Patch for performing interprocedural bitwise constant propagation.
[gcc.git] / gcc / tree-ssa-ccp.c
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2016 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
28 following values:
29
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
37
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
41 or not.
42
43 CONSTANT -> V_i has been found to hold a constant
44 value C.
45
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
48 at compile time.
49
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
51
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
59 can be visited.
60
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
65
66
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
72
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
75
76 if (PRED)
77 a_9 = 3;
78 else
79 a_10 = 100;
80 a_11 = PHI (a_9, a_10)
81
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
86
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
94
95
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
100
101 This algorithm uses wide-ints at the max precision of the target.
102 This means that, with one uninteresting exception, variables with
103 UNSIGNED types never go to VARYING because the bits above the
104 precision of the type of the variable are always zero. The
105 uninteresting case is a variable of UNSIGNED type that has the
106 maximum precision of the target. Such variables can go to VARYING,
107 but this causes no loss of infomation since these variables will
108 never be extended.
109
110 References:
111
112 Constant propagation with conditional branches,
113 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
114
115 Building an Optimizing Compiler,
116 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
117
118 Advanced Compiler Design and Implementation,
119 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
120
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "backend.h"
125 #include "target.h"
126 #include "tree.h"
127 #include "gimple.h"
128 #include "tree-pass.h"
129 #include "ssa.h"
130 #include "gimple-pretty-print.h"
131 #include "fold-const.h"
132 #include "gimple-fold.h"
133 #include "tree-eh.h"
134 #include "gimplify.h"
135 #include "gimple-iterator.h"
136 #include "tree-cfg.h"
137 #include "tree-ssa-propagate.h"
138 #include "dbgcnt.h"
139 #include "params.h"
140 #include "builtins.h"
141 #include "tree-chkp.h"
142 #include "cfgloop.h"
143 #include "stor-layout.h"
144 #include "optabs-query.h"
145 #include "tree-ssa-ccp.h"
146
147 /* Possible lattice values. */
148 typedef enum
149 {
150 UNINITIALIZED,
151 UNDEFINED,
152 CONSTANT,
153 VARYING
154 } ccp_lattice_t;
155
156 struct ccp_prop_value_t {
157 /* Lattice value. */
158 ccp_lattice_t lattice_val;
159
160 /* Propagated value. */
161 tree value;
162
163 /* Mask that applies to the propagated value during CCP. For X
164 with a CONSTANT lattice value X & ~mask == value & ~mask. The
165 zero bits in the mask cover constant values. The ones mean no
166 information. */
167 widest_int mask;
168 };
169
170 /* Array of propagated constant values. After propagation,
171 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
172 the constant is held in an SSA name representing a memory store
173 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
174 memory reference used to store (i.e., the LHS of the assignment
175 doing the store). */
176 static ccp_prop_value_t *const_val;
177 static unsigned n_const_val;
178
179 static void canonicalize_value (ccp_prop_value_t *);
180 static bool ccp_fold_stmt (gimple_stmt_iterator *);
181 static void ccp_lattice_meet (ccp_prop_value_t *, ccp_prop_value_t *);
182
183 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
184
185 static void
186 dump_lattice_value (FILE *outf, const char *prefix, ccp_prop_value_t val)
187 {
188 switch (val.lattice_val)
189 {
190 case UNINITIALIZED:
191 fprintf (outf, "%sUNINITIALIZED", prefix);
192 break;
193 case UNDEFINED:
194 fprintf (outf, "%sUNDEFINED", prefix);
195 break;
196 case VARYING:
197 fprintf (outf, "%sVARYING", prefix);
198 break;
199 case CONSTANT:
200 if (TREE_CODE (val.value) != INTEGER_CST
201 || val.mask == 0)
202 {
203 fprintf (outf, "%sCONSTANT ", prefix);
204 print_generic_expr (outf, val.value, dump_flags);
205 }
206 else
207 {
208 widest_int cval = wi::bit_and_not (wi::to_widest (val.value),
209 val.mask);
210 fprintf (outf, "%sCONSTANT ", prefix);
211 print_hex (cval, outf);
212 fprintf (outf, " (");
213 print_hex (val.mask, outf);
214 fprintf (outf, ")");
215 }
216 break;
217 default:
218 gcc_unreachable ();
219 }
220 }
221
222
223 /* Print lattice value VAL to stderr. */
224
225 void debug_lattice_value (ccp_prop_value_t val);
226
227 DEBUG_FUNCTION void
228 debug_lattice_value (ccp_prop_value_t val)
229 {
230 dump_lattice_value (stderr, "", val);
231 fprintf (stderr, "\n");
232 }
233
234 /* Extend NONZERO_BITS to a full mask, based on sgn. */
235
236 static widest_int
237 extend_mask (const wide_int &nonzero_bits, signop sgn)
238 {
239 return widest_int::from (nonzero_bits, sgn);
240 }
241
242 /* Compute a default value for variable VAR and store it in the
243 CONST_VAL array. The following rules are used to get default
244 values:
245
246 1- Global and static variables that are declared constant are
247 considered CONSTANT.
248
249 2- Any other value is considered UNDEFINED. This is useful when
250 considering PHI nodes. PHI arguments that are undefined do not
251 change the constant value of the PHI node, which allows for more
252 constants to be propagated.
253
254 3- Variables defined by statements other than assignments and PHI
255 nodes are considered VARYING.
256
257 4- Initial values of variables that are not GIMPLE registers are
258 considered VARYING. */
259
260 static ccp_prop_value_t
261 get_default_value (tree var)
262 {
263 ccp_prop_value_t val = { UNINITIALIZED, NULL_TREE, 0 };
264 gimple *stmt;
265
266 stmt = SSA_NAME_DEF_STMT (var);
267
268 if (gimple_nop_p (stmt))
269 {
270 /* Variables defined by an empty statement are those used
271 before being initialized. If VAR is a local variable, we
272 can assume initially that it is UNDEFINED, otherwise we must
273 consider it VARYING. */
274 if (!virtual_operand_p (var)
275 && SSA_NAME_VAR (var)
276 && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
277 val.lattice_val = UNDEFINED;
278 else
279 {
280 val.lattice_val = VARYING;
281 val.mask = -1;
282 if (flag_tree_bit_ccp)
283 {
284 wide_int nonzero_bits = get_nonzero_bits (var);
285 if (nonzero_bits != -1)
286 {
287 val.lattice_val = CONSTANT;
288 val.value = build_zero_cst (TREE_TYPE (var));
289 val.mask = extend_mask (nonzero_bits, TYPE_SIGN (TREE_TYPE (var)));
290 }
291 }
292 }
293 }
294 else if (is_gimple_assign (stmt))
295 {
296 tree cst;
297 if (gimple_assign_single_p (stmt)
298 && DECL_P (gimple_assign_rhs1 (stmt))
299 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
300 {
301 val.lattice_val = CONSTANT;
302 val.value = cst;
303 }
304 else
305 {
306 /* Any other variable defined by an assignment is considered
307 UNDEFINED. */
308 val.lattice_val = UNDEFINED;
309 }
310 }
311 else if ((is_gimple_call (stmt)
312 && gimple_call_lhs (stmt) != NULL_TREE)
313 || gimple_code (stmt) == GIMPLE_PHI)
314 {
315 /* A variable defined by a call or a PHI node is considered
316 UNDEFINED. */
317 val.lattice_val = UNDEFINED;
318 }
319 else
320 {
321 /* Otherwise, VAR will never take on a constant value. */
322 val.lattice_val = VARYING;
323 val.mask = -1;
324 }
325
326 return val;
327 }
328
329
330 /* Get the constant value associated with variable VAR. */
331
332 static inline ccp_prop_value_t *
333 get_value (tree var)
334 {
335 ccp_prop_value_t *val;
336
337 if (const_val == NULL
338 || SSA_NAME_VERSION (var) >= n_const_val)
339 return NULL;
340
341 val = &const_val[SSA_NAME_VERSION (var)];
342 if (val->lattice_val == UNINITIALIZED)
343 *val = get_default_value (var);
344
345 canonicalize_value (val);
346
347 return val;
348 }
349
350 /* Return the constant tree value associated with VAR. */
351
352 static inline tree
353 get_constant_value (tree var)
354 {
355 ccp_prop_value_t *val;
356 if (TREE_CODE (var) != SSA_NAME)
357 {
358 if (is_gimple_min_invariant (var))
359 return var;
360 return NULL_TREE;
361 }
362 val = get_value (var);
363 if (val
364 && val->lattice_val == CONSTANT
365 && (TREE_CODE (val->value) != INTEGER_CST
366 || val->mask == 0))
367 return val->value;
368 return NULL_TREE;
369 }
370
371 /* Sets the value associated with VAR to VARYING. */
372
373 static inline void
374 set_value_varying (tree var)
375 {
376 ccp_prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
377
378 val->lattice_val = VARYING;
379 val->value = NULL_TREE;
380 val->mask = -1;
381 }
382
383 /* For integer constants, make sure to drop TREE_OVERFLOW. */
384
385 static void
386 canonicalize_value (ccp_prop_value_t *val)
387 {
388 if (val->lattice_val != CONSTANT)
389 return;
390
391 if (TREE_OVERFLOW_P (val->value))
392 val->value = drop_tree_overflow (val->value);
393 }
394
395 /* Return whether the lattice transition is valid. */
396
397 static bool
398 valid_lattice_transition (ccp_prop_value_t old_val, ccp_prop_value_t new_val)
399 {
400 /* Lattice transitions must always be monotonically increasing in
401 value. */
402 if (old_val.lattice_val < new_val.lattice_val)
403 return true;
404
405 if (old_val.lattice_val != new_val.lattice_val)
406 return false;
407
408 if (!old_val.value && !new_val.value)
409 return true;
410
411 /* Now both lattice values are CONSTANT. */
412
413 /* Allow arbitrary copy changes as we might look through PHI <a_1, ...>
414 when only a single copy edge is executable. */
415 if (TREE_CODE (old_val.value) == SSA_NAME
416 && TREE_CODE (new_val.value) == SSA_NAME)
417 return true;
418
419 /* Allow transitioning from a constant to a copy. */
420 if (is_gimple_min_invariant (old_val.value)
421 && TREE_CODE (new_val.value) == SSA_NAME)
422 return true;
423
424 /* Allow transitioning from PHI <&x, not executable> == &x
425 to PHI <&x, &y> == common alignment. */
426 if (TREE_CODE (old_val.value) != INTEGER_CST
427 && TREE_CODE (new_val.value) == INTEGER_CST)
428 return true;
429
430 /* Bit-lattices have to agree in the still valid bits. */
431 if (TREE_CODE (old_val.value) == INTEGER_CST
432 && TREE_CODE (new_val.value) == INTEGER_CST)
433 return (wi::bit_and_not (wi::to_widest (old_val.value), new_val.mask)
434 == wi::bit_and_not (wi::to_widest (new_val.value), new_val.mask));
435
436 /* Otherwise constant values have to agree. */
437 if (operand_equal_p (old_val.value, new_val.value, 0))
438 return true;
439
440 /* At least the kinds and types should agree now. */
441 if (TREE_CODE (old_val.value) != TREE_CODE (new_val.value)
442 || !types_compatible_p (TREE_TYPE (old_val.value),
443 TREE_TYPE (new_val.value)))
444 return false;
445
446 /* For floats and !HONOR_NANS allow transitions from (partial) NaN
447 to non-NaN. */
448 tree type = TREE_TYPE (new_val.value);
449 if (SCALAR_FLOAT_TYPE_P (type)
450 && !HONOR_NANS (type))
451 {
452 if (REAL_VALUE_ISNAN (TREE_REAL_CST (old_val.value)))
453 return true;
454 }
455 else if (VECTOR_FLOAT_TYPE_P (type)
456 && !HONOR_NANS (type))
457 {
458 for (unsigned i = 0; i < VECTOR_CST_NELTS (old_val.value); ++i)
459 if (!REAL_VALUE_ISNAN
460 (TREE_REAL_CST (VECTOR_CST_ELT (old_val.value, i)))
461 && !operand_equal_p (VECTOR_CST_ELT (old_val.value, i),
462 VECTOR_CST_ELT (new_val.value, i), 0))
463 return false;
464 return true;
465 }
466 else if (COMPLEX_FLOAT_TYPE_P (type)
467 && !HONOR_NANS (type))
468 {
469 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_REALPART (old_val.value)))
470 && !operand_equal_p (TREE_REALPART (old_val.value),
471 TREE_REALPART (new_val.value), 0))
472 return false;
473 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_IMAGPART (old_val.value)))
474 && !operand_equal_p (TREE_IMAGPART (old_val.value),
475 TREE_IMAGPART (new_val.value), 0))
476 return false;
477 return true;
478 }
479 return false;
480 }
481
482 /* Set the value for variable VAR to NEW_VAL. Return true if the new
483 value is different from VAR's previous value. */
484
485 static bool
486 set_lattice_value (tree var, ccp_prop_value_t *new_val)
487 {
488 /* We can deal with old UNINITIALIZED values just fine here. */
489 ccp_prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
490
491 canonicalize_value (new_val);
492
493 /* We have to be careful to not go up the bitwise lattice
494 represented by the mask. Instead of dropping to VARYING
495 use the meet operator to retain a conservative value.
496 Missed optimizations like PR65851 makes this necessary.
497 It also ensures we converge to a stable lattice solution. */
498 if (new_val->lattice_val == CONSTANT
499 && old_val->lattice_val == CONSTANT
500 && TREE_CODE (new_val->value) != SSA_NAME)
501 ccp_lattice_meet (new_val, old_val);
502
503 gcc_checking_assert (valid_lattice_transition (*old_val, *new_val));
504
505 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
506 caller that this was a non-transition. */
507 if (old_val->lattice_val != new_val->lattice_val
508 || (new_val->lattice_val == CONSTANT
509 && (TREE_CODE (new_val->value) != TREE_CODE (old_val->value)
510 || (TREE_CODE (new_val->value) == INTEGER_CST
511 && (new_val->mask != old_val->mask
512 || (wi::bit_and_not (wi::to_widest (old_val->value),
513 new_val->mask)
514 != wi::bit_and_not (wi::to_widest (new_val->value),
515 new_val->mask))))
516 || (TREE_CODE (new_val->value) != INTEGER_CST
517 && !operand_equal_p (new_val->value, old_val->value, 0)))))
518 {
519 /* ??? We would like to delay creation of INTEGER_CSTs from
520 partially constants here. */
521
522 if (dump_file && (dump_flags & TDF_DETAILS))
523 {
524 dump_lattice_value (dump_file, "Lattice value changed to ", *new_val);
525 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
526 }
527
528 *old_val = *new_val;
529
530 gcc_assert (new_val->lattice_val != UNINITIALIZED);
531 return true;
532 }
533
534 return false;
535 }
536
537 static ccp_prop_value_t get_value_for_expr (tree, bool);
538 static ccp_prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
539 void bit_value_binop (enum tree_code, signop, int, widest_int *, widest_int *,
540 signop, int, const widest_int &, const widest_int &,
541 signop, int, const widest_int &, const widest_int &);
542
543 /* Return a widest_int that can be used for bitwise simplifications
544 from VAL. */
545
546 static widest_int
547 value_to_wide_int (ccp_prop_value_t val)
548 {
549 if (val.value
550 && TREE_CODE (val.value) == INTEGER_CST)
551 return wi::to_widest (val.value);
552
553 return 0;
554 }
555
556 /* Return the value for the address expression EXPR based on alignment
557 information. */
558
559 static ccp_prop_value_t
560 get_value_from_alignment (tree expr)
561 {
562 tree type = TREE_TYPE (expr);
563 ccp_prop_value_t val;
564 unsigned HOST_WIDE_INT bitpos;
565 unsigned int align;
566
567 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
568
569 get_pointer_alignment_1 (expr, &align, &bitpos);
570 val.mask = (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
571 ? wi::mask <widest_int> (TYPE_PRECISION (type), false)
572 : -1).and_not (align / BITS_PER_UNIT - 1);
573 val.lattice_val
574 = wi::sext (val.mask, TYPE_PRECISION (type)) == -1 ? VARYING : CONSTANT;
575 if (val.lattice_val == CONSTANT)
576 val.value = build_int_cstu (type, bitpos / BITS_PER_UNIT);
577 else
578 val.value = NULL_TREE;
579
580 return val;
581 }
582
583 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
584 return constant bits extracted from alignment information for
585 invariant addresses. */
586
587 static ccp_prop_value_t
588 get_value_for_expr (tree expr, bool for_bits_p)
589 {
590 ccp_prop_value_t val;
591
592 if (TREE_CODE (expr) == SSA_NAME)
593 {
594 val = *get_value (expr);
595 if (for_bits_p
596 && val.lattice_val == CONSTANT
597 && TREE_CODE (val.value) == ADDR_EXPR)
598 val = get_value_from_alignment (val.value);
599 /* Fall back to a copy value. */
600 if (!for_bits_p
601 && val.lattice_val == VARYING
602 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr))
603 {
604 val.lattice_val = CONSTANT;
605 val.value = expr;
606 val.mask = -1;
607 }
608 }
609 else if (is_gimple_min_invariant (expr)
610 && (!for_bits_p || TREE_CODE (expr) != ADDR_EXPR))
611 {
612 val.lattice_val = CONSTANT;
613 val.value = expr;
614 val.mask = 0;
615 canonicalize_value (&val);
616 }
617 else if (TREE_CODE (expr) == ADDR_EXPR)
618 val = get_value_from_alignment (expr);
619 else
620 {
621 val.lattice_val = VARYING;
622 val.mask = -1;
623 val.value = NULL_TREE;
624 }
625
626 if (val.lattice_val == VARYING
627 && TYPE_UNSIGNED (TREE_TYPE (expr)))
628 val.mask = wi::zext (val.mask, TYPE_PRECISION (TREE_TYPE (expr)));
629
630 return val;
631 }
632
633 /* Return the likely CCP lattice value for STMT.
634
635 If STMT has no operands, then return CONSTANT.
636
637 Else if undefinedness of operands of STMT cause its value to be
638 undefined, then return UNDEFINED.
639
640 Else if any operands of STMT are constants, then return CONSTANT.
641
642 Else return VARYING. */
643
644 static ccp_lattice_t
645 likely_value (gimple *stmt)
646 {
647 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
648 bool has_nsa_operand;
649 tree use;
650 ssa_op_iter iter;
651 unsigned i;
652
653 enum gimple_code code = gimple_code (stmt);
654
655 /* This function appears to be called only for assignments, calls,
656 conditionals, and switches, due to the logic in visit_stmt. */
657 gcc_assert (code == GIMPLE_ASSIGN
658 || code == GIMPLE_CALL
659 || code == GIMPLE_COND
660 || code == GIMPLE_SWITCH);
661
662 /* If the statement has volatile operands, it won't fold to a
663 constant value. */
664 if (gimple_has_volatile_ops (stmt))
665 return VARYING;
666
667 /* Arrive here for more complex cases. */
668 has_constant_operand = false;
669 has_undefined_operand = false;
670 all_undefined_operands = true;
671 has_nsa_operand = false;
672 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
673 {
674 ccp_prop_value_t *val = get_value (use);
675
676 if (val->lattice_val == UNDEFINED)
677 has_undefined_operand = true;
678 else
679 all_undefined_operands = false;
680
681 if (val->lattice_val == CONSTANT)
682 has_constant_operand = true;
683
684 if (SSA_NAME_IS_DEFAULT_DEF (use)
685 || !prop_simulate_again_p (SSA_NAME_DEF_STMT (use)))
686 has_nsa_operand = true;
687 }
688
689 /* There may be constants in regular rhs operands. For calls we
690 have to ignore lhs, fndecl and static chain, otherwise only
691 the lhs. */
692 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
693 i < gimple_num_ops (stmt); ++i)
694 {
695 tree op = gimple_op (stmt, i);
696 if (!op || TREE_CODE (op) == SSA_NAME)
697 continue;
698 if (is_gimple_min_invariant (op))
699 has_constant_operand = true;
700 }
701
702 if (has_constant_operand)
703 all_undefined_operands = false;
704
705 if (has_undefined_operand
706 && code == GIMPLE_CALL
707 && gimple_call_internal_p (stmt))
708 switch (gimple_call_internal_fn (stmt))
709 {
710 /* These 3 builtins use the first argument just as a magic
711 way how to find out a decl uid. */
712 case IFN_GOMP_SIMD_LANE:
713 case IFN_GOMP_SIMD_VF:
714 case IFN_GOMP_SIMD_LAST_LANE:
715 has_undefined_operand = false;
716 break;
717 default:
718 break;
719 }
720
721 /* If the operation combines operands like COMPLEX_EXPR make sure to
722 not mark the result UNDEFINED if only one part of the result is
723 undefined. */
724 if (has_undefined_operand && all_undefined_operands)
725 return UNDEFINED;
726 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
727 {
728 switch (gimple_assign_rhs_code (stmt))
729 {
730 /* Unary operators are handled with all_undefined_operands. */
731 case PLUS_EXPR:
732 case MINUS_EXPR:
733 case POINTER_PLUS_EXPR:
734 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
735 Not bitwise operators, one VARYING operand may specify the
736 result completely. Not logical operators for the same reason.
737 Not COMPLEX_EXPR as one VARYING operand makes the result partly
738 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
739 the undefined operand may be promoted. */
740 return UNDEFINED;
741
742 case ADDR_EXPR:
743 /* If any part of an address is UNDEFINED, like the index
744 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
745 return UNDEFINED;
746
747 default:
748 ;
749 }
750 }
751 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
752 fall back to CONSTANT. During iteration UNDEFINED may still drop
753 to CONSTANT. */
754 if (has_undefined_operand)
755 return CONSTANT;
756
757 /* We do not consider virtual operands here -- load from read-only
758 memory may have only VARYING virtual operands, but still be
759 constant. Also we can combine the stmt with definitions from
760 operands whose definitions are not simulated again. */
761 if (has_constant_operand
762 || has_nsa_operand
763 || gimple_references_memory_p (stmt))
764 return CONSTANT;
765
766 return VARYING;
767 }
768
769 /* Returns true if STMT cannot be constant. */
770
771 static bool
772 surely_varying_stmt_p (gimple *stmt)
773 {
774 /* If the statement has operands that we cannot handle, it cannot be
775 constant. */
776 if (gimple_has_volatile_ops (stmt))
777 return true;
778
779 /* If it is a call and does not return a value or is not a
780 builtin and not an indirect call or a call to function with
781 assume_aligned/alloc_align attribute, it is varying. */
782 if (is_gimple_call (stmt))
783 {
784 tree fndecl, fntype = gimple_call_fntype (stmt);
785 if (!gimple_call_lhs (stmt)
786 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
787 && !DECL_BUILT_IN (fndecl)
788 && !lookup_attribute ("assume_aligned",
789 TYPE_ATTRIBUTES (fntype))
790 && !lookup_attribute ("alloc_align",
791 TYPE_ATTRIBUTES (fntype))))
792 return true;
793 }
794
795 /* Any other store operation is not interesting. */
796 else if (gimple_vdef (stmt))
797 return true;
798
799 /* Anything other than assignments and conditional jumps are not
800 interesting for CCP. */
801 if (gimple_code (stmt) != GIMPLE_ASSIGN
802 && gimple_code (stmt) != GIMPLE_COND
803 && gimple_code (stmt) != GIMPLE_SWITCH
804 && gimple_code (stmt) != GIMPLE_CALL)
805 return true;
806
807 return false;
808 }
809
810 /* Initialize local data structures for CCP. */
811
812 static void
813 ccp_initialize (void)
814 {
815 basic_block bb;
816
817 n_const_val = num_ssa_names;
818 const_val = XCNEWVEC (ccp_prop_value_t, n_const_val);
819
820 /* Initialize simulation flags for PHI nodes and statements. */
821 FOR_EACH_BB_FN (bb, cfun)
822 {
823 gimple_stmt_iterator i;
824
825 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
826 {
827 gimple *stmt = gsi_stmt (i);
828 bool is_varying;
829
830 /* If the statement is a control insn, then we do not
831 want to avoid simulating the statement once. Failure
832 to do so means that those edges will never get added. */
833 if (stmt_ends_bb_p (stmt))
834 is_varying = false;
835 else
836 is_varying = surely_varying_stmt_p (stmt);
837
838 if (is_varying)
839 {
840 tree def;
841 ssa_op_iter iter;
842
843 /* If the statement will not produce a constant, mark
844 all its outputs VARYING. */
845 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
846 set_value_varying (def);
847 }
848 prop_set_simulate_again (stmt, !is_varying);
849 }
850 }
851
852 /* Now process PHI nodes. We never clear the simulate_again flag on
853 phi nodes, since we do not know which edges are executable yet,
854 except for phi nodes for virtual operands when we do not do store ccp. */
855 FOR_EACH_BB_FN (bb, cfun)
856 {
857 gphi_iterator i;
858
859 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
860 {
861 gphi *phi = i.phi ();
862
863 if (virtual_operand_p (gimple_phi_result (phi)))
864 prop_set_simulate_again (phi, false);
865 else
866 prop_set_simulate_again (phi, true);
867 }
868 }
869 }
870
871 /* Debug count support. Reset the values of ssa names
872 VARYING when the total number ssa names analyzed is
873 beyond the debug count specified. */
874
875 static void
876 do_dbg_cnt (void)
877 {
878 unsigned i;
879 for (i = 0; i < num_ssa_names; i++)
880 {
881 if (!dbg_cnt (ccp))
882 {
883 const_val[i].lattice_val = VARYING;
884 const_val[i].mask = -1;
885 const_val[i].value = NULL_TREE;
886 }
887 }
888 }
889
890
891 /* Do final substitution of propagated values, cleanup the flowgraph and
892 free allocated storage. If NONZERO_P, record nonzero bits.
893
894 Return TRUE when something was optimized. */
895
896 static bool
897 ccp_finalize (bool nonzero_p)
898 {
899 bool something_changed;
900 unsigned i;
901
902 do_dbg_cnt ();
903
904 /* Derive alignment and misalignment information from partially
905 constant pointers in the lattice or nonzero bits from partially
906 constant integers. */
907 for (i = 1; i < num_ssa_names; ++i)
908 {
909 tree name = ssa_name (i);
910 ccp_prop_value_t *val;
911 unsigned int tem, align;
912
913 if (!name
914 || (!POINTER_TYPE_P (TREE_TYPE (name))
915 && (!INTEGRAL_TYPE_P (TREE_TYPE (name))
916 /* Don't record nonzero bits before IPA to avoid
917 using too much memory. */
918 || !nonzero_p)))
919 continue;
920
921 val = get_value (name);
922 if (val->lattice_val != CONSTANT
923 || TREE_CODE (val->value) != INTEGER_CST
924 || val->mask == 0)
925 continue;
926
927 if (POINTER_TYPE_P (TREE_TYPE (name)))
928 {
929 /* Trailing mask bits specify the alignment, trailing value
930 bits the misalignment. */
931 tem = val->mask.to_uhwi ();
932 align = (tem & -tem);
933 if (align > 1)
934 set_ptr_info_alignment (get_ptr_info (name), align,
935 (TREE_INT_CST_LOW (val->value)
936 & (align - 1)));
937 }
938 else
939 {
940 unsigned int precision = TYPE_PRECISION (TREE_TYPE (val->value));
941 wide_int nonzero_bits = wide_int::from (val->mask, precision,
942 UNSIGNED) | val->value;
943 nonzero_bits &= get_nonzero_bits (name);
944 set_nonzero_bits (name, nonzero_bits);
945 }
946 }
947
948 /* Perform substitutions based on the known constant values. */
949 something_changed = substitute_and_fold (get_constant_value,
950 ccp_fold_stmt, true);
951
952 free (const_val);
953 const_val = NULL;
954 return something_changed;;
955 }
956
957
958 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
959 in VAL1.
960
961 any M UNDEFINED = any
962 any M VARYING = VARYING
963 Ci M Cj = Ci if (i == j)
964 Ci M Cj = VARYING if (i != j)
965 */
966
967 static void
968 ccp_lattice_meet (ccp_prop_value_t *val1, ccp_prop_value_t *val2)
969 {
970 if (val1->lattice_val == UNDEFINED
971 /* For UNDEFINED M SSA we can't always SSA because its definition
972 may not dominate the PHI node. Doing optimistic copy propagation
973 also causes a lot of gcc.dg/uninit-pred*.c FAILs. */
974 && (val2->lattice_val != CONSTANT
975 || TREE_CODE (val2->value) != SSA_NAME))
976 {
977 /* UNDEFINED M any = any */
978 *val1 = *val2;
979 }
980 else if (val2->lattice_val == UNDEFINED
981 /* See above. */
982 && (val1->lattice_val != CONSTANT
983 || TREE_CODE (val1->value) != SSA_NAME))
984 {
985 /* any M UNDEFINED = any
986 Nothing to do. VAL1 already contains the value we want. */
987 ;
988 }
989 else if (val1->lattice_val == VARYING
990 || val2->lattice_val == VARYING)
991 {
992 /* any M VARYING = VARYING. */
993 val1->lattice_val = VARYING;
994 val1->mask = -1;
995 val1->value = NULL_TREE;
996 }
997 else if (val1->lattice_val == CONSTANT
998 && val2->lattice_val == CONSTANT
999 && TREE_CODE (val1->value) == INTEGER_CST
1000 && TREE_CODE (val2->value) == INTEGER_CST)
1001 {
1002 /* Ci M Cj = Ci if (i == j)
1003 Ci M Cj = VARYING if (i != j)
1004
1005 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
1006 drop to varying. */
1007 val1->mask = (val1->mask | val2->mask
1008 | (wi::to_widest (val1->value)
1009 ^ wi::to_widest (val2->value)));
1010 if (wi::sext (val1->mask, TYPE_PRECISION (TREE_TYPE (val1->value))) == -1)
1011 {
1012 val1->lattice_val = VARYING;
1013 val1->value = NULL_TREE;
1014 }
1015 }
1016 else if (val1->lattice_val == CONSTANT
1017 && val2->lattice_val == CONSTANT
1018 && operand_equal_p (val1->value, val2->value, 0))
1019 {
1020 /* Ci M Cj = Ci if (i == j)
1021 Ci M Cj = VARYING if (i != j)
1022
1023 VAL1 already contains the value we want for equivalent values. */
1024 }
1025 else if (val1->lattice_val == CONSTANT
1026 && val2->lattice_val == CONSTANT
1027 && (TREE_CODE (val1->value) == ADDR_EXPR
1028 || TREE_CODE (val2->value) == ADDR_EXPR))
1029 {
1030 /* When not equal addresses are involved try meeting for
1031 alignment. */
1032 ccp_prop_value_t tem = *val2;
1033 if (TREE_CODE (val1->value) == ADDR_EXPR)
1034 *val1 = get_value_for_expr (val1->value, true);
1035 if (TREE_CODE (val2->value) == ADDR_EXPR)
1036 tem = get_value_for_expr (val2->value, true);
1037 ccp_lattice_meet (val1, &tem);
1038 }
1039 else
1040 {
1041 /* Any other combination is VARYING. */
1042 val1->lattice_val = VARYING;
1043 val1->mask = -1;
1044 val1->value = NULL_TREE;
1045 }
1046 }
1047
1048
1049 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
1050 lattice values to determine PHI_NODE's lattice value. The value of a
1051 PHI node is determined calling ccp_lattice_meet with all the arguments
1052 of the PHI node that are incoming via executable edges. */
1053
1054 static enum ssa_prop_result
1055 ccp_visit_phi_node (gphi *phi)
1056 {
1057 unsigned i;
1058 ccp_prop_value_t new_val;
1059
1060 if (dump_file && (dump_flags & TDF_DETAILS))
1061 {
1062 fprintf (dump_file, "\nVisiting PHI node: ");
1063 print_gimple_stmt (dump_file, phi, 0, dump_flags);
1064 }
1065
1066 new_val.lattice_val = UNDEFINED;
1067 new_val.value = NULL_TREE;
1068 new_val.mask = 0;
1069
1070 bool first = true;
1071 bool non_exec_edge = false;
1072 for (i = 0; i < gimple_phi_num_args (phi); i++)
1073 {
1074 /* Compute the meet operator over all the PHI arguments flowing
1075 through executable edges. */
1076 edge e = gimple_phi_arg_edge (phi, i);
1077
1078 if (dump_file && (dump_flags & TDF_DETAILS))
1079 {
1080 fprintf (dump_file,
1081 "\n Argument #%d (%d -> %d %sexecutable)\n",
1082 i, e->src->index, e->dest->index,
1083 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
1084 }
1085
1086 /* If the incoming edge is executable, Compute the meet operator for
1087 the existing value of the PHI node and the current PHI argument. */
1088 if (e->flags & EDGE_EXECUTABLE)
1089 {
1090 tree arg = gimple_phi_arg (phi, i)->def;
1091 ccp_prop_value_t arg_val = get_value_for_expr (arg, false);
1092
1093 if (first)
1094 {
1095 new_val = arg_val;
1096 first = false;
1097 }
1098 else
1099 ccp_lattice_meet (&new_val, &arg_val);
1100
1101 if (dump_file && (dump_flags & TDF_DETAILS))
1102 {
1103 fprintf (dump_file, "\t");
1104 print_generic_expr (dump_file, arg, dump_flags);
1105 dump_lattice_value (dump_file, "\tValue: ", arg_val);
1106 fprintf (dump_file, "\n");
1107 }
1108
1109 if (new_val.lattice_val == VARYING)
1110 break;
1111 }
1112 else
1113 non_exec_edge = true;
1114 }
1115
1116 /* In case there were non-executable edges and the value is a copy
1117 make sure its definition dominates the PHI node. */
1118 if (non_exec_edge
1119 && new_val.lattice_val == CONSTANT
1120 && TREE_CODE (new_val.value) == SSA_NAME
1121 && ! SSA_NAME_IS_DEFAULT_DEF (new_val.value)
1122 && ! dominated_by_p (CDI_DOMINATORS, gimple_bb (phi),
1123 gimple_bb (SSA_NAME_DEF_STMT (new_val.value))))
1124 {
1125 new_val.lattice_val = VARYING;
1126 new_val.value = NULL_TREE;
1127 new_val.mask = -1;
1128 }
1129
1130 if (dump_file && (dump_flags & TDF_DETAILS))
1131 {
1132 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
1133 fprintf (dump_file, "\n\n");
1134 }
1135
1136 /* Make the transition to the new value. */
1137 if (set_lattice_value (gimple_phi_result (phi), &new_val))
1138 {
1139 if (new_val.lattice_val == VARYING)
1140 return SSA_PROP_VARYING;
1141 else
1142 return SSA_PROP_INTERESTING;
1143 }
1144 else
1145 return SSA_PROP_NOT_INTERESTING;
1146 }
1147
1148 /* Return the constant value for OP or OP otherwise. */
1149
1150 static tree
1151 valueize_op (tree op)
1152 {
1153 if (TREE_CODE (op) == SSA_NAME)
1154 {
1155 tree tem = get_constant_value (op);
1156 if (tem)
1157 return tem;
1158 }
1159 return op;
1160 }
1161
1162 /* Return the constant value for OP, but signal to not follow SSA
1163 edges if the definition may be simulated again. */
1164
1165 static tree
1166 valueize_op_1 (tree op)
1167 {
1168 if (TREE_CODE (op) == SSA_NAME)
1169 {
1170 /* If the definition may be simulated again we cannot follow
1171 this SSA edge as the SSA propagator does not necessarily
1172 re-visit the use. */
1173 gimple *def_stmt = SSA_NAME_DEF_STMT (op);
1174 if (!gimple_nop_p (def_stmt)
1175 && prop_simulate_again_p (def_stmt))
1176 return NULL_TREE;
1177 tree tem = get_constant_value (op);
1178 if (tem)
1179 return tem;
1180 }
1181 return op;
1182 }
1183
1184 /* CCP specific front-end to the non-destructive constant folding
1185 routines.
1186
1187 Attempt to simplify the RHS of STMT knowing that one or more
1188 operands are constants.
1189
1190 If simplification is possible, return the simplified RHS,
1191 otherwise return the original RHS or NULL_TREE. */
1192
1193 static tree
1194 ccp_fold (gimple *stmt)
1195 {
1196 location_t loc = gimple_location (stmt);
1197 switch (gimple_code (stmt))
1198 {
1199 case GIMPLE_COND:
1200 {
1201 /* Handle comparison operators that can appear in GIMPLE form. */
1202 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1203 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1204 enum tree_code code = gimple_cond_code (stmt);
1205 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1206 }
1207
1208 case GIMPLE_SWITCH:
1209 {
1210 /* Return the constant switch index. */
1211 return valueize_op (gimple_switch_index (as_a <gswitch *> (stmt)));
1212 }
1213
1214 case GIMPLE_ASSIGN:
1215 case GIMPLE_CALL:
1216 return gimple_fold_stmt_to_constant_1 (stmt,
1217 valueize_op, valueize_op_1);
1218
1219 default:
1220 gcc_unreachable ();
1221 }
1222 }
1223
1224 /* Apply the operation CODE in type TYPE to the value, mask pair
1225 RVAL and RMASK representing a value of type RTYPE and set
1226 the value, mask pair *VAL and *MASK to the result. */
1227
1228 void
1229 bit_value_unop (enum tree_code code, signop type_sgn, int type_precision,
1230 widest_int *val, widest_int *mask,
1231 signop rtype_sgn, int rtype_precision,
1232 const widest_int &rval, const widest_int &rmask)
1233 {
1234 switch (code)
1235 {
1236 case BIT_NOT_EXPR:
1237 *mask = rmask;
1238 *val = ~rval;
1239 break;
1240
1241 case NEGATE_EXPR:
1242 {
1243 widest_int temv, temm;
1244 /* Return ~rval + 1. */
1245 bit_value_unop (BIT_NOT_EXPR, type_sgn, type_precision, &temv, &temm,
1246 type_sgn, type_precision, rval, rmask);
1247 bit_value_binop (PLUS_EXPR, type_sgn, type_precision, val, mask,
1248 type_sgn, type_precision, temv, temm,
1249 type_sgn, type_precision, 1, 0);
1250 break;
1251 }
1252
1253 CASE_CONVERT:
1254 {
1255 /* First extend mask and value according to the original type. */
1256 *mask = wi::ext (rmask, rtype_precision, rtype_sgn);
1257 *val = wi::ext (rval, rtype_precision, rtype_sgn);
1258
1259 /* Then extend mask and value according to the target type. */
1260 *mask = wi::ext (*mask, type_precision, type_sgn);
1261 *val = wi::ext (*val, type_precision, type_sgn);
1262 break;
1263 }
1264
1265 default:
1266 *mask = -1;
1267 break;
1268 }
1269 }
1270
1271 /* Apply the operation CODE in type TYPE to the value, mask pairs
1272 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1273 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1274
1275 void
1276 bit_value_binop (enum tree_code code, signop sgn, int width,
1277 widest_int *val, widest_int *mask,
1278 signop r1type_sgn, int r1type_precision,
1279 const widest_int &r1val, const widest_int &r1mask,
1280 signop r2type_sgn, int r2type_precision,
1281 const widest_int &r2val, const widest_int &r2mask)
1282 {
1283 bool swap_p = false;
1284
1285 /* Assume we'll get a constant result. Use an initial non varying
1286 value, we fall back to varying in the end if necessary. */
1287 *mask = -1;
1288
1289 switch (code)
1290 {
1291 case BIT_AND_EXPR:
1292 /* The mask is constant where there is a known not
1293 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1294 *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
1295 *val = r1val & r2val;
1296 break;
1297
1298 case BIT_IOR_EXPR:
1299 /* The mask is constant where there is a known
1300 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1301 *mask = (r1mask | r2mask)
1302 .and_not (r1val.and_not (r1mask) | r2val.and_not (r2mask));
1303 *val = r1val | r2val;
1304 break;
1305
1306 case BIT_XOR_EXPR:
1307 /* m1 | m2 */
1308 *mask = r1mask | r2mask;
1309 *val = r1val ^ r2val;
1310 break;
1311
1312 case LROTATE_EXPR:
1313 case RROTATE_EXPR:
1314 if (r2mask == 0)
1315 {
1316 widest_int shift = r2val;
1317 if (shift == 0)
1318 {
1319 *mask = r1mask;
1320 *val = r1val;
1321 }
1322 else
1323 {
1324 if (wi::neg_p (shift))
1325 {
1326 shift = -shift;
1327 if (code == RROTATE_EXPR)
1328 code = LROTATE_EXPR;
1329 else
1330 code = RROTATE_EXPR;
1331 }
1332 if (code == RROTATE_EXPR)
1333 {
1334 *mask = wi::rrotate (r1mask, shift, width);
1335 *val = wi::rrotate (r1val, shift, width);
1336 }
1337 else
1338 {
1339 *mask = wi::lrotate (r1mask, shift, width);
1340 *val = wi::lrotate (r1val, shift, width);
1341 }
1342 }
1343 }
1344 break;
1345
1346 case LSHIFT_EXPR:
1347 case RSHIFT_EXPR:
1348 /* ??? We can handle partially known shift counts if we know
1349 its sign. That way we can tell that (x << (y | 8)) & 255
1350 is zero. */
1351 if (r2mask == 0)
1352 {
1353 widest_int shift = r2val;
1354 if (shift == 0)
1355 {
1356 *mask = r1mask;
1357 *val = r1val;
1358 }
1359 else
1360 {
1361 if (wi::neg_p (shift))
1362 {
1363 shift = -shift;
1364 if (code == RSHIFT_EXPR)
1365 code = LSHIFT_EXPR;
1366 else
1367 code = RSHIFT_EXPR;
1368 }
1369 if (code == RSHIFT_EXPR)
1370 {
1371 *mask = wi::rshift (wi::ext (r1mask, width, sgn), shift, sgn);
1372 *val = wi::rshift (wi::ext (r1val, width, sgn), shift, sgn);
1373 }
1374 else
1375 {
1376 *mask = wi::ext (r1mask << shift, width, sgn);
1377 *val = wi::ext (r1val << shift, width, sgn);
1378 }
1379 }
1380 }
1381 break;
1382
1383 case PLUS_EXPR:
1384 case POINTER_PLUS_EXPR:
1385 {
1386 /* Do the addition with unknown bits set to zero, to give carry-ins of
1387 zero wherever possible. */
1388 widest_int lo = r1val.and_not (r1mask) + r2val.and_not (r2mask);
1389 lo = wi::ext (lo, width, sgn);
1390 /* Do the addition with unknown bits set to one, to give carry-ins of
1391 one wherever possible. */
1392 widest_int hi = (r1val | r1mask) + (r2val | r2mask);
1393 hi = wi::ext (hi, width, sgn);
1394 /* Each bit in the result is known if (a) the corresponding bits in
1395 both inputs are known, and (b) the carry-in to that bit position
1396 is known. We can check condition (b) by seeing if we got the same
1397 result with minimised carries as with maximised carries. */
1398 *mask = r1mask | r2mask | (lo ^ hi);
1399 *mask = wi::ext (*mask, width, sgn);
1400 /* It shouldn't matter whether we choose lo or hi here. */
1401 *val = lo;
1402 break;
1403 }
1404
1405 case MINUS_EXPR:
1406 {
1407 widest_int temv, temm;
1408 bit_value_unop (NEGATE_EXPR, r2type_sgn, r2type_precision, &temv, &temm,
1409 r2type_sgn, r2type_precision, r2val, r2mask);
1410 bit_value_binop (PLUS_EXPR, sgn, width, val, mask,
1411 r1type_sgn, r1type_precision, r1val, r1mask,
1412 r2type_sgn, r2type_precision, temv, temm);
1413 break;
1414 }
1415
1416 case MULT_EXPR:
1417 {
1418 /* Just track trailing zeros in both operands and transfer
1419 them to the other. */
1420 int r1tz = wi::ctz (r1val | r1mask);
1421 int r2tz = wi::ctz (r2val | r2mask);
1422 if (r1tz + r2tz >= width)
1423 {
1424 *mask = 0;
1425 *val = 0;
1426 }
1427 else if (r1tz + r2tz > 0)
1428 {
1429 *mask = wi::ext (wi::mask <widest_int> (r1tz + r2tz, true),
1430 width, sgn);
1431 *val = 0;
1432 }
1433 break;
1434 }
1435
1436 case EQ_EXPR:
1437 case NE_EXPR:
1438 {
1439 widest_int m = r1mask | r2mask;
1440 if (r1val.and_not (m) != r2val.and_not (m))
1441 {
1442 *mask = 0;
1443 *val = ((code == EQ_EXPR) ? 0 : 1);
1444 }
1445 else
1446 {
1447 /* We know the result of a comparison is always one or zero. */
1448 *mask = 1;
1449 *val = 0;
1450 }
1451 break;
1452 }
1453
1454 case GE_EXPR:
1455 case GT_EXPR:
1456 swap_p = true;
1457 code = swap_tree_comparison (code);
1458 /* Fall through. */
1459 case LT_EXPR:
1460 case LE_EXPR:
1461 {
1462 int minmax, maxmin;
1463
1464 const widest_int &o1val = swap_p ? r2val : r1val;
1465 const widest_int &o1mask = swap_p ? r2mask : r1mask;
1466 const widest_int &o2val = swap_p ? r1val : r2val;
1467 const widest_int &o2mask = swap_p ? r1mask : r2mask;
1468
1469 /* If the most significant bits are not known we know nothing. */
1470 if (wi::neg_p (o1mask) || wi::neg_p (o2mask))
1471 break;
1472
1473 /* For comparisons the signedness is in the comparison operands. */
1474 sgn = r1type_sgn;
1475
1476 /* If we know the most significant bits we know the values
1477 value ranges by means of treating varying bits as zero
1478 or one. Do a cross comparison of the max/min pairs. */
1479 maxmin = wi::cmp (o1val | o1mask, o2val.and_not (o2mask), sgn);
1480 minmax = wi::cmp (o1val.and_not (o1mask), o2val | o2mask, sgn);
1481 if (maxmin < 0) /* o1 is less than o2. */
1482 {
1483 *mask = 0;
1484 *val = 1;
1485 }
1486 else if (minmax > 0) /* o1 is not less or equal to o2. */
1487 {
1488 *mask = 0;
1489 *val = 0;
1490 }
1491 else if (maxmin == minmax) /* o1 and o2 are equal. */
1492 {
1493 /* This probably should never happen as we'd have
1494 folded the thing during fully constant value folding. */
1495 *mask = 0;
1496 *val = (code == LE_EXPR ? 1 : 0);
1497 }
1498 else
1499 {
1500 /* We know the result of a comparison is always one or zero. */
1501 *mask = 1;
1502 *val = 0;
1503 }
1504 break;
1505 }
1506
1507 default:;
1508 }
1509 }
1510
1511 /* Return the propagation value when applying the operation CODE to
1512 the value RHS yielding type TYPE. */
1513
1514 static ccp_prop_value_t
1515 bit_value_unop (enum tree_code code, tree type, tree rhs)
1516 {
1517 ccp_prop_value_t rval = get_value_for_expr (rhs, true);
1518 widest_int value, mask;
1519 ccp_prop_value_t val;
1520
1521 if (rval.lattice_val == UNDEFINED)
1522 return rval;
1523
1524 gcc_assert ((rval.lattice_val == CONSTANT
1525 && TREE_CODE (rval.value) == INTEGER_CST)
1526 || wi::sext (rval.mask, TYPE_PRECISION (TREE_TYPE (rhs))) == -1);
1527 bit_value_unop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1528 TYPE_SIGN (TREE_TYPE (rhs)), TYPE_PRECISION (TREE_TYPE (rhs)),
1529 value_to_wide_int (rval), rval.mask);
1530 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1531 {
1532 val.lattice_val = CONSTANT;
1533 val.mask = mask;
1534 /* ??? Delay building trees here. */
1535 val.value = wide_int_to_tree (type, value);
1536 }
1537 else
1538 {
1539 val.lattice_val = VARYING;
1540 val.value = NULL_TREE;
1541 val.mask = -1;
1542 }
1543 return val;
1544 }
1545
1546 /* Return the propagation value when applying the operation CODE to
1547 the values RHS1 and RHS2 yielding type TYPE. */
1548
1549 static ccp_prop_value_t
1550 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
1551 {
1552 ccp_prop_value_t r1val = get_value_for_expr (rhs1, true);
1553 ccp_prop_value_t r2val = get_value_for_expr (rhs2, true);
1554 widest_int value, mask;
1555 ccp_prop_value_t val;
1556
1557 if (r1val.lattice_val == UNDEFINED
1558 || r2val.lattice_val == UNDEFINED)
1559 {
1560 val.lattice_val = VARYING;
1561 val.value = NULL_TREE;
1562 val.mask = -1;
1563 return val;
1564 }
1565
1566 gcc_assert ((r1val.lattice_val == CONSTANT
1567 && TREE_CODE (r1val.value) == INTEGER_CST)
1568 || wi::sext (r1val.mask,
1569 TYPE_PRECISION (TREE_TYPE (rhs1))) == -1);
1570 gcc_assert ((r2val.lattice_val == CONSTANT
1571 && TREE_CODE (r2val.value) == INTEGER_CST)
1572 || wi::sext (r2val.mask,
1573 TYPE_PRECISION (TREE_TYPE (rhs2))) == -1);
1574 bit_value_binop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1575 TYPE_SIGN (TREE_TYPE (rhs1)), TYPE_PRECISION (TREE_TYPE (rhs1)),
1576 value_to_wide_int (r1val), r1val.mask,
1577 TYPE_SIGN (TREE_TYPE (rhs2)), TYPE_PRECISION (TREE_TYPE (rhs2)),
1578 value_to_wide_int (r2val), r2val.mask);
1579
1580 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1581 {
1582 val.lattice_val = CONSTANT;
1583 val.mask = mask;
1584 /* ??? Delay building trees here. */
1585 val.value = wide_int_to_tree (type, value);
1586 }
1587 else
1588 {
1589 val.lattice_val = VARYING;
1590 val.value = NULL_TREE;
1591 val.mask = -1;
1592 }
1593 return val;
1594 }
1595
1596 /* Return the propagation value for __builtin_assume_aligned
1597 and functions with assume_aligned or alloc_aligned attribute.
1598 For __builtin_assume_aligned, ATTR is NULL_TREE,
1599 for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED
1600 is false, for alloc_aligned attribute ATTR is non-NULL and
1601 ALLOC_ALIGNED is true. */
1602
1603 static ccp_prop_value_t
1604 bit_value_assume_aligned (gimple *stmt, tree attr, ccp_prop_value_t ptrval,
1605 bool alloc_aligned)
1606 {
1607 tree align, misalign = NULL_TREE, type;
1608 unsigned HOST_WIDE_INT aligni, misaligni = 0;
1609 ccp_prop_value_t alignval;
1610 widest_int value, mask;
1611 ccp_prop_value_t val;
1612
1613 if (attr == NULL_TREE)
1614 {
1615 tree ptr = gimple_call_arg (stmt, 0);
1616 type = TREE_TYPE (ptr);
1617 ptrval = get_value_for_expr (ptr, true);
1618 }
1619 else
1620 {
1621 tree lhs = gimple_call_lhs (stmt);
1622 type = TREE_TYPE (lhs);
1623 }
1624
1625 if (ptrval.lattice_val == UNDEFINED)
1626 return ptrval;
1627 gcc_assert ((ptrval.lattice_val == CONSTANT
1628 && TREE_CODE (ptrval.value) == INTEGER_CST)
1629 || wi::sext (ptrval.mask, TYPE_PRECISION (type)) == -1);
1630 if (attr == NULL_TREE)
1631 {
1632 /* Get aligni and misaligni from __builtin_assume_aligned. */
1633 align = gimple_call_arg (stmt, 1);
1634 if (!tree_fits_uhwi_p (align))
1635 return ptrval;
1636 aligni = tree_to_uhwi (align);
1637 if (gimple_call_num_args (stmt) > 2)
1638 {
1639 misalign = gimple_call_arg (stmt, 2);
1640 if (!tree_fits_uhwi_p (misalign))
1641 return ptrval;
1642 misaligni = tree_to_uhwi (misalign);
1643 }
1644 }
1645 else
1646 {
1647 /* Get aligni and misaligni from assume_aligned or
1648 alloc_align attributes. */
1649 if (TREE_VALUE (attr) == NULL_TREE)
1650 return ptrval;
1651 attr = TREE_VALUE (attr);
1652 align = TREE_VALUE (attr);
1653 if (!tree_fits_uhwi_p (align))
1654 return ptrval;
1655 aligni = tree_to_uhwi (align);
1656 if (alloc_aligned)
1657 {
1658 if (aligni == 0 || aligni > gimple_call_num_args (stmt))
1659 return ptrval;
1660 align = gimple_call_arg (stmt, aligni - 1);
1661 if (!tree_fits_uhwi_p (align))
1662 return ptrval;
1663 aligni = tree_to_uhwi (align);
1664 }
1665 else if (TREE_CHAIN (attr) && TREE_VALUE (TREE_CHAIN (attr)))
1666 {
1667 misalign = TREE_VALUE (TREE_CHAIN (attr));
1668 if (!tree_fits_uhwi_p (misalign))
1669 return ptrval;
1670 misaligni = tree_to_uhwi (misalign);
1671 }
1672 }
1673 if (aligni <= 1 || (aligni & (aligni - 1)) != 0 || misaligni >= aligni)
1674 return ptrval;
1675
1676 align = build_int_cst_type (type, -aligni);
1677 alignval = get_value_for_expr (align, true);
1678 bit_value_binop (BIT_AND_EXPR, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1679 TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (ptrval), ptrval.mask,
1680 TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (alignval), alignval.mask);
1681
1682 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1683 {
1684 val.lattice_val = CONSTANT;
1685 val.mask = mask;
1686 gcc_assert ((mask.to_uhwi () & (aligni - 1)) == 0);
1687 gcc_assert ((value.to_uhwi () & (aligni - 1)) == 0);
1688 value |= misaligni;
1689 /* ??? Delay building trees here. */
1690 val.value = wide_int_to_tree (type, value);
1691 }
1692 else
1693 {
1694 val.lattice_val = VARYING;
1695 val.value = NULL_TREE;
1696 val.mask = -1;
1697 }
1698 return val;
1699 }
1700
1701 /* Evaluate statement STMT.
1702 Valid only for assignments, calls, conditionals, and switches. */
1703
1704 static ccp_prop_value_t
1705 evaluate_stmt (gimple *stmt)
1706 {
1707 ccp_prop_value_t val;
1708 tree simplified = NULL_TREE;
1709 ccp_lattice_t likelyvalue = likely_value (stmt);
1710 bool is_constant = false;
1711 unsigned int align;
1712
1713 if (dump_file && (dump_flags & TDF_DETAILS))
1714 {
1715 fprintf (dump_file, "which is likely ");
1716 switch (likelyvalue)
1717 {
1718 case CONSTANT:
1719 fprintf (dump_file, "CONSTANT");
1720 break;
1721 case UNDEFINED:
1722 fprintf (dump_file, "UNDEFINED");
1723 break;
1724 case VARYING:
1725 fprintf (dump_file, "VARYING");
1726 break;
1727 default:;
1728 }
1729 fprintf (dump_file, "\n");
1730 }
1731
1732 /* If the statement is likely to have a CONSTANT result, then try
1733 to fold the statement to determine the constant value. */
1734 /* FIXME. This is the only place that we call ccp_fold.
1735 Since likely_value never returns CONSTANT for calls, we will
1736 not attempt to fold them, including builtins that may profit. */
1737 if (likelyvalue == CONSTANT)
1738 {
1739 fold_defer_overflow_warnings ();
1740 simplified = ccp_fold (stmt);
1741 if (simplified && TREE_CODE (simplified) == SSA_NAME)
1742 {
1743 val = *get_value (simplified);
1744 if (val.lattice_val != VARYING)
1745 {
1746 fold_undefer_overflow_warnings (true, stmt, 0);
1747 return val;
1748 }
1749 }
1750 is_constant = simplified && is_gimple_min_invariant (simplified);
1751 fold_undefer_overflow_warnings (is_constant, stmt, 0);
1752 if (is_constant)
1753 {
1754 /* The statement produced a constant value. */
1755 val.lattice_val = CONSTANT;
1756 val.value = simplified;
1757 val.mask = 0;
1758 return val;
1759 }
1760 }
1761 /* If the statement is likely to have a VARYING result, then do not
1762 bother folding the statement. */
1763 else if (likelyvalue == VARYING)
1764 {
1765 enum gimple_code code = gimple_code (stmt);
1766 if (code == GIMPLE_ASSIGN)
1767 {
1768 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1769
1770 /* Other cases cannot satisfy is_gimple_min_invariant
1771 without folding. */
1772 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
1773 simplified = gimple_assign_rhs1 (stmt);
1774 }
1775 else if (code == GIMPLE_SWITCH)
1776 simplified = gimple_switch_index (as_a <gswitch *> (stmt));
1777 else
1778 /* These cannot satisfy is_gimple_min_invariant without folding. */
1779 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
1780 is_constant = simplified && is_gimple_min_invariant (simplified);
1781 if (is_constant)
1782 {
1783 /* The statement produced a constant value. */
1784 val.lattice_val = CONSTANT;
1785 val.value = simplified;
1786 val.mask = 0;
1787 }
1788 }
1789 /* If the statement result is likely UNDEFINED, make it so. */
1790 else if (likelyvalue == UNDEFINED)
1791 {
1792 val.lattice_val = UNDEFINED;
1793 val.value = NULL_TREE;
1794 val.mask = 0;
1795 return val;
1796 }
1797
1798 /* Resort to simplification for bitwise tracking. */
1799 if (flag_tree_bit_ccp
1800 && (likelyvalue == CONSTANT || is_gimple_call (stmt)
1801 || (gimple_assign_single_p (stmt)
1802 && gimple_assign_rhs_code (stmt) == ADDR_EXPR))
1803 && !is_constant)
1804 {
1805 enum gimple_code code = gimple_code (stmt);
1806 val.lattice_val = VARYING;
1807 val.value = NULL_TREE;
1808 val.mask = -1;
1809 if (code == GIMPLE_ASSIGN)
1810 {
1811 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1812 tree rhs1 = gimple_assign_rhs1 (stmt);
1813 tree lhs = gimple_assign_lhs (stmt);
1814 if ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
1815 || POINTER_TYPE_P (TREE_TYPE (lhs)))
1816 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1817 || POINTER_TYPE_P (TREE_TYPE (rhs1))))
1818 switch (get_gimple_rhs_class (subcode))
1819 {
1820 case GIMPLE_SINGLE_RHS:
1821 val = get_value_for_expr (rhs1, true);
1822 break;
1823
1824 case GIMPLE_UNARY_RHS:
1825 val = bit_value_unop (subcode, TREE_TYPE (lhs), rhs1);
1826 break;
1827
1828 case GIMPLE_BINARY_RHS:
1829 val = bit_value_binop (subcode, TREE_TYPE (lhs), rhs1,
1830 gimple_assign_rhs2 (stmt));
1831 break;
1832
1833 default:;
1834 }
1835 }
1836 else if (code == GIMPLE_COND)
1837 {
1838 enum tree_code code = gimple_cond_code (stmt);
1839 tree rhs1 = gimple_cond_lhs (stmt);
1840 tree rhs2 = gimple_cond_rhs (stmt);
1841 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1842 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1843 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
1844 }
1845 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1846 {
1847 tree fndecl = gimple_call_fndecl (stmt);
1848 switch (DECL_FUNCTION_CODE (fndecl))
1849 {
1850 case BUILT_IN_MALLOC:
1851 case BUILT_IN_REALLOC:
1852 case BUILT_IN_CALLOC:
1853 case BUILT_IN_STRDUP:
1854 case BUILT_IN_STRNDUP:
1855 val.lattice_val = CONSTANT;
1856 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1857 val.mask = ~((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT
1858 / BITS_PER_UNIT - 1);
1859 break;
1860
1861 case BUILT_IN_ALLOCA:
1862 case BUILT_IN_ALLOCA_WITH_ALIGN:
1863 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN
1864 ? TREE_INT_CST_LOW (gimple_call_arg (stmt, 1))
1865 : BIGGEST_ALIGNMENT);
1866 val.lattice_val = CONSTANT;
1867 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1868 val.mask = ~((HOST_WIDE_INT) align / BITS_PER_UNIT - 1);
1869 break;
1870
1871 /* These builtins return their first argument, unmodified. */
1872 case BUILT_IN_MEMCPY:
1873 case BUILT_IN_MEMMOVE:
1874 case BUILT_IN_MEMSET:
1875 case BUILT_IN_STRCPY:
1876 case BUILT_IN_STRNCPY:
1877 case BUILT_IN_MEMCPY_CHK:
1878 case BUILT_IN_MEMMOVE_CHK:
1879 case BUILT_IN_MEMSET_CHK:
1880 case BUILT_IN_STRCPY_CHK:
1881 case BUILT_IN_STRNCPY_CHK:
1882 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1883 break;
1884
1885 case BUILT_IN_ASSUME_ALIGNED:
1886 val = bit_value_assume_aligned (stmt, NULL_TREE, val, false);
1887 break;
1888
1889 case BUILT_IN_ALIGNED_ALLOC:
1890 {
1891 tree align = get_constant_value (gimple_call_arg (stmt, 0));
1892 if (align
1893 && tree_fits_uhwi_p (align))
1894 {
1895 unsigned HOST_WIDE_INT aligni = tree_to_uhwi (align);
1896 if (aligni > 1
1897 /* align must be power-of-two */
1898 && (aligni & (aligni - 1)) == 0)
1899 {
1900 val.lattice_val = CONSTANT;
1901 val.value = build_int_cst (ptr_type_node, 0);
1902 val.mask = -aligni;
1903 }
1904 }
1905 break;
1906 }
1907
1908 default:;
1909 }
1910 }
1911 if (is_gimple_call (stmt) && gimple_call_lhs (stmt))
1912 {
1913 tree fntype = gimple_call_fntype (stmt);
1914 if (fntype)
1915 {
1916 tree attrs = lookup_attribute ("assume_aligned",
1917 TYPE_ATTRIBUTES (fntype));
1918 if (attrs)
1919 val = bit_value_assume_aligned (stmt, attrs, val, false);
1920 attrs = lookup_attribute ("alloc_align",
1921 TYPE_ATTRIBUTES (fntype));
1922 if (attrs)
1923 val = bit_value_assume_aligned (stmt, attrs, val, true);
1924 }
1925 }
1926 is_constant = (val.lattice_val == CONSTANT);
1927 }
1928
1929 if (flag_tree_bit_ccp
1930 && ((is_constant && TREE_CODE (val.value) == INTEGER_CST)
1931 || !is_constant)
1932 && gimple_get_lhs (stmt)
1933 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME)
1934 {
1935 tree lhs = gimple_get_lhs (stmt);
1936 wide_int nonzero_bits = get_nonzero_bits (lhs);
1937 if (nonzero_bits != -1)
1938 {
1939 if (!is_constant)
1940 {
1941 val.lattice_val = CONSTANT;
1942 val.value = build_zero_cst (TREE_TYPE (lhs));
1943 val.mask = extend_mask (nonzero_bits, TYPE_SIGN (TREE_TYPE (lhs)));
1944 is_constant = true;
1945 }
1946 else
1947 {
1948 if (wi::bit_and_not (val.value, nonzero_bits) != 0)
1949 val.value = wide_int_to_tree (TREE_TYPE (lhs),
1950 nonzero_bits & val.value);
1951 if (nonzero_bits == 0)
1952 val.mask = 0;
1953 else
1954 val.mask = val.mask & extend_mask (nonzero_bits,
1955 TYPE_SIGN (TREE_TYPE (lhs)));
1956 }
1957 }
1958 }
1959
1960 /* The statement produced a nonconstant value. */
1961 if (!is_constant)
1962 {
1963 /* The statement produced a copy. */
1964 if (simplified && TREE_CODE (simplified) == SSA_NAME
1965 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (simplified))
1966 {
1967 val.lattice_val = CONSTANT;
1968 val.value = simplified;
1969 val.mask = -1;
1970 }
1971 /* The statement is VARYING. */
1972 else
1973 {
1974 val.lattice_val = VARYING;
1975 val.value = NULL_TREE;
1976 val.mask = -1;
1977 }
1978 }
1979
1980 return val;
1981 }
1982
1983 typedef hash_table<nofree_ptr_hash<gimple> > gimple_htab;
1984
1985 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
1986 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
1987
1988 static void
1989 insert_clobber_before_stack_restore (tree saved_val, tree var,
1990 gimple_htab **visited)
1991 {
1992 gimple *stmt;
1993 gassign *clobber_stmt;
1994 tree clobber;
1995 imm_use_iterator iter;
1996 gimple_stmt_iterator i;
1997 gimple **slot;
1998
1999 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
2000 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
2001 {
2002 clobber = build_constructor (TREE_TYPE (var),
2003 NULL);
2004 TREE_THIS_VOLATILE (clobber) = 1;
2005 clobber_stmt = gimple_build_assign (var, clobber);
2006
2007 i = gsi_for_stmt (stmt);
2008 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
2009 }
2010 else if (gimple_code (stmt) == GIMPLE_PHI)
2011 {
2012 if (!*visited)
2013 *visited = new gimple_htab (10);
2014
2015 slot = (*visited)->find_slot (stmt, INSERT);
2016 if (*slot != NULL)
2017 continue;
2018
2019 *slot = stmt;
2020 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
2021 visited);
2022 }
2023 else if (gimple_assign_ssa_name_copy_p (stmt))
2024 insert_clobber_before_stack_restore (gimple_assign_lhs (stmt), var,
2025 visited);
2026 else if (chkp_gimple_call_builtin_p (stmt, BUILT_IN_CHKP_BNDRET))
2027 continue;
2028 else
2029 gcc_assert (is_gimple_debug (stmt));
2030 }
2031
2032 /* Advance the iterator to the previous non-debug gimple statement in the same
2033 or dominating basic block. */
2034
2035 static inline void
2036 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
2037 {
2038 basic_block dom;
2039
2040 gsi_prev_nondebug (i);
2041 while (gsi_end_p (*i))
2042 {
2043 dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
2044 if (dom == NULL || dom == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2045 return;
2046
2047 *i = gsi_last_bb (dom);
2048 }
2049 }
2050
2051 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
2052 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
2053
2054 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
2055 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
2056 that case the function gives up without inserting the clobbers. */
2057
2058 static void
2059 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
2060 {
2061 gimple *stmt;
2062 tree saved_val;
2063 gimple_htab *visited = NULL;
2064
2065 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
2066 {
2067 stmt = gsi_stmt (i);
2068
2069 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
2070 continue;
2071
2072 saved_val = gimple_call_lhs (stmt);
2073 if (saved_val == NULL_TREE)
2074 continue;
2075
2076 insert_clobber_before_stack_restore (saved_val, var, &visited);
2077 break;
2078 }
2079
2080 delete visited;
2081 }
2082
2083 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
2084 fixed-size array and returns the address, if found, otherwise returns
2085 NULL_TREE. */
2086
2087 static tree
2088 fold_builtin_alloca_with_align (gimple *stmt)
2089 {
2090 unsigned HOST_WIDE_INT size, threshold, n_elem;
2091 tree lhs, arg, block, var, elem_type, array_type;
2092
2093 /* Get lhs. */
2094 lhs = gimple_call_lhs (stmt);
2095 if (lhs == NULL_TREE)
2096 return NULL_TREE;
2097
2098 /* Detect constant argument. */
2099 arg = get_constant_value (gimple_call_arg (stmt, 0));
2100 if (arg == NULL_TREE
2101 || TREE_CODE (arg) != INTEGER_CST
2102 || !tree_fits_uhwi_p (arg))
2103 return NULL_TREE;
2104
2105 size = tree_to_uhwi (arg);
2106
2107 /* Heuristic: don't fold large allocas. */
2108 threshold = (unsigned HOST_WIDE_INT)PARAM_VALUE (PARAM_LARGE_STACK_FRAME);
2109 /* In case the alloca is located at function entry, it has the same lifetime
2110 as a declared array, so we allow a larger size. */
2111 block = gimple_block (stmt);
2112 if (!(cfun->after_inlining
2113 && block
2114 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
2115 threshold /= 10;
2116 if (size > threshold)
2117 return NULL_TREE;
2118
2119 /* Declare array. */
2120 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
2121 n_elem = size * 8 / BITS_PER_UNIT;
2122 array_type = build_array_type_nelts (elem_type, n_elem);
2123 var = create_tmp_var (array_type);
2124 SET_DECL_ALIGN (var, TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
2125 {
2126 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
2127 if (pi != NULL && !pi->pt.anything)
2128 {
2129 bool singleton_p;
2130 unsigned uid;
2131 singleton_p = pt_solution_singleton_p (&pi->pt, &uid);
2132 gcc_assert (singleton_p);
2133 SET_DECL_PT_UID (var, uid);
2134 }
2135 }
2136
2137 /* Fold alloca to the address of the array. */
2138 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
2139 }
2140
2141 /* Fold the stmt at *GSI with CCP specific information that propagating
2142 and regular folding does not catch. */
2143
2144 static bool
2145 ccp_fold_stmt (gimple_stmt_iterator *gsi)
2146 {
2147 gimple *stmt = gsi_stmt (*gsi);
2148
2149 switch (gimple_code (stmt))
2150 {
2151 case GIMPLE_COND:
2152 {
2153 gcond *cond_stmt = as_a <gcond *> (stmt);
2154 ccp_prop_value_t val;
2155 /* Statement evaluation will handle type mismatches in constants
2156 more gracefully than the final propagation. This allows us to
2157 fold more conditionals here. */
2158 val = evaluate_stmt (stmt);
2159 if (val.lattice_val != CONSTANT
2160 || val.mask != 0)
2161 return false;
2162
2163 if (dump_file)
2164 {
2165 fprintf (dump_file, "Folding predicate ");
2166 print_gimple_expr (dump_file, stmt, 0, 0);
2167 fprintf (dump_file, " to ");
2168 print_generic_expr (dump_file, val.value, 0);
2169 fprintf (dump_file, "\n");
2170 }
2171
2172 if (integer_zerop (val.value))
2173 gimple_cond_make_false (cond_stmt);
2174 else
2175 gimple_cond_make_true (cond_stmt);
2176
2177 return true;
2178 }
2179
2180 case GIMPLE_CALL:
2181 {
2182 tree lhs = gimple_call_lhs (stmt);
2183 int flags = gimple_call_flags (stmt);
2184 tree val;
2185 tree argt;
2186 bool changed = false;
2187 unsigned i;
2188
2189 /* If the call was folded into a constant make sure it goes
2190 away even if we cannot propagate into all uses because of
2191 type issues. */
2192 if (lhs
2193 && TREE_CODE (lhs) == SSA_NAME
2194 && (val = get_constant_value (lhs))
2195 /* Don't optimize away calls that have side-effects. */
2196 && (flags & (ECF_CONST|ECF_PURE)) != 0
2197 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
2198 {
2199 tree new_rhs = unshare_expr (val);
2200 bool res;
2201 if (!useless_type_conversion_p (TREE_TYPE (lhs),
2202 TREE_TYPE (new_rhs)))
2203 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
2204 res = update_call_from_tree (gsi, new_rhs);
2205 gcc_assert (res);
2206 return true;
2207 }
2208
2209 /* Internal calls provide no argument types, so the extra laxity
2210 for normal calls does not apply. */
2211 if (gimple_call_internal_p (stmt))
2212 return false;
2213
2214 /* The heuristic of fold_builtin_alloca_with_align differs before and
2215 after inlining, so we don't require the arg to be changed into a
2216 constant for folding, but just to be constant. */
2217 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN))
2218 {
2219 tree new_rhs = fold_builtin_alloca_with_align (stmt);
2220 if (new_rhs)
2221 {
2222 bool res = update_call_from_tree (gsi, new_rhs);
2223 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
2224 gcc_assert (res);
2225 insert_clobbers_for_var (*gsi, var);
2226 return true;
2227 }
2228 }
2229
2230 /* Propagate into the call arguments. Compared to replace_uses_in
2231 this can use the argument slot types for type verification
2232 instead of the current argument type. We also can safely
2233 drop qualifiers here as we are dealing with constants anyway. */
2234 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
2235 for (i = 0; i < gimple_call_num_args (stmt) && argt;
2236 ++i, argt = TREE_CHAIN (argt))
2237 {
2238 tree arg = gimple_call_arg (stmt, i);
2239 if (TREE_CODE (arg) == SSA_NAME
2240 && (val = get_constant_value (arg))
2241 && useless_type_conversion_p
2242 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
2243 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2244 {
2245 gimple_call_set_arg (stmt, i, unshare_expr (val));
2246 changed = true;
2247 }
2248 }
2249
2250 return changed;
2251 }
2252
2253 case GIMPLE_ASSIGN:
2254 {
2255 tree lhs = gimple_assign_lhs (stmt);
2256 tree val;
2257
2258 /* If we have a load that turned out to be constant replace it
2259 as we cannot propagate into all uses in all cases. */
2260 if (gimple_assign_single_p (stmt)
2261 && TREE_CODE (lhs) == SSA_NAME
2262 && (val = get_constant_value (lhs)))
2263 {
2264 tree rhs = unshare_expr (val);
2265 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2266 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
2267 gimple_assign_set_rhs_from_tree (gsi, rhs);
2268 return true;
2269 }
2270
2271 return false;
2272 }
2273
2274 default:
2275 return false;
2276 }
2277 }
2278
2279 /* Visit the assignment statement STMT. Set the value of its LHS to the
2280 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2281 creates virtual definitions, set the value of each new name to that
2282 of the RHS (if we can derive a constant out of the RHS).
2283 Value-returning call statements also perform an assignment, and
2284 are handled here. */
2285
2286 static enum ssa_prop_result
2287 visit_assignment (gimple *stmt, tree *output_p)
2288 {
2289 ccp_prop_value_t val;
2290 enum ssa_prop_result retval = SSA_PROP_NOT_INTERESTING;
2291
2292 tree lhs = gimple_get_lhs (stmt);
2293 if (TREE_CODE (lhs) == SSA_NAME)
2294 {
2295 /* Evaluate the statement, which could be
2296 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2297 val = evaluate_stmt (stmt);
2298
2299 /* If STMT is an assignment to an SSA_NAME, we only have one
2300 value to set. */
2301 if (set_lattice_value (lhs, &val))
2302 {
2303 *output_p = lhs;
2304 if (val.lattice_val == VARYING)
2305 retval = SSA_PROP_VARYING;
2306 else
2307 retval = SSA_PROP_INTERESTING;
2308 }
2309 }
2310
2311 return retval;
2312 }
2313
2314
2315 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2316 if it can determine which edge will be taken. Otherwise, return
2317 SSA_PROP_VARYING. */
2318
2319 static enum ssa_prop_result
2320 visit_cond_stmt (gimple *stmt, edge *taken_edge_p)
2321 {
2322 ccp_prop_value_t val;
2323 basic_block block;
2324
2325 block = gimple_bb (stmt);
2326 val = evaluate_stmt (stmt);
2327 if (val.lattice_val != CONSTANT
2328 || val.mask != 0)
2329 return SSA_PROP_VARYING;
2330
2331 /* Find which edge out of the conditional block will be taken and add it
2332 to the worklist. If no single edge can be determined statically,
2333 return SSA_PROP_VARYING to feed all the outgoing edges to the
2334 propagation engine. */
2335 *taken_edge_p = find_taken_edge (block, val.value);
2336 if (*taken_edge_p)
2337 return SSA_PROP_INTERESTING;
2338 else
2339 return SSA_PROP_VARYING;
2340 }
2341
2342
2343 /* Evaluate statement STMT. If the statement produces an output value and
2344 its evaluation changes the lattice value of its output, return
2345 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2346 output value.
2347
2348 If STMT is a conditional branch and we can determine its truth
2349 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2350 value, return SSA_PROP_VARYING. */
2351
2352 static enum ssa_prop_result
2353 ccp_visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
2354 {
2355 tree def;
2356 ssa_op_iter iter;
2357
2358 if (dump_file && (dump_flags & TDF_DETAILS))
2359 {
2360 fprintf (dump_file, "\nVisiting statement:\n");
2361 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2362 }
2363
2364 switch (gimple_code (stmt))
2365 {
2366 case GIMPLE_ASSIGN:
2367 /* If the statement is an assignment that produces a single
2368 output value, evaluate its RHS to see if the lattice value of
2369 its output has changed. */
2370 return visit_assignment (stmt, output_p);
2371
2372 case GIMPLE_CALL:
2373 /* A value-returning call also performs an assignment. */
2374 if (gimple_call_lhs (stmt) != NULL_TREE)
2375 return visit_assignment (stmt, output_p);
2376 break;
2377
2378 case GIMPLE_COND:
2379 case GIMPLE_SWITCH:
2380 /* If STMT is a conditional branch, see if we can determine
2381 which branch will be taken. */
2382 /* FIXME. It appears that we should be able to optimize
2383 computed GOTOs here as well. */
2384 return visit_cond_stmt (stmt, taken_edge_p);
2385
2386 default:
2387 break;
2388 }
2389
2390 /* Any other kind of statement is not interesting for constant
2391 propagation and, therefore, not worth simulating. */
2392 if (dump_file && (dump_flags & TDF_DETAILS))
2393 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2394
2395 /* Definitions made by statements other than assignments to
2396 SSA_NAMEs represent unknown modifications to their outputs.
2397 Mark them VARYING. */
2398 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2399 set_value_varying (def);
2400
2401 return SSA_PROP_VARYING;
2402 }
2403
2404
2405 /* Main entry point for SSA Conditional Constant Propagation. If NONZERO_P,
2406 record nonzero bits. */
2407
2408 static unsigned int
2409 do_ssa_ccp (bool nonzero_p)
2410 {
2411 unsigned int todo = 0;
2412 calculate_dominance_info (CDI_DOMINATORS);
2413
2414 ccp_initialize ();
2415 ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node);
2416 if (ccp_finalize (nonzero_p || flag_ipa_bit_cp))
2417 {
2418 todo = (TODO_cleanup_cfg | TODO_update_ssa);
2419
2420 /* ccp_finalize does not preserve loop-closed ssa. */
2421 loops_state_clear (LOOP_CLOSED_SSA);
2422 }
2423
2424 free_dominance_info (CDI_DOMINATORS);
2425 return todo;
2426 }
2427
2428
2429 namespace {
2430
2431 const pass_data pass_data_ccp =
2432 {
2433 GIMPLE_PASS, /* type */
2434 "ccp", /* name */
2435 OPTGROUP_NONE, /* optinfo_flags */
2436 TV_TREE_CCP, /* tv_id */
2437 ( PROP_cfg | PROP_ssa ), /* properties_required */
2438 0, /* properties_provided */
2439 0, /* properties_destroyed */
2440 0, /* todo_flags_start */
2441 TODO_update_address_taken, /* todo_flags_finish */
2442 };
2443
2444 class pass_ccp : public gimple_opt_pass
2445 {
2446 public:
2447 pass_ccp (gcc::context *ctxt)
2448 : gimple_opt_pass (pass_data_ccp, ctxt), nonzero_p (false)
2449 {}
2450
2451 /* opt_pass methods: */
2452 opt_pass * clone () { return new pass_ccp (m_ctxt); }
2453 void set_pass_param (unsigned int n, bool param)
2454 {
2455 gcc_assert (n == 0);
2456 nonzero_p = param;
2457 }
2458 virtual bool gate (function *) { return flag_tree_ccp != 0; }
2459 virtual unsigned int execute (function *) { return do_ssa_ccp (nonzero_p); }
2460
2461 private:
2462 /* Determines whether the pass instance records nonzero bits. */
2463 bool nonzero_p;
2464 }; // class pass_ccp
2465
2466 } // anon namespace
2467
2468 gimple_opt_pass *
2469 make_pass_ccp (gcc::context *ctxt)
2470 {
2471 return new pass_ccp (ctxt);
2472 }
2473
2474
2475
2476 /* Try to optimize out __builtin_stack_restore. Optimize it out
2477 if there is another __builtin_stack_restore in the same basic
2478 block and no calls or ASM_EXPRs are in between, or if this block's
2479 only outgoing edge is to EXIT_BLOCK and there are no calls or
2480 ASM_EXPRs after this __builtin_stack_restore. */
2481
2482 static tree
2483 optimize_stack_restore (gimple_stmt_iterator i)
2484 {
2485 tree callee;
2486 gimple *stmt;
2487
2488 basic_block bb = gsi_bb (i);
2489 gimple *call = gsi_stmt (i);
2490
2491 if (gimple_code (call) != GIMPLE_CALL
2492 || gimple_call_num_args (call) != 1
2493 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2494 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2495 return NULL_TREE;
2496
2497 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2498 {
2499 stmt = gsi_stmt (i);
2500 if (gimple_code (stmt) == GIMPLE_ASM)
2501 return NULL_TREE;
2502 if (gimple_code (stmt) != GIMPLE_CALL)
2503 continue;
2504
2505 callee = gimple_call_fndecl (stmt);
2506 if (!callee
2507 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2508 /* All regular builtins are ok, just obviously not alloca. */
2509 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
2510 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA_WITH_ALIGN)
2511 return NULL_TREE;
2512
2513 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
2514 goto second_stack_restore;
2515 }
2516
2517 if (!gsi_end_p (i))
2518 return NULL_TREE;
2519
2520 /* Allow one successor of the exit block, or zero successors. */
2521 switch (EDGE_COUNT (bb->succs))
2522 {
2523 case 0:
2524 break;
2525 case 1:
2526 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2527 return NULL_TREE;
2528 break;
2529 default:
2530 return NULL_TREE;
2531 }
2532 second_stack_restore:
2533
2534 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2535 If there are multiple uses, then the last one should remove the call.
2536 In any case, whether the call to __builtin_stack_save can be removed
2537 or not is irrelevant to removing the call to __builtin_stack_restore. */
2538 if (has_single_use (gimple_call_arg (call, 0)))
2539 {
2540 gimple *stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2541 if (is_gimple_call (stack_save))
2542 {
2543 callee = gimple_call_fndecl (stack_save);
2544 if (callee
2545 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2546 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE)
2547 {
2548 gimple_stmt_iterator stack_save_gsi;
2549 tree rhs;
2550
2551 stack_save_gsi = gsi_for_stmt (stack_save);
2552 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2553 update_call_from_tree (&stack_save_gsi, rhs);
2554 }
2555 }
2556 }
2557
2558 /* No effect, so the statement will be deleted. */
2559 return integer_zero_node;
2560 }
2561
2562 /* If va_list type is a simple pointer and nothing special is needed,
2563 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2564 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2565 pointer assignment. */
2566
2567 static tree
2568 optimize_stdarg_builtin (gimple *call)
2569 {
2570 tree callee, lhs, rhs, cfun_va_list;
2571 bool va_list_simple_ptr;
2572 location_t loc = gimple_location (call);
2573
2574 if (gimple_code (call) != GIMPLE_CALL)
2575 return NULL_TREE;
2576
2577 callee = gimple_call_fndecl (call);
2578
2579 cfun_va_list = targetm.fn_abi_va_list (callee);
2580 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2581 && (TREE_TYPE (cfun_va_list) == void_type_node
2582 || TREE_TYPE (cfun_va_list) == char_type_node);
2583
2584 switch (DECL_FUNCTION_CODE (callee))
2585 {
2586 case BUILT_IN_VA_START:
2587 if (!va_list_simple_ptr
2588 || targetm.expand_builtin_va_start != NULL
2589 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
2590 return NULL_TREE;
2591
2592 if (gimple_call_num_args (call) != 2)
2593 return NULL_TREE;
2594
2595 lhs = gimple_call_arg (call, 0);
2596 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2597 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2598 != TYPE_MAIN_VARIANT (cfun_va_list))
2599 return NULL_TREE;
2600
2601 lhs = build_fold_indirect_ref_loc (loc, lhs);
2602 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
2603 1, integer_zero_node);
2604 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2605 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2606
2607 case BUILT_IN_VA_COPY:
2608 if (!va_list_simple_ptr)
2609 return NULL_TREE;
2610
2611 if (gimple_call_num_args (call) != 2)
2612 return NULL_TREE;
2613
2614 lhs = gimple_call_arg (call, 0);
2615 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2616 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2617 != TYPE_MAIN_VARIANT (cfun_va_list))
2618 return NULL_TREE;
2619
2620 lhs = build_fold_indirect_ref_loc (loc, lhs);
2621 rhs = gimple_call_arg (call, 1);
2622 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2623 != TYPE_MAIN_VARIANT (cfun_va_list))
2624 return NULL_TREE;
2625
2626 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2627 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2628
2629 case BUILT_IN_VA_END:
2630 /* No effect, so the statement will be deleted. */
2631 return integer_zero_node;
2632
2633 default:
2634 gcc_unreachable ();
2635 }
2636 }
2637
2638 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2639 the incoming jumps. Return true if at least one jump was changed. */
2640
2641 static bool
2642 optimize_unreachable (gimple_stmt_iterator i)
2643 {
2644 basic_block bb = gsi_bb (i);
2645 gimple_stmt_iterator gsi;
2646 gimple *stmt;
2647 edge_iterator ei;
2648 edge e;
2649 bool ret;
2650
2651 if (flag_sanitize & SANITIZE_UNREACHABLE)
2652 return false;
2653
2654 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2655 {
2656 stmt = gsi_stmt (gsi);
2657
2658 if (is_gimple_debug (stmt))
2659 continue;
2660
2661 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2662 {
2663 /* Verify we do not need to preserve the label. */
2664 if (FORCED_LABEL (gimple_label_label (label_stmt)))
2665 return false;
2666
2667 continue;
2668 }
2669
2670 /* Only handle the case that __builtin_unreachable is the first statement
2671 in the block. We rely on DCE to remove stmts without side-effects
2672 before __builtin_unreachable. */
2673 if (gsi_stmt (gsi) != gsi_stmt (i))
2674 return false;
2675 }
2676
2677 ret = false;
2678 FOR_EACH_EDGE (e, ei, bb->preds)
2679 {
2680 gsi = gsi_last_bb (e->src);
2681 if (gsi_end_p (gsi))
2682 continue;
2683
2684 stmt = gsi_stmt (gsi);
2685 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
2686 {
2687 if (e->flags & EDGE_TRUE_VALUE)
2688 gimple_cond_make_false (cond_stmt);
2689 else if (e->flags & EDGE_FALSE_VALUE)
2690 gimple_cond_make_true (cond_stmt);
2691 else
2692 gcc_unreachable ();
2693 update_stmt (cond_stmt);
2694 }
2695 else
2696 {
2697 /* Todo: handle other cases, f.i. switch statement. */
2698 continue;
2699 }
2700
2701 ret = true;
2702 }
2703
2704 return ret;
2705 }
2706
2707 /* Optimize
2708 mask_2 = 1 << cnt_1;
2709 _4 = __atomic_fetch_or_* (ptr_6, mask_2, _3);
2710 _5 = _4 & mask_2;
2711 to
2712 _4 = ATOMIC_BIT_TEST_AND_SET (ptr_6, cnt_1, 0, _3);
2713 _5 = _4;
2714 If _5 is only used in _5 != 0 or _5 == 0 comparisons, 1
2715 is passed instead of 0, and the builtin just returns a zero
2716 or 1 value instead of the actual bit.
2717 Similarly for __sync_fetch_and_or_* (without the ", _3" part
2718 in there), and/or if mask_2 is a power of 2 constant.
2719 Similarly for xor instead of or, use ATOMIC_BIT_TEST_AND_COMPLEMENT
2720 in that case. And similarly for and instead of or, except that
2721 the second argument to the builtin needs to be one's complement
2722 of the mask instead of mask. */
2723
2724 static void
2725 optimize_atomic_bit_test_and (gimple_stmt_iterator *gsip,
2726 enum internal_fn fn, bool has_model_arg,
2727 bool after)
2728 {
2729 gimple *call = gsi_stmt (*gsip);
2730 tree lhs = gimple_call_lhs (call);
2731 use_operand_p use_p;
2732 gimple *use_stmt;
2733 tree mask, bit;
2734 optab optab;
2735
2736 if (!flag_inline_atomics
2737 || optimize_debug
2738 || !gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2739 || !lhs
2740 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)
2741 || !single_imm_use (lhs, &use_p, &use_stmt)
2742 || !is_gimple_assign (use_stmt)
2743 || gimple_assign_rhs_code (use_stmt) != BIT_AND_EXPR
2744 || !gimple_vdef (call))
2745 return;
2746
2747 switch (fn)
2748 {
2749 case IFN_ATOMIC_BIT_TEST_AND_SET:
2750 optab = atomic_bit_test_and_set_optab;
2751 break;
2752 case IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT:
2753 optab = atomic_bit_test_and_complement_optab;
2754 break;
2755 case IFN_ATOMIC_BIT_TEST_AND_RESET:
2756 optab = atomic_bit_test_and_reset_optab;
2757 break;
2758 default:
2759 return;
2760 }
2761
2762 if (optab_handler (optab, TYPE_MODE (TREE_TYPE (lhs))) == CODE_FOR_nothing)
2763 return;
2764
2765 mask = gimple_call_arg (call, 1);
2766 tree use_lhs = gimple_assign_lhs (use_stmt);
2767 if (!use_lhs)
2768 return;
2769
2770 if (TREE_CODE (mask) == INTEGER_CST)
2771 {
2772 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
2773 mask = const_unop (BIT_NOT_EXPR, TREE_TYPE (mask), mask);
2774 mask = fold_convert (TREE_TYPE (lhs), mask);
2775 int ibit = tree_log2 (mask);
2776 if (ibit < 0)
2777 return;
2778 bit = build_int_cst (TREE_TYPE (lhs), ibit);
2779 }
2780 else if (TREE_CODE (mask) == SSA_NAME)
2781 {
2782 gimple *g = SSA_NAME_DEF_STMT (mask);
2783 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
2784 {
2785 if (!is_gimple_assign (g)
2786 || gimple_assign_rhs_code (g) != BIT_NOT_EXPR)
2787 return;
2788 mask = gimple_assign_rhs1 (g);
2789 if (TREE_CODE (mask) != SSA_NAME)
2790 return;
2791 g = SSA_NAME_DEF_STMT (mask);
2792 }
2793 if (!is_gimple_assign (g)
2794 || gimple_assign_rhs_code (g) != LSHIFT_EXPR
2795 || !integer_onep (gimple_assign_rhs1 (g)))
2796 return;
2797 bit = gimple_assign_rhs2 (g);
2798 }
2799 else
2800 return;
2801
2802 if (gimple_assign_rhs1 (use_stmt) == lhs)
2803 {
2804 if (!operand_equal_p (gimple_assign_rhs2 (use_stmt), mask, 0))
2805 return;
2806 }
2807 else if (gimple_assign_rhs2 (use_stmt) != lhs
2808 || !operand_equal_p (gimple_assign_rhs1 (use_stmt), mask, 0))
2809 return;
2810
2811 bool use_bool = true;
2812 bool has_debug_uses = false;
2813 imm_use_iterator iter;
2814 gimple *g;
2815
2816 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs))
2817 use_bool = false;
2818 FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
2819 {
2820 enum tree_code code = ERROR_MARK;
2821 tree op0, op1;
2822 if (is_gimple_debug (g))
2823 {
2824 has_debug_uses = true;
2825 continue;
2826 }
2827 else if (is_gimple_assign (g))
2828 switch (gimple_assign_rhs_code (g))
2829 {
2830 case COND_EXPR:
2831 op1 = gimple_assign_rhs1 (g);
2832 code = TREE_CODE (op1);
2833 op0 = TREE_OPERAND (op1, 0);
2834 op1 = TREE_OPERAND (op1, 1);
2835 break;
2836 case EQ_EXPR:
2837 case NE_EXPR:
2838 code = gimple_assign_rhs_code (g);
2839 op0 = gimple_assign_rhs1 (g);
2840 op1 = gimple_assign_rhs2 (g);
2841 break;
2842 default:
2843 break;
2844 }
2845 else if (gimple_code (g) == GIMPLE_COND)
2846 {
2847 code = gimple_cond_code (g);
2848 op0 = gimple_cond_lhs (g);
2849 op1 = gimple_cond_rhs (g);
2850 }
2851
2852 if ((code == EQ_EXPR || code == NE_EXPR)
2853 && op0 == use_lhs
2854 && integer_zerop (op1))
2855 {
2856 use_operand_p use_p;
2857 int n = 0;
2858 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2859 n++;
2860 if (n == 1)
2861 continue;
2862 }
2863
2864 use_bool = false;
2865 BREAK_FROM_IMM_USE_STMT (iter);
2866 }
2867
2868 tree new_lhs = make_ssa_name (TREE_TYPE (lhs));
2869 tree flag = build_int_cst (TREE_TYPE (lhs), use_bool);
2870 if (has_model_arg)
2871 g = gimple_build_call_internal (fn, 4, gimple_call_arg (call, 0),
2872 bit, flag, gimple_call_arg (call, 2));
2873 else
2874 g = gimple_build_call_internal (fn, 3, gimple_call_arg (call, 0),
2875 bit, flag);
2876 gimple_call_set_lhs (g, new_lhs);
2877 gimple_set_location (g, gimple_location (call));
2878 gimple_set_vuse (g, gimple_vuse (call));
2879 gimple_set_vdef (g, gimple_vdef (call));
2880 SSA_NAME_DEF_STMT (gimple_vdef (call)) = g;
2881 gimple_stmt_iterator gsi = *gsip;
2882 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2883 if (after)
2884 {
2885 /* The internal function returns the value of the specified bit
2886 before the atomic operation. If we are interested in the value
2887 of the specified bit after the atomic operation (makes only sense
2888 for xor, otherwise the bit content is compile time known),
2889 we need to invert the bit. */
2890 g = gimple_build_assign (make_ssa_name (TREE_TYPE (lhs)),
2891 BIT_XOR_EXPR, new_lhs,
2892 use_bool ? build_int_cst (TREE_TYPE (lhs), 1)
2893 : mask);
2894 new_lhs = gimple_assign_lhs (g);
2895 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2896 }
2897 if (use_bool && has_debug_uses)
2898 {
2899 tree temp = make_node (DEBUG_EXPR_DECL);
2900 DECL_ARTIFICIAL (temp) = 1;
2901 TREE_TYPE (temp) = TREE_TYPE (lhs);
2902 DECL_MODE (temp) = TYPE_MODE (TREE_TYPE (lhs));
2903 tree t = build2 (LSHIFT_EXPR, TREE_TYPE (lhs), new_lhs, bit);
2904 g = gimple_build_debug_bind (temp, t, g);
2905 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2906 FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
2907 if (is_gimple_debug (g))
2908 {
2909 use_operand_p use_p;
2910 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2911 SET_USE (use_p, temp);
2912 update_stmt (g);
2913 }
2914 }
2915 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_lhs)
2916 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs);
2917 replace_uses_by (use_lhs, new_lhs);
2918 gsi = gsi_for_stmt (use_stmt);
2919 gsi_remove (&gsi, true);
2920 release_defs (use_stmt);
2921 gsi_remove (gsip, true);
2922 release_ssa_name (lhs);
2923 }
2924
2925 /* A simple pass that attempts to fold all builtin functions. This pass
2926 is run after we've propagated as many constants as we can. */
2927
2928 namespace {
2929
2930 const pass_data pass_data_fold_builtins =
2931 {
2932 GIMPLE_PASS, /* type */
2933 "fab", /* name */
2934 OPTGROUP_NONE, /* optinfo_flags */
2935 TV_NONE, /* tv_id */
2936 ( PROP_cfg | PROP_ssa ), /* properties_required */
2937 0, /* properties_provided */
2938 0, /* properties_destroyed */
2939 0, /* todo_flags_start */
2940 TODO_update_ssa, /* todo_flags_finish */
2941 };
2942
2943 class pass_fold_builtins : public gimple_opt_pass
2944 {
2945 public:
2946 pass_fold_builtins (gcc::context *ctxt)
2947 : gimple_opt_pass (pass_data_fold_builtins, ctxt)
2948 {}
2949
2950 /* opt_pass methods: */
2951 opt_pass * clone () { return new pass_fold_builtins (m_ctxt); }
2952 virtual unsigned int execute (function *);
2953
2954 }; // class pass_fold_builtins
2955
2956 unsigned int
2957 pass_fold_builtins::execute (function *fun)
2958 {
2959 bool cfg_changed = false;
2960 basic_block bb;
2961 unsigned int todoflags = 0;
2962
2963 FOR_EACH_BB_FN (bb, fun)
2964 {
2965 gimple_stmt_iterator i;
2966 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
2967 {
2968 gimple *stmt, *old_stmt;
2969 tree callee;
2970 enum built_in_function fcode;
2971
2972 stmt = gsi_stmt (i);
2973
2974 if (gimple_code (stmt) != GIMPLE_CALL)
2975 {
2976 /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
2977 after the last GIMPLE DSE they aren't needed and might
2978 unnecessarily keep the SSA_NAMEs live. */
2979 if (gimple_clobber_p (stmt))
2980 {
2981 tree lhs = gimple_assign_lhs (stmt);
2982 if (TREE_CODE (lhs) == MEM_REF
2983 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME)
2984 {
2985 unlink_stmt_vdef (stmt);
2986 gsi_remove (&i, true);
2987 release_defs (stmt);
2988 continue;
2989 }
2990 }
2991 gsi_next (&i);
2992 continue;
2993 }
2994
2995 callee = gimple_call_fndecl (stmt);
2996 if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL)
2997 {
2998 gsi_next (&i);
2999 continue;
3000 }
3001
3002 fcode = DECL_FUNCTION_CODE (callee);
3003 if (fold_stmt (&i))
3004 ;
3005 else
3006 {
3007 tree result = NULL_TREE;
3008 switch (DECL_FUNCTION_CODE (callee))
3009 {
3010 case BUILT_IN_CONSTANT_P:
3011 /* Resolve __builtin_constant_p. If it hasn't been
3012 folded to integer_one_node by now, it's fairly
3013 certain that the value simply isn't constant. */
3014 result = integer_zero_node;
3015 break;
3016
3017 case BUILT_IN_ASSUME_ALIGNED:
3018 /* Remove __builtin_assume_aligned. */
3019 result = gimple_call_arg (stmt, 0);
3020 break;
3021
3022 case BUILT_IN_STACK_RESTORE:
3023 result = optimize_stack_restore (i);
3024 if (result)
3025 break;
3026 gsi_next (&i);
3027 continue;
3028
3029 case BUILT_IN_UNREACHABLE:
3030 if (optimize_unreachable (i))
3031 cfg_changed = true;
3032 break;
3033
3034 case BUILT_IN_ATOMIC_FETCH_OR_1:
3035 case BUILT_IN_ATOMIC_FETCH_OR_2:
3036 case BUILT_IN_ATOMIC_FETCH_OR_4:
3037 case BUILT_IN_ATOMIC_FETCH_OR_8:
3038 case BUILT_IN_ATOMIC_FETCH_OR_16:
3039 optimize_atomic_bit_test_and (&i,
3040 IFN_ATOMIC_BIT_TEST_AND_SET,
3041 true, false);
3042 break;
3043 case BUILT_IN_SYNC_FETCH_AND_OR_1:
3044 case BUILT_IN_SYNC_FETCH_AND_OR_2:
3045 case BUILT_IN_SYNC_FETCH_AND_OR_4:
3046 case BUILT_IN_SYNC_FETCH_AND_OR_8:
3047 case BUILT_IN_SYNC_FETCH_AND_OR_16:
3048 optimize_atomic_bit_test_and (&i,
3049 IFN_ATOMIC_BIT_TEST_AND_SET,
3050 false, false);
3051 break;
3052
3053 case BUILT_IN_ATOMIC_FETCH_XOR_1:
3054 case BUILT_IN_ATOMIC_FETCH_XOR_2:
3055 case BUILT_IN_ATOMIC_FETCH_XOR_4:
3056 case BUILT_IN_ATOMIC_FETCH_XOR_8:
3057 case BUILT_IN_ATOMIC_FETCH_XOR_16:
3058 optimize_atomic_bit_test_and
3059 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, false);
3060 break;
3061 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
3062 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
3063 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
3064 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
3065 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
3066 optimize_atomic_bit_test_and
3067 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, false);
3068 break;
3069
3070 case BUILT_IN_ATOMIC_XOR_FETCH_1:
3071 case BUILT_IN_ATOMIC_XOR_FETCH_2:
3072 case BUILT_IN_ATOMIC_XOR_FETCH_4:
3073 case BUILT_IN_ATOMIC_XOR_FETCH_8:
3074 case BUILT_IN_ATOMIC_XOR_FETCH_16:
3075 optimize_atomic_bit_test_and
3076 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, true);
3077 break;
3078 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
3079 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
3080 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
3081 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
3082 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
3083 optimize_atomic_bit_test_and
3084 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, true);
3085 break;
3086
3087 case BUILT_IN_ATOMIC_FETCH_AND_1:
3088 case BUILT_IN_ATOMIC_FETCH_AND_2:
3089 case BUILT_IN_ATOMIC_FETCH_AND_4:
3090 case BUILT_IN_ATOMIC_FETCH_AND_8:
3091 case BUILT_IN_ATOMIC_FETCH_AND_16:
3092 optimize_atomic_bit_test_and (&i,
3093 IFN_ATOMIC_BIT_TEST_AND_RESET,
3094 true, false);
3095 break;
3096 case BUILT_IN_SYNC_FETCH_AND_AND_1:
3097 case BUILT_IN_SYNC_FETCH_AND_AND_2:
3098 case BUILT_IN_SYNC_FETCH_AND_AND_4:
3099 case BUILT_IN_SYNC_FETCH_AND_AND_8:
3100 case BUILT_IN_SYNC_FETCH_AND_AND_16:
3101 optimize_atomic_bit_test_and (&i,
3102 IFN_ATOMIC_BIT_TEST_AND_RESET,
3103 false, false);
3104 break;
3105
3106 case BUILT_IN_VA_START:
3107 case BUILT_IN_VA_END:
3108 case BUILT_IN_VA_COPY:
3109 /* These shouldn't be folded before pass_stdarg. */
3110 result = optimize_stdarg_builtin (stmt);
3111 if (result)
3112 break;
3113 /* FALLTHRU */
3114
3115 default:;
3116 }
3117
3118 if (!result)
3119 {
3120 gsi_next (&i);
3121 continue;
3122 }
3123
3124 if (!update_call_from_tree (&i, result))
3125 gimplify_and_update_call_from_tree (&i, result);
3126 }
3127
3128 todoflags |= TODO_update_address_taken;
3129
3130 if (dump_file && (dump_flags & TDF_DETAILS))
3131 {
3132 fprintf (dump_file, "Simplified\n ");
3133 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3134 }
3135
3136 old_stmt = stmt;
3137 stmt = gsi_stmt (i);
3138 update_stmt (stmt);
3139
3140 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
3141 && gimple_purge_dead_eh_edges (bb))
3142 cfg_changed = true;
3143
3144 if (dump_file && (dump_flags & TDF_DETAILS))
3145 {
3146 fprintf (dump_file, "to\n ");
3147 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3148 fprintf (dump_file, "\n");
3149 }
3150
3151 /* Retry the same statement if it changed into another
3152 builtin, there might be new opportunities now. */
3153 if (gimple_code (stmt) != GIMPLE_CALL)
3154 {
3155 gsi_next (&i);
3156 continue;
3157 }
3158 callee = gimple_call_fndecl (stmt);
3159 if (!callee
3160 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
3161 || DECL_FUNCTION_CODE (callee) == fcode)
3162 gsi_next (&i);
3163 }
3164 }
3165
3166 /* Delete unreachable blocks. */
3167 if (cfg_changed)
3168 todoflags |= TODO_cleanup_cfg;
3169
3170 return todoflags;
3171 }
3172
3173 } // anon namespace
3174
3175 gimple_opt_pass *
3176 make_pass_fold_builtins (gcc::context *ctxt)
3177 {
3178 return new pass_fold_builtins (ctxt);
3179 }