re PR tree-optimization/65650 (CCP does not propgate copies)
[gcc.git] / gcc / tree-ssa-ccp.c
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
28 following values:
29
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
37
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
41 or not.
42
43 CONSTANT -> V_i has been found to hold a constant
44 value C.
45
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
48 at compile time.
49
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
51
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
59 can be visited.
60
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
65
66
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
72
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
75
76 if (PRED)
77 a_9 = 3;
78 else
79 a_10 = 100;
80 a_11 = PHI (a_9, a_10)
81
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
86
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
94
95
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
100
101 This algorithm uses wide-ints at the max precision of the target.
102 This means that, with one uninteresting exception, variables with
103 UNSIGNED types never go to VARYING because the bits above the
104 precision of the type of the variable are always zero. The
105 uninteresting case is a variable of UNSIGNED type that has the
106 maximum precision of the target. Such variables can go to VARYING,
107 but this causes no loss of infomation since these variables will
108 never be extended.
109
110 References:
111
112 Constant propagation with conditional branches,
113 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
114
115 Building an Optimizing Compiler,
116 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
117
118 Advanced Compiler Design and Implementation,
119 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
120
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "hash-set.h"
126 #include "machmode.h"
127 #include "vec.h"
128 #include "double-int.h"
129 #include "input.h"
130 #include "alias.h"
131 #include "symtab.h"
132 #include "wide-int.h"
133 #include "inchash.h"
134 #include "real.h"
135 #include "tree.h"
136 #include "fold-const.h"
137 #include "stor-layout.h"
138 #include "flags.h"
139 #include "tm_p.h"
140 #include "predict.h"
141 #include "hard-reg-set.h"
142 #include "input.h"
143 #include "function.h"
144 #include "dominance.h"
145 #include "cfg.h"
146 #include "basic-block.h"
147 #include "gimple-pretty-print.h"
148 #include "hash-table.h"
149 #include "tree-ssa-alias.h"
150 #include "internal-fn.h"
151 #include "gimple-fold.h"
152 #include "tree-eh.h"
153 #include "gimple-expr.h"
154 #include "is-a.h"
155 #include "gimple.h"
156 #include "gimplify.h"
157 #include "gimple-iterator.h"
158 #include "gimple-ssa.h"
159 #include "tree-cfg.h"
160 #include "tree-phinodes.h"
161 #include "ssa-iterators.h"
162 #include "stringpool.h"
163 #include "tree-ssanames.h"
164 #include "tree-pass.h"
165 #include "tree-ssa-propagate.h"
166 #include "value-prof.h"
167 #include "langhooks.h"
168 #include "target.h"
169 #include "diagnostic-core.h"
170 #include "dbgcnt.h"
171 #include "params.h"
172 #include "wide-int-print.h"
173 #include "builtins.h"
174 #include "tree-chkp.h"
175
176
177 /* Possible lattice values. */
178 typedef enum
179 {
180 UNINITIALIZED,
181 UNDEFINED,
182 CONSTANT,
183 VARYING
184 } ccp_lattice_t;
185
186 struct ccp_prop_value_t {
187 /* Lattice value. */
188 ccp_lattice_t lattice_val;
189
190 /* Propagated value. */
191 tree value;
192
193 /* Mask that applies to the propagated value during CCP. For X
194 with a CONSTANT lattice value X & ~mask == value & ~mask. The
195 zero bits in the mask cover constant values. The ones mean no
196 information. */
197 widest_int mask;
198 };
199
200 /* Array of propagated constant values. After propagation,
201 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
202 the constant is held in an SSA name representing a memory store
203 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
204 memory reference used to store (i.e., the LHS of the assignment
205 doing the store). */
206 static ccp_prop_value_t *const_val;
207 static unsigned n_const_val;
208
209 static void canonicalize_value (ccp_prop_value_t *);
210 static bool ccp_fold_stmt (gimple_stmt_iterator *);
211
212 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
213
214 static void
215 dump_lattice_value (FILE *outf, const char *prefix, ccp_prop_value_t val)
216 {
217 switch (val.lattice_val)
218 {
219 case UNINITIALIZED:
220 fprintf (outf, "%sUNINITIALIZED", prefix);
221 break;
222 case UNDEFINED:
223 fprintf (outf, "%sUNDEFINED", prefix);
224 break;
225 case VARYING:
226 fprintf (outf, "%sVARYING", prefix);
227 break;
228 case CONSTANT:
229 if (TREE_CODE (val.value) != INTEGER_CST
230 || val.mask == 0)
231 {
232 fprintf (outf, "%sCONSTANT ", prefix);
233 print_generic_expr (outf, val.value, dump_flags);
234 }
235 else
236 {
237 widest_int cval = wi::bit_and_not (wi::to_widest (val.value),
238 val.mask);
239 fprintf (outf, "%sCONSTANT ", prefix);
240 print_hex (cval, outf);
241 fprintf (outf, " (");
242 print_hex (val.mask, outf);
243 fprintf (outf, ")");
244 }
245 break;
246 default:
247 gcc_unreachable ();
248 }
249 }
250
251
252 /* Print lattice value VAL to stderr. */
253
254 void debug_lattice_value (ccp_prop_value_t val);
255
256 DEBUG_FUNCTION void
257 debug_lattice_value (ccp_prop_value_t val)
258 {
259 dump_lattice_value (stderr, "", val);
260 fprintf (stderr, "\n");
261 }
262
263 /* Extend NONZERO_BITS to a full mask, with the upper bits being set. */
264
265 static widest_int
266 extend_mask (const wide_int &nonzero_bits)
267 {
268 return (wi::mask <widest_int> (wi::get_precision (nonzero_bits), true)
269 | widest_int::from (nonzero_bits, UNSIGNED));
270 }
271
272 /* Compute a default value for variable VAR and store it in the
273 CONST_VAL array. The following rules are used to get default
274 values:
275
276 1- Global and static variables that are declared constant are
277 considered CONSTANT.
278
279 2- Any other value is considered UNDEFINED. This is useful when
280 considering PHI nodes. PHI arguments that are undefined do not
281 change the constant value of the PHI node, which allows for more
282 constants to be propagated.
283
284 3- Variables defined by statements other than assignments and PHI
285 nodes are considered VARYING.
286
287 4- Initial values of variables that are not GIMPLE registers are
288 considered VARYING. */
289
290 static ccp_prop_value_t
291 get_default_value (tree var)
292 {
293 ccp_prop_value_t val = { UNINITIALIZED, NULL_TREE, 0 };
294 gimple stmt;
295
296 stmt = SSA_NAME_DEF_STMT (var);
297
298 if (gimple_nop_p (stmt))
299 {
300 /* Variables defined by an empty statement are those used
301 before being initialized. If VAR is a local variable, we
302 can assume initially that it is UNDEFINED, otherwise we must
303 consider it VARYING. */
304 if (!virtual_operand_p (var)
305 && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
306 val.lattice_val = UNDEFINED;
307 else
308 {
309 val.lattice_val = VARYING;
310 val.mask = -1;
311 if (flag_tree_bit_ccp)
312 {
313 wide_int nonzero_bits = get_nonzero_bits (var);
314 if (nonzero_bits != -1)
315 {
316 val.lattice_val = CONSTANT;
317 val.value = build_zero_cst (TREE_TYPE (var));
318 val.mask = extend_mask (nonzero_bits);
319 }
320 }
321 }
322 }
323 else if (is_gimple_assign (stmt))
324 {
325 tree cst;
326 if (gimple_assign_single_p (stmt)
327 && DECL_P (gimple_assign_rhs1 (stmt))
328 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
329 {
330 val.lattice_val = CONSTANT;
331 val.value = cst;
332 }
333 else
334 {
335 /* Any other variable defined by an assignment is considered
336 UNDEFINED. */
337 val.lattice_val = UNDEFINED;
338 }
339 }
340 else if ((is_gimple_call (stmt)
341 && gimple_call_lhs (stmt) != NULL_TREE)
342 || gimple_code (stmt) == GIMPLE_PHI)
343 {
344 /* A variable defined by a call or a PHI node is considered
345 UNDEFINED. */
346 val.lattice_val = UNDEFINED;
347 }
348 else
349 {
350 /* Otherwise, VAR will never take on a constant value. */
351 val.lattice_val = VARYING;
352 val.mask = -1;
353 }
354
355 return val;
356 }
357
358
359 /* Get the constant value associated with variable VAR. */
360
361 static inline ccp_prop_value_t *
362 get_value (tree var)
363 {
364 ccp_prop_value_t *val;
365
366 if (const_val == NULL
367 || SSA_NAME_VERSION (var) >= n_const_val)
368 return NULL;
369
370 val = &const_val[SSA_NAME_VERSION (var)];
371 if (val->lattice_val == UNINITIALIZED)
372 *val = get_default_value (var);
373
374 canonicalize_value (val);
375
376 return val;
377 }
378
379 /* Return the constant tree value associated with VAR. */
380
381 static inline tree
382 get_constant_value (tree var)
383 {
384 ccp_prop_value_t *val;
385 if (TREE_CODE (var) != SSA_NAME)
386 {
387 if (is_gimple_min_invariant (var))
388 return var;
389 return NULL_TREE;
390 }
391 val = get_value (var);
392 if (val
393 && val->lattice_val == CONSTANT
394 && (TREE_CODE (val->value) != INTEGER_CST
395 || val->mask == 0))
396 return val->value;
397 return NULL_TREE;
398 }
399
400 /* Sets the value associated with VAR to VARYING. */
401
402 static inline void
403 set_value_varying (tree var)
404 {
405 ccp_prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
406
407 val->lattice_val = VARYING;
408 val->value = NULL_TREE;
409 val->mask = -1;
410 }
411
412 /* For integer constants, make sure to drop TREE_OVERFLOW. */
413
414 static void
415 canonicalize_value (ccp_prop_value_t *val)
416 {
417 if (val->lattice_val != CONSTANT)
418 return;
419
420 if (TREE_OVERFLOW_P (val->value))
421 val->value = drop_tree_overflow (val->value);
422 }
423
424 /* Return whether the lattice transition is valid. */
425
426 static bool
427 valid_lattice_transition (ccp_prop_value_t old_val, ccp_prop_value_t new_val)
428 {
429 /* Lattice transitions must always be monotonically increasing in
430 value. */
431 if (old_val.lattice_val < new_val.lattice_val)
432 return true;
433
434 if (old_val.lattice_val != new_val.lattice_val)
435 return false;
436
437 if (!old_val.value && !new_val.value)
438 return true;
439
440 /* Now both lattice values are CONSTANT. */
441
442 /* Allow arbitrary copy changes as we might look through PHI <a_1, ...>
443 when only a single copy edge is executable. */
444 if (TREE_CODE (old_val.value) == SSA_NAME
445 && TREE_CODE (new_val.value) == SSA_NAME)
446 return true;
447
448 /* Allow transitioning from a constant to a copy. */
449 if (is_gimple_min_invariant (old_val.value)
450 && TREE_CODE (new_val.value) == SSA_NAME)
451 return true;
452
453 /* Allow transitioning from PHI <&x, not executable> == &x
454 to PHI <&x, &y> == common alignment. */
455 if (TREE_CODE (old_val.value) != INTEGER_CST
456 && TREE_CODE (new_val.value) == INTEGER_CST)
457 return true;
458
459 /* Bit-lattices have to agree in the still valid bits. */
460 if (TREE_CODE (old_val.value) == INTEGER_CST
461 && TREE_CODE (new_val.value) == INTEGER_CST)
462 return (wi::bit_and_not (wi::to_widest (old_val.value), new_val.mask)
463 == wi::bit_and_not (wi::to_widest (new_val.value), new_val.mask));
464
465 /* Otherwise constant values have to agree. */
466 if (operand_equal_p (old_val.value, new_val.value, 0))
467 return true;
468
469 /* At least the kinds and types should agree now. */
470 if (TREE_CODE (old_val.value) != TREE_CODE (new_val.value)
471 || !types_compatible_p (TREE_TYPE (old_val.value),
472 TREE_TYPE (new_val.value)))
473 return false;
474
475 /* For floats and !HONOR_NANS allow transitions from (partial) NaN
476 to non-NaN. */
477 tree type = TREE_TYPE (new_val.value);
478 if (SCALAR_FLOAT_TYPE_P (type)
479 && !HONOR_NANS (type))
480 {
481 if (REAL_VALUE_ISNAN (TREE_REAL_CST (old_val.value)))
482 return true;
483 }
484 else if (VECTOR_FLOAT_TYPE_P (type)
485 && !HONOR_NANS (type))
486 {
487 for (unsigned i = 0; i < VECTOR_CST_NELTS (old_val.value); ++i)
488 if (!REAL_VALUE_ISNAN
489 (TREE_REAL_CST (VECTOR_CST_ELT (old_val.value, i)))
490 && !operand_equal_p (VECTOR_CST_ELT (old_val.value, i),
491 VECTOR_CST_ELT (new_val.value, i), 0))
492 return false;
493 return true;
494 }
495 else if (COMPLEX_FLOAT_TYPE_P (type)
496 && !HONOR_NANS (type))
497 {
498 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_REALPART (old_val.value)))
499 && !operand_equal_p (TREE_REALPART (old_val.value),
500 TREE_REALPART (new_val.value), 0))
501 return false;
502 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_IMAGPART (old_val.value)))
503 && !operand_equal_p (TREE_IMAGPART (old_val.value),
504 TREE_IMAGPART (new_val.value), 0))
505 return false;
506 return true;
507 }
508 return false;
509 }
510
511 /* Set the value for variable VAR to NEW_VAL. Return true if the new
512 value is different from VAR's previous value. */
513
514 static bool
515 set_lattice_value (tree var, ccp_prop_value_t new_val)
516 {
517 /* We can deal with old UNINITIALIZED values just fine here. */
518 ccp_prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
519
520 canonicalize_value (&new_val);
521
522 /* We have to be careful to not go up the bitwise lattice
523 represented by the mask.
524 ??? This doesn't seem to be the best place to enforce this. */
525 if (new_val.lattice_val == CONSTANT
526 && old_val->lattice_val == CONSTANT
527 && TREE_CODE (new_val.value) == INTEGER_CST
528 && TREE_CODE (old_val->value) == INTEGER_CST)
529 {
530 widest_int diff = (wi::to_widest (new_val.value)
531 ^ wi::to_widest (old_val->value));
532 new_val.mask = new_val.mask | old_val->mask | diff;
533 }
534
535 gcc_checking_assert (valid_lattice_transition (*old_val, new_val));
536
537 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
538 caller that this was a non-transition. */
539 if (old_val->lattice_val != new_val.lattice_val
540 || (new_val.lattice_val == CONSTANT
541 && (TREE_CODE (new_val.value) != TREE_CODE (old_val->value)
542 || simple_cst_equal (new_val.value, old_val->value) != 1
543 || (TREE_CODE (new_val.value) == INTEGER_CST
544 && new_val.mask != old_val->mask))))
545 {
546 /* ??? We would like to delay creation of INTEGER_CSTs from
547 partially constants here. */
548
549 if (dump_file && (dump_flags & TDF_DETAILS))
550 {
551 dump_lattice_value (dump_file, "Lattice value changed to ", new_val);
552 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
553 }
554
555 *old_val = new_val;
556
557 gcc_assert (new_val.lattice_val != UNINITIALIZED);
558 return true;
559 }
560
561 return false;
562 }
563
564 static ccp_prop_value_t get_value_for_expr (tree, bool);
565 static ccp_prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
566 static void bit_value_binop_1 (enum tree_code, tree, widest_int *, widest_int *,
567 tree, const widest_int &, const widest_int &,
568 tree, const widest_int &, const widest_int &);
569
570 /* Return a widest_int that can be used for bitwise simplifications
571 from VAL. */
572
573 static widest_int
574 value_to_wide_int (ccp_prop_value_t val)
575 {
576 if (val.value
577 && TREE_CODE (val.value) == INTEGER_CST)
578 return wi::to_widest (val.value);
579
580 return 0;
581 }
582
583 /* Return the value for the address expression EXPR based on alignment
584 information. */
585
586 static ccp_prop_value_t
587 get_value_from_alignment (tree expr)
588 {
589 tree type = TREE_TYPE (expr);
590 ccp_prop_value_t val;
591 unsigned HOST_WIDE_INT bitpos;
592 unsigned int align;
593
594 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
595
596 get_pointer_alignment_1 (expr, &align, &bitpos);
597 val.mask = (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
598 ? wi::mask <widest_int> (TYPE_PRECISION (type), false)
599 : -1).and_not (align / BITS_PER_UNIT - 1);
600 val.lattice_val
601 = wi::sext (val.mask, TYPE_PRECISION (type)) == -1 ? VARYING : CONSTANT;
602 if (val.lattice_val == CONSTANT)
603 val.value = build_int_cstu (type, bitpos / BITS_PER_UNIT);
604 else
605 val.value = NULL_TREE;
606
607 return val;
608 }
609
610 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
611 return constant bits extracted from alignment information for
612 invariant addresses. */
613
614 static ccp_prop_value_t
615 get_value_for_expr (tree expr, bool for_bits_p)
616 {
617 ccp_prop_value_t val;
618
619 if (TREE_CODE (expr) == SSA_NAME)
620 {
621 val = *get_value (expr);
622 if (for_bits_p
623 && val.lattice_val == CONSTANT
624 && TREE_CODE (val.value) == ADDR_EXPR)
625 val = get_value_from_alignment (val.value);
626 }
627 else if (is_gimple_min_invariant (expr)
628 && (!for_bits_p || TREE_CODE (expr) != ADDR_EXPR))
629 {
630 val.lattice_val = CONSTANT;
631 val.value = expr;
632 val.mask = 0;
633 canonicalize_value (&val);
634 }
635 else if (TREE_CODE (expr) == ADDR_EXPR)
636 val = get_value_from_alignment (expr);
637 else
638 {
639 val.lattice_val = VARYING;
640 val.mask = -1;
641 val.value = NULL_TREE;
642 }
643 return val;
644 }
645
646 /* Return the likely CCP lattice value for STMT.
647
648 If STMT has no operands, then return CONSTANT.
649
650 Else if undefinedness of operands of STMT cause its value to be
651 undefined, then return UNDEFINED.
652
653 Else if any operands of STMT are constants, then return CONSTANT.
654
655 Else return VARYING. */
656
657 static ccp_lattice_t
658 likely_value (gimple stmt)
659 {
660 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
661 bool has_nsa_operand;
662 tree use;
663 ssa_op_iter iter;
664 unsigned i;
665
666 enum gimple_code code = gimple_code (stmt);
667
668 /* This function appears to be called only for assignments, calls,
669 conditionals, and switches, due to the logic in visit_stmt. */
670 gcc_assert (code == GIMPLE_ASSIGN
671 || code == GIMPLE_CALL
672 || code == GIMPLE_COND
673 || code == GIMPLE_SWITCH);
674
675 /* If the statement has volatile operands, it won't fold to a
676 constant value. */
677 if (gimple_has_volatile_ops (stmt))
678 return VARYING;
679
680 /* Arrive here for more complex cases. */
681 has_constant_operand = false;
682 has_undefined_operand = false;
683 all_undefined_operands = true;
684 has_nsa_operand = false;
685 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
686 {
687 ccp_prop_value_t *val = get_value (use);
688
689 if (val->lattice_val == UNDEFINED)
690 has_undefined_operand = true;
691 else
692 all_undefined_operands = false;
693
694 if (val->lattice_val == CONSTANT)
695 has_constant_operand = true;
696
697 if (SSA_NAME_IS_DEFAULT_DEF (use)
698 || !prop_simulate_again_p (SSA_NAME_DEF_STMT (use)))
699 has_nsa_operand = true;
700 }
701
702 /* There may be constants in regular rhs operands. For calls we
703 have to ignore lhs, fndecl and static chain, otherwise only
704 the lhs. */
705 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
706 i < gimple_num_ops (stmt); ++i)
707 {
708 tree op = gimple_op (stmt, i);
709 if (!op || TREE_CODE (op) == SSA_NAME)
710 continue;
711 if (is_gimple_min_invariant (op))
712 has_constant_operand = true;
713 }
714
715 if (has_constant_operand)
716 all_undefined_operands = false;
717
718 if (has_undefined_operand
719 && code == GIMPLE_CALL
720 && gimple_call_internal_p (stmt))
721 switch (gimple_call_internal_fn (stmt))
722 {
723 /* These 3 builtins use the first argument just as a magic
724 way how to find out a decl uid. */
725 case IFN_GOMP_SIMD_LANE:
726 case IFN_GOMP_SIMD_VF:
727 case IFN_GOMP_SIMD_LAST_LANE:
728 has_undefined_operand = false;
729 break;
730 default:
731 break;
732 }
733
734 /* If the operation combines operands like COMPLEX_EXPR make sure to
735 not mark the result UNDEFINED if only one part of the result is
736 undefined. */
737 if (has_undefined_operand && all_undefined_operands)
738 return UNDEFINED;
739 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
740 {
741 switch (gimple_assign_rhs_code (stmt))
742 {
743 /* Unary operators are handled with all_undefined_operands. */
744 case PLUS_EXPR:
745 case MINUS_EXPR:
746 case POINTER_PLUS_EXPR:
747 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
748 Not bitwise operators, one VARYING operand may specify the
749 result completely. Not logical operators for the same reason.
750 Not COMPLEX_EXPR as one VARYING operand makes the result partly
751 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
752 the undefined operand may be promoted. */
753 return UNDEFINED;
754
755 case ADDR_EXPR:
756 /* If any part of an address is UNDEFINED, like the index
757 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
758 return UNDEFINED;
759
760 default:
761 ;
762 }
763 }
764 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
765 fall back to CONSTANT. During iteration UNDEFINED may still drop
766 to CONSTANT. */
767 if (has_undefined_operand)
768 return CONSTANT;
769
770 /* We do not consider virtual operands here -- load from read-only
771 memory may have only VARYING virtual operands, but still be
772 constant. Also we can combine the stmt with definitions from
773 operands whose definitions are not simulated again. */
774 if (has_constant_operand
775 || has_nsa_operand
776 || gimple_references_memory_p (stmt))
777 return CONSTANT;
778
779 return VARYING;
780 }
781
782 /* Returns true if STMT cannot be constant. */
783
784 static bool
785 surely_varying_stmt_p (gimple stmt)
786 {
787 /* If the statement has operands that we cannot handle, it cannot be
788 constant. */
789 if (gimple_has_volatile_ops (stmt))
790 return true;
791
792 /* If it is a call and does not return a value or is not a
793 builtin and not an indirect call or a call to function with
794 assume_aligned/alloc_align attribute, it is varying. */
795 if (is_gimple_call (stmt))
796 {
797 tree fndecl, fntype = gimple_call_fntype (stmt);
798 if (!gimple_call_lhs (stmt)
799 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
800 && !DECL_BUILT_IN (fndecl)
801 && !lookup_attribute ("assume_aligned",
802 TYPE_ATTRIBUTES (fntype))
803 && !lookup_attribute ("alloc_align",
804 TYPE_ATTRIBUTES (fntype))))
805 return true;
806 }
807
808 /* Any other store operation is not interesting. */
809 else if (gimple_vdef (stmt))
810 return true;
811
812 /* Anything other than assignments and conditional jumps are not
813 interesting for CCP. */
814 if (gimple_code (stmt) != GIMPLE_ASSIGN
815 && gimple_code (stmt) != GIMPLE_COND
816 && gimple_code (stmt) != GIMPLE_SWITCH
817 && gimple_code (stmt) != GIMPLE_CALL)
818 return true;
819
820 return false;
821 }
822
823 /* Initialize local data structures for CCP. */
824
825 static void
826 ccp_initialize (void)
827 {
828 basic_block bb;
829
830 n_const_val = num_ssa_names;
831 const_val = XCNEWVEC (ccp_prop_value_t, n_const_val);
832
833 /* Initialize simulation flags for PHI nodes and statements. */
834 FOR_EACH_BB_FN (bb, cfun)
835 {
836 gimple_stmt_iterator i;
837
838 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
839 {
840 gimple stmt = gsi_stmt (i);
841 bool is_varying;
842
843 /* If the statement is a control insn, then we do not
844 want to avoid simulating the statement once. Failure
845 to do so means that those edges will never get added. */
846 if (stmt_ends_bb_p (stmt))
847 is_varying = false;
848 else
849 is_varying = surely_varying_stmt_p (stmt);
850
851 if (is_varying)
852 {
853 tree def;
854 ssa_op_iter iter;
855
856 /* If the statement will not produce a constant, mark
857 all its outputs VARYING. */
858 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
859 set_value_varying (def);
860 }
861 prop_set_simulate_again (stmt, !is_varying);
862 }
863 }
864
865 /* Now process PHI nodes. We never clear the simulate_again flag on
866 phi nodes, since we do not know which edges are executable yet,
867 except for phi nodes for virtual operands when we do not do store ccp. */
868 FOR_EACH_BB_FN (bb, cfun)
869 {
870 gphi_iterator i;
871
872 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
873 {
874 gphi *phi = i.phi ();
875
876 if (virtual_operand_p (gimple_phi_result (phi)))
877 prop_set_simulate_again (phi, false);
878 else
879 prop_set_simulate_again (phi, true);
880 }
881 }
882 }
883
884 /* Debug count support. Reset the values of ssa names
885 VARYING when the total number ssa names analyzed is
886 beyond the debug count specified. */
887
888 static void
889 do_dbg_cnt (void)
890 {
891 unsigned i;
892 for (i = 0; i < num_ssa_names; i++)
893 {
894 if (!dbg_cnt (ccp))
895 {
896 const_val[i].lattice_val = VARYING;
897 const_val[i].mask = -1;
898 const_val[i].value = NULL_TREE;
899 }
900 }
901 }
902
903
904 /* Do final substitution of propagated values, cleanup the flowgraph and
905 free allocated storage.
906
907 Return TRUE when something was optimized. */
908
909 static bool
910 ccp_finalize (void)
911 {
912 bool something_changed;
913 unsigned i;
914
915 do_dbg_cnt ();
916
917 /* Derive alignment and misalignment information from partially
918 constant pointers in the lattice or nonzero bits from partially
919 constant integers. */
920 for (i = 1; i < num_ssa_names; ++i)
921 {
922 tree name = ssa_name (i);
923 ccp_prop_value_t *val;
924 unsigned int tem, align;
925
926 if (!name
927 || (!POINTER_TYPE_P (TREE_TYPE (name))
928 && (!INTEGRAL_TYPE_P (TREE_TYPE (name))
929 /* Don't record nonzero bits before IPA to avoid
930 using too much memory. */
931 || first_pass_instance)))
932 continue;
933
934 val = get_value (name);
935 if (val->lattice_val != CONSTANT
936 || TREE_CODE (val->value) != INTEGER_CST)
937 continue;
938
939 if (POINTER_TYPE_P (TREE_TYPE (name)))
940 {
941 /* Trailing mask bits specify the alignment, trailing value
942 bits the misalignment. */
943 tem = val->mask.to_uhwi ();
944 align = (tem & -tem);
945 if (align > 1)
946 set_ptr_info_alignment (get_ptr_info (name), align,
947 (TREE_INT_CST_LOW (val->value)
948 & (align - 1)));
949 }
950 else
951 {
952 unsigned int precision = TYPE_PRECISION (TREE_TYPE (val->value));
953 wide_int nonzero_bits = wide_int::from (val->mask, precision,
954 UNSIGNED) | val->value;
955 nonzero_bits &= get_nonzero_bits (name);
956 set_nonzero_bits (name, nonzero_bits);
957 }
958 }
959
960 /* Perform substitutions based on the known constant values. */
961 something_changed = substitute_and_fold (get_constant_value,
962 ccp_fold_stmt, true);
963
964 free (const_val);
965 const_val = NULL;
966 return something_changed;;
967 }
968
969
970 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
971 in VAL1.
972
973 any M UNDEFINED = any
974 any M VARYING = VARYING
975 Ci M Cj = Ci if (i == j)
976 Ci M Cj = VARYING if (i != j)
977 */
978
979 static void
980 ccp_lattice_meet (basic_block where,
981 ccp_prop_value_t *val1, ccp_prop_value_t *val2)
982 {
983 if (val1->lattice_val == UNDEFINED
984 /* For UNDEFINED M SSA we can't always SSA because its definition
985 may not dominate the PHI node. Doing optimistic copy propagation
986 also causes a lot of gcc.dg/uninit-pred*.c FAILs. */
987 && (val2->lattice_val != CONSTANT
988 || TREE_CODE (val2->value) != SSA_NAME))
989 {
990 /* UNDEFINED M any = any */
991 *val1 = *val2;
992 }
993 else if (val2->lattice_val == UNDEFINED
994 /* See above. */
995 && (val1->lattice_val != CONSTANT
996 || TREE_CODE (val1->value) != SSA_NAME))
997 {
998 /* any M UNDEFINED = any
999 Nothing to do. VAL1 already contains the value we want. */
1000 ;
1001 }
1002 else if (val1->lattice_val == VARYING
1003 || val2->lattice_val == VARYING)
1004 {
1005 /* any M VARYING = VARYING. */
1006 val1->lattice_val = VARYING;
1007 val1->mask = -1;
1008 val1->value = NULL_TREE;
1009 }
1010 else if (val1->lattice_val == CONSTANT
1011 && val2->lattice_val == CONSTANT
1012 && TREE_CODE (val1->value) == INTEGER_CST
1013 && TREE_CODE (val2->value) == INTEGER_CST)
1014 {
1015 /* Ci M Cj = Ci if (i == j)
1016 Ci M Cj = VARYING if (i != j)
1017
1018 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
1019 drop to varying. */
1020 val1->mask = (val1->mask | val2->mask
1021 | (wi::to_widest (val1->value)
1022 ^ wi::to_widest (val2->value)));
1023 if (wi::sext (val1->mask, TYPE_PRECISION (TREE_TYPE (val1->value))) == -1)
1024 {
1025 val1->lattice_val = VARYING;
1026 val1->value = NULL_TREE;
1027 }
1028 }
1029 else if (val1->lattice_val == CONSTANT
1030 && val2->lattice_val == CONSTANT
1031 && simple_cst_equal (val1->value, val2->value) == 1)
1032 {
1033 /* Ci M Cj = Ci if (i == j)
1034 Ci M Cj = VARYING if (i != j)
1035
1036 VAL1 already contains the value we want for equivalent values. */
1037 }
1038 else if (val1->lattice_val == CONSTANT
1039 && val2->lattice_val == CONSTANT
1040 && (TREE_CODE (val1->value) == ADDR_EXPR
1041 || TREE_CODE (val2->value) == ADDR_EXPR))
1042 {
1043 /* When not equal addresses are involved try meeting for
1044 alignment. */
1045 ccp_prop_value_t tem = *val2;
1046 if (TREE_CODE (val1->value) == ADDR_EXPR)
1047 *val1 = get_value_for_expr (val1->value, true);
1048 if (TREE_CODE (val2->value) == ADDR_EXPR)
1049 tem = get_value_for_expr (val2->value, true);
1050 ccp_lattice_meet (where, val1, &tem);
1051 }
1052 else
1053 {
1054 /* Any other combination is VARYING. */
1055 val1->lattice_val = VARYING;
1056 val1->mask = -1;
1057 val1->value = NULL_TREE;
1058 }
1059 }
1060
1061
1062 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
1063 lattice values to determine PHI_NODE's lattice value. The value of a
1064 PHI node is determined calling ccp_lattice_meet with all the arguments
1065 of the PHI node that are incoming via executable edges. */
1066
1067 static enum ssa_prop_result
1068 ccp_visit_phi_node (gphi *phi)
1069 {
1070 unsigned i;
1071 ccp_prop_value_t *old_val, new_val;
1072
1073 if (dump_file && (dump_flags & TDF_DETAILS))
1074 {
1075 fprintf (dump_file, "\nVisiting PHI node: ");
1076 print_gimple_stmt (dump_file, phi, 0, dump_flags);
1077 }
1078
1079 old_val = get_value (gimple_phi_result (phi));
1080 switch (old_val->lattice_val)
1081 {
1082 case VARYING:
1083 return SSA_PROP_VARYING;
1084
1085 case CONSTANT:
1086 new_val = *old_val;
1087 break;
1088
1089 case UNDEFINED:
1090 new_val.lattice_val = UNDEFINED;
1091 new_val.value = NULL_TREE;
1092 break;
1093
1094 default:
1095 gcc_unreachable ();
1096 }
1097
1098 for (i = 0; i < gimple_phi_num_args (phi); i++)
1099 {
1100 /* Compute the meet operator over all the PHI arguments flowing
1101 through executable edges. */
1102 edge e = gimple_phi_arg_edge (phi, i);
1103
1104 if (dump_file && (dump_flags & TDF_DETAILS))
1105 {
1106 fprintf (dump_file,
1107 "\n Argument #%d (%d -> %d %sexecutable)\n",
1108 i, e->src->index, e->dest->index,
1109 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
1110 }
1111
1112 /* If the incoming edge is executable, Compute the meet operator for
1113 the existing value of the PHI node and the current PHI argument. */
1114 if (e->flags & EDGE_EXECUTABLE)
1115 {
1116 tree arg = gimple_phi_arg (phi, i)->def;
1117 ccp_prop_value_t arg_val = get_value_for_expr (arg, false);
1118
1119 ccp_lattice_meet (gimple_bb (phi), &new_val, &arg_val);
1120
1121 if (dump_file && (dump_flags & TDF_DETAILS))
1122 {
1123 fprintf (dump_file, "\t");
1124 print_generic_expr (dump_file, arg, dump_flags);
1125 dump_lattice_value (dump_file, "\tValue: ", arg_val);
1126 fprintf (dump_file, "\n");
1127 }
1128
1129 if (new_val.lattice_val == VARYING)
1130 break;
1131 }
1132 }
1133
1134 if (dump_file && (dump_flags & TDF_DETAILS))
1135 {
1136 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
1137 fprintf (dump_file, "\n\n");
1138 }
1139
1140 /* Make the transition to the new value. */
1141 if (set_lattice_value (gimple_phi_result (phi), new_val))
1142 {
1143 if (new_val.lattice_val == VARYING)
1144 return SSA_PROP_VARYING;
1145 else
1146 return SSA_PROP_INTERESTING;
1147 }
1148 else
1149 return SSA_PROP_NOT_INTERESTING;
1150 }
1151
1152 /* Return the constant value for OP or OP otherwise. */
1153
1154 static tree
1155 valueize_op (tree op)
1156 {
1157 if (TREE_CODE (op) == SSA_NAME)
1158 {
1159 tree tem = get_constant_value (op);
1160 if (tem)
1161 return tem;
1162 }
1163 return op;
1164 }
1165
1166 /* Return the constant value for OP, but signal to not follow SSA
1167 edges if the definition may be simulated again. */
1168
1169 static tree
1170 valueize_op_1 (tree op)
1171 {
1172 if (TREE_CODE (op) == SSA_NAME)
1173 {
1174 /* If the definition may be simulated again we cannot follow
1175 this SSA edge as the SSA propagator does not necessarily
1176 re-visit the use. */
1177 gimple def_stmt = SSA_NAME_DEF_STMT (op);
1178 if (!gimple_nop_p (def_stmt)
1179 && prop_simulate_again_p (def_stmt))
1180 return NULL_TREE;
1181 tree tem = get_constant_value (op);
1182 if (tem)
1183 return tem;
1184 }
1185 return op;
1186 }
1187
1188 /* CCP specific front-end to the non-destructive constant folding
1189 routines.
1190
1191 Attempt to simplify the RHS of STMT knowing that one or more
1192 operands are constants.
1193
1194 If simplification is possible, return the simplified RHS,
1195 otherwise return the original RHS or NULL_TREE. */
1196
1197 static tree
1198 ccp_fold (gimple stmt)
1199 {
1200 location_t loc = gimple_location (stmt);
1201 switch (gimple_code (stmt))
1202 {
1203 case GIMPLE_COND:
1204 {
1205 /* Handle comparison operators that can appear in GIMPLE form. */
1206 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1207 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1208 enum tree_code code = gimple_cond_code (stmt);
1209 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1210 }
1211
1212 case GIMPLE_SWITCH:
1213 {
1214 /* Return the constant switch index. */
1215 return valueize_op (gimple_switch_index (as_a <gswitch *> (stmt)));
1216 }
1217
1218 case GIMPLE_ASSIGN:
1219 case GIMPLE_CALL:
1220 return gimple_fold_stmt_to_constant_1 (stmt,
1221 valueize_op, valueize_op_1);
1222
1223 default:
1224 gcc_unreachable ();
1225 }
1226 }
1227
1228 /* Apply the operation CODE in type TYPE to the value, mask pair
1229 RVAL and RMASK representing a value of type RTYPE and set
1230 the value, mask pair *VAL and *MASK to the result. */
1231
1232 static void
1233 bit_value_unop_1 (enum tree_code code, tree type,
1234 widest_int *val, widest_int *mask,
1235 tree rtype, const widest_int &rval, const widest_int &rmask)
1236 {
1237 switch (code)
1238 {
1239 case BIT_NOT_EXPR:
1240 *mask = rmask;
1241 *val = ~rval;
1242 break;
1243
1244 case NEGATE_EXPR:
1245 {
1246 widest_int temv, temm;
1247 /* Return ~rval + 1. */
1248 bit_value_unop_1 (BIT_NOT_EXPR, type, &temv, &temm, type, rval, rmask);
1249 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1250 type, temv, temm, type, 1, 0);
1251 break;
1252 }
1253
1254 CASE_CONVERT:
1255 {
1256 signop sgn;
1257
1258 /* First extend mask and value according to the original type. */
1259 sgn = TYPE_SIGN (rtype);
1260 *mask = wi::ext (rmask, TYPE_PRECISION (rtype), sgn);
1261 *val = wi::ext (rval, TYPE_PRECISION (rtype), sgn);
1262
1263 /* Then extend mask and value according to the target type. */
1264 sgn = TYPE_SIGN (type);
1265 *mask = wi::ext (*mask, TYPE_PRECISION (type), sgn);
1266 *val = wi::ext (*val, TYPE_PRECISION (type), sgn);
1267 break;
1268 }
1269
1270 default:
1271 *mask = -1;
1272 break;
1273 }
1274 }
1275
1276 /* Apply the operation CODE in type TYPE to the value, mask pairs
1277 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1278 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1279
1280 static void
1281 bit_value_binop_1 (enum tree_code code, tree type,
1282 widest_int *val, widest_int *mask,
1283 tree r1type, const widest_int &r1val,
1284 const widest_int &r1mask, tree r2type,
1285 const widest_int &r2val, const widest_int &r2mask)
1286 {
1287 signop sgn = TYPE_SIGN (type);
1288 int width = TYPE_PRECISION (type);
1289 bool swap_p = false;
1290
1291 /* Assume we'll get a constant result. Use an initial non varying
1292 value, we fall back to varying in the end if necessary. */
1293 *mask = -1;
1294
1295 switch (code)
1296 {
1297 case BIT_AND_EXPR:
1298 /* The mask is constant where there is a known not
1299 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1300 *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
1301 *val = r1val & r2val;
1302 break;
1303
1304 case BIT_IOR_EXPR:
1305 /* The mask is constant where there is a known
1306 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1307 *mask = (r1mask | r2mask)
1308 .and_not (r1val.and_not (r1mask) | r2val.and_not (r2mask));
1309 *val = r1val | r2val;
1310 break;
1311
1312 case BIT_XOR_EXPR:
1313 /* m1 | m2 */
1314 *mask = r1mask | r2mask;
1315 *val = r1val ^ r2val;
1316 break;
1317
1318 case LROTATE_EXPR:
1319 case RROTATE_EXPR:
1320 if (r2mask == 0)
1321 {
1322 widest_int shift = r2val;
1323 if (shift == 0)
1324 {
1325 *mask = r1mask;
1326 *val = r1val;
1327 }
1328 else
1329 {
1330 if (wi::neg_p (shift))
1331 {
1332 shift = -shift;
1333 if (code == RROTATE_EXPR)
1334 code = LROTATE_EXPR;
1335 else
1336 code = RROTATE_EXPR;
1337 }
1338 if (code == RROTATE_EXPR)
1339 {
1340 *mask = wi::rrotate (r1mask, shift, width);
1341 *val = wi::rrotate (r1val, shift, width);
1342 }
1343 else
1344 {
1345 *mask = wi::lrotate (r1mask, shift, width);
1346 *val = wi::lrotate (r1val, shift, width);
1347 }
1348 }
1349 }
1350 break;
1351
1352 case LSHIFT_EXPR:
1353 case RSHIFT_EXPR:
1354 /* ??? We can handle partially known shift counts if we know
1355 its sign. That way we can tell that (x << (y | 8)) & 255
1356 is zero. */
1357 if (r2mask == 0)
1358 {
1359 widest_int shift = r2val;
1360 if (shift == 0)
1361 {
1362 *mask = r1mask;
1363 *val = r1val;
1364 }
1365 else
1366 {
1367 if (wi::neg_p (shift))
1368 {
1369 shift = -shift;
1370 if (code == RSHIFT_EXPR)
1371 code = LSHIFT_EXPR;
1372 else
1373 code = RSHIFT_EXPR;
1374 }
1375 if (code == RSHIFT_EXPR)
1376 {
1377 *mask = wi::rshift (wi::ext (r1mask, width, sgn), shift, sgn);
1378 *val = wi::rshift (wi::ext (r1val, width, sgn), shift, sgn);
1379 }
1380 else
1381 {
1382 *mask = wi::ext (wi::lshift (r1mask, shift), width, sgn);
1383 *val = wi::ext (wi::lshift (r1val, shift), width, sgn);
1384 }
1385 }
1386 }
1387 break;
1388
1389 case PLUS_EXPR:
1390 case POINTER_PLUS_EXPR:
1391 {
1392 /* Do the addition with unknown bits set to zero, to give carry-ins of
1393 zero wherever possible. */
1394 widest_int lo = r1val.and_not (r1mask) + r2val.and_not (r2mask);
1395 lo = wi::ext (lo, width, sgn);
1396 /* Do the addition with unknown bits set to one, to give carry-ins of
1397 one wherever possible. */
1398 widest_int hi = (r1val | r1mask) + (r2val | r2mask);
1399 hi = wi::ext (hi, width, sgn);
1400 /* Each bit in the result is known if (a) the corresponding bits in
1401 both inputs are known, and (b) the carry-in to that bit position
1402 is known. We can check condition (b) by seeing if we got the same
1403 result with minimised carries as with maximised carries. */
1404 *mask = r1mask | r2mask | (lo ^ hi);
1405 *mask = wi::ext (*mask, width, sgn);
1406 /* It shouldn't matter whether we choose lo or hi here. */
1407 *val = lo;
1408 break;
1409 }
1410
1411 case MINUS_EXPR:
1412 {
1413 widest_int temv, temm;
1414 bit_value_unop_1 (NEGATE_EXPR, r2type, &temv, &temm,
1415 r2type, r2val, r2mask);
1416 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1417 r1type, r1val, r1mask,
1418 r2type, temv, temm);
1419 break;
1420 }
1421
1422 case MULT_EXPR:
1423 {
1424 /* Just track trailing zeros in both operands and transfer
1425 them to the other. */
1426 int r1tz = wi::ctz (r1val | r1mask);
1427 int r2tz = wi::ctz (r2val | r2mask);
1428 if (r1tz + r2tz >= width)
1429 {
1430 *mask = 0;
1431 *val = 0;
1432 }
1433 else if (r1tz + r2tz > 0)
1434 {
1435 *mask = wi::ext (wi::mask <widest_int> (r1tz + r2tz, true),
1436 width, sgn);
1437 *val = 0;
1438 }
1439 break;
1440 }
1441
1442 case EQ_EXPR:
1443 case NE_EXPR:
1444 {
1445 widest_int m = r1mask | r2mask;
1446 if (r1val.and_not (m) != r2val.and_not (m))
1447 {
1448 *mask = 0;
1449 *val = ((code == EQ_EXPR) ? 0 : 1);
1450 }
1451 else
1452 {
1453 /* We know the result of a comparison is always one or zero. */
1454 *mask = 1;
1455 *val = 0;
1456 }
1457 break;
1458 }
1459
1460 case GE_EXPR:
1461 case GT_EXPR:
1462 swap_p = true;
1463 code = swap_tree_comparison (code);
1464 /* Fall through. */
1465 case LT_EXPR:
1466 case LE_EXPR:
1467 {
1468 int minmax, maxmin;
1469
1470 const widest_int &o1val = swap_p ? r2val : r1val;
1471 const widest_int &o1mask = swap_p ? r2mask : r1mask;
1472 const widest_int &o2val = swap_p ? r1val : r2val;
1473 const widest_int &o2mask = swap_p ? r1mask : r2mask;
1474
1475 /* If the most significant bits are not known we know nothing. */
1476 if (wi::neg_p (o1mask) || wi::neg_p (o2mask))
1477 break;
1478
1479 /* For comparisons the signedness is in the comparison operands. */
1480 sgn = TYPE_SIGN (r1type);
1481
1482 /* If we know the most significant bits we know the values
1483 value ranges by means of treating varying bits as zero
1484 or one. Do a cross comparison of the max/min pairs. */
1485 maxmin = wi::cmp (o1val | o1mask, o2val.and_not (o2mask), sgn);
1486 minmax = wi::cmp (o1val.and_not (o1mask), o2val | o2mask, sgn);
1487 if (maxmin < 0) /* o1 is less than o2. */
1488 {
1489 *mask = 0;
1490 *val = 1;
1491 }
1492 else if (minmax > 0) /* o1 is not less or equal to o2. */
1493 {
1494 *mask = 0;
1495 *val = 0;
1496 }
1497 else if (maxmin == minmax) /* o1 and o2 are equal. */
1498 {
1499 /* This probably should never happen as we'd have
1500 folded the thing during fully constant value folding. */
1501 *mask = 0;
1502 *val = (code == LE_EXPR ? 1 : 0);
1503 }
1504 else
1505 {
1506 /* We know the result of a comparison is always one or zero. */
1507 *mask = 1;
1508 *val = 0;
1509 }
1510 break;
1511 }
1512
1513 default:;
1514 }
1515 }
1516
1517 /* Return the propagation value when applying the operation CODE to
1518 the value RHS yielding type TYPE. */
1519
1520 static ccp_prop_value_t
1521 bit_value_unop (enum tree_code code, tree type, tree rhs)
1522 {
1523 ccp_prop_value_t rval = get_value_for_expr (rhs, true);
1524 widest_int value, mask;
1525 ccp_prop_value_t val;
1526
1527 if (rval.lattice_val == UNDEFINED)
1528 return rval;
1529
1530 gcc_assert ((rval.lattice_val == CONSTANT
1531 && TREE_CODE (rval.value) == INTEGER_CST)
1532 || wi::sext (rval.mask, TYPE_PRECISION (TREE_TYPE (rhs))) == -1);
1533 bit_value_unop_1 (code, type, &value, &mask,
1534 TREE_TYPE (rhs), value_to_wide_int (rval), rval.mask);
1535 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1536 {
1537 val.lattice_val = CONSTANT;
1538 val.mask = mask;
1539 /* ??? Delay building trees here. */
1540 val.value = wide_int_to_tree (type, value);
1541 }
1542 else
1543 {
1544 val.lattice_val = VARYING;
1545 val.value = NULL_TREE;
1546 val.mask = -1;
1547 }
1548 return val;
1549 }
1550
1551 /* Return the propagation value when applying the operation CODE to
1552 the values RHS1 and RHS2 yielding type TYPE. */
1553
1554 static ccp_prop_value_t
1555 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
1556 {
1557 ccp_prop_value_t r1val = get_value_for_expr (rhs1, true);
1558 ccp_prop_value_t r2val = get_value_for_expr (rhs2, true);
1559 widest_int value, mask;
1560 ccp_prop_value_t val;
1561
1562 if (r1val.lattice_val == UNDEFINED
1563 || r2val.lattice_val == UNDEFINED)
1564 {
1565 val.lattice_val = VARYING;
1566 val.value = NULL_TREE;
1567 val.mask = -1;
1568 return val;
1569 }
1570
1571 gcc_assert ((r1val.lattice_val == CONSTANT
1572 && TREE_CODE (r1val.value) == INTEGER_CST)
1573 || wi::sext (r1val.mask,
1574 TYPE_PRECISION (TREE_TYPE (rhs1))) == -1);
1575 gcc_assert ((r2val.lattice_val == CONSTANT
1576 && TREE_CODE (r2val.value) == INTEGER_CST)
1577 || wi::sext (r2val.mask,
1578 TYPE_PRECISION (TREE_TYPE (rhs2))) == -1);
1579 bit_value_binop_1 (code, type, &value, &mask,
1580 TREE_TYPE (rhs1), value_to_wide_int (r1val), r1val.mask,
1581 TREE_TYPE (rhs2), value_to_wide_int (r2val), r2val.mask);
1582 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1583 {
1584 val.lattice_val = CONSTANT;
1585 val.mask = mask;
1586 /* ??? Delay building trees here. */
1587 val.value = wide_int_to_tree (type, value);
1588 }
1589 else
1590 {
1591 val.lattice_val = VARYING;
1592 val.value = NULL_TREE;
1593 val.mask = -1;
1594 }
1595 return val;
1596 }
1597
1598 /* Return the propagation value for __builtin_assume_aligned
1599 and functions with assume_aligned or alloc_aligned attribute.
1600 For __builtin_assume_aligned, ATTR is NULL_TREE,
1601 for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED
1602 is false, for alloc_aligned attribute ATTR is non-NULL and
1603 ALLOC_ALIGNED is true. */
1604
1605 static ccp_prop_value_t
1606 bit_value_assume_aligned (gimple stmt, tree attr, ccp_prop_value_t ptrval,
1607 bool alloc_aligned)
1608 {
1609 tree align, misalign = NULL_TREE, type;
1610 unsigned HOST_WIDE_INT aligni, misaligni = 0;
1611 ccp_prop_value_t alignval;
1612 widest_int value, mask;
1613 ccp_prop_value_t val;
1614
1615 if (attr == NULL_TREE)
1616 {
1617 tree ptr = gimple_call_arg (stmt, 0);
1618 type = TREE_TYPE (ptr);
1619 ptrval = get_value_for_expr (ptr, true);
1620 }
1621 else
1622 {
1623 tree lhs = gimple_call_lhs (stmt);
1624 type = TREE_TYPE (lhs);
1625 }
1626
1627 if (ptrval.lattice_val == UNDEFINED)
1628 return ptrval;
1629 gcc_assert ((ptrval.lattice_val == CONSTANT
1630 && TREE_CODE (ptrval.value) == INTEGER_CST)
1631 || wi::sext (ptrval.mask, TYPE_PRECISION (type)) == -1);
1632 if (attr == NULL_TREE)
1633 {
1634 /* Get aligni and misaligni from __builtin_assume_aligned. */
1635 align = gimple_call_arg (stmt, 1);
1636 if (!tree_fits_uhwi_p (align))
1637 return ptrval;
1638 aligni = tree_to_uhwi (align);
1639 if (gimple_call_num_args (stmt) > 2)
1640 {
1641 misalign = gimple_call_arg (stmt, 2);
1642 if (!tree_fits_uhwi_p (misalign))
1643 return ptrval;
1644 misaligni = tree_to_uhwi (misalign);
1645 }
1646 }
1647 else
1648 {
1649 /* Get aligni and misaligni from assume_aligned or
1650 alloc_align attributes. */
1651 if (TREE_VALUE (attr) == NULL_TREE)
1652 return ptrval;
1653 attr = TREE_VALUE (attr);
1654 align = TREE_VALUE (attr);
1655 if (!tree_fits_uhwi_p (align))
1656 return ptrval;
1657 aligni = tree_to_uhwi (align);
1658 if (alloc_aligned)
1659 {
1660 if (aligni == 0 || aligni > gimple_call_num_args (stmt))
1661 return ptrval;
1662 align = gimple_call_arg (stmt, aligni - 1);
1663 if (!tree_fits_uhwi_p (align))
1664 return ptrval;
1665 aligni = tree_to_uhwi (align);
1666 }
1667 else if (TREE_CHAIN (attr) && TREE_VALUE (TREE_CHAIN (attr)))
1668 {
1669 misalign = TREE_VALUE (TREE_CHAIN (attr));
1670 if (!tree_fits_uhwi_p (misalign))
1671 return ptrval;
1672 misaligni = tree_to_uhwi (misalign);
1673 }
1674 }
1675 if (aligni <= 1 || (aligni & (aligni - 1)) != 0 || misaligni >= aligni)
1676 return ptrval;
1677
1678 align = build_int_cst_type (type, -aligni);
1679 alignval = get_value_for_expr (align, true);
1680 bit_value_binop_1 (BIT_AND_EXPR, type, &value, &mask,
1681 type, value_to_wide_int (ptrval), ptrval.mask,
1682 type, value_to_wide_int (alignval), alignval.mask);
1683 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1684 {
1685 val.lattice_val = CONSTANT;
1686 val.mask = mask;
1687 gcc_assert ((mask.to_uhwi () & (aligni - 1)) == 0);
1688 gcc_assert ((value.to_uhwi () & (aligni - 1)) == 0);
1689 value |= misaligni;
1690 /* ??? Delay building trees here. */
1691 val.value = wide_int_to_tree (type, value);
1692 }
1693 else
1694 {
1695 val.lattice_val = VARYING;
1696 val.value = NULL_TREE;
1697 val.mask = -1;
1698 }
1699 return val;
1700 }
1701
1702 /* Evaluate statement STMT.
1703 Valid only for assignments, calls, conditionals, and switches. */
1704
1705 static ccp_prop_value_t
1706 evaluate_stmt (gimple stmt)
1707 {
1708 ccp_prop_value_t val;
1709 tree simplified = NULL_TREE;
1710 ccp_lattice_t likelyvalue = likely_value (stmt);
1711 bool is_constant = false;
1712 unsigned int align;
1713
1714 if (dump_file && (dump_flags & TDF_DETAILS))
1715 {
1716 fprintf (dump_file, "which is likely ");
1717 switch (likelyvalue)
1718 {
1719 case CONSTANT:
1720 fprintf (dump_file, "CONSTANT");
1721 break;
1722 case UNDEFINED:
1723 fprintf (dump_file, "UNDEFINED");
1724 break;
1725 case VARYING:
1726 fprintf (dump_file, "VARYING");
1727 break;
1728 default:;
1729 }
1730 fprintf (dump_file, "\n");
1731 }
1732
1733 /* If the statement is likely to have a CONSTANT result, then try
1734 to fold the statement to determine the constant value. */
1735 /* FIXME. This is the only place that we call ccp_fold.
1736 Since likely_value never returns CONSTANT for calls, we will
1737 not attempt to fold them, including builtins that may profit. */
1738 if (likelyvalue == CONSTANT)
1739 {
1740 fold_defer_overflow_warnings ();
1741 simplified = ccp_fold (stmt);
1742 is_constant = simplified && is_gimple_min_invariant (simplified);
1743 fold_undefer_overflow_warnings (is_constant, stmt, 0);
1744 if (is_constant)
1745 {
1746 /* The statement produced a constant value. */
1747 val.lattice_val = CONSTANT;
1748 val.value = simplified;
1749 val.mask = 0;
1750 }
1751 }
1752 /* If the statement is likely to have a VARYING result, then do not
1753 bother folding the statement. */
1754 else if (likelyvalue == VARYING)
1755 {
1756 enum gimple_code code = gimple_code (stmt);
1757 if (code == GIMPLE_ASSIGN)
1758 {
1759 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1760
1761 /* Other cases cannot satisfy is_gimple_min_invariant
1762 without folding. */
1763 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
1764 simplified = gimple_assign_rhs1 (stmt);
1765 }
1766 else if (code == GIMPLE_SWITCH)
1767 simplified = gimple_switch_index (as_a <gswitch *> (stmt));
1768 else
1769 /* These cannot satisfy is_gimple_min_invariant without folding. */
1770 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
1771 is_constant = simplified && is_gimple_min_invariant (simplified);
1772 if (is_constant)
1773 {
1774 /* The statement produced a constant value. */
1775 val.lattice_val = CONSTANT;
1776 val.value = simplified;
1777 val.mask = 0;
1778 }
1779 }
1780 /* If the statement result is likely UNDEFINED, make it so. */
1781 else if (likelyvalue == UNDEFINED)
1782 {
1783 val.lattice_val = UNDEFINED;
1784 val.value = NULL_TREE;
1785 val.mask = 0;
1786 return val;
1787 }
1788
1789 /* Resort to simplification for bitwise tracking. */
1790 if (flag_tree_bit_ccp
1791 && (likelyvalue == CONSTANT || is_gimple_call (stmt)
1792 || (gimple_assign_single_p (stmt)
1793 && gimple_assign_rhs_code (stmt) == ADDR_EXPR))
1794 && !is_constant)
1795 {
1796 enum gimple_code code = gimple_code (stmt);
1797 val.lattice_val = VARYING;
1798 val.value = NULL_TREE;
1799 val.mask = -1;
1800 if (code == GIMPLE_ASSIGN)
1801 {
1802 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1803 tree rhs1 = gimple_assign_rhs1 (stmt);
1804 tree lhs = gimple_assign_lhs (stmt);
1805 if ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
1806 || POINTER_TYPE_P (TREE_TYPE (lhs)))
1807 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1808 || POINTER_TYPE_P (TREE_TYPE (rhs1))))
1809 switch (get_gimple_rhs_class (subcode))
1810 {
1811 case GIMPLE_SINGLE_RHS:
1812 val = get_value_for_expr (rhs1, true);
1813 break;
1814
1815 case GIMPLE_UNARY_RHS:
1816 val = bit_value_unop (subcode, TREE_TYPE (lhs), rhs1);
1817 break;
1818
1819 case GIMPLE_BINARY_RHS:
1820 val = bit_value_binop (subcode, TREE_TYPE (lhs), rhs1,
1821 gimple_assign_rhs2 (stmt));
1822 break;
1823
1824 default:;
1825 }
1826 }
1827 else if (code == GIMPLE_COND)
1828 {
1829 enum tree_code code = gimple_cond_code (stmt);
1830 tree rhs1 = gimple_cond_lhs (stmt);
1831 tree rhs2 = gimple_cond_rhs (stmt);
1832 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1833 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1834 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
1835 }
1836 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1837 {
1838 tree fndecl = gimple_call_fndecl (stmt);
1839 switch (DECL_FUNCTION_CODE (fndecl))
1840 {
1841 case BUILT_IN_MALLOC:
1842 case BUILT_IN_REALLOC:
1843 case BUILT_IN_CALLOC:
1844 case BUILT_IN_STRDUP:
1845 case BUILT_IN_STRNDUP:
1846 val.lattice_val = CONSTANT;
1847 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1848 val.mask = ~((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT
1849 / BITS_PER_UNIT - 1);
1850 break;
1851
1852 case BUILT_IN_ALLOCA:
1853 case BUILT_IN_ALLOCA_WITH_ALIGN:
1854 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN
1855 ? TREE_INT_CST_LOW (gimple_call_arg (stmt, 1))
1856 : BIGGEST_ALIGNMENT);
1857 val.lattice_val = CONSTANT;
1858 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1859 val.mask = ~((HOST_WIDE_INT) align / BITS_PER_UNIT - 1);
1860 break;
1861
1862 /* These builtins return their first argument, unmodified. */
1863 case BUILT_IN_MEMCPY:
1864 case BUILT_IN_MEMMOVE:
1865 case BUILT_IN_MEMSET:
1866 case BUILT_IN_STRCPY:
1867 case BUILT_IN_STRNCPY:
1868 case BUILT_IN_MEMCPY_CHK:
1869 case BUILT_IN_MEMMOVE_CHK:
1870 case BUILT_IN_MEMSET_CHK:
1871 case BUILT_IN_STRCPY_CHK:
1872 case BUILT_IN_STRNCPY_CHK:
1873 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1874 break;
1875
1876 case BUILT_IN_ASSUME_ALIGNED:
1877 val = bit_value_assume_aligned (stmt, NULL_TREE, val, false);
1878 break;
1879
1880 case BUILT_IN_ALIGNED_ALLOC:
1881 {
1882 tree align = get_constant_value (gimple_call_arg (stmt, 0));
1883 if (align
1884 && tree_fits_uhwi_p (align))
1885 {
1886 unsigned HOST_WIDE_INT aligni = tree_to_uhwi (align);
1887 if (aligni > 1
1888 /* align must be power-of-two */
1889 && (aligni & (aligni - 1)) == 0)
1890 {
1891 val.lattice_val = CONSTANT;
1892 val.value = build_int_cst (ptr_type_node, 0);
1893 val.mask = -aligni;
1894 }
1895 }
1896 break;
1897 }
1898
1899 default:;
1900 }
1901 }
1902 if (is_gimple_call (stmt) && gimple_call_lhs (stmt))
1903 {
1904 tree fntype = gimple_call_fntype (stmt);
1905 if (fntype)
1906 {
1907 tree attrs = lookup_attribute ("assume_aligned",
1908 TYPE_ATTRIBUTES (fntype));
1909 if (attrs)
1910 val = bit_value_assume_aligned (stmt, attrs, val, false);
1911 attrs = lookup_attribute ("alloc_align",
1912 TYPE_ATTRIBUTES (fntype));
1913 if (attrs)
1914 val = bit_value_assume_aligned (stmt, attrs, val, true);
1915 }
1916 }
1917 is_constant = (val.lattice_val == CONSTANT);
1918 }
1919
1920 if (flag_tree_bit_ccp
1921 && ((is_constant && TREE_CODE (val.value) == INTEGER_CST)
1922 || !is_constant)
1923 && gimple_get_lhs (stmt)
1924 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME)
1925 {
1926 tree lhs = gimple_get_lhs (stmt);
1927 wide_int nonzero_bits = get_nonzero_bits (lhs);
1928 if (nonzero_bits != -1)
1929 {
1930 if (!is_constant)
1931 {
1932 val.lattice_val = CONSTANT;
1933 val.value = build_zero_cst (TREE_TYPE (lhs));
1934 val.mask = extend_mask (nonzero_bits);
1935 is_constant = true;
1936 }
1937 else
1938 {
1939 if (wi::bit_and_not (val.value, nonzero_bits) != 0)
1940 val.value = wide_int_to_tree (TREE_TYPE (lhs),
1941 nonzero_bits & val.value);
1942 if (nonzero_bits == 0)
1943 val.mask = 0;
1944 else
1945 val.mask = val.mask & extend_mask (nonzero_bits);
1946 }
1947 }
1948 }
1949
1950 /* The statement produced a nonconstant value. */
1951 if (!is_constant)
1952 {
1953 /* The statement produced a copy. */
1954 if (simplified && TREE_CODE (simplified) == SSA_NAME
1955 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (simplified))
1956 {
1957 val.lattice_val = CONSTANT;
1958 val.value = simplified;
1959 val.mask = -1;
1960 }
1961 /* The statement is VARYING. */
1962 else
1963 {
1964 val.lattice_val = VARYING;
1965 val.value = NULL_TREE;
1966 val.mask = -1;
1967 }
1968 }
1969
1970 return val;
1971 }
1972
1973 typedef hash_table<pointer_hash<gimple_statement_base> > gimple_htab;
1974
1975 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
1976 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
1977
1978 static void
1979 insert_clobber_before_stack_restore (tree saved_val, tree var,
1980 gimple_htab **visited)
1981 {
1982 gimple stmt;
1983 gassign *clobber_stmt;
1984 tree clobber;
1985 imm_use_iterator iter;
1986 gimple_stmt_iterator i;
1987 gimple *slot;
1988
1989 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
1990 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
1991 {
1992 clobber = build_constructor (TREE_TYPE (var),
1993 NULL);
1994 TREE_THIS_VOLATILE (clobber) = 1;
1995 clobber_stmt = gimple_build_assign (var, clobber);
1996
1997 i = gsi_for_stmt (stmt);
1998 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
1999 }
2000 else if (gimple_code (stmt) == GIMPLE_PHI)
2001 {
2002 if (!*visited)
2003 *visited = new gimple_htab (10);
2004
2005 slot = (*visited)->find_slot (stmt, INSERT);
2006 if (*slot != NULL)
2007 continue;
2008
2009 *slot = stmt;
2010 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
2011 visited);
2012 }
2013 else if (gimple_assign_ssa_name_copy_p (stmt))
2014 insert_clobber_before_stack_restore (gimple_assign_lhs (stmt), var,
2015 visited);
2016 else if (chkp_gimple_call_builtin_p (stmt, BUILT_IN_CHKP_BNDRET))
2017 continue;
2018 else
2019 gcc_assert (is_gimple_debug (stmt));
2020 }
2021
2022 /* Advance the iterator to the previous non-debug gimple statement in the same
2023 or dominating basic block. */
2024
2025 static inline void
2026 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
2027 {
2028 basic_block dom;
2029
2030 gsi_prev_nondebug (i);
2031 while (gsi_end_p (*i))
2032 {
2033 dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
2034 if (dom == NULL || dom == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2035 return;
2036
2037 *i = gsi_last_bb (dom);
2038 }
2039 }
2040
2041 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
2042 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
2043
2044 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
2045 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
2046 that case the function gives up without inserting the clobbers. */
2047
2048 static void
2049 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
2050 {
2051 gimple stmt;
2052 tree saved_val;
2053 gimple_htab *visited = NULL;
2054
2055 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
2056 {
2057 stmt = gsi_stmt (i);
2058
2059 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
2060 continue;
2061
2062 saved_val = gimple_call_lhs (stmt);
2063 if (saved_val == NULL_TREE)
2064 continue;
2065
2066 insert_clobber_before_stack_restore (saved_val, var, &visited);
2067 break;
2068 }
2069
2070 delete visited;
2071 }
2072
2073 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
2074 fixed-size array and returns the address, if found, otherwise returns
2075 NULL_TREE. */
2076
2077 static tree
2078 fold_builtin_alloca_with_align (gimple stmt)
2079 {
2080 unsigned HOST_WIDE_INT size, threshold, n_elem;
2081 tree lhs, arg, block, var, elem_type, array_type;
2082
2083 /* Get lhs. */
2084 lhs = gimple_call_lhs (stmt);
2085 if (lhs == NULL_TREE)
2086 return NULL_TREE;
2087
2088 /* Detect constant argument. */
2089 arg = get_constant_value (gimple_call_arg (stmt, 0));
2090 if (arg == NULL_TREE
2091 || TREE_CODE (arg) != INTEGER_CST
2092 || !tree_fits_uhwi_p (arg))
2093 return NULL_TREE;
2094
2095 size = tree_to_uhwi (arg);
2096
2097 /* Heuristic: don't fold large allocas. */
2098 threshold = (unsigned HOST_WIDE_INT)PARAM_VALUE (PARAM_LARGE_STACK_FRAME);
2099 /* In case the alloca is located at function entry, it has the same lifetime
2100 as a declared array, so we allow a larger size. */
2101 block = gimple_block (stmt);
2102 if (!(cfun->after_inlining
2103 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
2104 threshold /= 10;
2105 if (size > threshold)
2106 return NULL_TREE;
2107
2108 /* Declare array. */
2109 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
2110 n_elem = size * 8 / BITS_PER_UNIT;
2111 array_type = build_array_type_nelts (elem_type, n_elem);
2112 var = create_tmp_var (array_type);
2113 DECL_ALIGN (var) = TREE_INT_CST_LOW (gimple_call_arg (stmt, 1));
2114 {
2115 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
2116 if (pi != NULL && !pi->pt.anything)
2117 {
2118 bool singleton_p;
2119 unsigned uid;
2120 singleton_p = pt_solution_singleton_p (&pi->pt, &uid);
2121 gcc_assert (singleton_p);
2122 SET_DECL_PT_UID (var, uid);
2123 }
2124 }
2125
2126 /* Fold alloca to the address of the array. */
2127 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
2128 }
2129
2130 /* Fold the stmt at *GSI with CCP specific information that propagating
2131 and regular folding does not catch. */
2132
2133 static bool
2134 ccp_fold_stmt (gimple_stmt_iterator *gsi)
2135 {
2136 gimple stmt = gsi_stmt (*gsi);
2137
2138 switch (gimple_code (stmt))
2139 {
2140 case GIMPLE_COND:
2141 {
2142 gcond *cond_stmt = as_a <gcond *> (stmt);
2143 ccp_prop_value_t val;
2144 /* Statement evaluation will handle type mismatches in constants
2145 more gracefully than the final propagation. This allows us to
2146 fold more conditionals here. */
2147 val = evaluate_stmt (stmt);
2148 if (val.lattice_val != CONSTANT
2149 || val.mask != 0)
2150 return false;
2151
2152 if (dump_file)
2153 {
2154 fprintf (dump_file, "Folding predicate ");
2155 print_gimple_expr (dump_file, stmt, 0, 0);
2156 fprintf (dump_file, " to ");
2157 print_generic_expr (dump_file, val.value, 0);
2158 fprintf (dump_file, "\n");
2159 }
2160
2161 if (integer_zerop (val.value))
2162 gimple_cond_make_false (cond_stmt);
2163 else
2164 gimple_cond_make_true (cond_stmt);
2165
2166 return true;
2167 }
2168
2169 case GIMPLE_CALL:
2170 {
2171 tree lhs = gimple_call_lhs (stmt);
2172 int flags = gimple_call_flags (stmt);
2173 tree val;
2174 tree argt;
2175 bool changed = false;
2176 unsigned i;
2177
2178 /* If the call was folded into a constant make sure it goes
2179 away even if we cannot propagate into all uses because of
2180 type issues. */
2181 if (lhs
2182 && TREE_CODE (lhs) == SSA_NAME
2183 && (val = get_constant_value (lhs))
2184 /* Don't optimize away calls that have side-effects. */
2185 && (flags & (ECF_CONST|ECF_PURE)) != 0
2186 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
2187 {
2188 tree new_rhs = unshare_expr (val);
2189 bool res;
2190 if (!useless_type_conversion_p (TREE_TYPE (lhs),
2191 TREE_TYPE (new_rhs)))
2192 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
2193 res = update_call_from_tree (gsi, new_rhs);
2194 gcc_assert (res);
2195 return true;
2196 }
2197
2198 /* Internal calls provide no argument types, so the extra laxity
2199 for normal calls does not apply. */
2200 if (gimple_call_internal_p (stmt))
2201 return false;
2202
2203 /* The heuristic of fold_builtin_alloca_with_align differs before and
2204 after inlining, so we don't require the arg to be changed into a
2205 constant for folding, but just to be constant. */
2206 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN))
2207 {
2208 tree new_rhs = fold_builtin_alloca_with_align (stmt);
2209 if (new_rhs)
2210 {
2211 bool res = update_call_from_tree (gsi, new_rhs);
2212 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
2213 gcc_assert (res);
2214 insert_clobbers_for_var (*gsi, var);
2215 return true;
2216 }
2217 }
2218
2219 /* Propagate into the call arguments. Compared to replace_uses_in
2220 this can use the argument slot types for type verification
2221 instead of the current argument type. We also can safely
2222 drop qualifiers here as we are dealing with constants anyway. */
2223 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
2224 for (i = 0; i < gimple_call_num_args (stmt) && argt;
2225 ++i, argt = TREE_CHAIN (argt))
2226 {
2227 tree arg = gimple_call_arg (stmt, i);
2228 if (TREE_CODE (arg) == SSA_NAME
2229 && (val = get_constant_value (arg))
2230 && useless_type_conversion_p
2231 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
2232 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2233 {
2234 gimple_call_set_arg (stmt, i, unshare_expr (val));
2235 changed = true;
2236 }
2237 }
2238
2239 return changed;
2240 }
2241
2242 case GIMPLE_ASSIGN:
2243 {
2244 tree lhs = gimple_assign_lhs (stmt);
2245 tree val;
2246
2247 /* If we have a load that turned out to be constant replace it
2248 as we cannot propagate into all uses in all cases. */
2249 if (gimple_assign_single_p (stmt)
2250 && TREE_CODE (lhs) == SSA_NAME
2251 && (val = get_constant_value (lhs)))
2252 {
2253 tree rhs = unshare_expr (val);
2254 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2255 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
2256 gimple_assign_set_rhs_from_tree (gsi, rhs);
2257 return true;
2258 }
2259
2260 return false;
2261 }
2262
2263 default:
2264 return false;
2265 }
2266 }
2267
2268 /* Visit the assignment statement STMT. Set the value of its LHS to the
2269 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2270 creates virtual definitions, set the value of each new name to that
2271 of the RHS (if we can derive a constant out of the RHS).
2272 Value-returning call statements also perform an assignment, and
2273 are handled here. */
2274
2275 static enum ssa_prop_result
2276 visit_assignment (gimple stmt, tree *output_p)
2277 {
2278 ccp_prop_value_t val;
2279 enum ssa_prop_result retval = SSA_PROP_NOT_INTERESTING;
2280
2281 tree lhs = gimple_get_lhs (stmt);
2282 if (TREE_CODE (lhs) == SSA_NAME)
2283 {
2284 /* Evaluate the statement, which could be
2285 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2286 val = evaluate_stmt (stmt);
2287
2288 /* If STMT is an assignment to an SSA_NAME, we only have one
2289 value to set. */
2290 if (set_lattice_value (lhs, val))
2291 {
2292 *output_p = lhs;
2293 if (val.lattice_val == VARYING)
2294 retval = SSA_PROP_VARYING;
2295 else
2296 retval = SSA_PROP_INTERESTING;
2297 }
2298 }
2299
2300 return retval;
2301 }
2302
2303
2304 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2305 if it can determine which edge will be taken. Otherwise, return
2306 SSA_PROP_VARYING. */
2307
2308 static enum ssa_prop_result
2309 visit_cond_stmt (gimple stmt, edge *taken_edge_p)
2310 {
2311 ccp_prop_value_t val;
2312 basic_block block;
2313
2314 block = gimple_bb (stmt);
2315 val = evaluate_stmt (stmt);
2316 if (val.lattice_val != CONSTANT
2317 || val.mask != 0)
2318 return SSA_PROP_VARYING;
2319
2320 /* Find which edge out of the conditional block will be taken and add it
2321 to the worklist. If no single edge can be determined statically,
2322 return SSA_PROP_VARYING to feed all the outgoing edges to the
2323 propagation engine. */
2324 *taken_edge_p = find_taken_edge (block, val.value);
2325 if (*taken_edge_p)
2326 return SSA_PROP_INTERESTING;
2327 else
2328 return SSA_PROP_VARYING;
2329 }
2330
2331
2332 /* Evaluate statement STMT. If the statement produces an output value and
2333 its evaluation changes the lattice value of its output, return
2334 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2335 output value.
2336
2337 If STMT is a conditional branch and we can determine its truth
2338 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2339 value, return SSA_PROP_VARYING. */
2340
2341 static enum ssa_prop_result
2342 ccp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
2343 {
2344 tree def;
2345 ssa_op_iter iter;
2346
2347 if (dump_file && (dump_flags & TDF_DETAILS))
2348 {
2349 fprintf (dump_file, "\nVisiting statement:\n");
2350 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2351 }
2352
2353 switch (gimple_code (stmt))
2354 {
2355 case GIMPLE_ASSIGN:
2356 /* If the statement is an assignment that produces a single
2357 output value, evaluate its RHS to see if the lattice value of
2358 its output has changed. */
2359 return visit_assignment (stmt, output_p);
2360
2361 case GIMPLE_CALL:
2362 /* A value-returning call also performs an assignment. */
2363 if (gimple_call_lhs (stmt) != NULL_TREE)
2364 return visit_assignment (stmt, output_p);
2365 break;
2366
2367 case GIMPLE_COND:
2368 case GIMPLE_SWITCH:
2369 /* If STMT is a conditional branch, see if we can determine
2370 which branch will be taken. */
2371 /* FIXME. It appears that we should be able to optimize
2372 computed GOTOs here as well. */
2373 return visit_cond_stmt (stmt, taken_edge_p);
2374
2375 default:
2376 break;
2377 }
2378
2379 /* Any other kind of statement is not interesting for constant
2380 propagation and, therefore, not worth simulating. */
2381 if (dump_file && (dump_flags & TDF_DETAILS))
2382 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2383
2384 /* Definitions made by statements other than assignments to
2385 SSA_NAMEs represent unknown modifications to their outputs.
2386 Mark them VARYING. */
2387 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2388 {
2389 ccp_prop_value_t v = { VARYING, NULL_TREE, -1 };
2390 set_lattice_value (def, v);
2391 }
2392
2393 return SSA_PROP_VARYING;
2394 }
2395
2396
2397 /* Main entry point for SSA Conditional Constant Propagation. */
2398
2399 static unsigned int
2400 do_ssa_ccp (void)
2401 {
2402 unsigned int todo = 0;
2403 calculate_dominance_info (CDI_DOMINATORS);
2404 ccp_initialize ();
2405 ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node);
2406 if (ccp_finalize ())
2407 todo = (TODO_cleanup_cfg | TODO_update_ssa);
2408 free_dominance_info (CDI_DOMINATORS);
2409 return todo;
2410 }
2411
2412
2413 namespace {
2414
2415 const pass_data pass_data_ccp =
2416 {
2417 GIMPLE_PASS, /* type */
2418 "ccp", /* name */
2419 OPTGROUP_NONE, /* optinfo_flags */
2420 TV_TREE_CCP, /* tv_id */
2421 ( PROP_cfg | PROP_ssa ), /* properties_required */
2422 0, /* properties_provided */
2423 0, /* properties_destroyed */
2424 0, /* todo_flags_start */
2425 TODO_update_address_taken, /* todo_flags_finish */
2426 };
2427
2428 class pass_ccp : public gimple_opt_pass
2429 {
2430 public:
2431 pass_ccp (gcc::context *ctxt)
2432 : gimple_opt_pass (pass_data_ccp, ctxt)
2433 {}
2434
2435 /* opt_pass methods: */
2436 opt_pass * clone () { return new pass_ccp (m_ctxt); }
2437 virtual bool gate (function *) { return flag_tree_ccp != 0; }
2438 virtual unsigned int execute (function *) { return do_ssa_ccp (); }
2439
2440 }; // class pass_ccp
2441
2442 } // anon namespace
2443
2444 gimple_opt_pass *
2445 make_pass_ccp (gcc::context *ctxt)
2446 {
2447 return new pass_ccp (ctxt);
2448 }
2449
2450
2451
2452 /* Try to optimize out __builtin_stack_restore. Optimize it out
2453 if there is another __builtin_stack_restore in the same basic
2454 block and no calls or ASM_EXPRs are in between, or if this block's
2455 only outgoing edge is to EXIT_BLOCK and there are no calls or
2456 ASM_EXPRs after this __builtin_stack_restore. */
2457
2458 static tree
2459 optimize_stack_restore (gimple_stmt_iterator i)
2460 {
2461 tree callee;
2462 gimple stmt;
2463
2464 basic_block bb = gsi_bb (i);
2465 gimple call = gsi_stmt (i);
2466
2467 if (gimple_code (call) != GIMPLE_CALL
2468 || gimple_call_num_args (call) != 1
2469 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2470 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2471 return NULL_TREE;
2472
2473 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2474 {
2475 stmt = gsi_stmt (i);
2476 if (gimple_code (stmt) == GIMPLE_ASM)
2477 return NULL_TREE;
2478 if (gimple_code (stmt) != GIMPLE_CALL)
2479 continue;
2480
2481 callee = gimple_call_fndecl (stmt);
2482 if (!callee
2483 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2484 /* All regular builtins are ok, just obviously not alloca. */
2485 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
2486 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA_WITH_ALIGN)
2487 return NULL_TREE;
2488
2489 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
2490 goto second_stack_restore;
2491 }
2492
2493 if (!gsi_end_p (i))
2494 return NULL_TREE;
2495
2496 /* Allow one successor of the exit block, or zero successors. */
2497 switch (EDGE_COUNT (bb->succs))
2498 {
2499 case 0:
2500 break;
2501 case 1:
2502 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2503 return NULL_TREE;
2504 break;
2505 default:
2506 return NULL_TREE;
2507 }
2508 second_stack_restore:
2509
2510 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2511 If there are multiple uses, then the last one should remove the call.
2512 In any case, whether the call to __builtin_stack_save can be removed
2513 or not is irrelevant to removing the call to __builtin_stack_restore. */
2514 if (has_single_use (gimple_call_arg (call, 0)))
2515 {
2516 gimple stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2517 if (is_gimple_call (stack_save))
2518 {
2519 callee = gimple_call_fndecl (stack_save);
2520 if (callee
2521 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2522 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE)
2523 {
2524 gimple_stmt_iterator stack_save_gsi;
2525 tree rhs;
2526
2527 stack_save_gsi = gsi_for_stmt (stack_save);
2528 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2529 update_call_from_tree (&stack_save_gsi, rhs);
2530 }
2531 }
2532 }
2533
2534 /* No effect, so the statement will be deleted. */
2535 return integer_zero_node;
2536 }
2537
2538 /* If va_list type is a simple pointer and nothing special is needed,
2539 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2540 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2541 pointer assignment. */
2542
2543 static tree
2544 optimize_stdarg_builtin (gimple call)
2545 {
2546 tree callee, lhs, rhs, cfun_va_list;
2547 bool va_list_simple_ptr;
2548 location_t loc = gimple_location (call);
2549
2550 if (gimple_code (call) != GIMPLE_CALL)
2551 return NULL_TREE;
2552
2553 callee = gimple_call_fndecl (call);
2554
2555 cfun_va_list = targetm.fn_abi_va_list (callee);
2556 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2557 && (TREE_TYPE (cfun_va_list) == void_type_node
2558 || TREE_TYPE (cfun_va_list) == char_type_node);
2559
2560 switch (DECL_FUNCTION_CODE (callee))
2561 {
2562 case BUILT_IN_VA_START:
2563 if (!va_list_simple_ptr
2564 || targetm.expand_builtin_va_start != NULL
2565 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
2566 return NULL_TREE;
2567
2568 if (gimple_call_num_args (call) != 2)
2569 return NULL_TREE;
2570
2571 lhs = gimple_call_arg (call, 0);
2572 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2573 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2574 != TYPE_MAIN_VARIANT (cfun_va_list))
2575 return NULL_TREE;
2576
2577 lhs = build_fold_indirect_ref_loc (loc, lhs);
2578 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
2579 1, integer_zero_node);
2580 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2581 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2582
2583 case BUILT_IN_VA_COPY:
2584 if (!va_list_simple_ptr)
2585 return NULL_TREE;
2586
2587 if (gimple_call_num_args (call) != 2)
2588 return NULL_TREE;
2589
2590 lhs = gimple_call_arg (call, 0);
2591 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2592 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2593 != TYPE_MAIN_VARIANT (cfun_va_list))
2594 return NULL_TREE;
2595
2596 lhs = build_fold_indirect_ref_loc (loc, lhs);
2597 rhs = gimple_call_arg (call, 1);
2598 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2599 != TYPE_MAIN_VARIANT (cfun_va_list))
2600 return NULL_TREE;
2601
2602 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2603 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2604
2605 case BUILT_IN_VA_END:
2606 /* No effect, so the statement will be deleted. */
2607 return integer_zero_node;
2608
2609 default:
2610 gcc_unreachable ();
2611 }
2612 }
2613
2614 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2615 the incoming jumps. Return true if at least one jump was changed. */
2616
2617 static bool
2618 optimize_unreachable (gimple_stmt_iterator i)
2619 {
2620 basic_block bb = gsi_bb (i);
2621 gimple_stmt_iterator gsi;
2622 gimple stmt;
2623 edge_iterator ei;
2624 edge e;
2625 bool ret;
2626
2627 if (flag_sanitize & SANITIZE_UNREACHABLE)
2628 return false;
2629
2630 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2631 {
2632 stmt = gsi_stmt (gsi);
2633
2634 if (is_gimple_debug (stmt))
2635 continue;
2636
2637 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2638 {
2639 /* Verify we do not need to preserve the label. */
2640 if (FORCED_LABEL (gimple_label_label (label_stmt)))
2641 return false;
2642
2643 continue;
2644 }
2645
2646 /* Only handle the case that __builtin_unreachable is the first statement
2647 in the block. We rely on DCE to remove stmts without side-effects
2648 before __builtin_unreachable. */
2649 if (gsi_stmt (gsi) != gsi_stmt (i))
2650 return false;
2651 }
2652
2653 ret = false;
2654 FOR_EACH_EDGE (e, ei, bb->preds)
2655 {
2656 gsi = gsi_last_bb (e->src);
2657 if (gsi_end_p (gsi))
2658 continue;
2659
2660 stmt = gsi_stmt (gsi);
2661 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
2662 {
2663 if (e->flags & EDGE_TRUE_VALUE)
2664 gimple_cond_make_false (cond_stmt);
2665 else if (e->flags & EDGE_FALSE_VALUE)
2666 gimple_cond_make_true (cond_stmt);
2667 else
2668 gcc_unreachable ();
2669 update_stmt (cond_stmt);
2670 }
2671 else
2672 {
2673 /* Todo: handle other cases, f.i. switch statement. */
2674 continue;
2675 }
2676
2677 ret = true;
2678 }
2679
2680 return ret;
2681 }
2682
2683 /* A simple pass that attempts to fold all builtin functions. This pass
2684 is run after we've propagated as many constants as we can. */
2685
2686 namespace {
2687
2688 const pass_data pass_data_fold_builtins =
2689 {
2690 GIMPLE_PASS, /* type */
2691 "fab", /* name */
2692 OPTGROUP_NONE, /* optinfo_flags */
2693 TV_NONE, /* tv_id */
2694 ( PROP_cfg | PROP_ssa ), /* properties_required */
2695 0, /* properties_provided */
2696 0, /* properties_destroyed */
2697 0, /* todo_flags_start */
2698 TODO_update_ssa, /* todo_flags_finish */
2699 };
2700
2701 class pass_fold_builtins : public gimple_opt_pass
2702 {
2703 public:
2704 pass_fold_builtins (gcc::context *ctxt)
2705 : gimple_opt_pass (pass_data_fold_builtins, ctxt)
2706 {}
2707
2708 /* opt_pass methods: */
2709 opt_pass * clone () { return new pass_fold_builtins (m_ctxt); }
2710 virtual unsigned int execute (function *);
2711
2712 }; // class pass_fold_builtins
2713
2714 unsigned int
2715 pass_fold_builtins::execute (function *fun)
2716 {
2717 bool cfg_changed = false;
2718 basic_block bb;
2719 unsigned int todoflags = 0;
2720
2721 FOR_EACH_BB_FN (bb, fun)
2722 {
2723 gimple_stmt_iterator i;
2724 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
2725 {
2726 gimple stmt, old_stmt;
2727 tree callee;
2728 enum built_in_function fcode;
2729
2730 stmt = gsi_stmt (i);
2731
2732 if (gimple_code (stmt) != GIMPLE_CALL)
2733 {
2734 /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
2735 after the last GIMPLE DSE they aren't needed and might
2736 unnecessarily keep the SSA_NAMEs live. */
2737 if (gimple_clobber_p (stmt))
2738 {
2739 tree lhs = gimple_assign_lhs (stmt);
2740 if (TREE_CODE (lhs) == MEM_REF
2741 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME)
2742 {
2743 unlink_stmt_vdef (stmt);
2744 gsi_remove (&i, true);
2745 release_defs (stmt);
2746 continue;
2747 }
2748 }
2749 gsi_next (&i);
2750 continue;
2751 }
2752
2753 callee = gimple_call_fndecl (stmt);
2754 if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL)
2755 {
2756 gsi_next (&i);
2757 continue;
2758 }
2759
2760 fcode = DECL_FUNCTION_CODE (callee);
2761 if (fold_stmt (&i))
2762 ;
2763 else
2764 {
2765 tree result = NULL_TREE;
2766 switch (DECL_FUNCTION_CODE (callee))
2767 {
2768 case BUILT_IN_CONSTANT_P:
2769 /* Resolve __builtin_constant_p. If it hasn't been
2770 folded to integer_one_node by now, it's fairly
2771 certain that the value simply isn't constant. */
2772 result = integer_zero_node;
2773 break;
2774
2775 case BUILT_IN_ASSUME_ALIGNED:
2776 /* Remove __builtin_assume_aligned. */
2777 result = gimple_call_arg (stmt, 0);
2778 break;
2779
2780 case BUILT_IN_STACK_RESTORE:
2781 result = optimize_stack_restore (i);
2782 if (result)
2783 break;
2784 gsi_next (&i);
2785 continue;
2786
2787 case BUILT_IN_UNREACHABLE:
2788 if (optimize_unreachable (i))
2789 cfg_changed = true;
2790 break;
2791
2792 case BUILT_IN_VA_START:
2793 case BUILT_IN_VA_END:
2794 case BUILT_IN_VA_COPY:
2795 /* These shouldn't be folded before pass_stdarg. */
2796 result = optimize_stdarg_builtin (stmt);
2797 if (result)
2798 break;
2799 /* FALLTHRU */
2800
2801 default:;
2802 }
2803
2804 if (!result)
2805 {
2806 gsi_next (&i);
2807 continue;
2808 }
2809
2810 if (!update_call_from_tree (&i, result))
2811 gimplify_and_update_call_from_tree (&i, result);
2812 }
2813
2814 todoflags |= TODO_update_address_taken;
2815
2816 if (dump_file && (dump_flags & TDF_DETAILS))
2817 {
2818 fprintf (dump_file, "Simplified\n ");
2819 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2820 }
2821
2822 old_stmt = stmt;
2823 stmt = gsi_stmt (i);
2824 update_stmt (stmt);
2825
2826 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
2827 && gimple_purge_dead_eh_edges (bb))
2828 cfg_changed = true;
2829
2830 if (dump_file && (dump_flags & TDF_DETAILS))
2831 {
2832 fprintf (dump_file, "to\n ");
2833 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2834 fprintf (dump_file, "\n");
2835 }
2836
2837 /* Retry the same statement if it changed into another
2838 builtin, there might be new opportunities now. */
2839 if (gimple_code (stmt) != GIMPLE_CALL)
2840 {
2841 gsi_next (&i);
2842 continue;
2843 }
2844 callee = gimple_call_fndecl (stmt);
2845 if (!callee
2846 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2847 || DECL_FUNCTION_CODE (callee) == fcode)
2848 gsi_next (&i);
2849 }
2850 }
2851
2852 /* Delete unreachable blocks. */
2853 if (cfg_changed)
2854 todoflags |= TODO_cleanup_cfg;
2855
2856 return todoflags;
2857 }
2858
2859 } // anon namespace
2860
2861 gimple_opt_pass *
2862 make_pass_fold_builtins (gcc::context *ctxt)
2863 {
2864 return new pass_fold_builtins (ctxt);
2865 }