re PR fortran/55618 (Failures with ISO_Varying_String test suite)
[gcc.git] / gcc / tree-ssa-ccp.c
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011, 2012 Free Software Foundation, Inc.
4 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
5 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 3, or (at your option) any
12 later version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* Conditional constant propagation (CCP) is based on the SSA
24 propagation engine (tree-ssa-propagate.c). Constant assignments of
25 the form VAR = CST are propagated from the assignments into uses of
26 VAR, which in turn may generate new constants. The simulation uses
27 a four level lattice to keep track of constant values associated
28 with SSA names. Given an SSA name V_i, it may take one of the
29 following values:
30
31 UNINITIALIZED -> the initial state of the value. This value
32 is replaced with a correct initial value
33 the first time the value is used, so the
34 rest of the pass does not need to care about
35 it. Using this value simplifies initialization
36 of the pass, and prevents us from needlessly
37 scanning statements that are never reached.
38
39 UNDEFINED -> V_i is a local variable whose definition
40 has not been processed yet. Therefore we
41 don't yet know if its value is a constant
42 or not.
43
44 CONSTANT -> V_i has been found to hold a constant
45 value C.
46
47 VARYING -> V_i cannot take a constant value, or if it
48 does, it is not possible to determine it
49 at compile time.
50
51 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
52
53 1- In ccp_visit_stmt, we are interested in assignments whose RHS
54 evaluates into a constant and conditional jumps whose predicate
55 evaluates into a boolean true or false. When an assignment of
56 the form V_i = CONST is found, V_i's lattice value is set to
57 CONSTANT and CONST is associated with it. This causes the
58 propagation engine to add all the SSA edges coming out the
59 assignment into the worklists, so that statements that use V_i
60 can be visited.
61
62 If the statement is a conditional with a constant predicate, we
63 mark the outgoing edges as executable or not executable
64 depending on the predicate's value. This is then used when
65 visiting PHI nodes to know when a PHI argument can be ignored.
66
67
68 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
69 same constant C, then the LHS of the PHI is set to C. This
70 evaluation is known as the "meet operation". Since one of the
71 goals of this evaluation is to optimistically return constant
72 values as often as possible, it uses two main short cuts:
73
74 - If an argument is flowing in through a non-executable edge, it
75 is ignored. This is useful in cases like this:
76
77 if (PRED)
78 a_9 = 3;
79 else
80 a_10 = 100;
81 a_11 = PHI (a_9, a_10)
82
83 If PRED is known to always evaluate to false, then we can
84 assume that a_11 will always take its value from a_10, meaning
85 that instead of consider it VARYING (a_9 and a_10 have
86 different values), we can consider it CONSTANT 100.
87
88 - If an argument has an UNDEFINED value, then it does not affect
89 the outcome of the meet operation. If a variable V_i has an
90 UNDEFINED value, it means that either its defining statement
91 hasn't been visited yet or V_i has no defining statement, in
92 which case the original symbol 'V' is being used
93 uninitialized. Since 'V' is a local variable, the compiler
94 may assume any initial value for it.
95
96
97 After propagation, every variable V_i that ends up with a lattice
98 value of CONSTANT will have the associated constant value in the
99 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
100 final substitution and folding.
101
102 References:
103
104 Constant propagation with conditional branches,
105 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
106
107 Building an Optimizing Compiler,
108 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
109
110 Advanced Compiler Design and Implementation,
111 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
112
113 #include "config.h"
114 #include "system.h"
115 #include "coretypes.h"
116 #include "tm.h"
117 #include "tree.h"
118 #include "flags.h"
119 #include "tm_p.h"
120 #include "basic-block.h"
121 #include "function.h"
122 #include "gimple-pretty-print.h"
123 #include "tree-flow.h"
124 #include "tree-pass.h"
125 #include "tree-ssa-propagate.h"
126 #include "value-prof.h"
127 #include "langhooks.h"
128 #include "target.h"
129 #include "diagnostic-core.h"
130 #include "dbgcnt.h"
131 #include "gimple-fold.h"
132 #include "params.h"
133 #include "hash-table.h"
134
135
136 /* Possible lattice values. */
137 typedef enum
138 {
139 UNINITIALIZED,
140 UNDEFINED,
141 CONSTANT,
142 VARYING
143 } ccp_lattice_t;
144
145 struct prop_value_d {
146 /* Lattice value. */
147 ccp_lattice_t lattice_val;
148
149 /* Propagated value. */
150 tree value;
151
152 /* Mask that applies to the propagated value during CCP. For
153 X with a CONSTANT lattice value X & ~mask == value & ~mask. */
154 double_int mask;
155 };
156
157 typedef struct prop_value_d prop_value_t;
158
159 /* Array of propagated constant values. After propagation,
160 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
161 the constant is held in an SSA name representing a memory store
162 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
163 memory reference used to store (i.e., the LHS of the assignment
164 doing the store). */
165 static prop_value_t *const_val;
166
167 static void canonicalize_float_value (prop_value_t *);
168 static bool ccp_fold_stmt (gimple_stmt_iterator *);
169
170 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
171
172 static void
173 dump_lattice_value (FILE *outf, const char *prefix, prop_value_t val)
174 {
175 switch (val.lattice_val)
176 {
177 case UNINITIALIZED:
178 fprintf (outf, "%sUNINITIALIZED", prefix);
179 break;
180 case UNDEFINED:
181 fprintf (outf, "%sUNDEFINED", prefix);
182 break;
183 case VARYING:
184 fprintf (outf, "%sVARYING", prefix);
185 break;
186 case CONSTANT:
187 if (TREE_CODE (val.value) != INTEGER_CST
188 || val.mask.is_zero ())
189 {
190 fprintf (outf, "%sCONSTANT ", prefix);
191 print_generic_expr (outf, val.value, dump_flags);
192 }
193 else
194 {
195 double_int cval = tree_to_double_int (val.value).and_not (val.mask);
196 fprintf (outf, "%sCONSTANT " HOST_WIDE_INT_PRINT_DOUBLE_HEX,
197 prefix, cval.high, cval.low);
198 fprintf (outf, " (" HOST_WIDE_INT_PRINT_DOUBLE_HEX ")",
199 val.mask.high, val.mask.low);
200 }
201 break;
202 default:
203 gcc_unreachable ();
204 }
205 }
206
207
208 /* Print lattice value VAL to stderr. */
209
210 void debug_lattice_value (prop_value_t val);
211
212 DEBUG_FUNCTION void
213 debug_lattice_value (prop_value_t val)
214 {
215 dump_lattice_value (stderr, "", val);
216 fprintf (stderr, "\n");
217 }
218
219
220 /* Compute a default value for variable VAR and store it in the
221 CONST_VAL array. The following rules are used to get default
222 values:
223
224 1- Global and static variables that are declared constant are
225 considered CONSTANT.
226
227 2- Any other value is considered UNDEFINED. This is useful when
228 considering PHI nodes. PHI arguments that are undefined do not
229 change the constant value of the PHI node, which allows for more
230 constants to be propagated.
231
232 3- Variables defined by statements other than assignments and PHI
233 nodes are considered VARYING.
234
235 4- Initial values of variables that are not GIMPLE registers are
236 considered VARYING. */
237
238 static prop_value_t
239 get_default_value (tree var)
240 {
241 prop_value_t val = { UNINITIALIZED, NULL_TREE, { 0, 0 } };
242 gimple stmt;
243
244 stmt = SSA_NAME_DEF_STMT (var);
245
246 if (gimple_nop_p (stmt))
247 {
248 /* Variables defined by an empty statement are those used
249 before being initialized. If VAR is a local variable, we
250 can assume initially that it is UNDEFINED, otherwise we must
251 consider it VARYING. */
252 if (!virtual_operand_p (var)
253 && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
254 val.lattice_val = UNDEFINED;
255 else
256 {
257 val.lattice_val = VARYING;
258 val.mask = double_int_minus_one;
259 }
260 }
261 else if (is_gimple_assign (stmt)
262 /* Value-returning GIMPLE_CALL statements assign to
263 a variable, and are treated similarly to GIMPLE_ASSIGN. */
264 || (is_gimple_call (stmt)
265 && gimple_call_lhs (stmt) != NULL_TREE)
266 || gimple_code (stmt) == GIMPLE_PHI)
267 {
268 tree cst;
269 if (gimple_assign_single_p (stmt)
270 && DECL_P (gimple_assign_rhs1 (stmt))
271 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
272 {
273 val.lattice_val = CONSTANT;
274 val.value = cst;
275 }
276 else
277 /* Any other variable defined by an assignment or a PHI node
278 is considered UNDEFINED. */
279 val.lattice_val = UNDEFINED;
280 }
281 else
282 {
283 /* Otherwise, VAR will never take on a constant value. */
284 val.lattice_val = VARYING;
285 val.mask = double_int_minus_one;
286 }
287
288 return val;
289 }
290
291
292 /* Get the constant value associated with variable VAR. */
293
294 static inline prop_value_t *
295 get_value (tree var)
296 {
297 prop_value_t *val;
298
299 if (const_val == NULL)
300 return NULL;
301
302 val = &const_val[SSA_NAME_VERSION (var)];
303 if (val->lattice_val == UNINITIALIZED)
304 *val = get_default_value (var);
305
306 canonicalize_float_value (val);
307
308 return val;
309 }
310
311 /* Return the constant tree value associated with VAR. */
312
313 static inline tree
314 get_constant_value (tree var)
315 {
316 prop_value_t *val;
317 if (TREE_CODE (var) != SSA_NAME)
318 {
319 if (is_gimple_min_invariant (var))
320 return var;
321 return NULL_TREE;
322 }
323 val = get_value (var);
324 if (val
325 && val->lattice_val == CONSTANT
326 && (TREE_CODE (val->value) != INTEGER_CST
327 || val->mask.is_zero ()))
328 return val->value;
329 return NULL_TREE;
330 }
331
332 /* Sets the value associated with VAR to VARYING. */
333
334 static inline void
335 set_value_varying (tree var)
336 {
337 prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
338
339 val->lattice_val = VARYING;
340 val->value = NULL_TREE;
341 val->mask = double_int_minus_one;
342 }
343
344 /* For float types, modify the value of VAL to make ccp work correctly
345 for non-standard values (-0, NaN):
346
347 If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0.
348 If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED.
349 This is to fix the following problem (see PR 29921): Suppose we have
350
351 x = 0.0 * y
352
353 and we set value of y to NaN. This causes value of x to be set to NaN.
354 When we later determine that y is in fact VARYING, fold uses the fact
355 that HONOR_NANS is false, and we try to change the value of x to 0,
356 causing an ICE. With HONOR_NANS being false, the real appearance of
357 NaN would cause undefined behavior, though, so claiming that y (and x)
358 are UNDEFINED initially is correct. */
359
360 static void
361 canonicalize_float_value (prop_value_t *val)
362 {
363 enum machine_mode mode;
364 tree type;
365 REAL_VALUE_TYPE d;
366
367 if (val->lattice_val != CONSTANT
368 || TREE_CODE (val->value) != REAL_CST)
369 return;
370
371 d = TREE_REAL_CST (val->value);
372 type = TREE_TYPE (val->value);
373 mode = TYPE_MODE (type);
374
375 if (!HONOR_SIGNED_ZEROS (mode)
376 && REAL_VALUE_MINUS_ZERO (d))
377 {
378 val->value = build_real (type, dconst0);
379 return;
380 }
381
382 if (!HONOR_NANS (mode)
383 && REAL_VALUE_ISNAN (d))
384 {
385 val->lattice_val = UNDEFINED;
386 val->value = NULL;
387 return;
388 }
389 }
390
391 /* Return whether the lattice transition is valid. */
392
393 static bool
394 valid_lattice_transition (prop_value_t old_val, prop_value_t new_val)
395 {
396 /* Lattice transitions must always be monotonically increasing in
397 value. */
398 if (old_val.lattice_val < new_val.lattice_val)
399 return true;
400
401 if (old_val.lattice_val != new_val.lattice_val)
402 return false;
403
404 if (!old_val.value && !new_val.value)
405 return true;
406
407 /* Now both lattice values are CONSTANT. */
408
409 /* Allow transitioning from PHI <&x, not executable> == &x
410 to PHI <&x, &y> == common alignment. */
411 if (TREE_CODE (old_val.value) != INTEGER_CST
412 && TREE_CODE (new_val.value) == INTEGER_CST)
413 return true;
414
415 /* Bit-lattices have to agree in the still valid bits. */
416 if (TREE_CODE (old_val.value) == INTEGER_CST
417 && TREE_CODE (new_val.value) == INTEGER_CST)
418 return tree_to_double_int (old_val.value).and_not (new_val.mask)
419 == tree_to_double_int (new_val.value).and_not (new_val.mask);
420
421 /* Otherwise constant values have to agree. */
422 return operand_equal_p (old_val.value, new_val.value, 0);
423 }
424
425 /* Set the value for variable VAR to NEW_VAL. Return true if the new
426 value is different from VAR's previous value. */
427
428 static bool
429 set_lattice_value (tree var, prop_value_t new_val)
430 {
431 /* We can deal with old UNINITIALIZED values just fine here. */
432 prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
433
434 canonicalize_float_value (&new_val);
435
436 /* We have to be careful to not go up the bitwise lattice
437 represented by the mask.
438 ??? This doesn't seem to be the best place to enforce this. */
439 if (new_val.lattice_val == CONSTANT
440 && old_val->lattice_val == CONSTANT
441 && TREE_CODE (new_val.value) == INTEGER_CST
442 && TREE_CODE (old_val->value) == INTEGER_CST)
443 {
444 double_int diff;
445 diff = tree_to_double_int (new_val.value)
446 ^ tree_to_double_int (old_val->value);
447 new_val.mask = new_val.mask | old_val->mask | diff;
448 }
449
450 gcc_assert (valid_lattice_transition (*old_val, new_val));
451
452 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
453 caller that this was a non-transition. */
454 if (old_val->lattice_val != new_val.lattice_val
455 || (new_val.lattice_val == CONSTANT
456 && TREE_CODE (new_val.value) == INTEGER_CST
457 && (TREE_CODE (old_val->value) != INTEGER_CST
458 || new_val.mask != old_val->mask)))
459 {
460 /* ??? We would like to delay creation of INTEGER_CSTs from
461 partially constants here. */
462
463 if (dump_file && (dump_flags & TDF_DETAILS))
464 {
465 dump_lattice_value (dump_file, "Lattice value changed to ", new_val);
466 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
467 }
468
469 *old_val = new_val;
470
471 gcc_assert (new_val.lattice_val != UNINITIALIZED);
472 return true;
473 }
474
475 return false;
476 }
477
478 static prop_value_t get_value_for_expr (tree, bool);
479 static prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
480 static void bit_value_binop_1 (enum tree_code, tree, double_int *, double_int *,
481 tree, double_int, double_int,
482 tree, double_int, double_int);
483
484 /* Return a double_int that can be used for bitwise simplifications
485 from VAL. */
486
487 static double_int
488 value_to_double_int (prop_value_t val)
489 {
490 if (val.value
491 && TREE_CODE (val.value) == INTEGER_CST)
492 return tree_to_double_int (val.value);
493 else
494 return double_int_zero;
495 }
496
497 /* Return the value for the address expression EXPR based on alignment
498 information. */
499
500 static prop_value_t
501 get_value_from_alignment (tree expr)
502 {
503 tree type = TREE_TYPE (expr);
504 prop_value_t val;
505 unsigned HOST_WIDE_INT bitpos;
506 unsigned int align;
507
508 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
509
510 get_pointer_alignment_1 (expr, &align, &bitpos);
511 val.mask = (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
512 ? double_int::mask (TYPE_PRECISION (type))
513 : double_int_minus_one)
514 .and_not (double_int::from_uhwi (align / BITS_PER_UNIT - 1));
515 val.lattice_val = val.mask.is_minus_one () ? VARYING : CONSTANT;
516 if (val.lattice_val == CONSTANT)
517 val.value
518 = double_int_to_tree (type,
519 double_int::from_uhwi (bitpos / BITS_PER_UNIT));
520 else
521 val.value = NULL_TREE;
522
523 return val;
524 }
525
526 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
527 return constant bits extracted from alignment information for
528 invariant addresses. */
529
530 static prop_value_t
531 get_value_for_expr (tree expr, bool for_bits_p)
532 {
533 prop_value_t val;
534
535 if (TREE_CODE (expr) == SSA_NAME)
536 {
537 val = *get_value (expr);
538 if (for_bits_p
539 && val.lattice_val == CONSTANT
540 && TREE_CODE (val.value) == ADDR_EXPR)
541 val = get_value_from_alignment (val.value);
542 }
543 else if (is_gimple_min_invariant (expr)
544 && (!for_bits_p || TREE_CODE (expr) != ADDR_EXPR))
545 {
546 val.lattice_val = CONSTANT;
547 val.value = expr;
548 val.mask = double_int_zero;
549 canonicalize_float_value (&val);
550 }
551 else if (TREE_CODE (expr) == ADDR_EXPR)
552 val = get_value_from_alignment (expr);
553 else
554 {
555 val.lattice_val = VARYING;
556 val.mask = double_int_minus_one;
557 val.value = NULL_TREE;
558 }
559 return val;
560 }
561
562 /* Return the likely CCP lattice value for STMT.
563
564 If STMT has no operands, then return CONSTANT.
565
566 Else if undefinedness of operands of STMT cause its value to be
567 undefined, then return UNDEFINED.
568
569 Else if any operands of STMT are constants, then return CONSTANT.
570
571 Else return VARYING. */
572
573 static ccp_lattice_t
574 likely_value (gimple stmt)
575 {
576 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
577 tree use;
578 ssa_op_iter iter;
579 unsigned i;
580
581 enum gimple_code code = gimple_code (stmt);
582
583 /* This function appears to be called only for assignments, calls,
584 conditionals, and switches, due to the logic in visit_stmt. */
585 gcc_assert (code == GIMPLE_ASSIGN
586 || code == GIMPLE_CALL
587 || code == GIMPLE_COND
588 || code == GIMPLE_SWITCH);
589
590 /* If the statement has volatile operands, it won't fold to a
591 constant value. */
592 if (gimple_has_volatile_ops (stmt))
593 return VARYING;
594
595 /* Arrive here for more complex cases. */
596 has_constant_operand = false;
597 has_undefined_operand = false;
598 all_undefined_operands = true;
599 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
600 {
601 prop_value_t *val = get_value (use);
602
603 if (val->lattice_val == UNDEFINED)
604 has_undefined_operand = true;
605 else
606 all_undefined_operands = false;
607
608 if (val->lattice_val == CONSTANT)
609 has_constant_operand = true;
610 }
611
612 /* There may be constants in regular rhs operands. For calls we
613 have to ignore lhs, fndecl and static chain, otherwise only
614 the lhs. */
615 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
616 i < gimple_num_ops (stmt); ++i)
617 {
618 tree op = gimple_op (stmt, i);
619 if (!op || TREE_CODE (op) == SSA_NAME)
620 continue;
621 if (is_gimple_min_invariant (op))
622 has_constant_operand = true;
623 }
624
625 if (has_constant_operand)
626 all_undefined_operands = false;
627
628 /* If the operation combines operands like COMPLEX_EXPR make sure to
629 not mark the result UNDEFINED if only one part of the result is
630 undefined. */
631 if (has_undefined_operand && all_undefined_operands)
632 return UNDEFINED;
633 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
634 {
635 switch (gimple_assign_rhs_code (stmt))
636 {
637 /* Unary operators are handled with all_undefined_operands. */
638 case PLUS_EXPR:
639 case MINUS_EXPR:
640 case POINTER_PLUS_EXPR:
641 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
642 Not bitwise operators, one VARYING operand may specify the
643 result completely. Not logical operators for the same reason.
644 Not COMPLEX_EXPR as one VARYING operand makes the result partly
645 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
646 the undefined operand may be promoted. */
647 return UNDEFINED;
648
649 case ADDR_EXPR:
650 /* If any part of an address is UNDEFINED, like the index
651 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
652 return UNDEFINED;
653
654 default:
655 ;
656 }
657 }
658 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
659 fall back to CONSTANT. During iteration UNDEFINED may still drop
660 to CONSTANT. */
661 if (has_undefined_operand)
662 return CONSTANT;
663
664 /* We do not consider virtual operands here -- load from read-only
665 memory may have only VARYING virtual operands, but still be
666 constant. */
667 if (has_constant_operand
668 || gimple_references_memory_p (stmt))
669 return CONSTANT;
670
671 return VARYING;
672 }
673
674 /* Returns true if STMT cannot be constant. */
675
676 static bool
677 surely_varying_stmt_p (gimple stmt)
678 {
679 /* If the statement has operands that we cannot handle, it cannot be
680 constant. */
681 if (gimple_has_volatile_ops (stmt))
682 return true;
683
684 /* If it is a call and does not return a value or is not a
685 builtin and not an indirect call, it is varying. */
686 if (is_gimple_call (stmt))
687 {
688 tree fndecl;
689 if (!gimple_call_lhs (stmt)
690 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
691 && !DECL_BUILT_IN (fndecl)))
692 return true;
693 }
694
695 /* Any other store operation is not interesting. */
696 else if (gimple_vdef (stmt))
697 return true;
698
699 /* Anything other than assignments and conditional jumps are not
700 interesting for CCP. */
701 if (gimple_code (stmt) != GIMPLE_ASSIGN
702 && gimple_code (stmt) != GIMPLE_COND
703 && gimple_code (stmt) != GIMPLE_SWITCH
704 && gimple_code (stmt) != GIMPLE_CALL)
705 return true;
706
707 return false;
708 }
709
710 /* Initialize local data structures for CCP. */
711
712 static void
713 ccp_initialize (void)
714 {
715 basic_block bb;
716
717 const_val = XCNEWVEC (prop_value_t, num_ssa_names);
718
719 /* Initialize simulation flags for PHI nodes and statements. */
720 FOR_EACH_BB (bb)
721 {
722 gimple_stmt_iterator i;
723
724 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
725 {
726 gimple stmt = gsi_stmt (i);
727 bool is_varying;
728
729 /* If the statement is a control insn, then we do not
730 want to avoid simulating the statement once. Failure
731 to do so means that those edges will never get added. */
732 if (stmt_ends_bb_p (stmt))
733 is_varying = false;
734 else
735 is_varying = surely_varying_stmt_p (stmt);
736
737 if (is_varying)
738 {
739 tree def;
740 ssa_op_iter iter;
741
742 /* If the statement will not produce a constant, mark
743 all its outputs VARYING. */
744 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
745 set_value_varying (def);
746 }
747 prop_set_simulate_again (stmt, !is_varying);
748 }
749 }
750
751 /* Now process PHI nodes. We never clear the simulate_again flag on
752 phi nodes, since we do not know which edges are executable yet,
753 except for phi nodes for virtual operands when we do not do store ccp. */
754 FOR_EACH_BB (bb)
755 {
756 gimple_stmt_iterator i;
757
758 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
759 {
760 gimple phi = gsi_stmt (i);
761
762 if (virtual_operand_p (gimple_phi_result (phi)))
763 prop_set_simulate_again (phi, false);
764 else
765 prop_set_simulate_again (phi, true);
766 }
767 }
768 }
769
770 /* Debug count support. Reset the values of ssa names
771 VARYING when the total number ssa names analyzed is
772 beyond the debug count specified. */
773
774 static void
775 do_dbg_cnt (void)
776 {
777 unsigned i;
778 for (i = 0; i < num_ssa_names; i++)
779 {
780 if (!dbg_cnt (ccp))
781 {
782 const_val[i].lattice_val = VARYING;
783 const_val[i].mask = double_int_minus_one;
784 const_val[i].value = NULL_TREE;
785 }
786 }
787 }
788
789
790 /* Do final substitution of propagated values, cleanup the flowgraph and
791 free allocated storage.
792
793 Return TRUE when something was optimized. */
794
795 static bool
796 ccp_finalize (void)
797 {
798 bool something_changed;
799 unsigned i;
800
801 do_dbg_cnt ();
802
803 /* Derive alignment and misalignment information from partially
804 constant pointers in the lattice. */
805 for (i = 1; i < num_ssa_names; ++i)
806 {
807 tree name = ssa_name (i);
808 prop_value_t *val;
809 unsigned int tem, align;
810
811 if (!name
812 || !POINTER_TYPE_P (TREE_TYPE (name)))
813 continue;
814
815 val = get_value (name);
816 if (val->lattice_val != CONSTANT
817 || TREE_CODE (val->value) != INTEGER_CST)
818 continue;
819
820 /* Trailing constant bits specify the alignment, trailing value
821 bits the misalignment. */
822 tem = val->mask.low;
823 align = (tem & -tem);
824 if (align > 1)
825 set_ptr_info_alignment (get_ptr_info (name), align,
826 TREE_INT_CST_LOW (val->value) & (align - 1));
827 }
828
829 /* Perform substitutions based on the known constant values. */
830 something_changed = substitute_and_fold (get_constant_value,
831 ccp_fold_stmt, true);
832
833 free (const_val);
834 const_val = NULL;
835 return something_changed;;
836 }
837
838
839 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
840 in VAL1.
841
842 any M UNDEFINED = any
843 any M VARYING = VARYING
844 Ci M Cj = Ci if (i == j)
845 Ci M Cj = VARYING if (i != j)
846 */
847
848 static void
849 ccp_lattice_meet (prop_value_t *val1, prop_value_t *val2)
850 {
851 if (val1->lattice_val == UNDEFINED)
852 {
853 /* UNDEFINED M any = any */
854 *val1 = *val2;
855 }
856 else if (val2->lattice_val == UNDEFINED)
857 {
858 /* any M UNDEFINED = any
859 Nothing to do. VAL1 already contains the value we want. */
860 ;
861 }
862 else if (val1->lattice_val == VARYING
863 || val2->lattice_val == VARYING)
864 {
865 /* any M VARYING = VARYING. */
866 val1->lattice_val = VARYING;
867 val1->mask = double_int_minus_one;
868 val1->value = NULL_TREE;
869 }
870 else if (val1->lattice_val == CONSTANT
871 && val2->lattice_val == CONSTANT
872 && TREE_CODE (val1->value) == INTEGER_CST
873 && TREE_CODE (val2->value) == INTEGER_CST)
874 {
875 /* Ci M Cj = Ci if (i == j)
876 Ci M Cj = VARYING if (i != j)
877
878 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
879 drop to varying. */
880 val1->mask = val1->mask | val2->mask
881 | (tree_to_double_int (val1->value)
882 ^ tree_to_double_int (val2->value));
883 if (val1->mask.is_minus_one ())
884 {
885 val1->lattice_val = VARYING;
886 val1->value = NULL_TREE;
887 }
888 }
889 else if (val1->lattice_val == CONSTANT
890 && val2->lattice_val == CONSTANT
891 && simple_cst_equal (val1->value, val2->value) == 1)
892 {
893 /* Ci M Cj = Ci if (i == j)
894 Ci M Cj = VARYING if (i != j)
895
896 VAL1 already contains the value we want for equivalent values. */
897 }
898 else if (val1->lattice_val == CONSTANT
899 && val2->lattice_val == CONSTANT
900 && (TREE_CODE (val1->value) == ADDR_EXPR
901 || TREE_CODE (val2->value) == ADDR_EXPR))
902 {
903 /* When not equal addresses are involved try meeting for
904 alignment. */
905 prop_value_t tem = *val2;
906 if (TREE_CODE (val1->value) == ADDR_EXPR)
907 *val1 = get_value_for_expr (val1->value, true);
908 if (TREE_CODE (val2->value) == ADDR_EXPR)
909 tem = get_value_for_expr (val2->value, true);
910 ccp_lattice_meet (val1, &tem);
911 }
912 else
913 {
914 /* Any other combination is VARYING. */
915 val1->lattice_val = VARYING;
916 val1->mask = double_int_minus_one;
917 val1->value = NULL_TREE;
918 }
919 }
920
921
922 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
923 lattice values to determine PHI_NODE's lattice value. The value of a
924 PHI node is determined calling ccp_lattice_meet with all the arguments
925 of the PHI node that are incoming via executable edges. */
926
927 static enum ssa_prop_result
928 ccp_visit_phi_node (gimple phi)
929 {
930 unsigned i;
931 prop_value_t *old_val, new_val;
932
933 if (dump_file && (dump_flags & TDF_DETAILS))
934 {
935 fprintf (dump_file, "\nVisiting PHI node: ");
936 print_gimple_stmt (dump_file, phi, 0, dump_flags);
937 }
938
939 old_val = get_value (gimple_phi_result (phi));
940 switch (old_val->lattice_val)
941 {
942 case VARYING:
943 return SSA_PROP_VARYING;
944
945 case CONSTANT:
946 new_val = *old_val;
947 break;
948
949 case UNDEFINED:
950 new_val.lattice_val = UNDEFINED;
951 new_val.value = NULL_TREE;
952 break;
953
954 default:
955 gcc_unreachable ();
956 }
957
958 for (i = 0; i < gimple_phi_num_args (phi); i++)
959 {
960 /* Compute the meet operator over all the PHI arguments flowing
961 through executable edges. */
962 edge e = gimple_phi_arg_edge (phi, i);
963
964 if (dump_file && (dump_flags & TDF_DETAILS))
965 {
966 fprintf (dump_file,
967 "\n Argument #%d (%d -> %d %sexecutable)\n",
968 i, e->src->index, e->dest->index,
969 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
970 }
971
972 /* If the incoming edge is executable, Compute the meet operator for
973 the existing value of the PHI node and the current PHI argument. */
974 if (e->flags & EDGE_EXECUTABLE)
975 {
976 tree arg = gimple_phi_arg (phi, i)->def;
977 prop_value_t arg_val = get_value_for_expr (arg, false);
978
979 ccp_lattice_meet (&new_val, &arg_val);
980
981 if (dump_file && (dump_flags & TDF_DETAILS))
982 {
983 fprintf (dump_file, "\t");
984 print_generic_expr (dump_file, arg, dump_flags);
985 dump_lattice_value (dump_file, "\tValue: ", arg_val);
986 fprintf (dump_file, "\n");
987 }
988
989 if (new_val.lattice_val == VARYING)
990 break;
991 }
992 }
993
994 if (dump_file && (dump_flags & TDF_DETAILS))
995 {
996 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
997 fprintf (dump_file, "\n\n");
998 }
999
1000 /* Make the transition to the new value. */
1001 if (set_lattice_value (gimple_phi_result (phi), new_val))
1002 {
1003 if (new_val.lattice_val == VARYING)
1004 return SSA_PROP_VARYING;
1005 else
1006 return SSA_PROP_INTERESTING;
1007 }
1008 else
1009 return SSA_PROP_NOT_INTERESTING;
1010 }
1011
1012 /* Return the constant value for OP or OP otherwise. */
1013
1014 static tree
1015 valueize_op (tree op)
1016 {
1017 if (TREE_CODE (op) == SSA_NAME)
1018 {
1019 tree tem = get_constant_value (op);
1020 if (tem)
1021 return tem;
1022 }
1023 return op;
1024 }
1025
1026 /* CCP specific front-end to the non-destructive constant folding
1027 routines.
1028
1029 Attempt to simplify the RHS of STMT knowing that one or more
1030 operands are constants.
1031
1032 If simplification is possible, return the simplified RHS,
1033 otherwise return the original RHS or NULL_TREE. */
1034
1035 static tree
1036 ccp_fold (gimple stmt)
1037 {
1038 location_t loc = gimple_location (stmt);
1039 switch (gimple_code (stmt))
1040 {
1041 case GIMPLE_COND:
1042 {
1043 /* Handle comparison operators that can appear in GIMPLE form. */
1044 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1045 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1046 enum tree_code code = gimple_cond_code (stmt);
1047 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1048 }
1049
1050 case GIMPLE_SWITCH:
1051 {
1052 /* Return the constant switch index. */
1053 return valueize_op (gimple_switch_index (stmt));
1054 }
1055
1056 case GIMPLE_ASSIGN:
1057 case GIMPLE_CALL:
1058 return gimple_fold_stmt_to_constant_1 (stmt, valueize_op);
1059
1060 default:
1061 gcc_unreachable ();
1062 }
1063 }
1064
1065 /* Apply the operation CODE in type TYPE to the value, mask pair
1066 RVAL and RMASK representing a value of type RTYPE and set
1067 the value, mask pair *VAL and *MASK to the result. */
1068
1069 static void
1070 bit_value_unop_1 (enum tree_code code, tree type,
1071 double_int *val, double_int *mask,
1072 tree rtype, double_int rval, double_int rmask)
1073 {
1074 switch (code)
1075 {
1076 case BIT_NOT_EXPR:
1077 *mask = rmask;
1078 *val = ~rval;
1079 break;
1080
1081 case NEGATE_EXPR:
1082 {
1083 double_int temv, temm;
1084 /* Return ~rval + 1. */
1085 bit_value_unop_1 (BIT_NOT_EXPR, type, &temv, &temm, type, rval, rmask);
1086 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1087 type, temv, temm,
1088 type, double_int_one, double_int_zero);
1089 break;
1090 }
1091
1092 CASE_CONVERT:
1093 {
1094 bool uns;
1095
1096 /* First extend mask and value according to the original type. */
1097 uns = TYPE_UNSIGNED (rtype);
1098 *mask = rmask.ext (TYPE_PRECISION (rtype), uns);
1099 *val = rval.ext (TYPE_PRECISION (rtype), uns);
1100
1101 /* Then extend mask and value according to the target type. */
1102 uns = TYPE_UNSIGNED (type);
1103 *mask = (*mask).ext (TYPE_PRECISION (type), uns);
1104 *val = (*val).ext (TYPE_PRECISION (type), uns);
1105 break;
1106 }
1107
1108 default:
1109 *mask = double_int_minus_one;
1110 break;
1111 }
1112 }
1113
1114 /* Apply the operation CODE in type TYPE to the value, mask pairs
1115 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1116 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1117
1118 static void
1119 bit_value_binop_1 (enum tree_code code, tree type,
1120 double_int *val, double_int *mask,
1121 tree r1type, double_int r1val, double_int r1mask,
1122 tree r2type, double_int r2val, double_int r2mask)
1123 {
1124 bool uns = TYPE_UNSIGNED (type);
1125 /* Assume we'll get a constant result. Use an initial varying value,
1126 we fall back to varying in the end if necessary. */
1127 *mask = double_int_minus_one;
1128 switch (code)
1129 {
1130 case BIT_AND_EXPR:
1131 /* The mask is constant where there is a known not
1132 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1133 *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
1134 *val = r1val & r2val;
1135 break;
1136
1137 case BIT_IOR_EXPR:
1138 /* The mask is constant where there is a known
1139 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1140 *mask = (r1mask | r2mask)
1141 .and_not (r1val.and_not (r1mask) | r2val.and_not (r2mask));
1142 *val = r1val | r2val;
1143 break;
1144
1145 case BIT_XOR_EXPR:
1146 /* m1 | m2 */
1147 *mask = r1mask | r2mask;
1148 *val = r1val ^ r2val;
1149 break;
1150
1151 case LROTATE_EXPR:
1152 case RROTATE_EXPR:
1153 if (r2mask.is_zero ())
1154 {
1155 HOST_WIDE_INT shift = r2val.low;
1156 if (code == RROTATE_EXPR)
1157 shift = -shift;
1158 *mask = r1mask.lrotate (shift, TYPE_PRECISION (type));
1159 *val = r1val.lrotate (shift, TYPE_PRECISION (type));
1160 }
1161 break;
1162
1163 case LSHIFT_EXPR:
1164 case RSHIFT_EXPR:
1165 /* ??? We can handle partially known shift counts if we know
1166 its sign. That way we can tell that (x << (y | 8)) & 255
1167 is zero. */
1168 if (r2mask.is_zero ())
1169 {
1170 HOST_WIDE_INT shift = r2val.low;
1171 if (code == RSHIFT_EXPR)
1172 shift = -shift;
1173 /* We need to know if we are doing a left or a right shift
1174 to properly shift in zeros for left shift and unsigned
1175 right shifts and the sign bit for signed right shifts.
1176 For signed right shifts we shift in varying in case
1177 the sign bit was varying. */
1178 if (shift > 0)
1179 {
1180 *mask = r1mask.llshift (shift, TYPE_PRECISION (type));
1181 *val = r1val.llshift (shift, TYPE_PRECISION (type));
1182 }
1183 else if (shift < 0)
1184 {
1185 shift = -shift;
1186 *mask = r1mask.rshift (shift, TYPE_PRECISION (type), !uns);
1187 *val = r1val.rshift (shift, TYPE_PRECISION (type), !uns);
1188 }
1189 else
1190 {
1191 *mask = r1mask;
1192 *val = r1val;
1193 }
1194 }
1195 break;
1196
1197 case PLUS_EXPR:
1198 case POINTER_PLUS_EXPR:
1199 {
1200 double_int lo, hi;
1201 /* Do the addition with unknown bits set to zero, to give carry-ins of
1202 zero wherever possible. */
1203 lo = r1val.and_not (r1mask) + r2val.and_not (r2mask);
1204 lo = lo.ext (TYPE_PRECISION (type), uns);
1205 /* Do the addition with unknown bits set to one, to give carry-ins of
1206 one wherever possible. */
1207 hi = (r1val | r1mask) + (r2val | r2mask);
1208 hi = hi.ext (TYPE_PRECISION (type), uns);
1209 /* Each bit in the result is known if (a) the corresponding bits in
1210 both inputs are known, and (b) the carry-in to that bit position
1211 is known. We can check condition (b) by seeing if we got the same
1212 result with minimised carries as with maximised carries. */
1213 *mask = r1mask | r2mask | (lo ^ hi);
1214 *mask = (*mask).ext (TYPE_PRECISION (type), uns);
1215 /* It shouldn't matter whether we choose lo or hi here. */
1216 *val = lo;
1217 break;
1218 }
1219
1220 case MINUS_EXPR:
1221 {
1222 double_int temv, temm;
1223 bit_value_unop_1 (NEGATE_EXPR, r2type, &temv, &temm,
1224 r2type, r2val, r2mask);
1225 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1226 r1type, r1val, r1mask,
1227 r2type, temv, temm);
1228 break;
1229 }
1230
1231 case MULT_EXPR:
1232 {
1233 /* Just track trailing zeros in both operands and transfer
1234 them to the other. */
1235 int r1tz = (r1val | r1mask).trailing_zeros ();
1236 int r2tz = (r2val | r2mask).trailing_zeros ();
1237 if (r1tz + r2tz >= HOST_BITS_PER_DOUBLE_INT)
1238 {
1239 *mask = double_int_zero;
1240 *val = double_int_zero;
1241 }
1242 else if (r1tz + r2tz > 0)
1243 {
1244 *mask = ~double_int::mask (r1tz + r2tz);
1245 *mask = (*mask).ext (TYPE_PRECISION (type), uns);
1246 *val = double_int_zero;
1247 }
1248 break;
1249 }
1250
1251 case EQ_EXPR:
1252 case NE_EXPR:
1253 {
1254 double_int m = r1mask | r2mask;
1255 if (r1val.and_not (m) != r2val.and_not (m))
1256 {
1257 *mask = double_int_zero;
1258 *val = ((code == EQ_EXPR) ? double_int_zero : double_int_one);
1259 }
1260 else
1261 {
1262 /* We know the result of a comparison is always one or zero. */
1263 *mask = double_int_one;
1264 *val = double_int_zero;
1265 }
1266 break;
1267 }
1268
1269 case GE_EXPR:
1270 case GT_EXPR:
1271 {
1272 double_int tem = r1val;
1273 r1val = r2val;
1274 r2val = tem;
1275 tem = r1mask;
1276 r1mask = r2mask;
1277 r2mask = tem;
1278 code = swap_tree_comparison (code);
1279 }
1280 /* Fallthru. */
1281 case LT_EXPR:
1282 case LE_EXPR:
1283 {
1284 int minmax, maxmin;
1285 /* If the most significant bits are not known we know nothing. */
1286 if (r1mask.is_negative () || r2mask.is_negative ())
1287 break;
1288
1289 /* For comparisons the signedness is in the comparison operands. */
1290 uns = TYPE_UNSIGNED (r1type);
1291
1292 /* If we know the most significant bits we know the values
1293 value ranges by means of treating varying bits as zero
1294 or one. Do a cross comparison of the max/min pairs. */
1295 maxmin = (r1val | r1mask).cmp (r2val.and_not (r2mask), uns);
1296 minmax = r1val.and_not (r1mask).cmp (r2val | r2mask, uns);
1297 if (maxmin < 0) /* r1 is less than r2. */
1298 {
1299 *mask = double_int_zero;
1300 *val = double_int_one;
1301 }
1302 else if (minmax > 0) /* r1 is not less or equal to r2. */
1303 {
1304 *mask = double_int_zero;
1305 *val = double_int_zero;
1306 }
1307 else if (maxmin == minmax) /* r1 and r2 are equal. */
1308 {
1309 /* This probably should never happen as we'd have
1310 folded the thing during fully constant value folding. */
1311 *mask = double_int_zero;
1312 *val = (code == LE_EXPR ? double_int_one : double_int_zero);
1313 }
1314 else
1315 {
1316 /* We know the result of a comparison is always one or zero. */
1317 *mask = double_int_one;
1318 *val = double_int_zero;
1319 }
1320 break;
1321 }
1322
1323 default:;
1324 }
1325 }
1326
1327 /* Return the propagation value when applying the operation CODE to
1328 the value RHS yielding type TYPE. */
1329
1330 static prop_value_t
1331 bit_value_unop (enum tree_code code, tree type, tree rhs)
1332 {
1333 prop_value_t rval = get_value_for_expr (rhs, true);
1334 double_int value, mask;
1335 prop_value_t val;
1336
1337 if (rval.lattice_val == UNDEFINED)
1338 return rval;
1339
1340 gcc_assert ((rval.lattice_val == CONSTANT
1341 && TREE_CODE (rval.value) == INTEGER_CST)
1342 || rval.mask.is_minus_one ());
1343 bit_value_unop_1 (code, type, &value, &mask,
1344 TREE_TYPE (rhs), value_to_double_int (rval), rval.mask);
1345 if (!mask.is_minus_one ())
1346 {
1347 val.lattice_val = CONSTANT;
1348 val.mask = mask;
1349 /* ??? Delay building trees here. */
1350 val.value = double_int_to_tree (type, value);
1351 }
1352 else
1353 {
1354 val.lattice_val = VARYING;
1355 val.value = NULL_TREE;
1356 val.mask = double_int_minus_one;
1357 }
1358 return val;
1359 }
1360
1361 /* Return the propagation value when applying the operation CODE to
1362 the values RHS1 and RHS2 yielding type TYPE. */
1363
1364 static prop_value_t
1365 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
1366 {
1367 prop_value_t r1val = get_value_for_expr (rhs1, true);
1368 prop_value_t r2val = get_value_for_expr (rhs2, true);
1369 double_int value, mask;
1370 prop_value_t val;
1371
1372 if (r1val.lattice_val == UNDEFINED
1373 || r2val.lattice_val == UNDEFINED)
1374 {
1375 val.lattice_val = VARYING;
1376 val.value = NULL_TREE;
1377 val.mask = double_int_minus_one;
1378 return val;
1379 }
1380
1381 gcc_assert ((r1val.lattice_val == CONSTANT
1382 && TREE_CODE (r1val.value) == INTEGER_CST)
1383 || r1val.mask.is_minus_one ());
1384 gcc_assert ((r2val.lattice_val == CONSTANT
1385 && TREE_CODE (r2val.value) == INTEGER_CST)
1386 || r2val.mask.is_minus_one ());
1387 bit_value_binop_1 (code, type, &value, &mask,
1388 TREE_TYPE (rhs1), value_to_double_int (r1val), r1val.mask,
1389 TREE_TYPE (rhs2), value_to_double_int (r2val), r2val.mask);
1390 if (!mask.is_minus_one ())
1391 {
1392 val.lattice_val = CONSTANT;
1393 val.mask = mask;
1394 /* ??? Delay building trees here. */
1395 val.value = double_int_to_tree (type, value);
1396 }
1397 else
1398 {
1399 val.lattice_val = VARYING;
1400 val.value = NULL_TREE;
1401 val.mask = double_int_minus_one;
1402 }
1403 return val;
1404 }
1405
1406 /* Return the propagation value when applying __builtin_assume_aligned to
1407 its arguments. */
1408
1409 static prop_value_t
1410 bit_value_assume_aligned (gimple stmt)
1411 {
1412 tree ptr = gimple_call_arg (stmt, 0), align, misalign = NULL_TREE;
1413 tree type = TREE_TYPE (ptr);
1414 unsigned HOST_WIDE_INT aligni, misaligni = 0;
1415 prop_value_t ptrval = get_value_for_expr (ptr, true);
1416 prop_value_t alignval;
1417 double_int value, mask;
1418 prop_value_t val;
1419 if (ptrval.lattice_val == UNDEFINED)
1420 return ptrval;
1421 gcc_assert ((ptrval.lattice_val == CONSTANT
1422 && TREE_CODE (ptrval.value) == INTEGER_CST)
1423 || ptrval.mask.is_minus_one ());
1424 align = gimple_call_arg (stmt, 1);
1425 if (!host_integerp (align, 1))
1426 return ptrval;
1427 aligni = tree_low_cst (align, 1);
1428 if (aligni <= 1
1429 || (aligni & (aligni - 1)) != 0)
1430 return ptrval;
1431 if (gimple_call_num_args (stmt) > 2)
1432 {
1433 misalign = gimple_call_arg (stmt, 2);
1434 if (!host_integerp (misalign, 1))
1435 return ptrval;
1436 misaligni = tree_low_cst (misalign, 1);
1437 if (misaligni >= aligni)
1438 return ptrval;
1439 }
1440 align = build_int_cst_type (type, -aligni);
1441 alignval = get_value_for_expr (align, true);
1442 bit_value_binop_1 (BIT_AND_EXPR, type, &value, &mask,
1443 type, value_to_double_int (ptrval), ptrval.mask,
1444 type, value_to_double_int (alignval), alignval.mask);
1445 if (!mask.is_minus_one ())
1446 {
1447 val.lattice_val = CONSTANT;
1448 val.mask = mask;
1449 gcc_assert ((mask.low & (aligni - 1)) == 0);
1450 gcc_assert ((value.low & (aligni - 1)) == 0);
1451 value.low |= misaligni;
1452 /* ??? Delay building trees here. */
1453 val.value = double_int_to_tree (type, value);
1454 }
1455 else
1456 {
1457 val.lattice_val = VARYING;
1458 val.value = NULL_TREE;
1459 val.mask = double_int_minus_one;
1460 }
1461 return val;
1462 }
1463
1464 /* Evaluate statement STMT.
1465 Valid only for assignments, calls, conditionals, and switches. */
1466
1467 static prop_value_t
1468 evaluate_stmt (gimple stmt)
1469 {
1470 prop_value_t val;
1471 tree simplified = NULL_TREE;
1472 ccp_lattice_t likelyvalue = likely_value (stmt);
1473 bool is_constant = false;
1474 unsigned int align;
1475
1476 if (dump_file && (dump_flags & TDF_DETAILS))
1477 {
1478 fprintf (dump_file, "which is likely ");
1479 switch (likelyvalue)
1480 {
1481 case CONSTANT:
1482 fprintf (dump_file, "CONSTANT");
1483 break;
1484 case UNDEFINED:
1485 fprintf (dump_file, "UNDEFINED");
1486 break;
1487 case VARYING:
1488 fprintf (dump_file, "VARYING");
1489 break;
1490 default:;
1491 }
1492 fprintf (dump_file, "\n");
1493 }
1494
1495 /* If the statement is likely to have a CONSTANT result, then try
1496 to fold the statement to determine the constant value. */
1497 /* FIXME. This is the only place that we call ccp_fold.
1498 Since likely_value never returns CONSTANT for calls, we will
1499 not attempt to fold them, including builtins that may profit. */
1500 if (likelyvalue == CONSTANT)
1501 {
1502 fold_defer_overflow_warnings ();
1503 simplified = ccp_fold (stmt);
1504 is_constant = simplified && is_gimple_min_invariant (simplified);
1505 fold_undefer_overflow_warnings (is_constant, stmt, 0);
1506 if (is_constant)
1507 {
1508 /* The statement produced a constant value. */
1509 val.lattice_val = CONSTANT;
1510 val.value = simplified;
1511 val.mask = double_int_zero;
1512 }
1513 }
1514 /* If the statement is likely to have a VARYING result, then do not
1515 bother folding the statement. */
1516 else if (likelyvalue == VARYING)
1517 {
1518 enum gimple_code code = gimple_code (stmt);
1519 if (code == GIMPLE_ASSIGN)
1520 {
1521 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1522
1523 /* Other cases cannot satisfy is_gimple_min_invariant
1524 without folding. */
1525 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
1526 simplified = gimple_assign_rhs1 (stmt);
1527 }
1528 else if (code == GIMPLE_SWITCH)
1529 simplified = gimple_switch_index (stmt);
1530 else
1531 /* These cannot satisfy is_gimple_min_invariant without folding. */
1532 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
1533 is_constant = simplified && is_gimple_min_invariant (simplified);
1534 if (is_constant)
1535 {
1536 /* The statement produced a constant value. */
1537 val.lattice_val = CONSTANT;
1538 val.value = simplified;
1539 val.mask = double_int_zero;
1540 }
1541 }
1542
1543 /* Resort to simplification for bitwise tracking. */
1544 if (flag_tree_bit_ccp
1545 && (likelyvalue == CONSTANT || is_gimple_call (stmt))
1546 && !is_constant)
1547 {
1548 enum gimple_code code = gimple_code (stmt);
1549 tree fndecl;
1550 val.lattice_val = VARYING;
1551 val.value = NULL_TREE;
1552 val.mask = double_int_minus_one;
1553 if (code == GIMPLE_ASSIGN)
1554 {
1555 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1556 tree rhs1 = gimple_assign_rhs1 (stmt);
1557 switch (get_gimple_rhs_class (subcode))
1558 {
1559 case GIMPLE_SINGLE_RHS:
1560 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1561 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1562 val = get_value_for_expr (rhs1, true);
1563 break;
1564
1565 case GIMPLE_UNARY_RHS:
1566 if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1567 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1568 && (INTEGRAL_TYPE_P (gimple_expr_type (stmt))
1569 || POINTER_TYPE_P (gimple_expr_type (stmt))))
1570 val = bit_value_unop (subcode, gimple_expr_type (stmt), rhs1);
1571 break;
1572
1573 case GIMPLE_BINARY_RHS:
1574 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1575 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1576 {
1577 tree lhs = gimple_assign_lhs (stmt);
1578 tree rhs2 = gimple_assign_rhs2 (stmt);
1579 val = bit_value_binop (subcode,
1580 TREE_TYPE (lhs), rhs1, rhs2);
1581 }
1582 break;
1583
1584 default:;
1585 }
1586 }
1587 else if (code == GIMPLE_COND)
1588 {
1589 enum tree_code code = gimple_cond_code (stmt);
1590 tree rhs1 = gimple_cond_lhs (stmt);
1591 tree rhs2 = gimple_cond_rhs (stmt);
1592 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1593 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1594 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
1595 }
1596 else if (code == GIMPLE_CALL
1597 && (fndecl = gimple_call_fndecl (stmt))
1598 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1599 {
1600 switch (DECL_FUNCTION_CODE (fndecl))
1601 {
1602 case BUILT_IN_MALLOC:
1603 case BUILT_IN_REALLOC:
1604 case BUILT_IN_CALLOC:
1605 case BUILT_IN_STRDUP:
1606 case BUILT_IN_STRNDUP:
1607 val.lattice_val = CONSTANT;
1608 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1609 val.mask = double_int::from_shwi
1610 (~(((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT)
1611 / BITS_PER_UNIT - 1));
1612 break;
1613
1614 case BUILT_IN_ALLOCA:
1615 case BUILT_IN_ALLOCA_WITH_ALIGN:
1616 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN
1617 ? TREE_INT_CST_LOW (gimple_call_arg (stmt, 1))
1618 : BIGGEST_ALIGNMENT);
1619 val.lattice_val = CONSTANT;
1620 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1621 val.mask = double_int::from_shwi (~(((HOST_WIDE_INT) align)
1622 / BITS_PER_UNIT - 1));
1623 break;
1624
1625 /* These builtins return their first argument, unmodified. */
1626 case BUILT_IN_MEMCPY:
1627 case BUILT_IN_MEMMOVE:
1628 case BUILT_IN_MEMSET:
1629 case BUILT_IN_STRCPY:
1630 case BUILT_IN_STRNCPY:
1631 case BUILT_IN_MEMCPY_CHK:
1632 case BUILT_IN_MEMMOVE_CHK:
1633 case BUILT_IN_MEMSET_CHK:
1634 case BUILT_IN_STRCPY_CHK:
1635 case BUILT_IN_STRNCPY_CHK:
1636 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1637 break;
1638
1639 case BUILT_IN_ASSUME_ALIGNED:
1640 val = bit_value_assume_aligned (stmt);
1641 break;
1642
1643 default:;
1644 }
1645 }
1646 is_constant = (val.lattice_val == CONSTANT);
1647 }
1648
1649 if (!is_constant)
1650 {
1651 /* The statement produced a nonconstant value. If the statement
1652 had UNDEFINED operands, then the result of the statement
1653 should be UNDEFINED. Otherwise, the statement is VARYING. */
1654 if (likelyvalue == UNDEFINED)
1655 {
1656 val.lattice_val = likelyvalue;
1657 val.mask = double_int_zero;
1658 }
1659 else
1660 {
1661 val.lattice_val = VARYING;
1662 val.mask = double_int_minus_one;
1663 }
1664
1665 val.value = NULL_TREE;
1666 }
1667
1668 return val;
1669 }
1670
1671 typedef hash_table <pointer_hash <gimple_statement_d> > gimple_htab;
1672
1673 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
1674 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
1675
1676 static void
1677 insert_clobber_before_stack_restore (tree saved_val, tree var,
1678 gimple_htab *visited)
1679 {
1680 gimple stmt, clobber_stmt;
1681 tree clobber;
1682 imm_use_iterator iter;
1683 gimple_stmt_iterator i;
1684 gimple *slot;
1685
1686 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
1687 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
1688 {
1689 clobber = build_constructor (TREE_TYPE (var),
1690 NULL);
1691 TREE_THIS_VOLATILE (clobber) = 1;
1692 clobber_stmt = gimple_build_assign (var, clobber);
1693
1694 i = gsi_for_stmt (stmt);
1695 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
1696 }
1697 else if (gimple_code (stmt) == GIMPLE_PHI)
1698 {
1699 if (!visited->is_created ())
1700 visited->create (10);
1701
1702 slot = visited->find_slot (stmt, INSERT);
1703 if (*slot != NULL)
1704 continue;
1705
1706 *slot = stmt;
1707 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
1708 visited);
1709 }
1710 else
1711 gcc_assert (is_gimple_debug (stmt));
1712 }
1713
1714 /* Advance the iterator to the previous non-debug gimple statement in the same
1715 or dominating basic block. */
1716
1717 static inline void
1718 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
1719 {
1720 basic_block dom;
1721
1722 gsi_prev_nondebug (i);
1723 while (gsi_end_p (*i))
1724 {
1725 dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
1726 if (dom == NULL || dom == ENTRY_BLOCK_PTR)
1727 return;
1728
1729 *i = gsi_last_bb (dom);
1730 }
1731 }
1732
1733 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
1734 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
1735
1736 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
1737 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
1738 that case the function gives up without inserting the clobbers. */
1739
1740 static void
1741 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
1742 {
1743 gimple stmt;
1744 tree saved_val;
1745 gimple_htab visited;
1746
1747 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
1748 {
1749 stmt = gsi_stmt (i);
1750
1751 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
1752 continue;
1753
1754 saved_val = gimple_call_lhs (stmt);
1755 if (saved_val == NULL_TREE)
1756 continue;
1757
1758 insert_clobber_before_stack_restore (saved_val, var, &visited);
1759 break;
1760 }
1761
1762 if (visited.is_created ())
1763 visited.dispose ();
1764 }
1765
1766 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
1767 fixed-size array and returns the address, if found, otherwise returns
1768 NULL_TREE. */
1769
1770 static tree
1771 fold_builtin_alloca_with_align (gimple stmt)
1772 {
1773 unsigned HOST_WIDE_INT size, threshold, n_elem;
1774 tree lhs, arg, block, var, elem_type, array_type;
1775
1776 /* Get lhs. */
1777 lhs = gimple_call_lhs (stmt);
1778 if (lhs == NULL_TREE)
1779 return NULL_TREE;
1780
1781 /* Detect constant argument. */
1782 arg = get_constant_value (gimple_call_arg (stmt, 0));
1783 if (arg == NULL_TREE
1784 || TREE_CODE (arg) != INTEGER_CST
1785 || !host_integerp (arg, 1))
1786 return NULL_TREE;
1787
1788 size = TREE_INT_CST_LOW (arg);
1789
1790 /* Heuristic: don't fold large allocas. */
1791 threshold = (unsigned HOST_WIDE_INT)PARAM_VALUE (PARAM_LARGE_STACK_FRAME);
1792 /* In case the alloca is located at function entry, it has the same lifetime
1793 as a declared array, so we allow a larger size. */
1794 block = gimple_block (stmt);
1795 if (!(cfun->after_inlining
1796 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
1797 threshold /= 10;
1798 if (size > threshold)
1799 return NULL_TREE;
1800
1801 /* Declare array. */
1802 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
1803 n_elem = size * 8 / BITS_PER_UNIT;
1804 array_type = build_array_type_nelts (elem_type, n_elem);
1805 var = create_tmp_var (array_type, NULL);
1806 DECL_ALIGN (var) = TREE_INT_CST_LOW (gimple_call_arg (stmt, 1));
1807 {
1808 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
1809 if (pi != NULL && !pi->pt.anything)
1810 {
1811 bool singleton_p;
1812 unsigned uid;
1813 singleton_p = pt_solution_singleton_p (&pi->pt, &uid);
1814 gcc_assert (singleton_p);
1815 SET_DECL_PT_UID (var, uid);
1816 }
1817 }
1818
1819 /* Fold alloca to the address of the array. */
1820 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
1821 }
1822
1823 /* Fold the stmt at *GSI with CCP specific information that propagating
1824 and regular folding does not catch. */
1825
1826 static bool
1827 ccp_fold_stmt (gimple_stmt_iterator *gsi)
1828 {
1829 gimple stmt = gsi_stmt (*gsi);
1830
1831 switch (gimple_code (stmt))
1832 {
1833 case GIMPLE_COND:
1834 {
1835 prop_value_t val;
1836 /* Statement evaluation will handle type mismatches in constants
1837 more gracefully than the final propagation. This allows us to
1838 fold more conditionals here. */
1839 val = evaluate_stmt (stmt);
1840 if (val.lattice_val != CONSTANT
1841 || !val.mask.is_zero ())
1842 return false;
1843
1844 if (dump_file)
1845 {
1846 fprintf (dump_file, "Folding predicate ");
1847 print_gimple_expr (dump_file, stmt, 0, 0);
1848 fprintf (dump_file, " to ");
1849 print_generic_expr (dump_file, val.value, 0);
1850 fprintf (dump_file, "\n");
1851 }
1852
1853 if (integer_zerop (val.value))
1854 gimple_cond_make_false (stmt);
1855 else
1856 gimple_cond_make_true (stmt);
1857
1858 return true;
1859 }
1860
1861 case GIMPLE_CALL:
1862 {
1863 tree lhs = gimple_call_lhs (stmt);
1864 int flags = gimple_call_flags (stmt);
1865 tree val;
1866 tree argt;
1867 bool changed = false;
1868 unsigned i;
1869
1870 /* If the call was folded into a constant make sure it goes
1871 away even if we cannot propagate into all uses because of
1872 type issues. */
1873 if (lhs
1874 && TREE_CODE (lhs) == SSA_NAME
1875 && (val = get_constant_value (lhs))
1876 /* Don't optimize away calls that have side-effects. */
1877 && (flags & (ECF_CONST|ECF_PURE)) != 0
1878 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
1879 {
1880 tree new_rhs = unshare_expr (val);
1881 bool res;
1882 if (!useless_type_conversion_p (TREE_TYPE (lhs),
1883 TREE_TYPE (new_rhs)))
1884 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
1885 res = update_call_from_tree (gsi, new_rhs);
1886 gcc_assert (res);
1887 return true;
1888 }
1889
1890 /* Internal calls provide no argument types, so the extra laxity
1891 for normal calls does not apply. */
1892 if (gimple_call_internal_p (stmt))
1893 return false;
1894
1895 /* The heuristic of fold_builtin_alloca_with_align differs before and
1896 after inlining, so we don't require the arg to be changed into a
1897 constant for folding, but just to be constant. */
1898 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN))
1899 {
1900 tree new_rhs = fold_builtin_alloca_with_align (stmt);
1901 if (new_rhs)
1902 {
1903 bool res = update_call_from_tree (gsi, new_rhs);
1904 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
1905 gcc_assert (res);
1906 insert_clobbers_for_var (*gsi, var);
1907 return true;
1908 }
1909 }
1910
1911 /* Propagate into the call arguments. Compared to replace_uses_in
1912 this can use the argument slot types for type verification
1913 instead of the current argument type. We also can safely
1914 drop qualifiers here as we are dealing with constants anyway. */
1915 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
1916 for (i = 0; i < gimple_call_num_args (stmt) && argt;
1917 ++i, argt = TREE_CHAIN (argt))
1918 {
1919 tree arg = gimple_call_arg (stmt, i);
1920 if (TREE_CODE (arg) == SSA_NAME
1921 && (val = get_constant_value (arg))
1922 && useless_type_conversion_p
1923 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
1924 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
1925 {
1926 gimple_call_set_arg (stmt, i, unshare_expr (val));
1927 changed = true;
1928 }
1929 }
1930
1931 return changed;
1932 }
1933
1934 case GIMPLE_ASSIGN:
1935 {
1936 tree lhs = gimple_assign_lhs (stmt);
1937 tree val;
1938
1939 /* If we have a load that turned out to be constant replace it
1940 as we cannot propagate into all uses in all cases. */
1941 if (gimple_assign_single_p (stmt)
1942 && TREE_CODE (lhs) == SSA_NAME
1943 && (val = get_constant_value (lhs)))
1944 {
1945 tree rhs = unshare_expr (val);
1946 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
1947 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
1948 gimple_assign_set_rhs_from_tree (gsi, rhs);
1949 return true;
1950 }
1951
1952 return false;
1953 }
1954
1955 default:
1956 return false;
1957 }
1958 }
1959
1960 /* Visit the assignment statement STMT. Set the value of its LHS to the
1961 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
1962 creates virtual definitions, set the value of each new name to that
1963 of the RHS (if we can derive a constant out of the RHS).
1964 Value-returning call statements also perform an assignment, and
1965 are handled here. */
1966
1967 static enum ssa_prop_result
1968 visit_assignment (gimple stmt, tree *output_p)
1969 {
1970 prop_value_t val;
1971 enum ssa_prop_result retval;
1972
1973 tree lhs = gimple_get_lhs (stmt);
1974
1975 gcc_assert (gimple_code (stmt) != GIMPLE_CALL
1976 || gimple_call_lhs (stmt) != NULL_TREE);
1977
1978 if (gimple_assign_single_p (stmt)
1979 && gimple_assign_rhs_code (stmt) == SSA_NAME)
1980 /* For a simple copy operation, we copy the lattice values. */
1981 val = *get_value (gimple_assign_rhs1 (stmt));
1982 else
1983 /* Evaluate the statement, which could be
1984 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1985 val = evaluate_stmt (stmt);
1986
1987 retval = SSA_PROP_NOT_INTERESTING;
1988
1989 /* Set the lattice value of the statement's output. */
1990 if (TREE_CODE (lhs) == SSA_NAME)
1991 {
1992 /* If STMT is an assignment to an SSA_NAME, we only have one
1993 value to set. */
1994 if (set_lattice_value (lhs, val))
1995 {
1996 *output_p = lhs;
1997 if (val.lattice_val == VARYING)
1998 retval = SSA_PROP_VARYING;
1999 else
2000 retval = SSA_PROP_INTERESTING;
2001 }
2002 }
2003
2004 return retval;
2005 }
2006
2007
2008 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2009 if it can determine which edge will be taken. Otherwise, return
2010 SSA_PROP_VARYING. */
2011
2012 static enum ssa_prop_result
2013 visit_cond_stmt (gimple stmt, edge *taken_edge_p)
2014 {
2015 prop_value_t val;
2016 basic_block block;
2017
2018 block = gimple_bb (stmt);
2019 val = evaluate_stmt (stmt);
2020 if (val.lattice_val != CONSTANT
2021 || !val.mask.is_zero ())
2022 return SSA_PROP_VARYING;
2023
2024 /* Find which edge out of the conditional block will be taken and add it
2025 to the worklist. If no single edge can be determined statically,
2026 return SSA_PROP_VARYING to feed all the outgoing edges to the
2027 propagation engine. */
2028 *taken_edge_p = find_taken_edge (block, val.value);
2029 if (*taken_edge_p)
2030 return SSA_PROP_INTERESTING;
2031 else
2032 return SSA_PROP_VARYING;
2033 }
2034
2035
2036 /* Evaluate statement STMT. If the statement produces an output value and
2037 its evaluation changes the lattice value of its output, return
2038 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2039 output value.
2040
2041 If STMT is a conditional branch and we can determine its truth
2042 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2043 value, return SSA_PROP_VARYING. */
2044
2045 static enum ssa_prop_result
2046 ccp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
2047 {
2048 tree def;
2049 ssa_op_iter iter;
2050
2051 if (dump_file && (dump_flags & TDF_DETAILS))
2052 {
2053 fprintf (dump_file, "\nVisiting statement:\n");
2054 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2055 }
2056
2057 switch (gimple_code (stmt))
2058 {
2059 case GIMPLE_ASSIGN:
2060 /* If the statement is an assignment that produces a single
2061 output value, evaluate its RHS to see if the lattice value of
2062 its output has changed. */
2063 return visit_assignment (stmt, output_p);
2064
2065 case GIMPLE_CALL:
2066 /* A value-returning call also performs an assignment. */
2067 if (gimple_call_lhs (stmt) != NULL_TREE)
2068 return visit_assignment (stmt, output_p);
2069 break;
2070
2071 case GIMPLE_COND:
2072 case GIMPLE_SWITCH:
2073 /* If STMT is a conditional branch, see if we can determine
2074 which branch will be taken. */
2075 /* FIXME. It appears that we should be able to optimize
2076 computed GOTOs here as well. */
2077 return visit_cond_stmt (stmt, taken_edge_p);
2078
2079 default:
2080 break;
2081 }
2082
2083 /* Any other kind of statement is not interesting for constant
2084 propagation and, therefore, not worth simulating. */
2085 if (dump_file && (dump_flags & TDF_DETAILS))
2086 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2087
2088 /* Definitions made by statements other than assignments to
2089 SSA_NAMEs represent unknown modifications to their outputs.
2090 Mark them VARYING. */
2091 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2092 {
2093 prop_value_t v = { VARYING, NULL_TREE, { -1, (HOST_WIDE_INT) -1 } };
2094 set_lattice_value (def, v);
2095 }
2096
2097 return SSA_PROP_VARYING;
2098 }
2099
2100
2101 /* Main entry point for SSA Conditional Constant Propagation. */
2102
2103 static unsigned int
2104 do_ssa_ccp (void)
2105 {
2106 unsigned int todo = 0;
2107 calculate_dominance_info (CDI_DOMINATORS);
2108 ccp_initialize ();
2109 ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node);
2110 if (ccp_finalize ())
2111 todo = (TODO_cleanup_cfg | TODO_update_ssa | TODO_remove_unused_locals);
2112 free_dominance_info (CDI_DOMINATORS);
2113 return todo;
2114 }
2115
2116
2117 static bool
2118 gate_ccp (void)
2119 {
2120 return flag_tree_ccp != 0;
2121 }
2122
2123
2124 struct gimple_opt_pass pass_ccp =
2125 {
2126 {
2127 GIMPLE_PASS,
2128 "ccp", /* name */
2129 OPTGROUP_NONE, /* optinfo_flags */
2130 gate_ccp, /* gate */
2131 do_ssa_ccp, /* execute */
2132 NULL, /* sub */
2133 NULL, /* next */
2134 0, /* static_pass_number */
2135 TV_TREE_CCP, /* tv_id */
2136 PROP_cfg | PROP_ssa, /* properties_required */
2137 0, /* properties_provided */
2138 0, /* properties_destroyed */
2139 0, /* todo_flags_start */
2140 TODO_verify_ssa
2141 | TODO_update_address_taken
2142 | TODO_verify_stmts | TODO_ggc_collect/* todo_flags_finish */
2143 }
2144 };
2145
2146
2147
2148 /* Try to optimize out __builtin_stack_restore. Optimize it out
2149 if there is another __builtin_stack_restore in the same basic
2150 block and no calls or ASM_EXPRs are in between, or if this block's
2151 only outgoing edge is to EXIT_BLOCK and there are no calls or
2152 ASM_EXPRs after this __builtin_stack_restore. */
2153
2154 static tree
2155 optimize_stack_restore (gimple_stmt_iterator i)
2156 {
2157 tree callee;
2158 gimple stmt;
2159
2160 basic_block bb = gsi_bb (i);
2161 gimple call = gsi_stmt (i);
2162
2163 if (gimple_code (call) != GIMPLE_CALL
2164 || gimple_call_num_args (call) != 1
2165 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2166 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2167 return NULL_TREE;
2168
2169 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2170 {
2171 stmt = gsi_stmt (i);
2172 if (gimple_code (stmt) == GIMPLE_ASM)
2173 return NULL_TREE;
2174 if (gimple_code (stmt) != GIMPLE_CALL)
2175 continue;
2176
2177 callee = gimple_call_fndecl (stmt);
2178 if (!callee
2179 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2180 /* All regular builtins are ok, just obviously not alloca. */
2181 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
2182 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA_WITH_ALIGN)
2183 return NULL_TREE;
2184
2185 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
2186 goto second_stack_restore;
2187 }
2188
2189 if (!gsi_end_p (i))
2190 return NULL_TREE;
2191
2192 /* Allow one successor of the exit block, or zero successors. */
2193 switch (EDGE_COUNT (bb->succs))
2194 {
2195 case 0:
2196 break;
2197 case 1:
2198 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR)
2199 return NULL_TREE;
2200 break;
2201 default:
2202 return NULL_TREE;
2203 }
2204 second_stack_restore:
2205
2206 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2207 If there are multiple uses, then the last one should remove the call.
2208 In any case, whether the call to __builtin_stack_save can be removed
2209 or not is irrelevant to removing the call to __builtin_stack_restore. */
2210 if (has_single_use (gimple_call_arg (call, 0)))
2211 {
2212 gimple stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2213 if (is_gimple_call (stack_save))
2214 {
2215 callee = gimple_call_fndecl (stack_save);
2216 if (callee
2217 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2218 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE)
2219 {
2220 gimple_stmt_iterator stack_save_gsi;
2221 tree rhs;
2222
2223 stack_save_gsi = gsi_for_stmt (stack_save);
2224 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2225 update_call_from_tree (&stack_save_gsi, rhs);
2226 }
2227 }
2228 }
2229
2230 /* No effect, so the statement will be deleted. */
2231 return integer_zero_node;
2232 }
2233
2234 /* If va_list type is a simple pointer and nothing special is needed,
2235 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2236 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2237 pointer assignment. */
2238
2239 static tree
2240 optimize_stdarg_builtin (gimple call)
2241 {
2242 tree callee, lhs, rhs, cfun_va_list;
2243 bool va_list_simple_ptr;
2244 location_t loc = gimple_location (call);
2245
2246 if (gimple_code (call) != GIMPLE_CALL)
2247 return NULL_TREE;
2248
2249 callee = gimple_call_fndecl (call);
2250
2251 cfun_va_list = targetm.fn_abi_va_list (callee);
2252 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2253 && (TREE_TYPE (cfun_va_list) == void_type_node
2254 || TREE_TYPE (cfun_va_list) == char_type_node);
2255
2256 switch (DECL_FUNCTION_CODE (callee))
2257 {
2258 case BUILT_IN_VA_START:
2259 if (!va_list_simple_ptr
2260 || targetm.expand_builtin_va_start != NULL
2261 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
2262 return NULL_TREE;
2263
2264 if (gimple_call_num_args (call) != 2)
2265 return NULL_TREE;
2266
2267 lhs = gimple_call_arg (call, 0);
2268 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2269 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2270 != TYPE_MAIN_VARIANT (cfun_va_list))
2271 return NULL_TREE;
2272
2273 lhs = build_fold_indirect_ref_loc (loc, lhs);
2274 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
2275 1, integer_zero_node);
2276 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2277 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2278
2279 case BUILT_IN_VA_COPY:
2280 if (!va_list_simple_ptr)
2281 return NULL_TREE;
2282
2283 if (gimple_call_num_args (call) != 2)
2284 return NULL_TREE;
2285
2286 lhs = gimple_call_arg (call, 0);
2287 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2288 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2289 != TYPE_MAIN_VARIANT (cfun_va_list))
2290 return NULL_TREE;
2291
2292 lhs = build_fold_indirect_ref_loc (loc, lhs);
2293 rhs = gimple_call_arg (call, 1);
2294 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2295 != TYPE_MAIN_VARIANT (cfun_va_list))
2296 return NULL_TREE;
2297
2298 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2299 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2300
2301 case BUILT_IN_VA_END:
2302 /* No effect, so the statement will be deleted. */
2303 return integer_zero_node;
2304
2305 default:
2306 gcc_unreachable ();
2307 }
2308 }
2309
2310 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2311 the incoming jumps. Return true if at least one jump was changed. */
2312
2313 static bool
2314 optimize_unreachable (gimple_stmt_iterator i)
2315 {
2316 basic_block bb = gsi_bb (i);
2317 gimple_stmt_iterator gsi;
2318 gimple stmt;
2319 edge_iterator ei;
2320 edge e;
2321 bool ret;
2322
2323 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2324 {
2325 stmt = gsi_stmt (gsi);
2326
2327 if (is_gimple_debug (stmt))
2328 continue;
2329
2330 if (gimple_code (stmt) == GIMPLE_LABEL)
2331 {
2332 /* Verify we do not need to preserve the label. */
2333 if (FORCED_LABEL (gimple_label_label (stmt)))
2334 return false;
2335
2336 continue;
2337 }
2338
2339 /* Only handle the case that __builtin_unreachable is the first statement
2340 in the block. We rely on DCE to remove stmts without side-effects
2341 before __builtin_unreachable. */
2342 if (gsi_stmt (gsi) != gsi_stmt (i))
2343 return false;
2344 }
2345
2346 ret = false;
2347 FOR_EACH_EDGE (e, ei, bb->preds)
2348 {
2349 gsi = gsi_last_bb (e->src);
2350 if (gsi_end_p (gsi))
2351 continue;
2352
2353 stmt = gsi_stmt (gsi);
2354 if (gimple_code (stmt) == GIMPLE_COND)
2355 {
2356 if (e->flags & EDGE_TRUE_VALUE)
2357 gimple_cond_make_false (stmt);
2358 else if (e->flags & EDGE_FALSE_VALUE)
2359 gimple_cond_make_true (stmt);
2360 else
2361 gcc_unreachable ();
2362 update_stmt (stmt);
2363 }
2364 else
2365 {
2366 /* Todo: handle other cases, f.i. switch statement. */
2367 continue;
2368 }
2369
2370 ret = true;
2371 }
2372
2373 return ret;
2374 }
2375
2376 /* A simple pass that attempts to fold all builtin functions. This pass
2377 is run after we've propagated as many constants as we can. */
2378
2379 static unsigned int
2380 execute_fold_all_builtins (void)
2381 {
2382 bool cfg_changed = false;
2383 basic_block bb;
2384 unsigned int todoflags = 0;
2385
2386 FOR_EACH_BB (bb)
2387 {
2388 gimple_stmt_iterator i;
2389 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
2390 {
2391 gimple stmt, old_stmt;
2392 tree callee, result;
2393 enum built_in_function fcode;
2394
2395 stmt = gsi_stmt (i);
2396
2397 if (gimple_code (stmt) != GIMPLE_CALL)
2398 {
2399 gsi_next (&i);
2400 continue;
2401 }
2402 callee = gimple_call_fndecl (stmt);
2403 if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL)
2404 {
2405 gsi_next (&i);
2406 continue;
2407 }
2408 fcode = DECL_FUNCTION_CODE (callee);
2409
2410 result = gimple_fold_builtin (stmt);
2411
2412 if (result)
2413 gimple_remove_stmt_histograms (cfun, stmt);
2414
2415 if (!result)
2416 switch (DECL_FUNCTION_CODE (callee))
2417 {
2418 case BUILT_IN_CONSTANT_P:
2419 /* Resolve __builtin_constant_p. If it hasn't been
2420 folded to integer_one_node by now, it's fairly
2421 certain that the value simply isn't constant. */
2422 result = integer_zero_node;
2423 break;
2424
2425 case BUILT_IN_ASSUME_ALIGNED:
2426 /* Remove __builtin_assume_aligned. */
2427 result = gimple_call_arg (stmt, 0);
2428 break;
2429
2430 case BUILT_IN_STACK_RESTORE:
2431 result = optimize_stack_restore (i);
2432 if (result)
2433 break;
2434 gsi_next (&i);
2435 continue;
2436
2437 case BUILT_IN_UNREACHABLE:
2438 if (optimize_unreachable (i))
2439 cfg_changed = true;
2440 break;
2441
2442 case BUILT_IN_VA_START:
2443 case BUILT_IN_VA_END:
2444 case BUILT_IN_VA_COPY:
2445 /* These shouldn't be folded before pass_stdarg. */
2446 result = optimize_stdarg_builtin (stmt);
2447 if (result)
2448 break;
2449 /* FALLTHRU */
2450
2451 default:
2452 gsi_next (&i);
2453 continue;
2454 }
2455
2456 if (result == NULL_TREE)
2457 break;
2458
2459 if (dump_file && (dump_flags & TDF_DETAILS))
2460 {
2461 fprintf (dump_file, "Simplified\n ");
2462 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2463 }
2464
2465 old_stmt = stmt;
2466 if (!update_call_from_tree (&i, result))
2467 {
2468 gimplify_and_update_call_from_tree (&i, result);
2469 todoflags |= TODO_update_address_taken;
2470 }
2471
2472 stmt = gsi_stmt (i);
2473 update_stmt (stmt);
2474
2475 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
2476 && gimple_purge_dead_eh_edges (bb))
2477 cfg_changed = true;
2478
2479 if (dump_file && (dump_flags & TDF_DETAILS))
2480 {
2481 fprintf (dump_file, "to\n ");
2482 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2483 fprintf (dump_file, "\n");
2484 }
2485
2486 /* Retry the same statement if it changed into another
2487 builtin, there might be new opportunities now. */
2488 if (gimple_code (stmt) != GIMPLE_CALL)
2489 {
2490 gsi_next (&i);
2491 continue;
2492 }
2493 callee = gimple_call_fndecl (stmt);
2494 if (!callee
2495 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2496 || DECL_FUNCTION_CODE (callee) == fcode)
2497 gsi_next (&i);
2498 }
2499 }
2500
2501 /* Delete unreachable blocks. */
2502 if (cfg_changed)
2503 todoflags |= TODO_cleanup_cfg;
2504
2505 return todoflags;
2506 }
2507
2508
2509 struct gimple_opt_pass pass_fold_builtins =
2510 {
2511 {
2512 GIMPLE_PASS,
2513 "fab", /* name */
2514 OPTGROUP_NONE, /* optinfo_flags */
2515 NULL, /* gate */
2516 execute_fold_all_builtins, /* execute */
2517 NULL, /* sub */
2518 NULL, /* next */
2519 0, /* static_pass_number */
2520 TV_NONE, /* tv_id */
2521 PROP_cfg | PROP_ssa, /* properties_required */
2522 0, /* properties_provided */
2523 0, /* properties_destroyed */
2524 0, /* todo_flags_start */
2525 TODO_verify_ssa
2526 | TODO_update_ssa /* todo_flags_finish */
2527 }
2528 };