re PR ipa/88936 (-fipa-pta breaks bash (incorrect optimisation of recursive static...
[gcc.git] / gcc / tree-ssa-ccp.c
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2019 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
28 following values:
29
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
37
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
41 or not.
42
43 CONSTANT -> V_i has been found to hold a constant
44 value C.
45
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
48 at compile time.
49
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
51
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
59 can be visited.
60
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
65
66
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
72
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
75
76 if (PRED)
77 a_9 = 3;
78 else
79 a_10 = 100;
80 a_11 = PHI (a_9, a_10)
81
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
86
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
94
95
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
100
101 This algorithm uses wide-ints at the max precision of the target.
102 This means that, with one uninteresting exception, variables with
103 UNSIGNED types never go to VARYING because the bits above the
104 precision of the type of the variable are always zero. The
105 uninteresting case is a variable of UNSIGNED type that has the
106 maximum precision of the target. Such variables can go to VARYING,
107 but this causes no loss of infomation since these variables will
108 never be extended.
109
110 References:
111
112 Constant propagation with conditional branches,
113 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
114
115 Building an Optimizing Compiler,
116 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
117
118 Advanced Compiler Design and Implementation,
119 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
120
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "backend.h"
125 #include "target.h"
126 #include "tree.h"
127 #include "gimple.h"
128 #include "tree-pass.h"
129 #include "ssa.h"
130 #include "gimple-pretty-print.h"
131 #include "fold-const.h"
132 #include "gimple-fold.h"
133 #include "tree-eh.h"
134 #include "gimplify.h"
135 #include "gimple-iterator.h"
136 #include "tree-cfg.h"
137 #include "tree-ssa-propagate.h"
138 #include "dbgcnt.h"
139 #include "params.h"
140 #include "builtins.h"
141 #include "cfgloop.h"
142 #include "stor-layout.h"
143 #include "optabs-query.h"
144 #include "tree-ssa-ccp.h"
145 #include "tree-dfa.h"
146 #include "diagnostic-core.h"
147 #include "stringpool.h"
148 #include "attribs.h"
149 #include "tree-vector-builder.h"
150
151 /* Possible lattice values. */
152 typedef enum
153 {
154 UNINITIALIZED,
155 UNDEFINED,
156 CONSTANT,
157 VARYING
158 } ccp_lattice_t;
159
160 struct ccp_prop_value_t {
161 /* Lattice value. */
162 ccp_lattice_t lattice_val;
163
164 /* Propagated value. */
165 tree value;
166
167 /* Mask that applies to the propagated value during CCP. For X
168 with a CONSTANT lattice value X & ~mask == value & ~mask. The
169 zero bits in the mask cover constant values. The ones mean no
170 information. */
171 widest_int mask;
172 };
173
174 class ccp_propagate : public ssa_propagation_engine
175 {
176 public:
177 enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE;
178 enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE;
179 };
180
181 /* Array of propagated constant values. After propagation,
182 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
183 the constant is held in an SSA name representing a memory store
184 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
185 memory reference used to store (i.e., the LHS of the assignment
186 doing the store). */
187 static ccp_prop_value_t *const_val;
188 static unsigned n_const_val;
189
190 static void canonicalize_value (ccp_prop_value_t *);
191 static void ccp_lattice_meet (ccp_prop_value_t *, ccp_prop_value_t *);
192
193 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
194
195 static void
196 dump_lattice_value (FILE *outf, const char *prefix, ccp_prop_value_t val)
197 {
198 switch (val.lattice_val)
199 {
200 case UNINITIALIZED:
201 fprintf (outf, "%sUNINITIALIZED", prefix);
202 break;
203 case UNDEFINED:
204 fprintf (outf, "%sUNDEFINED", prefix);
205 break;
206 case VARYING:
207 fprintf (outf, "%sVARYING", prefix);
208 break;
209 case CONSTANT:
210 if (TREE_CODE (val.value) != INTEGER_CST
211 || val.mask == 0)
212 {
213 fprintf (outf, "%sCONSTANT ", prefix);
214 print_generic_expr (outf, val.value, dump_flags);
215 }
216 else
217 {
218 widest_int cval = wi::bit_and_not (wi::to_widest (val.value),
219 val.mask);
220 fprintf (outf, "%sCONSTANT ", prefix);
221 print_hex (cval, outf);
222 fprintf (outf, " (");
223 print_hex (val.mask, outf);
224 fprintf (outf, ")");
225 }
226 break;
227 default:
228 gcc_unreachable ();
229 }
230 }
231
232
233 /* Print lattice value VAL to stderr. */
234
235 void debug_lattice_value (ccp_prop_value_t val);
236
237 DEBUG_FUNCTION void
238 debug_lattice_value (ccp_prop_value_t val)
239 {
240 dump_lattice_value (stderr, "", val);
241 fprintf (stderr, "\n");
242 }
243
244 /* Extend NONZERO_BITS to a full mask, based on sgn. */
245
246 static widest_int
247 extend_mask (const wide_int &nonzero_bits, signop sgn)
248 {
249 return widest_int::from (nonzero_bits, sgn);
250 }
251
252 /* Compute a default value for variable VAR and store it in the
253 CONST_VAL array. The following rules are used to get default
254 values:
255
256 1- Global and static variables that are declared constant are
257 considered CONSTANT.
258
259 2- Any other value is considered UNDEFINED. This is useful when
260 considering PHI nodes. PHI arguments that are undefined do not
261 change the constant value of the PHI node, which allows for more
262 constants to be propagated.
263
264 3- Variables defined by statements other than assignments and PHI
265 nodes are considered VARYING.
266
267 4- Initial values of variables that are not GIMPLE registers are
268 considered VARYING. */
269
270 static ccp_prop_value_t
271 get_default_value (tree var)
272 {
273 ccp_prop_value_t val = { UNINITIALIZED, NULL_TREE, 0 };
274 gimple *stmt;
275
276 stmt = SSA_NAME_DEF_STMT (var);
277
278 if (gimple_nop_p (stmt))
279 {
280 /* Variables defined by an empty statement are those used
281 before being initialized. If VAR is a local variable, we
282 can assume initially that it is UNDEFINED, otherwise we must
283 consider it VARYING. */
284 if (!virtual_operand_p (var)
285 && SSA_NAME_VAR (var)
286 && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
287 val.lattice_val = UNDEFINED;
288 else
289 {
290 val.lattice_val = VARYING;
291 val.mask = -1;
292 if (flag_tree_bit_ccp)
293 {
294 wide_int nonzero_bits = get_nonzero_bits (var);
295 if (nonzero_bits != -1)
296 {
297 val.lattice_val = CONSTANT;
298 val.value = build_zero_cst (TREE_TYPE (var));
299 val.mask = extend_mask (nonzero_bits, TYPE_SIGN (TREE_TYPE (var)));
300 }
301 }
302 }
303 }
304 else if (is_gimple_assign (stmt))
305 {
306 tree cst;
307 if (gimple_assign_single_p (stmt)
308 && DECL_P (gimple_assign_rhs1 (stmt))
309 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
310 {
311 val.lattice_val = CONSTANT;
312 val.value = cst;
313 }
314 else
315 {
316 /* Any other variable defined by an assignment is considered
317 UNDEFINED. */
318 val.lattice_val = UNDEFINED;
319 }
320 }
321 else if ((is_gimple_call (stmt)
322 && gimple_call_lhs (stmt) != NULL_TREE)
323 || gimple_code (stmt) == GIMPLE_PHI)
324 {
325 /* A variable defined by a call or a PHI node is considered
326 UNDEFINED. */
327 val.lattice_val = UNDEFINED;
328 }
329 else
330 {
331 /* Otherwise, VAR will never take on a constant value. */
332 val.lattice_val = VARYING;
333 val.mask = -1;
334 }
335
336 return val;
337 }
338
339
340 /* Get the constant value associated with variable VAR. */
341
342 static inline ccp_prop_value_t *
343 get_value (tree var)
344 {
345 ccp_prop_value_t *val;
346
347 if (const_val == NULL
348 || SSA_NAME_VERSION (var) >= n_const_val)
349 return NULL;
350
351 val = &const_val[SSA_NAME_VERSION (var)];
352 if (val->lattice_val == UNINITIALIZED)
353 *val = get_default_value (var);
354
355 canonicalize_value (val);
356
357 return val;
358 }
359
360 /* Return the constant tree value associated with VAR. */
361
362 static inline tree
363 get_constant_value (tree var)
364 {
365 ccp_prop_value_t *val;
366 if (TREE_CODE (var) != SSA_NAME)
367 {
368 if (is_gimple_min_invariant (var))
369 return var;
370 return NULL_TREE;
371 }
372 val = get_value (var);
373 if (val
374 && val->lattice_val == CONSTANT
375 && (TREE_CODE (val->value) != INTEGER_CST
376 || val->mask == 0))
377 return val->value;
378 return NULL_TREE;
379 }
380
381 /* Sets the value associated with VAR to VARYING. */
382
383 static inline void
384 set_value_varying (tree var)
385 {
386 ccp_prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
387
388 val->lattice_val = VARYING;
389 val->value = NULL_TREE;
390 val->mask = -1;
391 }
392
393 /* For integer constants, make sure to drop TREE_OVERFLOW. */
394
395 static void
396 canonicalize_value (ccp_prop_value_t *val)
397 {
398 if (val->lattice_val != CONSTANT)
399 return;
400
401 if (TREE_OVERFLOW_P (val->value))
402 val->value = drop_tree_overflow (val->value);
403 }
404
405 /* Return whether the lattice transition is valid. */
406
407 static bool
408 valid_lattice_transition (ccp_prop_value_t old_val, ccp_prop_value_t new_val)
409 {
410 /* Lattice transitions must always be monotonically increasing in
411 value. */
412 if (old_val.lattice_val < new_val.lattice_val)
413 return true;
414
415 if (old_val.lattice_val != new_val.lattice_val)
416 return false;
417
418 if (!old_val.value && !new_val.value)
419 return true;
420
421 /* Now both lattice values are CONSTANT. */
422
423 /* Allow arbitrary copy changes as we might look through PHI <a_1, ...>
424 when only a single copy edge is executable. */
425 if (TREE_CODE (old_val.value) == SSA_NAME
426 && TREE_CODE (new_val.value) == SSA_NAME)
427 return true;
428
429 /* Allow transitioning from a constant to a copy. */
430 if (is_gimple_min_invariant (old_val.value)
431 && TREE_CODE (new_val.value) == SSA_NAME)
432 return true;
433
434 /* Allow transitioning from PHI <&x, not executable> == &x
435 to PHI <&x, &y> == common alignment. */
436 if (TREE_CODE (old_val.value) != INTEGER_CST
437 && TREE_CODE (new_val.value) == INTEGER_CST)
438 return true;
439
440 /* Bit-lattices have to agree in the still valid bits. */
441 if (TREE_CODE (old_val.value) == INTEGER_CST
442 && TREE_CODE (new_val.value) == INTEGER_CST)
443 return (wi::bit_and_not (wi::to_widest (old_val.value), new_val.mask)
444 == wi::bit_and_not (wi::to_widest (new_val.value), new_val.mask));
445
446 /* Otherwise constant values have to agree. */
447 if (operand_equal_p (old_val.value, new_val.value, 0))
448 return true;
449
450 /* At least the kinds and types should agree now. */
451 if (TREE_CODE (old_val.value) != TREE_CODE (new_val.value)
452 || !types_compatible_p (TREE_TYPE (old_val.value),
453 TREE_TYPE (new_val.value)))
454 return false;
455
456 /* For floats and !HONOR_NANS allow transitions from (partial) NaN
457 to non-NaN. */
458 tree type = TREE_TYPE (new_val.value);
459 if (SCALAR_FLOAT_TYPE_P (type)
460 && !HONOR_NANS (type))
461 {
462 if (REAL_VALUE_ISNAN (TREE_REAL_CST (old_val.value)))
463 return true;
464 }
465 else if (VECTOR_FLOAT_TYPE_P (type)
466 && !HONOR_NANS (type))
467 {
468 unsigned int count
469 = tree_vector_builder::binary_encoded_nelts (old_val.value,
470 new_val.value);
471 for (unsigned int i = 0; i < count; ++i)
472 if (!REAL_VALUE_ISNAN
473 (TREE_REAL_CST (VECTOR_CST_ENCODED_ELT (old_val.value, i)))
474 && !operand_equal_p (VECTOR_CST_ENCODED_ELT (old_val.value, i),
475 VECTOR_CST_ENCODED_ELT (new_val.value, i), 0))
476 return false;
477 return true;
478 }
479 else if (COMPLEX_FLOAT_TYPE_P (type)
480 && !HONOR_NANS (type))
481 {
482 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_REALPART (old_val.value)))
483 && !operand_equal_p (TREE_REALPART (old_val.value),
484 TREE_REALPART (new_val.value), 0))
485 return false;
486 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_IMAGPART (old_val.value)))
487 && !operand_equal_p (TREE_IMAGPART (old_val.value),
488 TREE_IMAGPART (new_val.value), 0))
489 return false;
490 return true;
491 }
492 return false;
493 }
494
495 /* Set the value for variable VAR to NEW_VAL. Return true if the new
496 value is different from VAR's previous value. */
497
498 static bool
499 set_lattice_value (tree var, ccp_prop_value_t *new_val)
500 {
501 /* We can deal with old UNINITIALIZED values just fine here. */
502 ccp_prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
503
504 canonicalize_value (new_val);
505
506 /* We have to be careful to not go up the bitwise lattice
507 represented by the mask. Instead of dropping to VARYING
508 use the meet operator to retain a conservative value.
509 Missed optimizations like PR65851 makes this necessary.
510 It also ensures we converge to a stable lattice solution. */
511 if (old_val->lattice_val != UNINITIALIZED)
512 ccp_lattice_meet (new_val, old_val);
513
514 gcc_checking_assert (valid_lattice_transition (*old_val, *new_val));
515
516 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
517 caller that this was a non-transition. */
518 if (old_val->lattice_val != new_val->lattice_val
519 || (new_val->lattice_val == CONSTANT
520 && (TREE_CODE (new_val->value) != TREE_CODE (old_val->value)
521 || (TREE_CODE (new_val->value) == INTEGER_CST
522 && (new_val->mask != old_val->mask
523 || (wi::bit_and_not (wi::to_widest (old_val->value),
524 new_val->mask)
525 != wi::bit_and_not (wi::to_widest (new_val->value),
526 new_val->mask))))
527 || (TREE_CODE (new_val->value) != INTEGER_CST
528 && !operand_equal_p (new_val->value, old_val->value, 0)))))
529 {
530 /* ??? We would like to delay creation of INTEGER_CSTs from
531 partially constants here. */
532
533 if (dump_file && (dump_flags & TDF_DETAILS))
534 {
535 dump_lattice_value (dump_file, "Lattice value changed to ", *new_val);
536 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
537 }
538
539 *old_val = *new_val;
540
541 gcc_assert (new_val->lattice_val != UNINITIALIZED);
542 return true;
543 }
544
545 return false;
546 }
547
548 static ccp_prop_value_t get_value_for_expr (tree, bool);
549 static ccp_prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
550 void bit_value_binop (enum tree_code, signop, int, widest_int *, widest_int *,
551 signop, int, const widest_int &, const widest_int &,
552 signop, int, const widest_int &, const widest_int &);
553
554 /* Return a widest_int that can be used for bitwise simplifications
555 from VAL. */
556
557 static widest_int
558 value_to_wide_int (ccp_prop_value_t val)
559 {
560 if (val.value
561 && TREE_CODE (val.value) == INTEGER_CST)
562 return wi::to_widest (val.value);
563
564 return 0;
565 }
566
567 /* Return the value for the address expression EXPR based on alignment
568 information. */
569
570 static ccp_prop_value_t
571 get_value_from_alignment (tree expr)
572 {
573 tree type = TREE_TYPE (expr);
574 ccp_prop_value_t val;
575 unsigned HOST_WIDE_INT bitpos;
576 unsigned int align;
577
578 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
579
580 get_pointer_alignment_1 (expr, &align, &bitpos);
581 val.mask = wi::bit_and_not
582 (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
583 ? wi::mask <widest_int> (TYPE_PRECISION (type), false)
584 : -1,
585 align / BITS_PER_UNIT - 1);
586 val.lattice_val
587 = wi::sext (val.mask, TYPE_PRECISION (type)) == -1 ? VARYING : CONSTANT;
588 if (val.lattice_val == CONSTANT)
589 val.value = build_int_cstu (type, bitpos / BITS_PER_UNIT);
590 else
591 val.value = NULL_TREE;
592
593 return val;
594 }
595
596 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
597 return constant bits extracted from alignment information for
598 invariant addresses. */
599
600 static ccp_prop_value_t
601 get_value_for_expr (tree expr, bool for_bits_p)
602 {
603 ccp_prop_value_t val;
604
605 if (TREE_CODE (expr) == SSA_NAME)
606 {
607 ccp_prop_value_t *val_ = get_value (expr);
608 if (val_)
609 val = *val_;
610 else
611 {
612 val.lattice_val = VARYING;
613 val.value = NULL_TREE;
614 val.mask = -1;
615 }
616 if (for_bits_p
617 && val.lattice_val == CONSTANT
618 && TREE_CODE (val.value) == ADDR_EXPR)
619 val = get_value_from_alignment (val.value);
620 /* Fall back to a copy value. */
621 if (!for_bits_p
622 && val.lattice_val == VARYING
623 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr))
624 {
625 val.lattice_val = CONSTANT;
626 val.value = expr;
627 val.mask = -1;
628 }
629 }
630 else if (is_gimple_min_invariant (expr)
631 && (!for_bits_p || TREE_CODE (expr) == INTEGER_CST))
632 {
633 val.lattice_val = CONSTANT;
634 val.value = expr;
635 val.mask = 0;
636 canonicalize_value (&val);
637 }
638 else if (TREE_CODE (expr) == ADDR_EXPR)
639 val = get_value_from_alignment (expr);
640 else
641 {
642 val.lattice_val = VARYING;
643 val.mask = -1;
644 val.value = NULL_TREE;
645 }
646
647 if (val.lattice_val == VARYING
648 && TYPE_UNSIGNED (TREE_TYPE (expr)))
649 val.mask = wi::zext (val.mask, TYPE_PRECISION (TREE_TYPE (expr)));
650
651 return val;
652 }
653
654 /* Return the likely CCP lattice value for STMT.
655
656 If STMT has no operands, then return CONSTANT.
657
658 Else if undefinedness of operands of STMT cause its value to be
659 undefined, then return UNDEFINED.
660
661 Else if any operands of STMT are constants, then return CONSTANT.
662
663 Else return VARYING. */
664
665 static ccp_lattice_t
666 likely_value (gimple *stmt)
667 {
668 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
669 bool has_nsa_operand;
670 tree use;
671 ssa_op_iter iter;
672 unsigned i;
673
674 enum gimple_code code = gimple_code (stmt);
675
676 /* This function appears to be called only for assignments, calls,
677 conditionals, and switches, due to the logic in visit_stmt. */
678 gcc_assert (code == GIMPLE_ASSIGN
679 || code == GIMPLE_CALL
680 || code == GIMPLE_COND
681 || code == GIMPLE_SWITCH);
682
683 /* If the statement has volatile operands, it won't fold to a
684 constant value. */
685 if (gimple_has_volatile_ops (stmt))
686 return VARYING;
687
688 /* Arrive here for more complex cases. */
689 has_constant_operand = false;
690 has_undefined_operand = false;
691 all_undefined_operands = true;
692 has_nsa_operand = false;
693 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
694 {
695 ccp_prop_value_t *val = get_value (use);
696
697 if (val && val->lattice_val == UNDEFINED)
698 has_undefined_operand = true;
699 else
700 all_undefined_operands = false;
701
702 if (val && val->lattice_val == CONSTANT)
703 has_constant_operand = true;
704
705 if (SSA_NAME_IS_DEFAULT_DEF (use)
706 || !prop_simulate_again_p (SSA_NAME_DEF_STMT (use)))
707 has_nsa_operand = true;
708 }
709
710 /* There may be constants in regular rhs operands. For calls we
711 have to ignore lhs, fndecl and static chain, otherwise only
712 the lhs. */
713 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
714 i < gimple_num_ops (stmt); ++i)
715 {
716 tree op = gimple_op (stmt, i);
717 if (!op || TREE_CODE (op) == SSA_NAME)
718 continue;
719 if (is_gimple_min_invariant (op))
720 has_constant_operand = true;
721 }
722
723 if (has_constant_operand)
724 all_undefined_operands = false;
725
726 if (has_undefined_operand
727 && code == GIMPLE_CALL
728 && gimple_call_internal_p (stmt))
729 switch (gimple_call_internal_fn (stmt))
730 {
731 /* These 3 builtins use the first argument just as a magic
732 way how to find out a decl uid. */
733 case IFN_GOMP_SIMD_LANE:
734 case IFN_GOMP_SIMD_VF:
735 case IFN_GOMP_SIMD_LAST_LANE:
736 has_undefined_operand = false;
737 break;
738 default:
739 break;
740 }
741
742 /* If the operation combines operands like COMPLEX_EXPR make sure to
743 not mark the result UNDEFINED if only one part of the result is
744 undefined. */
745 if (has_undefined_operand && all_undefined_operands)
746 return UNDEFINED;
747 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
748 {
749 switch (gimple_assign_rhs_code (stmt))
750 {
751 /* Unary operators are handled with all_undefined_operands. */
752 case PLUS_EXPR:
753 case MINUS_EXPR:
754 case POINTER_PLUS_EXPR:
755 case BIT_XOR_EXPR:
756 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
757 Not bitwise operators, one VARYING operand may specify the
758 result completely.
759 Not logical operators for the same reason, apart from XOR.
760 Not COMPLEX_EXPR as one VARYING operand makes the result partly
761 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
762 the undefined operand may be promoted. */
763 return UNDEFINED;
764
765 case ADDR_EXPR:
766 /* If any part of an address is UNDEFINED, like the index
767 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
768 return UNDEFINED;
769
770 default:
771 ;
772 }
773 }
774 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
775 fall back to CONSTANT. During iteration UNDEFINED may still drop
776 to CONSTANT. */
777 if (has_undefined_operand)
778 return CONSTANT;
779
780 /* We do not consider virtual operands here -- load from read-only
781 memory may have only VARYING virtual operands, but still be
782 constant. Also we can combine the stmt with definitions from
783 operands whose definitions are not simulated again. */
784 if (has_constant_operand
785 || has_nsa_operand
786 || gimple_references_memory_p (stmt))
787 return CONSTANT;
788
789 return VARYING;
790 }
791
792 /* Returns true if STMT cannot be constant. */
793
794 static bool
795 surely_varying_stmt_p (gimple *stmt)
796 {
797 /* If the statement has operands that we cannot handle, it cannot be
798 constant. */
799 if (gimple_has_volatile_ops (stmt))
800 return true;
801
802 /* If it is a call and does not return a value or is not a
803 builtin and not an indirect call or a call to function with
804 assume_aligned/alloc_align attribute, it is varying. */
805 if (is_gimple_call (stmt))
806 {
807 tree fndecl, fntype = gimple_call_fntype (stmt);
808 if (!gimple_call_lhs (stmt)
809 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
810 && !fndecl_built_in_p (fndecl)
811 && !lookup_attribute ("assume_aligned",
812 TYPE_ATTRIBUTES (fntype))
813 && !lookup_attribute ("alloc_align",
814 TYPE_ATTRIBUTES (fntype))))
815 return true;
816 }
817
818 /* Any other store operation is not interesting. */
819 else if (gimple_vdef (stmt))
820 return true;
821
822 /* Anything other than assignments and conditional jumps are not
823 interesting for CCP. */
824 if (gimple_code (stmt) != GIMPLE_ASSIGN
825 && gimple_code (stmt) != GIMPLE_COND
826 && gimple_code (stmt) != GIMPLE_SWITCH
827 && gimple_code (stmt) != GIMPLE_CALL)
828 return true;
829
830 return false;
831 }
832
833 /* Initialize local data structures for CCP. */
834
835 static void
836 ccp_initialize (void)
837 {
838 basic_block bb;
839
840 n_const_val = num_ssa_names;
841 const_val = XCNEWVEC (ccp_prop_value_t, n_const_val);
842
843 /* Initialize simulation flags for PHI nodes and statements. */
844 FOR_EACH_BB_FN (bb, cfun)
845 {
846 gimple_stmt_iterator i;
847
848 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
849 {
850 gimple *stmt = gsi_stmt (i);
851 bool is_varying;
852
853 /* If the statement is a control insn, then we do not
854 want to avoid simulating the statement once. Failure
855 to do so means that those edges will never get added. */
856 if (stmt_ends_bb_p (stmt))
857 is_varying = false;
858 else
859 is_varying = surely_varying_stmt_p (stmt);
860
861 if (is_varying)
862 {
863 tree def;
864 ssa_op_iter iter;
865
866 /* If the statement will not produce a constant, mark
867 all its outputs VARYING. */
868 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
869 set_value_varying (def);
870 }
871 prop_set_simulate_again (stmt, !is_varying);
872 }
873 }
874
875 /* Now process PHI nodes. We never clear the simulate_again flag on
876 phi nodes, since we do not know which edges are executable yet,
877 except for phi nodes for virtual operands when we do not do store ccp. */
878 FOR_EACH_BB_FN (bb, cfun)
879 {
880 gphi_iterator i;
881
882 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
883 {
884 gphi *phi = i.phi ();
885
886 if (virtual_operand_p (gimple_phi_result (phi)))
887 prop_set_simulate_again (phi, false);
888 else
889 prop_set_simulate_again (phi, true);
890 }
891 }
892 }
893
894 /* Debug count support. Reset the values of ssa names
895 VARYING when the total number ssa names analyzed is
896 beyond the debug count specified. */
897
898 static void
899 do_dbg_cnt (void)
900 {
901 unsigned i;
902 for (i = 0; i < num_ssa_names; i++)
903 {
904 if (!dbg_cnt (ccp))
905 {
906 const_val[i].lattice_val = VARYING;
907 const_val[i].mask = -1;
908 const_val[i].value = NULL_TREE;
909 }
910 }
911 }
912
913
914 /* We want to provide our own GET_VALUE and FOLD_STMT virtual methods. */
915 class ccp_folder : public substitute_and_fold_engine
916 {
917 public:
918 tree get_value (tree) FINAL OVERRIDE;
919 bool fold_stmt (gimple_stmt_iterator *) FINAL OVERRIDE;
920 };
921
922 /* This method just wraps GET_CONSTANT_VALUE for now. Over time
923 naked calls to GET_CONSTANT_VALUE should be eliminated in favor
924 of calling member functions. */
925
926 tree
927 ccp_folder::get_value (tree op)
928 {
929 return get_constant_value (op);
930 }
931
932 /* Do final substitution of propagated values, cleanup the flowgraph and
933 free allocated storage. If NONZERO_P, record nonzero bits.
934
935 Return TRUE when something was optimized. */
936
937 static bool
938 ccp_finalize (bool nonzero_p)
939 {
940 bool something_changed;
941 unsigned i;
942 tree name;
943
944 do_dbg_cnt ();
945
946 /* Derive alignment and misalignment information from partially
947 constant pointers in the lattice or nonzero bits from partially
948 constant integers. */
949 FOR_EACH_SSA_NAME (i, name, cfun)
950 {
951 ccp_prop_value_t *val;
952 unsigned int tem, align;
953
954 if (!POINTER_TYPE_P (TREE_TYPE (name))
955 && (!INTEGRAL_TYPE_P (TREE_TYPE (name))
956 /* Don't record nonzero bits before IPA to avoid
957 using too much memory. */
958 || !nonzero_p))
959 continue;
960
961 val = get_value (name);
962 if (val->lattice_val != CONSTANT
963 || TREE_CODE (val->value) != INTEGER_CST
964 || val->mask == 0)
965 continue;
966
967 if (POINTER_TYPE_P (TREE_TYPE (name)))
968 {
969 /* Trailing mask bits specify the alignment, trailing value
970 bits the misalignment. */
971 tem = val->mask.to_uhwi ();
972 align = least_bit_hwi (tem);
973 if (align > 1)
974 set_ptr_info_alignment (get_ptr_info (name), align,
975 (TREE_INT_CST_LOW (val->value)
976 & (align - 1)));
977 }
978 else
979 {
980 unsigned int precision = TYPE_PRECISION (TREE_TYPE (val->value));
981 wide_int nonzero_bits
982 = (wide_int::from (val->mask, precision, UNSIGNED)
983 | wi::to_wide (val->value));
984 nonzero_bits &= get_nonzero_bits (name);
985 set_nonzero_bits (name, nonzero_bits);
986 }
987 }
988
989 /* Perform substitutions based on the known constant values. */
990 class ccp_folder ccp_folder;
991 something_changed = ccp_folder.substitute_and_fold ();
992
993 free (const_val);
994 const_val = NULL;
995 return something_changed;
996 }
997
998
999 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
1000 in VAL1.
1001
1002 any M UNDEFINED = any
1003 any M VARYING = VARYING
1004 Ci M Cj = Ci if (i == j)
1005 Ci M Cj = VARYING if (i != j)
1006 */
1007
1008 static void
1009 ccp_lattice_meet (ccp_prop_value_t *val1, ccp_prop_value_t *val2)
1010 {
1011 if (val1->lattice_val == UNDEFINED
1012 /* For UNDEFINED M SSA we can't always SSA because its definition
1013 may not dominate the PHI node. Doing optimistic copy propagation
1014 also causes a lot of gcc.dg/uninit-pred*.c FAILs. */
1015 && (val2->lattice_val != CONSTANT
1016 || TREE_CODE (val2->value) != SSA_NAME))
1017 {
1018 /* UNDEFINED M any = any */
1019 *val1 = *val2;
1020 }
1021 else if (val2->lattice_val == UNDEFINED
1022 /* See above. */
1023 && (val1->lattice_val != CONSTANT
1024 || TREE_CODE (val1->value) != SSA_NAME))
1025 {
1026 /* any M UNDEFINED = any
1027 Nothing to do. VAL1 already contains the value we want. */
1028 ;
1029 }
1030 else if (val1->lattice_val == VARYING
1031 || val2->lattice_val == VARYING)
1032 {
1033 /* any M VARYING = VARYING. */
1034 val1->lattice_val = VARYING;
1035 val1->mask = -1;
1036 val1->value = NULL_TREE;
1037 }
1038 else if (val1->lattice_val == CONSTANT
1039 && val2->lattice_val == CONSTANT
1040 && TREE_CODE (val1->value) == INTEGER_CST
1041 && TREE_CODE (val2->value) == INTEGER_CST)
1042 {
1043 /* Ci M Cj = Ci if (i == j)
1044 Ci M Cj = VARYING if (i != j)
1045
1046 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
1047 drop to varying. */
1048 val1->mask = (val1->mask | val2->mask
1049 | (wi::to_widest (val1->value)
1050 ^ wi::to_widest (val2->value)));
1051 if (wi::sext (val1->mask, TYPE_PRECISION (TREE_TYPE (val1->value))) == -1)
1052 {
1053 val1->lattice_val = VARYING;
1054 val1->value = NULL_TREE;
1055 }
1056 }
1057 else if (val1->lattice_val == CONSTANT
1058 && val2->lattice_val == CONSTANT
1059 && operand_equal_p (val1->value, val2->value, 0))
1060 {
1061 /* Ci M Cj = Ci if (i == j)
1062 Ci M Cj = VARYING if (i != j)
1063
1064 VAL1 already contains the value we want for equivalent values. */
1065 }
1066 else if (val1->lattice_val == CONSTANT
1067 && val2->lattice_val == CONSTANT
1068 && (TREE_CODE (val1->value) == ADDR_EXPR
1069 || TREE_CODE (val2->value) == ADDR_EXPR))
1070 {
1071 /* When not equal addresses are involved try meeting for
1072 alignment. */
1073 ccp_prop_value_t tem = *val2;
1074 if (TREE_CODE (val1->value) == ADDR_EXPR)
1075 *val1 = get_value_for_expr (val1->value, true);
1076 if (TREE_CODE (val2->value) == ADDR_EXPR)
1077 tem = get_value_for_expr (val2->value, true);
1078 ccp_lattice_meet (val1, &tem);
1079 }
1080 else
1081 {
1082 /* Any other combination is VARYING. */
1083 val1->lattice_val = VARYING;
1084 val1->mask = -1;
1085 val1->value = NULL_TREE;
1086 }
1087 }
1088
1089
1090 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
1091 lattice values to determine PHI_NODE's lattice value. The value of a
1092 PHI node is determined calling ccp_lattice_meet with all the arguments
1093 of the PHI node that are incoming via executable edges. */
1094
1095 enum ssa_prop_result
1096 ccp_propagate::visit_phi (gphi *phi)
1097 {
1098 unsigned i;
1099 ccp_prop_value_t new_val;
1100
1101 if (dump_file && (dump_flags & TDF_DETAILS))
1102 {
1103 fprintf (dump_file, "\nVisiting PHI node: ");
1104 print_gimple_stmt (dump_file, phi, 0, dump_flags);
1105 }
1106
1107 new_val.lattice_val = UNDEFINED;
1108 new_val.value = NULL_TREE;
1109 new_val.mask = 0;
1110
1111 bool first = true;
1112 bool non_exec_edge = false;
1113 for (i = 0; i < gimple_phi_num_args (phi); i++)
1114 {
1115 /* Compute the meet operator over all the PHI arguments flowing
1116 through executable edges. */
1117 edge e = gimple_phi_arg_edge (phi, i);
1118
1119 if (dump_file && (dump_flags & TDF_DETAILS))
1120 {
1121 fprintf (dump_file,
1122 "\tArgument #%d (%d -> %d %sexecutable)\n",
1123 i, e->src->index, e->dest->index,
1124 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
1125 }
1126
1127 /* If the incoming edge is executable, Compute the meet operator for
1128 the existing value of the PHI node and the current PHI argument. */
1129 if (e->flags & EDGE_EXECUTABLE)
1130 {
1131 tree arg = gimple_phi_arg (phi, i)->def;
1132 ccp_prop_value_t arg_val = get_value_for_expr (arg, false);
1133
1134 if (first)
1135 {
1136 new_val = arg_val;
1137 first = false;
1138 }
1139 else
1140 ccp_lattice_meet (&new_val, &arg_val);
1141
1142 if (dump_file && (dump_flags & TDF_DETAILS))
1143 {
1144 fprintf (dump_file, "\t");
1145 print_generic_expr (dump_file, arg, dump_flags);
1146 dump_lattice_value (dump_file, "\tValue: ", arg_val);
1147 fprintf (dump_file, "\n");
1148 }
1149
1150 if (new_val.lattice_val == VARYING)
1151 break;
1152 }
1153 else
1154 non_exec_edge = true;
1155 }
1156
1157 /* In case there were non-executable edges and the value is a copy
1158 make sure its definition dominates the PHI node. */
1159 if (non_exec_edge
1160 && new_val.lattice_val == CONSTANT
1161 && TREE_CODE (new_val.value) == SSA_NAME
1162 && ! SSA_NAME_IS_DEFAULT_DEF (new_val.value)
1163 && ! dominated_by_p (CDI_DOMINATORS, gimple_bb (phi),
1164 gimple_bb (SSA_NAME_DEF_STMT (new_val.value))))
1165 {
1166 new_val.lattice_val = VARYING;
1167 new_val.value = NULL_TREE;
1168 new_val.mask = -1;
1169 }
1170
1171 if (dump_file && (dump_flags & TDF_DETAILS))
1172 {
1173 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
1174 fprintf (dump_file, "\n\n");
1175 }
1176
1177 /* Make the transition to the new value. */
1178 if (set_lattice_value (gimple_phi_result (phi), &new_val))
1179 {
1180 if (new_val.lattice_val == VARYING)
1181 return SSA_PROP_VARYING;
1182 else
1183 return SSA_PROP_INTERESTING;
1184 }
1185 else
1186 return SSA_PROP_NOT_INTERESTING;
1187 }
1188
1189 /* Return the constant value for OP or OP otherwise. */
1190
1191 static tree
1192 valueize_op (tree op)
1193 {
1194 if (TREE_CODE (op) == SSA_NAME)
1195 {
1196 tree tem = get_constant_value (op);
1197 if (tem)
1198 return tem;
1199 }
1200 return op;
1201 }
1202
1203 /* Return the constant value for OP, but signal to not follow SSA
1204 edges if the definition may be simulated again. */
1205
1206 static tree
1207 valueize_op_1 (tree op)
1208 {
1209 if (TREE_CODE (op) == SSA_NAME)
1210 {
1211 /* If the definition may be simulated again we cannot follow
1212 this SSA edge as the SSA propagator does not necessarily
1213 re-visit the use. */
1214 gimple *def_stmt = SSA_NAME_DEF_STMT (op);
1215 if (!gimple_nop_p (def_stmt)
1216 && prop_simulate_again_p (def_stmt))
1217 return NULL_TREE;
1218 tree tem = get_constant_value (op);
1219 if (tem)
1220 return tem;
1221 }
1222 return op;
1223 }
1224
1225 /* CCP specific front-end to the non-destructive constant folding
1226 routines.
1227
1228 Attempt to simplify the RHS of STMT knowing that one or more
1229 operands are constants.
1230
1231 If simplification is possible, return the simplified RHS,
1232 otherwise return the original RHS or NULL_TREE. */
1233
1234 static tree
1235 ccp_fold (gimple *stmt)
1236 {
1237 location_t loc = gimple_location (stmt);
1238 switch (gimple_code (stmt))
1239 {
1240 case GIMPLE_COND:
1241 {
1242 /* Handle comparison operators that can appear in GIMPLE form. */
1243 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1244 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1245 enum tree_code code = gimple_cond_code (stmt);
1246 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1247 }
1248
1249 case GIMPLE_SWITCH:
1250 {
1251 /* Return the constant switch index. */
1252 return valueize_op (gimple_switch_index (as_a <gswitch *> (stmt)));
1253 }
1254
1255 case GIMPLE_ASSIGN:
1256 case GIMPLE_CALL:
1257 return gimple_fold_stmt_to_constant_1 (stmt,
1258 valueize_op, valueize_op_1);
1259
1260 default:
1261 gcc_unreachable ();
1262 }
1263 }
1264
1265 /* Apply the operation CODE in type TYPE to the value, mask pair
1266 RVAL and RMASK representing a value of type RTYPE and set
1267 the value, mask pair *VAL and *MASK to the result. */
1268
1269 void
1270 bit_value_unop (enum tree_code code, signop type_sgn, int type_precision,
1271 widest_int *val, widest_int *mask,
1272 signop rtype_sgn, int rtype_precision,
1273 const widest_int &rval, const widest_int &rmask)
1274 {
1275 switch (code)
1276 {
1277 case BIT_NOT_EXPR:
1278 *mask = rmask;
1279 *val = ~rval;
1280 break;
1281
1282 case NEGATE_EXPR:
1283 {
1284 widest_int temv, temm;
1285 /* Return ~rval + 1. */
1286 bit_value_unop (BIT_NOT_EXPR, type_sgn, type_precision, &temv, &temm,
1287 type_sgn, type_precision, rval, rmask);
1288 bit_value_binop (PLUS_EXPR, type_sgn, type_precision, val, mask,
1289 type_sgn, type_precision, temv, temm,
1290 type_sgn, type_precision, 1, 0);
1291 break;
1292 }
1293
1294 CASE_CONVERT:
1295 {
1296 /* First extend mask and value according to the original type. */
1297 *mask = wi::ext (rmask, rtype_precision, rtype_sgn);
1298 *val = wi::ext (rval, rtype_precision, rtype_sgn);
1299
1300 /* Then extend mask and value according to the target type. */
1301 *mask = wi::ext (*mask, type_precision, type_sgn);
1302 *val = wi::ext (*val, type_precision, type_sgn);
1303 break;
1304 }
1305
1306 default:
1307 *mask = -1;
1308 break;
1309 }
1310 }
1311
1312 /* Apply the operation CODE in type TYPE to the value, mask pairs
1313 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1314 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1315
1316 void
1317 bit_value_binop (enum tree_code code, signop sgn, int width,
1318 widest_int *val, widest_int *mask,
1319 signop r1type_sgn, int r1type_precision,
1320 const widest_int &r1val, const widest_int &r1mask,
1321 signop r2type_sgn, int r2type_precision,
1322 const widest_int &r2val, const widest_int &r2mask)
1323 {
1324 bool swap_p = false;
1325
1326 /* Assume we'll get a constant result. Use an initial non varying
1327 value, we fall back to varying in the end if necessary. */
1328 *mask = -1;
1329
1330 switch (code)
1331 {
1332 case BIT_AND_EXPR:
1333 /* The mask is constant where there is a known not
1334 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1335 *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
1336 *val = r1val & r2val;
1337 break;
1338
1339 case BIT_IOR_EXPR:
1340 /* The mask is constant where there is a known
1341 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1342 *mask = wi::bit_and_not (r1mask | r2mask,
1343 wi::bit_and_not (r1val, r1mask)
1344 | wi::bit_and_not (r2val, r2mask));
1345 *val = r1val | r2val;
1346 break;
1347
1348 case BIT_XOR_EXPR:
1349 /* m1 | m2 */
1350 *mask = r1mask | r2mask;
1351 *val = r1val ^ r2val;
1352 break;
1353
1354 case LROTATE_EXPR:
1355 case RROTATE_EXPR:
1356 if (r2mask == 0)
1357 {
1358 widest_int shift = r2val;
1359 if (shift == 0)
1360 {
1361 *mask = r1mask;
1362 *val = r1val;
1363 }
1364 else
1365 {
1366 if (wi::neg_p (shift))
1367 {
1368 shift = -shift;
1369 if (code == RROTATE_EXPR)
1370 code = LROTATE_EXPR;
1371 else
1372 code = RROTATE_EXPR;
1373 }
1374 if (code == RROTATE_EXPR)
1375 {
1376 *mask = wi::rrotate (r1mask, shift, width);
1377 *val = wi::rrotate (r1val, shift, width);
1378 }
1379 else
1380 {
1381 *mask = wi::lrotate (r1mask, shift, width);
1382 *val = wi::lrotate (r1val, shift, width);
1383 }
1384 }
1385 }
1386 break;
1387
1388 case LSHIFT_EXPR:
1389 case RSHIFT_EXPR:
1390 /* ??? We can handle partially known shift counts if we know
1391 its sign. That way we can tell that (x << (y | 8)) & 255
1392 is zero. */
1393 if (r2mask == 0)
1394 {
1395 widest_int shift = r2val;
1396 if (shift == 0)
1397 {
1398 *mask = r1mask;
1399 *val = r1val;
1400 }
1401 else
1402 {
1403 if (wi::neg_p (shift))
1404 {
1405 shift = -shift;
1406 if (code == RSHIFT_EXPR)
1407 code = LSHIFT_EXPR;
1408 else
1409 code = RSHIFT_EXPR;
1410 }
1411 if (code == RSHIFT_EXPR)
1412 {
1413 *mask = wi::rshift (wi::ext (r1mask, width, sgn), shift, sgn);
1414 *val = wi::rshift (wi::ext (r1val, width, sgn), shift, sgn);
1415 }
1416 else
1417 {
1418 *mask = wi::ext (r1mask << shift, width, sgn);
1419 *val = wi::ext (r1val << shift, width, sgn);
1420 }
1421 }
1422 }
1423 break;
1424
1425 case PLUS_EXPR:
1426 case POINTER_PLUS_EXPR:
1427 {
1428 /* Do the addition with unknown bits set to zero, to give carry-ins of
1429 zero wherever possible. */
1430 widest_int lo = (wi::bit_and_not (r1val, r1mask)
1431 + wi::bit_and_not (r2val, r2mask));
1432 lo = wi::ext (lo, width, sgn);
1433 /* Do the addition with unknown bits set to one, to give carry-ins of
1434 one wherever possible. */
1435 widest_int hi = (r1val | r1mask) + (r2val | r2mask);
1436 hi = wi::ext (hi, width, sgn);
1437 /* Each bit in the result is known if (a) the corresponding bits in
1438 both inputs are known, and (b) the carry-in to that bit position
1439 is known. We can check condition (b) by seeing if we got the same
1440 result with minimised carries as with maximised carries. */
1441 *mask = r1mask | r2mask | (lo ^ hi);
1442 *mask = wi::ext (*mask, width, sgn);
1443 /* It shouldn't matter whether we choose lo or hi here. */
1444 *val = lo;
1445 break;
1446 }
1447
1448 case MINUS_EXPR:
1449 {
1450 widest_int temv, temm;
1451 bit_value_unop (NEGATE_EXPR, r2type_sgn, r2type_precision, &temv, &temm,
1452 r2type_sgn, r2type_precision, r2val, r2mask);
1453 bit_value_binop (PLUS_EXPR, sgn, width, val, mask,
1454 r1type_sgn, r1type_precision, r1val, r1mask,
1455 r2type_sgn, r2type_precision, temv, temm);
1456 break;
1457 }
1458
1459 case MULT_EXPR:
1460 {
1461 /* Just track trailing zeros in both operands and transfer
1462 them to the other. */
1463 int r1tz = wi::ctz (r1val | r1mask);
1464 int r2tz = wi::ctz (r2val | r2mask);
1465 if (r1tz + r2tz >= width)
1466 {
1467 *mask = 0;
1468 *val = 0;
1469 }
1470 else if (r1tz + r2tz > 0)
1471 {
1472 *mask = wi::ext (wi::mask <widest_int> (r1tz + r2tz, true),
1473 width, sgn);
1474 *val = 0;
1475 }
1476 break;
1477 }
1478
1479 case EQ_EXPR:
1480 case NE_EXPR:
1481 {
1482 widest_int m = r1mask | r2mask;
1483 if (wi::bit_and_not (r1val, m) != wi::bit_and_not (r2val, m))
1484 {
1485 *mask = 0;
1486 *val = ((code == EQ_EXPR) ? 0 : 1);
1487 }
1488 else
1489 {
1490 /* We know the result of a comparison is always one or zero. */
1491 *mask = 1;
1492 *val = 0;
1493 }
1494 break;
1495 }
1496
1497 case GE_EXPR:
1498 case GT_EXPR:
1499 swap_p = true;
1500 code = swap_tree_comparison (code);
1501 /* Fall through. */
1502 case LT_EXPR:
1503 case LE_EXPR:
1504 {
1505 int minmax, maxmin;
1506
1507 const widest_int &o1val = swap_p ? r2val : r1val;
1508 const widest_int &o1mask = swap_p ? r2mask : r1mask;
1509 const widest_int &o2val = swap_p ? r1val : r2val;
1510 const widest_int &o2mask = swap_p ? r1mask : r2mask;
1511
1512 /* If the most significant bits are not known we know nothing. */
1513 if (wi::neg_p (o1mask) || wi::neg_p (o2mask))
1514 break;
1515
1516 /* For comparisons the signedness is in the comparison operands. */
1517 sgn = r1type_sgn;
1518
1519 /* If we know the most significant bits we know the values
1520 value ranges by means of treating varying bits as zero
1521 or one. Do a cross comparison of the max/min pairs. */
1522 maxmin = wi::cmp (o1val | o1mask,
1523 wi::bit_and_not (o2val, o2mask), sgn);
1524 minmax = wi::cmp (wi::bit_and_not (o1val, o1mask),
1525 o2val | o2mask, sgn);
1526 if (maxmin < 0) /* o1 is less than o2. */
1527 {
1528 *mask = 0;
1529 *val = 1;
1530 }
1531 else if (minmax > 0) /* o1 is not less or equal to o2. */
1532 {
1533 *mask = 0;
1534 *val = 0;
1535 }
1536 else if (maxmin == minmax) /* o1 and o2 are equal. */
1537 {
1538 /* This probably should never happen as we'd have
1539 folded the thing during fully constant value folding. */
1540 *mask = 0;
1541 *val = (code == LE_EXPR ? 1 : 0);
1542 }
1543 else
1544 {
1545 /* We know the result of a comparison is always one or zero. */
1546 *mask = 1;
1547 *val = 0;
1548 }
1549 break;
1550 }
1551
1552 default:;
1553 }
1554 }
1555
1556 /* Return the propagation value when applying the operation CODE to
1557 the value RHS yielding type TYPE. */
1558
1559 static ccp_prop_value_t
1560 bit_value_unop (enum tree_code code, tree type, tree rhs)
1561 {
1562 ccp_prop_value_t rval = get_value_for_expr (rhs, true);
1563 widest_int value, mask;
1564 ccp_prop_value_t val;
1565
1566 if (rval.lattice_val == UNDEFINED)
1567 return rval;
1568
1569 gcc_assert ((rval.lattice_val == CONSTANT
1570 && TREE_CODE (rval.value) == INTEGER_CST)
1571 || wi::sext (rval.mask, TYPE_PRECISION (TREE_TYPE (rhs))) == -1);
1572 bit_value_unop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1573 TYPE_SIGN (TREE_TYPE (rhs)), TYPE_PRECISION (TREE_TYPE (rhs)),
1574 value_to_wide_int (rval), rval.mask);
1575 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1576 {
1577 val.lattice_val = CONSTANT;
1578 val.mask = mask;
1579 /* ??? Delay building trees here. */
1580 val.value = wide_int_to_tree (type, value);
1581 }
1582 else
1583 {
1584 val.lattice_val = VARYING;
1585 val.value = NULL_TREE;
1586 val.mask = -1;
1587 }
1588 return val;
1589 }
1590
1591 /* Return the propagation value when applying the operation CODE to
1592 the values RHS1 and RHS2 yielding type TYPE. */
1593
1594 static ccp_prop_value_t
1595 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
1596 {
1597 ccp_prop_value_t r1val = get_value_for_expr (rhs1, true);
1598 ccp_prop_value_t r2val = get_value_for_expr (rhs2, true);
1599 widest_int value, mask;
1600 ccp_prop_value_t val;
1601
1602 if (r1val.lattice_val == UNDEFINED
1603 || r2val.lattice_val == UNDEFINED)
1604 {
1605 val.lattice_val = VARYING;
1606 val.value = NULL_TREE;
1607 val.mask = -1;
1608 return val;
1609 }
1610
1611 gcc_assert ((r1val.lattice_val == CONSTANT
1612 && TREE_CODE (r1val.value) == INTEGER_CST)
1613 || wi::sext (r1val.mask,
1614 TYPE_PRECISION (TREE_TYPE (rhs1))) == -1);
1615 gcc_assert ((r2val.lattice_val == CONSTANT
1616 && TREE_CODE (r2val.value) == INTEGER_CST)
1617 || wi::sext (r2val.mask,
1618 TYPE_PRECISION (TREE_TYPE (rhs2))) == -1);
1619 bit_value_binop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1620 TYPE_SIGN (TREE_TYPE (rhs1)), TYPE_PRECISION (TREE_TYPE (rhs1)),
1621 value_to_wide_int (r1val), r1val.mask,
1622 TYPE_SIGN (TREE_TYPE (rhs2)), TYPE_PRECISION (TREE_TYPE (rhs2)),
1623 value_to_wide_int (r2val), r2val.mask);
1624
1625 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1626 {
1627 val.lattice_val = CONSTANT;
1628 val.mask = mask;
1629 /* ??? Delay building trees here. */
1630 val.value = wide_int_to_tree (type, value);
1631 }
1632 else
1633 {
1634 val.lattice_val = VARYING;
1635 val.value = NULL_TREE;
1636 val.mask = -1;
1637 }
1638 return val;
1639 }
1640
1641 /* Return the propagation value for __builtin_assume_aligned
1642 and functions with assume_aligned or alloc_aligned attribute.
1643 For __builtin_assume_aligned, ATTR is NULL_TREE,
1644 for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED
1645 is false, for alloc_aligned attribute ATTR is non-NULL and
1646 ALLOC_ALIGNED is true. */
1647
1648 static ccp_prop_value_t
1649 bit_value_assume_aligned (gimple *stmt, tree attr, ccp_prop_value_t ptrval,
1650 bool alloc_aligned)
1651 {
1652 tree align, misalign = NULL_TREE, type;
1653 unsigned HOST_WIDE_INT aligni, misaligni = 0;
1654 ccp_prop_value_t alignval;
1655 widest_int value, mask;
1656 ccp_prop_value_t val;
1657
1658 if (attr == NULL_TREE)
1659 {
1660 tree ptr = gimple_call_arg (stmt, 0);
1661 type = TREE_TYPE (ptr);
1662 ptrval = get_value_for_expr (ptr, true);
1663 }
1664 else
1665 {
1666 tree lhs = gimple_call_lhs (stmt);
1667 type = TREE_TYPE (lhs);
1668 }
1669
1670 if (ptrval.lattice_val == UNDEFINED)
1671 return ptrval;
1672 gcc_assert ((ptrval.lattice_val == CONSTANT
1673 && TREE_CODE (ptrval.value) == INTEGER_CST)
1674 || wi::sext (ptrval.mask, TYPE_PRECISION (type)) == -1);
1675 if (attr == NULL_TREE)
1676 {
1677 /* Get aligni and misaligni from __builtin_assume_aligned. */
1678 align = gimple_call_arg (stmt, 1);
1679 if (!tree_fits_uhwi_p (align))
1680 return ptrval;
1681 aligni = tree_to_uhwi (align);
1682 if (gimple_call_num_args (stmt) > 2)
1683 {
1684 misalign = gimple_call_arg (stmt, 2);
1685 if (!tree_fits_uhwi_p (misalign))
1686 return ptrval;
1687 misaligni = tree_to_uhwi (misalign);
1688 }
1689 }
1690 else
1691 {
1692 /* Get aligni and misaligni from assume_aligned or
1693 alloc_align attributes. */
1694 if (TREE_VALUE (attr) == NULL_TREE)
1695 return ptrval;
1696 attr = TREE_VALUE (attr);
1697 align = TREE_VALUE (attr);
1698 if (!tree_fits_uhwi_p (align))
1699 return ptrval;
1700 aligni = tree_to_uhwi (align);
1701 if (alloc_aligned)
1702 {
1703 if (aligni == 0 || aligni > gimple_call_num_args (stmt))
1704 return ptrval;
1705 align = gimple_call_arg (stmt, aligni - 1);
1706 if (!tree_fits_uhwi_p (align))
1707 return ptrval;
1708 aligni = tree_to_uhwi (align);
1709 }
1710 else if (TREE_CHAIN (attr) && TREE_VALUE (TREE_CHAIN (attr)))
1711 {
1712 misalign = TREE_VALUE (TREE_CHAIN (attr));
1713 if (!tree_fits_uhwi_p (misalign))
1714 return ptrval;
1715 misaligni = tree_to_uhwi (misalign);
1716 }
1717 }
1718 if (aligni <= 1 || (aligni & (aligni - 1)) != 0 || misaligni >= aligni)
1719 return ptrval;
1720
1721 align = build_int_cst_type (type, -aligni);
1722 alignval = get_value_for_expr (align, true);
1723 bit_value_binop (BIT_AND_EXPR, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1724 TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (ptrval), ptrval.mask,
1725 TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (alignval), alignval.mask);
1726
1727 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1728 {
1729 val.lattice_val = CONSTANT;
1730 val.mask = mask;
1731 gcc_assert ((mask.to_uhwi () & (aligni - 1)) == 0);
1732 gcc_assert ((value.to_uhwi () & (aligni - 1)) == 0);
1733 value |= misaligni;
1734 /* ??? Delay building trees here. */
1735 val.value = wide_int_to_tree (type, value);
1736 }
1737 else
1738 {
1739 val.lattice_val = VARYING;
1740 val.value = NULL_TREE;
1741 val.mask = -1;
1742 }
1743 return val;
1744 }
1745
1746 /* Evaluate statement STMT.
1747 Valid only for assignments, calls, conditionals, and switches. */
1748
1749 static ccp_prop_value_t
1750 evaluate_stmt (gimple *stmt)
1751 {
1752 ccp_prop_value_t val;
1753 tree simplified = NULL_TREE;
1754 ccp_lattice_t likelyvalue = likely_value (stmt);
1755 bool is_constant = false;
1756 unsigned int align;
1757
1758 if (dump_file && (dump_flags & TDF_DETAILS))
1759 {
1760 fprintf (dump_file, "which is likely ");
1761 switch (likelyvalue)
1762 {
1763 case CONSTANT:
1764 fprintf (dump_file, "CONSTANT");
1765 break;
1766 case UNDEFINED:
1767 fprintf (dump_file, "UNDEFINED");
1768 break;
1769 case VARYING:
1770 fprintf (dump_file, "VARYING");
1771 break;
1772 default:;
1773 }
1774 fprintf (dump_file, "\n");
1775 }
1776
1777 /* If the statement is likely to have a CONSTANT result, then try
1778 to fold the statement to determine the constant value. */
1779 /* FIXME. This is the only place that we call ccp_fold.
1780 Since likely_value never returns CONSTANT for calls, we will
1781 not attempt to fold them, including builtins that may profit. */
1782 if (likelyvalue == CONSTANT)
1783 {
1784 fold_defer_overflow_warnings ();
1785 simplified = ccp_fold (stmt);
1786 if (simplified
1787 && TREE_CODE (simplified) == SSA_NAME)
1788 {
1789 /* We may not use values of something that may be simulated again,
1790 see valueize_op_1. */
1791 if (SSA_NAME_IS_DEFAULT_DEF (simplified)
1792 || ! prop_simulate_again_p (SSA_NAME_DEF_STMT (simplified)))
1793 {
1794 ccp_prop_value_t *val = get_value (simplified);
1795 if (val && val->lattice_val != VARYING)
1796 {
1797 fold_undefer_overflow_warnings (true, stmt, 0);
1798 return *val;
1799 }
1800 }
1801 else
1802 /* We may also not place a non-valueized copy in the lattice
1803 as that might become stale if we never re-visit this stmt. */
1804 simplified = NULL_TREE;
1805 }
1806 is_constant = simplified && is_gimple_min_invariant (simplified);
1807 fold_undefer_overflow_warnings (is_constant, stmt, 0);
1808 if (is_constant)
1809 {
1810 /* The statement produced a constant value. */
1811 val.lattice_val = CONSTANT;
1812 val.value = simplified;
1813 val.mask = 0;
1814 return val;
1815 }
1816 }
1817 /* If the statement is likely to have a VARYING result, then do not
1818 bother folding the statement. */
1819 else if (likelyvalue == VARYING)
1820 {
1821 enum gimple_code code = gimple_code (stmt);
1822 if (code == GIMPLE_ASSIGN)
1823 {
1824 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1825
1826 /* Other cases cannot satisfy is_gimple_min_invariant
1827 without folding. */
1828 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
1829 simplified = gimple_assign_rhs1 (stmt);
1830 }
1831 else if (code == GIMPLE_SWITCH)
1832 simplified = gimple_switch_index (as_a <gswitch *> (stmt));
1833 else
1834 /* These cannot satisfy is_gimple_min_invariant without folding. */
1835 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
1836 is_constant = simplified && is_gimple_min_invariant (simplified);
1837 if (is_constant)
1838 {
1839 /* The statement produced a constant value. */
1840 val.lattice_val = CONSTANT;
1841 val.value = simplified;
1842 val.mask = 0;
1843 }
1844 }
1845 /* If the statement result is likely UNDEFINED, make it so. */
1846 else if (likelyvalue == UNDEFINED)
1847 {
1848 val.lattice_val = UNDEFINED;
1849 val.value = NULL_TREE;
1850 val.mask = 0;
1851 return val;
1852 }
1853
1854 /* Resort to simplification for bitwise tracking. */
1855 if (flag_tree_bit_ccp
1856 && (likelyvalue == CONSTANT || is_gimple_call (stmt)
1857 || (gimple_assign_single_p (stmt)
1858 && gimple_assign_rhs_code (stmt) == ADDR_EXPR))
1859 && !is_constant)
1860 {
1861 enum gimple_code code = gimple_code (stmt);
1862 val.lattice_val = VARYING;
1863 val.value = NULL_TREE;
1864 val.mask = -1;
1865 if (code == GIMPLE_ASSIGN)
1866 {
1867 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1868 tree rhs1 = gimple_assign_rhs1 (stmt);
1869 tree lhs = gimple_assign_lhs (stmt);
1870 if ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
1871 || POINTER_TYPE_P (TREE_TYPE (lhs)))
1872 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1873 || POINTER_TYPE_P (TREE_TYPE (rhs1))))
1874 switch (get_gimple_rhs_class (subcode))
1875 {
1876 case GIMPLE_SINGLE_RHS:
1877 val = get_value_for_expr (rhs1, true);
1878 break;
1879
1880 case GIMPLE_UNARY_RHS:
1881 val = bit_value_unop (subcode, TREE_TYPE (lhs), rhs1);
1882 break;
1883
1884 case GIMPLE_BINARY_RHS:
1885 val = bit_value_binop (subcode, TREE_TYPE (lhs), rhs1,
1886 gimple_assign_rhs2 (stmt));
1887 break;
1888
1889 default:;
1890 }
1891 }
1892 else if (code == GIMPLE_COND)
1893 {
1894 enum tree_code code = gimple_cond_code (stmt);
1895 tree rhs1 = gimple_cond_lhs (stmt);
1896 tree rhs2 = gimple_cond_rhs (stmt);
1897 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1898 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1899 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
1900 }
1901 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1902 {
1903 tree fndecl = gimple_call_fndecl (stmt);
1904 switch (DECL_FUNCTION_CODE (fndecl))
1905 {
1906 case BUILT_IN_MALLOC:
1907 case BUILT_IN_REALLOC:
1908 case BUILT_IN_CALLOC:
1909 case BUILT_IN_STRDUP:
1910 case BUILT_IN_STRNDUP:
1911 val.lattice_val = CONSTANT;
1912 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1913 val.mask = ~((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT
1914 / BITS_PER_UNIT - 1);
1915 break;
1916
1917 CASE_BUILT_IN_ALLOCA:
1918 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
1919 ? BIGGEST_ALIGNMENT
1920 : TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
1921 val.lattice_val = CONSTANT;
1922 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1923 val.mask = ~((HOST_WIDE_INT) align / BITS_PER_UNIT - 1);
1924 break;
1925
1926 /* These builtins return their first argument, unmodified. */
1927 case BUILT_IN_MEMCPY:
1928 case BUILT_IN_MEMMOVE:
1929 case BUILT_IN_MEMSET:
1930 case BUILT_IN_STRCPY:
1931 case BUILT_IN_STRNCPY:
1932 case BUILT_IN_MEMCPY_CHK:
1933 case BUILT_IN_MEMMOVE_CHK:
1934 case BUILT_IN_MEMSET_CHK:
1935 case BUILT_IN_STRCPY_CHK:
1936 case BUILT_IN_STRNCPY_CHK:
1937 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1938 break;
1939
1940 case BUILT_IN_ASSUME_ALIGNED:
1941 val = bit_value_assume_aligned (stmt, NULL_TREE, val, false);
1942 break;
1943
1944 case BUILT_IN_ALIGNED_ALLOC:
1945 {
1946 tree align = get_constant_value (gimple_call_arg (stmt, 0));
1947 if (align
1948 && tree_fits_uhwi_p (align))
1949 {
1950 unsigned HOST_WIDE_INT aligni = tree_to_uhwi (align);
1951 if (aligni > 1
1952 /* align must be power-of-two */
1953 && (aligni & (aligni - 1)) == 0)
1954 {
1955 val.lattice_val = CONSTANT;
1956 val.value = build_int_cst (ptr_type_node, 0);
1957 val.mask = -aligni;
1958 }
1959 }
1960 break;
1961 }
1962
1963 default:;
1964 }
1965 }
1966 if (is_gimple_call (stmt) && gimple_call_lhs (stmt))
1967 {
1968 tree fntype = gimple_call_fntype (stmt);
1969 if (fntype)
1970 {
1971 tree attrs = lookup_attribute ("assume_aligned",
1972 TYPE_ATTRIBUTES (fntype));
1973 if (attrs)
1974 val = bit_value_assume_aligned (stmt, attrs, val, false);
1975 attrs = lookup_attribute ("alloc_align",
1976 TYPE_ATTRIBUTES (fntype));
1977 if (attrs)
1978 val = bit_value_assume_aligned (stmt, attrs, val, true);
1979 }
1980 }
1981 is_constant = (val.lattice_val == CONSTANT);
1982 }
1983
1984 if (flag_tree_bit_ccp
1985 && ((is_constant && TREE_CODE (val.value) == INTEGER_CST)
1986 || !is_constant)
1987 && gimple_get_lhs (stmt)
1988 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME)
1989 {
1990 tree lhs = gimple_get_lhs (stmt);
1991 wide_int nonzero_bits = get_nonzero_bits (lhs);
1992 if (nonzero_bits != -1)
1993 {
1994 if (!is_constant)
1995 {
1996 val.lattice_val = CONSTANT;
1997 val.value = build_zero_cst (TREE_TYPE (lhs));
1998 val.mask = extend_mask (nonzero_bits, TYPE_SIGN (TREE_TYPE (lhs)));
1999 is_constant = true;
2000 }
2001 else
2002 {
2003 if (wi::bit_and_not (wi::to_wide (val.value), nonzero_bits) != 0)
2004 val.value = wide_int_to_tree (TREE_TYPE (lhs),
2005 nonzero_bits
2006 & wi::to_wide (val.value));
2007 if (nonzero_bits == 0)
2008 val.mask = 0;
2009 else
2010 val.mask = val.mask & extend_mask (nonzero_bits,
2011 TYPE_SIGN (TREE_TYPE (lhs)));
2012 }
2013 }
2014 }
2015
2016 /* The statement produced a nonconstant value. */
2017 if (!is_constant)
2018 {
2019 /* The statement produced a copy. */
2020 if (simplified && TREE_CODE (simplified) == SSA_NAME
2021 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (simplified))
2022 {
2023 val.lattice_val = CONSTANT;
2024 val.value = simplified;
2025 val.mask = -1;
2026 }
2027 /* The statement is VARYING. */
2028 else
2029 {
2030 val.lattice_val = VARYING;
2031 val.value = NULL_TREE;
2032 val.mask = -1;
2033 }
2034 }
2035
2036 return val;
2037 }
2038
2039 typedef hash_table<nofree_ptr_hash<gimple> > gimple_htab;
2040
2041 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
2042 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
2043
2044 static void
2045 insert_clobber_before_stack_restore (tree saved_val, tree var,
2046 gimple_htab **visited)
2047 {
2048 gimple *stmt;
2049 gassign *clobber_stmt;
2050 tree clobber;
2051 imm_use_iterator iter;
2052 gimple_stmt_iterator i;
2053 gimple **slot;
2054
2055 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
2056 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
2057 {
2058 clobber = build_constructor (TREE_TYPE (var),
2059 NULL);
2060 TREE_THIS_VOLATILE (clobber) = 1;
2061 clobber_stmt = gimple_build_assign (var, clobber);
2062
2063 i = gsi_for_stmt (stmt);
2064 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
2065 }
2066 else if (gimple_code (stmt) == GIMPLE_PHI)
2067 {
2068 if (!*visited)
2069 *visited = new gimple_htab (10);
2070
2071 slot = (*visited)->find_slot (stmt, INSERT);
2072 if (*slot != NULL)
2073 continue;
2074
2075 *slot = stmt;
2076 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
2077 visited);
2078 }
2079 else if (gimple_assign_ssa_name_copy_p (stmt))
2080 insert_clobber_before_stack_restore (gimple_assign_lhs (stmt), var,
2081 visited);
2082 else
2083 gcc_assert (is_gimple_debug (stmt));
2084 }
2085
2086 /* Advance the iterator to the previous non-debug gimple statement in the same
2087 or dominating basic block. */
2088
2089 static inline void
2090 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
2091 {
2092 basic_block dom;
2093
2094 gsi_prev_nondebug (i);
2095 while (gsi_end_p (*i))
2096 {
2097 dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
2098 if (dom == NULL || dom == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2099 return;
2100
2101 *i = gsi_last_bb (dom);
2102 }
2103 }
2104
2105 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
2106 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
2107
2108 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
2109 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
2110 that case the function gives up without inserting the clobbers. */
2111
2112 static void
2113 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
2114 {
2115 gimple *stmt;
2116 tree saved_val;
2117 gimple_htab *visited = NULL;
2118
2119 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
2120 {
2121 stmt = gsi_stmt (i);
2122
2123 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
2124 continue;
2125
2126 saved_val = gimple_call_lhs (stmt);
2127 if (saved_val == NULL_TREE)
2128 continue;
2129
2130 insert_clobber_before_stack_restore (saved_val, var, &visited);
2131 break;
2132 }
2133
2134 delete visited;
2135 }
2136
2137 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
2138 fixed-size array and returns the address, if found, otherwise returns
2139 NULL_TREE. */
2140
2141 static tree
2142 fold_builtin_alloca_with_align (gimple *stmt)
2143 {
2144 unsigned HOST_WIDE_INT size, threshold, n_elem;
2145 tree lhs, arg, block, var, elem_type, array_type;
2146
2147 /* Get lhs. */
2148 lhs = gimple_call_lhs (stmt);
2149 if (lhs == NULL_TREE)
2150 return NULL_TREE;
2151
2152 /* Detect constant argument. */
2153 arg = get_constant_value (gimple_call_arg (stmt, 0));
2154 if (arg == NULL_TREE
2155 || TREE_CODE (arg) != INTEGER_CST
2156 || !tree_fits_uhwi_p (arg))
2157 return NULL_TREE;
2158
2159 size = tree_to_uhwi (arg);
2160
2161 /* Heuristic: don't fold large allocas. */
2162 threshold = (unsigned HOST_WIDE_INT)PARAM_VALUE (PARAM_LARGE_STACK_FRAME);
2163 /* In case the alloca is located at function entry, it has the same lifetime
2164 as a declared array, so we allow a larger size. */
2165 block = gimple_block (stmt);
2166 if (!(cfun->after_inlining
2167 && block
2168 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
2169 threshold /= 10;
2170 if (size > threshold)
2171 return NULL_TREE;
2172
2173 /* We have to be able to move points-to info. We used to assert
2174 that we can but IPA PTA might end up with two UIDs here
2175 as it might need to handle more than one instance being
2176 live at the same time. Instead of trying to detect this case
2177 (using the first UID would be OK) just give up for now. */
2178 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
2179 unsigned uid = 0;
2180 if (pi != NULL
2181 && !pi->pt.anything
2182 && !pt_solution_singleton_or_null_p (&pi->pt, &uid))
2183 return NULL_TREE;
2184
2185 /* Declare array. */
2186 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
2187 n_elem = size * 8 / BITS_PER_UNIT;
2188 array_type = build_array_type_nelts (elem_type, n_elem);
2189 var = create_tmp_var (array_type);
2190 SET_DECL_ALIGN (var, TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
2191 if (uid != 0)
2192 SET_DECL_PT_UID (var, uid);
2193
2194 /* Fold alloca to the address of the array. */
2195 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
2196 }
2197
2198 /* Fold the stmt at *GSI with CCP specific information that propagating
2199 and regular folding does not catch. */
2200
2201 bool
2202 ccp_folder::fold_stmt (gimple_stmt_iterator *gsi)
2203 {
2204 gimple *stmt = gsi_stmt (*gsi);
2205
2206 switch (gimple_code (stmt))
2207 {
2208 case GIMPLE_COND:
2209 {
2210 gcond *cond_stmt = as_a <gcond *> (stmt);
2211 ccp_prop_value_t val;
2212 /* Statement evaluation will handle type mismatches in constants
2213 more gracefully than the final propagation. This allows us to
2214 fold more conditionals here. */
2215 val = evaluate_stmt (stmt);
2216 if (val.lattice_val != CONSTANT
2217 || val.mask != 0)
2218 return false;
2219
2220 if (dump_file)
2221 {
2222 fprintf (dump_file, "Folding predicate ");
2223 print_gimple_expr (dump_file, stmt, 0);
2224 fprintf (dump_file, " to ");
2225 print_generic_expr (dump_file, val.value);
2226 fprintf (dump_file, "\n");
2227 }
2228
2229 if (integer_zerop (val.value))
2230 gimple_cond_make_false (cond_stmt);
2231 else
2232 gimple_cond_make_true (cond_stmt);
2233
2234 return true;
2235 }
2236
2237 case GIMPLE_CALL:
2238 {
2239 tree lhs = gimple_call_lhs (stmt);
2240 int flags = gimple_call_flags (stmt);
2241 tree val;
2242 tree argt;
2243 bool changed = false;
2244 unsigned i;
2245
2246 /* If the call was folded into a constant make sure it goes
2247 away even if we cannot propagate into all uses because of
2248 type issues. */
2249 if (lhs
2250 && TREE_CODE (lhs) == SSA_NAME
2251 && (val = get_constant_value (lhs))
2252 /* Don't optimize away calls that have side-effects. */
2253 && (flags & (ECF_CONST|ECF_PURE)) != 0
2254 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
2255 {
2256 tree new_rhs = unshare_expr (val);
2257 bool res;
2258 if (!useless_type_conversion_p (TREE_TYPE (lhs),
2259 TREE_TYPE (new_rhs)))
2260 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
2261 res = update_call_from_tree (gsi, new_rhs);
2262 gcc_assert (res);
2263 return true;
2264 }
2265
2266 /* Internal calls provide no argument types, so the extra laxity
2267 for normal calls does not apply. */
2268 if (gimple_call_internal_p (stmt))
2269 return false;
2270
2271 /* The heuristic of fold_builtin_alloca_with_align differs before and
2272 after inlining, so we don't require the arg to be changed into a
2273 constant for folding, but just to be constant. */
2274 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN)
2275 || gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX))
2276 {
2277 tree new_rhs = fold_builtin_alloca_with_align (stmt);
2278 if (new_rhs)
2279 {
2280 bool res = update_call_from_tree (gsi, new_rhs);
2281 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
2282 gcc_assert (res);
2283 insert_clobbers_for_var (*gsi, var);
2284 return true;
2285 }
2286 }
2287
2288 /* Propagate into the call arguments. Compared to replace_uses_in
2289 this can use the argument slot types for type verification
2290 instead of the current argument type. We also can safely
2291 drop qualifiers here as we are dealing with constants anyway. */
2292 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
2293 for (i = 0; i < gimple_call_num_args (stmt) && argt;
2294 ++i, argt = TREE_CHAIN (argt))
2295 {
2296 tree arg = gimple_call_arg (stmt, i);
2297 if (TREE_CODE (arg) == SSA_NAME
2298 && (val = get_constant_value (arg))
2299 && useless_type_conversion_p
2300 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
2301 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2302 {
2303 gimple_call_set_arg (stmt, i, unshare_expr (val));
2304 changed = true;
2305 }
2306 }
2307
2308 return changed;
2309 }
2310
2311 case GIMPLE_ASSIGN:
2312 {
2313 tree lhs = gimple_assign_lhs (stmt);
2314 tree val;
2315
2316 /* If we have a load that turned out to be constant replace it
2317 as we cannot propagate into all uses in all cases. */
2318 if (gimple_assign_single_p (stmt)
2319 && TREE_CODE (lhs) == SSA_NAME
2320 && (val = get_constant_value (lhs)))
2321 {
2322 tree rhs = unshare_expr (val);
2323 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2324 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
2325 gimple_assign_set_rhs_from_tree (gsi, rhs);
2326 return true;
2327 }
2328
2329 return false;
2330 }
2331
2332 default:
2333 return false;
2334 }
2335 }
2336
2337 /* Visit the assignment statement STMT. Set the value of its LHS to the
2338 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2339 creates virtual definitions, set the value of each new name to that
2340 of the RHS (if we can derive a constant out of the RHS).
2341 Value-returning call statements also perform an assignment, and
2342 are handled here. */
2343
2344 static enum ssa_prop_result
2345 visit_assignment (gimple *stmt, tree *output_p)
2346 {
2347 ccp_prop_value_t val;
2348 enum ssa_prop_result retval = SSA_PROP_NOT_INTERESTING;
2349
2350 tree lhs = gimple_get_lhs (stmt);
2351 if (TREE_CODE (lhs) == SSA_NAME)
2352 {
2353 /* Evaluate the statement, which could be
2354 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2355 val = evaluate_stmt (stmt);
2356
2357 /* If STMT is an assignment to an SSA_NAME, we only have one
2358 value to set. */
2359 if (set_lattice_value (lhs, &val))
2360 {
2361 *output_p = lhs;
2362 if (val.lattice_val == VARYING)
2363 retval = SSA_PROP_VARYING;
2364 else
2365 retval = SSA_PROP_INTERESTING;
2366 }
2367 }
2368
2369 return retval;
2370 }
2371
2372
2373 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2374 if it can determine which edge will be taken. Otherwise, return
2375 SSA_PROP_VARYING. */
2376
2377 static enum ssa_prop_result
2378 visit_cond_stmt (gimple *stmt, edge *taken_edge_p)
2379 {
2380 ccp_prop_value_t val;
2381 basic_block block;
2382
2383 block = gimple_bb (stmt);
2384 val = evaluate_stmt (stmt);
2385 if (val.lattice_val != CONSTANT
2386 || val.mask != 0)
2387 return SSA_PROP_VARYING;
2388
2389 /* Find which edge out of the conditional block will be taken and add it
2390 to the worklist. If no single edge can be determined statically,
2391 return SSA_PROP_VARYING to feed all the outgoing edges to the
2392 propagation engine. */
2393 *taken_edge_p = find_taken_edge (block, val.value);
2394 if (*taken_edge_p)
2395 return SSA_PROP_INTERESTING;
2396 else
2397 return SSA_PROP_VARYING;
2398 }
2399
2400
2401 /* Evaluate statement STMT. If the statement produces an output value and
2402 its evaluation changes the lattice value of its output, return
2403 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2404 output value.
2405
2406 If STMT is a conditional branch and we can determine its truth
2407 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2408 value, return SSA_PROP_VARYING. */
2409
2410 enum ssa_prop_result
2411 ccp_propagate::visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
2412 {
2413 tree def;
2414 ssa_op_iter iter;
2415
2416 if (dump_file && (dump_flags & TDF_DETAILS))
2417 {
2418 fprintf (dump_file, "\nVisiting statement:\n");
2419 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2420 }
2421
2422 switch (gimple_code (stmt))
2423 {
2424 case GIMPLE_ASSIGN:
2425 /* If the statement is an assignment that produces a single
2426 output value, evaluate its RHS to see if the lattice value of
2427 its output has changed. */
2428 return visit_assignment (stmt, output_p);
2429
2430 case GIMPLE_CALL:
2431 /* A value-returning call also performs an assignment. */
2432 if (gimple_call_lhs (stmt) != NULL_TREE)
2433 return visit_assignment (stmt, output_p);
2434 break;
2435
2436 case GIMPLE_COND:
2437 case GIMPLE_SWITCH:
2438 /* If STMT is a conditional branch, see if we can determine
2439 which branch will be taken. */
2440 /* FIXME. It appears that we should be able to optimize
2441 computed GOTOs here as well. */
2442 return visit_cond_stmt (stmt, taken_edge_p);
2443
2444 default:
2445 break;
2446 }
2447
2448 /* Any other kind of statement is not interesting for constant
2449 propagation and, therefore, not worth simulating. */
2450 if (dump_file && (dump_flags & TDF_DETAILS))
2451 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2452
2453 /* Definitions made by statements other than assignments to
2454 SSA_NAMEs represent unknown modifications to their outputs.
2455 Mark them VARYING. */
2456 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2457 set_value_varying (def);
2458
2459 return SSA_PROP_VARYING;
2460 }
2461
2462
2463 /* Main entry point for SSA Conditional Constant Propagation. If NONZERO_P,
2464 record nonzero bits. */
2465
2466 static unsigned int
2467 do_ssa_ccp (bool nonzero_p)
2468 {
2469 unsigned int todo = 0;
2470 calculate_dominance_info (CDI_DOMINATORS);
2471
2472 ccp_initialize ();
2473 class ccp_propagate ccp_propagate;
2474 ccp_propagate.ssa_propagate ();
2475 if (ccp_finalize (nonzero_p || flag_ipa_bit_cp))
2476 {
2477 todo = (TODO_cleanup_cfg | TODO_update_ssa);
2478
2479 /* ccp_finalize does not preserve loop-closed ssa. */
2480 loops_state_clear (LOOP_CLOSED_SSA);
2481 }
2482
2483 free_dominance_info (CDI_DOMINATORS);
2484 return todo;
2485 }
2486
2487
2488 namespace {
2489
2490 const pass_data pass_data_ccp =
2491 {
2492 GIMPLE_PASS, /* type */
2493 "ccp", /* name */
2494 OPTGROUP_NONE, /* optinfo_flags */
2495 TV_TREE_CCP, /* tv_id */
2496 ( PROP_cfg | PROP_ssa ), /* properties_required */
2497 0, /* properties_provided */
2498 0, /* properties_destroyed */
2499 0, /* todo_flags_start */
2500 TODO_update_address_taken, /* todo_flags_finish */
2501 };
2502
2503 class pass_ccp : public gimple_opt_pass
2504 {
2505 public:
2506 pass_ccp (gcc::context *ctxt)
2507 : gimple_opt_pass (pass_data_ccp, ctxt), nonzero_p (false)
2508 {}
2509
2510 /* opt_pass methods: */
2511 opt_pass * clone () { return new pass_ccp (m_ctxt); }
2512 void set_pass_param (unsigned int n, bool param)
2513 {
2514 gcc_assert (n == 0);
2515 nonzero_p = param;
2516 }
2517 virtual bool gate (function *) { return flag_tree_ccp != 0; }
2518 virtual unsigned int execute (function *) { return do_ssa_ccp (nonzero_p); }
2519
2520 private:
2521 /* Determines whether the pass instance records nonzero bits. */
2522 bool nonzero_p;
2523 }; // class pass_ccp
2524
2525 } // anon namespace
2526
2527 gimple_opt_pass *
2528 make_pass_ccp (gcc::context *ctxt)
2529 {
2530 return new pass_ccp (ctxt);
2531 }
2532
2533
2534
2535 /* Try to optimize out __builtin_stack_restore. Optimize it out
2536 if there is another __builtin_stack_restore in the same basic
2537 block and no calls or ASM_EXPRs are in between, or if this block's
2538 only outgoing edge is to EXIT_BLOCK and there are no calls or
2539 ASM_EXPRs after this __builtin_stack_restore. */
2540
2541 static tree
2542 optimize_stack_restore (gimple_stmt_iterator i)
2543 {
2544 tree callee;
2545 gimple *stmt;
2546
2547 basic_block bb = gsi_bb (i);
2548 gimple *call = gsi_stmt (i);
2549
2550 if (gimple_code (call) != GIMPLE_CALL
2551 || gimple_call_num_args (call) != 1
2552 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2553 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2554 return NULL_TREE;
2555
2556 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2557 {
2558 stmt = gsi_stmt (i);
2559 if (gimple_code (stmt) == GIMPLE_ASM)
2560 return NULL_TREE;
2561 if (gimple_code (stmt) != GIMPLE_CALL)
2562 continue;
2563
2564 callee = gimple_call_fndecl (stmt);
2565 if (!callee
2566 || !fndecl_built_in_p (callee, BUILT_IN_NORMAL)
2567 /* All regular builtins are ok, just obviously not alloca. */
2568 || ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (callee)))
2569 return NULL_TREE;
2570
2571 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
2572 goto second_stack_restore;
2573 }
2574
2575 if (!gsi_end_p (i))
2576 return NULL_TREE;
2577
2578 /* Allow one successor of the exit block, or zero successors. */
2579 switch (EDGE_COUNT (bb->succs))
2580 {
2581 case 0:
2582 break;
2583 case 1:
2584 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2585 return NULL_TREE;
2586 break;
2587 default:
2588 return NULL_TREE;
2589 }
2590 second_stack_restore:
2591
2592 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2593 If there are multiple uses, then the last one should remove the call.
2594 In any case, whether the call to __builtin_stack_save can be removed
2595 or not is irrelevant to removing the call to __builtin_stack_restore. */
2596 if (has_single_use (gimple_call_arg (call, 0)))
2597 {
2598 gimple *stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2599 if (is_gimple_call (stack_save))
2600 {
2601 callee = gimple_call_fndecl (stack_save);
2602 if (callee && fndecl_built_in_p (callee, BUILT_IN_STACK_SAVE))
2603 {
2604 gimple_stmt_iterator stack_save_gsi;
2605 tree rhs;
2606
2607 stack_save_gsi = gsi_for_stmt (stack_save);
2608 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2609 update_call_from_tree (&stack_save_gsi, rhs);
2610 }
2611 }
2612 }
2613
2614 /* No effect, so the statement will be deleted. */
2615 return integer_zero_node;
2616 }
2617
2618 /* If va_list type is a simple pointer and nothing special is needed,
2619 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2620 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2621 pointer assignment. */
2622
2623 static tree
2624 optimize_stdarg_builtin (gimple *call)
2625 {
2626 tree callee, lhs, rhs, cfun_va_list;
2627 bool va_list_simple_ptr;
2628 location_t loc = gimple_location (call);
2629
2630 if (gimple_code (call) != GIMPLE_CALL)
2631 return NULL_TREE;
2632
2633 callee = gimple_call_fndecl (call);
2634
2635 cfun_va_list = targetm.fn_abi_va_list (callee);
2636 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2637 && (TREE_TYPE (cfun_va_list) == void_type_node
2638 || TREE_TYPE (cfun_va_list) == char_type_node);
2639
2640 switch (DECL_FUNCTION_CODE (callee))
2641 {
2642 case BUILT_IN_VA_START:
2643 if (!va_list_simple_ptr
2644 || targetm.expand_builtin_va_start != NULL
2645 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
2646 return NULL_TREE;
2647
2648 if (gimple_call_num_args (call) != 2)
2649 return NULL_TREE;
2650
2651 lhs = gimple_call_arg (call, 0);
2652 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2653 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2654 != TYPE_MAIN_VARIANT (cfun_va_list))
2655 return NULL_TREE;
2656
2657 lhs = build_fold_indirect_ref_loc (loc, lhs);
2658 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
2659 1, integer_zero_node);
2660 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2661 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2662
2663 case BUILT_IN_VA_COPY:
2664 if (!va_list_simple_ptr)
2665 return NULL_TREE;
2666
2667 if (gimple_call_num_args (call) != 2)
2668 return NULL_TREE;
2669
2670 lhs = gimple_call_arg (call, 0);
2671 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2672 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2673 != TYPE_MAIN_VARIANT (cfun_va_list))
2674 return NULL_TREE;
2675
2676 lhs = build_fold_indirect_ref_loc (loc, lhs);
2677 rhs = gimple_call_arg (call, 1);
2678 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2679 != TYPE_MAIN_VARIANT (cfun_va_list))
2680 return NULL_TREE;
2681
2682 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2683 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2684
2685 case BUILT_IN_VA_END:
2686 /* No effect, so the statement will be deleted. */
2687 return integer_zero_node;
2688
2689 default:
2690 gcc_unreachable ();
2691 }
2692 }
2693
2694 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2695 the incoming jumps. Return true if at least one jump was changed. */
2696
2697 static bool
2698 optimize_unreachable (gimple_stmt_iterator i)
2699 {
2700 basic_block bb = gsi_bb (i);
2701 gimple_stmt_iterator gsi;
2702 gimple *stmt;
2703 edge_iterator ei;
2704 edge e;
2705 bool ret;
2706
2707 if (flag_sanitize & SANITIZE_UNREACHABLE)
2708 return false;
2709
2710 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2711 {
2712 stmt = gsi_stmt (gsi);
2713
2714 if (is_gimple_debug (stmt))
2715 continue;
2716
2717 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2718 {
2719 /* Verify we do not need to preserve the label. */
2720 if (FORCED_LABEL (gimple_label_label (label_stmt)))
2721 return false;
2722
2723 continue;
2724 }
2725
2726 /* Only handle the case that __builtin_unreachable is the first statement
2727 in the block. We rely on DCE to remove stmts without side-effects
2728 before __builtin_unreachable. */
2729 if (gsi_stmt (gsi) != gsi_stmt (i))
2730 return false;
2731 }
2732
2733 ret = false;
2734 FOR_EACH_EDGE (e, ei, bb->preds)
2735 {
2736 gsi = gsi_last_bb (e->src);
2737 if (gsi_end_p (gsi))
2738 continue;
2739
2740 stmt = gsi_stmt (gsi);
2741 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
2742 {
2743 if (e->flags & EDGE_TRUE_VALUE)
2744 gimple_cond_make_false (cond_stmt);
2745 else if (e->flags & EDGE_FALSE_VALUE)
2746 gimple_cond_make_true (cond_stmt);
2747 else
2748 gcc_unreachable ();
2749 update_stmt (cond_stmt);
2750 }
2751 else
2752 {
2753 /* Todo: handle other cases. Note that unreachable switch case
2754 statements have already been removed. */
2755 continue;
2756 }
2757
2758 ret = true;
2759 }
2760
2761 return ret;
2762 }
2763
2764 /* Optimize
2765 mask_2 = 1 << cnt_1;
2766 _4 = __atomic_fetch_or_* (ptr_6, mask_2, _3);
2767 _5 = _4 & mask_2;
2768 to
2769 _4 = ATOMIC_BIT_TEST_AND_SET (ptr_6, cnt_1, 0, _3);
2770 _5 = _4;
2771 If _5 is only used in _5 != 0 or _5 == 0 comparisons, 1
2772 is passed instead of 0, and the builtin just returns a zero
2773 or 1 value instead of the actual bit.
2774 Similarly for __sync_fetch_and_or_* (without the ", _3" part
2775 in there), and/or if mask_2 is a power of 2 constant.
2776 Similarly for xor instead of or, use ATOMIC_BIT_TEST_AND_COMPLEMENT
2777 in that case. And similarly for and instead of or, except that
2778 the second argument to the builtin needs to be one's complement
2779 of the mask instead of mask. */
2780
2781 static void
2782 optimize_atomic_bit_test_and (gimple_stmt_iterator *gsip,
2783 enum internal_fn fn, bool has_model_arg,
2784 bool after)
2785 {
2786 gimple *call = gsi_stmt (*gsip);
2787 tree lhs = gimple_call_lhs (call);
2788 use_operand_p use_p;
2789 gimple *use_stmt;
2790 tree mask, bit;
2791 optab optab;
2792
2793 if (!flag_inline_atomics
2794 || optimize_debug
2795 || !gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2796 || !lhs
2797 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)
2798 || !single_imm_use (lhs, &use_p, &use_stmt)
2799 || !is_gimple_assign (use_stmt)
2800 || gimple_assign_rhs_code (use_stmt) != BIT_AND_EXPR
2801 || !gimple_vdef (call))
2802 return;
2803
2804 switch (fn)
2805 {
2806 case IFN_ATOMIC_BIT_TEST_AND_SET:
2807 optab = atomic_bit_test_and_set_optab;
2808 break;
2809 case IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT:
2810 optab = atomic_bit_test_and_complement_optab;
2811 break;
2812 case IFN_ATOMIC_BIT_TEST_AND_RESET:
2813 optab = atomic_bit_test_and_reset_optab;
2814 break;
2815 default:
2816 return;
2817 }
2818
2819 if (optab_handler (optab, TYPE_MODE (TREE_TYPE (lhs))) == CODE_FOR_nothing)
2820 return;
2821
2822 mask = gimple_call_arg (call, 1);
2823 tree use_lhs = gimple_assign_lhs (use_stmt);
2824 if (!use_lhs)
2825 return;
2826
2827 if (TREE_CODE (mask) == INTEGER_CST)
2828 {
2829 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
2830 mask = const_unop (BIT_NOT_EXPR, TREE_TYPE (mask), mask);
2831 mask = fold_convert (TREE_TYPE (lhs), mask);
2832 int ibit = tree_log2 (mask);
2833 if (ibit < 0)
2834 return;
2835 bit = build_int_cst (TREE_TYPE (lhs), ibit);
2836 }
2837 else if (TREE_CODE (mask) == SSA_NAME)
2838 {
2839 gimple *g = SSA_NAME_DEF_STMT (mask);
2840 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
2841 {
2842 if (!is_gimple_assign (g)
2843 || gimple_assign_rhs_code (g) != BIT_NOT_EXPR)
2844 return;
2845 mask = gimple_assign_rhs1 (g);
2846 if (TREE_CODE (mask) != SSA_NAME)
2847 return;
2848 g = SSA_NAME_DEF_STMT (mask);
2849 }
2850 if (!is_gimple_assign (g)
2851 || gimple_assign_rhs_code (g) != LSHIFT_EXPR
2852 || !integer_onep (gimple_assign_rhs1 (g)))
2853 return;
2854 bit = gimple_assign_rhs2 (g);
2855 }
2856 else
2857 return;
2858
2859 if (gimple_assign_rhs1 (use_stmt) == lhs)
2860 {
2861 if (!operand_equal_p (gimple_assign_rhs2 (use_stmt), mask, 0))
2862 return;
2863 }
2864 else if (gimple_assign_rhs2 (use_stmt) != lhs
2865 || !operand_equal_p (gimple_assign_rhs1 (use_stmt), mask, 0))
2866 return;
2867
2868 bool use_bool = true;
2869 bool has_debug_uses = false;
2870 imm_use_iterator iter;
2871 gimple *g;
2872
2873 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs))
2874 use_bool = false;
2875 FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
2876 {
2877 enum tree_code code = ERROR_MARK;
2878 tree op0 = NULL_TREE, op1 = NULL_TREE;
2879 if (is_gimple_debug (g))
2880 {
2881 has_debug_uses = true;
2882 continue;
2883 }
2884 else if (is_gimple_assign (g))
2885 switch (gimple_assign_rhs_code (g))
2886 {
2887 case COND_EXPR:
2888 op1 = gimple_assign_rhs1 (g);
2889 code = TREE_CODE (op1);
2890 op0 = TREE_OPERAND (op1, 0);
2891 op1 = TREE_OPERAND (op1, 1);
2892 break;
2893 case EQ_EXPR:
2894 case NE_EXPR:
2895 code = gimple_assign_rhs_code (g);
2896 op0 = gimple_assign_rhs1 (g);
2897 op1 = gimple_assign_rhs2 (g);
2898 break;
2899 default:
2900 break;
2901 }
2902 else if (gimple_code (g) == GIMPLE_COND)
2903 {
2904 code = gimple_cond_code (g);
2905 op0 = gimple_cond_lhs (g);
2906 op1 = gimple_cond_rhs (g);
2907 }
2908
2909 if ((code == EQ_EXPR || code == NE_EXPR)
2910 && op0 == use_lhs
2911 && integer_zerop (op1))
2912 {
2913 use_operand_p use_p;
2914 int n = 0;
2915 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2916 n++;
2917 if (n == 1)
2918 continue;
2919 }
2920
2921 use_bool = false;
2922 BREAK_FROM_IMM_USE_STMT (iter);
2923 }
2924
2925 tree new_lhs = make_ssa_name (TREE_TYPE (lhs));
2926 tree flag = build_int_cst (TREE_TYPE (lhs), use_bool);
2927 if (has_model_arg)
2928 g = gimple_build_call_internal (fn, 4, gimple_call_arg (call, 0),
2929 bit, flag, gimple_call_arg (call, 2));
2930 else
2931 g = gimple_build_call_internal (fn, 3, gimple_call_arg (call, 0),
2932 bit, flag);
2933 gimple_call_set_lhs (g, new_lhs);
2934 gimple_set_location (g, gimple_location (call));
2935 gimple_set_vuse (g, gimple_vuse (call));
2936 gimple_set_vdef (g, gimple_vdef (call));
2937 bool throws = stmt_can_throw_internal (cfun, call);
2938 gimple_call_set_nothrow (as_a <gcall *> (g),
2939 gimple_call_nothrow_p (as_a <gcall *> (call)));
2940 SSA_NAME_DEF_STMT (gimple_vdef (call)) = g;
2941 gimple_stmt_iterator gsi = *gsip;
2942 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2943 edge e = NULL;
2944 if (throws)
2945 {
2946 maybe_clean_or_replace_eh_stmt (call, g);
2947 if (after || (use_bool && has_debug_uses))
2948 e = find_fallthru_edge (gsi_bb (gsi)->succs);
2949 }
2950 if (after)
2951 {
2952 /* The internal function returns the value of the specified bit
2953 before the atomic operation. If we are interested in the value
2954 of the specified bit after the atomic operation (makes only sense
2955 for xor, otherwise the bit content is compile time known),
2956 we need to invert the bit. */
2957 g = gimple_build_assign (make_ssa_name (TREE_TYPE (lhs)),
2958 BIT_XOR_EXPR, new_lhs,
2959 use_bool ? build_int_cst (TREE_TYPE (lhs), 1)
2960 : mask);
2961 new_lhs = gimple_assign_lhs (g);
2962 if (throws)
2963 {
2964 gsi_insert_on_edge_immediate (e, g);
2965 gsi = gsi_for_stmt (g);
2966 }
2967 else
2968 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2969 }
2970 if (use_bool && has_debug_uses)
2971 {
2972 tree temp = NULL_TREE;
2973 if (!throws || after || single_pred_p (e->dest))
2974 {
2975 temp = make_node (DEBUG_EXPR_DECL);
2976 DECL_ARTIFICIAL (temp) = 1;
2977 TREE_TYPE (temp) = TREE_TYPE (lhs);
2978 SET_DECL_MODE (temp, TYPE_MODE (TREE_TYPE (lhs)));
2979 tree t = build2 (LSHIFT_EXPR, TREE_TYPE (lhs), new_lhs, bit);
2980 g = gimple_build_debug_bind (temp, t, g);
2981 if (throws && !after)
2982 {
2983 gsi = gsi_after_labels (e->dest);
2984 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
2985 }
2986 else
2987 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2988 }
2989 FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
2990 if (is_gimple_debug (g))
2991 {
2992 use_operand_p use_p;
2993 if (temp == NULL_TREE)
2994 gimple_debug_bind_reset_value (g);
2995 else
2996 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2997 SET_USE (use_p, temp);
2998 update_stmt (g);
2999 }
3000 }
3001 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_lhs)
3002 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs);
3003 replace_uses_by (use_lhs, new_lhs);
3004 gsi = gsi_for_stmt (use_stmt);
3005 gsi_remove (&gsi, true);
3006 release_defs (use_stmt);
3007 gsi_remove (gsip, true);
3008 release_ssa_name (lhs);
3009 }
3010
3011 /* Optimize
3012 a = {};
3013 b = a;
3014 into
3015 a = {};
3016 b = {};
3017 Similarly for memset (&a, ..., sizeof (a)); instead of a = {};
3018 and/or memcpy (&b, &a, sizeof (a)); instead of b = a; */
3019
3020 static void
3021 optimize_memcpy (gimple_stmt_iterator *gsip, tree dest, tree src, tree len)
3022 {
3023 gimple *stmt = gsi_stmt (*gsip);
3024 if (gimple_has_volatile_ops (stmt))
3025 return;
3026
3027 tree vuse = gimple_vuse (stmt);
3028 if (vuse == NULL)
3029 return;
3030
3031 gimple *defstmt = SSA_NAME_DEF_STMT (vuse);
3032 tree src2 = NULL_TREE, len2 = NULL_TREE;
3033 poly_int64 offset, offset2;
3034 tree val = integer_zero_node;
3035 if (gimple_store_p (defstmt)
3036 && gimple_assign_single_p (defstmt)
3037 && TREE_CODE (gimple_assign_rhs1 (defstmt)) == CONSTRUCTOR
3038 && !gimple_clobber_p (defstmt))
3039 src2 = gimple_assign_lhs (defstmt);
3040 else if (gimple_call_builtin_p (defstmt, BUILT_IN_MEMSET)
3041 && TREE_CODE (gimple_call_arg (defstmt, 0)) == ADDR_EXPR
3042 && TREE_CODE (gimple_call_arg (defstmt, 1)) == INTEGER_CST)
3043 {
3044 src2 = TREE_OPERAND (gimple_call_arg (defstmt, 0), 0);
3045 len2 = gimple_call_arg (defstmt, 2);
3046 val = gimple_call_arg (defstmt, 1);
3047 /* For non-0 val, we'd have to transform stmt from assignment
3048 into memset (only if dest is addressable). */
3049 if (!integer_zerop (val) && is_gimple_assign (stmt))
3050 src2 = NULL_TREE;
3051 }
3052
3053 if (src2 == NULL_TREE)
3054 return;
3055
3056 if (len == NULL_TREE)
3057 len = (TREE_CODE (src) == COMPONENT_REF
3058 ? DECL_SIZE_UNIT (TREE_OPERAND (src, 1))
3059 : TYPE_SIZE_UNIT (TREE_TYPE (src)));
3060 if (len2 == NULL_TREE)
3061 len2 = (TREE_CODE (src2) == COMPONENT_REF
3062 ? DECL_SIZE_UNIT (TREE_OPERAND (src2, 1))
3063 : TYPE_SIZE_UNIT (TREE_TYPE (src2)));
3064 if (len == NULL_TREE
3065 || !poly_int_tree_p (len)
3066 || len2 == NULL_TREE
3067 || !poly_int_tree_p (len2))
3068 return;
3069
3070 src = get_addr_base_and_unit_offset (src, &offset);
3071 src2 = get_addr_base_and_unit_offset (src2, &offset2);
3072 if (src == NULL_TREE
3073 || src2 == NULL_TREE
3074 || maybe_lt (offset, offset2))
3075 return;
3076
3077 if (!operand_equal_p (src, src2, 0))
3078 return;
3079
3080 /* [ src + offset2, src + offset2 + len2 - 1 ] is set to val.
3081 Make sure that
3082 [ src + offset, src + offset + len - 1 ] is a subset of that. */
3083 if (maybe_gt (wi::to_poly_offset (len) + (offset - offset2),
3084 wi::to_poly_offset (len2)))
3085 return;
3086
3087 if (dump_file && (dump_flags & TDF_DETAILS))
3088 {
3089 fprintf (dump_file, "Simplified\n ");
3090 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3091 fprintf (dump_file, "after previous\n ");
3092 print_gimple_stmt (dump_file, defstmt, 0, dump_flags);
3093 }
3094
3095 /* For simplicity, don't change the kind of the stmt,
3096 turn dest = src; into dest = {}; and memcpy (&dest, &src, len);
3097 into memset (&dest, val, len);
3098 In theory we could change dest = src into memset if dest
3099 is addressable (maybe beneficial if val is not 0), or
3100 memcpy (&dest, &src, len) into dest = {} if len is the size
3101 of dest, dest isn't volatile. */
3102 if (is_gimple_assign (stmt))
3103 {
3104 tree ctor = build_constructor (TREE_TYPE (dest), NULL);
3105 gimple_assign_set_rhs_from_tree (gsip, ctor);
3106 update_stmt (stmt);
3107 }
3108 else /* If stmt is memcpy, transform it into memset. */
3109 {
3110 gcall *call = as_a <gcall *> (stmt);
3111 tree fndecl = builtin_decl_implicit (BUILT_IN_MEMSET);
3112 gimple_call_set_fndecl (call, fndecl);
3113 gimple_call_set_fntype (call, TREE_TYPE (fndecl));
3114 gimple_call_set_arg (call, 1, val);
3115 update_stmt (stmt);
3116 }
3117
3118 if (dump_file && (dump_flags & TDF_DETAILS))
3119 {
3120 fprintf (dump_file, "into\n ");
3121 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3122 }
3123 }
3124
3125 /* A simple pass that attempts to fold all builtin functions. This pass
3126 is run after we've propagated as many constants as we can. */
3127
3128 namespace {
3129
3130 const pass_data pass_data_fold_builtins =
3131 {
3132 GIMPLE_PASS, /* type */
3133 "fab", /* name */
3134 OPTGROUP_NONE, /* optinfo_flags */
3135 TV_NONE, /* tv_id */
3136 ( PROP_cfg | PROP_ssa ), /* properties_required */
3137 0, /* properties_provided */
3138 0, /* properties_destroyed */
3139 0, /* todo_flags_start */
3140 TODO_update_ssa, /* todo_flags_finish */
3141 };
3142
3143 class pass_fold_builtins : public gimple_opt_pass
3144 {
3145 public:
3146 pass_fold_builtins (gcc::context *ctxt)
3147 : gimple_opt_pass (pass_data_fold_builtins, ctxt)
3148 {}
3149
3150 /* opt_pass methods: */
3151 opt_pass * clone () { return new pass_fold_builtins (m_ctxt); }
3152 virtual unsigned int execute (function *);
3153
3154 }; // class pass_fold_builtins
3155
3156 unsigned int
3157 pass_fold_builtins::execute (function *fun)
3158 {
3159 bool cfg_changed = false;
3160 basic_block bb;
3161 unsigned int todoflags = 0;
3162
3163 FOR_EACH_BB_FN (bb, fun)
3164 {
3165 gimple_stmt_iterator i;
3166 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
3167 {
3168 gimple *stmt, *old_stmt;
3169 tree callee;
3170 enum built_in_function fcode;
3171
3172 stmt = gsi_stmt (i);
3173
3174 if (gimple_code (stmt) != GIMPLE_CALL)
3175 {
3176 /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
3177 after the last GIMPLE DSE they aren't needed and might
3178 unnecessarily keep the SSA_NAMEs live. */
3179 if (gimple_clobber_p (stmt))
3180 {
3181 tree lhs = gimple_assign_lhs (stmt);
3182 if (TREE_CODE (lhs) == MEM_REF
3183 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME)
3184 {
3185 unlink_stmt_vdef (stmt);
3186 gsi_remove (&i, true);
3187 release_defs (stmt);
3188 continue;
3189 }
3190 }
3191 else if (gimple_assign_load_p (stmt) && gimple_store_p (stmt))
3192 optimize_memcpy (&i, gimple_assign_lhs (stmt),
3193 gimple_assign_rhs1 (stmt), NULL_TREE);
3194 gsi_next (&i);
3195 continue;
3196 }
3197
3198 callee = gimple_call_fndecl (stmt);
3199 if (!callee || !fndecl_built_in_p (callee, BUILT_IN_NORMAL))
3200 {
3201 gsi_next (&i);
3202 continue;
3203 }
3204
3205 fcode = DECL_FUNCTION_CODE (callee);
3206 if (fold_stmt (&i))
3207 ;
3208 else
3209 {
3210 tree result = NULL_TREE;
3211 switch (DECL_FUNCTION_CODE (callee))
3212 {
3213 case BUILT_IN_CONSTANT_P:
3214 /* Resolve __builtin_constant_p. If it hasn't been
3215 folded to integer_one_node by now, it's fairly
3216 certain that the value simply isn't constant. */
3217 result = integer_zero_node;
3218 break;
3219
3220 case BUILT_IN_ASSUME_ALIGNED:
3221 /* Remove __builtin_assume_aligned. */
3222 result = gimple_call_arg (stmt, 0);
3223 break;
3224
3225 case BUILT_IN_STACK_RESTORE:
3226 result = optimize_stack_restore (i);
3227 if (result)
3228 break;
3229 gsi_next (&i);
3230 continue;
3231
3232 case BUILT_IN_UNREACHABLE:
3233 if (optimize_unreachable (i))
3234 cfg_changed = true;
3235 break;
3236
3237 case BUILT_IN_ATOMIC_FETCH_OR_1:
3238 case BUILT_IN_ATOMIC_FETCH_OR_2:
3239 case BUILT_IN_ATOMIC_FETCH_OR_4:
3240 case BUILT_IN_ATOMIC_FETCH_OR_8:
3241 case BUILT_IN_ATOMIC_FETCH_OR_16:
3242 optimize_atomic_bit_test_and (&i,
3243 IFN_ATOMIC_BIT_TEST_AND_SET,
3244 true, false);
3245 break;
3246 case BUILT_IN_SYNC_FETCH_AND_OR_1:
3247 case BUILT_IN_SYNC_FETCH_AND_OR_2:
3248 case BUILT_IN_SYNC_FETCH_AND_OR_4:
3249 case BUILT_IN_SYNC_FETCH_AND_OR_8:
3250 case BUILT_IN_SYNC_FETCH_AND_OR_16:
3251 optimize_atomic_bit_test_and (&i,
3252 IFN_ATOMIC_BIT_TEST_AND_SET,
3253 false, false);
3254 break;
3255
3256 case BUILT_IN_ATOMIC_FETCH_XOR_1:
3257 case BUILT_IN_ATOMIC_FETCH_XOR_2:
3258 case BUILT_IN_ATOMIC_FETCH_XOR_4:
3259 case BUILT_IN_ATOMIC_FETCH_XOR_8:
3260 case BUILT_IN_ATOMIC_FETCH_XOR_16:
3261 optimize_atomic_bit_test_and
3262 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, false);
3263 break;
3264 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
3265 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
3266 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
3267 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
3268 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
3269 optimize_atomic_bit_test_and
3270 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, false);
3271 break;
3272
3273 case BUILT_IN_ATOMIC_XOR_FETCH_1:
3274 case BUILT_IN_ATOMIC_XOR_FETCH_2:
3275 case BUILT_IN_ATOMIC_XOR_FETCH_4:
3276 case BUILT_IN_ATOMIC_XOR_FETCH_8:
3277 case BUILT_IN_ATOMIC_XOR_FETCH_16:
3278 optimize_atomic_bit_test_and
3279 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, true);
3280 break;
3281 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
3282 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
3283 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
3284 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
3285 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
3286 optimize_atomic_bit_test_and
3287 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, true);
3288 break;
3289
3290 case BUILT_IN_ATOMIC_FETCH_AND_1:
3291 case BUILT_IN_ATOMIC_FETCH_AND_2:
3292 case BUILT_IN_ATOMIC_FETCH_AND_4:
3293 case BUILT_IN_ATOMIC_FETCH_AND_8:
3294 case BUILT_IN_ATOMIC_FETCH_AND_16:
3295 optimize_atomic_bit_test_and (&i,
3296 IFN_ATOMIC_BIT_TEST_AND_RESET,
3297 true, false);
3298 break;
3299 case BUILT_IN_SYNC_FETCH_AND_AND_1:
3300 case BUILT_IN_SYNC_FETCH_AND_AND_2:
3301 case BUILT_IN_SYNC_FETCH_AND_AND_4:
3302 case BUILT_IN_SYNC_FETCH_AND_AND_8:
3303 case BUILT_IN_SYNC_FETCH_AND_AND_16:
3304 optimize_atomic_bit_test_and (&i,
3305 IFN_ATOMIC_BIT_TEST_AND_RESET,
3306 false, false);
3307 break;
3308
3309 case BUILT_IN_MEMCPY:
3310 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL)
3311 && TREE_CODE (gimple_call_arg (stmt, 0)) == ADDR_EXPR
3312 && TREE_CODE (gimple_call_arg (stmt, 1)) == ADDR_EXPR
3313 && TREE_CODE (gimple_call_arg (stmt, 2)) == INTEGER_CST)
3314 {
3315 tree dest = TREE_OPERAND (gimple_call_arg (stmt, 0), 0);
3316 tree src = TREE_OPERAND (gimple_call_arg (stmt, 1), 0);
3317 tree len = gimple_call_arg (stmt, 2);
3318 optimize_memcpy (&i, dest, src, len);
3319 }
3320 break;
3321
3322 case BUILT_IN_VA_START:
3323 case BUILT_IN_VA_END:
3324 case BUILT_IN_VA_COPY:
3325 /* These shouldn't be folded before pass_stdarg. */
3326 result = optimize_stdarg_builtin (stmt);
3327 break;
3328
3329 default:;
3330 }
3331
3332 if (!result)
3333 {
3334 gsi_next (&i);
3335 continue;
3336 }
3337
3338 if (!update_call_from_tree (&i, result))
3339 gimplify_and_update_call_from_tree (&i, result);
3340 }
3341
3342 todoflags |= TODO_update_address_taken;
3343
3344 if (dump_file && (dump_flags & TDF_DETAILS))
3345 {
3346 fprintf (dump_file, "Simplified\n ");
3347 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3348 }
3349
3350 old_stmt = stmt;
3351 stmt = gsi_stmt (i);
3352 update_stmt (stmt);
3353
3354 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
3355 && gimple_purge_dead_eh_edges (bb))
3356 cfg_changed = true;
3357
3358 if (dump_file && (dump_flags & TDF_DETAILS))
3359 {
3360 fprintf (dump_file, "to\n ");
3361 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3362 fprintf (dump_file, "\n");
3363 }
3364
3365 /* Retry the same statement if it changed into another
3366 builtin, there might be new opportunities now. */
3367 if (gimple_code (stmt) != GIMPLE_CALL)
3368 {
3369 gsi_next (&i);
3370 continue;
3371 }
3372 callee = gimple_call_fndecl (stmt);
3373 if (!callee
3374 || !fndecl_built_in_p (callee, fcode))
3375 gsi_next (&i);
3376 }
3377 }
3378
3379 /* Delete unreachable blocks. */
3380 if (cfg_changed)
3381 todoflags |= TODO_cleanup_cfg;
3382
3383 return todoflags;
3384 }
3385
3386 } // anon namespace
3387
3388 gimple_opt_pass *
3389 make_pass_fold_builtins (gcc::context *ctxt)
3390 {
3391 return new pass_fold_builtins (ctxt);
3392 }
3393
3394 /* A simple pass that emits some warnings post IPA. */
3395
3396 namespace {
3397
3398 const pass_data pass_data_post_ipa_warn =
3399 {
3400 GIMPLE_PASS, /* type */
3401 "post_ipa_warn", /* name */
3402 OPTGROUP_NONE, /* optinfo_flags */
3403 TV_NONE, /* tv_id */
3404 ( PROP_cfg | PROP_ssa ), /* properties_required */
3405 0, /* properties_provided */
3406 0, /* properties_destroyed */
3407 0, /* todo_flags_start */
3408 0, /* todo_flags_finish */
3409 };
3410
3411 class pass_post_ipa_warn : public gimple_opt_pass
3412 {
3413 public:
3414 pass_post_ipa_warn (gcc::context *ctxt)
3415 : gimple_opt_pass (pass_data_post_ipa_warn, ctxt)
3416 {}
3417
3418 /* opt_pass methods: */
3419 opt_pass * clone () { return new pass_post_ipa_warn (m_ctxt); }
3420 virtual bool gate (function *) { return warn_nonnull != 0; }
3421 virtual unsigned int execute (function *);
3422
3423 }; // class pass_fold_builtins
3424
3425 unsigned int
3426 pass_post_ipa_warn::execute (function *fun)
3427 {
3428 basic_block bb;
3429
3430 FOR_EACH_BB_FN (bb, fun)
3431 {
3432 gimple_stmt_iterator gsi;
3433 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3434 {
3435 gimple *stmt = gsi_stmt (gsi);
3436 if (!is_gimple_call (stmt) || gimple_no_warning_p (stmt))
3437 continue;
3438
3439 if (warn_nonnull)
3440 {
3441 bitmap nonnullargs
3442 = get_nonnull_args (gimple_call_fntype (stmt));
3443 if (nonnullargs)
3444 {
3445 for (unsigned i = 0; i < gimple_call_num_args (stmt); i++)
3446 {
3447 tree arg = gimple_call_arg (stmt, i);
3448 if (TREE_CODE (TREE_TYPE (arg)) != POINTER_TYPE)
3449 continue;
3450 if (!integer_zerop (arg))
3451 continue;
3452 if (!bitmap_empty_p (nonnullargs)
3453 && !bitmap_bit_p (nonnullargs, i))
3454 continue;
3455
3456 location_t loc = gimple_location (stmt);
3457 auto_diagnostic_group d;
3458 if (warning_at (loc, OPT_Wnonnull,
3459 "%Gargument %u null where non-null "
3460 "expected", stmt, i + 1))
3461 {
3462 tree fndecl = gimple_call_fndecl (stmt);
3463 if (fndecl && DECL_IS_BUILTIN (fndecl))
3464 inform (loc, "in a call to built-in function %qD",
3465 fndecl);
3466 else if (fndecl)
3467 inform (DECL_SOURCE_LOCATION (fndecl),
3468 "in a call to function %qD declared here",
3469 fndecl);
3470
3471 }
3472 }
3473 BITMAP_FREE (nonnullargs);
3474 }
3475 }
3476 }
3477 }
3478 return 0;
3479 }
3480
3481 } // anon namespace
3482
3483 gimple_opt_pass *
3484 make_pass_post_ipa_warn (gcc::context *ctxt)
3485 {
3486 return new pass_post_ipa_warn (ctxt);
3487 }