re PR c/78408 (C loop initial declarations generate wrong code)
[gcc.git] / gcc / tree-ssa-ccp.c
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2016 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
28 following values:
29
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
37
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
41 or not.
42
43 CONSTANT -> V_i has been found to hold a constant
44 value C.
45
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
48 at compile time.
49
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
51
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
59 can be visited.
60
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
65
66
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
72
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
75
76 if (PRED)
77 a_9 = 3;
78 else
79 a_10 = 100;
80 a_11 = PHI (a_9, a_10)
81
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
86
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
94
95
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
100
101 This algorithm uses wide-ints at the max precision of the target.
102 This means that, with one uninteresting exception, variables with
103 UNSIGNED types never go to VARYING because the bits above the
104 precision of the type of the variable are always zero. The
105 uninteresting case is a variable of UNSIGNED type that has the
106 maximum precision of the target. Such variables can go to VARYING,
107 but this causes no loss of infomation since these variables will
108 never be extended.
109
110 References:
111
112 Constant propagation with conditional branches,
113 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
114
115 Building an Optimizing Compiler,
116 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
117
118 Advanced Compiler Design and Implementation,
119 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
120
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "backend.h"
125 #include "target.h"
126 #include "tree.h"
127 #include "gimple.h"
128 #include "tree-pass.h"
129 #include "ssa.h"
130 #include "gimple-pretty-print.h"
131 #include "fold-const.h"
132 #include "gimple-fold.h"
133 #include "tree-eh.h"
134 #include "gimplify.h"
135 #include "gimple-iterator.h"
136 #include "tree-cfg.h"
137 #include "tree-ssa-propagate.h"
138 #include "dbgcnt.h"
139 #include "params.h"
140 #include "builtins.h"
141 #include "tree-chkp.h"
142 #include "cfgloop.h"
143 #include "stor-layout.h"
144 #include "optabs-query.h"
145 #include "tree-ssa-ccp.h"
146 #include "tree-dfa.h"
147
148 /* Possible lattice values. */
149 typedef enum
150 {
151 UNINITIALIZED,
152 UNDEFINED,
153 CONSTANT,
154 VARYING
155 } ccp_lattice_t;
156
157 struct ccp_prop_value_t {
158 /* Lattice value. */
159 ccp_lattice_t lattice_val;
160
161 /* Propagated value. */
162 tree value;
163
164 /* Mask that applies to the propagated value during CCP. For X
165 with a CONSTANT lattice value X & ~mask == value & ~mask. The
166 zero bits in the mask cover constant values. The ones mean no
167 information. */
168 widest_int mask;
169 };
170
171 /* Array of propagated constant values. After propagation,
172 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
173 the constant is held in an SSA name representing a memory store
174 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
175 memory reference used to store (i.e., the LHS of the assignment
176 doing the store). */
177 static ccp_prop_value_t *const_val;
178 static unsigned n_const_val;
179
180 static void canonicalize_value (ccp_prop_value_t *);
181 static bool ccp_fold_stmt (gimple_stmt_iterator *);
182 static void ccp_lattice_meet (ccp_prop_value_t *, ccp_prop_value_t *);
183
184 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
185
186 static void
187 dump_lattice_value (FILE *outf, const char *prefix, ccp_prop_value_t val)
188 {
189 switch (val.lattice_val)
190 {
191 case UNINITIALIZED:
192 fprintf (outf, "%sUNINITIALIZED", prefix);
193 break;
194 case UNDEFINED:
195 fprintf (outf, "%sUNDEFINED", prefix);
196 break;
197 case VARYING:
198 fprintf (outf, "%sVARYING", prefix);
199 break;
200 case CONSTANT:
201 if (TREE_CODE (val.value) != INTEGER_CST
202 || val.mask == 0)
203 {
204 fprintf (outf, "%sCONSTANT ", prefix);
205 print_generic_expr (outf, val.value, dump_flags);
206 }
207 else
208 {
209 widest_int cval = wi::bit_and_not (wi::to_widest (val.value),
210 val.mask);
211 fprintf (outf, "%sCONSTANT ", prefix);
212 print_hex (cval, outf);
213 fprintf (outf, " (");
214 print_hex (val.mask, outf);
215 fprintf (outf, ")");
216 }
217 break;
218 default:
219 gcc_unreachable ();
220 }
221 }
222
223
224 /* Print lattice value VAL to stderr. */
225
226 void debug_lattice_value (ccp_prop_value_t val);
227
228 DEBUG_FUNCTION void
229 debug_lattice_value (ccp_prop_value_t val)
230 {
231 dump_lattice_value (stderr, "", val);
232 fprintf (stderr, "\n");
233 }
234
235 /* Extend NONZERO_BITS to a full mask, based on sgn. */
236
237 static widest_int
238 extend_mask (const wide_int &nonzero_bits, signop sgn)
239 {
240 return widest_int::from (nonzero_bits, sgn);
241 }
242
243 /* Compute a default value for variable VAR and store it in the
244 CONST_VAL array. The following rules are used to get default
245 values:
246
247 1- Global and static variables that are declared constant are
248 considered CONSTANT.
249
250 2- Any other value is considered UNDEFINED. This is useful when
251 considering PHI nodes. PHI arguments that are undefined do not
252 change the constant value of the PHI node, which allows for more
253 constants to be propagated.
254
255 3- Variables defined by statements other than assignments and PHI
256 nodes are considered VARYING.
257
258 4- Initial values of variables that are not GIMPLE registers are
259 considered VARYING. */
260
261 static ccp_prop_value_t
262 get_default_value (tree var)
263 {
264 ccp_prop_value_t val = { UNINITIALIZED, NULL_TREE, 0 };
265 gimple *stmt;
266
267 stmt = SSA_NAME_DEF_STMT (var);
268
269 if (gimple_nop_p (stmt))
270 {
271 /* Variables defined by an empty statement are those used
272 before being initialized. If VAR is a local variable, we
273 can assume initially that it is UNDEFINED, otherwise we must
274 consider it VARYING. */
275 if (!virtual_operand_p (var)
276 && SSA_NAME_VAR (var)
277 && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
278 val.lattice_val = UNDEFINED;
279 else
280 {
281 val.lattice_val = VARYING;
282 val.mask = -1;
283 if (flag_tree_bit_ccp)
284 {
285 wide_int nonzero_bits = get_nonzero_bits (var);
286 if (nonzero_bits != -1)
287 {
288 val.lattice_val = CONSTANT;
289 val.value = build_zero_cst (TREE_TYPE (var));
290 val.mask = extend_mask (nonzero_bits, TYPE_SIGN (TREE_TYPE (var)));
291 }
292 }
293 }
294 }
295 else if (is_gimple_assign (stmt))
296 {
297 tree cst;
298 if (gimple_assign_single_p (stmt)
299 && DECL_P (gimple_assign_rhs1 (stmt))
300 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
301 {
302 val.lattice_val = CONSTANT;
303 val.value = cst;
304 }
305 else
306 {
307 /* Any other variable defined by an assignment is considered
308 UNDEFINED. */
309 val.lattice_val = UNDEFINED;
310 }
311 }
312 else if ((is_gimple_call (stmt)
313 && gimple_call_lhs (stmt) != NULL_TREE)
314 || gimple_code (stmt) == GIMPLE_PHI)
315 {
316 /* A variable defined by a call or a PHI node is considered
317 UNDEFINED. */
318 val.lattice_val = UNDEFINED;
319 }
320 else
321 {
322 /* Otherwise, VAR will never take on a constant value. */
323 val.lattice_val = VARYING;
324 val.mask = -1;
325 }
326
327 return val;
328 }
329
330
331 /* Get the constant value associated with variable VAR. */
332
333 static inline ccp_prop_value_t *
334 get_value (tree var)
335 {
336 ccp_prop_value_t *val;
337
338 if (const_val == NULL
339 || SSA_NAME_VERSION (var) >= n_const_val)
340 return NULL;
341
342 val = &const_val[SSA_NAME_VERSION (var)];
343 if (val->lattice_val == UNINITIALIZED)
344 *val = get_default_value (var);
345
346 canonicalize_value (val);
347
348 return val;
349 }
350
351 /* Return the constant tree value associated with VAR. */
352
353 static inline tree
354 get_constant_value (tree var)
355 {
356 ccp_prop_value_t *val;
357 if (TREE_CODE (var) != SSA_NAME)
358 {
359 if (is_gimple_min_invariant (var))
360 return var;
361 return NULL_TREE;
362 }
363 val = get_value (var);
364 if (val
365 && val->lattice_val == CONSTANT
366 && (TREE_CODE (val->value) != INTEGER_CST
367 || val->mask == 0))
368 return val->value;
369 return NULL_TREE;
370 }
371
372 /* Sets the value associated with VAR to VARYING. */
373
374 static inline void
375 set_value_varying (tree var)
376 {
377 ccp_prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
378
379 val->lattice_val = VARYING;
380 val->value = NULL_TREE;
381 val->mask = -1;
382 }
383
384 /* For integer constants, make sure to drop TREE_OVERFLOW. */
385
386 static void
387 canonicalize_value (ccp_prop_value_t *val)
388 {
389 if (val->lattice_val != CONSTANT)
390 return;
391
392 if (TREE_OVERFLOW_P (val->value))
393 val->value = drop_tree_overflow (val->value);
394 }
395
396 /* Return whether the lattice transition is valid. */
397
398 static bool
399 valid_lattice_transition (ccp_prop_value_t old_val, ccp_prop_value_t new_val)
400 {
401 /* Lattice transitions must always be monotonically increasing in
402 value. */
403 if (old_val.lattice_val < new_val.lattice_val)
404 return true;
405
406 if (old_val.lattice_val != new_val.lattice_val)
407 return false;
408
409 if (!old_val.value && !new_val.value)
410 return true;
411
412 /* Now both lattice values are CONSTANT. */
413
414 /* Allow arbitrary copy changes as we might look through PHI <a_1, ...>
415 when only a single copy edge is executable. */
416 if (TREE_CODE (old_val.value) == SSA_NAME
417 && TREE_CODE (new_val.value) == SSA_NAME)
418 return true;
419
420 /* Allow transitioning from a constant to a copy. */
421 if (is_gimple_min_invariant (old_val.value)
422 && TREE_CODE (new_val.value) == SSA_NAME)
423 return true;
424
425 /* Allow transitioning from PHI <&x, not executable> == &x
426 to PHI <&x, &y> == common alignment. */
427 if (TREE_CODE (old_val.value) != INTEGER_CST
428 && TREE_CODE (new_val.value) == INTEGER_CST)
429 return true;
430
431 /* Bit-lattices have to agree in the still valid bits. */
432 if (TREE_CODE (old_val.value) == INTEGER_CST
433 && TREE_CODE (new_val.value) == INTEGER_CST)
434 return (wi::bit_and_not (wi::to_widest (old_val.value), new_val.mask)
435 == wi::bit_and_not (wi::to_widest (new_val.value), new_val.mask));
436
437 /* Otherwise constant values have to agree. */
438 if (operand_equal_p (old_val.value, new_val.value, 0))
439 return true;
440
441 /* At least the kinds and types should agree now. */
442 if (TREE_CODE (old_val.value) != TREE_CODE (new_val.value)
443 || !types_compatible_p (TREE_TYPE (old_val.value),
444 TREE_TYPE (new_val.value)))
445 return false;
446
447 /* For floats and !HONOR_NANS allow transitions from (partial) NaN
448 to non-NaN. */
449 tree type = TREE_TYPE (new_val.value);
450 if (SCALAR_FLOAT_TYPE_P (type)
451 && !HONOR_NANS (type))
452 {
453 if (REAL_VALUE_ISNAN (TREE_REAL_CST (old_val.value)))
454 return true;
455 }
456 else if (VECTOR_FLOAT_TYPE_P (type)
457 && !HONOR_NANS (type))
458 {
459 for (unsigned i = 0; i < VECTOR_CST_NELTS (old_val.value); ++i)
460 if (!REAL_VALUE_ISNAN
461 (TREE_REAL_CST (VECTOR_CST_ELT (old_val.value, i)))
462 && !operand_equal_p (VECTOR_CST_ELT (old_val.value, i),
463 VECTOR_CST_ELT (new_val.value, i), 0))
464 return false;
465 return true;
466 }
467 else if (COMPLEX_FLOAT_TYPE_P (type)
468 && !HONOR_NANS (type))
469 {
470 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_REALPART (old_val.value)))
471 && !operand_equal_p (TREE_REALPART (old_val.value),
472 TREE_REALPART (new_val.value), 0))
473 return false;
474 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_IMAGPART (old_val.value)))
475 && !operand_equal_p (TREE_IMAGPART (old_val.value),
476 TREE_IMAGPART (new_val.value), 0))
477 return false;
478 return true;
479 }
480 return false;
481 }
482
483 /* Set the value for variable VAR to NEW_VAL. Return true if the new
484 value is different from VAR's previous value. */
485
486 static bool
487 set_lattice_value (tree var, ccp_prop_value_t *new_val)
488 {
489 /* We can deal with old UNINITIALIZED values just fine here. */
490 ccp_prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
491
492 canonicalize_value (new_val);
493
494 /* We have to be careful to not go up the bitwise lattice
495 represented by the mask. Instead of dropping to VARYING
496 use the meet operator to retain a conservative value.
497 Missed optimizations like PR65851 makes this necessary.
498 It also ensures we converge to a stable lattice solution. */
499 if (new_val->lattice_val == CONSTANT
500 && old_val->lattice_val == CONSTANT
501 && TREE_CODE (new_val->value) != SSA_NAME)
502 ccp_lattice_meet (new_val, old_val);
503
504 gcc_checking_assert (valid_lattice_transition (*old_val, *new_val));
505
506 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
507 caller that this was a non-transition. */
508 if (old_val->lattice_val != new_val->lattice_val
509 || (new_val->lattice_val == CONSTANT
510 && (TREE_CODE (new_val->value) != TREE_CODE (old_val->value)
511 || (TREE_CODE (new_val->value) == INTEGER_CST
512 && (new_val->mask != old_val->mask
513 || (wi::bit_and_not (wi::to_widest (old_val->value),
514 new_val->mask)
515 != wi::bit_and_not (wi::to_widest (new_val->value),
516 new_val->mask))))
517 || (TREE_CODE (new_val->value) != INTEGER_CST
518 && !operand_equal_p (new_val->value, old_val->value, 0)))))
519 {
520 /* ??? We would like to delay creation of INTEGER_CSTs from
521 partially constants here. */
522
523 if (dump_file && (dump_flags & TDF_DETAILS))
524 {
525 dump_lattice_value (dump_file, "Lattice value changed to ", *new_val);
526 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
527 }
528
529 *old_val = *new_val;
530
531 gcc_assert (new_val->lattice_val != UNINITIALIZED);
532 return true;
533 }
534
535 return false;
536 }
537
538 static ccp_prop_value_t get_value_for_expr (tree, bool);
539 static ccp_prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
540 void bit_value_binop (enum tree_code, signop, int, widest_int *, widest_int *,
541 signop, int, const widest_int &, const widest_int &,
542 signop, int, const widest_int &, const widest_int &);
543
544 /* Return a widest_int that can be used for bitwise simplifications
545 from VAL. */
546
547 static widest_int
548 value_to_wide_int (ccp_prop_value_t val)
549 {
550 if (val.value
551 && TREE_CODE (val.value) == INTEGER_CST)
552 return wi::to_widest (val.value);
553
554 return 0;
555 }
556
557 /* Return the value for the address expression EXPR based on alignment
558 information. */
559
560 static ccp_prop_value_t
561 get_value_from_alignment (tree expr)
562 {
563 tree type = TREE_TYPE (expr);
564 ccp_prop_value_t val;
565 unsigned HOST_WIDE_INT bitpos;
566 unsigned int align;
567
568 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
569
570 get_pointer_alignment_1 (expr, &align, &bitpos);
571 val.mask = (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
572 ? wi::mask <widest_int> (TYPE_PRECISION (type), false)
573 : -1).and_not (align / BITS_PER_UNIT - 1);
574 val.lattice_val
575 = wi::sext (val.mask, TYPE_PRECISION (type)) == -1 ? VARYING : CONSTANT;
576 if (val.lattice_val == CONSTANT)
577 val.value = build_int_cstu (type, bitpos / BITS_PER_UNIT);
578 else
579 val.value = NULL_TREE;
580
581 return val;
582 }
583
584 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
585 return constant bits extracted from alignment information for
586 invariant addresses. */
587
588 static ccp_prop_value_t
589 get_value_for_expr (tree expr, bool for_bits_p)
590 {
591 ccp_prop_value_t val;
592
593 if (TREE_CODE (expr) == SSA_NAME)
594 {
595 ccp_prop_value_t *val_ = get_value (expr);
596 if (val_)
597 val = *val_;
598 else
599 {
600 val.lattice_val = VARYING;
601 val.value = NULL_TREE;
602 val.mask = -1;
603 }
604 if (for_bits_p
605 && val.lattice_val == CONSTANT
606 && TREE_CODE (val.value) == ADDR_EXPR)
607 val = get_value_from_alignment (val.value);
608 /* Fall back to a copy value. */
609 if (!for_bits_p
610 && val.lattice_val == VARYING
611 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr))
612 {
613 val.lattice_val = CONSTANT;
614 val.value = expr;
615 val.mask = -1;
616 }
617 }
618 else if (is_gimple_min_invariant (expr)
619 && (!for_bits_p || TREE_CODE (expr) != ADDR_EXPR))
620 {
621 val.lattice_val = CONSTANT;
622 val.value = expr;
623 val.mask = 0;
624 canonicalize_value (&val);
625 }
626 else if (TREE_CODE (expr) == ADDR_EXPR)
627 val = get_value_from_alignment (expr);
628 else
629 {
630 val.lattice_val = VARYING;
631 val.mask = -1;
632 val.value = NULL_TREE;
633 }
634
635 if (val.lattice_val == VARYING
636 && TYPE_UNSIGNED (TREE_TYPE (expr)))
637 val.mask = wi::zext (val.mask, TYPE_PRECISION (TREE_TYPE (expr)));
638
639 return val;
640 }
641
642 /* Return the likely CCP lattice value for STMT.
643
644 If STMT has no operands, then return CONSTANT.
645
646 Else if undefinedness of operands of STMT cause its value to be
647 undefined, then return UNDEFINED.
648
649 Else if any operands of STMT are constants, then return CONSTANT.
650
651 Else return VARYING. */
652
653 static ccp_lattice_t
654 likely_value (gimple *stmt)
655 {
656 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
657 bool has_nsa_operand;
658 tree use;
659 ssa_op_iter iter;
660 unsigned i;
661
662 enum gimple_code code = gimple_code (stmt);
663
664 /* This function appears to be called only for assignments, calls,
665 conditionals, and switches, due to the logic in visit_stmt. */
666 gcc_assert (code == GIMPLE_ASSIGN
667 || code == GIMPLE_CALL
668 || code == GIMPLE_COND
669 || code == GIMPLE_SWITCH);
670
671 /* If the statement has volatile operands, it won't fold to a
672 constant value. */
673 if (gimple_has_volatile_ops (stmt))
674 return VARYING;
675
676 /* Arrive here for more complex cases. */
677 has_constant_operand = false;
678 has_undefined_operand = false;
679 all_undefined_operands = true;
680 has_nsa_operand = false;
681 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
682 {
683 ccp_prop_value_t *val = get_value (use);
684
685 if (val && val->lattice_val == UNDEFINED)
686 has_undefined_operand = true;
687 else
688 all_undefined_operands = false;
689
690 if (val && val->lattice_val == CONSTANT)
691 has_constant_operand = true;
692
693 if (SSA_NAME_IS_DEFAULT_DEF (use)
694 || !prop_simulate_again_p (SSA_NAME_DEF_STMT (use)))
695 has_nsa_operand = true;
696 }
697
698 /* There may be constants in regular rhs operands. For calls we
699 have to ignore lhs, fndecl and static chain, otherwise only
700 the lhs. */
701 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
702 i < gimple_num_ops (stmt); ++i)
703 {
704 tree op = gimple_op (stmt, i);
705 if (!op || TREE_CODE (op) == SSA_NAME)
706 continue;
707 if (is_gimple_min_invariant (op))
708 has_constant_operand = true;
709 }
710
711 if (has_constant_operand)
712 all_undefined_operands = false;
713
714 if (has_undefined_operand
715 && code == GIMPLE_CALL
716 && gimple_call_internal_p (stmt))
717 switch (gimple_call_internal_fn (stmt))
718 {
719 /* These 3 builtins use the first argument just as a magic
720 way how to find out a decl uid. */
721 case IFN_GOMP_SIMD_LANE:
722 case IFN_GOMP_SIMD_VF:
723 case IFN_GOMP_SIMD_LAST_LANE:
724 has_undefined_operand = false;
725 break;
726 default:
727 break;
728 }
729
730 /* If the operation combines operands like COMPLEX_EXPR make sure to
731 not mark the result UNDEFINED if only one part of the result is
732 undefined. */
733 if (has_undefined_operand && all_undefined_operands)
734 return UNDEFINED;
735 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
736 {
737 switch (gimple_assign_rhs_code (stmt))
738 {
739 /* Unary operators are handled with all_undefined_operands. */
740 case PLUS_EXPR:
741 case MINUS_EXPR:
742 case POINTER_PLUS_EXPR:
743 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
744 Not bitwise operators, one VARYING operand may specify the
745 result completely. Not logical operators for the same reason.
746 Not COMPLEX_EXPR as one VARYING operand makes the result partly
747 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
748 the undefined operand may be promoted. */
749 return UNDEFINED;
750
751 case ADDR_EXPR:
752 /* If any part of an address is UNDEFINED, like the index
753 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
754 return UNDEFINED;
755
756 default:
757 ;
758 }
759 }
760 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
761 fall back to CONSTANT. During iteration UNDEFINED may still drop
762 to CONSTANT. */
763 if (has_undefined_operand)
764 return CONSTANT;
765
766 /* We do not consider virtual operands here -- load from read-only
767 memory may have only VARYING virtual operands, but still be
768 constant. Also we can combine the stmt with definitions from
769 operands whose definitions are not simulated again. */
770 if (has_constant_operand
771 || has_nsa_operand
772 || gimple_references_memory_p (stmt))
773 return CONSTANT;
774
775 return VARYING;
776 }
777
778 /* Returns true if STMT cannot be constant. */
779
780 static bool
781 surely_varying_stmt_p (gimple *stmt)
782 {
783 /* If the statement has operands that we cannot handle, it cannot be
784 constant. */
785 if (gimple_has_volatile_ops (stmt))
786 return true;
787
788 /* If it is a call and does not return a value or is not a
789 builtin and not an indirect call or a call to function with
790 assume_aligned/alloc_align attribute, it is varying. */
791 if (is_gimple_call (stmt))
792 {
793 tree fndecl, fntype = gimple_call_fntype (stmt);
794 if (!gimple_call_lhs (stmt)
795 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
796 && !DECL_BUILT_IN (fndecl)
797 && !lookup_attribute ("assume_aligned",
798 TYPE_ATTRIBUTES (fntype))
799 && !lookup_attribute ("alloc_align",
800 TYPE_ATTRIBUTES (fntype))))
801 return true;
802 }
803
804 /* Any other store operation is not interesting. */
805 else if (gimple_vdef (stmt))
806 return true;
807
808 /* Anything other than assignments and conditional jumps are not
809 interesting for CCP. */
810 if (gimple_code (stmt) != GIMPLE_ASSIGN
811 && gimple_code (stmt) != GIMPLE_COND
812 && gimple_code (stmt) != GIMPLE_SWITCH
813 && gimple_code (stmt) != GIMPLE_CALL)
814 return true;
815
816 return false;
817 }
818
819 /* Initialize local data structures for CCP. */
820
821 static void
822 ccp_initialize (void)
823 {
824 basic_block bb;
825
826 n_const_val = num_ssa_names;
827 const_val = XCNEWVEC (ccp_prop_value_t, n_const_val);
828
829 /* Initialize simulation flags for PHI nodes and statements. */
830 FOR_EACH_BB_FN (bb, cfun)
831 {
832 gimple_stmt_iterator i;
833
834 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
835 {
836 gimple *stmt = gsi_stmt (i);
837 bool is_varying;
838
839 /* If the statement is a control insn, then we do not
840 want to avoid simulating the statement once. Failure
841 to do so means that those edges will never get added. */
842 if (stmt_ends_bb_p (stmt))
843 is_varying = false;
844 else
845 is_varying = surely_varying_stmt_p (stmt);
846
847 if (is_varying)
848 {
849 tree def;
850 ssa_op_iter iter;
851
852 /* If the statement will not produce a constant, mark
853 all its outputs VARYING. */
854 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
855 set_value_varying (def);
856 }
857 prop_set_simulate_again (stmt, !is_varying);
858 }
859 }
860
861 /* Now process PHI nodes. We never clear the simulate_again flag on
862 phi nodes, since we do not know which edges are executable yet,
863 except for phi nodes for virtual operands when we do not do store ccp. */
864 FOR_EACH_BB_FN (bb, cfun)
865 {
866 gphi_iterator i;
867
868 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
869 {
870 gphi *phi = i.phi ();
871
872 if (virtual_operand_p (gimple_phi_result (phi)))
873 prop_set_simulate_again (phi, false);
874 else
875 prop_set_simulate_again (phi, true);
876 }
877 }
878 }
879
880 /* Debug count support. Reset the values of ssa names
881 VARYING when the total number ssa names analyzed is
882 beyond the debug count specified. */
883
884 static void
885 do_dbg_cnt (void)
886 {
887 unsigned i;
888 for (i = 0; i < num_ssa_names; i++)
889 {
890 if (!dbg_cnt (ccp))
891 {
892 const_val[i].lattice_val = VARYING;
893 const_val[i].mask = -1;
894 const_val[i].value = NULL_TREE;
895 }
896 }
897 }
898
899
900 /* Do final substitution of propagated values, cleanup the flowgraph and
901 free allocated storage. If NONZERO_P, record nonzero bits.
902
903 Return TRUE when something was optimized. */
904
905 static bool
906 ccp_finalize (bool nonzero_p)
907 {
908 bool something_changed;
909 unsigned i;
910 tree name;
911
912 do_dbg_cnt ();
913
914 /* Derive alignment and misalignment information from partially
915 constant pointers in the lattice or nonzero bits from partially
916 constant integers. */
917 FOR_EACH_SSA_NAME (i, name, cfun)
918 {
919 ccp_prop_value_t *val;
920 unsigned int tem, align;
921
922 if (!POINTER_TYPE_P (TREE_TYPE (name))
923 && (!INTEGRAL_TYPE_P (TREE_TYPE (name))
924 /* Don't record nonzero bits before IPA to avoid
925 using too much memory. */
926 || !nonzero_p))
927 continue;
928
929 val = get_value (name);
930 if (val->lattice_val != CONSTANT
931 || TREE_CODE (val->value) != INTEGER_CST
932 || val->mask == 0)
933 continue;
934
935 if (POINTER_TYPE_P (TREE_TYPE (name)))
936 {
937 /* Trailing mask bits specify the alignment, trailing value
938 bits the misalignment. */
939 tem = val->mask.to_uhwi ();
940 align = least_bit_hwi (tem);
941 if (align > 1)
942 set_ptr_info_alignment (get_ptr_info (name), align,
943 (TREE_INT_CST_LOW (val->value)
944 & (align - 1)));
945 }
946 else
947 {
948 unsigned int precision = TYPE_PRECISION (TREE_TYPE (val->value));
949 wide_int nonzero_bits = wide_int::from (val->mask, precision,
950 UNSIGNED) | val->value;
951 nonzero_bits &= get_nonzero_bits (name);
952 set_nonzero_bits (name, nonzero_bits);
953 }
954 }
955
956 /* Perform substitutions based on the known constant values. */
957 something_changed = substitute_and_fold (get_constant_value, ccp_fold_stmt);
958
959 free (const_val);
960 const_val = NULL;
961 return something_changed;;
962 }
963
964
965 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
966 in VAL1.
967
968 any M UNDEFINED = any
969 any M VARYING = VARYING
970 Ci M Cj = Ci if (i == j)
971 Ci M Cj = VARYING if (i != j)
972 */
973
974 static void
975 ccp_lattice_meet (ccp_prop_value_t *val1, ccp_prop_value_t *val2)
976 {
977 if (val1->lattice_val == UNDEFINED
978 /* For UNDEFINED M SSA we can't always SSA because its definition
979 may not dominate the PHI node. Doing optimistic copy propagation
980 also causes a lot of gcc.dg/uninit-pred*.c FAILs. */
981 && (val2->lattice_val != CONSTANT
982 || TREE_CODE (val2->value) != SSA_NAME))
983 {
984 /* UNDEFINED M any = any */
985 *val1 = *val2;
986 }
987 else if (val2->lattice_val == UNDEFINED
988 /* See above. */
989 && (val1->lattice_val != CONSTANT
990 || TREE_CODE (val1->value) != SSA_NAME))
991 {
992 /* any M UNDEFINED = any
993 Nothing to do. VAL1 already contains the value we want. */
994 ;
995 }
996 else if (val1->lattice_val == VARYING
997 || val2->lattice_val == VARYING)
998 {
999 /* any M VARYING = VARYING. */
1000 val1->lattice_val = VARYING;
1001 val1->mask = -1;
1002 val1->value = NULL_TREE;
1003 }
1004 else if (val1->lattice_val == CONSTANT
1005 && val2->lattice_val == CONSTANT
1006 && TREE_CODE (val1->value) == INTEGER_CST
1007 && TREE_CODE (val2->value) == INTEGER_CST)
1008 {
1009 /* Ci M Cj = Ci if (i == j)
1010 Ci M Cj = VARYING if (i != j)
1011
1012 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
1013 drop to varying. */
1014 val1->mask = (val1->mask | val2->mask
1015 | (wi::to_widest (val1->value)
1016 ^ wi::to_widest (val2->value)));
1017 if (wi::sext (val1->mask, TYPE_PRECISION (TREE_TYPE (val1->value))) == -1)
1018 {
1019 val1->lattice_val = VARYING;
1020 val1->value = NULL_TREE;
1021 }
1022 }
1023 else if (val1->lattice_val == CONSTANT
1024 && val2->lattice_val == CONSTANT
1025 && operand_equal_p (val1->value, val2->value, 0))
1026 {
1027 /* Ci M Cj = Ci if (i == j)
1028 Ci M Cj = VARYING if (i != j)
1029
1030 VAL1 already contains the value we want for equivalent values. */
1031 }
1032 else if (val1->lattice_val == CONSTANT
1033 && val2->lattice_val == CONSTANT
1034 && (TREE_CODE (val1->value) == ADDR_EXPR
1035 || TREE_CODE (val2->value) == ADDR_EXPR))
1036 {
1037 /* When not equal addresses are involved try meeting for
1038 alignment. */
1039 ccp_prop_value_t tem = *val2;
1040 if (TREE_CODE (val1->value) == ADDR_EXPR)
1041 *val1 = get_value_for_expr (val1->value, true);
1042 if (TREE_CODE (val2->value) == ADDR_EXPR)
1043 tem = get_value_for_expr (val2->value, true);
1044 ccp_lattice_meet (val1, &tem);
1045 }
1046 else
1047 {
1048 /* Any other combination is VARYING. */
1049 val1->lattice_val = VARYING;
1050 val1->mask = -1;
1051 val1->value = NULL_TREE;
1052 }
1053 }
1054
1055
1056 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
1057 lattice values to determine PHI_NODE's lattice value. The value of a
1058 PHI node is determined calling ccp_lattice_meet with all the arguments
1059 of the PHI node that are incoming via executable edges. */
1060
1061 static enum ssa_prop_result
1062 ccp_visit_phi_node (gphi *phi)
1063 {
1064 unsigned i;
1065 ccp_prop_value_t new_val;
1066
1067 if (dump_file && (dump_flags & TDF_DETAILS))
1068 {
1069 fprintf (dump_file, "\nVisiting PHI node: ");
1070 print_gimple_stmt (dump_file, phi, 0, dump_flags);
1071 }
1072
1073 new_val.lattice_val = UNDEFINED;
1074 new_val.value = NULL_TREE;
1075 new_val.mask = 0;
1076
1077 bool first = true;
1078 bool non_exec_edge = false;
1079 for (i = 0; i < gimple_phi_num_args (phi); i++)
1080 {
1081 /* Compute the meet operator over all the PHI arguments flowing
1082 through executable edges. */
1083 edge e = gimple_phi_arg_edge (phi, i);
1084
1085 if (dump_file && (dump_flags & TDF_DETAILS))
1086 {
1087 fprintf (dump_file,
1088 "\n Argument #%d (%d -> %d %sexecutable)\n",
1089 i, e->src->index, e->dest->index,
1090 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
1091 }
1092
1093 /* If the incoming edge is executable, Compute the meet operator for
1094 the existing value of the PHI node and the current PHI argument. */
1095 if (e->flags & EDGE_EXECUTABLE)
1096 {
1097 tree arg = gimple_phi_arg (phi, i)->def;
1098 ccp_prop_value_t arg_val = get_value_for_expr (arg, false);
1099
1100 if (first)
1101 {
1102 new_val = arg_val;
1103 first = false;
1104 }
1105 else
1106 ccp_lattice_meet (&new_val, &arg_val);
1107
1108 if (dump_file && (dump_flags & TDF_DETAILS))
1109 {
1110 fprintf (dump_file, "\t");
1111 print_generic_expr (dump_file, arg, dump_flags);
1112 dump_lattice_value (dump_file, "\tValue: ", arg_val);
1113 fprintf (dump_file, "\n");
1114 }
1115
1116 if (new_val.lattice_val == VARYING)
1117 break;
1118 }
1119 else
1120 non_exec_edge = true;
1121 }
1122
1123 /* In case there were non-executable edges and the value is a copy
1124 make sure its definition dominates the PHI node. */
1125 if (non_exec_edge
1126 && new_val.lattice_val == CONSTANT
1127 && TREE_CODE (new_val.value) == SSA_NAME
1128 && ! SSA_NAME_IS_DEFAULT_DEF (new_val.value)
1129 && ! dominated_by_p (CDI_DOMINATORS, gimple_bb (phi),
1130 gimple_bb (SSA_NAME_DEF_STMT (new_val.value))))
1131 {
1132 new_val.lattice_val = VARYING;
1133 new_val.value = NULL_TREE;
1134 new_val.mask = -1;
1135 }
1136
1137 if (dump_file && (dump_flags & TDF_DETAILS))
1138 {
1139 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
1140 fprintf (dump_file, "\n\n");
1141 }
1142
1143 /* Make the transition to the new value. */
1144 if (set_lattice_value (gimple_phi_result (phi), &new_val))
1145 {
1146 if (new_val.lattice_val == VARYING)
1147 return SSA_PROP_VARYING;
1148 else
1149 return SSA_PROP_INTERESTING;
1150 }
1151 else
1152 return SSA_PROP_NOT_INTERESTING;
1153 }
1154
1155 /* Return the constant value for OP or OP otherwise. */
1156
1157 static tree
1158 valueize_op (tree op)
1159 {
1160 if (TREE_CODE (op) == SSA_NAME)
1161 {
1162 tree tem = get_constant_value (op);
1163 if (tem)
1164 return tem;
1165 }
1166 return op;
1167 }
1168
1169 /* Return the constant value for OP, but signal to not follow SSA
1170 edges if the definition may be simulated again. */
1171
1172 static tree
1173 valueize_op_1 (tree op)
1174 {
1175 if (TREE_CODE (op) == SSA_NAME)
1176 {
1177 /* If the definition may be simulated again we cannot follow
1178 this SSA edge as the SSA propagator does not necessarily
1179 re-visit the use. */
1180 gimple *def_stmt = SSA_NAME_DEF_STMT (op);
1181 if (!gimple_nop_p (def_stmt)
1182 && prop_simulate_again_p (def_stmt))
1183 return NULL_TREE;
1184 tree tem = get_constant_value (op);
1185 if (tem)
1186 return tem;
1187 }
1188 return op;
1189 }
1190
1191 /* CCP specific front-end to the non-destructive constant folding
1192 routines.
1193
1194 Attempt to simplify the RHS of STMT knowing that one or more
1195 operands are constants.
1196
1197 If simplification is possible, return the simplified RHS,
1198 otherwise return the original RHS or NULL_TREE. */
1199
1200 static tree
1201 ccp_fold (gimple *stmt)
1202 {
1203 location_t loc = gimple_location (stmt);
1204 switch (gimple_code (stmt))
1205 {
1206 case GIMPLE_COND:
1207 {
1208 /* Handle comparison operators that can appear in GIMPLE form. */
1209 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1210 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1211 enum tree_code code = gimple_cond_code (stmt);
1212 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1213 }
1214
1215 case GIMPLE_SWITCH:
1216 {
1217 /* Return the constant switch index. */
1218 return valueize_op (gimple_switch_index (as_a <gswitch *> (stmt)));
1219 }
1220
1221 case GIMPLE_ASSIGN:
1222 case GIMPLE_CALL:
1223 return gimple_fold_stmt_to_constant_1 (stmt,
1224 valueize_op, valueize_op_1);
1225
1226 default:
1227 gcc_unreachable ();
1228 }
1229 }
1230
1231 /* Apply the operation CODE in type TYPE to the value, mask pair
1232 RVAL and RMASK representing a value of type RTYPE and set
1233 the value, mask pair *VAL and *MASK to the result. */
1234
1235 void
1236 bit_value_unop (enum tree_code code, signop type_sgn, int type_precision,
1237 widest_int *val, widest_int *mask,
1238 signop rtype_sgn, int rtype_precision,
1239 const widest_int &rval, const widest_int &rmask)
1240 {
1241 switch (code)
1242 {
1243 case BIT_NOT_EXPR:
1244 *mask = rmask;
1245 *val = ~rval;
1246 break;
1247
1248 case NEGATE_EXPR:
1249 {
1250 widest_int temv, temm;
1251 /* Return ~rval + 1. */
1252 bit_value_unop (BIT_NOT_EXPR, type_sgn, type_precision, &temv, &temm,
1253 type_sgn, type_precision, rval, rmask);
1254 bit_value_binop (PLUS_EXPR, type_sgn, type_precision, val, mask,
1255 type_sgn, type_precision, temv, temm,
1256 type_sgn, type_precision, 1, 0);
1257 break;
1258 }
1259
1260 CASE_CONVERT:
1261 {
1262 /* First extend mask and value according to the original type. */
1263 *mask = wi::ext (rmask, rtype_precision, rtype_sgn);
1264 *val = wi::ext (rval, rtype_precision, rtype_sgn);
1265
1266 /* Then extend mask and value according to the target type. */
1267 *mask = wi::ext (*mask, type_precision, type_sgn);
1268 *val = wi::ext (*val, type_precision, type_sgn);
1269 break;
1270 }
1271
1272 default:
1273 *mask = -1;
1274 break;
1275 }
1276 }
1277
1278 /* Apply the operation CODE in type TYPE to the value, mask pairs
1279 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1280 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1281
1282 void
1283 bit_value_binop (enum tree_code code, signop sgn, int width,
1284 widest_int *val, widest_int *mask,
1285 signop r1type_sgn, int r1type_precision,
1286 const widest_int &r1val, const widest_int &r1mask,
1287 signop r2type_sgn, int r2type_precision,
1288 const widest_int &r2val, const widest_int &r2mask)
1289 {
1290 bool swap_p = false;
1291
1292 /* Assume we'll get a constant result. Use an initial non varying
1293 value, we fall back to varying in the end if necessary. */
1294 *mask = -1;
1295
1296 switch (code)
1297 {
1298 case BIT_AND_EXPR:
1299 /* The mask is constant where there is a known not
1300 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1301 *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
1302 *val = r1val & r2val;
1303 break;
1304
1305 case BIT_IOR_EXPR:
1306 /* The mask is constant where there is a known
1307 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1308 *mask = (r1mask | r2mask)
1309 .and_not (r1val.and_not (r1mask) | r2val.and_not (r2mask));
1310 *val = r1val | r2val;
1311 break;
1312
1313 case BIT_XOR_EXPR:
1314 /* m1 | m2 */
1315 *mask = r1mask | r2mask;
1316 *val = r1val ^ r2val;
1317 break;
1318
1319 case LROTATE_EXPR:
1320 case RROTATE_EXPR:
1321 if (r2mask == 0)
1322 {
1323 widest_int shift = r2val;
1324 if (shift == 0)
1325 {
1326 *mask = r1mask;
1327 *val = r1val;
1328 }
1329 else
1330 {
1331 if (wi::neg_p (shift))
1332 {
1333 shift = -shift;
1334 if (code == RROTATE_EXPR)
1335 code = LROTATE_EXPR;
1336 else
1337 code = RROTATE_EXPR;
1338 }
1339 if (code == RROTATE_EXPR)
1340 {
1341 *mask = wi::rrotate (r1mask, shift, width);
1342 *val = wi::rrotate (r1val, shift, width);
1343 }
1344 else
1345 {
1346 *mask = wi::lrotate (r1mask, shift, width);
1347 *val = wi::lrotate (r1val, shift, width);
1348 }
1349 }
1350 }
1351 break;
1352
1353 case LSHIFT_EXPR:
1354 case RSHIFT_EXPR:
1355 /* ??? We can handle partially known shift counts if we know
1356 its sign. That way we can tell that (x << (y | 8)) & 255
1357 is zero. */
1358 if (r2mask == 0)
1359 {
1360 widest_int shift = r2val;
1361 if (shift == 0)
1362 {
1363 *mask = r1mask;
1364 *val = r1val;
1365 }
1366 else
1367 {
1368 if (wi::neg_p (shift))
1369 {
1370 shift = -shift;
1371 if (code == RSHIFT_EXPR)
1372 code = LSHIFT_EXPR;
1373 else
1374 code = RSHIFT_EXPR;
1375 }
1376 if (code == RSHIFT_EXPR)
1377 {
1378 *mask = wi::rshift (wi::ext (r1mask, width, sgn), shift, sgn);
1379 *val = wi::rshift (wi::ext (r1val, width, sgn), shift, sgn);
1380 }
1381 else
1382 {
1383 *mask = wi::ext (r1mask << shift, width, sgn);
1384 *val = wi::ext (r1val << shift, width, sgn);
1385 }
1386 }
1387 }
1388 break;
1389
1390 case PLUS_EXPR:
1391 case POINTER_PLUS_EXPR:
1392 {
1393 /* Do the addition with unknown bits set to zero, to give carry-ins of
1394 zero wherever possible. */
1395 widest_int lo = r1val.and_not (r1mask) + r2val.and_not (r2mask);
1396 lo = wi::ext (lo, width, sgn);
1397 /* Do the addition with unknown bits set to one, to give carry-ins of
1398 one wherever possible. */
1399 widest_int hi = (r1val | r1mask) + (r2val | r2mask);
1400 hi = wi::ext (hi, width, sgn);
1401 /* Each bit in the result is known if (a) the corresponding bits in
1402 both inputs are known, and (b) the carry-in to that bit position
1403 is known. We can check condition (b) by seeing if we got the same
1404 result with minimised carries as with maximised carries. */
1405 *mask = r1mask | r2mask | (lo ^ hi);
1406 *mask = wi::ext (*mask, width, sgn);
1407 /* It shouldn't matter whether we choose lo or hi here. */
1408 *val = lo;
1409 break;
1410 }
1411
1412 case MINUS_EXPR:
1413 {
1414 widest_int temv, temm;
1415 bit_value_unop (NEGATE_EXPR, r2type_sgn, r2type_precision, &temv, &temm,
1416 r2type_sgn, r2type_precision, r2val, r2mask);
1417 bit_value_binop (PLUS_EXPR, sgn, width, val, mask,
1418 r1type_sgn, r1type_precision, r1val, r1mask,
1419 r2type_sgn, r2type_precision, temv, temm);
1420 break;
1421 }
1422
1423 case MULT_EXPR:
1424 {
1425 /* Just track trailing zeros in both operands and transfer
1426 them to the other. */
1427 int r1tz = wi::ctz (r1val | r1mask);
1428 int r2tz = wi::ctz (r2val | r2mask);
1429 if (r1tz + r2tz >= width)
1430 {
1431 *mask = 0;
1432 *val = 0;
1433 }
1434 else if (r1tz + r2tz > 0)
1435 {
1436 *mask = wi::ext (wi::mask <widest_int> (r1tz + r2tz, true),
1437 width, sgn);
1438 *val = 0;
1439 }
1440 break;
1441 }
1442
1443 case EQ_EXPR:
1444 case NE_EXPR:
1445 {
1446 widest_int m = r1mask | r2mask;
1447 if (r1val.and_not (m) != r2val.and_not (m))
1448 {
1449 *mask = 0;
1450 *val = ((code == EQ_EXPR) ? 0 : 1);
1451 }
1452 else
1453 {
1454 /* We know the result of a comparison is always one or zero. */
1455 *mask = 1;
1456 *val = 0;
1457 }
1458 break;
1459 }
1460
1461 case GE_EXPR:
1462 case GT_EXPR:
1463 swap_p = true;
1464 code = swap_tree_comparison (code);
1465 /* Fall through. */
1466 case LT_EXPR:
1467 case LE_EXPR:
1468 {
1469 int minmax, maxmin;
1470
1471 const widest_int &o1val = swap_p ? r2val : r1val;
1472 const widest_int &o1mask = swap_p ? r2mask : r1mask;
1473 const widest_int &o2val = swap_p ? r1val : r2val;
1474 const widest_int &o2mask = swap_p ? r1mask : r2mask;
1475
1476 /* If the most significant bits are not known we know nothing. */
1477 if (wi::neg_p (o1mask) || wi::neg_p (o2mask))
1478 break;
1479
1480 /* For comparisons the signedness is in the comparison operands. */
1481 sgn = r1type_sgn;
1482
1483 /* If we know the most significant bits we know the values
1484 value ranges by means of treating varying bits as zero
1485 or one. Do a cross comparison of the max/min pairs. */
1486 maxmin = wi::cmp (o1val | o1mask, o2val.and_not (o2mask), sgn);
1487 minmax = wi::cmp (o1val.and_not (o1mask), o2val | o2mask, sgn);
1488 if (maxmin < 0) /* o1 is less than o2. */
1489 {
1490 *mask = 0;
1491 *val = 1;
1492 }
1493 else if (minmax > 0) /* o1 is not less or equal to o2. */
1494 {
1495 *mask = 0;
1496 *val = 0;
1497 }
1498 else if (maxmin == minmax) /* o1 and o2 are equal. */
1499 {
1500 /* This probably should never happen as we'd have
1501 folded the thing during fully constant value folding. */
1502 *mask = 0;
1503 *val = (code == LE_EXPR ? 1 : 0);
1504 }
1505 else
1506 {
1507 /* We know the result of a comparison is always one or zero. */
1508 *mask = 1;
1509 *val = 0;
1510 }
1511 break;
1512 }
1513
1514 default:;
1515 }
1516 }
1517
1518 /* Return the propagation value when applying the operation CODE to
1519 the value RHS yielding type TYPE. */
1520
1521 static ccp_prop_value_t
1522 bit_value_unop (enum tree_code code, tree type, tree rhs)
1523 {
1524 ccp_prop_value_t rval = get_value_for_expr (rhs, true);
1525 widest_int value, mask;
1526 ccp_prop_value_t val;
1527
1528 if (rval.lattice_val == UNDEFINED)
1529 return rval;
1530
1531 gcc_assert ((rval.lattice_val == CONSTANT
1532 && TREE_CODE (rval.value) == INTEGER_CST)
1533 || wi::sext (rval.mask, TYPE_PRECISION (TREE_TYPE (rhs))) == -1);
1534 bit_value_unop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1535 TYPE_SIGN (TREE_TYPE (rhs)), TYPE_PRECISION (TREE_TYPE (rhs)),
1536 value_to_wide_int (rval), rval.mask);
1537 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1538 {
1539 val.lattice_val = CONSTANT;
1540 val.mask = mask;
1541 /* ??? Delay building trees here. */
1542 val.value = wide_int_to_tree (type, value);
1543 }
1544 else
1545 {
1546 val.lattice_val = VARYING;
1547 val.value = NULL_TREE;
1548 val.mask = -1;
1549 }
1550 return val;
1551 }
1552
1553 /* Return the propagation value when applying the operation CODE to
1554 the values RHS1 and RHS2 yielding type TYPE. */
1555
1556 static ccp_prop_value_t
1557 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
1558 {
1559 ccp_prop_value_t r1val = get_value_for_expr (rhs1, true);
1560 ccp_prop_value_t r2val = get_value_for_expr (rhs2, true);
1561 widest_int value, mask;
1562 ccp_prop_value_t val;
1563
1564 if (r1val.lattice_val == UNDEFINED
1565 || r2val.lattice_val == UNDEFINED)
1566 {
1567 val.lattice_val = VARYING;
1568 val.value = NULL_TREE;
1569 val.mask = -1;
1570 return val;
1571 }
1572
1573 gcc_assert ((r1val.lattice_val == CONSTANT
1574 && TREE_CODE (r1val.value) == INTEGER_CST)
1575 || wi::sext (r1val.mask,
1576 TYPE_PRECISION (TREE_TYPE (rhs1))) == -1);
1577 gcc_assert ((r2val.lattice_val == CONSTANT
1578 && TREE_CODE (r2val.value) == INTEGER_CST)
1579 || wi::sext (r2val.mask,
1580 TYPE_PRECISION (TREE_TYPE (rhs2))) == -1);
1581 bit_value_binop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1582 TYPE_SIGN (TREE_TYPE (rhs1)), TYPE_PRECISION (TREE_TYPE (rhs1)),
1583 value_to_wide_int (r1val), r1val.mask,
1584 TYPE_SIGN (TREE_TYPE (rhs2)), TYPE_PRECISION (TREE_TYPE (rhs2)),
1585 value_to_wide_int (r2val), r2val.mask);
1586
1587 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1588 {
1589 val.lattice_val = CONSTANT;
1590 val.mask = mask;
1591 /* ??? Delay building trees here. */
1592 val.value = wide_int_to_tree (type, value);
1593 }
1594 else
1595 {
1596 val.lattice_val = VARYING;
1597 val.value = NULL_TREE;
1598 val.mask = -1;
1599 }
1600 return val;
1601 }
1602
1603 /* Return the propagation value for __builtin_assume_aligned
1604 and functions with assume_aligned or alloc_aligned attribute.
1605 For __builtin_assume_aligned, ATTR is NULL_TREE,
1606 for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED
1607 is false, for alloc_aligned attribute ATTR is non-NULL and
1608 ALLOC_ALIGNED is true. */
1609
1610 static ccp_prop_value_t
1611 bit_value_assume_aligned (gimple *stmt, tree attr, ccp_prop_value_t ptrval,
1612 bool alloc_aligned)
1613 {
1614 tree align, misalign = NULL_TREE, type;
1615 unsigned HOST_WIDE_INT aligni, misaligni = 0;
1616 ccp_prop_value_t alignval;
1617 widest_int value, mask;
1618 ccp_prop_value_t val;
1619
1620 if (attr == NULL_TREE)
1621 {
1622 tree ptr = gimple_call_arg (stmt, 0);
1623 type = TREE_TYPE (ptr);
1624 ptrval = get_value_for_expr (ptr, true);
1625 }
1626 else
1627 {
1628 tree lhs = gimple_call_lhs (stmt);
1629 type = TREE_TYPE (lhs);
1630 }
1631
1632 if (ptrval.lattice_val == UNDEFINED)
1633 return ptrval;
1634 gcc_assert ((ptrval.lattice_val == CONSTANT
1635 && TREE_CODE (ptrval.value) == INTEGER_CST)
1636 || wi::sext (ptrval.mask, TYPE_PRECISION (type)) == -1);
1637 if (attr == NULL_TREE)
1638 {
1639 /* Get aligni and misaligni from __builtin_assume_aligned. */
1640 align = gimple_call_arg (stmt, 1);
1641 if (!tree_fits_uhwi_p (align))
1642 return ptrval;
1643 aligni = tree_to_uhwi (align);
1644 if (gimple_call_num_args (stmt) > 2)
1645 {
1646 misalign = gimple_call_arg (stmt, 2);
1647 if (!tree_fits_uhwi_p (misalign))
1648 return ptrval;
1649 misaligni = tree_to_uhwi (misalign);
1650 }
1651 }
1652 else
1653 {
1654 /* Get aligni and misaligni from assume_aligned or
1655 alloc_align attributes. */
1656 if (TREE_VALUE (attr) == NULL_TREE)
1657 return ptrval;
1658 attr = TREE_VALUE (attr);
1659 align = TREE_VALUE (attr);
1660 if (!tree_fits_uhwi_p (align))
1661 return ptrval;
1662 aligni = tree_to_uhwi (align);
1663 if (alloc_aligned)
1664 {
1665 if (aligni == 0 || aligni > gimple_call_num_args (stmt))
1666 return ptrval;
1667 align = gimple_call_arg (stmt, aligni - 1);
1668 if (!tree_fits_uhwi_p (align))
1669 return ptrval;
1670 aligni = tree_to_uhwi (align);
1671 }
1672 else if (TREE_CHAIN (attr) && TREE_VALUE (TREE_CHAIN (attr)))
1673 {
1674 misalign = TREE_VALUE (TREE_CHAIN (attr));
1675 if (!tree_fits_uhwi_p (misalign))
1676 return ptrval;
1677 misaligni = tree_to_uhwi (misalign);
1678 }
1679 }
1680 if (aligni <= 1 || (aligni & (aligni - 1)) != 0 || misaligni >= aligni)
1681 return ptrval;
1682
1683 align = build_int_cst_type (type, -aligni);
1684 alignval = get_value_for_expr (align, true);
1685 bit_value_binop (BIT_AND_EXPR, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1686 TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (ptrval), ptrval.mask,
1687 TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (alignval), alignval.mask);
1688
1689 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1690 {
1691 val.lattice_val = CONSTANT;
1692 val.mask = mask;
1693 gcc_assert ((mask.to_uhwi () & (aligni - 1)) == 0);
1694 gcc_assert ((value.to_uhwi () & (aligni - 1)) == 0);
1695 value |= misaligni;
1696 /* ??? Delay building trees here. */
1697 val.value = wide_int_to_tree (type, value);
1698 }
1699 else
1700 {
1701 val.lattice_val = VARYING;
1702 val.value = NULL_TREE;
1703 val.mask = -1;
1704 }
1705 return val;
1706 }
1707
1708 /* Evaluate statement STMT.
1709 Valid only for assignments, calls, conditionals, and switches. */
1710
1711 static ccp_prop_value_t
1712 evaluate_stmt (gimple *stmt)
1713 {
1714 ccp_prop_value_t val;
1715 tree simplified = NULL_TREE;
1716 ccp_lattice_t likelyvalue = likely_value (stmt);
1717 bool is_constant = false;
1718 unsigned int align;
1719
1720 if (dump_file && (dump_flags & TDF_DETAILS))
1721 {
1722 fprintf (dump_file, "which is likely ");
1723 switch (likelyvalue)
1724 {
1725 case CONSTANT:
1726 fprintf (dump_file, "CONSTANT");
1727 break;
1728 case UNDEFINED:
1729 fprintf (dump_file, "UNDEFINED");
1730 break;
1731 case VARYING:
1732 fprintf (dump_file, "VARYING");
1733 break;
1734 default:;
1735 }
1736 fprintf (dump_file, "\n");
1737 }
1738
1739 /* If the statement is likely to have a CONSTANT result, then try
1740 to fold the statement to determine the constant value. */
1741 /* FIXME. This is the only place that we call ccp_fold.
1742 Since likely_value never returns CONSTANT for calls, we will
1743 not attempt to fold them, including builtins that may profit. */
1744 if (likelyvalue == CONSTANT)
1745 {
1746 fold_defer_overflow_warnings ();
1747 simplified = ccp_fold (stmt);
1748 if (simplified
1749 && TREE_CODE (simplified) == SSA_NAME
1750 /* We may not use values of something that may be simulated again,
1751 see valueize_op_1. */
1752 && (SSA_NAME_IS_DEFAULT_DEF (simplified)
1753 || ! prop_simulate_again_p (SSA_NAME_DEF_STMT (simplified))))
1754 {
1755 ccp_prop_value_t *val = get_value (simplified);
1756 if (val && val->lattice_val != VARYING)
1757 {
1758 fold_undefer_overflow_warnings (true, stmt, 0);
1759 return *val;
1760 }
1761 }
1762 is_constant = simplified && is_gimple_min_invariant (simplified);
1763 fold_undefer_overflow_warnings (is_constant, stmt, 0);
1764 if (is_constant)
1765 {
1766 /* The statement produced a constant value. */
1767 val.lattice_val = CONSTANT;
1768 val.value = simplified;
1769 val.mask = 0;
1770 return val;
1771 }
1772 }
1773 /* If the statement is likely to have a VARYING result, then do not
1774 bother folding the statement. */
1775 else if (likelyvalue == VARYING)
1776 {
1777 enum gimple_code code = gimple_code (stmt);
1778 if (code == GIMPLE_ASSIGN)
1779 {
1780 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1781
1782 /* Other cases cannot satisfy is_gimple_min_invariant
1783 without folding. */
1784 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
1785 simplified = gimple_assign_rhs1 (stmt);
1786 }
1787 else if (code == GIMPLE_SWITCH)
1788 simplified = gimple_switch_index (as_a <gswitch *> (stmt));
1789 else
1790 /* These cannot satisfy is_gimple_min_invariant without folding. */
1791 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
1792 is_constant = simplified && is_gimple_min_invariant (simplified);
1793 if (is_constant)
1794 {
1795 /* The statement produced a constant value. */
1796 val.lattice_val = CONSTANT;
1797 val.value = simplified;
1798 val.mask = 0;
1799 }
1800 }
1801 /* If the statement result is likely UNDEFINED, make it so. */
1802 else if (likelyvalue == UNDEFINED)
1803 {
1804 val.lattice_val = UNDEFINED;
1805 val.value = NULL_TREE;
1806 val.mask = 0;
1807 return val;
1808 }
1809
1810 /* Resort to simplification for bitwise tracking. */
1811 if (flag_tree_bit_ccp
1812 && (likelyvalue == CONSTANT || is_gimple_call (stmt)
1813 || (gimple_assign_single_p (stmt)
1814 && gimple_assign_rhs_code (stmt) == ADDR_EXPR))
1815 && !is_constant)
1816 {
1817 enum gimple_code code = gimple_code (stmt);
1818 val.lattice_val = VARYING;
1819 val.value = NULL_TREE;
1820 val.mask = -1;
1821 if (code == GIMPLE_ASSIGN)
1822 {
1823 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1824 tree rhs1 = gimple_assign_rhs1 (stmt);
1825 tree lhs = gimple_assign_lhs (stmt);
1826 if ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
1827 || POINTER_TYPE_P (TREE_TYPE (lhs)))
1828 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1829 || POINTER_TYPE_P (TREE_TYPE (rhs1))))
1830 switch (get_gimple_rhs_class (subcode))
1831 {
1832 case GIMPLE_SINGLE_RHS:
1833 val = get_value_for_expr (rhs1, true);
1834 break;
1835
1836 case GIMPLE_UNARY_RHS:
1837 val = bit_value_unop (subcode, TREE_TYPE (lhs), rhs1);
1838 break;
1839
1840 case GIMPLE_BINARY_RHS:
1841 val = bit_value_binop (subcode, TREE_TYPE (lhs), rhs1,
1842 gimple_assign_rhs2 (stmt));
1843 break;
1844
1845 default:;
1846 }
1847 }
1848 else if (code == GIMPLE_COND)
1849 {
1850 enum tree_code code = gimple_cond_code (stmt);
1851 tree rhs1 = gimple_cond_lhs (stmt);
1852 tree rhs2 = gimple_cond_rhs (stmt);
1853 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1854 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1855 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
1856 }
1857 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1858 {
1859 tree fndecl = gimple_call_fndecl (stmt);
1860 switch (DECL_FUNCTION_CODE (fndecl))
1861 {
1862 case BUILT_IN_MALLOC:
1863 case BUILT_IN_REALLOC:
1864 case BUILT_IN_CALLOC:
1865 case BUILT_IN_STRDUP:
1866 case BUILT_IN_STRNDUP:
1867 val.lattice_val = CONSTANT;
1868 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1869 val.mask = ~((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT
1870 / BITS_PER_UNIT - 1);
1871 break;
1872
1873 case BUILT_IN_ALLOCA:
1874 case BUILT_IN_ALLOCA_WITH_ALIGN:
1875 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN
1876 ? TREE_INT_CST_LOW (gimple_call_arg (stmt, 1))
1877 : BIGGEST_ALIGNMENT);
1878 val.lattice_val = CONSTANT;
1879 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1880 val.mask = ~((HOST_WIDE_INT) align / BITS_PER_UNIT - 1);
1881 break;
1882
1883 /* These builtins return their first argument, unmodified. */
1884 case BUILT_IN_MEMCPY:
1885 case BUILT_IN_MEMMOVE:
1886 case BUILT_IN_MEMSET:
1887 case BUILT_IN_STRCPY:
1888 case BUILT_IN_STRNCPY:
1889 case BUILT_IN_MEMCPY_CHK:
1890 case BUILT_IN_MEMMOVE_CHK:
1891 case BUILT_IN_MEMSET_CHK:
1892 case BUILT_IN_STRCPY_CHK:
1893 case BUILT_IN_STRNCPY_CHK:
1894 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1895 break;
1896
1897 case BUILT_IN_ASSUME_ALIGNED:
1898 val = bit_value_assume_aligned (stmt, NULL_TREE, val, false);
1899 break;
1900
1901 case BUILT_IN_ALIGNED_ALLOC:
1902 {
1903 tree align = get_constant_value (gimple_call_arg (stmt, 0));
1904 if (align
1905 && tree_fits_uhwi_p (align))
1906 {
1907 unsigned HOST_WIDE_INT aligni = tree_to_uhwi (align);
1908 if (aligni > 1
1909 /* align must be power-of-two */
1910 && (aligni & (aligni - 1)) == 0)
1911 {
1912 val.lattice_val = CONSTANT;
1913 val.value = build_int_cst (ptr_type_node, 0);
1914 val.mask = -aligni;
1915 }
1916 }
1917 break;
1918 }
1919
1920 default:;
1921 }
1922 }
1923 if (is_gimple_call (stmt) && gimple_call_lhs (stmt))
1924 {
1925 tree fntype = gimple_call_fntype (stmt);
1926 if (fntype)
1927 {
1928 tree attrs = lookup_attribute ("assume_aligned",
1929 TYPE_ATTRIBUTES (fntype));
1930 if (attrs)
1931 val = bit_value_assume_aligned (stmt, attrs, val, false);
1932 attrs = lookup_attribute ("alloc_align",
1933 TYPE_ATTRIBUTES (fntype));
1934 if (attrs)
1935 val = bit_value_assume_aligned (stmt, attrs, val, true);
1936 }
1937 }
1938 is_constant = (val.lattice_val == CONSTANT);
1939 }
1940
1941 if (flag_tree_bit_ccp
1942 && ((is_constant && TREE_CODE (val.value) == INTEGER_CST)
1943 || !is_constant)
1944 && gimple_get_lhs (stmt)
1945 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME)
1946 {
1947 tree lhs = gimple_get_lhs (stmt);
1948 wide_int nonzero_bits = get_nonzero_bits (lhs);
1949 if (nonzero_bits != -1)
1950 {
1951 if (!is_constant)
1952 {
1953 val.lattice_val = CONSTANT;
1954 val.value = build_zero_cst (TREE_TYPE (lhs));
1955 val.mask = extend_mask (nonzero_bits, TYPE_SIGN (TREE_TYPE (lhs)));
1956 is_constant = true;
1957 }
1958 else
1959 {
1960 if (wi::bit_and_not (val.value, nonzero_bits) != 0)
1961 val.value = wide_int_to_tree (TREE_TYPE (lhs),
1962 nonzero_bits & val.value);
1963 if (nonzero_bits == 0)
1964 val.mask = 0;
1965 else
1966 val.mask = val.mask & extend_mask (nonzero_bits,
1967 TYPE_SIGN (TREE_TYPE (lhs)));
1968 }
1969 }
1970 }
1971
1972 /* The statement produced a nonconstant value. */
1973 if (!is_constant)
1974 {
1975 /* The statement produced a copy. */
1976 if (simplified && TREE_CODE (simplified) == SSA_NAME
1977 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (simplified))
1978 {
1979 val.lattice_val = CONSTANT;
1980 val.value = simplified;
1981 val.mask = -1;
1982 }
1983 /* The statement is VARYING. */
1984 else
1985 {
1986 val.lattice_val = VARYING;
1987 val.value = NULL_TREE;
1988 val.mask = -1;
1989 }
1990 }
1991
1992 return val;
1993 }
1994
1995 typedef hash_table<nofree_ptr_hash<gimple> > gimple_htab;
1996
1997 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
1998 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
1999
2000 static void
2001 insert_clobber_before_stack_restore (tree saved_val, tree var,
2002 gimple_htab **visited)
2003 {
2004 gimple *stmt;
2005 gassign *clobber_stmt;
2006 tree clobber;
2007 imm_use_iterator iter;
2008 gimple_stmt_iterator i;
2009 gimple **slot;
2010
2011 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
2012 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
2013 {
2014 clobber = build_constructor (TREE_TYPE (var),
2015 NULL);
2016 TREE_THIS_VOLATILE (clobber) = 1;
2017 clobber_stmt = gimple_build_assign (var, clobber);
2018
2019 i = gsi_for_stmt (stmt);
2020 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
2021 }
2022 else if (gimple_code (stmt) == GIMPLE_PHI)
2023 {
2024 if (!*visited)
2025 *visited = new gimple_htab (10);
2026
2027 slot = (*visited)->find_slot (stmt, INSERT);
2028 if (*slot != NULL)
2029 continue;
2030
2031 *slot = stmt;
2032 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
2033 visited);
2034 }
2035 else if (gimple_assign_ssa_name_copy_p (stmt))
2036 insert_clobber_before_stack_restore (gimple_assign_lhs (stmt), var,
2037 visited);
2038 else if (chkp_gimple_call_builtin_p (stmt, BUILT_IN_CHKP_BNDRET))
2039 continue;
2040 else
2041 gcc_assert (is_gimple_debug (stmt));
2042 }
2043
2044 /* Advance the iterator to the previous non-debug gimple statement in the same
2045 or dominating basic block. */
2046
2047 static inline void
2048 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
2049 {
2050 basic_block dom;
2051
2052 gsi_prev_nondebug (i);
2053 while (gsi_end_p (*i))
2054 {
2055 dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
2056 if (dom == NULL || dom == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2057 return;
2058
2059 *i = gsi_last_bb (dom);
2060 }
2061 }
2062
2063 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
2064 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
2065
2066 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
2067 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
2068 that case the function gives up without inserting the clobbers. */
2069
2070 static void
2071 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
2072 {
2073 gimple *stmt;
2074 tree saved_val;
2075 gimple_htab *visited = NULL;
2076
2077 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
2078 {
2079 stmt = gsi_stmt (i);
2080
2081 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
2082 continue;
2083
2084 saved_val = gimple_call_lhs (stmt);
2085 if (saved_val == NULL_TREE)
2086 continue;
2087
2088 insert_clobber_before_stack_restore (saved_val, var, &visited);
2089 break;
2090 }
2091
2092 delete visited;
2093 }
2094
2095 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
2096 fixed-size array and returns the address, if found, otherwise returns
2097 NULL_TREE. */
2098
2099 static tree
2100 fold_builtin_alloca_with_align (gimple *stmt)
2101 {
2102 unsigned HOST_WIDE_INT size, threshold, n_elem;
2103 tree lhs, arg, block, var, elem_type, array_type;
2104
2105 /* Get lhs. */
2106 lhs = gimple_call_lhs (stmt);
2107 if (lhs == NULL_TREE)
2108 return NULL_TREE;
2109
2110 /* Detect constant argument. */
2111 arg = get_constant_value (gimple_call_arg (stmt, 0));
2112 if (arg == NULL_TREE
2113 || TREE_CODE (arg) != INTEGER_CST
2114 || !tree_fits_uhwi_p (arg))
2115 return NULL_TREE;
2116
2117 size = tree_to_uhwi (arg);
2118
2119 /* Heuristic: don't fold large allocas. */
2120 threshold = (unsigned HOST_WIDE_INT)PARAM_VALUE (PARAM_LARGE_STACK_FRAME);
2121 /* In case the alloca is located at function entry, it has the same lifetime
2122 as a declared array, so we allow a larger size. */
2123 block = gimple_block (stmt);
2124 if (!(cfun->after_inlining
2125 && block
2126 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
2127 threshold /= 10;
2128 if (size > threshold)
2129 return NULL_TREE;
2130
2131 /* Declare array. */
2132 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
2133 n_elem = size * 8 / BITS_PER_UNIT;
2134 array_type = build_array_type_nelts (elem_type, n_elem);
2135 var = create_tmp_var (array_type);
2136 SET_DECL_ALIGN (var, TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
2137 {
2138 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
2139 if (pi != NULL && !pi->pt.anything)
2140 {
2141 bool singleton_p;
2142 unsigned uid;
2143 singleton_p = pt_solution_singleton_or_null_p (&pi->pt, &uid);
2144 gcc_assert (singleton_p);
2145 SET_DECL_PT_UID (var, uid);
2146 }
2147 }
2148
2149 /* Fold alloca to the address of the array. */
2150 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
2151 }
2152
2153 /* Fold the stmt at *GSI with CCP specific information that propagating
2154 and regular folding does not catch. */
2155
2156 static bool
2157 ccp_fold_stmt (gimple_stmt_iterator *gsi)
2158 {
2159 gimple *stmt = gsi_stmt (*gsi);
2160
2161 switch (gimple_code (stmt))
2162 {
2163 case GIMPLE_COND:
2164 {
2165 gcond *cond_stmt = as_a <gcond *> (stmt);
2166 ccp_prop_value_t val;
2167 /* Statement evaluation will handle type mismatches in constants
2168 more gracefully than the final propagation. This allows us to
2169 fold more conditionals here. */
2170 val = evaluate_stmt (stmt);
2171 if (val.lattice_val != CONSTANT
2172 || val.mask != 0)
2173 return false;
2174
2175 if (dump_file)
2176 {
2177 fprintf (dump_file, "Folding predicate ");
2178 print_gimple_expr (dump_file, stmt, 0, 0);
2179 fprintf (dump_file, " to ");
2180 print_generic_expr (dump_file, val.value, 0);
2181 fprintf (dump_file, "\n");
2182 }
2183
2184 if (integer_zerop (val.value))
2185 gimple_cond_make_false (cond_stmt);
2186 else
2187 gimple_cond_make_true (cond_stmt);
2188
2189 return true;
2190 }
2191
2192 case GIMPLE_CALL:
2193 {
2194 tree lhs = gimple_call_lhs (stmt);
2195 int flags = gimple_call_flags (stmt);
2196 tree val;
2197 tree argt;
2198 bool changed = false;
2199 unsigned i;
2200
2201 /* If the call was folded into a constant make sure it goes
2202 away even if we cannot propagate into all uses because of
2203 type issues. */
2204 if (lhs
2205 && TREE_CODE (lhs) == SSA_NAME
2206 && (val = get_constant_value (lhs))
2207 /* Don't optimize away calls that have side-effects. */
2208 && (flags & (ECF_CONST|ECF_PURE)) != 0
2209 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
2210 {
2211 tree new_rhs = unshare_expr (val);
2212 bool res;
2213 if (!useless_type_conversion_p (TREE_TYPE (lhs),
2214 TREE_TYPE (new_rhs)))
2215 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
2216 res = update_call_from_tree (gsi, new_rhs);
2217 gcc_assert (res);
2218 return true;
2219 }
2220
2221 /* Internal calls provide no argument types, so the extra laxity
2222 for normal calls does not apply. */
2223 if (gimple_call_internal_p (stmt))
2224 return false;
2225
2226 /* The heuristic of fold_builtin_alloca_with_align differs before and
2227 after inlining, so we don't require the arg to be changed into a
2228 constant for folding, but just to be constant. */
2229 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN))
2230 {
2231 tree new_rhs = fold_builtin_alloca_with_align (stmt);
2232 if (new_rhs)
2233 {
2234 bool res = update_call_from_tree (gsi, new_rhs);
2235 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
2236 gcc_assert (res);
2237 insert_clobbers_for_var (*gsi, var);
2238 return true;
2239 }
2240 }
2241
2242 /* Propagate into the call arguments. Compared to replace_uses_in
2243 this can use the argument slot types for type verification
2244 instead of the current argument type. We also can safely
2245 drop qualifiers here as we are dealing with constants anyway. */
2246 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
2247 for (i = 0; i < gimple_call_num_args (stmt) && argt;
2248 ++i, argt = TREE_CHAIN (argt))
2249 {
2250 tree arg = gimple_call_arg (stmt, i);
2251 if (TREE_CODE (arg) == SSA_NAME
2252 && (val = get_constant_value (arg))
2253 && useless_type_conversion_p
2254 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
2255 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2256 {
2257 gimple_call_set_arg (stmt, i, unshare_expr (val));
2258 changed = true;
2259 }
2260 }
2261
2262 return changed;
2263 }
2264
2265 case GIMPLE_ASSIGN:
2266 {
2267 tree lhs = gimple_assign_lhs (stmt);
2268 tree val;
2269
2270 /* If we have a load that turned out to be constant replace it
2271 as we cannot propagate into all uses in all cases. */
2272 if (gimple_assign_single_p (stmt)
2273 && TREE_CODE (lhs) == SSA_NAME
2274 && (val = get_constant_value (lhs)))
2275 {
2276 tree rhs = unshare_expr (val);
2277 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2278 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
2279 gimple_assign_set_rhs_from_tree (gsi, rhs);
2280 return true;
2281 }
2282
2283 return false;
2284 }
2285
2286 default:
2287 return false;
2288 }
2289 }
2290
2291 /* Visit the assignment statement STMT. Set the value of its LHS to the
2292 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2293 creates virtual definitions, set the value of each new name to that
2294 of the RHS (if we can derive a constant out of the RHS).
2295 Value-returning call statements also perform an assignment, and
2296 are handled here. */
2297
2298 static enum ssa_prop_result
2299 visit_assignment (gimple *stmt, tree *output_p)
2300 {
2301 ccp_prop_value_t val;
2302 enum ssa_prop_result retval = SSA_PROP_NOT_INTERESTING;
2303
2304 tree lhs = gimple_get_lhs (stmt);
2305 if (TREE_CODE (lhs) == SSA_NAME)
2306 {
2307 /* Evaluate the statement, which could be
2308 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2309 val = evaluate_stmt (stmt);
2310
2311 /* If STMT is an assignment to an SSA_NAME, we only have one
2312 value to set. */
2313 if (set_lattice_value (lhs, &val))
2314 {
2315 *output_p = lhs;
2316 if (val.lattice_val == VARYING)
2317 retval = SSA_PROP_VARYING;
2318 else
2319 retval = SSA_PROP_INTERESTING;
2320 }
2321 }
2322
2323 return retval;
2324 }
2325
2326
2327 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2328 if it can determine which edge will be taken. Otherwise, return
2329 SSA_PROP_VARYING. */
2330
2331 static enum ssa_prop_result
2332 visit_cond_stmt (gimple *stmt, edge *taken_edge_p)
2333 {
2334 ccp_prop_value_t val;
2335 basic_block block;
2336
2337 block = gimple_bb (stmt);
2338 val = evaluate_stmt (stmt);
2339 if (val.lattice_val != CONSTANT
2340 || val.mask != 0)
2341 return SSA_PROP_VARYING;
2342
2343 /* Find which edge out of the conditional block will be taken and add it
2344 to the worklist. If no single edge can be determined statically,
2345 return SSA_PROP_VARYING to feed all the outgoing edges to the
2346 propagation engine. */
2347 *taken_edge_p = find_taken_edge (block, val.value);
2348 if (*taken_edge_p)
2349 return SSA_PROP_INTERESTING;
2350 else
2351 return SSA_PROP_VARYING;
2352 }
2353
2354
2355 /* Evaluate statement STMT. If the statement produces an output value and
2356 its evaluation changes the lattice value of its output, return
2357 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2358 output value.
2359
2360 If STMT is a conditional branch and we can determine its truth
2361 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2362 value, return SSA_PROP_VARYING. */
2363
2364 static enum ssa_prop_result
2365 ccp_visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
2366 {
2367 tree def;
2368 ssa_op_iter iter;
2369
2370 if (dump_file && (dump_flags & TDF_DETAILS))
2371 {
2372 fprintf (dump_file, "\nVisiting statement:\n");
2373 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2374 }
2375
2376 switch (gimple_code (stmt))
2377 {
2378 case GIMPLE_ASSIGN:
2379 /* If the statement is an assignment that produces a single
2380 output value, evaluate its RHS to see if the lattice value of
2381 its output has changed. */
2382 return visit_assignment (stmt, output_p);
2383
2384 case GIMPLE_CALL:
2385 /* A value-returning call also performs an assignment. */
2386 if (gimple_call_lhs (stmt) != NULL_TREE)
2387 return visit_assignment (stmt, output_p);
2388 break;
2389
2390 case GIMPLE_COND:
2391 case GIMPLE_SWITCH:
2392 /* If STMT is a conditional branch, see if we can determine
2393 which branch will be taken. */
2394 /* FIXME. It appears that we should be able to optimize
2395 computed GOTOs here as well. */
2396 return visit_cond_stmt (stmt, taken_edge_p);
2397
2398 default:
2399 break;
2400 }
2401
2402 /* Any other kind of statement is not interesting for constant
2403 propagation and, therefore, not worth simulating. */
2404 if (dump_file && (dump_flags & TDF_DETAILS))
2405 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2406
2407 /* Definitions made by statements other than assignments to
2408 SSA_NAMEs represent unknown modifications to their outputs.
2409 Mark them VARYING. */
2410 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2411 set_value_varying (def);
2412
2413 return SSA_PROP_VARYING;
2414 }
2415
2416
2417 /* Main entry point for SSA Conditional Constant Propagation. If NONZERO_P,
2418 record nonzero bits. */
2419
2420 static unsigned int
2421 do_ssa_ccp (bool nonzero_p)
2422 {
2423 unsigned int todo = 0;
2424 calculate_dominance_info (CDI_DOMINATORS);
2425
2426 ccp_initialize ();
2427 ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node);
2428 if (ccp_finalize (nonzero_p || flag_ipa_bit_cp))
2429 {
2430 todo = (TODO_cleanup_cfg | TODO_update_ssa);
2431
2432 /* ccp_finalize does not preserve loop-closed ssa. */
2433 loops_state_clear (LOOP_CLOSED_SSA);
2434 }
2435
2436 free_dominance_info (CDI_DOMINATORS);
2437 return todo;
2438 }
2439
2440
2441 namespace {
2442
2443 const pass_data pass_data_ccp =
2444 {
2445 GIMPLE_PASS, /* type */
2446 "ccp", /* name */
2447 OPTGROUP_NONE, /* optinfo_flags */
2448 TV_TREE_CCP, /* tv_id */
2449 ( PROP_cfg | PROP_ssa ), /* properties_required */
2450 0, /* properties_provided */
2451 0, /* properties_destroyed */
2452 0, /* todo_flags_start */
2453 TODO_update_address_taken, /* todo_flags_finish */
2454 };
2455
2456 class pass_ccp : public gimple_opt_pass
2457 {
2458 public:
2459 pass_ccp (gcc::context *ctxt)
2460 : gimple_opt_pass (pass_data_ccp, ctxt), nonzero_p (false)
2461 {}
2462
2463 /* opt_pass methods: */
2464 opt_pass * clone () { return new pass_ccp (m_ctxt); }
2465 void set_pass_param (unsigned int n, bool param)
2466 {
2467 gcc_assert (n == 0);
2468 nonzero_p = param;
2469 }
2470 virtual bool gate (function *) { return flag_tree_ccp != 0; }
2471 virtual unsigned int execute (function *) { return do_ssa_ccp (nonzero_p); }
2472
2473 private:
2474 /* Determines whether the pass instance records nonzero bits. */
2475 bool nonzero_p;
2476 }; // class pass_ccp
2477
2478 } // anon namespace
2479
2480 gimple_opt_pass *
2481 make_pass_ccp (gcc::context *ctxt)
2482 {
2483 return new pass_ccp (ctxt);
2484 }
2485
2486
2487
2488 /* Try to optimize out __builtin_stack_restore. Optimize it out
2489 if there is another __builtin_stack_restore in the same basic
2490 block and no calls or ASM_EXPRs are in between, or if this block's
2491 only outgoing edge is to EXIT_BLOCK and there are no calls or
2492 ASM_EXPRs after this __builtin_stack_restore. */
2493
2494 static tree
2495 optimize_stack_restore (gimple_stmt_iterator i)
2496 {
2497 tree callee;
2498 gimple *stmt;
2499
2500 basic_block bb = gsi_bb (i);
2501 gimple *call = gsi_stmt (i);
2502
2503 if (gimple_code (call) != GIMPLE_CALL
2504 || gimple_call_num_args (call) != 1
2505 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2506 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2507 return NULL_TREE;
2508
2509 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2510 {
2511 stmt = gsi_stmt (i);
2512 if (gimple_code (stmt) == GIMPLE_ASM)
2513 return NULL_TREE;
2514 if (gimple_code (stmt) != GIMPLE_CALL)
2515 continue;
2516
2517 callee = gimple_call_fndecl (stmt);
2518 if (!callee
2519 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2520 /* All regular builtins are ok, just obviously not alloca. */
2521 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
2522 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA_WITH_ALIGN)
2523 return NULL_TREE;
2524
2525 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
2526 goto second_stack_restore;
2527 }
2528
2529 if (!gsi_end_p (i))
2530 return NULL_TREE;
2531
2532 /* Allow one successor of the exit block, or zero successors. */
2533 switch (EDGE_COUNT (bb->succs))
2534 {
2535 case 0:
2536 break;
2537 case 1:
2538 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2539 return NULL_TREE;
2540 break;
2541 default:
2542 return NULL_TREE;
2543 }
2544 second_stack_restore:
2545
2546 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2547 If there are multiple uses, then the last one should remove the call.
2548 In any case, whether the call to __builtin_stack_save can be removed
2549 or not is irrelevant to removing the call to __builtin_stack_restore. */
2550 if (has_single_use (gimple_call_arg (call, 0)))
2551 {
2552 gimple *stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2553 if (is_gimple_call (stack_save))
2554 {
2555 callee = gimple_call_fndecl (stack_save);
2556 if (callee
2557 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2558 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE)
2559 {
2560 gimple_stmt_iterator stack_save_gsi;
2561 tree rhs;
2562
2563 stack_save_gsi = gsi_for_stmt (stack_save);
2564 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2565 update_call_from_tree (&stack_save_gsi, rhs);
2566 }
2567 }
2568 }
2569
2570 /* No effect, so the statement will be deleted. */
2571 return integer_zero_node;
2572 }
2573
2574 /* If va_list type is a simple pointer and nothing special is needed,
2575 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2576 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2577 pointer assignment. */
2578
2579 static tree
2580 optimize_stdarg_builtin (gimple *call)
2581 {
2582 tree callee, lhs, rhs, cfun_va_list;
2583 bool va_list_simple_ptr;
2584 location_t loc = gimple_location (call);
2585
2586 if (gimple_code (call) != GIMPLE_CALL)
2587 return NULL_TREE;
2588
2589 callee = gimple_call_fndecl (call);
2590
2591 cfun_va_list = targetm.fn_abi_va_list (callee);
2592 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2593 && (TREE_TYPE (cfun_va_list) == void_type_node
2594 || TREE_TYPE (cfun_va_list) == char_type_node);
2595
2596 switch (DECL_FUNCTION_CODE (callee))
2597 {
2598 case BUILT_IN_VA_START:
2599 if (!va_list_simple_ptr
2600 || targetm.expand_builtin_va_start != NULL
2601 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
2602 return NULL_TREE;
2603
2604 if (gimple_call_num_args (call) != 2)
2605 return NULL_TREE;
2606
2607 lhs = gimple_call_arg (call, 0);
2608 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2609 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2610 != TYPE_MAIN_VARIANT (cfun_va_list))
2611 return NULL_TREE;
2612
2613 lhs = build_fold_indirect_ref_loc (loc, lhs);
2614 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
2615 1, integer_zero_node);
2616 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2617 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2618
2619 case BUILT_IN_VA_COPY:
2620 if (!va_list_simple_ptr)
2621 return NULL_TREE;
2622
2623 if (gimple_call_num_args (call) != 2)
2624 return NULL_TREE;
2625
2626 lhs = gimple_call_arg (call, 0);
2627 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2628 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2629 != TYPE_MAIN_VARIANT (cfun_va_list))
2630 return NULL_TREE;
2631
2632 lhs = build_fold_indirect_ref_loc (loc, lhs);
2633 rhs = gimple_call_arg (call, 1);
2634 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2635 != TYPE_MAIN_VARIANT (cfun_va_list))
2636 return NULL_TREE;
2637
2638 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2639 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2640
2641 case BUILT_IN_VA_END:
2642 /* No effect, so the statement will be deleted. */
2643 return integer_zero_node;
2644
2645 default:
2646 gcc_unreachable ();
2647 }
2648 }
2649
2650 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2651 the incoming jumps. Return true if at least one jump was changed. */
2652
2653 static bool
2654 optimize_unreachable (gimple_stmt_iterator i)
2655 {
2656 basic_block bb = gsi_bb (i);
2657 gimple_stmt_iterator gsi;
2658 gimple *stmt;
2659 edge_iterator ei;
2660 edge e;
2661 bool ret;
2662
2663 if (flag_sanitize & SANITIZE_UNREACHABLE)
2664 return false;
2665
2666 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2667 {
2668 stmt = gsi_stmt (gsi);
2669
2670 if (is_gimple_debug (stmt))
2671 continue;
2672
2673 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2674 {
2675 /* Verify we do not need to preserve the label. */
2676 if (FORCED_LABEL (gimple_label_label (label_stmt)))
2677 return false;
2678
2679 continue;
2680 }
2681
2682 /* Only handle the case that __builtin_unreachable is the first statement
2683 in the block. We rely on DCE to remove stmts without side-effects
2684 before __builtin_unreachable. */
2685 if (gsi_stmt (gsi) != gsi_stmt (i))
2686 return false;
2687 }
2688
2689 ret = false;
2690 FOR_EACH_EDGE (e, ei, bb->preds)
2691 {
2692 gsi = gsi_last_bb (e->src);
2693 if (gsi_end_p (gsi))
2694 continue;
2695
2696 stmt = gsi_stmt (gsi);
2697 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
2698 {
2699 if (e->flags & EDGE_TRUE_VALUE)
2700 gimple_cond_make_false (cond_stmt);
2701 else if (e->flags & EDGE_FALSE_VALUE)
2702 gimple_cond_make_true (cond_stmt);
2703 else
2704 gcc_unreachable ();
2705 update_stmt (cond_stmt);
2706 }
2707 else
2708 {
2709 /* Todo: handle other cases, f.i. switch statement. */
2710 continue;
2711 }
2712
2713 ret = true;
2714 }
2715
2716 return ret;
2717 }
2718
2719 /* Optimize
2720 mask_2 = 1 << cnt_1;
2721 _4 = __atomic_fetch_or_* (ptr_6, mask_2, _3);
2722 _5 = _4 & mask_2;
2723 to
2724 _4 = ATOMIC_BIT_TEST_AND_SET (ptr_6, cnt_1, 0, _3);
2725 _5 = _4;
2726 If _5 is only used in _5 != 0 or _5 == 0 comparisons, 1
2727 is passed instead of 0, and the builtin just returns a zero
2728 or 1 value instead of the actual bit.
2729 Similarly for __sync_fetch_and_or_* (without the ", _3" part
2730 in there), and/or if mask_2 is a power of 2 constant.
2731 Similarly for xor instead of or, use ATOMIC_BIT_TEST_AND_COMPLEMENT
2732 in that case. And similarly for and instead of or, except that
2733 the second argument to the builtin needs to be one's complement
2734 of the mask instead of mask. */
2735
2736 static void
2737 optimize_atomic_bit_test_and (gimple_stmt_iterator *gsip,
2738 enum internal_fn fn, bool has_model_arg,
2739 bool after)
2740 {
2741 gimple *call = gsi_stmt (*gsip);
2742 tree lhs = gimple_call_lhs (call);
2743 use_operand_p use_p;
2744 gimple *use_stmt;
2745 tree mask, bit;
2746 optab optab;
2747
2748 if (!flag_inline_atomics
2749 || optimize_debug
2750 || !gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2751 || !lhs
2752 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)
2753 || !single_imm_use (lhs, &use_p, &use_stmt)
2754 || !is_gimple_assign (use_stmt)
2755 || gimple_assign_rhs_code (use_stmt) != BIT_AND_EXPR
2756 || !gimple_vdef (call))
2757 return;
2758
2759 switch (fn)
2760 {
2761 case IFN_ATOMIC_BIT_TEST_AND_SET:
2762 optab = atomic_bit_test_and_set_optab;
2763 break;
2764 case IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT:
2765 optab = atomic_bit_test_and_complement_optab;
2766 break;
2767 case IFN_ATOMIC_BIT_TEST_AND_RESET:
2768 optab = atomic_bit_test_and_reset_optab;
2769 break;
2770 default:
2771 return;
2772 }
2773
2774 if (optab_handler (optab, TYPE_MODE (TREE_TYPE (lhs))) == CODE_FOR_nothing)
2775 return;
2776
2777 mask = gimple_call_arg (call, 1);
2778 tree use_lhs = gimple_assign_lhs (use_stmt);
2779 if (!use_lhs)
2780 return;
2781
2782 if (TREE_CODE (mask) == INTEGER_CST)
2783 {
2784 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
2785 mask = const_unop (BIT_NOT_EXPR, TREE_TYPE (mask), mask);
2786 mask = fold_convert (TREE_TYPE (lhs), mask);
2787 int ibit = tree_log2 (mask);
2788 if (ibit < 0)
2789 return;
2790 bit = build_int_cst (TREE_TYPE (lhs), ibit);
2791 }
2792 else if (TREE_CODE (mask) == SSA_NAME)
2793 {
2794 gimple *g = SSA_NAME_DEF_STMT (mask);
2795 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
2796 {
2797 if (!is_gimple_assign (g)
2798 || gimple_assign_rhs_code (g) != BIT_NOT_EXPR)
2799 return;
2800 mask = gimple_assign_rhs1 (g);
2801 if (TREE_CODE (mask) != SSA_NAME)
2802 return;
2803 g = SSA_NAME_DEF_STMT (mask);
2804 }
2805 if (!is_gimple_assign (g)
2806 || gimple_assign_rhs_code (g) != LSHIFT_EXPR
2807 || !integer_onep (gimple_assign_rhs1 (g)))
2808 return;
2809 bit = gimple_assign_rhs2 (g);
2810 }
2811 else
2812 return;
2813
2814 if (gimple_assign_rhs1 (use_stmt) == lhs)
2815 {
2816 if (!operand_equal_p (gimple_assign_rhs2 (use_stmt), mask, 0))
2817 return;
2818 }
2819 else if (gimple_assign_rhs2 (use_stmt) != lhs
2820 || !operand_equal_p (gimple_assign_rhs1 (use_stmt), mask, 0))
2821 return;
2822
2823 bool use_bool = true;
2824 bool has_debug_uses = false;
2825 imm_use_iterator iter;
2826 gimple *g;
2827
2828 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs))
2829 use_bool = false;
2830 FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
2831 {
2832 enum tree_code code = ERROR_MARK;
2833 tree op0 = NULL_TREE, op1 = NULL_TREE;
2834 if (is_gimple_debug (g))
2835 {
2836 has_debug_uses = true;
2837 continue;
2838 }
2839 else if (is_gimple_assign (g))
2840 switch (gimple_assign_rhs_code (g))
2841 {
2842 case COND_EXPR:
2843 op1 = gimple_assign_rhs1 (g);
2844 code = TREE_CODE (op1);
2845 op0 = TREE_OPERAND (op1, 0);
2846 op1 = TREE_OPERAND (op1, 1);
2847 break;
2848 case EQ_EXPR:
2849 case NE_EXPR:
2850 code = gimple_assign_rhs_code (g);
2851 op0 = gimple_assign_rhs1 (g);
2852 op1 = gimple_assign_rhs2 (g);
2853 break;
2854 default:
2855 break;
2856 }
2857 else if (gimple_code (g) == GIMPLE_COND)
2858 {
2859 code = gimple_cond_code (g);
2860 op0 = gimple_cond_lhs (g);
2861 op1 = gimple_cond_rhs (g);
2862 }
2863
2864 if ((code == EQ_EXPR || code == NE_EXPR)
2865 && op0 == use_lhs
2866 && integer_zerop (op1))
2867 {
2868 use_operand_p use_p;
2869 int n = 0;
2870 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2871 n++;
2872 if (n == 1)
2873 continue;
2874 }
2875
2876 use_bool = false;
2877 BREAK_FROM_IMM_USE_STMT (iter);
2878 }
2879
2880 tree new_lhs = make_ssa_name (TREE_TYPE (lhs));
2881 tree flag = build_int_cst (TREE_TYPE (lhs), use_bool);
2882 if (has_model_arg)
2883 g = gimple_build_call_internal (fn, 4, gimple_call_arg (call, 0),
2884 bit, flag, gimple_call_arg (call, 2));
2885 else
2886 g = gimple_build_call_internal (fn, 3, gimple_call_arg (call, 0),
2887 bit, flag);
2888 gimple_call_set_lhs (g, new_lhs);
2889 gimple_set_location (g, gimple_location (call));
2890 gimple_set_vuse (g, gimple_vuse (call));
2891 gimple_set_vdef (g, gimple_vdef (call));
2892 SSA_NAME_DEF_STMT (gimple_vdef (call)) = g;
2893 gimple_stmt_iterator gsi = *gsip;
2894 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2895 if (after)
2896 {
2897 /* The internal function returns the value of the specified bit
2898 before the atomic operation. If we are interested in the value
2899 of the specified bit after the atomic operation (makes only sense
2900 for xor, otherwise the bit content is compile time known),
2901 we need to invert the bit. */
2902 g = gimple_build_assign (make_ssa_name (TREE_TYPE (lhs)),
2903 BIT_XOR_EXPR, new_lhs,
2904 use_bool ? build_int_cst (TREE_TYPE (lhs), 1)
2905 : mask);
2906 new_lhs = gimple_assign_lhs (g);
2907 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2908 }
2909 if (use_bool && has_debug_uses)
2910 {
2911 tree temp = make_node (DEBUG_EXPR_DECL);
2912 DECL_ARTIFICIAL (temp) = 1;
2913 TREE_TYPE (temp) = TREE_TYPE (lhs);
2914 SET_DECL_MODE (temp, TYPE_MODE (TREE_TYPE (lhs)));
2915 tree t = build2 (LSHIFT_EXPR, TREE_TYPE (lhs), new_lhs, bit);
2916 g = gimple_build_debug_bind (temp, t, g);
2917 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2918 FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
2919 if (is_gimple_debug (g))
2920 {
2921 use_operand_p use_p;
2922 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2923 SET_USE (use_p, temp);
2924 update_stmt (g);
2925 }
2926 }
2927 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_lhs)
2928 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs);
2929 replace_uses_by (use_lhs, new_lhs);
2930 gsi = gsi_for_stmt (use_stmt);
2931 gsi_remove (&gsi, true);
2932 release_defs (use_stmt);
2933 gsi_remove (gsip, true);
2934 release_ssa_name (lhs);
2935 }
2936
2937 /* Optimize
2938 a = {};
2939 b = a;
2940 into
2941 a = {};
2942 b = {};
2943 Similarly for memset (&a, ..., sizeof (a)); instead of a = {};
2944 and/or memcpy (&b, &a, sizeof (a)); instead of b = a; */
2945
2946 static void
2947 optimize_memcpy (gimple_stmt_iterator *gsip, tree dest, tree src, tree len)
2948 {
2949 gimple *stmt = gsi_stmt (*gsip);
2950 if (gimple_has_volatile_ops (stmt))
2951 return;
2952
2953 tree vuse = gimple_vuse (stmt);
2954 if (vuse == NULL)
2955 return;
2956
2957 gimple *defstmt = SSA_NAME_DEF_STMT (vuse);
2958 tree src2 = NULL_TREE, len2 = NULL_TREE;
2959 HOST_WIDE_INT offset, offset2;
2960 tree val = integer_zero_node;
2961 if (gimple_store_p (defstmt)
2962 && gimple_assign_single_p (defstmt)
2963 && TREE_CODE (gimple_assign_rhs1 (defstmt)) == CONSTRUCTOR
2964 && !gimple_clobber_p (defstmt))
2965 src2 = gimple_assign_lhs (defstmt);
2966 else if (gimple_call_builtin_p (defstmt, BUILT_IN_MEMSET)
2967 && TREE_CODE (gimple_call_arg (defstmt, 0)) == ADDR_EXPR
2968 && TREE_CODE (gimple_call_arg (defstmt, 1)) == INTEGER_CST)
2969 {
2970 src2 = TREE_OPERAND (gimple_call_arg (defstmt, 0), 0);
2971 len2 = gimple_call_arg (defstmt, 2);
2972 val = gimple_call_arg (defstmt, 1);
2973 /* For non-0 val, we'd have to transform stmt from assignment
2974 into memset (only if dest is addressable). */
2975 if (!integer_zerop (val) && is_gimple_assign (stmt))
2976 src2 = NULL_TREE;
2977 }
2978
2979 if (src2 == NULL_TREE)
2980 return;
2981
2982 if (len == NULL_TREE)
2983 len = (TREE_CODE (src) == COMPONENT_REF
2984 ? DECL_SIZE_UNIT (TREE_OPERAND (src, 1))
2985 : TYPE_SIZE_UNIT (TREE_TYPE (src)));
2986 if (len2 == NULL_TREE)
2987 len2 = (TREE_CODE (src2) == COMPONENT_REF
2988 ? DECL_SIZE_UNIT (TREE_OPERAND (src2, 1))
2989 : TYPE_SIZE_UNIT (TREE_TYPE (src2)));
2990 if (len == NULL_TREE
2991 || TREE_CODE (len) != INTEGER_CST
2992 || len2 == NULL_TREE
2993 || TREE_CODE (len2) != INTEGER_CST)
2994 return;
2995
2996 src = get_addr_base_and_unit_offset (src, &offset);
2997 src2 = get_addr_base_and_unit_offset (src2, &offset2);
2998 if (src == NULL_TREE
2999 || src2 == NULL_TREE
3000 || offset < offset2)
3001 return;
3002
3003 if (!operand_equal_p (src, src2, 0))
3004 return;
3005
3006 /* [ src + offset2, src + offset2 + len2 - 1 ] is set to val.
3007 Make sure that
3008 [ src + offset, src + offset + len - 1 ] is a subset of that. */
3009 if (wi::to_offset (len) + (offset - offset2) > wi::to_offset (len2))
3010 return;
3011
3012 if (dump_file && (dump_flags & TDF_DETAILS))
3013 {
3014 fprintf (dump_file, "Simplified\n ");
3015 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3016 fprintf (dump_file, "after previous\n ");
3017 print_gimple_stmt (dump_file, defstmt, 0, dump_flags);
3018 }
3019
3020 /* For simplicity, don't change the kind of the stmt,
3021 turn dest = src; into dest = {}; and memcpy (&dest, &src, len);
3022 into memset (&dest, val, len);
3023 In theory we could change dest = src into memset if dest
3024 is addressable (maybe beneficial if val is not 0), or
3025 memcpy (&dest, &src, len) into dest = {} if len is the size
3026 of dest, dest isn't volatile. */
3027 if (is_gimple_assign (stmt))
3028 {
3029 tree ctor = build_constructor (TREE_TYPE (dest), NULL);
3030 gimple_assign_set_rhs_from_tree (gsip, ctor);
3031 update_stmt (stmt);
3032 }
3033 else /* If stmt is memcpy, transform it into memset. */
3034 {
3035 gcall *call = as_a <gcall *> (stmt);
3036 tree fndecl = builtin_decl_implicit (BUILT_IN_MEMSET);
3037 gimple_call_set_fndecl (call, fndecl);
3038 gimple_call_set_fntype (call, TREE_TYPE (fndecl));
3039 gimple_call_set_arg (call, 1, val);
3040 update_stmt (stmt);
3041 }
3042
3043 if (dump_file && (dump_flags & TDF_DETAILS))
3044 {
3045 fprintf (dump_file, "into\n ");
3046 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3047 }
3048 }
3049
3050 /* A simple pass that attempts to fold all builtin functions. This pass
3051 is run after we've propagated as many constants as we can. */
3052
3053 namespace {
3054
3055 const pass_data pass_data_fold_builtins =
3056 {
3057 GIMPLE_PASS, /* type */
3058 "fab", /* name */
3059 OPTGROUP_NONE, /* optinfo_flags */
3060 TV_NONE, /* tv_id */
3061 ( PROP_cfg | PROP_ssa ), /* properties_required */
3062 0, /* properties_provided */
3063 0, /* properties_destroyed */
3064 0, /* todo_flags_start */
3065 TODO_update_ssa, /* todo_flags_finish */
3066 };
3067
3068 class pass_fold_builtins : public gimple_opt_pass
3069 {
3070 public:
3071 pass_fold_builtins (gcc::context *ctxt)
3072 : gimple_opt_pass (pass_data_fold_builtins, ctxt)
3073 {}
3074
3075 /* opt_pass methods: */
3076 opt_pass * clone () { return new pass_fold_builtins (m_ctxt); }
3077 virtual unsigned int execute (function *);
3078
3079 }; // class pass_fold_builtins
3080
3081 unsigned int
3082 pass_fold_builtins::execute (function *fun)
3083 {
3084 bool cfg_changed = false;
3085 basic_block bb;
3086 unsigned int todoflags = 0;
3087
3088 FOR_EACH_BB_FN (bb, fun)
3089 {
3090 gimple_stmt_iterator i;
3091 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
3092 {
3093 gimple *stmt, *old_stmt;
3094 tree callee;
3095 enum built_in_function fcode;
3096
3097 stmt = gsi_stmt (i);
3098
3099 if (gimple_code (stmt) != GIMPLE_CALL)
3100 {
3101 /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
3102 after the last GIMPLE DSE they aren't needed and might
3103 unnecessarily keep the SSA_NAMEs live. */
3104 if (gimple_clobber_p (stmt))
3105 {
3106 tree lhs = gimple_assign_lhs (stmt);
3107 if (TREE_CODE (lhs) == MEM_REF
3108 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME)
3109 {
3110 unlink_stmt_vdef (stmt);
3111 gsi_remove (&i, true);
3112 release_defs (stmt);
3113 continue;
3114 }
3115 }
3116 else if (gimple_assign_load_p (stmt) && gimple_store_p (stmt))
3117 optimize_memcpy (&i, gimple_assign_lhs (stmt),
3118 gimple_assign_rhs1 (stmt), NULL_TREE);
3119 gsi_next (&i);
3120 continue;
3121 }
3122
3123 callee = gimple_call_fndecl (stmt);
3124 if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL)
3125 {
3126 gsi_next (&i);
3127 continue;
3128 }
3129
3130 fcode = DECL_FUNCTION_CODE (callee);
3131 if (fold_stmt (&i))
3132 ;
3133 else
3134 {
3135 tree result = NULL_TREE;
3136 switch (DECL_FUNCTION_CODE (callee))
3137 {
3138 case BUILT_IN_CONSTANT_P:
3139 /* Resolve __builtin_constant_p. If it hasn't been
3140 folded to integer_one_node by now, it's fairly
3141 certain that the value simply isn't constant. */
3142 result = integer_zero_node;
3143 break;
3144
3145 case BUILT_IN_ASSUME_ALIGNED:
3146 /* Remove __builtin_assume_aligned. */
3147 result = gimple_call_arg (stmt, 0);
3148 break;
3149
3150 case BUILT_IN_STACK_RESTORE:
3151 result = optimize_stack_restore (i);
3152 if (result)
3153 break;
3154 gsi_next (&i);
3155 continue;
3156
3157 case BUILT_IN_UNREACHABLE:
3158 if (optimize_unreachable (i))
3159 cfg_changed = true;
3160 break;
3161
3162 case BUILT_IN_ATOMIC_FETCH_OR_1:
3163 case BUILT_IN_ATOMIC_FETCH_OR_2:
3164 case BUILT_IN_ATOMIC_FETCH_OR_4:
3165 case BUILT_IN_ATOMIC_FETCH_OR_8:
3166 case BUILT_IN_ATOMIC_FETCH_OR_16:
3167 optimize_atomic_bit_test_and (&i,
3168 IFN_ATOMIC_BIT_TEST_AND_SET,
3169 true, false);
3170 break;
3171 case BUILT_IN_SYNC_FETCH_AND_OR_1:
3172 case BUILT_IN_SYNC_FETCH_AND_OR_2:
3173 case BUILT_IN_SYNC_FETCH_AND_OR_4:
3174 case BUILT_IN_SYNC_FETCH_AND_OR_8:
3175 case BUILT_IN_SYNC_FETCH_AND_OR_16:
3176 optimize_atomic_bit_test_and (&i,
3177 IFN_ATOMIC_BIT_TEST_AND_SET,
3178 false, false);
3179 break;
3180
3181 case BUILT_IN_ATOMIC_FETCH_XOR_1:
3182 case BUILT_IN_ATOMIC_FETCH_XOR_2:
3183 case BUILT_IN_ATOMIC_FETCH_XOR_4:
3184 case BUILT_IN_ATOMIC_FETCH_XOR_8:
3185 case BUILT_IN_ATOMIC_FETCH_XOR_16:
3186 optimize_atomic_bit_test_and
3187 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, false);
3188 break;
3189 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
3190 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
3191 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
3192 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
3193 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
3194 optimize_atomic_bit_test_and
3195 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, false);
3196 break;
3197
3198 case BUILT_IN_ATOMIC_XOR_FETCH_1:
3199 case BUILT_IN_ATOMIC_XOR_FETCH_2:
3200 case BUILT_IN_ATOMIC_XOR_FETCH_4:
3201 case BUILT_IN_ATOMIC_XOR_FETCH_8:
3202 case BUILT_IN_ATOMIC_XOR_FETCH_16:
3203 optimize_atomic_bit_test_and
3204 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, true);
3205 break;
3206 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
3207 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
3208 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
3209 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
3210 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
3211 optimize_atomic_bit_test_and
3212 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, true);
3213 break;
3214
3215 case BUILT_IN_ATOMIC_FETCH_AND_1:
3216 case BUILT_IN_ATOMIC_FETCH_AND_2:
3217 case BUILT_IN_ATOMIC_FETCH_AND_4:
3218 case BUILT_IN_ATOMIC_FETCH_AND_8:
3219 case BUILT_IN_ATOMIC_FETCH_AND_16:
3220 optimize_atomic_bit_test_and (&i,
3221 IFN_ATOMIC_BIT_TEST_AND_RESET,
3222 true, false);
3223 break;
3224 case BUILT_IN_SYNC_FETCH_AND_AND_1:
3225 case BUILT_IN_SYNC_FETCH_AND_AND_2:
3226 case BUILT_IN_SYNC_FETCH_AND_AND_4:
3227 case BUILT_IN_SYNC_FETCH_AND_AND_8:
3228 case BUILT_IN_SYNC_FETCH_AND_AND_16:
3229 optimize_atomic_bit_test_and (&i,
3230 IFN_ATOMIC_BIT_TEST_AND_RESET,
3231 false, false);
3232 break;
3233
3234 case BUILT_IN_MEMCPY:
3235 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL)
3236 && TREE_CODE (gimple_call_arg (stmt, 0)) == ADDR_EXPR
3237 && TREE_CODE (gimple_call_arg (stmt, 1)) == ADDR_EXPR
3238 && TREE_CODE (gimple_call_arg (stmt, 2)) == INTEGER_CST)
3239 {
3240 tree dest = TREE_OPERAND (gimple_call_arg (stmt, 0), 0);
3241 tree src = TREE_OPERAND (gimple_call_arg (stmt, 1), 0);
3242 tree len = gimple_call_arg (stmt, 2);
3243 optimize_memcpy (&i, dest, src, len);
3244 }
3245 break;
3246
3247 case BUILT_IN_VA_START:
3248 case BUILT_IN_VA_END:
3249 case BUILT_IN_VA_COPY:
3250 /* These shouldn't be folded before pass_stdarg. */
3251 result = optimize_stdarg_builtin (stmt);
3252 break;
3253
3254 default:;
3255 }
3256
3257 if (!result)
3258 {
3259 gsi_next (&i);
3260 continue;
3261 }
3262
3263 if (!update_call_from_tree (&i, result))
3264 gimplify_and_update_call_from_tree (&i, result);
3265 }
3266
3267 todoflags |= TODO_update_address_taken;
3268
3269 if (dump_file && (dump_flags & TDF_DETAILS))
3270 {
3271 fprintf (dump_file, "Simplified\n ");
3272 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3273 }
3274
3275 old_stmt = stmt;
3276 stmt = gsi_stmt (i);
3277 update_stmt (stmt);
3278
3279 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
3280 && gimple_purge_dead_eh_edges (bb))
3281 cfg_changed = true;
3282
3283 if (dump_file && (dump_flags & TDF_DETAILS))
3284 {
3285 fprintf (dump_file, "to\n ");
3286 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3287 fprintf (dump_file, "\n");
3288 }
3289
3290 /* Retry the same statement if it changed into another
3291 builtin, there might be new opportunities now. */
3292 if (gimple_code (stmt) != GIMPLE_CALL)
3293 {
3294 gsi_next (&i);
3295 continue;
3296 }
3297 callee = gimple_call_fndecl (stmt);
3298 if (!callee
3299 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
3300 || DECL_FUNCTION_CODE (callee) == fcode)
3301 gsi_next (&i);
3302 }
3303 }
3304
3305 /* Delete unreachable blocks. */
3306 if (cfg_changed)
3307 todoflags |= TODO_cleanup_cfg;
3308
3309 return todoflags;
3310 }
3311
3312 } // anon namespace
3313
3314 gimple_opt_pass *
3315 make_pass_fold_builtins (gcc::context *ctxt)
3316 {
3317 return new pass_fold_builtins (ctxt);
3318 }