whatis.cc: New file.
[gcc.git] / gcc / tree-ssa-ccp.c
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011, 2012 Free Software Foundation, Inc.
4 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
5 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 3, or (at your option) any
12 later version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* Conditional constant propagation (CCP) is based on the SSA
24 propagation engine (tree-ssa-propagate.c). Constant assignments of
25 the form VAR = CST are propagated from the assignments into uses of
26 VAR, which in turn may generate new constants. The simulation uses
27 a four level lattice to keep track of constant values associated
28 with SSA names. Given an SSA name V_i, it may take one of the
29 following values:
30
31 UNINITIALIZED -> the initial state of the value. This value
32 is replaced with a correct initial value
33 the first time the value is used, so the
34 rest of the pass does not need to care about
35 it. Using this value simplifies initialization
36 of the pass, and prevents us from needlessly
37 scanning statements that are never reached.
38
39 UNDEFINED -> V_i is a local variable whose definition
40 has not been processed yet. Therefore we
41 don't yet know if its value is a constant
42 or not.
43
44 CONSTANT -> V_i has been found to hold a constant
45 value C.
46
47 VARYING -> V_i cannot take a constant value, or if it
48 does, it is not possible to determine it
49 at compile time.
50
51 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
52
53 1- In ccp_visit_stmt, we are interested in assignments whose RHS
54 evaluates into a constant and conditional jumps whose predicate
55 evaluates into a boolean true or false. When an assignment of
56 the form V_i = CONST is found, V_i's lattice value is set to
57 CONSTANT and CONST is associated with it. This causes the
58 propagation engine to add all the SSA edges coming out the
59 assignment into the worklists, so that statements that use V_i
60 can be visited.
61
62 If the statement is a conditional with a constant predicate, we
63 mark the outgoing edges as executable or not executable
64 depending on the predicate's value. This is then used when
65 visiting PHI nodes to know when a PHI argument can be ignored.
66
67
68 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
69 same constant C, then the LHS of the PHI is set to C. This
70 evaluation is known as the "meet operation". Since one of the
71 goals of this evaluation is to optimistically return constant
72 values as often as possible, it uses two main short cuts:
73
74 - If an argument is flowing in through a non-executable edge, it
75 is ignored. This is useful in cases like this:
76
77 if (PRED)
78 a_9 = 3;
79 else
80 a_10 = 100;
81 a_11 = PHI (a_9, a_10)
82
83 If PRED is known to always evaluate to false, then we can
84 assume that a_11 will always take its value from a_10, meaning
85 that instead of consider it VARYING (a_9 and a_10 have
86 different values), we can consider it CONSTANT 100.
87
88 - If an argument has an UNDEFINED value, then it does not affect
89 the outcome of the meet operation. If a variable V_i has an
90 UNDEFINED value, it means that either its defining statement
91 hasn't been visited yet or V_i has no defining statement, in
92 which case the original symbol 'V' is being used
93 uninitialized. Since 'V' is a local variable, the compiler
94 may assume any initial value for it.
95
96
97 After propagation, every variable V_i that ends up with a lattice
98 value of CONSTANT will have the associated constant value in the
99 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
100 final substitution and folding.
101
102 References:
103
104 Constant propagation with conditional branches,
105 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
106
107 Building an Optimizing Compiler,
108 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
109
110 Advanced Compiler Design and Implementation,
111 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
112
113 #include "config.h"
114 #include "system.h"
115 #include "coretypes.h"
116 #include "tm.h"
117 #include "tree.h"
118 #include "flags.h"
119 #include "tm_p.h"
120 #include "basic-block.h"
121 #include "function.h"
122 #include "gimple-pretty-print.h"
123 #include "tree-flow.h"
124 #include "tree-pass.h"
125 #include "tree-ssa-propagate.h"
126 #include "value-prof.h"
127 #include "langhooks.h"
128 #include "target.h"
129 #include "diagnostic-core.h"
130 #include "dbgcnt.h"
131 #include "gimple-fold.h"
132 #include "params.h"
133 #include "hash-table.h"
134
135
136 /* Possible lattice values. */
137 typedef enum
138 {
139 UNINITIALIZED,
140 UNDEFINED,
141 CONSTANT,
142 VARYING
143 } ccp_lattice_t;
144
145 struct prop_value_d {
146 /* Lattice value. */
147 ccp_lattice_t lattice_val;
148
149 /* Propagated value. */
150 tree value;
151
152 /* Mask that applies to the propagated value during CCP. For
153 X with a CONSTANT lattice value X & ~mask == value & ~mask. */
154 double_int mask;
155 };
156
157 typedef struct prop_value_d prop_value_t;
158
159 /* Array of propagated constant values. After propagation,
160 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
161 the constant is held in an SSA name representing a memory store
162 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
163 memory reference used to store (i.e., the LHS of the assignment
164 doing the store). */
165 static prop_value_t *const_val;
166
167 static void canonicalize_float_value (prop_value_t *);
168 static bool ccp_fold_stmt (gimple_stmt_iterator *);
169
170 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
171
172 static void
173 dump_lattice_value (FILE *outf, const char *prefix, prop_value_t val)
174 {
175 switch (val.lattice_val)
176 {
177 case UNINITIALIZED:
178 fprintf (outf, "%sUNINITIALIZED", prefix);
179 break;
180 case UNDEFINED:
181 fprintf (outf, "%sUNDEFINED", prefix);
182 break;
183 case VARYING:
184 fprintf (outf, "%sVARYING", prefix);
185 break;
186 case CONSTANT:
187 if (TREE_CODE (val.value) != INTEGER_CST
188 || val.mask.is_zero ())
189 {
190 fprintf (outf, "%sCONSTANT ", prefix);
191 print_generic_expr (outf, val.value, dump_flags);
192 }
193 else
194 {
195 double_int cval = tree_to_double_int (val.value).and_not (val.mask);
196 fprintf (outf, "%sCONSTANT " HOST_WIDE_INT_PRINT_DOUBLE_HEX,
197 prefix, cval.high, cval.low);
198 fprintf (outf, " (" HOST_WIDE_INT_PRINT_DOUBLE_HEX ")",
199 val.mask.high, val.mask.low);
200 }
201 break;
202 default:
203 gcc_unreachable ();
204 }
205 }
206
207
208 /* Print lattice value VAL to stderr. */
209
210 void debug_lattice_value (prop_value_t val);
211
212 DEBUG_FUNCTION void
213 debug_lattice_value (prop_value_t val)
214 {
215 dump_lattice_value (stderr, "", val);
216 fprintf (stderr, "\n");
217 }
218
219
220 /* Compute a default value for variable VAR and store it in the
221 CONST_VAL array. The following rules are used to get default
222 values:
223
224 1- Global and static variables that are declared constant are
225 considered CONSTANT.
226
227 2- Any other value is considered UNDEFINED. This is useful when
228 considering PHI nodes. PHI arguments that are undefined do not
229 change the constant value of the PHI node, which allows for more
230 constants to be propagated.
231
232 3- Variables defined by statements other than assignments and PHI
233 nodes are considered VARYING.
234
235 4- Initial values of variables that are not GIMPLE registers are
236 considered VARYING. */
237
238 static prop_value_t
239 get_default_value (tree var)
240 {
241 prop_value_t val = { UNINITIALIZED, NULL_TREE, { 0, 0 } };
242 gimple stmt;
243
244 stmt = SSA_NAME_DEF_STMT (var);
245
246 if (gimple_nop_p (stmt))
247 {
248 /* Variables defined by an empty statement are those used
249 before being initialized. If VAR is a local variable, we
250 can assume initially that it is UNDEFINED, otherwise we must
251 consider it VARYING. */
252 if (!virtual_operand_p (var)
253 && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
254 val.lattice_val = UNDEFINED;
255 else
256 {
257 val.lattice_val = VARYING;
258 val.mask = double_int_minus_one;
259 }
260 }
261 else if (is_gimple_assign (stmt)
262 /* Value-returning GIMPLE_CALL statements assign to
263 a variable, and are treated similarly to GIMPLE_ASSIGN. */
264 || (is_gimple_call (stmt)
265 && gimple_call_lhs (stmt) != NULL_TREE)
266 || gimple_code (stmt) == GIMPLE_PHI)
267 {
268 tree cst;
269 if (gimple_assign_single_p (stmt)
270 && DECL_P (gimple_assign_rhs1 (stmt))
271 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
272 {
273 val.lattice_val = CONSTANT;
274 val.value = cst;
275 }
276 else
277 /* Any other variable defined by an assignment or a PHI node
278 is considered UNDEFINED. */
279 val.lattice_val = UNDEFINED;
280 }
281 else
282 {
283 /* Otherwise, VAR will never take on a constant value. */
284 val.lattice_val = VARYING;
285 val.mask = double_int_minus_one;
286 }
287
288 return val;
289 }
290
291
292 /* Get the constant value associated with variable VAR. */
293
294 static inline prop_value_t *
295 get_value (tree var)
296 {
297 prop_value_t *val;
298
299 if (const_val == NULL)
300 return NULL;
301
302 val = &const_val[SSA_NAME_VERSION (var)];
303 if (val->lattice_val == UNINITIALIZED)
304 *val = get_default_value (var);
305
306 canonicalize_float_value (val);
307
308 return val;
309 }
310
311 /* Return the constant tree value associated with VAR. */
312
313 static inline tree
314 get_constant_value (tree var)
315 {
316 prop_value_t *val;
317 if (TREE_CODE (var) != SSA_NAME)
318 {
319 if (is_gimple_min_invariant (var))
320 return var;
321 return NULL_TREE;
322 }
323 val = get_value (var);
324 if (val
325 && val->lattice_val == CONSTANT
326 && (TREE_CODE (val->value) != INTEGER_CST
327 || val->mask.is_zero ()))
328 return val->value;
329 return NULL_TREE;
330 }
331
332 /* Sets the value associated with VAR to VARYING. */
333
334 static inline void
335 set_value_varying (tree var)
336 {
337 prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
338
339 val->lattice_val = VARYING;
340 val->value = NULL_TREE;
341 val->mask = double_int_minus_one;
342 }
343
344 /* For float types, modify the value of VAL to make ccp work correctly
345 for non-standard values (-0, NaN):
346
347 If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0.
348 If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED.
349 This is to fix the following problem (see PR 29921): Suppose we have
350
351 x = 0.0 * y
352
353 and we set value of y to NaN. This causes value of x to be set to NaN.
354 When we later determine that y is in fact VARYING, fold uses the fact
355 that HONOR_NANS is false, and we try to change the value of x to 0,
356 causing an ICE. With HONOR_NANS being false, the real appearance of
357 NaN would cause undefined behavior, though, so claiming that y (and x)
358 are UNDEFINED initially is correct. */
359
360 static void
361 canonicalize_float_value (prop_value_t *val)
362 {
363 enum machine_mode mode;
364 tree type;
365 REAL_VALUE_TYPE d;
366
367 if (val->lattice_val != CONSTANT
368 || TREE_CODE (val->value) != REAL_CST)
369 return;
370
371 d = TREE_REAL_CST (val->value);
372 type = TREE_TYPE (val->value);
373 mode = TYPE_MODE (type);
374
375 if (!HONOR_SIGNED_ZEROS (mode)
376 && REAL_VALUE_MINUS_ZERO (d))
377 {
378 val->value = build_real (type, dconst0);
379 return;
380 }
381
382 if (!HONOR_NANS (mode)
383 && REAL_VALUE_ISNAN (d))
384 {
385 val->lattice_val = UNDEFINED;
386 val->value = NULL;
387 return;
388 }
389 }
390
391 /* Return whether the lattice transition is valid. */
392
393 static bool
394 valid_lattice_transition (prop_value_t old_val, prop_value_t new_val)
395 {
396 /* Lattice transitions must always be monotonically increasing in
397 value. */
398 if (old_val.lattice_val < new_val.lattice_val)
399 return true;
400
401 if (old_val.lattice_val != new_val.lattice_val)
402 return false;
403
404 if (!old_val.value && !new_val.value)
405 return true;
406
407 /* Now both lattice values are CONSTANT. */
408
409 /* Allow transitioning from PHI <&x, not executable> == &x
410 to PHI <&x, &y> == common alignment. */
411 if (TREE_CODE (old_val.value) != INTEGER_CST
412 && TREE_CODE (new_val.value) == INTEGER_CST)
413 return true;
414
415 /* Bit-lattices have to agree in the still valid bits. */
416 if (TREE_CODE (old_val.value) == INTEGER_CST
417 && TREE_CODE (new_val.value) == INTEGER_CST)
418 return tree_to_double_int (old_val.value).and_not (new_val.mask)
419 == tree_to_double_int (new_val.value).and_not (new_val.mask);
420
421 /* Otherwise constant values have to agree. */
422 return operand_equal_p (old_val.value, new_val.value, 0);
423 }
424
425 /* Set the value for variable VAR to NEW_VAL. Return true if the new
426 value is different from VAR's previous value. */
427
428 static bool
429 set_lattice_value (tree var, prop_value_t new_val)
430 {
431 /* We can deal with old UNINITIALIZED values just fine here. */
432 prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
433
434 canonicalize_float_value (&new_val);
435
436 /* We have to be careful to not go up the bitwise lattice
437 represented by the mask.
438 ??? This doesn't seem to be the best place to enforce this. */
439 if (new_val.lattice_val == CONSTANT
440 && old_val->lattice_val == CONSTANT
441 && TREE_CODE (new_val.value) == INTEGER_CST
442 && TREE_CODE (old_val->value) == INTEGER_CST)
443 {
444 double_int diff;
445 diff = tree_to_double_int (new_val.value)
446 ^ tree_to_double_int (old_val->value);
447 new_val.mask = new_val.mask | old_val->mask | diff;
448 }
449
450 gcc_assert (valid_lattice_transition (*old_val, new_val));
451
452 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
453 caller that this was a non-transition. */
454 if (old_val->lattice_val != new_val.lattice_val
455 || (new_val.lattice_val == CONSTANT
456 && TREE_CODE (new_val.value) == INTEGER_CST
457 && (TREE_CODE (old_val->value) != INTEGER_CST
458 || new_val.mask != old_val->mask)))
459 {
460 /* ??? We would like to delay creation of INTEGER_CSTs from
461 partially constants here. */
462
463 if (dump_file && (dump_flags & TDF_DETAILS))
464 {
465 dump_lattice_value (dump_file, "Lattice value changed to ", new_val);
466 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
467 }
468
469 *old_val = new_val;
470
471 gcc_assert (new_val.lattice_val != UNINITIALIZED);
472 return true;
473 }
474
475 return false;
476 }
477
478 static prop_value_t get_value_for_expr (tree, bool);
479 static prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
480 static void bit_value_binop_1 (enum tree_code, tree, double_int *, double_int *,
481 tree, double_int, double_int,
482 tree, double_int, double_int);
483
484 /* Return a double_int that can be used for bitwise simplifications
485 from VAL. */
486
487 static double_int
488 value_to_double_int (prop_value_t val)
489 {
490 if (val.value
491 && TREE_CODE (val.value) == INTEGER_CST)
492 return tree_to_double_int (val.value);
493 else
494 return double_int_zero;
495 }
496
497 /* Return the value for the address expression EXPR based on alignment
498 information. */
499
500 static prop_value_t
501 get_value_from_alignment (tree expr)
502 {
503 tree type = TREE_TYPE (expr);
504 prop_value_t val;
505 unsigned HOST_WIDE_INT bitpos;
506 unsigned int align;
507
508 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
509
510 get_pointer_alignment_1 (expr, &align, &bitpos);
511 val.mask = (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
512 ? double_int::mask (TYPE_PRECISION (type))
513 : double_int_minus_one)
514 .and_not (double_int::from_uhwi (align / BITS_PER_UNIT - 1));
515 val.lattice_val = val.mask.is_minus_one () ? VARYING : CONSTANT;
516 if (val.lattice_val == CONSTANT)
517 val.value
518 = double_int_to_tree (type,
519 double_int::from_uhwi (bitpos / BITS_PER_UNIT));
520 else
521 val.value = NULL_TREE;
522
523 return val;
524 }
525
526 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
527 return constant bits extracted from alignment information for
528 invariant addresses. */
529
530 static prop_value_t
531 get_value_for_expr (tree expr, bool for_bits_p)
532 {
533 prop_value_t val;
534
535 if (TREE_CODE (expr) == SSA_NAME)
536 {
537 val = *get_value (expr);
538 if (for_bits_p
539 && val.lattice_val == CONSTANT
540 && TREE_CODE (val.value) == ADDR_EXPR)
541 val = get_value_from_alignment (val.value);
542 }
543 else if (is_gimple_min_invariant (expr)
544 && (!for_bits_p || TREE_CODE (expr) != ADDR_EXPR))
545 {
546 val.lattice_val = CONSTANT;
547 val.value = expr;
548 val.mask = double_int_zero;
549 canonicalize_float_value (&val);
550 }
551 else if (TREE_CODE (expr) == ADDR_EXPR)
552 val = get_value_from_alignment (expr);
553 else
554 {
555 val.lattice_val = VARYING;
556 val.mask = double_int_minus_one;
557 val.value = NULL_TREE;
558 }
559 return val;
560 }
561
562 /* Return the likely CCP lattice value for STMT.
563
564 If STMT has no operands, then return CONSTANT.
565
566 Else if undefinedness of operands of STMT cause its value to be
567 undefined, then return UNDEFINED.
568
569 Else if any operands of STMT are constants, then return CONSTANT.
570
571 Else return VARYING. */
572
573 static ccp_lattice_t
574 likely_value (gimple stmt)
575 {
576 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
577 tree use;
578 ssa_op_iter iter;
579 unsigned i;
580
581 enum gimple_code code = gimple_code (stmt);
582
583 /* This function appears to be called only for assignments, calls,
584 conditionals, and switches, due to the logic in visit_stmt. */
585 gcc_assert (code == GIMPLE_ASSIGN
586 || code == GIMPLE_CALL
587 || code == GIMPLE_COND
588 || code == GIMPLE_SWITCH);
589
590 /* If the statement has volatile operands, it won't fold to a
591 constant value. */
592 if (gimple_has_volatile_ops (stmt))
593 return VARYING;
594
595 /* Arrive here for more complex cases. */
596 has_constant_operand = false;
597 has_undefined_operand = false;
598 all_undefined_operands = true;
599 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
600 {
601 prop_value_t *val = get_value (use);
602
603 if (val->lattice_val == UNDEFINED)
604 has_undefined_operand = true;
605 else
606 all_undefined_operands = false;
607
608 if (val->lattice_val == CONSTANT)
609 has_constant_operand = true;
610 }
611
612 /* There may be constants in regular rhs operands. For calls we
613 have to ignore lhs, fndecl and static chain, otherwise only
614 the lhs. */
615 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
616 i < gimple_num_ops (stmt); ++i)
617 {
618 tree op = gimple_op (stmt, i);
619 if (!op || TREE_CODE (op) == SSA_NAME)
620 continue;
621 if (is_gimple_min_invariant (op))
622 has_constant_operand = true;
623 }
624
625 if (has_constant_operand)
626 all_undefined_operands = false;
627
628 /* If the operation combines operands like COMPLEX_EXPR make sure to
629 not mark the result UNDEFINED if only one part of the result is
630 undefined. */
631 if (has_undefined_operand && all_undefined_operands)
632 return UNDEFINED;
633 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
634 {
635 switch (gimple_assign_rhs_code (stmt))
636 {
637 /* Unary operators are handled with all_undefined_operands. */
638 case PLUS_EXPR:
639 case MINUS_EXPR:
640 case POINTER_PLUS_EXPR:
641 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
642 Not bitwise operators, one VARYING operand may specify the
643 result completely. Not logical operators for the same reason.
644 Not COMPLEX_EXPR as one VARYING operand makes the result partly
645 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
646 the undefined operand may be promoted. */
647 return UNDEFINED;
648
649 case ADDR_EXPR:
650 /* If any part of an address is UNDEFINED, like the index
651 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
652 return UNDEFINED;
653
654 default:
655 ;
656 }
657 }
658 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
659 fall back to CONSTANT. During iteration UNDEFINED may still drop
660 to CONSTANT. */
661 if (has_undefined_operand)
662 return CONSTANT;
663
664 /* We do not consider virtual operands here -- load from read-only
665 memory may have only VARYING virtual operands, but still be
666 constant. */
667 if (has_constant_operand
668 || gimple_references_memory_p (stmt))
669 return CONSTANT;
670
671 return VARYING;
672 }
673
674 /* Returns true if STMT cannot be constant. */
675
676 static bool
677 surely_varying_stmt_p (gimple stmt)
678 {
679 /* If the statement has operands that we cannot handle, it cannot be
680 constant. */
681 if (gimple_has_volatile_ops (stmt))
682 return true;
683
684 /* If it is a call and does not return a value or is not a
685 builtin and not an indirect call, it is varying. */
686 if (is_gimple_call (stmt))
687 {
688 tree fndecl;
689 if (!gimple_call_lhs (stmt)
690 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
691 && !DECL_BUILT_IN (fndecl)))
692 return true;
693 }
694
695 /* Any other store operation is not interesting. */
696 else if (gimple_vdef (stmt))
697 return true;
698
699 /* Anything other than assignments and conditional jumps are not
700 interesting for CCP. */
701 if (gimple_code (stmt) != GIMPLE_ASSIGN
702 && gimple_code (stmt) != GIMPLE_COND
703 && gimple_code (stmt) != GIMPLE_SWITCH
704 && gimple_code (stmt) != GIMPLE_CALL)
705 return true;
706
707 return false;
708 }
709
710 /* Initialize local data structures for CCP. */
711
712 static void
713 ccp_initialize (void)
714 {
715 basic_block bb;
716
717 const_val = XCNEWVEC (prop_value_t, num_ssa_names);
718
719 /* Initialize simulation flags for PHI nodes and statements. */
720 FOR_EACH_BB (bb)
721 {
722 gimple_stmt_iterator i;
723
724 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
725 {
726 gimple stmt = gsi_stmt (i);
727 bool is_varying;
728
729 /* If the statement is a control insn, then we do not
730 want to avoid simulating the statement once. Failure
731 to do so means that those edges will never get added. */
732 if (stmt_ends_bb_p (stmt))
733 is_varying = false;
734 else
735 is_varying = surely_varying_stmt_p (stmt);
736
737 if (is_varying)
738 {
739 tree def;
740 ssa_op_iter iter;
741
742 /* If the statement will not produce a constant, mark
743 all its outputs VARYING. */
744 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
745 set_value_varying (def);
746 }
747 prop_set_simulate_again (stmt, !is_varying);
748 }
749 }
750
751 /* Now process PHI nodes. We never clear the simulate_again flag on
752 phi nodes, since we do not know which edges are executable yet,
753 except for phi nodes for virtual operands when we do not do store ccp. */
754 FOR_EACH_BB (bb)
755 {
756 gimple_stmt_iterator i;
757
758 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
759 {
760 gimple phi = gsi_stmt (i);
761
762 if (virtual_operand_p (gimple_phi_result (phi)))
763 prop_set_simulate_again (phi, false);
764 else
765 prop_set_simulate_again (phi, true);
766 }
767 }
768 }
769
770 /* Debug count support. Reset the values of ssa names
771 VARYING when the total number ssa names analyzed is
772 beyond the debug count specified. */
773
774 static void
775 do_dbg_cnt (void)
776 {
777 unsigned i;
778 for (i = 0; i < num_ssa_names; i++)
779 {
780 if (!dbg_cnt (ccp))
781 {
782 const_val[i].lattice_val = VARYING;
783 const_val[i].mask = double_int_minus_one;
784 const_val[i].value = NULL_TREE;
785 }
786 }
787 }
788
789
790 /* Do final substitution of propagated values, cleanup the flowgraph and
791 free allocated storage.
792
793 Return TRUE when something was optimized. */
794
795 static bool
796 ccp_finalize (void)
797 {
798 bool something_changed;
799 unsigned i;
800
801 do_dbg_cnt ();
802
803 /* Derive alignment and misalignment information from partially
804 constant pointers in the lattice. */
805 for (i = 1; i < num_ssa_names; ++i)
806 {
807 tree name = ssa_name (i);
808 prop_value_t *val;
809 unsigned int tem, align;
810
811 if (!name
812 || !POINTER_TYPE_P (TREE_TYPE (name)))
813 continue;
814
815 val = get_value (name);
816 if (val->lattice_val != CONSTANT
817 || TREE_CODE (val->value) != INTEGER_CST)
818 continue;
819
820 /* Trailing constant bits specify the alignment, trailing value
821 bits the misalignment. */
822 tem = val->mask.low;
823 align = (tem & -tem);
824 if (align > 1)
825 set_ptr_info_alignment (get_ptr_info (name), align,
826 TREE_INT_CST_LOW (val->value) & (align - 1));
827 }
828
829 /* Perform substitutions based on the known constant values. */
830 something_changed = substitute_and_fold (get_constant_value,
831 ccp_fold_stmt, true);
832
833 free (const_val);
834 const_val = NULL;
835 return something_changed;;
836 }
837
838
839 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
840 in VAL1.
841
842 any M UNDEFINED = any
843 any M VARYING = VARYING
844 Ci M Cj = Ci if (i == j)
845 Ci M Cj = VARYING if (i != j)
846 */
847
848 static void
849 ccp_lattice_meet (prop_value_t *val1, prop_value_t *val2)
850 {
851 if (val1->lattice_val == UNDEFINED)
852 {
853 /* UNDEFINED M any = any */
854 *val1 = *val2;
855 }
856 else if (val2->lattice_val == UNDEFINED)
857 {
858 /* any M UNDEFINED = any
859 Nothing to do. VAL1 already contains the value we want. */
860 ;
861 }
862 else if (val1->lattice_val == VARYING
863 || val2->lattice_val == VARYING)
864 {
865 /* any M VARYING = VARYING. */
866 val1->lattice_val = VARYING;
867 val1->mask = double_int_minus_one;
868 val1->value = NULL_TREE;
869 }
870 else if (val1->lattice_val == CONSTANT
871 && val2->lattice_val == CONSTANT
872 && TREE_CODE (val1->value) == INTEGER_CST
873 && TREE_CODE (val2->value) == INTEGER_CST)
874 {
875 /* Ci M Cj = Ci if (i == j)
876 Ci M Cj = VARYING if (i != j)
877
878 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
879 drop to varying. */
880 val1->mask = val1->mask | val2->mask
881 | (tree_to_double_int (val1->value)
882 ^ tree_to_double_int (val2->value));
883 if (val1->mask.is_minus_one ())
884 {
885 val1->lattice_val = VARYING;
886 val1->value = NULL_TREE;
887 }
888 }
889 else if (val1->lattice_val == CONSTANT
890 && val2->lattice_val == CONSTANT
891 && simple_cst_equal (val1->value, val2->value) == 1)
892 {
893 /* Ci M Cj = Ci if (i == j)
894 Ci M Cj = VARYING if (i != j)
895
896 VAL1 already contains the value we want for equivalent values. */
897 }
898 else if (val1->lattice_val == CONSTANT
899 && val2->lattice_val == CONSTANT
900 && (TREE_CODE (val1->value) == ADDR_EXPR
901 || TREE_CODE (val2->value) == ADDR_EXPR))
902 {
903 /* When not equal addresses are involved try meeting for
904 alignment. */
905 prop_value_t tem = *val2;
906 if (TREE_CODE (val1->value) == ADDR_EXPR)
907 *val1 = get_value_for_expr (val1->value, true);
908 if (TREE_CODE (val2->value) == ADDR_EXPR)
909 tem = get_value_for_expr (val2->value, true);
910 ccp_lattice_meet (val1, &tem);
911 }
912 else
913 {
914 /* Any other combination is VARYING. */
915 val1->lattice_val = VARYING;
916 val1->mask = double_int_minus_one;
917 val1->value = NULL_TREE;
918 }
919 }
920
921
922 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
923 lattice values to determine PHI_NODE's lattice value. The value of a
924 PHI node is determined calling ccp_lattice_meet with all the arguments
925 of the PHI node that are incoming via executable edges. */
926
927 static enum ssa_prop_result
928 ccp_visit_phi_node (gimple phi)
929 {
930 unsigned i;
931 prop_value_t *old_val, new_val;
932
933 if (dump_file && (dump_flags & TDF_DETAILS))
934 {
935 fprintf (dump_file, "\nVisiting PHI node: ");
936 print_gimple_stmt (dump_file, phi, 0, dump_flags);
937 }
938
939 old_val = get_value (gimple_phi_result (phi));
940 switch (old_val->lattice_val)
941 {
942 case VARYING:
943 return SSA_PROP_VARYING;
944
945 case CONSTANT:
946 new_val = *old_val;
947 break;
948
949 case UNDEFINED:
950 new_val.lattice_val = UNDEFINED;
951 new_val.value = NULL_TREE;
952 break;
953
954 default:
955 gcc_unreachable ();
956 }
957
958 for (i = 0; i < gimple_phi_num_args (phi); i++)
959 {
960 /* Compute the meet operator over all the PHI arguments flowing
961 through executable edges. */
962 edge e = gimple_phi_arg_edge (phi, i);
963
964 if (dump_file && (dump_flags & TDF_DETAILS))
965 {
966 fprintf (dump_file,
967 "\n Argument #%d (%d -> %d %sexecutable)\n",
968 i, e->src->index, e->dest->index,
969 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
970 }
971
972 /* If the incoming edge is executable, Compute the meet operator for
973 the existing value of the PHI node and the current PHI argument. */
974 if (e->flags & EDGE_EXECUTABLE)
975 {
976 tree arg = gimple_phi_arg (phi, i)->def;
977 prop_value_t arg_val = get_value_for_expr (arg, false);
978
979 ccp_lattice_meet (&new_val, &arg_val);
980
981 if (dump_file && (dump_flags & TDF_DETAILS))
982 {
983 fprintf (dump_file, "\t");
984 print_generic_expr (dump_file, arg, dump_flags);
985 dump_lattice_value (dump_file, "\tValue: ", arg_val);
986 fprintf (dump_file, "\n");
987 }
988
989 if (new_val.lattice_val == VARYING)
990 break;
991 }
992 }
993
994 if (dump_file && (dump_flags & TDF_DETAILS))
995 {
996 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
997 fprintf (dump_file, "\n\n");
998 }
999
1000 /* Make the transition to the new value. */
1001 if (set_lattice_value (gimple_phi_result (phi), new_val))
1002 {
1003 if (new_val.lattice_val == VARYING)
1004 return SSA_PROP_VARYING;
1005 else
1006 return SSA_PROP_INTERESTING;
1007 }
1008 else
1009 return SSA_PROP_NOT_INTERESTING;
1010 }
1011
1012 /* Return the constant value for OP or OP otherwise. */
1013
1014 static tree
1015 valueize_op (tree op)
1016 {
1017 if (TREE_CODE (op) == SSA_NAME)
1018 {
1019 tree tem = get_constant_value (op);
1020 if (tem)
1021 return tem;
1022 }
1023 return op;
1024 }
1025
1026 /* CCP specific front-end to the non-destructive constant folding
1027 routines.
1028
1029 Attempt to simplify the RHS of STMT knowing that one or more
1030 operands are constants.
1031
1032 If simplification is possible, return the simplified RHS,
1033 otherwise return the original RHS or NULL_TREE. */
1034
1035 static tree
1036 ccp_fold (gimple stmt)
1037 {
1038 location_t loc = gimple_location (stmt);
1039 switch (gimple_code (stmt))
1040 {
1041 case GIMPLE_COND:
1042 {
1043 /* Handle comparison operators that can appear in GIMPLE form. */
1044 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1045 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1046 enum tree_code code = gimple_cond_code (stmt);
1047 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1048 }
1049
1050 case GIMPLE_SWITCH:
1051 {
1052 /* Return the constant switch index. */
1053 return valueize_op (gimple_switch_index (stmt));
1054 }
1055
1056 case GIMPLE_ASSIGN:
1057 case GIMPLE_CALL:
1058 return gimple_fold_stmt_to_constant_1 (stmt, valueize_op);
1059
1060 default:
1061 gcc_unreachable ();
1062 }
1063 }
1064
1065 /* Apply the operation CODE in type TYPE to the value, mask pair
1066 RVAL and RMASK representing a value of type RTYPE and set
1067 the value, mask pair *VAL and *MASK to the result. */
1068
1069 static void
1070 bit_value_unop_1 (enum tree_code code, tree type,
1071 double_int *val, double_int *mask,
1072 tree rtype, double_int rval, double_int rmask)
1073 {
1074 switch (code)
1075 {
1076 case BIT_NOT_EXPR:
1077 *mask = rmask;
1078 *val = ~rval;
1079 break;
1080
1081 case NEGATE_EXPR:
1082 {
1083 double_int temv, temm;
1084 /* Return ~rval + 1. */
1085 bit_value_unop_1 (BIT_NOT_EXPR, type, &temv, &temm, type, rval, rmask);
1086 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1087 type, temv, temm,
1088 type, double_int_one, double_int_zero);
1089 break;
1090 }
1091
1092 CASE_CONVERT:
1093 {
1094 bool uns;
1095
1096 /* First extend mask and value according to the original type. */
1097 uns = TYPE_UNSIGNED (rtype);
1098 *mask = rmask.ext (TYPE_PRECISION (rtype), uns);
1099 *val = rval.ext (TYPE_PRECISION (rtype), uns);
1100
1101 /* Then extend mask and value according to the target type. */
1102 uns = TYPE_UNSIGNED (type);
1103 *mask = (*mask).ext (TYPE_PRECISION (type), uns);
1104 *val = (*val).ext (TYPE_PRECISION (type), uns);
1105 break;
1106 }
1107
1108 default:
1109 *mask = double_int_minus_one;
1110 break;
1111 }
1112 }
1113
1114 /* Apply the operation CODE in type TYPE to the value, mask pairs
1115 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1116 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1117
1118 static void
1119 bit_value_binop_1 (enum tree_code code, tree type,
1120 double_int *val, double_int *mask,
1121 tree r1type, double_int r1val, double_int r1mask,
1122 tree r2type, double_int r2val, double_int r2mask)
1123 {
1124 bool uns = TYPE_UNSIGNED (type);
1125 /* Assume we'll get a constant result. Use an initial varying value,
1126 we fall back to varying in the end if necessary. */
1127 *mask = double_int_minus_one;
1128 switch (code)
1129 {
1130 case BIT_AND_EXPR:
1131 /* The mask is constant where there is a known not
1132 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1133 *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
1134 *val = r1val & r2val;
1135 break;
1136
1137 case BIT_IOR_EXPR:
1138 /* The mask is constant where there is a known
1139 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1140 *mask = (r1mask | r2mask)
1141 .and_not (r1val.and_not (r1mask) | r2val.and_not (r2mask));
1142 *val = r1val | r2val;
1143 break;
1144
1145 case BIT_XOR_EXPR:
1146 /* m1 | m2 */
1147 *mask = r1mask | r2mask;
1148 *val = r1val ^ r2val;
1149 break;
1150
1151 case LROTATE_EXPR:
1152 case RROTATE_EXPR:
1153 if (r2mask.is_zero ())
1154 {
1155 HOST_WIDE_INT shift = r2val.low;
1156 if (code == RROTATE_EXPR)
1157 shift = -shift;
1158 *mask = r1mask.lrotate (shift, TYPE_PRECISION (type));
1159 *val = r1val.lrotate (shift, TYPE_PRECISION (type));
1160 }
1161 break;
1162
1163 case LSHIFT_EXPR:
1164 case RSHIFT_EXPR:
1165 /* ??? We can handle partially known shift counts if we know
1166 its sign. That way we can tell that (x << (y | 8)) & 255
1167 is zero. */
1168 if (r2mask.is_zero ())
1169 {
1170 HOST_WIDE_INT shift = r2val.low;
1171 if (code == RSHIFT_EXPR)
1172 shift = -shift;
1173 /* We need to know if we are doing a left or a right shift
1174 to properly shift in zeros for left shift and unsigned
1175 right shifts and the sign bit for signed right shifts.
1176 For signed right shifts we shift in varying in case
1177 the sign bit was varying. */
1178 if (shift > 0)
1179 {
1180 *mask = r1mask.llshift (shift, TYPE_PRECISION (type));
1181 *val = r1val.llshift (shift, TYPE_PRECISION (type));
1182 }
1183 else if (shift < 0)
1184 {
1185 shift = -shift;
1186 *mask = r1mask.rshift (shift, TYPE_PRECISION (type), !uns);
1187 *val = r1val.rshift (shift, TYPE_PRECISION (type), !uns);
1188 }
1189 else
1190 {
1191 *mask = r1mask;
1192 *val = r1val;
1193 }
1194 }
1195 break;
1196
1197 case PLUS_EXPR:
1198 case POINTER_PLUS_EXPR:
1199 {
1200 double_int lo, hi;
1201 /* Do the addition with unknown bits set to zero, to give carry-ins of
1202 zero wherever possible. */
1203 lo = r1val.and_not (r1mask) + r2val.and_not (r2mask);
1204 lo = lo.ext (TYPE_PRECISION (type), uns);
1205 /* Do the addition with unknown bits set to one, to give carry-ins of
1206 one wherever possible. */
1207 hi = (r1val | r1mask) + (r2val | r2mask);
1208 hi = hi.ext (TYPE_PRECISION (type), uns);
1209 /* Each bit in the result is known if (a) the corresponding bits in
1210 both inputs are known, and (b) the carry-in to that bit position
1211 is known. We can check condition (b) by seeing if we got the same
1212 result with minimised carries as with maximised carries. */
1213 *mask = r1mask | r2mask | (lo ^ hi);
1214 *mask = (*mask).ext (TYPE_PRECISION (type), uns);
1215 /* It shouldn't matter whether we choose lo or hi here. */
1216 *val = lo;
1217 break;
1218 }
1219
1220 case MINUS_EXPR:
1221 {
1222 double_int temv, temm;
1223 bit_value_unop_1 (NEGATE_EXPR, r2type, &temv, &temm,
1224 r2type, r2val, r2mask);
1225 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1226 r1type, r1val, r1mask,
1227 r2type, temv, temm);
1228 break;
1229 }
1230
1231 case MULT_EXPR:
1232 {
1233 /* Just track trailing zeros in both operands and transfer
1234 them to the other. */
1235 int r1tz = (r1val | r1mask).trailing_zeros ();
1236 int r2tz = (r2val | r2mask).trailing_zeros ();
1237 if (r1tz + r2tz >= HOST_BITS_PER_DOUBLE_INT)
1238 {
1239 *mask = double_int_zero;
1240 *val = double_int_zero;
1241 }
1242 else if (r1tz + r2tz > 0)
1243 {
1244 *mask = ~double_int::mask (r1tz + r2tz);
1245 *mask = (*mask).ext (TYPE_PRECISION (type), uns);
1246 *val = double_int_zero;
1247 }
1248 break;
1249 }
1250
1251 case EQ_EXPR:
1252 case NE_EXPR:
1253 {
1254 double_int m = r1mask | r2mask;
1255 if (r1val.and_not (m) != r2val.and_not (m))
1256 {
1257 *mask = double_int_zero;
1258 *val = ((code == EQ_EXPR) ? double_int_zero : double_int_one);
1259 }
1260 else
1261 {
1262 /* We know the result of a comparison is always one or zero. */
1263 *mask = double_int_one;
1264 *val = double_int_zero;
1265 }
1266 break;
1267 }
1268
1269 case GE_EXPR:
1270 case GT_EXPR:
1271 {
1272 double_int tem = r1val;
1273 r1val = r2val;
1274 r2val = tem;
1275 tem = r1mask;
1276 r1mask = r2mask;
1277 r2mask = tem;
1278 code = swap_tree_comparison (code);
1279 }
1280 /* Fallthru. */
1281 case LT_EXPR:
1282 case LE_EXPR:
1283 {
1284 int minmax, maxmin;
1285 /* If the most significant bits are not known we know nothing. */
1286 if (r1mask.is_negative () || r2mask.is_negative ())
1287 break;
1288
1289 /* For comparisons the signedness is in the comparison operands. */
1290 uns = TYPE_UNSIGNED (r1type);
1291
1292 /* If we know the most significant bits we know the values
1293 value ranges by means of treating varying bits as zero
1294 or one. Do a cross comparison of the max/min pairs. */
1295 maxmin = (r1val | r1mask).cmp (r2val.and_not (r2mask), uns);
1296 minmax = r1val.and_not (r1mask).cmp (r2val | r2mask, uns);
1297 if (maxmin < 0) /* r1 is less than r2. */
1298 {
1299 *mask = double_int_zero;
1300 *val = double_int_one;
1301 }
1302 else if (minmax > 0) /* r1 is not less or equal to r2. */
1303 {
1304 *mask = double_int_zero;
1305 *val = double_int_zero;
1306 }
1307 else if (maxmin == minmax) /* r1 and r2 are equal. */
1308 {
1309 /* This probably should never happen as we'd have
1310 folded the thing during fully constant value folding. */
1311 *mask = double_int_zero;
1312 *val = (code == LE_EXPR ? double_int_one : double_int_zero);
1313 }
1314 else
1315 {
1316 /* We know the result of a comparison is always one or zero. */
1317 *mask = double_int_one;
1318 *val = double_int_zero;
1319 }
1320 break;
1321 }
1322
1323 default:;
1324 }
1325 }
1326
1327 /* Return the propagation value when applying the operation CODE to
1328 the value RHS yielding type TYPE. */
1329
1330 static prop_value_t
1331 bit_value_unop (enum tree_code code, tree type, tree rhs)
1332 {
1333 prop_value_t rval = get_value_for_expr (rhs, true);
1334 double_int value, mask;
1335 prop_value_t val;
1336
1337 if (rval.lattice_val == UNDEFINED)
1338 return rval;
1339
1340 gcc_assert ((rval.lattice_val == CONSTANT
1341 && TREE_CODE (rval.value) == INTEGER_CST)
1342 || rval.mask.is_minus_one ());
1343 bit_value_unop_1 (code, type, &value, &mask,
1344 TREE_TYPE (rhs), value_to_double_int (rval), rval.mask);
1345 if (!mask.is_minus_one ())
1346 {
1347 val.lattice_val = CONSTANT;
1348 val.mask = mask;
1349 /* ??? Delay building trees here. */
1350 val.value = double_int_to_tree (type, value);
1351 }
1352 else
1353 {
1354 val.lattice_val = VARYING;
1355 val.value = NULL_TREE;
1356 val.mask = double_int_minus_one;
1357 }
1358 return val;
1359 }
1360
1361 /* Return the propagation value when applying the operation CODE to
1362 the values RHS1 and RHS2 yielding type TYPE. */
1363
1364 static prop_value_t
1365 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
1366 {
1367 prop_value_t r1val = get_value_for_expr (rhs1, true);
1368 prop_value_t r2val = get_value_for_expr (rhs2, true);
1369 double_int value, mask;
1370 prop_value_t val;
1371
1372 if (r1val.lattice_val == UNDEFINED
1373 || r2val.lattice_val == UNDEFINED)
1374 {
1375 val.lattice_val = VARYING;
1376 val.value = NULL_TREE;
1377 val.mask = double_int_minus_one;
1378 return val;
1379 }
1380
1381 gcc_assert ((r1val.lattice_val == CONSTANT
1382 && TREE_CODE (r1val.value) == INTEGER_CST)
1383 || r1val.mask.is_minus_one ());
1384 gcc_assert ((r2val.lattice_val == CONSTANT
1385 && TREE_CODE (r2val.value) == INTEGER_CST)
1386 || r2val.mask.is_minus_one ());
1387 bit_value_binop_1 (code, type, &value, &mask,
1388 TREE_TYPE (rhs1), value_to_double_int (r1val), r1val.mask,
1389 TREE_TYPE (rhs2), value_to_double_int (r2val), r2val.mask);
1390 if (!mask.is_minus_one ())
1391 {
1392 val.lattice_val = CONSTANT;
1393 val.mask = mask;
1394 /* ??? Delay building trees here. */
1395 val.value = double_int_to_tree (type, value);
1396 }
1397 else
1398 {
1399 val.lattice_val = VARYING;
1400 val.value = NULL_TREE;
1401 val.mask = double_int_minus_one;
1402 }
1403 return val;
1404 }
1405
1406 /* Return the propagation value when applying __builtin_assume_aligned to
1407 its arguments. */
1408
1409 static prop_value_t
1410 bit_value_assume_aligned (gimple stmt)
1411 {
1412 tree ptr = gimple_call_arg (stmt, 0), align, misalign = NULL_TREE;
1413 tree type = TREE_TYPE (ptr);
1414 unsigned HOST_WIDE_INT aligni, misaligni = 0;
1415 prop_value_t ptrval = get_value_for_expr (ptr, true);
1416 prop_value_t alignval;
1417 double_int value, mask;
1418 prop_value_t val;
1419 if (ptrval.lattice_val == UNDEFINED)
1420 return ptrval;
1421 gcc_assert ((ptrval.lattice_val == CONSTANT
1422 && TREE_CODE (ptrval.value) == INTEGER_CST)
1423 || ptrval.mask.is_minus_one ());
1424 align = gimple_call_arg (stmt, 1);
1425 if (!host_integerp (align, 1))
1426 return ptrval;
1427 aligni = tree_low_cst (align, 1);
1428 if (aligni <= 1
1429 || (aligni & (aligni - 1)) != 0)
1430 return ptrval;
1431 if (gimple_call_num_args (stmt) > 2)
1432 {
1433 misalign = gimple_call_arg (stmt, 2);
1434 if (!host_integerp (misalign, 1))
1435 return ptrval;
1436 misaligni = tree_low_cst (misalign, 1);
1437 if (misaligni >= aligni)
1438 return ptrval;
1439 }
1440 align = build_int_cst_type (type, -aligni);
1441 alignval = get_value_for_expr (align, true);
1442 bit_value_binop_1 (BIT_AND_EXPR, type, &value, &mask,
1443 type, value_to_double_int (ptrval), ptrval.mask,
1444 type, value_to_double_int (alignval), alignval.mask);
1445 if (!mask.is_minus_one ())
1446 {
1447 val.lattice_val = CONSTANT;
1448 val.mask = mask;
1449 gcc_assert ((mask.low & (aligni - 1)) == 0);
1450 gcc_assert ((value.low & (aligni - 1)) == 0);
1451 value.low |= misaligni;
1452 /* ??? Delay building trees here. */
1453 val.value = double_int_to_tree (type, value);
1454 }
1455 else
1456 {
1457 val.lattice_val = VARYING;
1458 val.value = NULL_TREE;
1459 val.mask = double_int_minus_one;
1460 }
1461 return val;
1462 }
1463
1464 /* Evaluate statement STMT.
1465 Valid only for assignments, calls, conditionals, and switches. */
1466
1467 static prop_value_t
1468 evaluate_stmt (gimple stmt)
1469 {
1470 prop_value_t val;
1471 tree simplified = NULL_TREE;
1472 ccp_lattice_t likelyvalue = likely_value (stmt);
1473 bool is_constant = false;
1474 unsigned int align;
1475
1476 if (dump_file && (dump_flags & TDF_DETAILS))
1477 {
1478 fprintf (dump_file, "which is likely ");
1479 switch (likelyvalue)
1480 {
1481 case CONSTANT:
1482 fprintf (dump_file, "CONSTANT");
1483 break;
1484 case UNDEFINED:
1485 fprintf (dump_file, "UNDEFINED");
1486 break;
1487 case VARYING:
1488 fprintf (dump_file, "VARYING");
1489 break;
1490 default:;
1491 }
1492 fprintf (dump_file, "\n");
1493 }
1494
1495 /* If the statement is likely to have a CONSTANT result, then try
1496 to fold the statement to determine the constant value. */
1497 /* FIXME. This is the only place that we call ccp_fold.
1498 Since likely_value never returns CONSTANT for calls, we will
1499 not attempt to fold them, including builtins that may profit. */
1500 if (likelyvalue == CONSTANT)
1501 {
1502 fold_defer_overflow_warnings ();
1503 simplified = ccp_fold (stmt);
1504 is_constant = simplified && is_gimple_min_invariant (simplified);
1505 fold_undefer_overflow_warnings (is_constant, stmt, 0);
1506 if (is_constant)
1507 {
1508 /* The statement produced a constant value. */
1509 val.lattice_val = CONSTANT;
1510 val.value = simplified;
1511 val.mask = double_int_zero;
1512 }
1513 }
1514 /* If the statement is likely to have a VARYING result, then do not
1515 bother folding the statement. */
1516 else if (likelyvalue == VARYING)
1517 {
1518 enum gimple_code code = gimple_code (stmt);
1519 if (code == GIMPLE_ASSIGN)
1520 {
1521 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1522
1523 /* Other cases cannot satisfy is_gimple_min_invariant
1524 without folding. */
1525 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
1526 simplified = gimple_assign_rhs1 (stmt);
1527 }
1528 else if (code == GIMPLE_SWITCH)
1529 simplified = gimple_switch_index (stmt);
1530 else
1531 /* These cannot satisfy is_gimple_min_invariant without folding. */
1532 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
1533 is_constant = simplified && is_gimple_min_invariant (simplified);
1534 if (is_constant)
1535 {
1536 /* The statement produced a constant value. */
1537 val.lattice_val = CONSTANT;
1538 val.value = simplified;
1539 val.mask = double_int_zero;
1540 }
1541 }
1542
1543 /* Resort to simplification for bitwise tracking. */
1544 if (flag_tree_bit_ccp
1545 && (likelyvalue == CONSTANT || is_gimple_call (stmt))
1546 && !is_constant)
1547 {
1548 enum gimple_code code = gimple_code (stmt);
1549 tree fndecl;
1550 val.lattice_val = VARYING;
1551 val.value = NULL_TREE;
1552 val.mask = double_int_minus_one;
1553 if (code == GIMPLE_ASSIGN)
1554 {
1555 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1556 tree rhs1 = gimple_assign_rhs1 (stmt);
1557 switch (get_gimple_rhs_class (subcode))
1558 {
1559 case GIMPLE_SINGLE_RHS:
1560 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1561 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1562 val = get_value_for_expr (rhs1, true);
1563 break;
1564
1565 case GIMPLE_UNARY_RHS:
1566 if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1567 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1568 && (INTEGRAL_TYPE_P (gimple_expr_type (stmt))
1569 || POINTER_TYPE_P (gimple_expr_type (stmt))))
1570 val = bit_value_unop (subcode, gimple_expr_type (stmt), rhs1);
1571 break;
1572
1573 case GIMPLE_BINARY_RHS:
1574 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1575 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1576 {
1577 tree lhs = gimple_assign_lhs (stmt);
1578 tree rhs2 = gimple_assign_rhs2 (stmt);
1579 val = bit_value_binop (subcode,
1580 TREE_TYPE (lhs), rhs1, rhs2);
1581 }
1582 break;
1583
1584 default:;
1585 }
1586 }
1587 else if (code == GIMPLE_COND)
1588 {
1589 enum tree_code code = gimple_cond_code (stmt);
1590 tree rhs1 = gimple_cond_lhs (stmt);
1591 tree rhs2 = gimple_cond_rhs (stmt);
1592 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1593 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1594 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
1595 }
1596 else if (code == GIMPLE_CALL
1597 && (fndecl = gimple_call_fndecl (stmt))
1598 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1599 {
1600 switch (DECL_FUNCTION_CODE (fndecl))
1601 {
1602 case BUILT_IN_MALLOC:
1603 case BUILT_IN_REALLOC:
1604 case BUILT_IN_CALLOC:
1605 case BUILT_IN_STRDUP:
1606 case BUILT_IN_STRNDUP:
1607 val.lattice_val = CONSTANT;
1608 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1609 val.mask = double_int::from_shwi
1610 (~(((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT)
1611 / BITS_PER_UNIT - 1));
1612 break;
1613
1614 case BUILT_IN_ALLOCA:
1615 case BUILT_IN_ALLOCA_WITH_ALIGN:
1616 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN
1617 ? TREE_INT_CST_LOW (gimple_call_arg (stmt, 1))
1618 : BIGGEST_ALIGNMENT);
1619 val.lattice_val = CONSTANT;
1620 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1621 val.mask = double_int::from_shwi (~(((HOST_WIDE_INT) align)
1622 / BITS_PER_UNIT - 1));
1623 break;
1624
1625 /* These builtins return their first argument, unmodified. */
1626 case BUILT_IN_MEMCPY:
1627 case BUILT_IN_MEMMOVE:
1628 case BUILT_IN_MEMSET:
1629 case BUILT_IN_STRCPY:
1630 case BUILT_IN_STRNCPY:
1631 case BUILT_IN_MEMCPY_CHK:
1632 case BUILT_IN_MEMMOVE_CHK:
1633 case BUILT_IN_MEMSET_CHK:
1634 case BUILT_IN_STRCPY_CHK:
1635 case BUILT_IN_STRNCPY_CHK:
1636 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1637 break;
1638
1639 case BUILT_IN_ASSUME_ALIGNED:
1640 val = bit_value_assume_aligned (stmt);
1641 break;
1642
1643 default:;
1644 }
1645 }
1646 is_constant = (val.lattice_val == CONSTANT);
1647 }
1648
1649 if (!is_constant)
1650 {
1651 /* The statement produced a nonconstant value. If the statement
1652 had UNDEFINED operands, then the result of the statement
1653 should be UNDEFINED. Otherwise, the statement is VARYING. */
1654 if (likelyvalue == UNDEFINED)
1655 {
1656 val.lattice_val = likelyvalue;
1657 val.mask = double_int_zero;
1658 }
1659 else
1660 {
1661 val.lattice_val = VARYING;
1662 val.mask = double_int_minus_one;
1663 }
1664
1665 val.value = NULL_TREE;
1666 }
1667
1668 return val;
1669 }
1670
1671 typedef hash_table <pointer_hash <gimple_statement_d> > gimple_htab;
1672
1673 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
1674 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
1675
1676 static void
1677 insert_clobber_before_stack_restore (tree saved_val, tree var,
1678 gimple_htab *visited)
1679 {
1680 gimple stmt, clobber_stmt;
1681 tree clobber;
1682 imm_use_iterator iter;
1683 gimple_stmt_iterator i;
1684 gimple *slot;
1685
1686 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
1687 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
1688 {
1689 clobber = build_constructor (TREE_TYPE (var), NULL);
1690 TREE_THIS_VOLATILE (clobber) = 1;
1691 clobber_stmt = gimple_build_assign (var, clobber);
1692
1693 i = gsi_for_stmt (stmt);
1694 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
1695 }
1696 else if (gimple_code (stmt) == GIMPLE_PHI)
1697 {
1698 if (!visited->is_created ())
1699 visited->create (10);
1700
1701 slot = visited->find_slot (stmt, INSERT);
1702 if (*slot != NULL)
1703 continue;
1704
1705 *slot = stmt;
1706 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
1707 visited);
1708 }
1709 else
1710 gcc_assert (is_gimple_debug (stmt));
1711 }
1712
1713 /* Advance the iterator to the previous non-debug gimple statement in the same
1714 or dominating basic block. */
1715
1716 static inline void
1717 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
1718 {
1719 basic_block dom;
1720
1721 gsi_prev_nondebug (i);
1722 while (gsi_end_p (*i))
1723 {
1724 dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
1725 if (dom == NULL || dom == ENTRY_BLOCK_PTR)
1726 return;
1727
1728 *i = gsi_last_bb (dom);
1729 }
1730 }
1731
1732 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
1733 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
1734
1735 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
1736 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
1737 that case the function gives up without inserting the clobbers. */
1738
1739 static void
1740 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
1741 {
1742 gimple stmt;
1743 tree saved_val;
1744 gimple_htab visited;
1745
1746 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
1747 {
1748 stmt = gsi_stmt (i);
1749
1750 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
1751 continue;
1752
1753 saved_val = gimple_call_lhs (stmt);
1754 if (saved_val == NULL_TREE)
1755 continue;
1756
1757 insert_clobber_before_stack_restore (saved_val, var, &visited);
1758 break;
1759 }
1760
1761 if (visited.is_created ())
1762 visited.dispose ();
1763 }
1764
1765 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
1766 fixed-size array and returns the address, if found, otherwise returns
1767 NULL_TREE. */
1768
1769 static tree
1770 fold_builtin_alloca_with_align (gimple stmt)
1771 {
1772 unsigned HOST_WIDE_INT size, threshold, n_elem;
1773 tree lhs, arg, block, var, elem_type, array_type;
1774
1775 /* Get lhs. */
1776 lhs = gimple_call_lhs (stmt);
1777 if (lhs == NULL_TREE)
1778 return NULL_TREE;
1779
1780 /* Detect constant argument. */
1781 arg = get_constant_value (gimple_call_arg (stmt, 0));
1782 if (arg == NULL_TREE
1783 || TREE_CODE (arg) != INTEGER_CST
1784 || !host_integerp (arg, 1))
1785 return NULL_TREE;
1786
1787 size = TREE_INT_CST_LOW (arg);
1788
1789 /* Heuristic: don't fold large allocas. */
1790 threshold = (unsigned HOST_WIDE_INT)PARAM_VALUE (PARAM_LARGE_STACK_FRAME);
1791 /* In case the alloca is located at function entry, it has the same lifetime
1792 as a declared array, so we allow a larger size. */
1793 block = gimple_block (stmt);
1794 if (!(cfun->after_inlining
1795 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
1796 threshold /= 10;
1797 if (size > threshold)
1798 return NULL_TREE;
1799
1800 /* Declare array. */
1801 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
1802 n_elem = size * 8 / BITS_PER_UNIT;
1803 array_type = build_array_type_nelts (elem_type, n_elem);
1804 var = create_tmp_var (array_type, NULL);
1805 DECL_ALIGN (var) = TREE_INT_CST_LOW (gimple_call_arg (stmt, 1));
1806 {
1807 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
1808 if (pi != NULL && !pi->pt.anything)
1809 {
1810 bool singleton_p;
1811 unsigned uid;
1812 singleton_p = pt_solution_singleton_p (&pi->pt, &uid);
1813 gcc_assert (singleton_p);
1814 SET_DECL_PT_UID (var, uid);
1815 }
1816 }
1817
1818 /* Fold alloca to the address of the array. */
1819 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
1820 }
1821
1822 /* Fold the stmt at *GSI with CCP specific information that propagating
1823 and regular folding does not catch. */
1824
1825 static bool
1826 ccp_fold_stmt (gimple_stmt_iterator *gsi)
1827 {
1828 gimple stmt = gsi_stmt (*gsi);
1829
1830 switch (gimple_code (stmt))
1831 {
1832 case GIMPLE_COND:
1833 {
1834 prop_value_t val;
1835 /* Statement evaluation will handle type mismatches in constants
1836 more gracefully than the final propagation. This allows us to
1837 fold more conditionals here. */
1838 val = evaluate_stmt (stmt);
1839 if (val.lattice_val != CONSTANT
1840 || !val.mask.is_zero ())
1841 return false;
1842
1843 if (dump_file)
1844 {
1845 fprintf (dump_file, "Folding predicate ");
1846 print_gimple_expr (dump_file, stmt, 0, 0);
1847 fprintf (dump_file, " to ");
1848 print_generic_expr (dump_file, val.value, 0);
1849 fprintf (dump_file, "\n");
1850 }
1851
1852 if (integer_zerop (val.value))
1853 gimple_cond_make_false (stmt);
1854 else
1855 gimple_cond_make_true (stmt);
1856
1857 return true;
1858 }
1859
1860 case GIMPLE_CALL:
1861 {
1862 tree lhs = gimple_call_lhs (stmt);
1863 int flags = gimple_call_flags (stmt);
1864 tree val;
1865 tree argt;
1866 bool changed = false;
1867 unsigned i;
1868
1869 /* If the call was folded into a constant make sure it goes
1870 away even if we cannot propagate into all uses because of
1871 type issues. */
1872 if (lhs
1873 && TREE_CODE (lhs) == SSA_NAME
1874 && (val = get_constant_value (lhs))
1875 /* Don't optimize away calls that have side-effects. */
1876 && (flags & (ECF_CONST|ECF_PURE)) != 0
1877 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
1878 {
1879 tree new_rhs = unshare_expr (val);
1880 bool res;
1881 if (!useless_type_conversion_p (TREE_TYPE (lhs),
1882 TREE_TYPE (new_rhs)))
1883 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
1884 res = update_call_from_tree (gsi, new_rhs);
1885 gcc_assert (res);
1886 return true;
1887 }
1888
1889 /* Internal calls provide no argument types, so the extra laxity
1890 for normal calls does not apply. */
1891 if (gimple_call_internal_p (stmt))
1892 return false;
1893
1894 /* The heuristic of fold_builtin_alloca_with_align differs before and
1895 after inlining, so we don't require the arg to be changed into a
1896 constant for folding, but just to be constant. */
1897 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN))
1898 {
1899 tree new_rhs = fold_builtin_alloca_with_align (stmt);
1900 if (new_rhs)
1901 {
1902 bool res = update_call_from_tree (gsi, new_rhs);
1903 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
1904 gcc_assert (res);
1905 insert_clobbers_for_var (*gsi, var);
1906 return true;
1907 }
1908 }
1909
1910 /* Propagate into the call arguments. Compared to replace_uses_in
1911 this can use the argument slot types for type verification
1912 instead of the current argument type. We also can safely
1913 drop qualifiers here as we are dealing with constants anyway. */
1914 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
1915 for (i = 0; i < gimple_call_num_args (stmt) && argt;
1916 ++i, argt = TREE_CHAIN (argt))
1917 {
1918 tree arg = gimple_call_arg (stmt, i);
1919 if (TREE_CODE (arg) == SSA_NAME
1920 && (val = get_constant_value (arg))
1921 && useless_type_conversion_p
1922 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
1923 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
1924 {
1925 gimple_call_set_arg (stmt, i, unshare_expr (val));
1926 changed = true;
1927 }
1928 }
1929
1930 return changed;
1931 }
1932
1933 case GIMPLE_ASSIGN:
1934 {
1935 tree lhs = gimple_assign_lhs (stmt);
1936 tree val;
1937
1938 /* If we have a load that turned out to be constant replace it
1939 as we cannot propagate into all uses in all cases. */
1940 if (gimple_assign_single_p (stmt)
1941 && TREE_CODE (lhs) == SSA_NAME
1942 && (val = get_constant_value (lhs)))
1943 {
1944 tree rhs = unshare_expr (val);
1945 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
1946 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
1947 gimple_assign_set_rhs_from_tree (gsi, rhs);
1948 return true;
1949 }
1950
1951 return false;
1952 }
1953
1954 default:
1955 return false;
1956 }
1957 }
1958
1959 /* Visit the assignment statement STMT. Set the value of its LHS to the
1960 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
1961 creates virtual definitions, set the value of each new name to that
1962 of the RHS (if we can derive a constant out of the RHS).
1963 Value-returning call statements also perform an assignment, and
1964 are handled here. */
1965
1966 static enum ssa_prop_result
1967 visit_assignment (gimple stmt, tree *output_p)
1968 {
1969 prop_value_t val;
1970 enum ssa_prop_result retval;
1971
1972 tree lhs = gimple_get_lhs (stmt);
1973
1974 gcc_assert (gimple_code (stmt) != GIMPLE_CALL
1975 || gimple_call_lhs (stmt) != NULL_TREE);
1976
1977 if (gimple_assign_single_p (stmt)
1978 && gimple_assign_rhs_code (stmt) == SSA_NAME)
1979 /* For a simple copy operation, we copy the lattice values. */
1980 val = *get_value (gimple_assign_rhs1 (stmt));
1981 else
1982 /* Evaluate the statement, which could be
1983 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1984 val = evaluate_stmt (stmt);
1985
1986 retval = SSA_PROP_NOT_INTERESTING;
1987
1988 /* Set the lattice value of the statement's output. */
1989 if (TREE_CODE (lhs) == SSA_NAME)
1990 {
1991 /* If STMT is an assignment to an SSA_NAME, we only have one
1992 value to set. */
1993 if (set_lattice_value (lhs, val))
1994 {
1995 *output_p = lhs;
1996 if (val.lattice_val == VARYING)
1997 retval = SSA_PROP_VARYING;
1998 else
1999 retval = SSA_PROP_INTERESTING;
2000 }
2001 }
2002
2003 return retval;
2004 }
2005
2006
2007 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2008 if it can determine which edge will be taken. Otherwise, return
2009 SSA_PROP_VARYING. */
2010
2011 static enum ssa_prop_result
2012 visit_cond_stmt (gimple stmt, edge *taken_edge_p)
2013 {
2014 prop_value_t val;
2015 basic_block block;
2016
2017 block = gimple_bb (stmt);
2018 val = evaluate_stmt (stmt);
2019 if (val.lattice_val != CONSTANT
2020 || !val.mask.is_zero ())
2021 return SSA_PROP_VARYING;
2022
2023 /* Find which edge out of the conditional block will be taken and add it
2024 to the worklist. If no single edge can be determined statically,
2025 return SSA_PROP_VARYING to feed all the outgoing edges to the
2026 propagation engine. */
2027 *taken_edge_p = find_taken_edge (block, val.value);
2028 if (*taken_edge_p)
2029 return SSA_PROP_INTERESTING;
2030 else
2031 return SSA_PROP_VARYING;
2032 }
2033
2034
2035 /* Evaluate statement STMT. If the statement produces an output value and
2036 its evaluation changes the lattice value of its output, return
2037 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2038 output value.
2039
2040 If STMT is a conditional branch and we can determine its truth
2041 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2042 value, return SSA_PROP_VARYING. */
2043
2044 static enum ssa_prop_result
2045 ccp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
2046 {
2047 tree def;
2048 ssa_op_iter iter;
2049
2050 if (dump_file && (dump_flags & TDF_DETAILS))
2051 {
2052 fprintf (dump_file, "\nVisiting statement:\n");
2053 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2054 }
2055
2056 switch (gimple_code (stmt))
2057 {
2058 case GIMPLE_ASSIGN:
2059 /* If the statement is an assignment that produces a single
2060 output value, evaluate its RHS to see if the lattice value of
2061 its output has changed. */
2062 return visit_assignment (stmt, output_p);
2063
2064 case GIMPLE_CALL:
2065 /* A value-returning call also performs an assignment. */
2066 if (gimple_call_lhs (stmt) != NULL_TREE)
2067 return visit_assignment (stmt, output_p);
2068 break;
2069
2070 case GIMPLE_COND:
2071 case GIMPLE_SWITCH:
2072 /* If STMT is a conditional branch, see if we can determine
2073 which branch will be taken. */
2074 /* FIXME. It appears that we should be able to optimize
2075 computed GOTOs here as well. */
2076 return visit_cond_stmt (stmt, taken_edge_p);
2077
2078 default:
2079 break;
2080 }
2081
2082 /* Any other kind of statement is not interesting for constant
2083 propagation and, therefore, not worth simulating. */
2084 if (dump_file && (dump_flags & TDF_DETAILS))
2085 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2086
2087 /* Definitions made by statements other than assignments to
2088 SSA_NAMEs represent unknown modifications to their outputs.
2089 Mark them VARYING. */
2090 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2091 {
2092 prop_value_t v = { VARYING, NULL_TREE, { -1, (HOST_WIDE_INT) -1 } };
2093 set_lattice_value (def, v);
2094 }
2095
2096 return SSA_PROP_VARYING;
2097 }
2098
2099
2100 /* Main entry point for SSA Conditional Constant Propagation. */
2101
2102 static unsigned int
2103 do_ssa_ccp (void)
2104 {
2105 unsigned int todo = 0;
2106 calculate_dominance_info (CDI_DOMINATORS);
2107 ccp_initialize ();
2108 ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node);
2109 if (ccp_finalize ())
2110 todo = (TODO_cleanup_cfg | TODO_update_ssa | TODO_remove_unused_locals);
2111 free_dominance_info (CDI_DOMINATORS);
2112 return todo;
2113 }
2114
2115
2116 static bool
2117 gate_ccp (void)
2118 {
2119 return flag_tree_ccp != 0;
2120 }
2121
2122
2123 struct gimple_opt_pass pass_ccp =
2124 {
2125 {
2126 GIMPLE_PASS,
2127 "ccp", /* name */
2128 OPTGROUP_NONE, /* optinfo_flags */
2129 gate_ccp, /* gate */
2130 do_ssa_ccp, /* execute */
2131 NULL, /* sub */
2132 NULL, /* next */
2133 0, /* static_pass_number */
2134 TV_TREE_CCP, /* tv_id */
2135 PROP_cfg | PROP_ssa, /* properties_required */
2136 0, /* properties_provided */
2137 0, /* properties_destroyed */
2138 0, /* todo_flags_start */
2139 TODO_verify_ssa
2140 | TODO_update_address_taken
2141 | TODO_verify_stmts | TODO_ggc_collect/* todo_flags_finish */
2142 }
2143 };
2144
2145
2146
2147 /* Try to optimize out __builtin_stack_restore. Optimize it out
2148 if there is another __builtin_stack_restore in the same basic
2149 block and no calls or ASM_EXPRs are in between, or if this block's
2150 only outgoing edge is to EXIT_BLOCK and there are no calls or
2151 ASM_EXPRs after this __builtin_stack_restore. */
2152
2153 static tree
2154 optimize_stack_restore (gimple_stmt_iterator i)
2155 {
2156 tree callee;
2157 gimple stmt;
2158
2159 basic_block bb = gsi_bb (i);
2160 gimple call = gsi_stmt (i);
2161
2162 if (gimple_code (call) != GIMPLE_CALL
2163 || gimple_call_num_args (call) != 1
2164 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2165 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2166 return NULL_TREE;
2167
2168 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2169 {
2170 stmt = gsi_stmt (i);
2171 if (gimple_code (stmt) == GIMPLE_ASM)
2172 return NULL_TREE;
2173 if (gimple_code (stmt) != GIMPLE_CALL)
2174 continue;
2175
2176 callee = gimple_call_fndecl (stmt);
2177 if (!callee
2178 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2179 /* All regular builtins are ok, just obviously not alloca. */
2180 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
2181 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA_WITH_ALIGN)
2182 return NULL_TREE;
2183
2184 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
2185 goto second_stack_restore;
2186 }
2187
2188 if (!gsi_end_p (i))
2189 return NULL_TREE;
2190
2191 /* Allow one successor of the exit block, or zero successors. */
2192 switch (EDGE_COUNT (bb->succs))
2193 {
2194 case 0:
2195 break;
2196 case 1:
2197 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR)
2198 return NULL_TREE;
2199 break;
2200 default:
2201 return NULL_TREE;
2202 }
2203 second_stack_restore:
2204
2205 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2206 If there are multiple uses, then the last one should remove the call.
2207 In any case, whether the call to __builtin_stack_save can be removed
2208 or not is irrelevant to removing the call to __builtin_stack_restore. */
2209 if (has_single_use (gimple_call_arg (call, 0)))
2210 {
2211 gimple stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2212 if (is_gimple_call (stack_save))
2213 {
2214 callee = gimple_call_fndecl (stack_save);
2215 if (callee
2216 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2217 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE)
2218 {
2219 gimple_stmt_iterator stack_save_gsi;
2220 tree rhs;
2221
2222 stack_save_gsi = gsi_for_stmt (stack_save);
2223 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2224 update_call_from_tree (&stack_save_gsi, rhs);
2225 }
2226 }
2227 }
2228
2229 /* No effect, so the statement will be deleted. */
2230 return integer_zero_node;
2231 }
2232
2233 /* If va_list type is a simple pointer and nothing special is needed,
2234 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2235 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2236 pointer assignment. */
2237
2238 static tree
2239 optimize_stdarg_builtin (gimple call)
2240 {
2241 tree callee, lhs, rhs, cfun_va_list;
2242 bool va_list_simple_ptr;
2243 location_t loc = gimple_location (call);
2244
2245 if (gimple_code (call) != GIMPLE_CALL)
2246 return NULL_TREE;
2247
2248 callee = gimple_call_fndecl (call);
2249
2250 cfun_va_list = targetm.fn_abi_va_list (callee);
2251 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2252 && (TREE_TYPE (cfun_va_list) == void_type_node
2253 || TREE_TYPE (cfun_va_list) == char_type_node);
2254
2255 switch (DECL_FUNCTION_CODE (callee))
2256 {
2257 case BUILT_IN_VA_START:
2258 if (!va_list_simple_ptr
2259 || targetm.expand_builtin_va_start != NULL
2260 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
2261 return NULL_TREE;
2262
2263 if (gimple_call_num_args (call) != 2)
2264 return NULL_TREE;
2265
2266 lhs = gimple_call_arg (call, 0);
2267 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2268 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2269 != TYPE_MAIN_VARIANT (cfun_va_list))
2270 return NULL_TREE;
2271
2272 lhs = build_fold_indirect_ref_loc (loc, lhs);
2273 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
2274 1, integer_zero_node);
2275 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2276 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2277
2278 case BUILT_IN_VA_COPY:
2279 if (!va_list_simple_ptr)
2280 return NULL_TREE;
2281
2282 if (gimple_call_num_args (call) != 2)
2283 return NULL_TREE;
2284
2285 lhs = gimple_call_arg (call, 0);
2286 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2287 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2288 != TYPE_MAIN_VARIANT (cfun_va_list))
2289 return NULL_TREE;
2290
2291 lhs = build_fold_indirect_ref_loc (loc, lhs);
2292 rhs = gimple_call_arg (call, 1);
2293 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2294 != TYPE_MAIN_VARIANT (cfun_va_list))
2295 return NULL_TREE;
2296
2297 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2298 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2299
2300 case BUILT_IN_VA_END:
2301 /* No effect, so the statement will be deleted. */
2302 return integer_zero_node;
2303
2304 default:
2305 gcc_unreachable ();
2306 }
2307 }
2308
2309 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2310 the incoming jumps. Return true if at least one jump was changed. */
2311
2312 static bool
2313 optimize_unreachable (gimple_stmt_iterator i)
2314 {
2315 basic_block bb = gsi_bb (i);
2316 gimple_stmt_iterator gsi;
2317 gimple stmt;
2318 edge_iterator ei;
2319 edge e;
2320 bool ret;
2321
2322 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2323 {
2324 stmt = gsi_stmt (gsi);
2325
2326 if (is_gimple_debug (stmt))
2327 continue;
2328
2329 if (gimple_code (stmt) == GIMPLE_LABEL)
2330 {
2331 /* Verify we do not need to preserve the label. */
2332 if (FORCED_LABEL (gimple_label_label (stmt)))
2333 return false;
2334
2335 continue;
2336 }
2337
2338 /* Only handle the case that __builtin_unreachable is the first statement
2339 in the block. We rely on DCE to remove stmts without side-effects
2340 before __builtin_unreachable. */
2341 if (gsi_stmt (gsi) != gsi_stmt (i))
2342 return false;
2343 }
2344
2345 ret = false;
2346 FOR_EACH_EDGE (e, ei, bb->preds)
2347 {
2348 gsi = gsi_last_bb (e->src);
2349 if (gsi_end_p (gsi))
2350 continue;
2351
2352 stmt = gsi_stmt (gsi);
2353 if (gimple_code (stmt) == GIMPLE_COND)
2354 {
2355 if (e->flags & EDGE_TRUE_VALUE)
2356 gimple_cond_make_false (stmt);
2357 else if (e->flags & EDGE_FALSE_VALUE)
2358 gimple_cond_make_true (stmt);
2359 else
2360 gcc_unreachable ();
2361 update_stmt (stmt);
2362 }
2363 else
2364 {
2365 /* Todo: handle other cases, f.i. switch statement. */
2366 continue;
2367 }
2368
2369 ret = true;
2370 }
2371
2372 return ret;
2373 }
2374
2375 /* A simple pass that attempts to fold all builtin functions. This pass
2376 is run after we've propagated as many constants as we can. */
2377
2378 static unsigned int
2379 execute_fold_all_builtins (void)
2380 {
2381 bool cfg_changed = false;
2382 basic_block bb;
2383 unsigned int todoflags = 0;
2384
2385 FOR_EACH_BB (bb)
2386 {
2387 gimple_stmt_iterator i;
2388 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
2389 {
2390 gimple stmt, old_stmt;
2391 tree callee, result;
2392 enum built_in_function fcode;
2393
2394 stmt = gsi_stmt (i);
2395
2396 if (gimple_code (stmt) != GIMPLE_CALL)
2397 {
2398 gsi_next (&i);
2399 continue;
2400 }
2401 callee = gimple_call_fndecl (stmt);
2402 if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL)
2403 {
2404 gsi_next (&i);
2405 continue;
2406 }
2407 fcode = DECL_FUNCTION_CODE (callee);
2408
2409 result = gimple_fold_builtin (stmt);
2410
2411 if (result)
2412 gimple_remove_stmt_histograms (cfun, stmt);
2413
2414 if (!result)
2415 switch (DECL_FUNCTION_CODE (callee))
2416 {
2417 case BUILT_IN_CONSTANT_P:
2418 /* Resolve __builtin_constant_p. If it hasn't been
2419 folded to integer_one_node by now, it's fairly
2420 certain that the value simply isn't constant. */
2421 result = integer_zero_node;
2422 break;
2423
2424 case BUILT_IN_ASSUME_ALIGNED:
2425 /* Remove __builtin_assume_aligned. */
2426 result = gimple_call_arg (stmt, 0);
2427 break;
2428
2429 case BUILT_IN_STACK_RESTORE:
2430 result = optimize_stack_restore (i);
2431 if (result)
2432 break;
2433 gsi_next (&i);
2434 continue;
2435
2436 case BUILT_IN_UNREACHABLE:
2437 if (optimize_unreachable (i))
2438 cfg_changed = true;
2439 break;
2440
2441 case BUILT_IN_VA_START:
2442 case BUILT_IN_VA_END:
2443 case BUILT_IN_VA_COPY:
2444 /* These shouldn't be folded before pass_stdarg. */
2445 result = optimize_stdarg_builtin (stmt);
2446 if (result)
2447 break;
2448 /* FALLTHRU */
2449
2450 default:
2451 gsi_next (&i);
2452 continue;
2453 }
2454
2455 if (result == NULL_TREE)
2456 break;
2457
2458 if (dump_file && (dump_flags & TDF_DETAILS))
2459 {
2460 fprintf (dump_file, "Simplified\n ");
2461 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2462 }
2463
2464 old_stmt = stmt;
2465 if (!update_call_from_tree (&i, result))
2466 {
2467 gimplify_and_update_call_from_tree (&i, result);
2468 todoflags |= TODO_update_address_taken;
2469 }
2470
2471 stmt = gsi_stmt (i);
2472 update_stmt (stmt);
2473
2474 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
2475 && gimple_purge_dead_eh_edges (bb))
2476 cfg_changed = true;
2477
2478 if (dump_file && (dump_flags & TDF_DETAILS))
2479 {
2480 fprintf (dump_file, "to\n ");
2481 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2482 fprintf (dump_file, "\n");
2483 }
2484
2485 /* Retry the same statement if it changed into another
2486 builtin, there might be new opportunities now. */
2487 if (gimple_code (stmt) != GIMPLE_CALL)
2488 {
2489 gsi_next (&i);
2490 continue;
2491 }
2492 callee = gimple_call_fndecl (stmt);
2493 if (!callee
2494 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2495 || DECL_FUNCTION_CODE (callee) == fcode)
2496 gsi_next (&i);
2497 }
2498 }
2499
2500 /* Delete unreachable blocks. */
2501 if (cfg_changed)
2502 todoflags |= TODO_cleanup_cfg;
2503
2504 return todoflags;
2505 }
2506
2507
2508 struct gimple_opt_pass pass_fold_builtins =
2509 {
2510 {
2511 GIMPLE_PASS,
2512 "fab", /* name */
2513 OPTGROUP_NONE, /* optinfo_flags */
2514 NULL, /* gate */
2515 execute_fold_all_builtins, /* execute */
2516 NULL, /* sub */
2517 NULL, /* next */
2518 0, /* static_pass_number */
2519 TV_NONE, /* tv_id */
2520 PROP_cfg | PROP_ssa, /* properties_required */
2521 0, /* properties_provided */
2522 0, /* properties_destroyed */
2523 0, /* todo_flags_start */
2524 TODO_verify_ssa
2525 | TODO_update_ssa /* todo_flags_finish */
2526 }
2527 };