant values. After propagation,
162 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
163 the constant is held in an SSA name representing a memory store
164 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
165 memory reference used to store (i.e., the LHS of the assignment
166 doing the store). */
167 static prop_value_t *const_val;
168
169 static void canonicalize_float_value (prop_value_t *);
170 static bool ccp_fold_stmt (gimple_stmt_iterator *);
171 static tree fold_ctor_reference (tree type, tree ctor,
172 unsigned HOST_WIDE_INT offset,
173 unsigned HOST_WIDE_INT size);
174
175 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
176
177 static void
178 dump_lattice_value (FILE *outf, const char *prefix, prop_value_t val)
179 {
180 switch (val.lattice_val)
181 {
182 case UNINITIALIZED:
183 fprintf (outf, "%sUNINITIALIZED", prefix);
184 break;
185 case UNDEFINED:
186 fprintf (outf, "%sUNDEFINED", prefix);
187 break;
188 case VARYING:
189 fprintf (outf, "%sVARYING", prefix);
190 break;
191 case CONSTANT:
192 fprintf (outf, "%sCONSTANT ", prefix);
193 if (TREE_CODE (val.value) != INTEGER_CST
194 || double_int_zero_p (val.mask))
195 print_generic_expr (outf, val.value, dump_flags);
196 else
197 {
198 double_int cval = double_int_and_not (tree_to_double_int (val.value),
199 val.mask);
200 fprintf (outf, "%sCONSTANT " HOST_WIDE_INT_PRINT_DOUBLE_HEX,
201 prefix, cval.high, cval.low);
202 fprintf (outf, " (" HOST_WIDE_INT_PRINT_DOUBLE_HEX ")",
203 val.mask.high, val.mask.low);
204 }
205 break;
206 default:
207 gcc_unreachable ();
208 }
209 }
210
211
212 /* Print lattice value VAL to stderr. */
213
214 void debug_lattice_value (prop_value_t val);
215
216 DEBUG_FUNCTION void
217 debug_lattice_value (prop_value_t val)
218 {
219 dump_lattice_value (stderr, "", val);
220 fprintf (stderr, "\n");
221 }
222
223
224 /* Compute a default value for variable VAR and store it in the
225 CONST_VAL array. The following rules are used to get default
226 values:
227
228 1- Global and static variables that are declared constant are
229 considered CONSTANT.
230
231 2- Any other value is considered UNDEFINED. This is useful when
232 considering PHI nodes. PHI arguments that are undefined do not
233 change the constant value of the PHI node, which allows for more
234 constants to be propagated.
235
236 3- Variables defined by statements other than assignments and PHI
237 nodes are considered VARYING.
238
239 4- Initial values of variables that are not GIMPLE registers are
240 considered VARYING. */
241
242 static prop_value_t
243 get_default_value (tree var)
244 {
245 tree sym = SSA_NAME_VAR (var);
246 prop_value_t val = { UNINITIALIZED, NULL_TREE, { 0, 0 } };
247 gimple stmt;
248
249 stmt = SSA_NAME_DEF_STMT (var);
250
251 if (gimple_nop_p (stmt))
252 {
253 /* Variables defined by an empty statement are those used
254 before being initialized. If VAR is a local variable, we
255 can assume initially that it is UNDEFINED, otherwise we must
256 consider it VARYING. */
257 if (is_gimple_reg (sym)
258 && TREE_CODE (sym) == VAR_DECL)
259 val.lattice_val = UNDEFINED;
260 else
261 {
262 val.lattice_val = VARYING;
263 val.mask = double_int_minus_one;
264 }
265 }
266 else if (is_gimple_assign (stmt)
267 /* Value-returning GIMPLE_CALL statements assign to
268 a variable, and are treated similarly to GIMPLE_ASSIGN. */
269 || (is_gimple_call (stmt)
270 && gimple_call_lhs (stmt) != NULL_TREE)
271 || gimple_code (stmt) == GIMPLE_PHI)
272 {
273 tree cst;
274 if (gimple_assign_single_p (stmt)
275 && DECL_P (gimple_assign_rhs1 (stmt))
276 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
277 {
278 val.lattice_val = CONSTANT;
279 val.value = cst;
280 }
281 else
282 /* Any other variable defined by an assignment or a PHI node
283 is considered UNDEFINED. */
284 val.lattice_val = UNDEFINED;
285 }
286 else
287 {
288 /* Otherwise, VAR will never take on a constant value. */
289 val.lattice_val = VARYING;
290 val.mask = double_int_minus_one;
291 }
292
293 return val;
294 }
295
296
297 /* Get the constant value associated with variable VAR. */
298
299 static inline prop_value_t *
300 get_value (tree var)
301 {
302 prop_value_t *val;
303
304 if (const_val == NULL)
305 return NULL;
306
307 val = &const_val[SSA_NAME_VERSION (var)];
308 if (val->lattice_val == UNINITIALIZED)
309 *val = get_default_value (var);
310
311 canonicalize_float_value (val);
312
313 return val;
314 }
315
316 /* Return the constant tree value associated with VAR. */
317
318 static inline tree
319 get_constant_value (tree var)
320 {
321 prop_value_t *val;
322 if (TREE_CODE (var) != SSA_NAME)
323 {
324 if (is_gimple_min_invariant (var))
325 return var;
326 return NULL_TREE;
327 }
328 val = get_value (var);
329 if (val
330 && val->lattice_val == CONSTANT
331 && (TREE_CODE (val->value) != INTEGER_CST
332 || double_int_zero_p (val->mask)))
333 return val->value;
334 return NULL_TREE;
335 }
336
337 /* Sets the value associated with VAR to VARYING. */
338
339 static inline void
340 set_value_varying (tree var)
341 {
342 prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
343
344 val->lattice_val = VARYING;
345 val->value = NULL_TREE;
346 val->mask = double_int_minus_one;
347 }
348
349 /* For float types, modify the value of VAL to make ccp work correctly
350 for non-standard values (-0, NaN):
351
352 If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0.
353 If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED.
354 This is to fix the following problem (see PR 29921): Suppose we have
355
356 x = 0.0 * y
357
358 and we set value of y to NaN. This causes value of x to be set to NaN.
359 When we later determine that y is in fact VARYING, fold uses the fact
360 that HONOR_NANS is false, and we try to change the value of x to 0,
361 causing an ICE. With HONOR_NANS being false, the real appearance of
362 NaN would cause undefined behavior, though, so claiming that y (and x)
363 are UNDEFINED initially is correct. */
364
365 static void
366 canonicalize_float_value (prop_value_t *val)
367 {
368 enum machine_mode mode;
369 tree type;
370 REAL_VALUE_TYPE d;
371
372 if (val->lattice_val != CONSTANT
373 || TREE_CODE (val->value) != REAL_CST)
374 return;
375
376 d = TREE_REAL_CST (val->value);
377 type = TREE_TYPE (val->value);
378 mode = TYPE_MODE (type);
379
380 if (!HONOR_SIGNED_ZEROS (mode)
381 && REAL_VALUE_MINUS_ZERO (d))
382 {
383 val->value = build_real (type, dconst0);
384 return;
385 }
386
387 if (!HONOR_NANS (mode)
388 && REAL_VALUE_ISNAN (d))
389 {
390 val->lattice_val = UNDEFINED;
391 val->value = NULL;
392 return;
393 }
394 }
395
396 /* Return whether the lattice transition is valid. */
397
398 static bool
399 valid_lattice_transition (prop_value_t old_val, prop_value_t new_val)
400 {
401 /* Lattice transitions must always be monotonically increasing in
402 value. */
403 if (old_val.lattice_val < new_val.lattice_val)
404 return true;
405
406 if (old_val.lattice_val != new_val.lattice_val)
407 return false;
408
409 if (!old_val.value && !new_val.value)
410 return true;
411
412 /* Now both lattice values are CONSTANT. */
413
414 /* Allow transitioning from &x to &x & ~3. */
415 if (TREE_CODE (old_val.value) != INTEGER_CST
416 && TREE_CODE (new_val.value) == INTEGER_CST)
417 return true;
418
419 /* Bit-lattices have to agree in the still valid bits. */
420 if (TREE_CODE (old_val.value) == INTEGER_CST
421 && TREE_CODE (new_val.value) == INTEGER_CST)
422 return double_int_equal_p
423 (double_int_and_not (tree_to_double_int (old_val.value),
424 new_val.mask),
425 double_int_and_not (tree_to_double_int (new_val.value),
426 new_val.mask));
427
428 /* Otherwise constant values have to agree. */
429 return operand_equal_p (old_val.value, new_val.value, 0);
430 }
431
432 /* Set the value for variable VAR to NEW_VAL. Return true if the new
433 value is different from VAR's previous value. */
434
435 static bool
436 set_lattice_value (tree var, prop_value_t new_val)
437 {
438 /* We can deal with old UNINITIALIZED values just fine here. */
439 prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
440
441 canonicalize_float_value (&new_val);
442
443 /* We have to be careful to not go up the bitwise lattice
444 represented by the mask.
445 ??? This doesn't seem to be the best place to enforce this. */
446 if (new_val.lattice_val == CONSTANT
447 && old_val->lattice_val == CONSTANT
448 && TREE_CODE (new_val.value) == INTEGER_CST
449 && TREE_CODE (old_val->value) == INTEGER_CST)
450 {
451 double_int diff;
452 diff = double_int_xor (tree_to_double_int (new_val.value),
453 tree_to_double_int (old_val->value));
454 new_val.mask = double_int_ior (new_val.mask,
455 double_int_ior (old_val->mask, diff));
456 }
457
458 gcc_assert (valid_lattice_transition (*old_val, new_val));
459
460 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
461 caller that this was a non-transition. */
462 if (old_val->lattice_val != new_val.lattice_val
463 || (new_val.lattice_val == CONSTANT
464 && TREE_CODE (new_val.value) == INTEGER_CST
465 && (TREE_CODE (old_val->value) != INTEGER_CST
466 || !double_int_equal_p (new_val.mask, old_val->mask))))
467 {
468 /* ??? We would like to delay creation of INTEGER_CSTs from
469 partially constants here. */
470
471 if (dump_file && (dump_flags & TDF_DETAILS))
472 {
473 dump_lattice_value (dump_file, "Lattice value changed to ", new_val);
474 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
475 }
476
477 *old_val = new_val;
478
479 gcc_assert (new_val.lattice_val != UNINITIALIZED);
480 return true;
481 }
482
483 return false;
484 }
485
486 static prop_value_t get_value_for_expr (tree, bool);
487 static prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
488 static void bit_value_binop_1 (enum tree_code, tree, double_int *, double_int *,
489 tree, double_int, double_int,
490 tree, double_int, double_int);
491
492 /* Return a double_int that can be used for bitwise simplifications
493 from VAL. */
494
495 static double_int
496 value_to_double_int (prop_value_t val)
497 {
498 if (val.value
499 && TREE_CODE (val.value) == INTEGER_CST)
500 return tree_to_double_int (val.value);
501 else
502 return double_int_zero;
503 }
504
505 /* Return the value for the address expression EXPR based on alignment
506 information. */
507
508 static prop_value_t
509 get_value_from_alignment (tree expr)
510 {
511 prop_value_t val;
512 HOST_WIDE_INT bitsize, bitpos;
513 tree base, offset;
514 enum machine_mode mode;
515 int align;
516
517 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
518
519 base = get_inner_reference (TREE_OPERAND (expr, 0),
520 &bitsize, &bitpos, &offset,
521 &mode, &align, &align, false);
522 if (TREE_CODE (base) == MEM_REF)
523 val = bit_value_binop (PLUS_EXPR, TREE_TYPE (expr),
524 TREE_OPERAND (base, 0), TREE_OPERAND (base, 1));
525 else if (base
526 && ((align = get_object_alignment (base, BIGGEST_ALIGNMENT))
527 > BITS_PER_UNIT))
528 {
529 val.lattice_val = CONSTANT;
530 /* We assume pointers are zero-extended. */
531 val.mask = double_int_and_not
532 (double_int_mask (TYPE_PRECISION (TREE_TYPE (expr))),
533 uhwi_to_double_int (align / BITS_PER_UNIT - 1));
534 val.value = build_int_cst (TREE_TYPE (expr), 0);
535 }
536 else
537 {
538 val.lattice_val = VARYING;
539 val.mask = double_int_minus_one;
540 val.value = NULL_TREE;
541 }
542 if (bitpos != 0)
543 {
544 double_int value, mask;
545 bit_value_binop_1 (PLUS_EXPR, TREE_TYPE (expr), &value, &mask,
546 TREE_TYPE (expr), value_to_double_int (val), val.mask,
547 TREE_TYPE (expr),
548 shwi_to_double_int (bitpos / BITS_PER_UNIT),
549 double_int_zero);
550 val.lattice_val = double_int_minus_one_p (mask) ? VARYING : CONSTANT;
551 val.mask = mask;
552 if (val.lattice_val == CONSTANT)
553 val.value = double_int_to_tree (TREE_TYPE (expr), value);
554 else
555 val.value = NULL_TREE;
556 }
557 /* ??? We should handle i * 4 and more complex expressions from
558 the offset, possibly by just expanding get_value_for_expr. */
559 if (offset != NULL_TREE)
560 {
561 double_int value, mask;
562 prop_value_t oval = get_value_for_expr (offset, true);
563 bit_value_binop_1 (PLUS_EXPR, TREE_TYPE (expr), &value, &mask,
564 TREE_TYPE (expr), value_to_double_int (val), val.mask,
565 TREE_TYPE (expr), value_to_double_int (oval),
566 oval.mask);
567 val.mask = mask;
568 if (double_int_minus_one_p (mask))
569 {
570 val.lattice_val = VARYING;
571 val.value = NULL_TREE;
572 }
573 else
574 {
575 val.lattice_val = CONSTANT;
576 val.value = double_int_to_tree (TREE_TYPE (expr), value);
577 }
578 }
579
580 return val;
581 }
582
583 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
584 return constant bits extracted from alignment information for
585 invariant addresses. */
586
587 static prop_value_t
588 get_value_for_expr (tree expr, bool for_bits_p)
589 {
590 prop_value_t val;
591
592 if (TREE_CODE (expr) == SSA_NAME)
593 {
594 val = *get_value (expr);
595 if (for_bits_p
596 && val.lattice_val == CONSTANT
597 && TREE_CODE (val.value) == ADDR_EXPR)
598 val = get_value_from_alignment (val.value);
599 }
600 else if (is_gimple_min_invariant (expr)
601 && (!for_bits_p || TREE_CODE (expr) != ADDR_EXPR))
602 {
603 val.lattice_val = CONSTANT;
604 val.value = expr;
605 val.mask = double_int_zero;
606 canonicalize_float_value (&val);
607 }
608 else if (TREE_CODE (expr) == ADDR_EXPR)
609 val = get_value_from_alignment (expr);
610 else
611 {
612 val.lattice_val = VARYING;
613 val.mask = double_int_minus_one;
614 val.value = NULL_TREE;
615 }
616 return val;
617 }
618
619 /* Return the likely CCP lattice value for STMT.
620
621 If STMT has no operands, then return CONSTANT.
622
623 Else if undefinedness of operands of STMT cause its value to be
624 undefined, then return UNDEFINED.
625
626 Else if any operands of STMT are constants, then return CONSTANT.
627
628 Else return VARYING. */
629
630 static ccp_lattice_t
631 likely_value (gimple stmt)
632 {
633 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
634 tree use;
635 ssa_op_iter iter;
636 unsigned i;
637
638 enum gimple_code code = gimple_code (stmt);
639
640 /* This function appears to be called only for assignments, calls,
641 conditionals, and switches, due to the logic in visit_stmt. */
642 gcc_assert (code == GIMPLE_ASSIGN
643 || code == GIMPLE_CALL
644 || code == GIMPLE_COND
645 || code == GIMPLE_SWITCH);
646
647 /* If the statement has volatile operands, it won't fold to a
648 constant value. */
649 if (gimple_has_volatile_ops (stmt))
650 return VARYING;
651
652 /* Arrive here for more complex cases. */
653 has_constant_operand = false;
654 has_undefined_operand = false;
655 all_undefined_operands = true;
656 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
657 {
658 prop_value_t *val = get_value (use);
659
660 if (val->lattice_val == UNDEFINED)
661 has_undefined_operand = true;
662 else
663 all_undefined_operands = false;
664
665 if (val->lattice_val == CONSTANT)
666 has_constant_operand = true;
667 }
668
669 /* There may be constants in regular rhs operands. For calls we
670 have to ignore lhs, fndecl and static chain, otherwise only
671 the lhs. */
672 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
673 i < gimple_num_ops (stmt); ++i)
674 {
675 tree op = gimple_op (stmt, i);
676 if (!op || TREE_CODE (op) == SSA_NAME)
677 continue;
678 if (is_gimple_min_invariant (op))
679 has_constant_operand = true;
680 }
681
682 if (has_constant_operand)
683 all_undefined_operands = false;
684
685 /* If the operation combines operands like COMPLEX_EXPR make sure to
686 not mark the result UNDEFINED if only one part of the result is
687 undefined. */
688 if (has_undefined_operand && all_undefined_operands)
689 return UNDEFINED;
690 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
691 {
692 switch (gimple_assign_rhs_code (stmt))
693 {
694 /* Unary operators are handled with all_undefined_operands. */
695 case PLUS_EXPR:
696 case MINUS_EXPR:
697 case POINTER_PLUS_EXPR:
698 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
699 Not bitwise operators, one VARYING operand may specify the
700 result completely. Not logical operators for the same reason.
701 Not COMPLEX_EXPR as one VARYING operand makes the result partly
702 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
703 the undefined operand may be promoted. */
704 return UNDEFINED;
705
706 default:
707 ;
708 }
709 }
710 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
711 fall back to VARYING even if there were CONSTANT operands. */
712 if (has_undefined_operand)
713 return VARYING;
714
715 /* We do not consider virtual operands here -- load from read-only
716 memory may have only VARYING virtual operands, but still be
717 constant. */
718 if (has_constant_operand
719 || gimple_references_memory_p (stmt))
720 return CONSTANT;
721
722 return VARYING;
723 }
724
725 /* Returns true if STMT cannot be constant. */
726
727 static bool
728 surely_varying_stmt_p (gimple stmt)
729 {
730 /* If the statement has operands that we cannot handle, it cannot be
731 constant. */
732 if (gimple_has_volatile_ops (stmt))
733 return true;
734
735 /* If it is a call and does not return a value or is not a
736 builtin and not an indirect call, it is varying. */
737 if (is_gimple_call (stmt))
738 {
739 tree fndecl;
740 if (!gimple_call_lhs (stmt)
741 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
742 && !DECL_BUILT_IN (fndecl)))
743 return true;
744 }
745
746 /* Any other store operation is not interesting. */
747 else if (gimple_vdef (stmt))
748 return true;
749
750 /* Anything other than assignments and conditional jumps are not
751 interesting for CCP. */
752 if (gimple_code (stmt) != GIMPLE_ASSIGN
753 && gimple_code (stmt) != GIMPLE_COND
754 && gimple_code (stmt) != GIMPLE_SWITCH
755 && gimple_code (stmt) != GIMPLE_CALL)
756 return true;
757
758 return false;
759 }
760
761 /* Initialize local data structures for CCP. */
762
763 static void
764 ccp_initialize (void)
765 {
766 basic_block bb;
767
768 const_val = XCNEWVEC (prop_value_t, num_ssa_names);
769
770 /* Initialize simulation flags for PHI nodes and statements. */
771 FOR_EACH_BB (bb)
772 {
773 gimple_stmt_iterator i;
774
775 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
776 {
777 gimple stmt = gsi_stmt (i);
778 bool is_varying;
779
780 /* If the statement is a control insn, then we do not
781 want to avoid simulating the statement once. Failure
782 to do so means that those edges will never get added. */
783 if (stmt_ends_bb_p (stmt))
784 is_varying = false;
785 else
786 is_varying = surely_varying_stmt_p (stmt);
787
788 if (is_varying)
789 {
790 tree def;
791 ssa_op_iter iter;
792
793 /* If the statement will not produce a constant, mark
794 all its outputs VARYING. */
795 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
796 set_value_varying (def);
797 }
798 prop_set_simulate_again (stmt, !is_varying);
799 }
800 }
801
802 /* Now process PHI nodes. We never clear the simulate_again flag on
803 phi nodes, since we do not know which edges are executable yet,
804 except for phi nodes for virtual operands when we do not do store ccp. */
805 FOR_EACH_BB (bb)
806 {
807 gimple_stmt_iterator i;
808
809 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
810 {
811 gimple phi = gsi_stmt (i);
812
813 if (!is_gimple_reg (gimple_phi_result (phi)))
814 prop_set_simulate_again (phi, false);
815 else
816 prop_set_simulate_again (phi, true);
817 }
818 }
819 }
820
821 /* Debug count support. Reset the values of ssa names
822 VARYING when the total number ssa names analyzed is
823 beyond the debug count specified. */
824
825 static void
826 do_dbg_cnt (void)
827 {
828 unsigned i;
829 for (i = 0; i < num_ssa_names; i++)
830 {
831 if (!dbg_cnt (ccp))
832 {
833 const_val[i].lattice_val = VARYING;
834 const_val[i].mask = double_int_minus_one;
835 const_val[i].value = NULL_TREE;
836 }
837 }
838 }
839
840
841 /* Do final substitution of propagated values, cleanup the flowgraph and
842 free allocated storage.
843
844 Return TRUE when something was optimized. */
845
846 static bool
847 ccp_finalize (void)
848 {
849 bool something_changed;
850 unsigned i;
851
852 do_dbg_cnt ();
853
854 /* Derive alignment and misalignment information from partially
855 constant pointers in the lattice. */
856 for (i = 1; i < num_ssa_names; ++i)
857 {
858 tree name = ssa_name (i);
859 prop_value_t *val;
860 struct ptr_info_def *pi;
861 unsigned int tem, align;
862
863 if (!name
864 || !POINTER_TYPE_P (TREE_TYPE (name)))
865 continue;
866
867 val = get_value (name);
868 if (val->lattice_val != CONSTANT
869 || TREE_CODE (val->value) != INTEGER_CST)
870 continue;
871
872 /* Trailing constant bits specify the alignment, trailing value
873 bits the misalignment. */
874 tem = val->mask.low;
875 align = (tem & -tem);
876 if (align == 1)
877 continue;
878
879 pi = get_ptr_info (name);
880 pi->align = align;
881 pi->misalign = TREE_INT_CST_LOW (val->value) & (align - 1);
882 }
883
884 /* Perform substitutions based on the known constant values. */
885 something_changed = substitute_and_fold (get_constant_value,
886 ccp_fold_stmt, true);
887
888 free (const_val);
889 const_val = NULL;
890 return something_changed;;
891 }
892
893
894 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
895 in VAL1.
896
897 any M UNDEFINED = any
898 any M VARYING = VARYING
899 Ci M Cj = Ci if (i == j)
900 Ci M Cj = VARYING if (i != j)
901 */
902
903 static void
904 ccp_lattice_meet (prop_value_t *val1, prop_value_t *val2)
905 {
906 if (val1->lattice_val == UNDEFINED)
907 {
908 /* UNDEFINED M any = any */
909 *val1 = *val2;
910 }
911 else if (val2->lattice_val == UNDEFINED)
912 {
913 /* any M UNDEFINED = any
914 Nothing to do. VAL1 already contains the value we want. */
915 ;
916 }
917 else if (val1->lattice_val == VARYING
918 || val2->lattice_val == VARYING)
919 {
920 /* any M VARYING = VARYING. */
921 val1->lattice_val = VARYING;
922 val1->mask = double_int_minus_one;
923 val1->value = NULL_TREE;
924 }
925 else if (val1->lattice_val == CONSTANT
926 && val2->lattice_val == CONSTANT
927 && TREE_CODE (val1->value) == INTEGER_CST
928 && TREE_CODE (val2->value) == INTEGER_CST)
929 {
930 /* Ci M Cj = Ci if (i == j)
931 Ci M Cj = VARYING if (i != j)
932
933 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
934 drop to varying. */
935 val1->mask
936 = double_int_ior (double_int_ior (val1->mask,
937 val2->mask),
938 double_int_xor (tree_to_double_int (val1->value),
939 tree_to_double_int (val2->value)));
940 if (double_int_minus_one_p (val1->mask))
941 {
942 val1->lattice_val = VARYING;
943 val1->value = NULL_TREE;
944 }
945 }
946 else if (val1->lattice_val == CONSTANT
947 && val2->lattice_val == CONSTANT
948 && simple_cst_equal (val1->value, val2->value) == 1)
949 {
950 /* Ci M Cj = Ci if (i == j)
951 Ci M Cj = VARYING if (i != j)
952
953 VAL1 already contains the value we want for equivalent values. */
954 }
955 else if (val1->lattice_val == CONSTANT
956 && val2->lattice_val == CONSTANT
957 && (TREE_CODE (val1->value) == ADDR_EXPR
958 || TREE_CODE (val2->value) == ADDR_EXPR))
959 {
960 /* When not equal addresses are involved try meeting for
961 alignment. */
962 prop_value_t tem = *val2;
963 if (TREE_CODE (val1->value) == ADDR_EXPR)
964 *val1 = get_value_for_expr (val1->value, true);
965 if (TREE_CODE (val2->value) == ADDR_EXPR)
966 tem = get_value_for_expr (val2->value, true);
967 ccp_lattice_meet (val1, &tem);
968 }
969 else
970 {
971 /* Any other combination is VARYING. */
972 val1->lattice_val = VARYING;
973 val1->mask = double_int_minus_one;
974 val1->value = NULL_TREE;
975 }
976 }
977
978
979 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
980 lattice values to determine PHI_NODE's lattice value. The value of a
981 PHI node is determined calling ccp_lattice_meet with all the arguments
982 of the PHI node that are incoming via executable edges. */
983
984 static enum ssa_prop_result
985 ccp_visit_phi_node (gimple phi)
986 {
987 unsigned i;
988 prop_value_t *old_val, new_val;
989
990 if (dump_file && (dump_flags & TDF_DETAILS))
991 {
992 fprintf (dump_file, "\nVisiting PHI node: ");
993 print_gimple_stmt (dump_file, phi, 0, dump_flags);
994 }
995
996 old_val = get_value (gimple_phi_result (phi));
997 switch (old_val->lattice_val)
998 {
999 case VARYING:
1000 return SSA_PROP_VARYING;
1001
1002 case CONSTANT:
1003 new_val = *old_val;
1004 break;
1005
1006 case UNDEFINED:
1007 new_val.lattice_val = UNDEFINED;
1008 new_val.value = NULL_TREE;
1009 break;
1010
1011 default:
1012 gcc_unreachable ();
1013 }
1014
1015 for (i = 0; i < gimple_phi_num_args (phi); i++)
1016 {
1017 /* Compute the meet operator over all the PHI arguments flowing
1018 through executable edges. */
1019 edge e = gimple_phi_arg_edge (phi, i);
1020
1021 if (dump_file && (dump_flags & TDF_DETAILS))
1022 {
1023 fprintf (dump_file,
1024 "\n Argument #%d (%d -> %d %sexecutable)\n",
1025 i, e->src->index, e->dest->index,
1026 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
1027 }
1028
1029 /* If the incoming edge is executable, Compute the meet operator for
1030 the existing value of the PHI node and the current PHI argument. */
1031 if (e->flags & EDGE_EXECUTABLE)
1032 {
1033 tree arg = gimple_phi_arg (phi, i)->def;
1034 prop_value_t arg_val = get_value_for_expr (arg, false);
1035
1036 ccp_lattice_meet (&new_val, &arg_val);
1037
1038 if (dump_file && (dump_flags & TDF_DETAILS))
1039 {
1040 fprintf (dump_file, "\t");
1041 print_generic_expr (dump_file, arg, dump_flags);
1042 dump_lattice_value (dump_file, "\tValue: ", arg_val);
1043 fprintf (dump_file, "\n");
1044 }
1045
1046 if (new_val.lattice_val == VARYING)
1047 break;
1048 }
1049 }
1050
1051 if (dump_file && (dump_flags & TDF_DETAILS))
1052 {
1053 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
1054 fprintf (dump_file, "\n\n");
1055 }
1056
1057 /* Make the transition to the new value. */
1058 if (set_lattice_value (gimple_phi_result (phi), new_val))
1059 {
1060 if (new_val.lattice_val == VARYING)
1061 return SSA_PROP_VARYING;
1062 else
1063 return SSA_PROP_INTERESTING;
1064 }
1065 else
1066 return SSA_PROP_NOT_INTERESTING;
1067 }
1068
1069 /* Return the constant value for OP or OP otherwise. */
1070
1071 static tree
1072 valueize_op (tree op)
1073 {
1074 if (TREE_CODE (op) == SSA_NAME)
1075 {
1076 tree tem = get_constant_value (op);
1077 if (tem)
1078 return tem;
1079 }
1080 return op;
1081 }
1082
1083 /* CCP specific front-end to the non-destructive constant folding
1084 routines.
1085
1086 Attempt to simplify the RHS of STMT knowing that one or more
1087 operands are constants.
1088
1089 If simplification is possible, return the simplified RHS,
1090 otherwise return the original RHS or NULL_TREE. */
1091
1092 static tree
1093 ccp_fold (gimple stmt)
1094 {
1095 location_t loc = gimple_location (stmt);
1096 switch (gimple_code (stmt))
1097 {
1098 case GIMPLE_ASSIGN:
1099 {
1100 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1101
1102 switch (get_gimple_rhs_class (subcode))
1103 {
1104 case GIMPLE_SINGLE_RHS:
1105 {
1106 tree rhs = gimple_assign_rhs1 (stmt);
1107 enum tree_code_class kind = TREE_CODE_CLASS (subcode);
1108
1109 if (TREE_CODE (rhs) == SSA_NAME)
1110 {
1111 /* If the RHS is an SSA_NAME, return its known constant value,
1112 if any. */
1113 return get_constant_value (rhs);
1114 }
1115 /* Handle propagating invariant addresses into address operations.
1116 The folding we do here matches that in tree-ssa-forwprop.c. */
1117 else if (TREE_CODE (rhs) == ADDR_EXPR)
1118 {
1119 tree *base;
1120 base = &TREE_OPERAND (rhs, 0);
1121 while (handled_component_p (*base))
1122 base = &TREE_OPERAND (*base, 0);
1123 if (TREE_CODE (*base) == MEM_REF
1124 && TREE_CODE (TREE_OPERAND (*base, 0)) == SSA_NAME)
1125 {
1126 tree val = get_constant_value (TREE_OPERAND (*base, 0));
1127 if (val
1128 && TREE_CODE (val) == ADDR_EXPR)
1129 {
1130 tree ret, save = *base;
1131 tree new_base;
1132 new_base = fold_build2 (MEM_REF, TREE_TYPE (*base),
1133 unshare_expr (val),
1134 TREE_OPERAND (*base, 1));
1135 /* We need to return a new tree, not modify the IL
1136 or share parts of it. So play some tricks to
1137 avoid manually building it. */
1138 *base = new_base;
1139 ret = unshare_expr (rhs);
1140 recompute_tree_invariant_for_addr_expr (ret);
1141 *base = save;
1142 return ret;
1143 }
1144 }
1145 }
1146 else if (TREE_CODE (rhs) == CONSTRUCTOR
1147 && TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE
1148 && (CONSTRUCTOR_NELTS (rhs)
1149 == TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs))))
1150 {
1151 unsigned i;
1152 tree val, list;
1153
1154 list = NULL_TREE;
1155 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val)
1156 {
1157 val = valueize_op (val);
1158 if (TREE_CODE (val) == INTEGER_CST
1159 || TREE_CODE (val) == REAL_CST
1160 || TREE_CODE (val) == FIXED_CST)
1161 list = tree_cons (NULL_TREE, val, list);
1162 else
1163 return NULL_TREE;
1164 }
1165
1166 return build_vector (TREE_TYPE (rhs), nreverse (list));
1167 }
1168
1169 if (kind == tcc_reference)
1170 {
1171 if ((TREE_CODE (rhs) == VIEW_CONVERT_EXPR
1172 || TREE_CODE (rhs) == REALPART_EXPR
1173 || TREE_CODE (rhs) == IMAGPART_EXPR)
1174 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
1175 {
1176 tree val = get_constant_value (TREE_OPERAND (rhs, 0));
1177 if (val)
1178 return fold_unary_loc (EXPR_LOCATION (rhs),
1179 TREE_CODE (rhs),
1180 TREE_TYPE (rhs), val);
1181 }
1182 else if (TREE_CODE (rhs) == MEM_REF
1183 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
1184 {
1185 tree val = get_constant_value (TREE_OPERAND (rhs, 0));
1186 if (val
1187 && TREE_CODE (val) == ADDR_EXPR)
1188 {
1189 tree tem = fold_build2 (MEM_REF, TREE_TYPE (rhs),
1190 unshare_expr (val),
1191 TREE_OPERAND (rhs, 1));
1192 if (tem)
1193 rhs = tem;
1194 }
1195 }
1196 return fold_const_aggregate_ref (rhs);
1197 }
1198 else if (kind == tcc_declaration)
1199 return get_symbol_constant_value (rhs);
1200 return rhs;
1201 }
1202
1203 case GIMPLE_UNARY_RHS:
1204 {
1205 /* Handle unary operators that can appear in GIMPLE form.
1206 Note that we know the single operand must be a constant,
1207 so this should almost always return a simplified RHS. */
1208 tree lhs = gimple_assign_lhs (stmt);
1209 tree op0 = valueize_op (gimple_assign_rhs1 (stmt));
1210
1211 /* Conversions are useless for CCP purposes if they are
1212 value-preserving. Thus the restrictions that
1213 useless_type_conversion_p places for pointer type conversions
1214 do not apply here. Substitution later will only substitute to
1215 allowed places. */
1216 if (CONVERT_EXPR_CODE_P (subcode)
1217 && POINTER_TYPE_P (TREE_TYPE (lhs))
1218 && POINTER_TYPE_P (TREE_TYPE (op0)))
1219 {
1220 tree tem;
1221 /* Try to re-construct array references on-the-fly. */
1222 if (!useless_type_conversion_p (TREE_TYPE (lhs),
1223 TREE_TYPE (op0))
1224 && ((tem = maybe_fold_offset_to_address
1225 (loc,
1226 op0, integer_zero_node, TREE_TYPE (lhs)))
1227 != NULL_TREE))
1228 return tem;
1229 return op0;
1230 }
1231
1232 return
1233 fold_unary_ignore_overflow_loc (loc, subcode,
1234 gimple_expr_type (stmt), op0);
1235 }
1236
1237 case GIMPLE_BINARY_RHS:
1238 {
1239 /* Handle binary operators that can appear in GIMPLE form. */
1240 tree op0 = valueize_op (gimple_assign_rhs1 (stmt));
1241 tree op1 = valueize_op (gimple_assign_rhs2 (stmt));
1242
1243 /* Translate &x + CST into an invariant form suitable for
1244 further propagation. */
1245 if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
1246 && TREE_CODE (op0) == ADDR_EXPR
1247 && TREE_CODE (op1) == INTEGER_CST)
1248 {
1249 tree off = fold_convert (ptr_type_node, op1);
1250 return build_fold_addr_expr
1251 (fold_build2 (MEM_REF,
1252 TREE_TYPE (TREE_TYPE (op0)),
1253 unshare_expr (op0), off));
1254 }
1255
1256 return fold_binary_loc (loc, subcode,
1257 gimple_expr_type (stmt), op0, op1);
1258 }
1259
1260 case GIMPLE_TERNARY_RHS:
1261 {
1262 /* Handle ternary operators that can appear in GIMPLE form. */
1263 tree op0 = valueize_op (gimple_assign_rhs1 (stmt));
1264 tree op1 = valueize_op (gimple_assign_rhs2 (stmt));
1265 tree op2 = valueize_op (gimple_assign_rhs3 (stmt));
1266
1267 return fold_ternary_loc (loc, subcode,
1268 gimple_expr_type (stmt), op0, op1, op2);
1269 }
1270
1271 default:
1272 gcc_unreachable ();
1273 }
1274 }
1275 break;
1276
1277 case GIMPLE_CALL:
1278 {
1279 tree fn = valueize_op (gimple_call_fn (stmt));
1280 if (TREE_CODE (fn) == ADDR_EXPR
1281 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
1282 && DECL_BUILT_IN (TREE_OPERAND (fn, 0)))
1283 {
1284 tree *args = XALLOCAVEC (tree, gimple_call_num_args (stmt));
1285 tree call, retval;
1286 unsigned i;
1287 for (i = 0; i < gimple_call_num_args (stmt); ++i)
1288 args[i] = valueize_op (gimple_call_arg (stmt, i));
1289 call = build_call_array_loc (loc,
1290 gimple_call_return_type (stmt),
1291 fn, gimple_call_num_args (stmt), args);
1292 retval = fold_call_expr (EXPR_LOCATION (call), call, false);
1293 if (retval)
1294 /* fold_call_expr wraps the result inside a NOP_EXPR. */
1295 STRIP_NOPS (retval);
1296 return retval;
1297 }
1298 return NULL_TREE;
1299 }
1300
1301 case GIMPLE_COND:
1302 {
1303 /* Handle comparison operators that can appear in GIMPLE form. */
1304 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1305 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1306 enum tree_code code = gimple_cond_code (stmt);
1307 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1308 }
1309
1310 case GIMPLE_SWITCH:
1311 {
1312 /* Return the constant switch index. */
1313 return valueize_op (gimple_switch_index (stmt));
1314 }
1315
1316 default:
1317 gcc_unreachable ();
1318 }
1319 }
1320
1321 /* See if we can find constructor defining value of BASE.
1322 When we know the consructor with constant offset (such as
1323 base is array[40] and we do know constructor of array), then
1324 BIT_OFFSET is adjusted accordingly.
1325
1326 As a special case, return error_mark_node when constructor
1327 is not explicitly available, but it is known to be zero
1328 such as 'static const int a;'. */
1329 static tree
1330 get_base_constructor (tree base, HOST_WIDE_INT *bit_offset)
1331 {
1332 HOST_WIDE_INT bit_offset2, size, max_size;
1333 if (TREE_CODE (base) == MEM_REF)
1334 {
1335 if (!integer_zerop (TREE_OPERAND (base, 1)))
1336 {
1337 if (!host_integerp (TREE_OPERAND (base, 1), 0))
1338 return NULL_TREE;
1339 *bit_offset += (mem_ref_offset (base).low
1340 * BITS_PER_UNIT);
1341 }
1342
1343 base = get_constant_value (TREE_OPERAND (base, 0));
1344 if (!base || TREE_CODE (base) != ADDR_EXPR)
1345 return NULL_TREE;
1346 base = TREE_OPERAND (base, 0);
1347 }
1348
1349 /* Get a CONSTRUCTOR. If BASE is a VAR_DECL, get its
1350 DECL_INITIAL. If BASE is a nested reference into another
1351 ARRAY_REF or COMPONENT_REF, make a recursive call to resolve
1352 the inner reference. */
1353 switch (TREE_CODE (base))
1354 {
1355 case VAR_DECL:
1356 if (!const_value_known_p (base))
1357 return NULL_TREE;
1358
1359 /* Fallthru. */
1360 case CONST_DECL:
1361 if (!DECL_INITIAL (base)
1362 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1363 return error_mark_node;
1364 return DECL_INITIAL (base);
1365
1366 break;
1367
1368 case ARRAY_REF:
1369 case COMPONENT_REF:
1370 base = get_ref_base_and_extent (base, &bit_offset2, &size, &max_size);
1371 if (max_size == -1 || size != max_size)
1372 return NULL_TREE;
1373 *bit_offset += bit_offset2;
1374 return get_base_constructor (base, bit_offset);
1375 break;
1376
1377 case STRING_CST:
1378 case CONSTRUCTOR:
1379 return base;
1380 break;
1381
1382 default:
1383 return NULL_TREE;
1384 }
1385 }
1386
1387 /* CTOR is STRING_CST. Fold reference of type TYPE and size SIZE
1388 to the memory at bit OFFSET.
1389
1390 We do only simple job of folding byte accesses. */
1391
1392 static tree
1393 fold_string_cst_ctor_reference (tree type, tree ctor, unsigned HOST_WIDE_INT offset,
1394 unsigned HOST_WIDE_INT size)
1395 {
1396 if (INTEGRAL_TYPE_P (type)
1397 && (TYPE_MODE (type)
1398 == TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor))))
1399 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor))))
1400 == MODE_INT)
1401 && GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor)))) == 1
1402 && size == BITS_PER_UNIT
1403 && !(offset % BITS_PER_UNIT))
1404 {
1405 offset /= BITS_PER_UNIT;
1406 if (offset < (unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (ctor))
1407 return build_int_cst_type (type, (TREE_STRING_POINTER (ctor)
1408 [offset]));
1409 /* Folding
1410 const char a[20]="hello";
1411 return a[10];
1412
1413 might lead to offset greater than string length. In this case we
1414 know value is either initialized to 0 or out of bounds. Return 0
1415 in both cases. */
1416 return build_zero_cst (type);
1417 }
1418 return NULL_TREE;
1419 }
1420
1421 /* CTOR is CONSTRUCTOR of an array type. Fold reference of type TYPE and size
1422 SIZE to the memory at bit OFFSET. */
1423
1424 static tree
1425 fold_array_ctor_reference (tree type, tree ctor,
1426 unsigned HOST_WIDE_INT offset,
1427 unsigned HOST_WIDE_INT size)
1428 {
1429 unsigned HOST_WIDE_INT cnt;
1430 tree cfield, cval;
1431 double_int low_bound, elt_size;
1432 double_int index, max_index;
1433 double_int access_index;
1434 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ctor));
1435 HOST_WIDE_INT inner_offset;
1436
1437 /* Compute low bound and elt size. */
1438 if (domain_type && TYPE_MIN_VALUE (domain_type))
1439 {
1440 /* Static constructors for variably sized objects makes no sense. */
1441 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST);
1442 low_bound = tree_to_double_int (TYPE_MIN_VALUE (domain_type));
1443 }
1444 else
1445 low_bound = double_int_zero;
1446 /* Static constructors for variably sized objects makes no sense. */
1447 gcc_assert (TREE_CODE(TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor))))
1448 == INTEGER_CST);
1449 elt_size =
1450 tree_to_double_int (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor))));
1451
1452
1453 /* We can handle only constantly sized accesses that are known to not
1454 be larger than size of array element. */
1455 if (!TYPE_SIZE_UNIT (type)
1456 || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
1457 || double_int_cmp (elt_size,
1458 tree_to_double_int (TYPE_SIZE_UNIT (type)), 0) < 0)
1459 return NULL_TREE;
1460
1461 /* Compute the array index we look for. */
1462 access_index = double_int_udiv (uhwi_to_double_int (offset / BITS_PER_UNIT),
1463 elt_size, TRUNC_DIV_EXPR);
1464 access_index = double_int_add (access_index, low_bound);
1465
1466 /* And offset within the access. */
1467 inner_offset = offset % (double_int_to_uhwi (elt_size) * BITS_PER_UNIT);
1468
1469 /* See if the array field is large enough to span whole access. We do not
1470 care to fold accesses spanning multiple array indexes. */
1471 if (inner_offset + size > double_int_to_uhwi (elt_size) * BITS_PER_UNIT)
1472 return NULL_TREE;
1473
1474 index = double_int_sub (low_bound, double_int_one);
1475 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval)
1476 {
1477 /* Array constructor might explicitely set index, or specify range
1478 or leave index NULL meaning that it is next index after previous
1479 one. */
1480 if (cfield)
1481 {
1482 if (TREE_CODE (cfield) == INTEGER_CST)
1483 max_index = index = tree_to_double_int (cfield);
1484 else
1485 {
1486 gcc_assert (TREE_CODE (cfield) == RANGE_EXPR);
1487 index = tree_to_double_int (TREE_OPERAND (cfield, 0));
1488 max_index = tree_to_double_int (TREE_OPERAND (cfield, 1));
1489 }
1490 }
1491 else
1492 max_index = index = double_int_add (index, double_int_one);
1493
1494 /* Do we have match? */
1495 if (double_int_cmp (access_index, index, 1) >= 0
1496 && double_int_cmp (access_index, max_index, 1) <= 0)
1497 return fold_ctor_reference (type, cval, inner_offset, size);
1498 }
1499 /* When memory is not explicitely mentioned in constructor,
1500 it is 0 (or out of range). */
1501 return build_zero_cst (type);
1502 }
1503
1504 /* CTOR is CONSTRUCTOR of an aggregate or vector.
1505 Fold reference of type TYPE and size SIZE to the memory at bit OFFSET. */
1506
1507 static tree
1508 fold_nonarray_ctor_reference (tree type, tree ctor,
1509 unsigned HOST_WIDE_INT offset,
1510 unsigned HOST_WIDE_INT size)
1511 {
1512 unsigned HOST_WIDE_INT cnt;
1513 tree cfield, cval;
1514
1515 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield,
1516 cval)
1517 {
1518 tree byte_offset = DECL_FIELD_OFFSET (cfield);
1519 tree field_offset = DECL_FIELD_BIT_OFFSET (cfield);
1520 tree field_size = DECL_SIZE (cfield);
1521 double_int bitoffset;
1522 double_int byte_offset_cst = tree_to_double_int (byte_offset);
1523 double_int bits_per_unit_cst = uhwi_to_double_int (BITS_PER_UNIT);
1524 double_int bitoffset_end;
1525
1526 /* Variable sized objects in static constructors makes no sense. */
1527 gcc_assert (TREE_CODE (field_offset) == INTEGER_CST
1528 && TREE_CODE (byte_offset) == INTEGER_CST
1529 && TREE_CODE (field_size) == INTEGER_CST);
1530
1531 /* Compute bit offset of the field. */
1532 bitoffset = double_int_add (tree_to_double_int (field_offset),
1533 double_int_mul (byte_offset_cst,
1534 bits_per_unit_cst));
1535 /* Compute bit offset where the field ends. */
1536 bitoffset_end = double_int_add (bitoffset,
1537 tree_to_double_int (field_size));
1538
1539 /* Is OFFSET in the range (BITOFFSET, BITOFFSET_END)? */
1540 if (double_int_cmp (uhwi_to_double_int (offset), bitoffset, 0) >= 0
1541 && double_int_cmp (uhwi_to_double_int (offset),
1542 bitoffset_end, 0) < 0)
1543 {
1544 double_int access_end = double_int_add (uhwi_to_double_int (offset),
1545 uhwi_to_double_int (size));
1546 double_int inner_offset = double_int_sub (uhwi_to_double_int (offset),
1547 bitoffset);
1548 /* We do have overlap. Now see if field is large enough to
1549 cover the access. Give up for accesses spanning multiple
1550 fields. */
1551 if (double_int_cmp (access_end, bitoffset_end, 0) > 0)
1552 return NULL_TREE;
1553 return fold_ctor_reference (type, cval,
1554 double_int_to_uhwi (inner_offset), size);
1555 }
1556 }
1557 /* When memory is not explicitely mentioned in constructor, it is 0. */
1558 return build_zero_cst (type);
1559 }
1560
1561 /* CTOR is value initializing memory, fold reference of type TYPE and size SIZE
1562 to the memory at bit OFFSET. */
1563
1564 static tree
1565 fold_ctor_reference (tree type, tree ctor, unsigned HOST_WIDE_INT offset,
1566 unsigned HOST_WIDE_INT size)
1567 {
1568 tree ret;
1569
1570 /* We found the field with exact match. */
1571 if (useless_type_conversion_p (type, TREE_TYPE (ctor))
1572 && !offset)
1573 return canonicalize_constructor_val (ctor);
1574
1575 /* We are at the end of walk, see if we can view convert the
1576 result. */
1577 if (!AGGREGATE_TYPE_P (TREE_TYPE (ctor)) && !offset
1578 /* VIEW_CONVERT_EXPR is defined only for matching sizes. */
1579 && operand_equal_p (TYPE_SIZE (type),
1580 TYPE_SIZE (TREE_TYPE (ctor)), 0))
1581 {
1582 ret = canonicalize_constructor_val (ctor);
1583 ret = fold_unary (VIEW_CONVERT_EXPR, type, ret);
1584 if (ret)
1585 STRIP_NOPS (ret);
1586 return ret;
1587 }
1588 if (TREE_CODE (ctor) == STRING_CST)
1589 return fold_string_cst_ctor_reference (type, ctor, offset, size);
1590 if (TREE_CODE (ctor) == CONSTRUCTOR)
1591 {
1592
1593 if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE)
1594 return fold_array_ctor_reference (type, ctor, offset, size);
1595 else
1596 return fold_nonarray_ctor_reference (type, ctor, offset, size);
1597 }
1598
1599 return NULL_TREE;
1600 }
1601
1602 /* Return the tree representing the element referenced by T if T is an
1603 ARRAY_REF or COMPONENT_REF into constant aggregates. Return
1604 NULL_TREE otherwise. */
1605
1606 tree
1607 fold_const_aggregate_ref (tree t)
1608 {
1609 tree ctor, idx, base;
1610 HOST_WIDE_INT offset, size, max_size;
1611 tree tem;
1612
1613 if (TREE_CODE_CLASS (TREE_CODE (t)) == tcc_declaration)
1614 return get_symbol_constant_value (t);
1615
1616 tem = fold_read_from_constant_string (t);
1617 if (tem)
1618 return tem;
1619
1620 switch (TREE_CODE (t))
1621 {
1622 case ARRAY_REF:
1623 case ARRAY_RANGE_REF:
1624 /* Constant indexes are handled well by get_base_constructor.
1625 Only special case variable offsets.
1626 FIXME: This code can't handle nested references with variable indexes
1627 (they will be handled only by iteration of ccp). Perhaps we can bring
1628 get_ref_base_and_extent here and make it use get_constant_value. */
1629 if (TREE_CODE (TREE_OPERAND (t, 1)) == SSA_NAME
1630 && (idx = get_constant_value (TREE_OPERAND (t, 1)))
1631 && host_integerp (idx, 0))
1632 {
1633 tree low_bound, unit_size;
1634
1635 /* If the resulting bit-offset is constant, track it. */
1636 if ((low_bound = array_ref_low_bound (t),
1637 host_integerp (low_bound, 0))
1638 && (unit_size = array_ref_element_size (t),
1639 host_integerp (unit_size, 1)))
1640 {
1641 offset = TREE_INT_CST_LOW (idx);
1642 offset -= TREE_INT_CST_LOW (low_bound);
1643 offset *= TREE_INT_CST_LOW (unit_size);
1644 offset *= BITS_PER_UNIT;
1645
1646 base = TREE_OPERAND (t, 0);
1647 ctor = get_base_constructor (base, &offset);
1648 /* Empty constructor. Always fold to 0. */
1649 if (ctor == error_mark_node)
1650 return build_zero_cst (TREE_TYPE (t));
1651 /* Out of bound array access. Value is undefined, but don't fold. */
1652 if (offset < 0)
1653 return NULL_TREE;
1654 /* We can not determine ctor. */
1655 if (!ctor)
1656 return NULL_TREE;
1657 return fold_ctor_reference (TREE_TYPE (t), ctor, offset,
1658 TREE_INT_CST_LOW (unit_size)
1659 * BITS_PER_UNIT);
1660 }
1661 }
1662 /* Fallthru. */
1663
1664 case COMPONENT_REF:
1665 case BIT_FIELD_REF:
1666 case TARGET_MEM_REF:
1667 case MEM_REF:
1668 base = get_ref_base_and_extent (t, &offset, &size, &max_size);
1669 ctor = get_base_constructor (base, &offset);
1670
1671 /* Empty constructor. Always fold to 0. */
1672 if (ctor == error_mark_node)
1673 return build_zero_cst (TREE_TYPE (t));
1674 /* We do not know precise address. */
1675 if (max_size == -1 || max_size != size)
1676 return NULL_TREE;
1677 /* We can not determine ctor. */
1678 if (!ctor)
1679 return NULL_TREE;
1680
1681 /* Out of bound array access. Value is undefined, but don't fold. */
1682 if (offset < 0)
1683 return NULL_TREE;
1684
1685 return fold_ctor_reference (TREE_TYPE (t), ctor, offset, size);
1686
1687 case REALPART_EXPR:
1688 case IMAGPART_EXPR:
1689 {
1690 tree c = fold_const_aggregate_ref (TREE_OPERAND (t, 0));
1691 if (c && TREE_CODE (c) == COMPLEX_CST)
1692 return fold_build1_loc (EXPR_LOCATION (t),
1693 TREE_CODE (t), TREE_TYPE (t), c);
1694 break;
1695 }
1696
1697 default:
1698 break;
1699 }
1700
1701 return NULL_TREE;
1702 }
1703
1704 /* Apply the operation CODE in type TYPE to the value, mask pair
1705 RVAL and RMASK representing a value of type RTYPE and set
1706 the value, mask pair *VAL and *MASK to the result. */
1707
1708 static void
1709 bit_value_unop_1 (enum tree_code code, tree type,
1710 double_int *val, double_int *mask,
1711 tree rtype, double_int rval, double_int rmask)
1712 {
1713 switch (code)
1714 {
1715 case BIT_NOT_EXPR:
1716 *mask = rmask;
1717 *val = double_int_not (rval);
1718 break;
1719
1720 case NEGATE_EXPR:
1721 {
1722 double_int temv, temm;
1723 /* Return ~rval + 1. */
1724 bit_value_unop_1 (BIT_NOT_EXPR, type, &temv, &temm, type, rval, rmask);
1725 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1726 type, temv, temm,
1727 type, double_int_one, double_int_zero);
1728 break;
1729 }
1730
1731 CASE_CONVERT:
1732 {
1733 bool uns;
1734
1735 /* First extend mask and value according to the original type. */
1736 uns = (TREE_CODE (rtype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (rtype)
1737 ? 0 : TYPE_UNSIGNED (rtype));
1738 *mask = double_int_ext (rmask, TYPE_PRECISION (rtype), uns);
1739 *val = double_int_ext (rval, TYPE_PRECISION (rtype), uns);
1740
1741 /* Then extend mask and value according to the target type. */
1742 uns = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type)
1743 ? 0 : TYPE_UNSIGNED (type));
1744 *mask = double_int_ext (*mask, TYPE_PRECISION (type), uns);
1745 *val = double_int_ext (*val, TYPE_PRECISION (type), uns);
1746 break;
1747 }
1748
1749 default:
1750 *mask = double_int_minus_one;
1751 break;
1752 }
1753 }
1754
1755 /* Apply the operation CODE in type TYPE to the value, mask pairs
1756 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1757 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1758
1759 static void
1760 bit_value_binop_1 (enum tree_code code, tree type,
1761 double_int *val, double_int *mask,
1762 tree r1type, double_int r1val, double_int r1mask,
1763 tree r2type, double_int r2val, double_int r2mask)
1764 {
1765 bool uns = (TREE_CODE (type) == INTEGER_TYPE
1766 && TYPE_IS_SIZETYPE (type) ? 0 : TYPE_UNSIGNED (type));
1767 /* Assume we'll get a constant result. Use an initial varying value,
1768 we fall back to varying in the end if necessary. */
1769 *mask = double_int_minus_one;
1770 switch (code)
1771 {
1772 case BIT_AND_EXPR:
1773 /* The mask is constant where there is a known not
1774 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1775 *mask = double_int_and (double_int_ior (r1mask, r2mask),
1776 double_int_and (double_int_ior (r1val, r1mask),
1777 double_int_ior (r2val, r2mask)));
1778 *val = double_int_and (r1val, r2val);
1779 break;
1780
1781 case BIT_IOR_EXPR:
1782 /* The mask is constant where there is a known
1783 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1784 *mask = double_int_and_not
1785 (double_int_ior (r1mask, r2mask),
1786 double_int_ior (double_int_and_not (r1val, r1mask),
1787 double_int_and_not (r2val, r2mask)));
1788 *val = double_int_ior (r1val, r2val);
1789 break;
1790
1791 case BIT_XOR_EXPR:
1792 /* m1 | m2 */
1793 *mask = double_int_ior (r1mask, r2mask);
1794 *val = double_int_xor (r1val, r2val);
1795 break;
1796
1797 case LROTATE_EXPR:
1798 case RROTATE_EXPR:
1799 if (double_int_zero_p (r2mask))
1800 {
1801 HOST_WIDE_INT shift = r2val.low;
1802 if (code == RROTATE_EXPR)
1803 shift = -shift;
1804 *mask = double_int_lrotate (r1mask, shift, TYPE_PRECISION (type));
1805 *val = double_int_lrotate (r1val, shift, TYPE_PRECISION (type));
1806 }
1807 break;
1808
1809 case LSHIFT_EXPR:
1810 case RSHIFT_EXPR:
1811 /* ??? We can handle partially known shift counts if we know
1812 its sign. That way we can tell that (x << (y | 8)) & 255
1813 is zero. */
1814 if (double_int_zero_p (r2mask))
1815 {
1816 HOST_WIDE_INT shift = r2val.low;
1817 if (code == RSHIFT_EXPR)
1818 shift = -shift;
1819 /* We need to know if we are doing a left or a right shift
1820 to properly shift in zeros for left shift and unsigned
1821 right shifts and the sign bit for signed right shifts.
1822 For signed right shifts we shift in varying in case
1823 the sign bit was varying. */
1824 if (shift > 0)
1825 {
1826 *mask = double_int_lshift (r1mask, shift,
1827 TYPE_PRECISION (type), false);
1828 *val = double_int_lshift (r1val, shift,
1829 TYPE_PRECISION (type), false);
1830 }
1831 else if (shift < 0)
1832 {
1833 shift = -shift;
1834 *mask = double_int_rshift (r1mask, shift,
1835 TYPE_PRECISION (type), !uns);
1836 *val = double_int_rshift (r1val, shift,
1837 TYPE_PRECISION (type), !uns);
1838 }
1839 else
1840 {
1841 *mask = r1mask;
1842 *val = r1val;
1843 }
1844 }
1845 break;
1846
1847 case PLUS_EXPR:
1848 case POINTER_PLUS_EXPR:
1849 {
1850 double_int lo, hi;
1851 /* Do the addition with unknown bits set to zero, to give carry-ins of
1852 zero wherever possible. */
1853 lo = double_int_add (double_int_and_not (r1val, r1mask),
1854 double_int_and_not (r2val, r2mask));
1855 lo = double_int_ext (lo, TYPE_PRECISION (type), uns);
1856 /* Do the addition with unknown bits set to one, to give carry-ins of
1857 one wherever possible. */
1858 hi = double_int_add (double_int_ior (r1val, r1mask),
1859 double_int_ior (r2val, r2mask));
1860 hi = double_int_ext (hi, TYPE_PRECISION (type), uns);
1861 /* Each bit in the result is known if (a) the corresponding bits in
1862 both inputs are known, and (b) the carry-in to that bit position
1863 is known. We can check condition (b) by seeing if we got the same
1864 result with minimised carries as with maximised carries. */
1865 *mask = double_int_ior (double_int_ior (r1mask, r2mask),
1866 double_int_xor (lo, hi));
1867 *mask = double_int_ext (*mask, TYPE_PRECISION (type), uns);
1868 /* It shouldn't matter whether we choose lo or hi here. */
1869 *val = lo;
1870 break;
1871 }
1872
1873 case MINUS_EXPR:
1874 {
1875 double_int temv, temm;
1876 bit_value_unop_1 (NEGATE_EXPR, r2type, &temv, &temm,
1877 r2type, r2val, r2mask);
1878 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1879 r1type, r1val, r1mask,
1880 r2type, temv, temm);
1881 break;
1882 }
1883
1884 case MULT_EXPR:
1885 {
1886 /* Just track trailing zeros in both operands and transfer
1887 them to the other. */
1888 int r1tz = double_int_ctz (double_int_ior (r1val, r1mask));
1889 int r2tz = double_int_ctz (double_int_ior (r2val, r2mask));
1890 if (r1tz + r2tz >= HOST_BITS_PER_DOUBLE_INT)
1891 {
1892 *mask = double_int_zero;
1893 *val = double_int_zero;
1894 }
1895 else if (r1tz + r2tz > 0)
1896 {
1897 *mask = double_int_not (double_int_mask (r1tz + r2tz));
1898 *mask = double_int_ext (*mask, TYPE_PRECISION (type), uns);
1899 *val = double_int_zero;
1900 }
1901 break;
1902 }
1903
1904 case EQ_EXPR:
1905 case NE_EXPR:
1906 {
1907 double_int m = double_int_ior (r1mask, r2mask);
1908 if (!double_int_equal_p (double_int_and_not (r1val, m),
1909 double_int_and_not (r2val, m)))
1910 {
1911 *mask = double_int_zero;
1912 *val = ((code == EQ_EXPR) ? double_int_zero : double_int_one);
1913 }
1914 else
1915 {
1916 /* We know the result of a comparison is always one or zero. */
1917 *mask = double_int_one;
1918 *val = double_int_zero;
1919 }
1920 break;
1921 }
1922
1923 case GE_EXPR:
1924 case GT_EXPR:
1925 {
1926 double_int tem = r1val;
1927 r1val = r2val;
1928 r2val = tem;
1929 tem = r1mask;
1930 r1mask = r2mask;
1931 r2mask = tem;
1932 code = swap_tree_comparison (code);
1933 }
1934 /* Fallthru. */
1935 case LT_EXPR:
1936 case LE_EXPR:
1937 {
1938 int minmax, maxmin;
1939 /* If the most significant bits are not known we know nothing. */
1940 if (double_int_negative_p (r1mask) || double_int_negative_p (r2mask))
1941 break;
1942
1943 /* If we know the most significant bits we know the values
1944 value ranges by means of treating varying bits as zero
1945 or one. Do a cross comparison of the max/min pairs. */
1946 maxmin = double_int_cmp (double_int_ior (r1val, r1mask),
1947 double_int_and_not (r2val, r2mask), uns);
1948 minmax = double_int_cmp (double_int_and_not (r1val, r1mask),
1949 double_int_ior (r2val, r2mask), uns);
1950 if (maxmin < 0) /* r1 is less than r2. */
1951 {
1952 *mask = double_int_zero;
1953 *val = double_int_one;
1954 }
1955 else if (minmax > 0) /* r1 is not less or equal to r2. */
1956 {
1957 *mask = double_int_zero;
1958 *val = double_int_zero;
1959 }
1960 else if (maxmin == minmax) /* r1 and r2 are equal. */
1961 {
1962 /* This probably should never happen as we'd have
1963 folded the thing during fully constant value folding. */
1964 *mask = double_int_zero;
1965 *val = (code == LE_EXPR ? double_int_one : double_int_zero);
1966 }
1967 else
1968 {
1969 /* We know the result of a comparison is always one or zero. */
1970 *mask = double_int_one;
1971 *val = double_int_zero;
1972 }
1973 break;
1974 }
1975
1976 default:;
1977 }
1978 }
1979
1980 /* Return the propagation value when applying the operation CODE to
1981 the value RHS yielding type TYPE. */
1982
1983 static prop_value_t
1984 bit_value_unop (enum tree_code code, tree type, tree rhs)
1985 {
1986 prop_value_t rval = get_value_for_expr (rhs, true);
1987 double_int value, mask;
1988 prop_value_t val;
1989 gcc_assert ((rval.lattice_val == CONSTANT
1990 && TREE_CODE (rval.value) == INTEGER_CST)
1991 || double_int_minus_one_p (rval.mask));
1992 bit_value_unop_1 (code, type, &value, &mask,
1993 TREE_TYPE (rhs), value_to_double_int (rval), rval.mask);
1994 if (!double_int_minus_one_p (mask))
1995 {
1996 val.lattice_val = CONSTANT;
1997 val.mask = mask;
1998 /* ??? Delay building trees here. */
1999 val.value = double_int_to_tree (type, value);
2000 }
2001 else
2002 {
2003 val.lattice_val = VARYING;
2004 val.value = NULL_TREE;
2005 val.mask = double_int_minus_one;
2006 }
2007 return val;
2008 }
2009
2010 /* Return the propagation value when applying the operation CODE to
2011 the values RHS1 and RHS2 yielding type TYPE. */
2012
2013 static prop_value_t
2014 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
2015 {
2016 prop_value_t r1val = get_value_for_expr (rhs1, true);
2017 prop_value_t r2val = get_value_for_expr (rhs2, true);
2018 double_int value, mask;
2019 prop_value_t val;
2020 gcc_assert ((r1val.lattice_val == CONSTANT
2021 && TREE_CODE (r1val.value) == INTEGER_CST)
2022 || double_int_minus_one_p (r1val.mask));
2023 gcc_assert ((r2val.lattice_val == CONSTANT
2024 && TREE_CODE (r2val.value) == INTEGER_CST)
2025 || double_int_minus_one_p (r2val.mask));
2026 bit_value_binop_1 (code, type, &value, &mask,
2027 TREE_TYPE (rhs1), value_to_double_int (r1val), r1val.mask,
2028 TREE_TYPE (rhs2), value_to_double_int (r2val), r2val.mask);
2029 if (!double_int_minus_one_p (mask))
2030 {
2031 val.lattice_val = CONSTANT;
2032 val.mask = mask;
2033 /* ??? Delay building trees here. */
2034 val.value = double_int_to_tree (type, value);
2035 }
2036 else
2037 {
2038 val.lattice_val = VARYING;
2039 val.value = NULL_TREE;
2040 val.mask = double_int_minus_one;
2041 }
2042 return val;
2043 }
2044
2045 /* Evaluate statement STMT.
2046 Valid only for assignments, calls, conditionals, and switches. */
2047
2048 static prop_value_t
2049 evaluate_stmt (gimple stmt)
2050 {
2051 prop_value_t val;
2052 tree simplified = NULL_TREE;
2053 ccp_lattice_t likelyvalue = likely_value (stmt);
2054 bool is_constant = false;
2055
2056 if (dump_file && (dump_flags & TDF_DETAILS))
2057 {
2058 fprintf (dump_file, "which is likely ");
2059 switch (likelyvalue)
2060 {
2061 case CONSTANT:
2062 fprintf (dump_file, "CONSTANT");
2063 break;
2064 case UNDEFINED:
2065 fprintf (dump_file, "UNDEFINED");
2066 break;
2067 case VARYING:
2068 fprintf (dump_file, "VARYING");
2069 break;
2070 default:;
2071 }
2072 fprintf (dump_file, "\n");
2073 }
2074
2075 /* If the statement is likely to have a CONSTANT result, then try
2076 to fold the statement to determine the constant value. */
2077 /* FIXME. This is the only place that we call ccp_fold.
2078 Since likely_value never returns CONSTANT for calls, we will
2079 not attempt to fold them, including builtins that may profit. */
2080 if (likelyvalue == CONSTANT)
2081 {
2082 fold_defer_overflow_warnings ();
2083 simplified = ccp_fold (stmt);
2084 is_constant = simplified && is_gimple_min_invariant (simplified);
2085 fold_undefer_overflow_warnings (is_constant, stmt, 0);
2086 if (is_constant)
2087 {
2088 /* The statement produced a constant value. */
2089 val.lattice_val = CONSTANT;
2090 val.value = simplified;
2091 val.mask = double_int_zero;
2092 }
2093 }
2094 /* If the statement is likely to have a VARYING result, then do not
2095 bother folding the statement. */
2096 else if (likelyvalue == VARYING)
2097 {
2098 enum gimple_code code = gimple_code (stmt);
2099 if (code == GIMPLE_ASSIGN)
2100 {
2101 enum tree_code subcode = gimple_assign_rhs_code (stmt);
2102
2103 /* Other cases cannot satisfy is_gimple_min_invariant
2104 without folding. */
2105 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
2106 simplified = gimple_assign_rhs1 (stmt);
2107 }
2108 else if (code == GIMPLE_SWITCH)
2109 simplified = gimple_switch_index (stmt);
2110 else
2111 /* These cannot satisfy is_gimple_min_invariant without folding. */
2112 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
2113 is_constant = simplified && is_gimple_min_invariant (simplified);
2114 if (is_constant)
2115 {
2116 /* The statement produced a constant value. */
2117 val.lattice_val = CONSTANT;
2118 val.value = simplified;
2119 val.mask = double_int_zero;
2120 }
2121 }
2122
2123 /* Resort to simplification for bitwise tracking. */
2124 if (flag_tree_bit_ccp
2125 && likelyvalue == CONSTANT
2126 && !is_constant)
2127 {
2128 enum gimple_code code = gimple_code (stmt);
2129 tree fndecl;
2130 val.lattice_val = VARYING;
2131 val.value = NULL_TREE;
2132 val.mask = double_int_minus_one;
2133 if (code == GIMPLE_ASSIGN)
2134 {
2135 enum tree_code subcode = gimple_assign_rhs_code (stmt);
2136 tree rhs1 = gimple_assign_rhs1 (stmt);
2137 switch (get_gimple_rhs_class (subcode))
2138 {
2139 case GIMPLE_SINGLE_RHS:
2140 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
2141 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
2142 val = get_value_for_expr (rhs1, true);
2143 break;
2144
2145 case GIMPLE_UNARY_RHS:
2146 if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
2147 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
2148 && (INTEGRAL_TYPE_P (gimple_expr_type (stmt))
2149 || POINTER_TYPE_P (gimple_expr_type (stmt))))
2150 val = bit_value_unop (subcode, gimple_expr_type (stmt), rhs1);
2151 break;
2152
2153 case GIMPLE_BINARY_RHS:
2154 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
2155 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
2156 {
2157 tree rhs2 = gimple_assign_rhs2 (stmt);
2158 val = bit_value_binop (subcode,
2159 TREE_TYPE (rhs1), rhs1, rhs2);
2160 }
2161 break;
2162
2163 default:;
2164 }
2165 }
2166 else if (code == GIMPLE_COND)
2167 {
2168 enum tree_code code = gimple_cond_code (stmt);
2169 tree rhs1 = gimple_cond_lhs (stmt);
2170 tree rhs2 = gimple_cond_rhs (stmt);
2171 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
2172 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
2173 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
2174 }
2175 else if (code == GIMPLE_CALL
2176 && (fndecl = gimple_call_fndecl (stmt))
2177 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
2178 {
2179 switch (DECL_FUNCTION_CODE (fndecl))
2180 {
2181 case BUILT_IN_MALLOC:
2182 case BUILT_IN_REALLOC:
2183 case BUILT_IN_CALLOC:
2184 val.lattice_val = CONSTANT;
2185 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
2186 val.mask = shwi_to_double_int
2187 (~(((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT)
2188 / BITS_PER_UNIT - 1));
2189 break;
2190
2191 case BUILT_IN_ALLOCA:
2192 val.lattice_val = CONSTANT;
2193 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
2194 val.mask = shwi_to_double_int
2195 (~(((HOST_WIDE_INT) BIGGEST_ALIGNMENT)
2196 / BITS_PER_UNIT - 1));
2197 break;
2198
2199 default:;
2200 }
2201 }
2202 is_constant = (val.lattice_val == CONSTANT);
2203 }
2204
2205 if (!is_constant)
2206 {
2207 /* The statement produced a nonconstant value. If the statement
2208 had UNDEFINED operands, then the result of the statement
2209 should be UNDEFINED. Otherwise, the statement is VARYING. */
2210 if (likelyvalue == UNDEFINED)
2211 {
2212 val.lattice_val = likelyvalue;
2213 val.mask = double_int_zero;
2214 }
2215 else
2216 {
2217 val.lattice_val = VARYING;
2218 val.mask = double_int_minus_one;
2219 }
2220
2221 val.value = NULL_TREE;
2222 }
2223
2224 return val;
2225 }
2226
2227 /* Fold the stmt at *GSI with CCP specific information that propagating
2228 and regular folding does not catch. */
2229
2230 static bool
2231 ccp_fold_stmt (gimple_stmt_iterator *gsi)
2232 {
2233 gimple stmt = gsi_stmt (*gsi);
2234
2235 switch (gimple_code (stmt))
2236 {
2237 case GIMPLE_COND:
2238 {
2239 prop_value_t val;
2240 /* Statement evaluation will handle type mismatches in constants
2241 more gracefully than the final propagation. This allows us to
2242 fold more conditionals here. */
2243 val = evaluate_stmt (stmt);
2244 if (val.lattice_val != CONSTANT
2245 || !double_int_zero_p (val.mask))
2246 return false;
2247
2248 if (dump_file)
2249 {
2250 fprintf (dump_file, "Folding predicate ");
2251 print_gimple_expr (dump_file, stmt, 0, 0);
2252 fprintf (dump_file, " to ");
2253 print_generic_expr (dump_file, val.value, 0);
2254 fprintf (dump_file, "\n");
2255 }
2256
2257 if (integer_zerop (val.value))
2258 gimple_cond_make_false (stmt);
2259 else
2260 gimple_cond_make_true (stmt);
2261
2262 return true;
2263 }
2264
2265 case GIMPLE_CALL:
2266 {
2267 tree lhs = gimple_call_lhs (stmt);
2268 tree val;
2269 tree argt;
2270 bool changed = false;
2271 unsigned i;
2272
2273 /* If the call was folded into a constant make sure it goes
2274 away even if we cannot propagate into all uses because of
2275 type issues. */
2276 if (lhs
2277 && TREE_CODE (lhs) == SSA_NAME
2278 && (val = get_constant_value (lhs)))
2279 {
2280 tree new_rhs = unshare_expr (val);
2281 bool res;
2282 if (!useless_type_conversion_p (TREE_TYPE (lhs),
2283 TREE_TYPE (new_rhs)))
2284 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
2285 res = update_call_from_tree (gsi, new_rhs);
2286 gcc_assert (res);
2287 return true;
2288 }
2289
2290 /* Propagate into the call arguments. Compared to replace_uses_in
2291 this can use the argument slot types for type verification
2292 instead of the current argument type. We also can safely
2293 drop qualifiers here as we are dealing with constants anyway. */
2294 argt = TYPE_ARG_TYPES (TREE_TYPE (TREE_TYPE (gimple_call_fn (stmt))));
2295 for (i = 0; i < gimple_call_num_args (stmt) && argt;
2296 ++i, argt = TREE_CHAIN (argt))
2297 {
2298 tree arg = gimple_call_arg (stmt, i);
2299 if (TREE_CODE (arg) == SSA_NAME
2300 && (val = get_constant_value (arg))
2301 && useless_type_conversion_p
2302 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
2303 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2304 {
2305 gimple_call_set_arg (stmt, i, unshare_expr (val));
2306 changed = true;
2307 }
2308 }
2309 if (TREE_CODE (gimple_call_fn (stmt)) == OBJ_TYPE_REF)
2310 {
2311 tree expr = OBJ_TYPE_REF_EXPR (gimple_call_fn (stmt));
2312 expr = valueize_op (expr);
2313 if (TREE_CODE (expr) == ADDR_EXPR
2314 && TREE_CODE (TREE_OPERAND (expr, 0)) == FUNCTION_DECL)
2315 {
2316 gimple_call_set_fn (stmt, expr);
2317 changed = true;
2318 }
2319 }
2320
2321 return changed;
2322 }
2323
2324 case GIMPLE_ASSIGN:
2325 {
2326 tree lhs = gimple_assign_lhs (stmt);
2327 tree val;
2328
2329 /* If we have a load that turned out to be constant replace it
2330 as we cannot propagate into all uses in all cases. */
2331 if (gimple_assign_single_p (stmt)
2332 && TREE_CODE (lhs) == SSA_NAME
2333 && (val = get_constant_value (lhs)))
2334 {
2335 tree rhs = unshare_expr (val);
2336 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2337 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
2338 gimple_assign_set_rhs_from_tree (gsi, rhs);
2339 return true;
2340 }
2341
2342 return false;
2343 }
2344
2345 default:
2346 return false;
2347 }
2348 }
2349
2350 /* Visit the assignment statement STMT. Set the value of its LHS to the
2351 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2352 creates virtual definitions, set the value of each new name to that
2353 of the RHS (if we can derive a constant out of the RHS).
2354 Value-returning call statements also perform an assignment, and
2355 are handled here. */
2356
2357 static enum ssa_prop_result
2358 visit_assignment (gimple stmt, tree *output_p)
2359 {
2360 prop_value_t val;
2361 enum ssa_prop_result retval;
2362
2363 tree lhs = gimple_get_lhs (stmt);
2364
2365 gcc_assert (gimple_code (stmt) != GIMPLE_CALL
2366 || gimple_call_lhs (stmt) != NULL_TREE);
2367
2368 if (gimple_assign_single_p (stmt)
2369 && gimple_assign_rhs_code (stmt) == SSA_NAME)
2370 /* For a simple copy operation, we copy the lattice values. */
2371 val = *get_value (gimple_assign_rhs1 (stmt));
2372 else
2373 /* Evaluate the statement, which could be
2374 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2375 val = evaluate_stmt (stmt);
2376
2377 retval = SSA_PROP_NOT_INTERESTING;
2378
2379 /* Set the lattice value of the statement's output. */
2380 if (TREE_CODE (lhs) == SSA_NAME)
2381 {
2382 /* If STMT is an assignment to an SSA_NAME, we only have one
2383 value to set. */
2384 if (set_lattice_value (lhs, val))
2385 {
2386 *output_p = lhs;
2387 if (val.lattice_val == VARYING)
2388 retval = SSA_PROP_VARYING;
2389 else
2390 retval = SSA_PROP_INTERESTING;
2391 }
2392 }
2393
2394 return retval;
2395 }
2396
2397
2398 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2399 if it can determine which edge will be taken. Otherwise, return
2400 SSA_PROP_VARYING. */
2401
2402 static enum ssa_prop_result
2403 visit_cond_stmt (gimple stmt, edge *taken_edge_p)
2404 {
2405 prop_value_t val;
2406 basic_block block;
2407
2408 block = gimple_bb (stmt);
2409 val = evaluate_stmt (stmt);
2410 if (val.lattice_val != CONSTANT
2411 || !double_int_zero_p (val.mask))
2412 return SSA_PROP_VARYING;
2413
2414 /* Find which edge out of the conditional block will be taken and add it
2415 to the worklist. If no single edge can be determined statically,
2416 return SSA_PROP_VARYING to feed all the outgoing edges to the
2417 propagation engine. */
2418 *taken_edge_p = find_taken_edge (block, val.value);
2419 if (*taken_edge_p)
2420 return SSA_PROP_INTERESTING;
2421 else
2422 return SSA_PROP_VARYING;
2423 }
2424
2425
2426 /* Evaluate statement STMT. If the statement produces an output value and
2427 its evaluation changes the lattice value of its output, return
2428 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2429 output value.
2430
2431 If STMT is a conditional branch and we can determine its truth
2432 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2433 value, return SSA_PROP_VARYING. */
2434
2435 static enum ssa_prop_result
2436 ccp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
2437 {
2438 tree def;
2439 ssa_op_iter iter;
2440
2441 if (dump_file && (dump_flags & TDF_DETAILS))
2442 {
2443 fprintf (dump_file, "\nVisiting statement:\n");
2444 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2445 }
2446
2447 switch (gimple_code (stmt))
2448 {
2449 case GIMPLE_ASSIGN:
2450 /* If the statement is an assignment that produces a single
2451 output value, evaluate its RHS to see if the lattice value of
2452 its output has changed. */
2453 return visit_assignment (stmt, output_p);
2454
2455 case GIMPLE_CALL:
2456 /* A value-returning call also performs an assignment. */
2457 if (gimple_call_lhs (stmt) != NULL_TREE)
2458 return visit_assignment (stmt, output_p);
2459 break;
2460
2461 case GIMPLE_COND:
2462 case GIMPLE_SWITCH:
2463 /* If STMT is a conditional branch, see if we can determine
2464 which branch will be taken. */
2465 /* FIXME. It appears that we should be able to optimize
2466 computed GOTOs here as well. */
2467 return visit_cond_stmt (stmt, taken_edge_p);
2468
2469 default:
2470 break;
2471 }
2472
2473 /* Any other kind of statement is not interesting for constant
2474 propagation and, therefore, not worth simulating. */
2475 if (dump_file && (dump_flags & TDF_DETAILS))
2476 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2477
2478 /* Definitions made by statements other than assignments to
2479 SSA_NAMEs represent unknown modifications to their outputs.
2480 Mark them VARYING. */
2481 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2482 {
2483 prop_value_t v = { VARYING, NULL_TREE, { -1, (HOST_WIDE_INT) -1 } };
2484 set_lattice_value (def, v);
2485 }
2486
2487 return SSA_PROP_VARYING;
2488 }
2489
2490
2491 /* Main entry point for SSA Conditional Constant Propagation. */
2492
2493 static unsigned int
2494 do_ssa_ccp (void)
2495 {
2496 ccp_initialize ();
2497 ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node);
2498 if (ccp_finalize ())
2499 return (TODO_cleanup_cfg | TODO_update_ssa | TODO_remove_unused_locals);
2500 else
2501 return 0;
2502 }
2503
2504
2505 static bool
2506 gate_ccp (void)
2507 {
2508 return flag_tree_ccp != 0;
2509 }
2510
2511
2512 struct gimple_opt_pass pass_ccp =
2513 {
2514 {
2515 GIMPLE_PASS,
2516 "ccp", /* name */
2517 gate_ccp, /* gate */
2518 do_ssa_ccp, /* execute */
2519 NULL, /* sub */
2520 NULL, /* next */
2521 0, /* static_pass_number */
2522 TV_TREE_CCP, /* tv_id */
2523 PROP_cfg | PROP_ssa, /* properties_required */
2524 0, /* properties_provided */
2525 0, /* properties_destroyed */
2526 0, /* todo_flags_start */
2527 TODO_dump_func | TODO_verify_ssa
2528 | TODO_verify_stmts | TODO_ggc_collect/* todo_flags_finish */
2529 }
2530 };
2531
2532
2533
2534 /* Try to optimize out __builtin_stack_restore. Optimize it out
2535 if there is another __builtin_stack_restore in the same basic
2536 block and no calls or ASM_EXPRs are in between, or if this block's
2537 only outgoing edge is to EXIT_BLOCK and there are no calls or
2538 ASM_EXPRs after this __builtin_stack_restore. */
2539
2540 static tree
2541 optimize_stack_restore (gimple_stmt_iterator i)
2542 {
2543 tree callee;
2544 gimple stmt;
2545
2546 basic_block bb = gsi_bb (i);
2547 gimple call = gsi_stmt (i);
2548
2549 if (gimple_code (call) != GIMPLE_CALL
2550 || gimple_call_num_args (call) != 1
2551 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2552 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2553 return NULL_TREE;
2554
2555 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2556 {
2557 stmt = gsi_stmt (i);
2558 if (gimple_code (stmt) == GIMPLE_ASM)
2559 return NULL_TREE;
2560 if (gimple_code (stmt) != GIMPLE_CALL)
2561 continue;
2562
2563 callee = gimple_call_fndecl (stmt);
2564 if (!callee
2565 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2566 /* All regular builtins are ok, just obviously not alloca. */
2567 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA)
2568 return NULL_TREE;
2569
2570 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
2571 goto second_stack_restore;
2572 }
2573
2574 if (!gsi_end_p (i))
2575 return NULL_TREE;
2576
2577 /* Allow one successor of the exit block, or zero successors. */
2578 switch (EDGE_COUNT (bb->succs))
2579 {
2580 case 0:
2581 break;
2582 case 1:
2583 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR)
2584 return NULL_TREE;
2585 break;
2586 default:
2587 return NULL_TREE;
2588 }
2589 second_stack_restore:
2590
2591 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2592 If there are multiple uses, then the last one should remove the call.
2593 In any case, whether the call to __builtin_stack_save can be removed
2594 or not is irrelevant to removing the call to __builtin_stack_restore. */
2595 if (has_single_use (gimple_call_arg (call, 0)))
2596 {
2597 gimple stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2598 if (is_gimple_call (stack_save))
2599 {
2600 callee = gimple_call_fndecl (stack_save);
2601 if (callee
2602 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2603 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE)
2604 {
2605 gimple_stmt_iterator stack_save_gsi;
2606 tree rhs;
2607
2608 stack_save_gsi = gsi_for_stmt (stack_save);
2609 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2610 update_call_from_tree (&stack_save_gsi, rhs);
2611 }
2612 }
2613 }
2614
2615 /* No effect, so the statement will be deleted. */
2616 return integer_zero_node;
2617 }
2618
2619 /* If va_list type is a simple pointer and nothing special is needed,
2620 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2621 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2622 pointer assignment. */
2623
2624 static tree
2625 optimize_stdarg_builtin (gimple call)
2626 {
2627 tree callee, lhs, rhs, cfun_va_list;
2628 bool va_list_simple_ptr;
2629 location_t loc = gimple_location (call);
2630
2631 if (gimple_code (call) != GIMPLE_CALL)
2632 return NULL_TREE;
2633
2634 callee = gimple_call_fndecl (call);
2635
2636 cfun_va_list = targetm.fn_abi_va_list (callee);
2637 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2638 && (TREE_TYPE (cfun_va_list) == void_type_node
2639 || TREE_TYPE (cfun_va_list) == char_type_node);
2640
2641 switch (DECL_FUNCTION_CODE (callee))
2642 {
2643 case BUILT_IN_VA_START:
2644 if (!va_list_simple_ptr
2645 || targetm.expand_builtin_va_start != NULL
2646 || built_in_decls[BUILT_IN_NEXT_ARG] == NULL)
2647 return NULL_TREE;
2648
2649 if (gimple_call_num_args (call) != 2)
2650 return NULL_TREE;
2651
2652 lhs = gimple_call_arg (call, 0);
2653 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2654 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2655 != TYPE_MAIN_VARIANT (cfun_va_list))
2656 return NULL_TREE;
2657
2658 lhs = build_fold_indirect_ref_loc (loc, lhs);
2659 rhs = build_call_expr_loc (loc, built_in_decls[BUILT_IN_NEXT_ARG],
2660 1, integer_zero_node);
2661 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2662 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2663
2664 case BUILT_IN_VA_COPY:
2665 if (!va_list_simple_ptr)
2666 return NULL_TREE;
2667
2668 if (gimple_call_num_args (call) != 2)
2669 return NULL_TREE;
2670
2671 lhs = gimple_call_arg (call, 0);
2672 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2673 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2674 != TYPE_MAIN_VARIANT (cfun_va_list))
2675 return NULL_TREE;
2676
2677 lhs = build_fold_indirect_ref_loc (loc, lhs);
2678 rhs = gimple_call_arg (call, 1);
2679 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2680 != TYPE_MAIN_VARIANT (cfun_va_list))
2681 return NULL_TREE;
2682
2683 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2684 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2685
2686 case BUILT_IN_VA_END:
2687 /* No effect, so the statement will be deleted. */
2688 return integer_zero_node;
2689
2690 default:
2691 gcc_unreachable ();
2692 }
2693 }
2694
2695 /* A simple pass that attempts to fold all builtin functions. This pass
2696 is run after we've propagated as many constants as we can. */
2697
2698 static unsigned int
2699 execute_fold_all_builtins (void)
2700 {
2701 bool cfg_changed = false;
2702 basic_block bb;
2703 unsigned int todoflags = 0;
2704
2705 FOR_EACH_BB (bb)
2706 {
2707 gimple_stmt_iterator i;
2708 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
2709 {
2710 gimple stmt, old_stmt;
2711 tree callee, result;
2712 enum built_in_function fcode;
2713
2714 stmt = gsi_stmt (i);
2715
2716 if (gimple_code (stmt) != GIMPLE_CALL)
2717 {
2718 gsi_next (&i);
2719 continue;
2720 }
2721 callee = gimple_call_fndecl (stmt);
2722 if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL)
2723 {
2724 gsi_next (&i);
2725 continue;
2726 }
2727 fcode = DECL_FUNCTION_CODE (callee);
2728
2729 result = gimple_fold_builtin (stmt);
2730
2731 if (result)
2732 gimple_remove_stmt_histograms (cfun, stmt);
2733
2734 if (!result)
2735 switch (DECL_FUNCTION_CODE (callee))
2736 {
2737 case BUILT_IN_CONSTANT_P:
2738 /* Resolve __builtin_constant_p. If it hasn't been
2739 folded to integer_one_node by now, it's fairly
2740 certain that the value simply isn't constant. */
2741 result = integer_zero_node;
2742 break;
2743
2744 case BUILT_IN_STACK_RESTORE:
2745 result = optimize_stack_restore (i);
2746 if (result)
2747 break;
2748 gsi_next (&i);
2749 continue;
2750
2751 case BUILT_IN_VA_START:
2752 case BUILT_IN_VA_END:
2753 case BUILT_IN_VA_COPY:
2754 /* These shouldn't be folded before pass_stdarg. */
2755 result = optimize_stdarg_builtin (stmt);
2756 if (result)
2757 break;
2758 /* FALLTHRU */
2759
2760 default:
2761 gsi_next (&i);
2762 continue;
2763 }
2764
2765 if (dump_file && (dump_flags & TDF_DETAILS))
2766 {
2767 fprintf (dump_file, "Simplified\n ");
2768 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2769 }
2770
2771 old_stmt = stmt;
2772 if (!update_call_from_tree (&i, result))
2773 {
2774 gimplify_and_update_call_from_tree (&i, result);
2775 todoflags |= TODO_update_address_taken;
2776 }
2777
2778 stmt = gsi_stmt (i);
2779 update_stmt (stmt);
2780
2781 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
2782 && gimple_purge_dead_eh_edges (bb))
2783 cfg_changed = true;
2784
2785 if (dump_file && (dump_flags & TDF_DETAILS))
2786 {
2787 fprintf (dump_file, "to\n ");
2788 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2789 fprintf (dump_file, "\n");
2790 }
2791
2792 /* Retry the same statement if it changed into another
2793 builtin, there might be new opportunities now. */
2794 if (gimple_code (stmt) != GIMPLE_CALL)
2795 {
2796 gsi_next (&i);
2797 continue;
2798 }
2799 callee = gimple_call_fndecl (stmt);
2800 if (!callee
2801 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2802 || DECL_FUNCTION_CODE (callee) == fcode)
2803 gsi_next (&i);
2804 }
2805 }
2806
2807 /* Delete unreachable blocks. */
2808 if (cfg_changed)
2809 todoflags |= TODO_cleanup_cfg;
2810
2811 return todoflags;
2812 }
2813
2814
2815 struct gimple_opt_pass pass_fold_builtins =
2816 {
2817 {
2818 GIMPLE_PASS,
2819 "fab", /* name */
2820 NULL, /* gate */
2821 execute_fold_all_builtins, /* execute */
2822 NULL, /* sub */
2823 NULL, /* next */
2824 0, /* static_pass_number */
2825 TV_NONE, /* tv_id */
2826 PROP_cfg | PROP_ssa, /* properties_required */
2827 0, /* properties_provided */
2828 0, /* properties_destroyed */
2829 0, /* todo_flags_start */
2830 TODO_dump_func
2831 | TODO_verify_ssa
2832 | TODO_update_ssa /* todo_flags_finish */
2833 }
2834 };