gensupport.c (init_rtx_reader_args_cb): Start counting code generating patterns from...
[gcc.git] / gcc / tree-ssa-ccp.c
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011, 2012 Free Software Foundation, Inc.
4 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
5 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 3, or (at your option) any
12 later version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* Conditional constant propagation (CCP) is based on the SSA
24 propagation engine (tree-ssa-propagate.c). Constant assignments of
25 the form VAR = CST are propagated from the assignments into uses of
26 VAR, which in turn may generate new constants. The simulation uses
27 a four level lattice to keep track of constant values associated
28 with SSA names. Given an SSA name V_i, it may take one of the
29 following values:
30
31 UNINITIALIZED -> the initial state of the value. This value
32 is replaced with a correct initial value
33 the first time the value is used, so the
34 rest of the pass does not need to care about
35 it. Using this value simplifies initialization
36 of the pass, and prevents us from needlessly
37 scanning statements that are never reached.
38
39 UNDEFINED -> V_i is a local variable whose definition
40 has not been processed yet. Therefore we
41 don't yet know if its value is a constant
42 or not.
43
44 CONSTANT -> V_i has been found to hold a constant
45 value C.
46
47 VARYING -> V_i cannot take a constant value, or if it
48 does, it is not possible to determine it
49 at compile time.
50
51 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
52
53 1- In ccp_visit_stmt, we are interested in assignments whose RHS
54 evaluates into a constant and conditional jumps whose predicate
55 evaluates into a boolean true or false. When an assignment of
56 the form V_i = CONST is found, V_i's lattice value is set to
57 CONSTANT and CONST is associated with it. This causes the
58 propagation engine to add all the SSA edges coming out the
59 assignment into the worklists, so that statements that use V_i
60 can be visited.
61
62 If the statement is a conditional with a constant predicate, we
63 mark the outgoing edges as executable or not executable
64 depending on the predicate's value. This is then used when
65 visiting PHI nodes to know when a PHI argument can be ignored.
66
67
68 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
69 same constant C, then the LHS of the PHI is set to C. This
70 evaluation is known as the "meet operation". Since one of the
71 goals of this evaluation is to optimistically return constant
72 values as often as possible, it uses two main short cuts:
73
74 - If an argument is flowing in through a non-executable edge, it
75 is ignored. This is useful in cases like this:
76
77 if (PRED)
78 a_9 = 3;
79 else
80 a_10 = 100;
81 a_11 = PHI (a_9, a_10)
82
83 If PRED is known to always evaluate to false, then we can
84 assume that a_11 will always take its value from a_10, meaning
85 that instead of consider it VARYING (a_9 and a_10 have
86 different values), we can consider it CONSTANT 100.
87
88 - If an argument has an UNDEFINED value, then it does not affect
89 the outcome of the meet operation. If a variable V_i has an
90 UNDEFINED value, it means that either its defining statement
91 hasn't been visited yet or V_i has no defining statement, in
92 which case the original symbol 'V' is being used
93 uninitialized. Since 'V' is a local variable, the compiler
94 may assume any initial value for it.
95
96
97 After propagation, every variable V_i that ends up with a lattice
98 value of CONSTANT will have the associated constant value in the
99 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
100 final substitution and folding.
101
102 References:
103
104 Constant propagation with conditional branches,
105 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
106
107 Building an Optimizing Compiler,
108 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
109
110 Advanced Compiler Design and Implementation,
111 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
112
113 #include "config.h"
114 #include "system.h"
115 #include "coretypes.h"
116 #include "tm.h"
117 #include "tree.h"
118 #include "flags.h"
119 #include "tm_p.h"
120 #include "basic-block.h"
121 #include "function.h"
122 #include "tree-pretty-print.h"
123 #include "gimple-pretty-print.h"
124 #include "timevar.h"
125 #include "tree-dump.h"
126 #include "tree-flow.h"
127 #include "tree-pass.h"
128 #include "tree-ssa-propagate.h"
129 #include "value-prof.h"
130 #include "langhooks.h"
131 #include "target.h"
132 #include "diagnostic-core.h"
133 #include "dbgcnt.h"
134 #include "gimple-fold.h"
135 #include "params.h"
136
137
138 /* Possible lattice values. */
139 typedef enum
140 {
141 UNINITIALIZED,
142 UNDEFINED,
143 CONSTANT,
144 VARYING
145 } ccp_lattice_t;
146
147 struct prop_value_d {
148 /* Lattice value. */
149 ccp_lattice_t lattice_val;
150
151 /* Propagated value. */
152 tree value;
153
154 /* Mask that applies to the propagated value during CCP. For
155 X with a CONSTANT lattice value X & ~mask == value & ~mask. */
156 double_int mask;
157 };
158
159 typedef struct prop_value_d prop_value_t;
160
161 /* Array of propagated constant values. After propagation,
162 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
163 the constant is held in an SSA name representing a memory store
164 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
165 memory reference used to store (i.e., the LHS of the assignment
166 doing the store). */
167 static prop_value_t *const_val;
168
169 static void canonicalize_float_value (prop_value_t *);
170 static bool ccp_fold_stmt (gimple_stmt_iterator *);
171
172 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
173
174 static void
175 dump_lattice_value (FILE *outf, const char *prefix, prop_value_t val)
176 {
177 switch (val.lattice_val)
178 {
179 case UNINITIALIZED:
180 fprintf (outf, "%sUNINITIALIZED", prefix);
181 break;
182 case UNDEFINED:
183 fprintf (outf, "%sUNDEFINED", prefix);
184 break;
185 case VARYING:
186 fprintf (outf, "%sVARYING", prefix);
187 break;
188 case CONSTANT:
189 fprintf (outf, "%sCONSTANT ", prefix);
190 if (TREE_CODE (val.value) != INTEGER_CST
191 || double_int_zero_p (val.mask))
192 print_generic_expr (outf, val.value, dump_flags);
193 else
194 {
195 double_int cval = double_int_and_not (tree_to_double_int (val.value),
196 val.mask);
197 fprintf (outf, "%sCONSTANT " HOST_WIDE_INT_PRINT_DOUBLE_HEX,
198 prefix, cval.high, cval.low);
199 fprintf (outf, " (" HOST_WIDE_INT_PRINT_DOUBLE_HEX ")",
200 val.mask.high, val.mask.low);
201 }
202 break;
203 default:
204 gcc_unreachable ();
205 }
206 }
207
208
209 /* Print lattice value VAL to stderr. */
210
211 void debug_lattice_value (prop_value_t val);
212
213 DEBUG_FUNCTION void
214 debug_lattice_value (prop_value_t val)
215 {
216 dump_lattice_value (stderr, "", val);
217 fprintf (stderr, "\n");
218 }
219
220
221 /* Compute a default value for variable VAR and store it in the
222 CONST_VAL array. The following rules are used to get default
223 values:
224
225 1- Global and static variables that are declared constant are
226 considered CONSTANT.
227
228 2- Any other value is considered UNDEFINED. This is useful when
229 considering PHI nodes. PHI arguments that are undefined do not
230 change the constant value of the PHI node, which allows for more
231 constants to be propagated.
232
233 3- Variables defined by statements other than assignments and PHI
234 nodes are considered VARYING.
235
236 4- Initial values of variables that are not GIMPLE registers are
237 considered VARYING. */
238
239 static prop_value_t
240 get_default_value (tree var)
241 {
242 tree sym = SSA_NAME_VAR (var);
243 prop_value_t val = { UNINITIALIZED, NULL_TREE, { 0, 0 } };
244 gimple stmt;
245
246 stmt = SSA_NAME_DEF_STMT (var);
247
248 if (gimple_nop_p (stmt))
249 {
250 /* Variables defined by an empty statement are those used
251 before being initialized. If VAR is a local variable, we
252 can assume initially that it is UNDEFINED, otherwise we must
253 consider it VARYING. */
254 if (is_gimple_reg (sym)
255 && TREE_CODE (sym) == VAR_DECL)
256 val.lattice_val = UNDEFINED;
257 else
258 {
259 val.lattice_val = VARYING;
260 val.mask = double_int_minus_one;
261 }
262 }
263 else if (is_gimple_assign (stmt)
264 /* Value-returning GIMPLE_CALL statements assign to
265 a variable, and are treated similarly to GIMPLE_ASSIGN. */
266 || (is_gimple_call (stmt)
267 && gimple_call_lhs (stmt) != NULL_TREE)
268 || gimple_code (stmt) == GIMPLE_PHI)
269 {
270 tree cst;
271 if (gimple_assign_single_p (stmt)
272 && DECL_P (gimple_assign_rhs1 (stmt))
273 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
274 {
275 val.lattice_val = CONSTANT;
276 val.value = cst;
277 }
278 else
279 /* Any other variable defined by an assignment or a PHI node
280 is considered UNDEFINED. */
281 val.lattice_val = UNDEFINED;
282 }
283 else
284 {
285 /* Otherwise, VAR will never take on a constant value. */
286 val.lattice_val = VARYING;
287 val.mask = double_int_minus_one;
288 }
289
290 return val;
291 }
292
293
294 /* Get the constant value associated with variable VAR. */
295
296 static inline prop_value_t *
297 get_value (tree var)
298 {
299 prop_value_t *val;
300
301 if (const_val == NULL)
302 return NULL;
303
304 val = &const_val[SSA_NAME_VERSION (var)];
305 if (val->lattice_val == UNINITIALIZED)
306 *val = get_default_value (var);
307
308 canonicalize_float_value (val);
309
310 return val;
311 }
312
313 /* Return the constant tree value associated with VAR. */
314
315 static inline tree
316 get_constant_value (tree var)
317 {
318 prop_value_t *val;
319 if (TREE_CODE (var) != SSA_NAME)
320 {
321 if (is_gimple_min_invariant (var))
322 return var;
323 return NULL_TREE;
324 }
325 val = get_value (var);
326 if (val
327 && val->lattice_val == CONSTANT
328 && (TREE_CODE (val->value) != INTEGER_CST
329 || double_int_zero_p (val->mask)))
330 return val->value;
331 return NULL_TREE;
332 }
333
334 /* Sets the value associated with VAR to VARYING. */
335
336 static inline void
337 set_value_varying (tree var)
338 {
339 prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
340
341 val->lattice_val = VARYING;
342 val->value = NULL_TREE;
343 val->mask = double_int_minus_one;
344 }
345
346 /* For float types, modify the value of VAL to make ccp work correctly
347 for non-standard values (-0, NaN):
348
349 If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0.
350 If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED.
351 This is to fix the following problem (see PR 29921): Suppose we have
352
353 x = 0.0 * y
354
355 and we set value of y to NaN. This causes value of x to be set to NaN.
356 When we later determine that y is in fact VARYING, fold uses the fact
357 that HONOR_NANS is false, and we try to change the value of x to 0,
358 causing an ICE. With HONOR_NANS being false, the real appearance of
359 NaN would cause undefined behavior, though, so claiming that y (and x)
360 are UNDEFINED initially is correct. */
361
362 static void
363 canonicalize_float_value (prop_value_t *val)
364 {
365 enum machine_mode mode;
366 tree type;
367 REAL_VALUE_TYPE d;
368
369 if (val->lattice_val != CONSTANT
370 || TREE_CODE (val->value) != REAL_CST)
371 return;
372
373 d = TREE_REAL_CST (val->value);
374 type = TREE_TYPE (val->value);
375 mode = TYPE_MODE (type);
376
377 if (!HONOR_SIGNED_ZEROS (mode)
378 && REAL_VALUE_MINUS_ZERO (d))
379 {
380 val->value = build_real (type, dconst0);
381 return;
382 }
383
384 if (!HONOR_NANS (mode)
385 && REAL_VALUE_ISNAN (d))
386 {
387 val->lattice_val = UNDEFINED;
388 val->value = NULL;
389 return;
390 }
391 }
392
393 /* Return whether the lattice transition is valid. */
394
395 static bool
396 valid_lattice_transition (prop_value_t old_val, prop_value_t new_val)
397 {
398 /* Lattice transitions must always be monotonically increasing in
399 value. */
400 if (old_val.lattice_val < new_val.lattice_val)
401 return true;
402
403 if (old_val.lattice_val != new_val.lattice_val)
404 return false;
405
406 if (!old_val.value && !new_val.value)
407 return true;
408
409 /* Now both lattice values are CONSTANT. */
410
411 /* Allow transitioning from &x to &x & ~3. */
412 if (TREE_CODE (old_val.value) != INTEGER_CST
413 && TREE_CODE (new_val.value) == INTEGER_CST)
414 return true;
415
416 /* Bit-lattices have to agree in the still valid bits. */
417 if (TREE_CODE (old_val.value) == INTEGER_CST
418 && TREE_CODE (new_val.value) == INTEGER_CST)
419 return double_int_equal_p
420 (double_int_and_not (tree_to_double_int (old_val.value),
421 new_val.mask),
422 double_int_and_not (tree_to_double_int (new_val.value),
423 new_val.mask));
424
425 /* Otherwise constant values have to agree. */
426 return operand_equal_p (old_val.value, new_val.value, 0);
427 }
428
429 /* Set the value for variable VAR to NEW_VAL. Return true if the new
430 value is different from VAR's previous value. */
431
432 static bool
433 set_lattice_value (tree var, prop_value_t new_val)
434 {
435 /* We can deal with old UNINITIALIZED values just fine here. */
436 prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
437
438 canonicalize_float_value (&new_val);
439
440 /* We have to be careful to not go up the bitwise lattice
441 represented by the mask.
442 ??? This doesn't seem to be the best place to enforce this. */
443 if (new_val.lattice_val == CONSTANT
444 && old_val->lattice_val == CONSTANT
445 && TREE_CODE (new_val.value) == INTEGER_CST
446 && TREE_CODE (old_val->value) == INTEGER_CST)
447 {
448 double_int diff;
449 diff = double_int_xor (tree_to_double_int (new_val.value),
450 tree_to_double_int (old_val->value));
451 new_val.mask = double_int_ior (new_val.mask,
452 double_int_ior (old_val->mask, diff));
453 }
454
455 gcc_assert (valid_lattice_transition (*old_val, new_val));
456
457 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
458 caller that this was a non-transition. */
459 if (old_val->lattice_val != new_val.lattice_val
460 || (new_val.lattice_val == CONSTANT
461 && TREE_CODE (new_val.value) == INTEGER_CST
462 && (TREE_CODE (old_val->value) != INTEGER_CST
463 || !double_int_equal_p (new_val.mask, old_val->mask))))
464 {
465 /* ??? We would like to delay creation of INTEGER_CSTs from
466 partially constants here. */
467
468 if (dump_file && (dump_flags & TDF_DETAILS))
469 {
470 dump_lattice_value (dump_file, "Lattice value changed to ", new_val);
471 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
472 }
473
474 *old_val = new_val;
475
476 gcc_assert (new_val.lattice_val != UNINITIALIZED);
477 return true;
478 }
479
480 return false;
481 }
482
483 static prop_value_t get_value_for_expr (tree, bool);
484 static prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
485 static void bit_value_binop_1 (enum tree_code, tree, double_int *, double_int *,
486 tree, double_int, double_int,
487 tree, double_int, double_int);
488
489 /* Return a double_int that can be used for bitwise simplifications
490 from VAL. */
491
492 static double_int
493 value_to_double_int (prop_value_t val)
494 {
495 if (val.value
496 && TREE_CODE (val.value) == INTEGER_CST)
497 return tree_to_double_int (val.value);
498 else
499 return double_int_zero;
500 }
501
502 /* Return the value for the address expression EXPR based on alignment
503 information. */
504
505 static prop_value_t
506 get_value_from_alignment (tree expr)
507 {
508 tree type = TREE_TYPE (expr);
509 prop_value_t val;
510 unsigned HOST_WIDE_INT bitpos;
511 unsigned int align;
512
513 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
514
515 get_object_alignment_1 (TREE_OPERAND (expr, 0), &align, &bitpos);
516 val.mask
517 = double_int_and_not (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
518 ? double_int_mask (TYPE_PRECISION (type))
519 : double_int_minus_one,
520 uhwi_to_double_int (align / BITS_PER_UNIT - 1));
521 val.lattice_val = double_int_minus_one_p (val.mask) ? VARYING : CONSTANT;
522 if (val.lattice_val == CONSTANT)
523 val.value
524 = double_int_to_tree (type, uhwi_to_double_int (bitpos / BITS_PER_UNIT));
525 else
526 val.value = NULL_TREE;
527
528 return val;
529 }
530
531 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
532 return constant bits extracted from alignment information for
533 invariant addresses. */
534
535 static prop_value_t
536 get_value_for_expr (tree expr, bool for_bits_p)
537 {
538 prop_value_t val;
539
540 if (TREE_CODE (expr) == SSA_NAME)
541 {
542 val = *get_value (expr);
543 if (for_bits_p
544 && val.lattice_val == CONSTANT
545 && TREE_CODE (val.value) == ADDR_EXPR)
546 val = get_value_from_alignment (val.value);
547 }
548 else if (is_gimple_min_invariant (expr)
549 && (!for_bits_p || TREE_CODE (expr) != ADDR_EXPR))
550 {
551 val.lattice_val = CONSTANT;
552 val.value = expr;
553 val.mask = double_int_zero;
554 canonicalize_float_value (&val);
555 }
556 else if (TREE_CODE (expr) == ADDR_EXPR)
557 val = get_value_from_alignment (expr);
558 else
559 {
560 val.lattice_val = VARYING;
561 val.mask = double_int_minus_one;
562 val.value = NULL_TREE;
563 }
564 return val;
565 }
566
567 /* Return the likely CCP lattice value for STMT.
568
569 If STMT has no operands, then return CONSTANT.
570
571 Else if undefinedness of operands of STMT cause its value to be
572 undefined, then return UNDEFINED.
573
574 Else if any operands of STMT are constants, then return CONSTANT.
575
576 Else return VARYING. */
577
578 static ccp_lattice_t
579 likely_value (gimple stmt)
580 {
581 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
582 tree use;
583 ssa_op_iter iter;
584 unsigned i;
585
586 enum gimple_code code = gimple_code (stmt);
587
588 /* This function appears to be called only for assignments, calls,
589 conditionals, and switches, due to the logic in visit_stmt. */
590 gcc_assert (code == GIMPLE_ASSIGN
591 || code == GIMPLE_CALL
592 || code == GIMPLE_COND
593 || code == GIMPLE_SWITCH);
594
595 /* If the statement has volatile operands, it won't fold to a
596 constant value. */
597 if (gimple_has_volatile_ops (stmt))
598 return VARYING;
599
600 /* Arrive here for more complex cases. */
601 has_constant_operand = false;
602 has_undefined_operand = false;
603 all_undefined_operands = true;
604 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
605 {
606 prop_value_t *val = get_value (use);
607
608 if (val->lattice_val == UNDEFINED)
609 has_undefined_operand = true;
610 else
611 all_undefined_operands = false;
612
613 if (val->lattice_val == CONSTANT)
614 has_constant_operand = true;
615 }
616
617 /* There may be constants in regular rhs operands. For calls we
618 have to ignore lhs, fndecl and static chain, otherwise only
619 the lhs. */
620 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
621 i < gimple_num_ops (stmt); ++i)
622 {
623 tree op = gimple_op (stmt, i);
624 if (!op || TREE_CODE (op) == SSA_NAME)
625 continue;
626 if (is_gimple_min_invariant (op))
627 has_constant_operand = true;
628 }
629
630 if (has_constant_operand)
631 all_undefined_operands = false;
632
633 /* If the operation combines operands like COMPLEX_EXPR make sure to
634 not mark the result UNDEFINED if only one part of the result is
635 undefined. */
636 if (has_undefined_operand && all_undefined_operands)
637 return UNDEFINED;
638 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
639 {
640 switch (gimple_assign_rhs_code (stmt))
641 {
642 /* Unary operators are handled with all_undefined_operands. */
643 case PLUS_EXPR:
644 case MINUS_EXPR:
645 case POINTER_PLUS_EXPR:
646 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
647 Not bitwise operators, one VARYING operand may specify the
648 result completely. Not logical operators for the same reason.
649 Not COMPLEX_EXPR as one VARYING operand makes the result partly
650 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
651 the undefined operand may be promoted. */
652 return UNDEFINED;
653
654 default:
655 ;
656 }
657 }
658 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
659 fall back to CONSTANT. During iteration UNDEFINED may still drop
660 to CONSTANT. */
661 if (has_undefined_operand)
662 return CONSTANT;
663
664 /* We do not consider virtual operands here -- load from read-only
665 memory may have only VARYING virtual operands, but still be
666 constant. */
667 if (has_constant_operand
668 || gimple_references_memory_p (stmt))
669 return CONSTANT;
670
671 return VARYING;
672 }
673
674 /* Returns true if STMT cannot be constant. */
675
676 static bool
677 surely_varying_stmt_p (gimple stmt)
678 {
679 /* If the statement has operands that we cannot handle, it cannot be
680 constant. */
681 if (gimple_has_volatile_ops (stmt))
682 return true;
683
684 /* If it is a call and does not return a value or is not a
685 builtin and not an indirect call, it is varying. */
686 if (is_gimple_call (stmt))
687 {
688 tree fndecl;
689 if (!gimple_call_lhs (stmt)
690 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
691 && !DECL_BUILT_IN (fndecl)))
692 return true;
693 }
694
695 /* Any other store operation is not interesting. */
696 else if (gimple_vdef (stmt))
697 return true;
698
699 /* Anything other than assignments and conditional jumps are not
700 interesting for CCP. */
701 if (gimple_code (stmt) != GIMPLE_ASSIGN
702 && gimple_code (stmt) != GIMPLE_COND
703 && gimple_code (stmt) != GIMPLE_SWITCH
704 && gimple_code (stmt) != GIMPLE_CALL)
705 return true;
706
707 return false;
708 }
709
710 /* Initialize local data structures for CCP. */
711
712 static void
713 ccp_initialize (void)
714 {
715 basic_block bb;
716
717 const_val = XCNEWVEC (prop_value_t, num_ssa_names);
718
719 /* Initialize simulation flags for PHI nodes and statements. */
720 FOR_EACH_BB (bb)
721 {
722 gimple_stmt_iterator i;
723
724 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
725 {
726 gimple stmt = gsi_stmt (i);
727 bool is_varying;
728
729 /* If the statement is a control insn, then we do not
730 want to avoid simulating the statement once. Failure
731 to do so means that those edges will never get added. */
732 if (stmt_ends_bb_p (stmt))
733 is_varying = false;
734 else
735 is_varying = surely_varying_stmt_p (stmt);
736
737 if (is_varying)
738 {
739 tree def;
740 ssa_op_iter iter;
741
742 /* If the statement will not produce a constant, mark
743 all its outputs VARYING. */
744 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
745 set_value_varying (def);
746 }
747 prop_set_simulate_again (stmt, !is_varying);
748 }
749 }
750
751 /* Now process PHI nodes. We never clear the simulate_again flag on
752 phi nodes, since we do not know which edges are executable yet,
753 except for phi nodes for virtual operands when we do not do store ccp. */
754 FOR_EACH_BB (bb)
755 {
756 gimple_stmt_iterator i;
757
758 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
759 {
760 gimple phi = gsi_stmt (i);
761
762 if (!is_gimple_reg (gimple_phi_result (phi)))
763 prop_set_simulate_again (phi, false);
764 else
765 prop_set_simulate_again (phi, true);
766 }
767 }
768 }
769
770 /* Debug count support. Reset the values of ssa names
771 VARYING when the total number ssa names analyzed is
772 beyond the debug count specified. */
773
774 static void
775 do_dbg_cnt (void)
776 {
777 unsigned i;
778 for (i = 0; i < num_ssa_names; i++)
779 {
780 if (!dbg_cnt (ccp))
781 {
782 const_val[i].lattice_val = VARYING;
783 const_val[i].mask = double_int_minus_one;
784 const_val[i].value = NULL_TREE;
785 }
786 }
787 }
788
789
790 /* Do final substitution of propagated values, cleanup the flowgraph and
791 free allocated storage.
792
793 Return TRUE when something was optimized. */
794
795 static bool
796 ccp_finalize (void)
797 {
798 bool something_changed;
799 unsigned i;
800
801 do_dbg_cnt ();
802
803 /* Derive alignment and misalignment information from partially
804 constant pointers in the lattice. */
805 for (i = 1; i < num_ssa_names; ++i)
806 {
807 tree name = ssa_name (i);
808 prop_value_t *val;
809 unsigned int tem, align;
810
811 if (!name
812 || !POINTER_TYPE_P (TREE_TYPE (name)))
813 continue;
814
815 val = get_value (name);
816 if (val->lattice_val != CONSTANT
817 || TREE_CODE (val->value) != INTEGER_CST)
818 continue;
819
820 /* Trailing constant bits specify the alignment, trailing value
821 bits the misalignment. */
822 tem = val->mask.low;
823 align = (tem & -tem);
824 if (align > 1)
825 set_ptr_info_alignment (get_ptr_info (name), align,
826 TREE_INT_CST_LOW (val->value) & (align - 1));
827 }
828
829 /* Perform substitutions based on the known constant values. */
830 something_changed = substitute_and_fold (get_constant_value,
831 ccp_fold_stmt, true);
832
833 free (const_val);
834 const_val = NULL;
835 return something_changed;;
836 }
837
838
839 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
840 in VAL1.
841
842 any M UNDEFINED = any
843 any M VARYING = VARYING
844 Ci M Cj = Ci if (i == j)
845 Ci M Cj = VARYING if (i != j)
846 */
847
848 static void
849 ccp_lattice_meet (prop_value_t *val1, prop_value_t *val2)
850 {
851 if (val1->lattice_val == UNDEFINED)
852 {
853 /* UNDEFINED M any = any */
854 *val1 = *val2;
855 }
856 else if (val2->lattice_val == UNDEFINED)
857 {
858 /* any M UNDEFINED = any
859 Nothing to do. VAL1 already contains the value we want. */
860 ;
861 }
862 else if (val1->lattice_val == VARYING
863 || val2->lattice_val == VARYING)
864 {
865 /* any M VARYING = VARYING. */
866 val1->lattice_val = VARYING;
867 val1->mask = double_int_minus_one;
868 val1->value = NULL_TREE;
869 }
870 else if (val1->lattice_val == CONSTANT
871 && val2->lattice_val == CONSTANT
872 && TREE_CODE (val1->value) == INTEGER_CST
873 && TREE_CODE (val2->value) == INTEGER_CST)
874 {
875 /* Ci M Cj = Ci if (i == j)
876 Ci M Cj = VARYING if (i != j)
877
878 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
879 drop to varying. */
880 val1->mask
881 = double_int_ior (double_int_ior (val1->mask,
882 val2->mask),
883 double_int_xor (tree_to_double_int (val1->value),
884 tree_to_double_int (val2->value)));
885 if (double_int_minus_one_p (val1->mask))
886 {
887 val1->lattice_val = VARYING;
888 val1->value = NULL_TREE;
889 }
890 }
891 else if (val1->lattice_val == CONSTANT
892 && val2->lattice_val == CONSTANT
893 && simple_cst_equal (val1->value, val2->value) == 1)
894 {
895 /* Ci M Cj = Ci if (i == j)
896 Ci M Cj = VARYING if (i != j)
897
898 VAL1 already contains the value we want for equivalent values. */
899 }
900 else if (val1->lattice_val == CONSTANT
901 && val2->lattice_val == CONSTANT
902 && (TREE_CODE (val1->value) == ADDR_EXPR
903 || TREE_CODE (val2->value) == ADDR_EXPR))
904 {
905 /* When not equal addresses are involved try meeting for
906 alignment. */
907 prop_value_t tem = *val2;
908 if (TREE_CODE (val1->value) == ADDR_EXPR)
909 *val1 = get_value_for_expr (val1->value, true);
910 if (TREE_CODE (val2->value) == ADDR_EXPR)
911 tem = get_value_for_expr (val2->value, true);
912 ccp_lattice_meet (val1, &tem);
913 }
914 else
915 {
916 /* Any other combination is VARYING. */
917 val1->lattice_val = VARYING;
918 val1->mask = double_int_minus_one;
919 val1->value = NULL_TREE;
920 }
921 }
922
923
924 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
925 lattice values to determine PHI_NODE's lattice value. The value of a
926 PHI node is determined calling ccp_lattice_meet with all the arguments
927 of the PHI node that are incoming via executable edges. */
928
929 static enum ssa_prop_result
930 ccp_visit_phi_node (gimple phi)
931 {
932 unsigned i;
933 prop_value_t *old_val, new_val;
934
935 if (dump_file && (dump_flags & TDF_DETAILS))
936 {
937 fprintf (dump_file, "\nVisiting PHI node: ");
938 print_gimple_stmt (dump_file, phi, 0, dump_flags);
939 }
940
941 old_val = get_value (gimple_phi_result (phi));
942 switch (old_val->lattice_val)
943 {
944 case VARYING:
945 return SSA_PROP_VARYING;
946
947 case CONSTANT:
948 new_val = *old_val;
949 break;
950
951 case UNDEFINED:
952 new_val.lattice_val = UNDEFINED;
953 new_val.value = NULL_TREE;
954 break;
955
956 default:
957 gcc_unreachable ();
958 }
959
960 for (i = 0; i < gimple_phi_num_args (phi); i++)
961 {
962 /* Compute the meet operator over all the PHI arguments flowing
963 through executable edges. */
964 edge e = gimple_phi_arg_edge (phi, i);
965
966 if (dump_file && (dump_flags & TDF_DETAILS))
967 {
968 fprintf (dump_file,
969 "\n Argument #%d (%d -> %d %sexecutable)\n",
970 i, e->src->index, e->dest->index,
971 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
972 }
973
974 /* If the incoming edge is executable, Compute the meet operator for
975 the existing value of the PHI node and the current PHI argument. */
976 if (e->flags & EDGE_EXECUTABLE)
977 {
978 tree arg = gimple_phi_arg (phi, i)->def;
979 prop_value_t arg_val = get_value_for_expr (arg, false);
980
981 ccp_lattice_meet (&new_val, &arg_val);
982
983 if (dump_file && (dump_flags & TDF_DETAILS))
984 {
985 fprintf (dump_file, "\t");
986 print_generic_expr (dump_file, arg, dump_flags);
987 dump_lattice_value (dump_file, "\tValue: ", arg_val);
988 fprintf (dump_file, "\n");
989 }
990
991 if (new_val.lattice_val == VARYING)
992 break;
993 }
994 }
995
996 if (dump_file && (dump_flags & TDF_DETAILS))
997 {
998 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
999 fprintf (dump_file, "\n\n");
1000 }
1001
1002 /* Make the transition to the new value. */
1003 if (set_lattice_value (gimple_phi_result (phi), new_val))
1004 {
1005 if (new_val.lattice_val == VARYING)
1006 return SSA_PROP_VARYING;
1007 else
1008 return SSA_PROP_INTERESTING;
1009 }
1010 else
1011 return SSA_PROP_NOT_INTERESTING;
1012 }
1013
1014 /* Return the constant value for OP or OP otherwise. */
1015
1016 static tree
1017 valueize_op (tree op)
1018 {
1019 if (TREE_CODE (op) == SSA_NAME)
1020 {
1021 tree tem = get_constant_value (op);
1022 if (tem)
1023 return tem;
1024 }
1025 return op;
1026 }
1027
1028 /* CCP specific front-end to the non-destructive constant folding
1029 routines.
1030
1031 Attempt to simplify the RHS of STMT knowing that one or more
1032 operands are constants.
1033
1034 If simplification is possible, return the simplified RHS,
1035 otherwise return the original RHS or NULL_TREE. */
1036
1037 static tree
1038 ccp_fold (gimple stmt)
1039 {
1040 location_t loc = gimple_location (stmt);
1041 switch (gimple_code (stmt))
1042 {
1043 case GIMPLE_COND:
1044 {
1045 /* Handle comparison operators that can appear in GIMPLE form. */
1046 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1047 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1048 enum tree_code code = gimple_cond_code (stmt);
1049 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1050 }
1051
1052 case GIMPLE_SWITCH:
1053 {
1054 /* Return the constant switch index. */
1055 return valueize_op (gimple_switch_index (stmt));
1056 }
1057
1058 case GIMPLE_ASSIGN:
1059 case GIMPLE_CALL:
1060 return gimple_fold_stmt_to_constant_1 (stmt, valueize_op);
1061
1062 default:
1063 gcc_unreachable ();
1064 }
1065 }
1066
1067 /* Apply the operation CODE in type TYPE to the value, mask pair
1068 RVAL and RMASK representing a value of type RTYPE and set
1069 the value, mask pair *VAL and *MASK to the result. */
1070
1071 static void
1072 bit_value_unop_1 (enum tree_code code, tree type,
1073 double_int *val, double_int *mask,
1074 tree rtype, double_int rval, double_int rmask)
1075 {
1076 switch (code)
1077 {
1078 case BIT_NOT_EXPR:
1079 *mask = rmask;
1080 *val = double_int_not (rval);
1081 break;
1082
1083 case NEGATE_EXPR:
1084 {
1085 double_int temv, temm;
1086 /* Return ~rval + 1. */
1087 bit_value_unop_1 (BIT_NOT_EXPR, type, &temv, &temm, type, rval, rmask);
1088 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1089 type, temv, temm,
1090 type, double_int_one, double_int_zero);
1091 break;
1092 }
1093
1094 CASE_CONVERT:
1095 {
1096 bool uns;
1097
1098 /* First extend mask and value according to the original type. */
1099 uns = TYPE_UNSIGNED (rtype);
1100 *mask = double_int_ext (rmask, TYPE_PRECISION (rtype), uns);
1101 *val = double_int_ext (rval, TYPE_PRECISION (rtype), uns);
1102
1103 /* Then extend mask and value according to the target type. */
1104 uns = TYPE_UNSIGNED (type);
1105 *mask = double_int_ext (*mask, TYPE_PRECISION (type), uns);
1106 *val = double_int_ext (*val, TYPE_PRECISION (type), uns);
1107 break;
1108 }
1109
1110 default:
1111 *mask = double_int_minus_one;
1112 break;
1113 }
1114 }
1115
1116 /* Apply the operation CODE in type TYPE to the value, mask pairs
1117 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1118 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1119
1120 static void
1121 bit_value_binop_1 (enum tree_code code, tree type,
1122 double_int *val, double_int *mask,
1123 tree r1type, double_int r1val, double_int r1mask,
1124 tree r2type, double_int r2val, double_int r2mask)
1125 {
1126 bool uns = TYPE_UNSIGNED (type);
1127 /* Assume we'll get a constant result. Use an initial varying value,
1128 we fall back to varying in the end if necessary. */
1129 *mask = double_int_minus_one;
1130 switch (code)
1131 {
1132 case BIT_AND_EXPR:
1133 /* The mask is constant where there is a known not
1134 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1135 *mask = double_int_and (double_int_ior (r1mask, r2mask),
1136 double_int_and (double_int_ior (r1val, r1mask),
1137 double_int_ior (r2val, r2mask)));
1138 *val = double_int_and (r1val, r2val);
1139 break;
1140
1141 case BIT_IOR_EXPR:
1142 /* The mask is constant where there is a known
1143 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1144 *mask = double_int_and_not
1145 (double_int_ior (r1mask, r2mask),
1146 double_int_ior (double_int_and_not (r1val, r1mask),
1147 double_int_and_not (r2val, r2mask)));
1148 *val = double_int_ior (r1val, r2val);
1149 break;
1150
1151 case BIT_XOR_EXPR:
1152 /* m1 | m2 */
1153 *mask = double_int_ior (r1mask, r2mask);
1154 *val = double_int_xor (r1val, r2val);
1155 break;
1156
1157 case LROTATE_EXPR:
1158 case RROTATE_EXPR:
1159 if (double_int_zero_p (r2mask))
1160 {
1161 HOST_WIDE_INT shift = r2val.low;
1162 if (code == RROTATE_EXPR)
1163 shift = -shift;
1164 *mask = double_int_lrotate (r1mask, shift, TYPE_PRECISION (type));
1165 *val = double_int_lrotate (r1val, shift, TYPE_PRECISION (type));
1166 }
1167 break;
1168
1169 case LSHIFT_EXPR:
1170 case RSHIFT_EXPR:
1171 /* ??? We can handle partially known shift counts if we know
1172 its sign. That way we can tell that (x << (y | 8)) & 255
1173 is zero. */
1174 if (double_int_zero_p (r2mask))
1175 {
1176 HOST_WIDE_INT shift = r2val.low;
1177 if (code == RSHIFT_EXPR)
1178 shift = -shift;
1179 /* We need to know if we are doing a left or a right shift
1180 to properly shift in zeros for left shift and unsigned
1181 right shifts and the sign bit for signed right shifts.
1182 For signed right shifts we shift in varying in case
1183 the sign bit was varying. */
1184 if (shift > 0)
1185 {
1186 *mask = double_int_lshift (r1mask, shift,
1187 TYPE_PRECISION (type), false);
1188 *val = double_int_lshift (r1val, shift,
1189 TYPE_PRECISION (type), false);
1190 }
1191 else if (shift < 0)
1192 {
1193 shift = -shift;
1194 *mask = double_int_rshift (r1mask, shift,
1195 TYPE_PRECISION (type), !uns);
1196 *val = double_int_rshift (r1val, shift,
1197 TYPE_PRECISION (type), !uns);
1198 }
1199 else
1200 {
1201 *mask = r1mask;
1202 *val = r1val;
1203 }
1204 }
1205 break;
1206
1207 case PLUS_EXPR:
1208 case POINTER_PLUS_EXPR:
1209 {
1210 double_int lo, hi;
1211 /* Do the addition with unknown bits set to zero, to give carry-ins of
1212 zero wherever possible. */
1213 lo = double_int_add (double_int_and_not (r1val, r1mask),
1214 double_int_and_not (r2val, r2mask));
1215 lo = double_int_ext (lo, TYPE_PRECISION (type), uns);
1216 /* Do the addition with unknown bits set to one, to give carry-ins of
1217 one wherever possible. */
1218 hi = double_int_add (double_int_ior (r1val, r1mask),
1219 double_int_ior (r2val, r2mask));
1220 hi = double_int_ext (hi, TYPE_PRECISION (type), uns);
1221 /* Each bit in the result is known if (a) the corresponding bits in
1222 both inputs are known, and (b) the carry-in to that bit position
1223 is known. We can check condition (b) by seeing if we got the same
1224 result with minimised carries as with maximised carries. */
1225 *mask = double_int_ior (double_int_ior (r1mask, r2mask),
1226 double_int_xor (lo, hi));
1227 *mask = double_int_ext (*mask, TYPE_PRECISION (type), uns);
1228 /* It shouldn't matter whether we choose lo or hi here. */
1229 *val = lo;
1230 break;
1231 }
1232
1233 case MINUS_EXPR:
1234 {
1235 double_int temv, temm;
1236 bit_value_unop_1 (NEGATE_EXPR, r2type, &temv, &temm,
1237 r2type, r2val, r2mask);
1238 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1239 r1type, r1val, r1mask,
1240 r2type, temv, temm);
1241 break;
1242 }
1243
1244 case MULT_EXPR:
1245 {
1246 /* Just track trailing zeros in both operands and transfer
1247 them to the other. */
1248 int r1tz = double_int_ctz (double_int_ior (r1val, r1mask));
1249 int r2tz = double_int_ctz (double_int_ior (r2val, r2mask));
1250 if (r1tz + r2tz >= HOST_BITS_PER_DOUBLE_INT)
1251 {
1252 *mask = double_int_zero;
1253 *val = double_int_zero;
1254 }
1255 else if (r1tz + r2tz > 0)
1256 {
1257 *mask = double_int_not (double_int_mask (r1tz + r2tz));
1258 *mask = double_int_ext (*mask, TYPE_PRECISION (type), uns);
1259 *val = double_int_zero;
1260 }
1261 break;
1262 }
1263
1264 case EQ_EXPR:
1265 case NE_EXPR:
1266 {
1267 double_int m = double_int_ior (r1mask, r2mask);
1268 if (!double_int_equal_p (double_int_and_not (r1val, m),
1269 double_int_and_not (r2val, m)))
1270 {
1271 *mask = double_int_zero;
1272 *val = ((code == EQ_EXPR) ? double_int_zero : double_int_one);
1273 }
1274 else
1275 {
1276 /* We know the result of a comparison is always one or zero. */
1277 *mask = double_int_one;
1278 *val = double_int_zero;
1279 }
1280 break;
1281 }
1282
1283 case GE_EXPR:
1284 case GT_EXPR:
1285 {
1286 double_int tem = r1val;
1287 r1val = r2val;
1288 r2val = tem;
1289 tem = r1mask;
1290 r1mask = r2mask;
1291 r2mask = tem;
1292 code = swap_tree_comparison (code);
1293 }
1294 /* Fallthru. */
1295 case LT_EXPR:
1296 case LE_EXPR:
1297 {
1298 int minmax, maxmin;
1299 /* If the most significant bits are not known we know nothing. */
1300 if (double_int_negative_p (r1mask) || double_int_negative_p (r2mask))
1301 break;
1302
1303 /* For comparisons the signedness is in the comparison operands. */
1304 uns = TYPE_UNSIGNED (r1type);
1305
1306 /* If we know the most significant bits we know the values
1307 value ranges by means of treating varying bits as zero
1308 or one. Do a cross comparison of the max/min pairs. */
1309 maxmin = double_int_cmp (double_int_ior (r1val, r1mask),
1310 double_int_and_not (r2val, r2mask), uns);
1311 minmax = double_int_cmp (double_int_and_not (r1val, r1mask),
1312 double_int_ior (r2val, r2mask), uns);
1313 if (maxmin < 0) /* r1 is less than r2. */
1314 {
1315 *mask = double_int_zero;
1316 *val = double_int_one;
1317 }
1318 else if (minmax > 0) /* r1 is not less or equal to r2. */
1319 {
1320 *mask = double_int_zero;
1321 *val = double_int_zero;
1322 }
1323 else if (maxmin == minmax) /* r1 and r2 are equal. */
1324 {
1325 /* This probably should never happen as we'd have
1326 folded the thing during fully constant value folding. */
1327 *mask = double_int_zero;
1328 *val = (code == LE_EXPR ? double_int_one : double_int_zero);
1329 }
1330 else
1331 {
1332 /* We know the result of a comparison is always one or zero. */
1333 *mask = double_int_one;
1334 *val = double_int_zero;
1335 }
1336 break;
1337 }
1338
1339 default:;
1340 }
1341 }
1342
1343 /* Return the propagation value when applying the operation CODE to
1344 the value RHS yielding type TYPE. */
1345
1346 static prop_value_t
1347 bit_value_unop (enum tree_code code, tree type, tree rhs)
1348 {
1349 prop_value_t rval = get_value_for_expr (rhs, true);
1350 double_int value, mask;
1351 prop_value_t val;
1352
1353 if (rval.lattice_val == UNDEFINED)
1354 return rval;
1355
1356 gcc_assert ((rval.lattice_val == CONSTANT
1357 && TREE_CODE (rval.value) == INTEGER_CST)
1358 || double_int_minus_one_p (rval.mask));
1359 bit_value_unop_1 (code, type, &value, &mask,
1360 TREE_TYPE (rhs), value_to_double_int (rval), rval.mask);
1361 if (!double_int_minus_one_p (mask))
1362 {
1363 val.lattice_val = CONSTANT;
1364 val.mask = mask;
1365 /* ??? Delay building trees here. */
1366 val.value = double_int_to_tree (type, value);
1367 }
1368 else
1369 {
1370 val.lattice_val = VARYING;
1371 val.value = NULL_TREE;
1372 val.mask = double_int_minus_one;
1373 }
1374 return val;
1375 }
1376
1377 /* Return the propagation value when applying the operation CODE to
1378 the values RHS1 and RHS2 yielding type TYPE. */
1379
1380 static prop_value_t
1381 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
1382 {
1383 prop_value_t r1val = get_value_for_expr (rhs1, true);
1384 prop_value_t r2val = get_value_for_expr (rhs2, true);
1385 double_int value, mask;
1386 prop_value_t val;
1387
1388 if (r1val.lattice_val == UNDEFINED
1389 || r2val.lattice_val == UNDEFINED)
1390 {
1391 val.lattice_val = VARYING;
1392 val.value = NULL_TREE;
1393 val.mask = double_int_minus_one;
1394 return val;
1395 }
1396
1397 gcc_assert ((r1val.lattice_val == CONSTANT
1398 && TREE_CODE (r1val.value) == INTEGER_CST)
1399 || double_int_minus_one_p (r1val.mask));
1400 gcc_assert ((r2val.lattice_val == CONSTANT
1401 && TREE_CODE (r2val.value) == INTEGER_CST)
1402 || double_int_minus_one_p (r2val.mask));
1403 bit_value_binop_1 (code, type, &value, &mask,
1404 TREE_TYPE (rhs1), value_to_double_int (r1val), r1val.mask,
1405 TREE_TYPE (rhs2), value_to_double_int (r2val), r2val.mask);
1406 if (!double_int_minus_one_p (mask))
1407 {
1408 val.lattice_val = CONSTANT;
1409 val.mask = mask;
1410 /* ??? Delay building trees here. */
1411 val.value = double_int_to_tree (type, value);
1412 }
1413 else
1414 {
1415 val.lattice_val = VARYING;
1416 val.value = NULL_TREE;
1417 val.mask = double_int_minus_one;
1418 }
1419 return val;
1420 }
1421
1422 /* Return the propagation value when applying __builtin_assume_aligned to
1423 its arguments. */
1424
1425 static prop_value_t
1426 bit_value_assume_aligned (gimple stmt)
1427 {
1428 tree ptr = gimple_call_arg (stmt, 0), align, misalign = NULL_TREE;
1429 tree type = TREE_TYPE (ptr);
1430 unsigned HOST_WIDE_INT aligni, misaligni = 0;
1431 prop_value_t ptrval = get_value_for_expr (ptr, true);
1432 prop_value_t alignval;
1433 double_int value, mask;
1434 prop_value_t val;
1435 if (ptrval.lattice_val == UNDEFINED)
1436 return ptrval;
1437 gcc_assert ((ptrval.lattice_val == CONSTANT
1438 && TREE_CODE (ptrval.value) == INTEGER_CST)
1439 || double_int_minus_one_p (ptrval.mask));
1440 align = gimple_call_arg (stmt, 1);
1441 if (!host_integerp (align, 1))
1442 return ptrval;
1443 aligni = tree_low_cst (align, 1);
1444 if (aligni <= 1
1445 || (aligni & (aligni - 1)) != 0)
1446 return ptrval;
1447 if (gimple_call_num_args (stmt) > 2)
1448 {
1449 misalign = gimple_call_arg (stmt, 2);
1450 if (!host_integerp (misalign, 1))
1451 return ptrval;
1452 misaligni = tree_low_cst (misalign, 1);
1453 if (misaligni >= aligni)
1454 return ptrval;
1455 }
1456 align = build_int_cst_type (type, -aligni);
1457 alignval = get_value_for_expr (align, true);
1458 bit_value_binop_1 (BIT_AND_EXPR, type, &value, &mask,
1459 type, value_to_double_int (ptrval), ptrval.mask,
1460 type, value_to_double_int (alignval), alignval.mask);
1461 if (!double_int_minus_one_p (mask))
1462 {
1463 val.lattice_val = CONSTANT;
1464 val.mask = mask;
1465 gcc_assert ((mask.low & (aligni - 1)) == 0);
1466 gcc_assert ((value.low & (aligni - 1)) == 0);
1467 value.low |= misaligni;
1468 /* ??? Delay building trees here. */
1469 val.value = double_int_to_tree (type, value);
1470 }
1471 else
1472 {
1473 val.lattice_val = VARYING;
1474 val.value = NULL_TREE;
1475 val.mask = double_int_minus_one;
1476 }
1477 return val;
1478 }
1479
1480 /* Evaluate statement STMT.
1481 Valid only for assignments, calls, conditionals, and switches. */
1482
1483 static prop_value_t
1484 evaluate_stmt (gimple stmt)
1485 {
1486 prop_value_t val;
1487 tree simplified = NULL_TREE;
1488 ccp_lattice_t likelyvalue = likely_value (stmt);
1489 bool is_constant = false;
1490 unsigned int align;
1491
1492 if (dump_file && (dump_flags & TDF_DETAILS))
1493 {
1494 fprintf (dump_file, "which is likely ");
1495 switch (likelyvalue)
1496 {
1497 case CONSTANT:
1498 fprintf (dump_file, "CONSTANT");
1499 break;
1500 case UNDEFINED:
1501 fprintf (dump_file, "UNDEFINED");
1502 break;
1503 case VARYING:
1504 fprintf (dump_file, "VARYING");
1505 break;
1506 default:;
1507 }
1508 fprintf (dump_file, "\n");
1509 }
1510
1511 /* If the statement is likely to have a CONSTANT result, then try
1512 to fold the statement to determine the constant value. */
1513 /* FIXME. This is the only place that we call ccp_fold.
1514 Since likely_value never returns CONSTANT for calls, we will
1515 not attempt to fold them, including builtins that may profit. */
1516 if (likelyvalue == CONSTANT)
1517 {
1518 fold_defer_overflow_warnings ();
1519 simplified = ccp_fold (stmt);
1520 is_constant = simplified && is_gimple_min_invariant (simplified);
1521 fold_undefer_overflow_warnings (is_constant, stmt, 0);
1522 if (is_constant)
1523 {
1524 /* The statement produced a constant value. */
1525 val.lattice_val = CONSTANT;
1526 val.value = simplified;
1527 val.mask = double_int_zero;
1528 }
1529 }
1530 /* If the statement is likely to have a VARYING result, then do not
1531 bother folding the statement. */
1532 else if (likelyvalue == VARYING)
1533 {
1534 enum gimple_code code = gimple_code (stmt);
1535 if (code == GIMPLE_ASSIGN)
1536 {
1537 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1538
1539 /* Other cases cannot satisfy is_gimple_min_invariant
1540 without folding. */
1541 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
1542 simplified = gimple_assign_rhs1 (stmt);
1543 }
1544 else if (code == GIMPLE_SWITCH)
1545 simplified = gimple_switch_index (stmt);
1546 else
1547 /* These cannot satisfy is_gimple_min_invariant without folding. */
1548 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
1549 is_constant = simplified && is_gimple_min_invariant (simplified);
1550 if (is_constant)
1551 {
1552 /* The statement produced a constant value. */
1553 val.lattice_val = CONSTANT;
1554 val.value = simplified;
1555 val.mask = double_int_zero;
1556 }
1557 }
1558
1559 /* Resort to simplification for bitwise tracking. */
1560 if (flag_tree_bit_ccp
1561 && (likelyvalue == CONSTANT || is_gimple_call (stmt))
1562 && !is_constant)
1563 {
1564 enum gimple_code code = gimple_code (stmt);
1565 tree fndecl;
1566 val.lattice_val = VARYING;
1567 val.value = NULL_TREE;
1568 val.mask = double_int_minus_one;
1569 if (code == GIMPLE_ASSIGN)
1570 {
1571 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1572 tree rhs1 = gimple_assign_rhs1 (stmt);
1573 switch (get_gimple_rhs_class (subcode))
1574 {
1575 case GIMPLE_SINGLE_RHS:
1576 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1577 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1578 val = get_value_for_expr (rhs1, true);
1579 break;
1580
1581 case GIMPLE_UNARY_RHS:
1582 if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1583 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1584 && (INTEGRAL_TYPE_P (gimple_expr_type (stmt))
1585 || POINTER_TYPE_P (gimple_expr_type (stmt))))
1586 val = bit_value_unop (subcode, gimple_expr_type (stmt), rhs1);
1587 break;
1588
1589 case GIMPLE_BINARY_RHS:
1590 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1591 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1592 {
1593 tree lhs = gimple_assign_lhs (stmt);
1594 tree rhs2 = gimple_assign_rhs2 (stmt);
1595 val = bit_value_binop (subcode,
1596 TREE_TYPE (lhs), rhs1, rhs2);
1597 }
1598 break;
1599
1600 default:;
1601 }
1602 }
1603 else if (code == GIMPLE_COND)
1604 {
1605 enum tree_code code = gimple_cond_code (stmt);
1606 tree rhs1 = gimple_cond_lhs (stmt);
1607 tree rhs2 = gimple_cond_rhs (stmt);
1608 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1609 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1610 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
1611 }
1612 else if (code == GIMPLE_CALL
1613 && (fndecl = gimple_call_fndecl (stmt))
1614 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1615 {
1616 switch (DECL_FUNCTION_CODE (fndecl))
1617 {
1618 case BUILT_IN_MALLOC:
1619 case BUILT_IN_REALLOC:
1620 case BUILT_IN_CALLOC:
1621 case BUILT_IN_STRDUP:
1622 case BUILT_IN_STRNDUP:
1623 val.lattice_val = CONSTANT;
1624 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1625 val.mask = shwi_to_double_int
1626 (~(((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT)
1627 / BITS_PER_UNIT - 1));
1628 break;
1629
1630 case BUILT_IN_ALLOCA:
1631 case BUILT_IN_ALLOCA_WITH_ALIGN:
1632 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN
1633 ? TREE_INT_CST_LOW (gimple_call_arg (stmt, 1))
1634 : BIGGEST_ALIGNMENT);
1635 val.lattice_val = CONSTANT;
1636 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1637 val.mask = shwi_to_double_int
1638 (~(((HOST_WIDE_INT) align)
1639 / BITS_PER_UNIT - 1));
1640 break;
1641
1642 /* These builtins return their first argument, unmodified. */
1643 case BUILT_IN_MEMCPY:
1644 case BUILT_IN_MEMMOVE:
1645 case BUILT_IN_MEMSET:
1646 case BUILT_IN_STRCPY:
1647 case BUILT_IN_STRNCPY:
1648 case BUILT_IN_MEMCPY_CHK:
1649 case BUILT_IN_MEMMOVE_CHK:
1650 case BUILT_IN_MEMSET_CHK:
1651 case BUILT_IN_STRCPY_CHK:
1652 case BUILT_IN_STRNCPY_CHK:
1653 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1654 break;
1655
1656 case BUILT_IN_ASSUME_ALIGNED:
1657 val = bit_value_assume_aligned (stmt);
1658 break;
1659
1660 default:;
1661 }
1662 }
1663 is_constant = (val.lattice_val == CONSTANT);
1664 }
1665
1666 if (!is_constant)
1667 {
1668 /* The statement produced a nonconstant value. If the statement
1669 had UNDEFINED operands, then the result of the statement
1670 should be UNDEFINED. Otherwise, the statement is VARYING. */
1671 if (likelyvalue == UNDEFINED)
1672 {
1673 val.lattice_val = likelyvalue;
1674 val.mask = double_int_zero;
1675 }
1676 else
1677 {
1678 val.lattice_val = VARYING;
1679 val.mask = double_int_minus_one;
1680 }
1681
1682 val.value = NULL_TREE;
1683 }
1684
1685 return val;
1686 }
1687
1688 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
1689 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
1690
1691 static void
1692 insert_clobber_before_stack_restore (tree saved_val, tree var, htab_t *visited)
1693 {
1694 gimple stmt, clobber_stmt;
1695 tree clobber;
1696 imm_use_iterator iter;
1697 gimple_stmt_iterator i;
1698 gimple *slot;
1699
1700 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
1701 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
1702 {
1703 clobber = build_constructor (TREE_TYPE (var), NULL);
1704 TREE_THIS_VOLATILE (clobber) = 1;
1705 clobber_stmt = gimple_build_assign (var, clobber);
1706
1707 i = gsi_for_stmt (stmt);
1708 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
1709 }
1710 else if (gimple_code (stmt) == GIMPLE_PHI)
1711 {
1712 if (*visited == NULL)
1713 *visited = htab_create (10, htab_hash_pointer, htab_eq_pointer, NULL);
1714
1715 slot = (gimple *)htab_find_slot (*visited, stmt, INSERT);
1716 if (*slot != NULL)
1717 continue;
1718
1719 *slot = stmt;
1720 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
1721 visited);
1722 }
1723 else
1724 gcc_assert (is_gimple_debug (stmt));
1725 }
1726
1727 /* Advance the iterator to the previous non-debug gimple statement in the same
1728 or dominating basic block. */
1729
1730 static inline void
1731 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
1732 {
1733 basic_block dom;
1734
1735 gsi_prev_nondebug (i);
1736 while (gsi_end_p (*i))
1737 {
1738 dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
1739 if (dom == NULL || dom == ENTRY_BLOCK_PTR)
1740 return;
1741
1742 *i = gsi_last_bb (dom);
1743 }
1744 }
1745
1746 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
1747 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
1748
1749 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
1750 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
1751 that case the function gives up without inserting the clobbers. */
1752
1753 static void
1754 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
1755 {
1756 gimple stmt;
1757 tree saved_val;
1758 htab_t visited = NULL;
1759
1760 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
1761 {
1762 stmt = gsi_stmt (i);
1763
1764 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
1765 continue;
1766
1767 saved_val = gimple_call_lhs (stmt);
1768 if (saved_val == NULL_TREE)
1769 continue;
1770
1771 insert_clobber_before_stack_restore (saved_val, var, &visited);
1772 break;
1773 }
1774
1775 if (visited != NULL)
1776 htab_delete (visited);
1777 }
1778
1779 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
1780 fixed-size array and returns the address, if found, otherwise returns
1781 NULL_TREE. */
1782
1783 static tree
1784 fold_builtin_alloca_with_align (gimple stmt)
1785 {
1786 unsigned HOST_WIDE_INT size, threshold, n_elem;
1787 tree lhs, arg, block, var, elem_type, array_type;
1788
1789 /* Get lhs. */
1790 lhs = gimple_call_lhs (stmt);
1791 if (lhs == NULL_TREE)
1792 return NULL_TREE;
1793
1794 /* Detect constant argument. */
1795 arg = get_constant_value (gimple_call_arg (stmt, 0));
1796 if (arg == NULL_TREE
1797 || TREE_CODE (arg) != INTEGER_CST
1798 || !host_integerp (arg, 1))
1799 return NULL_TREE;
1800
1801 size = TREE_INT_CST_LOW (arg);
1802
1803 /* Heuristic: don't fold large allocas. */
1804 threshold = (unsigned HOST_WIDE_INT)PARAM_VALUE (PARAM_LARGE_STACK_FRAME);
1805 /* In case the alloca is located at function entry, it has the same lifetime
1806 as a declared array, so we allow a larger size. */
1807 block = gimple_block (stmt);
1808 if (!(cfun->after_inlining
1809 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
1810 threshold /= 10;
1811 if (size > threshold)
1812 return NULL_TREE;
1813
1814 /* Declare array. */
1815 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
1816 n_elem = size * 8 / BITS_PER_UNIT;
1817 array_type = build_array_type_nelts (elem_type, n_elem);
1818 var = create_tmp_var (array_type, NULL);
1819 DECL_ALIGN (var) = TREE_INT_CST_LOW (gimple_call_arg (stmt, 1));
1820 {
1821 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
1822 if (pi != NULL && !pi->pt.anything)
1823 {
1824 bool singleton_p;
1825 unsigned uid;
1826 singleton_p = pt_solution_singleton_p (&pi->pt, &uid);
1827 gcc_assert (singleton_p);
1828 SET_DECL_PT_UID (var, uid);
1829 }
1830 }
1831
1832 /* Fold alloca to the address of the array. */
1833 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
1834 }
1835
1836 /* Fold the stmt at *GSI with CCP specific information that propagating
1837 and regular folding does not catch. */
1838
1839 static bool
1840 ccp_fold_stmt (gimple_stmt_iterator *gsi)
1841 {
1842 gimple stmt = gsi_stmt (*gsi);
1843
1844 switch (gimple_code (stmt))
1845 {
1846 case GIMPLE_COND:
1847 {
1848 prop_value_t val;
1849 /* Statement evaluation will handle type mismatches in constants
1850 more gracefully than the final propagation. This allows us to
1851 fold more conditionals here. */
1852 val = evaluate_stmt (stmt);
1853 if (val.lattice_val != CONSTANT
1854 || !double_int_zero_p (val.mask))
1855 return false;
1856
1857 if (dump_file)
1858 {
1859 fprintf (dump_file, "Folding predicate ");
1860 print_gimple_expr (dump_file, stmt, 0, 0);
1861 fprintf (dump_file, " to ");
1862 print_generic_expr (dump_file, val.value, 0);
1863 fprintf (dump_file, "\n");
1864 }
1865
1866 if (integer_zerop (val.value))
1867 gimple_cond_make_false (stmt);
1868 else
1869 gimple_cond_make_true (stmt);
1870
1871 return true;
1872 }
1873
1874 case GIMPLE_CALL:
1875 {
1876 tree lhs = gimple_call_lhs (stmt);
1877 int flags = gimple_call_flags (stmt);
1878 tree val;
1879 tree argt;
1880 bool changed = false;
1881 unsigned i;
1882
1883 /* If the call was folded into a constant make sure it goes
1884 away even if we cannot propagate into all uses because of
1885 type issues. */
1886 if (lhs
1887 && TREE_CODE (lhs) == SSA_NAME
1888 && (val = get_constant_value (lhs))
1889 /* Don't optimize away calls that have side-effects. */
1890 && (flags & (ECF_CONST|ECF_PURE)) != 0
1891 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
1892 {
1893 tree new_rhs = unshare_expr (val);
1894 bool res;
1895 if (!useless_type_conversion_p (TREE_TYPE (lhs),
1896 TREE_TYPE (new_rhs)))
1897 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
1898 res = update_call_from_tree (gsi, new_rhs);
1899 gcc_assert (res);
1900 return true;
1901 }
1902
1903 /* Internal calls provide no argument types, so the extra laxity
1904 for normal calls does not apply. */
1905 if (gimple_call_internal_p (stmt))
1906 return false;
1907
1908 /* The heuristic of fold_builtin_alloca_with_align differs before and
1909 after inlining, so we don't require the arg to be changed into a
1910 constant for folding, but just to be constant. */
1911 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN))
1912 {
1913 tree new_rhs = fold_builtin_alloca_with_align (stmt);
1914 if (new_rhs)
1915 {
1916 bool res = update_call_from_tree (gsi, new_rhs);
1917 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
1918 gcc_assert (res);
1919 insert_clobbers_for_var (*gsi, var);
1920 return true;
1921 }
1922 }
1923
1924 /* Propagate into the call arguments. Compared to replace_uses_in
1925 this can use the argument slot types for type verification
1926 instead of the current argument type. We also can safely
1927 drop qualifiers here as we are dealing with constants anyway. */
1928 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
1929 for (i = 0; i < gimple_call_num_args (stmt) && argt;
1930 ++i, argt = TREE_CHAIN (argt))
1931 {
1932 tree arg = gimple_call_arg (stmt, i);
1933 if (TREE_CODE (arg) == SSA_NAME
1934 && (val = get_constant_value (arg))
1935 && useless_type_conversion_p
1936 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
1937 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
1938 {
1939 gimple_call_set_arg (stmt, i, unshare_expr (val));
1940 changed = true;
1941 }
1942 }
1943
1944 return changed;
1945 }
1946
1947 case GIMPLE_ASSIGN:
1948 {
1949 tree lhs = gimple_assign_lhs (stmt);
1950 tree val;
1951
1952 /* If we have a load that turned out to be constant replace it
1953 as we cannot propagate into all uses in all cases. */
1954 if (gimple_assign_single_p (stmt)
1955 && TREE_CODE (lhs) == SSA_NAME
1956 && (val = get_constant_value (lhs)))
1957 {
1958 tree rhs = unshare_expr (val);
1959 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
1960 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
1961 gimple_assign_set_rhs_from_tree (gsi, rhs);
1962 return true;
1963 }
1964
1965 return false;
1966 }
1967
1968 default:
1969 return false;
1970 }
1971 }
1972
1973 /* Visit the assignment statement STMT. Set the value of its LHS to the
1974 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
1975 creates virtual definitions, set the value of each new name to that
1976 of the RHS (if we can derive a constant out of the RHS).
1977 Value-returning call statements also perform an assignment, and
1978 are handled here. */
1979
1980 static enum ssa_prop_result
1981 visit_assignment (gimple stmt, tree *output_p)
1982 {
1983 prop_value_t val;
1984 enum ssa_prop_result retval;
1985
1986 tree lhs = gimple_get_lhs (stmt);
1987
1988 gcc_assert (gimple_code (stmt) != GIMPLE_CALL
1989 || gimple_call_lhs (stmt) != NULL_TREE);
1990
1991 if (gimple_assign_single_p (stmt)
1992 && gimple_assign_rhs_code (stmt) == SSA_NAME)
1993 /* For a simple copy operation, we copy the lattice values. */
1994 val = *get_value (gimple_assign_rhs1 (stmt));
1995 else
1996 /* Evaluate the statement, which could be
1997 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1998 val = evaluate_stmt (stmt);
1999
2000 retval = SSA_PROP_NOT_INTERESTING;
2001
2002 /* Set the lattice value of the statement's output. */
2003 if (TREE_CODE (lhs) == SSA_NAME)
2004 {
2005 /* If STMT is an assignment to an SSA_NAME, we only have one
2006 value to set. */
2007 if (set_lattice_value (lhs, val))
2008 {
2009 *output_p = lhs;
2010 if (val.lattice_val == VARYING)
2011 retval = SSA_PROP_VARYING;
2012 else
2013 retval = SSA_PROP_INTERESTING;
2014 }
2015 }
2016
2017 return retval;
2018 }
2019
2020
2021 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2022 if it can determine which edge will be taken. Otherwise, return
2023 SSA_PROP_VARYING. */
2024
2025 static enum ssa_prop_result
2026 visit_cond_stmt (gimple stmt, edge *taken_edge_p)
2027 {
2028 prop_value_t val;
2029 basic_block block;
2030
2031 block = gimple_bb (stmt);
2032 val = evaluate_stmt (stmt);
2033 if (val.lattice_val != CONSTANT
2034 || !double_int_zero_p (val.mask))
2035 return SSA_PROP_VARYING;
2036
2037 /* Find which edge out of the conditional block will be taken and add it
2038 to the worklist. If no single edge can be determined statically,
2039 return SSA_PROP_VARYING to feed all the outgoing edges to the
2040 propagation engine. */
2041 *taken_edge_p = find_taken_edge (block, val.value);
2042 if (*taken_edge_p)
2043 return SSA_PROP_INTERESTING;
2044 else
2045 return SSA_PROP_VARYING;
2046 }
2047
2048
2049 /* Evaluate statement STMT. If the statement produces an output value and
2050 its evaluation changes the lattice value of its output, return
2051 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2052 output value.
2053
2054 If STMT is a conditional branch and we can determine its truth
2055 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2056 value, return SSA_PROP_VARYING. */
2057
2058 static enum ssa_prop_result
2059 ccp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
2060 {
2061 tree def;
2062 ssa_op_iter iter;
2063
2064 if (dump_file && (dump_flags & TDF_DETAILS))
2065 {
2066 fprintf (dump_file, "\nVisiting statement:\n");
2067 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2068 }
2069
2070 switch (gimple_code (stmt))
2071 {
2072 case GIMPLE_ASSIGN:
2073 /* If the statement is an assignment that produces a single
2074 output value, evaluate its RHS to see if the lattice value of
2075 its output has changed. */
2076 return visit_assignment (stmt, output_p);
2077
2078 case GIMPLE_CALL:
2079 /* A value-returning call also performs an assignment. */
2080 if (gimple_call_lhs (stmt) != NULL_TREE)
2081 return visit_assignment (stmt, output_p);
2082 break;
2083
2084 case GIMPLE_COND:
2085 case GIMPLE_SWITCH:
2086 /* If STMT is a conditional branch, see if we can determine
2087 which branch will be taken. */
2088 /* FIXME. It appears that we should be able to optimize
2089 computed GOTOs here as well. */
2090 return visit_cond_stmt (stmt, taken_edge_p);
2091
2092 default:
2093 break;
2094 }
2095
2096 /* Any other kind of statement is not interesting for constant
2097 propagation and, therefore, not worth simulating. */
2098 if (dump_file && (dump_flags & TDF_DETAILS))
2099 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2100
2101 /* Definitions made by statements other than assignments to
2102 SSA_NAMEs represent unknown modifications to their outputs.
2103 Mark them VARYING. */
2104 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2105 {
2106 prop_value_t v = { VARYING, NULL_TREE, { -1, (HOST_WIDE_INT) -1 } };
2107 set_lattice_value (def, v);
2108 }
2109
2110 return SSA_PROP_VARYING;
2111 }
2112
2113
2114 /* Main entry point for SSA Conditional Constant Propagation. */
2115
2116 static unsigned int
2117 do_ssa_ccp (void)
2118 {
2119 unsigned int todo = 0;
2120 calculate_dominance_info (CDI_DOMINATORS);
2121 ccp_initialize ();
2122 ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node);
2123 if (ccp_finalize ())
2124 todo = (TODO_cleanup_cfg | TODO_update_ssa | TODO_remove_unused_locals);
2125 free_dominance_info (CDI_DOMINATORS);
2126 return todo;
2127 }
2128
2129
2130 static bool
2131 gate_ccp (void)
2132 {
2133 return flag_tree_ccp != 0;
2134 }
2135
2136
2137 struct gimple_opt_pass pass_ccp =
2138 {
2139 {
2140 GIMPLE_PASS,
2141 "ccp", /* name */
2142 gate_ccp, /* gate */
2143 do_ssa_ccp, /* execute */
2144 NULL, /* sub */
2145 NULL, /* next */
2146 0, /* static_pass_number */
2147 TV_TREE_CCP, /* tv_id */
2148 PROP_cfg | PROP_ssa, /* properties_required */
2149 0, /* properties_provided */
2150 0, /* properties_destroyed */
2151 0, /* todo_flags_start */
2152 TODO_verify_ssa
2153 | TODO_verify_stmts | TODO_ggc_collect/* todo_flags_finish */
2154 }
2155 };
2156
2157
2158
2159 /* Try to optimize out __builtin_stack_restore. Optimize it out
2160 if there is another __builtin_stack_restore in the same basic
2161 block and no calls or ASM_EXPRs are in between, or if this block's
2162 only outgoing edge is to EXIT_BLOCK and there are no calls or
2163 ASM_EXPRs after this __builtin_stack_restore. */
2164
2165 static tree
2166 optimize_stack_restore (gimple_stmt_iterator i)
2167 {
2168 tree callee;
2169 gimple stmt;
2170
2171 basic_block bb = gsi_bb (i);
2172 gimple call = gsi_stmt (i);
2173
2174 if (gimple_code (call) != GIMPLE_CALL
2175 || gimple_call_num_args (call) != 1
2176 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2177 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2178 return NULL_TREE;
2179
2180 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2181 {
2182 stmt = gsi_stmt (i);
2183 if (gimple_code (stmt) == GIMPLE_ASM)
2184 return NULL_TREE;
2185 if (gimple_code (stmt) != GIMPLE_CALL)
2186 continue;
2187
2188 callee = gimple_call_fndecl (stmt);
2189 if (!callee
2190 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2191 /* All regular builtins are ok, just obviously not alloca. */
2192 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
2193 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA_WITH_ALIGN)
2194 return NULL_TREE;
2195
2196 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
2197 goto second_stack_restore;
2198 }
2199
2200 if (!gsi_end_p (i))
2201 return NULL_TREE;
2202
2203 /* Allow one successor of the exit block, or zero successors. */
2204 switch (EDGE_COUNT (bb->succs))
2205 {
2206 case 0:
2207 break;
2208 case 1:
2209 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR)
2210 return NULL_TREE;
2211 break;
2212 default:
2213 return NULL_TREE;
2214 }
2215 second_stack_restore:
2216
2217 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2218 If there are multiple uses, then the last one should remove the call.
2219 In any case, whether the call to __builtin_stack_save can be removed
2220 or not is irrelevant to removing the call to __builtin_stack_restore. */
2221 if (has_single_use (gimple_call_arg (call, 0)))
2222 {
2223 gimple stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2224 if (is_gimple_call (stack_save))
2225 {
2226 callee = gimple_call_fndecl (stack_save);
2227 if (callee
2228 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2229 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE)
2230 {
2231 gimple_stmt_iterator stack_save_gsi;
2232 tree rhs;
2233
2234 stack_save_gsi = gsi_for_stmt (stack_save);
2235 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2236 update_call_from_tree (&stack_save_gsi, rhs);
2237 }
2238 }
2239 }
2240
2241 /* No effect, so the statement will be deleted. */
2242 return integer_zero_node;
2243 }
2244
2245 /* If va_list type is a simple pointer and nothing special is needed,
2246 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2247 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2248 pointer assignment. */
2249
2250 static tree
2251 optimize_stdarg_builtin (gimple call)
2252 {
2253 tree callee, lhs, rhs, cfun_va_list;
2254 bool va_list_simple_ptr;
2255 location_t loc = gimple_location (call);
2256
2257 if (gimple_code (call) != GIMPLE_CALL)
2258 return NULL_TREE;
2259
2260 callee = gimple_call_fndecl (call);
2261
2262 cfun_va_list = targetm.fn_abi_va_list (callee);
2263 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2264 && (TREE_TYPE (cfun_va_list) == void_type_node
2265 || TREE_TYPE (cfun_va_list) == char_type_node);
2266
2267 switch (DECL_FUNCTION_CODE (callee))
2268 {
2269 case BUILT_IN_VA_START:
2270 if (!va_list_simple_ptr
2271 || targetm.expand_builtin_va_start != NULL
2272 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
2273 return NULL_TREE;
2274
2275 if (gimple_call_num_args (call) != 2)
2276 return NULL_TREE;
2277
2278 lhs = gimple_call_arg (call, 0);
2279 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2280 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2281 != TYPE_MAIN_VARIANT (cfun_va_list))
2282 return NULL_TREE;
2283
2284 lhs = build_fold_indirect_ref_loc (loc, lhs);
2285 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
2286 1, integer_zero_node);
2287 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2288 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2289
2290 case BUILT_IN_VA_COPY:
2291 if (!va_list_simple_ptr)
2292 return NULL_TREE;
2293
2294 if (gimple_call_num_args (call) != 2)
2295 return NULL_TREE;
2296
2297 lhs = gimple_call_arg (call, 0);
2298 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2299 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2300 != TYPE_MAIN_VARIANT (cfun_va_list))
2301 return NULL_TREE;
2302
2303 lhs = build_fold_indirect_ref_loc (loc, lhs);
2304 rhs = gimple_call_arg (call, 1);
2305 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2306 != TYPE_MAIN_VARIANT (cfun_va_list))
2307 return NULL_TREE;
2308
2309 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2310 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2311
2312 case BUILT_IN_VA_END:
2313 /* No effect, so the statement will be deleted. */
2314 return integer_zero_node;
2315
2316 default:
2317 gcc_unreachable ();
2318 }
2319 }
2320
2321 /* A simple pass that attempts to fold all builtin functions. This pass
2322 is run after we've propagated as many constants as we can. */
2323
2324 static unsigned int
2325 execute_fold_all_builtins (void)
2326 {
2327 bool cfg_changed = false;
2328 basic_block bb;
2329 unsigned int todoflags = 0;
2330
2331 FOR_EACH_BB (bb)
2332 {
2333 gimple_stmt_iterator i;
2334 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
2335 {
2336 gimple stmt, old_stmt;
2337 tree callee, result;
2338 enum built_in_function fcode;
2339
2340 stmt = gsi_stmt (i);
2341
2342 if (gimple_code (stmt) != GIMPLE_CALL)
2343 {
2344 gsi_next (&i);
2345 continue;
2346 }
2347 callee = gimple_call_fndecl (stmt);
2348 if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL)
2349 {
2350 gsi_next (&i);
2351 continue;
2352 }
2353 fcode = DECL_FUNCTION_CODE (callee);
2354
2355 result = gimple_fold_builtin (stmt);
2356
2357 if (result)
2358 gimple_remove_stmt_histograms (cfun, stmt);
2359
2360 if (!result)
2361 switch (DECL_FUNCTION_CODE (callee))
2362 {
2363 case BUILT_IN_CONSTANT_P:
2364 /* Resolve __builtin_constant_p. If it hasn't been
2365 folded to integer_one_node by now, it's fairly
2366 certain that the value simply isn't constant. */
2367 result = integer_zero_node;
2368 break;
2369
2370 case BUILT_IN_ASSUME_ALIGNED:
2371 /* Remove __builtin_assume_aligned. */
2372 result = gimple_call_arg (stmt, 0);
2373 break;
2374
2375 case BUILT_IN_STACK_RESTORE:
2376 result = optimize_stack_restore (i);
2377 if (result)
2378 break;
2379 gsi_next (&i);
2380 continue;
2381
2382 case BUILT_IN_VA_START:
2383 case BUILT_IN_VA_END:
2384 case BUILT_IN_VA_COPY:
2385 /* These shouldn't be folded before pass_stdarg. */
2386 result = optimize_stdarg_builtin (stmt);
2387 if (result)
2388 break;
2389 /* FALLTHRU */
2390
2391 default:
2392 gsi_next (&i);
2393 continue;
2394 }
2395
2396 if (dump_file && (dump_flags & TDF_DETAILS))
2397 {
2398 fprintf (dump_file, "Simplified\n ");
2399 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2400 }
2401
2402 old_stmt = stmt;
2403 if (!update_call_from_tree (&i, result))
2404 {
2405 gimplify_and_update_call_from_tree (&i, result);
2406 todoflags |= TODO_update_address_taken;
2407 }
2408
2409 stmt = gsi_stmt (i);
2410 update_stmt (stmt);
2411
2412 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
2413 && gimple_purge_dead_eh_edges (bb))
2414 cfg_changed = true;
2415
2416 if (dump_file && (dump_flags & TDF_DETAILS))
2417 {
2418 fprintf (dump_file, "to\n ");
2419 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2420 fprintf (dump_file, "\n");
2421 }
2422
2423 /* Retry the same statement if it changed into another
2424 builtin, there might be new opportunities now. */
2425 if (gimple_code (stmt) != GIMPLE_CALL)
2426 {
2427 gsi_next (&i);
2428 continue;
2429 }
2430 callee = gimple_call_fndecl (stmt);
2431 if (!callee
2432 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2433 || DECL_FUNCTION_CODE (callee) == fcode)
2434 gsi_next (&i);
2435 }
2436 }
2437
2438 /* Delete unreachable blocks. */
2439 if (cfg_changed)
2440 todoflags |= TODO_cleanup_cfg;
2441
2442 return todoflags;
2443 }
2444
2445
2446 struct gimple_opt_pass pass_fold_builtins =
2447 {
2448 {
2449 GIMPLE_PASS,
2450 "fab", /* name */
2451 NULL, /* gate */
2452 execute_fold_all_builtins, /* execute */
2453 NULL, /* sub */
2454 NULL, /* next */
2455 0, /* static_pass_number */
2456 TV_NONE, /* tv_id */
2457 PROP_cfg | PROP_ssa, /* properties_required */
2458 0, /* properties_provided */
2459 0, /* properties_destroyed */
2460 0, /* todo_flags_start */
2461 TODO_verify_ssa
2462 | TODO_update_ssa /* todo_flags_finish */
2463 }
2464 };