tree-ssa-ccp.c (likely_value): See if we have operands that are marked as never simul...
[gcc.git] / gcc / tree-ssa-ccp.c
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
28 following values:
29
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
37
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
41 or not.
42
43 CONSTANT -> V_i has been found to hold a constant
44 value C.
45
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
48 at compile time.
49
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
51
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
59 can be visited.
60
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
65
66
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
72
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
75
76 if (PRED)
77 a_9 = 3;
78 else
79 a_10 = 100;
80 a_11 = PHI (a_9, a_10)
81
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
86
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
94
95
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
100
101 This algorithm uses wide-ints at the max precision of the target.
102 This means that, with one uninteresting exception, variables with
103 UNSIGNED types never go to VARYING because the bits above the
104 precision of the type of the variable are always zero. The
105 uninteresting case is a variable of UNSIGNED type that has the
106 maximum precision of the target. Such variables can go to VARYING,
107 but this causes no loss of infomation since these variables will
108 never be extended.
109
110 References:
111
112 Constant propagation with conditional branches,
113 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
114
115 Building an Optimizing Compiler,
116 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
117
118 Advanced Compiler Design and Implementation,
119 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
120
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "hash-set.h"
126 #include "machmode.h"
127 #include "vec.h"
128 #include "double-int.h"
129 #include "input.h"
130 #include "alias.h"
131 #include "symtab.h"
132 #include "wide-int.h"
133 #include "inchash.h"
134 #include "real.h"
135 #include "tree.h"
136 #include "fold-const.h"
137 #include "stor-layout.h"
138 #include "flags.h"
139 #include "tm_p.h"
140 #include "predict.h"
141 #include "hard-reg-set.h"
142 #include "input.h"
143 #include "function.h"
144 #include "dominance.h"
145 #include "cfg.h"
146 #include "basic-block.h"
147 #include "gimple-pretty-print.h"
148 #include "hash-table.h"
149 #include "tree-ssa-alias.h"
150 #include "internal-fn.h"
151 #include "gimple-fold.h"
152 #include "tree-eh.h"
153 #include "gimple-expr.h"
154 #include "is-a.h"
155 #include "gimple.h"
156 #include "gimplify.h"
157 #include "gimple-iterator.h"
158 #include "gimple-ssa.h"
159 #include "tree-cfg.h"
160 #include "tree-phinodes.h"
161 #include "ssa-iterators.h"
162 #include "stringpool.h"
163 #include "tree-ssanames.h"
164 #include "tree-pass.h"
165 #include "tree-ssa-propagate.h"
166 #include "value-prof.h"
167 #include "langhooks.h"
168 #include "target.h"
169 #include "diagnostic-core.h"
170 #include "dbgcnt.h"
171 #include "params.h"
172 #include "wide-int-print.h"
173 #include "builtins.h"
174 #include "tree-chkp.h"
175
176
177 /* Possible lattice values. */
178 typedef enum
179 {
180 UNINITIALIZED,
181 UNDEFINED,
182 CONSTANT,
183 VARYING
184 } ccp_lattice_t;
185
186 struct ccp_prop_value_t {
187 /* Lattice value. */
188 ccp_lattice_t lattice_val;
189
190 /* Propagated value. */
191 tree value;
192
193 /* Mask that applies to the propagated value during CCP. For X
194 with a CONSTANT lattice value X & ~mask == value & ~mask. The
195 zero bits in the mask cover constant values. The ones mean no
196 information. */
197 widest_int mask;
198 };
199
200 /* Array of propagated constant values. After propagation,
201 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
202 the constant is held in an SSA name representing a memory store
203 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
204 memory reference used to store (i.e., the LHS of the assignment
205 doing the store). */
206 static ccp_prop_value_t *const_val;
207 static unsigned n_const_val;
208
209 static void canonicalize_value (ccp_prop_value_t *);
210 static bool ccp_fold_stmt (gimple_stmt_iterator *);
211
212 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
213
214 static void
215 dump_lattice_value (FILE *outf, const char *prefix, ccp_prop_value_t val)
216 {
217 switch (val.lattice_val)
218 {
219 case UNINITIALIZED:
220 fprintf (outf, "%sUNINITIALIZED", prefix);
221 break;
222 case UNDEFINED:
223 fprintf (outf, "%sUNDEFINED", prefix);
224 break;
225 case VARYING:
226 fprintf (outf, "%sVARYING", prefix);
227 break;
228 case CONSTANT:
229 if (TREE_CODE (val.value) != INTEGER_CST
230 || val.mask == 0)
231 {
232 fprintf (outf, "%sCONSTANT ", prefix);
233 print_generic_expr (outf, val.value, dump_flags);
234 }
235 else
236 {
237 widest_int cval = wi::bit_and_not (wi::to_widest (val.value),
238 val.mask);
239 fprintf (outf, "%sCONSTANT ", prefix);
240 print_hex (cval, outf);
241 fprintf (outf, " (");
242 print_hex (val.mask, outf);
243 fprintf (outf, ")");
244 }
245 break;
246 default:
247 gcc_unreachable ();
248 }
249 }
250
251
252 /* Print lattice value VAL to stderr. */
253
254 void debug_lattice_value (ccp_prop_value_t val);
255
256 DEBUG_FUNCTION void
257 debug_lattice_value (ccp_prop_value_t val)
258 {
259 dump_lattice_value (stderr, "", val);
260 fprintf (stderr, "\n");
261 }
262
263 /* Extend NONZERO_BITS to a full mask, with the upper bits being set. */
264
265 static widest_int
266 extend_mask (const wide_int &nonzero_bits)
267 {
268 return (wi::mask <widest_int> (wi::get_precision (nonzero_bits), true)
269 | widest_int::from (nonzero_bits, UNSIGNED));
270 }
271
272 /* Compute a default value for variable VAR and store it in the
273 CONST_VAL array. The following rules are used to get default
274 values:
275
276 1- Global and static variables that are declared constant are
277 considered CONSTANT.
278
279 2- Any other value is considered UNDEFINED. This is useful when
280 considering PHI nodes. PHI arguments that are undefined do not
281 change the constant value of the PHI node, which allows for more
282 constants to be propagated.
283
284 3- Variables defined by statements other than assignments and PHI
285 nodes are considered VARYING.
286
287 4- Initial values of variables that are not GIMPLE registers are
288 considered VARYING. */
289
290 static ccp_prop_value_t
291 get_default_value (tree var)
292 {
293 ccp_prop_value_t val = { UNINITIALIZED, NULL_TREE, 0 };
294 gimple stmt;
295
296 stmt = SSA_NAME_DEF_STMT (var);
297
298 if (gimple_nop_p (stmt))
299 {
300 /* Variables defined by an empty statement are those used
301 before being initialized. If VAR is a local variable, we
302 can assume initially that it is UNDEFINED, otherwise we must
303 consider it VARYING. */
304 if (!virtual_operand_p (var)
305 && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
306 val.lattice_val = UNDEFINED;
307 else
308 {
309 val.lattice_val = VARYING;
310 val.mask = -1;
311 if (flag_tree_bit_ccp)
312 {
313 wide_int nonzero_bits = get_nonzero_bits (var);
314 if (nonzero_bits != -1)
315 {
316 val.lattice_val = CONSTANT;
317 val.value = build_zero_cst (TREE_TYPE (var));
318 val.mask = extend_mask (nonzero_bits);
319 }
320 }
321 }
322 }
323 else if (is_gimple_assign (stmt))
324 {
325 tree cst;
326 if (gimple_assign_single_p (stmt)
327 && DECL_P (gimple_assign_rhs1 (stmt))
328 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
329 {
330 val.lattice_val = CONSTANT;
331 val.value = cst;
332 }
333 else
334 {
335 /* Any other variable defined by an assignment is considered
336 UNDEFINED. */
337 val.lattice_val = UNDEFINED;
338 }
339 }
340 else if ((is_gimple_call (stmt)
341 && gimple_call_lhs (stmt) != NULL_TREE)
342 || gimple_code (stmt) == GIMPLE_PHI)
343 {
344 /* A variable defined by a call or a PHI node is considered
345 UNDEFINED. */
346 val.lattice_val = UNDEFINED;
347 }
348 else
349 {
350 /* Otherwise, VAR will never take on a constant value. */
351 val.lattice_val = VARYING;
352 val.mask = -1;
353 }
354
355 return val;
356 }
357
358
359 /* Get the constant value associated with variable VAR. */
360
361 static inline ccp_prop_value_t *
362 get_value (tree var)
363 {
364 ccp_prop_value_t *val;
365
366 if (const_val == NULL
367 || SSA_NAME_VERSION (var) >= n_const_val)
368 return NULL;
369
370 val = &const_val[SSA_NAME_VERSION (var)];
371 if (val->lattice_val == UNINITIALIZED)
372 *val = get_default_value (var);
373
374 canonicalize_value (val);
375
376 return val;
377 }
378
379 /* Return the constant tree value associated with VAR. */
380
381 static inline tree
382 get_constant_value (tree var)
383 {
384 ccp_prop_value_t *val;
385 if (TREE_CODE (var) != SSA_NAME)
386 {
387 if (is_gimple_min_invariant (var))
388 return var;
389 return NULL_TREE;
390 }
391 val = get_value (var);
392 if (val
393 && val->lattice_val == CONSTANT
394 && (TREE_CODE (val->value) != INTEGER_CST
395 || val->mask == 0))
396 return val->value;
397 return NULL_TREE;
398 }
399
400 /* Sets the value associated with VAR to VARYING. */
401
402 static inline void
403 set_value_varying (tree var)
404 {
405 ccp_prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
406
407 val->lattice_val = VARYING;
408 val->value = NULL_TREE;
409 val->mask = -1;
410 }
411
412 /* For integer constants, make sure to drop TREE_OVERFLOW. */
413
414 static void
415 canonicalize_value (ccp_prop_value_t *val)
416 {
417 if (val->lattice_val != CONSTANT)
418 return;
419
420 if (TREE_OVERFLOW_P (val->value))
421 val->value = drop_tree_overflow (val->value);
422 }
423
424 /* Return whether the lattice transition is valid. */
425
426 static bool
427 valid_lattice_transition (ccp_prop_value_t old_val, ccp_prop_value_t new_val)
428 {
429 /* Lattice transitions must always be monotonically increasing in
430 value. */
431 if (old_val.lattice_val < new_val.lattice_val)
432 return true;
433
434 if (old_val.lattice_val != new_val.lattice_val)
435 return false;
436
437 if (!old_val.value && !new_val.value)
438 return true;
439
440 /* Now both lattice values are CONSTANT. */
441
442 /* Allow transitioning from PHI <&x, not executable> == &x
443 to PHI <&x, &y> == common alignment. */
444 if (TREE_CODE (old_val.value) != INTEGER_CST
445 && TREE_CODE (new_val.value) == INTEGER_CST)
446 return true;
447
448 /* Bit-lattices have to agree in the still valid bits. */
449 if (TREE_CODE (old_val.value) == INTEGER_CST
450 && TREE_CODE (new_val.value) == INTEGER_CST)
451 return (wi::bit_and_not (wi::to_widest (old_val.value), new_val.mask)
452 == wi::bit_and_not (wi::to_widest (new_val.value), new_val.mask));
453
454 /* Otherwise constant values have to agree. */
455 if (operand_equal_p (old_val.value, new_val.value, 0))
456 return true;
457
458 /* At least the kinds and types should agree now. */
459 if (TREE_CODE (old_val.value) != TREE_CODE (new_val.value)
460 || !types_compatible_p (TREE_TYPE (old_val.value),
461 TREE_TYPE (new_val.value)))
462 return false;
463
464 /* For floats and !HONOR_NANS allow transitions from (partial) NaN
465 to non-NaN. */
466 tree type = TREE_TYPE (new_val.value);
467 if (SCALAR_FLOAT_TYPE_P (type)
468 && !HONOR_NANS (type))
469 {
470 if (REAL_VALUE_ISNAN (TREE_REAL_CST (old_val.value)))
471 return true;
472 }
473 else if (VECTOR_FLOAT_TYPE_P (type)
474 && !HONOR_NANS (type))
475 {
476 for (unsigned i = 0; i < VECTOR_CST_NELTS (old_val.value); ++i)
477 if (!REAL_VALUE_ISNAN
478 (TREE_REAL_CST (VECTOR_CST_ELT (old_val.value, i)))
479 && !operand_equal_p (VECTOR_CST_ELT (old_val.value, i),
480 VECTOR_CST_ELT (new_val.value, i), 0))
481 return false;
482 return true;
483 }
484 else if (COMPLEX_FLOAT_TYPE_P (type)
485 && !HONOR_NANS (type))
486 {
487 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_REALPART (old_val.value)))
488 && !operand_equal_p (TREE_REALPART (old_val.value),
489 TREE_REALPART (new_val.value), 0))
490 return false;
491 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_IMAGPART (old_val.value)))
492 && !operand_equal_p (TREE_IMAGPART (old_val.value),
493 TREE_IMAGPART (new_val.value), 0))
494 return false;
495 return true;
496 }
497 return false;
498 }
499
500 /* Set the value for variable VAR to NEW_VAL. Return true if the new
501 value is different from VAR's previous value. */
502
503 static bool
504 set_lattice_value (tree var, ccp_prop_value_t new_val)
505 {
506 /* We can deal with old UNINITIALIZED values just fine here. */
507 ccp_prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
508
509 canonicalize_value (&new_val);
510
511 /* We have to be careful to not go up the bitwise lattice
512 represented by the mask.
513 ??? This doesn't seem to be the best place to enforce this. */
514 if (new_val.lattice_val == CONSTANT
515 && old_val->lattice_val == CONSTANT
516 && TREE_CODE (new_val.value) == INTEGER_CST
517 && TREE_CODE (old_val->value) == INTEGER_CST)
518 {
519 widest_int diff = (wi::to_widest (new_val.value)
520 ^ wi::to_widest (old_val->value));
521 new_val.mask = new_val.mask | old_val->mask | diff;
522 }
523
524 gcc_checking_assert (valid_lattice_transition (*old_val, new_val));
525
526 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
527 caller that this was a non-transition. */
528 if (old_val->lattice_val != new_val.lattice_val
529 || (new_val.lattice_val == CONSTANT
530 && TREE_CODE (new_val.value) == INTEGER_CST
531 && (TREE_CODE (old_val->value) != INTEGER_CST
532 || new_val.mask != old_val->mask)))
533 {
534 /* ??? We would like to delay creation of INTEGER_CSTs from
535 partially constants here. */
536
537 if (dump_file && (dump_flags & TDF_DETAILS))
538 {
539 dump_lattice_value (dump_file, "Lattice value changed to ", new_val);
540 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
541 }
542
543 *old_val = new_val;
544
545 gcc_assert (new_val.lattice_val != UNINITIALIZED);
546 return true;
547 }
548
549 return false;
550 }
551
552 static ccp_prop_value_t get_value_for_expr (tree, bool);
553 static ccp_prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
554 static void bit_value_binop_1 (enum tree_code, tree, widest_int *, widest_int *,
555 tree, const widest_int &, const widest_int &,
556 tree, const widest_int &, const widest_int &);
557
558 /* Return a widest_int that can be used for bitwise simplifications
559 from VAL. */
560
561 static widest_int
562 value_to_wide_int (ccp_prop_value_t val)
563 {
564 if (val.value
565 && TREE_CODE (val.value) == INTEGER_CST)
566 return wi::to_widest (val.value);
567
568 return 0;
569 }
570
571 /* Return the value for the address expression EXPR based on alignment
572 information. */
573
574 static ccp_prop_value_t
575 get_value_from_alignment (tree expr)
576 {
577 tree type = TREE_TYPE (expr);
578 ccp_prop_value_t val;
579 unsigned HOST_WIDE_INT bitpos;
580 unsigned int align;
581
582 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
583
584 get_pointer_alignment_1 (expr, &align, &bitpos);
585 val.mask = (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
586 ? wi::mask <widest_int> (TYPE_PRECISION (type), false)
587 : -1).and_not (align / BITS_PER_UNIT - 1);
588 val.lattice_val
589 = wi::sext (val.mask, TYPE_PRECISION (type)) == -1 ? VARYING : CONSTANT;
590 if (val.lattice_val == CONSTANT)
591 val.value = build_int_cstu (type, bitpos / BITS_PER_UNIT);
592 else
593 val.value = NULL_TREE;
594
595 return val;
596 }
597
598 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
599 return constant bits extracted from alignment information for
600 invariant addresses. */
601
602 static ccp_prop_value_t
603 get_value_for_expr (tree expr, bool for_bits_p)
604 {
605 ccp_prop_value_t val;
606
607 if (TREE_CODE (expr) == SSA_NAME)
608 {
609 val = *get_value (expr);
610 if (for_bits_p
611 && val.lattice_val == CONSTANT
612 && TREE_CODE (val.value) == ADDR_EXPR)
613 val = get_value_from_alignment (val.value);
614 }
615 else if (is_gimple_min_invariant (expr)
616 && (!for_bits_p || TREE_CODE (expr) != ADDR_EXPR))
617 {
618 val.lattice_val = CONSTANT;
619 val.value = expr;
620 val.mask = 0;
621 canonicalize_value (&val);
622 }
623 else if (TREE_CODE (expr) == ADDR_EXPR)
624 val = get_value_from_alignment (expr);
625 else
626 {
627 val.lattice_val = VARYING;
628 val.mask = -1;
629 val.value = NULL_TREE;
630 }
631 return val;
632 }
633
634 /* Return the likely CCP lattice value for STMT.
635
636 If STMT has no operands, then return CONSTANT.
637
638 Else if undefinedness of operands of STMT cause its value to be
639 undefined, then return UNDEFINED.
640
641 Else if any operands of STMT are constants, then return CONSTANT.
642
643 Else return VARYING. */
644
645 static ccp_lattice_t
646 likely_value (gimple stmt)
647 {
648 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
649 bool has_nsa_operand;
650 tree use;
651 ssa_op_iter iter;
652 unsigned i;
653
654 enum gimple_code code = gimple_code (stmt);
655
656 /* This function appears to be called only for assignments, calls,
657 conditionals, and switches, due to the logic in visit_stmt. */
658 gcc_assert (code == GIMPLE_ASSIGN
659 || code == GIMPLE_CALL
660 || code == GIMPLE_COND
661 || code == GIMPLE_SWITCH);
662
663 /* If the statement has volatile operands, it won't fold to a
664 constant value. */
665 if (gimple_has_volatile_ops (stmt))
666 return VARYING;
667
668 /* Arrive here for more complex cases. */
669 has_constant_operand = false;
670 has_undefined_operand = false;
671 all_undefined_operands = true;
672 has_nsa_operand = false;
673 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
674 {
675 ccp_prop_value_t *val = get_value (use);
676
677 if (val->lattice_val == UNDEFINED)
678 has_undefined_operand = true;
679 else
680 all_undefined_operands = false;
681
682 if (val->lattice_val == CONSTANT)
683 has_constant_operand = true;
684
685 if (SSA_NAME_IS_DEFAULT_DEF (use)
686 || !prop_simulate_again_p (SSA_NAME_DEF_STMT (use)))
687 has_nsa_operand = true;
688 }
689
690 /* There may be constants in regular rhs operands. For calls we
691 have to ignore lhs, fndecl and static chain, otherwise only
692 the lhs. */
693 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
694 i < gimple_num_ops (stmt); ++i)
695 {
696 tree op = gimple_op (stmt, i);
697 if (!op || TREE_CODE (op) == SSA_NAME)
698 continue;
699 if (is_gimple_min_invariant (op))
700 has_constant_operand = true;
701 }
702
703 if (has_constant_operand)
704 all_undefined_operands = false;
705
706 if (has_undefined_operand
707 && code == GIMPLE_CALL
708 && gimple_call_internal_p (stmt))
709 switch (gimple_call_internal_fn (stmt))
710 {
711 /* These 3 builtins use the first argument just as a magic
712 way how to find out a decl uid. */
713 case IFN_GOMP_SIMD_LANE:
714 case IFN_GOMP_SIMD_VF:
715 case IFN_GOMP_SIMD_LAST_LANE:
716 has_undefined_operand = false;
717 break;
718 default:
719 break;
720 }
721
722 /* If the operation combines operands like COMPLEX_EXPR make sure to
723 not mark the result UNDEFINED if only one part of the result is
724 undefined. */
725 if (has_undefined_operand && all_undefined_operands)
726 return UNDEFINED;
727 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
728 {
729 switch (gimple_assign_rhs_code (stmt))
730 {
731 /* Unary operators are handled with all_undefined_operands. */
732 case PLUS_EXPR:
733 case MINUS_EXPR:
734 case POINTER_PLUS_EXPR:
735 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
736 Not bitwise operators, one VARYING operand may specify the
737 result completely. Not logical operators for the same reason.
738 Not COMPLEX_EXPR as one VARYING operand makes the result partly
739 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
740 the undefined operand may be promoted. */
741 return UNDEFINED;
742
743 case ADDR_EXPR:
744 /* If any part of an address is UNDEFINED, like the index
745 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
746 return UNDEFINED;
747
748 default:
749 ;
750 }
751 }
752 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
753 fall back to CONSTANT. During iteration UNDEFINED may still drop
754 to CONSTANT. */
755 if (has_undefined_operand)
756 return CONSTANT;
757
758 /* We do not consider virtual operands here -- load from read-only
759 memory may have only VARYING virtual operands, but still be
760 constant. Also we can combine the stmt with definitions from
761 operands whose definitions are not simulated again. */
762 if (has_constant_operand
763 || has_nsa_operand
764 || gimple_references_memory_p (stmt))
765 return CONSTANT;
766
767 return VARYING;
768 }
769
770 /* Returns true if STMT cannot be constant. */
771
772 static bool
773 surely_varying_stmt_p (gimple stmt)
774 {
775 /* If the statement has operands that we cannot handle, it cannot be
776 constant. */
777 if (gimple_has_volatile_ops (stmt))
778 return true;
779
780 /* If it is a call and does not return a value or is not a
781 builtin and not an indirect call or a call to function with
782 assume_aligned/alloc_align attribute, it is varying. */
783 if (is_gimple_call (stmt))
784 {
785 tree fndecl, fntype = gimple_call_fntype (stmt);
786 if (!gimple_call_lhs (stmt)
787 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
788 && !DECL_BUILT_IN (fndecl)
789 && !lookup_attribute ("assume_aligned",
790 TYPE_ATTRIBUTES (fntype))
791 && !lookup_attribute ("alloc_align",
792 TYPE_ATTRIBUTES (fntype))))
793 return true;
794 }
795
796 /* Any other store operation is not interesting. */
797 else if (gimple_vdef (stmt))
798 return true;
799
800 /* Anything other than assignments and conditional jumps are not
801 interesting for CCP. */
802 if (gimple_code (stmt) != GIMPLE_ASSIGN
803 && gimple_code (stmt) != GIMPLE_COND
804 && gimple_code (stmt) != GIMPLE_SWITCH
805 && gimple_code (stmt) != GIMPLE_CALL)
806 return true;
807
808 return false;
809 }
810
811 /* Initialize local data structures for CCP. */
812
813 static void
814 ccp_initialize (void)
815 {
816 basic_block bb;
817
818 n_const_val = num_ssa_names;
819 const_val = XCNEWVEC (ccp_prop_value_t, n_const_val);
820
821 /* Initialize simulation flags for PHI nodes and statements. */
822 FOR_EACH_BB_FN (bb, cfun)
823 {
824 gimple_stmt_iterator i;
825
826 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
827 {
828 gimple stmt = gsi_stmt (i);
829 bool is_varying;
830
831 /* If the statement is a control insn, then we do not
832 want to avoid simulating the statement once. Failure
833 to do so means that those edges will never get added. */
834 if (stmt_ends_bb_p (stmt))
835 is_varying = false;
836 else
837 is_varying = surely_varying_stmt_p (stmt);
838
839 if (is_varying)
840 {
841 tree def;
842 ssa_op_iter iter;
843
844 /* If the statement will not produce a constant, mark
845 all its outputs VARYING. */
846 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
847 set_value_varying (def);
848 }
849 prop_set_simulate_again (stmt, !is_varying);
850 }
851 }
852
853 /* Now process PHI nodes. We never clear the simulate_again flag on
854 phi nodes, since we do not know which edges are executable yet,
855 except for phi nodes for virtual operands when we do not do store ccp. */
856 FOR_EACH_BB_FN (bb, cfun)
857 {
858 gphi_iterator i;
859
860 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
861 {
862 gphi *phi = i.phi ();
863
864 if (virtual_operand_p (gimple_phi_result (phi)))
865 prop_set_simulate_again (phi, false);
866 else
867 prop_set_simulate_again (phi, true);
868 }
869 }
870 }
871
872 /* Debug count support. Reset the values of ssa names
873 VARYING when the total number ssa names analyzed is
874 beyond the debug count specified. */
875
876 static void
877 do_dbg_cnt (void)
878 {
879 unsigned i;
880 for (i = 0; i < num_ssa_names; i++)
881 {
882 if (!dbg_cnt (ccp))
883 {
884 const_val[i].lattice_val = VARYING;
885 const_val[i].mask = -1;
886 const_val[i].value = NULL_TREE;
887 }
888 }
889 }
890
891
892 /* Do final substitution of propagated values, cleanup the flowgraph and
893 free allocated storage.
894
895 Return TRUE when something was optimized. */
896
897 static bool
898 ccp_finalize (void)
899 {
900 bool something_changed;
901 unsigned i;
902
903 do_dbg_cnt ();
904
905 /* Derive alignment and misalignment information from partially
906 constant pointers in the lattice or nonzero bits from partially
907 constant integers. */
908 for (i = 1; i < num_ssa_names; ++i)
909 {
910 tree name = ssa_name (i);
911 ccp_prop_value_t *val;
912 unsigned int tem, align;
913
914 if (!name
915 || (!POINTER_TYPE_P (TREE_TYPE (name))
916 && (!INTEGRAL_TYPE_P (TREE_TYPE (name))
917 /* Don't record nonzero bits before IPA to avoid
918 using too much memory. */
919 || first_pass_instance)))
920 continue;
921
922 val = get_value (name);
923 if (val->lattice_val != CONSTANT
924 || TREE_CODE (val->value) != INTEGER_CST)
925 continue;
926
927 if (POINTER_TYPE_P (TREE_TYPE (name)))
928 {
929 /* Trailing mask bits specify the alignment, trailing value
930 bits the misalignment. */
931 tem = val->mask.to_uhwi ();
932 align = (tem & -tem);
933 if (align > 1)
934 set_ptr_info_alignment (get_ptr_info (name), align,
935 (TREE_INT_CST_LOW (val->value)
936 & (align - 1)));
937 }
938 else
939 {
940 unsigned int precision = TYPE_PRECISION (TREE_TYPE (val->value));
941 wide_int nonzero_bits = wide_int::from (val->mask, precision,
942 UNSIGNED) | val->value;
943 nonzero_bits &= get_nonzero_bits (name);
944 set_nonzero_bits (name, nonzero_bits);
945 }
946 }
947
948 /* Perform substitutions based on the known constant values. */
949 something_changed = substitute_and_fold (get_constant_value,
950 ccp_fold_stmt, true);
951
952 free (const_val);
953 const_val = NULL;
954 return something_changed;;
955 }
956
957
958 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
959 in VAL1.
960
961 any M UNDEFINED = any
962 any M VARYING = VARYING
963 Ci M Cj = Ci if (i == j)
964 Ci M Cj = VARYING if (i != j)
965 */
966
967 static void
968 ccp_lattice_meet (ccp_prop_value_t *val1, ccp_prop_value_t *val2)
969 {
970 if (val1->lattice_val == UNDEFINED)
971 {
972 /* UNDEFINED M any = any */
973 *val1 = *val2;
974 }
975 else if (val2->lattice_val == UNDEFINED)
976 {
977 /* any M UNDEFINED = any
978 Nothing to do. VAL1 already contains the value we want. */
979 ;
980 }
981 else if (val1->lattice_val == VARYING
982 || val2->lattice_val == VARYING)
983 {
984 /* any M VARYING = VARYING. */
985 val1->lattice_val = VARYING;
986 val1->mask = -1;
987 val1->value = NULL_TREE;
988 }
989 else if (val1->lattice_val == CONSTANT
990 && val2->lattice_val == CONSTANT
991 && TREE_CODE (val1->value) == INTEGER_CST
992 && TREE_CODE (val2->value) == INTEGER_CST)
993 {
994 /* Ci M Cj = Ci if (i == j)
995 Ci M Cj = VARYING if (i != j)
996
997 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
998 drop to varying. */
999 val1->mask = (val1->mask | val2->mask
1000 | (wi::to_widest (val1->value)
1001 ^ wi::to_widest (val2->value)));
1002 if (wi::sext (val1->mask, TYPE_PRECISION (TREE_TYPE (val1->value))) == -1)
1003 {
1004 val1->lattice_val = VARYING;
1005 val1->value = NULL_TREE;
1006 }
1007 }
1008 else if (val1->lattice_val == CONSTANT
1009 && val2->lattice_val == CONSTANT
1010 && simple_cst_equal (val1->value, val2->value) == 1)
1011 {
1012 /* Ci M Cj = Ci if (i == j)
1013 Ci M Cj = VARYING if (i != j)
1014
1015 VAL1 already contains the value we want for equivalent values. */
1016 }
1017 else if (val1->lattice_val == CONSTANT
1018 && val2->lattice_val == CONSTANT
1019 && (TREE_CODE (val1->value) == ADDR_EXPR
1020 || TREE_CODE (val2->value) == ADDR_EXPR))
1021 {
1022 /* When not equal addresses are involved try meeting for
1023 alignment. */
1024 ccp_prop_value_t tem = *val2;
1025 if (TREE_CODE (val1->value) == ADDR_EXPR)
1026 *val1 = get_value_for_expr (val1->value, true);
1027 if (TREE_CODE (val2->value) == ADDR_EXPR)
1028 tem = get_value_for_expr (val2->value, true);
1029 ccp_lattice_meet (val1, &tem);
1030 }
1031 else
1032 {
1033 /* Any other combination is VARYING. */
1034 val1->lattice_val = VARYING;
1035 val1->mask = -1;
1036 val1->value = NULL_TREE;
1037 }
1038 }
1039
1040
1041 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
1042 lattice values to determine PHI_NODE's lattice value. The value of a
1043 PHI node is determined calling ccp_lattice_meet with all the arguments
1044 of the PHI node that are incoming via executable edges. */
1045
1046 static enum ssa_prop_result
1047 ccp_visit_phi_node (gphi *phi)
1048 {
1049 unsigned i;
1050 ccp_prop_value_t *old_val, new_val;
1051
1052 if (dump_file && (dump_flags & TDF_DETAILS))
1053 {
1054 fprintf (dump_file, "\nVisiting PHI node: ");
1055 print_gimple_stmt (dump_file, phi, 0, dump_flags);
1056 }
1057
1058 old_val = get_value (gimple_phi_result (phi));
1059 switch (old_val->lattice_val)
1060 {
1061 case VARYING:
1062 return SSA_PROP_VARYING;
1063
1064 case CONSTANT:
1065 new_val = *old_val;
1066 break;
1067
1068 case UNDEFINED:
1069 new_val.lattice_val = UNDEFINED;
1070 new_val.value = NULL_TREE;
1071 break;
1072
1073 default:
1074 gcc_unreachable ();
1075 }
1076
1077 for (i = 0; i < gimple_phi_num_args (phi); i++)
1078 {
1079 /* Compute the meet operator over all the PHI arguments flowing
1080 through executable edges. */
1081 edge e = gimple_phi_arg_edge (phi, i);
1082
1083 if (dump_file && (dump_flags & TDF_DETAILS))
1084 {
1085 fprintf (dump_file,
1086 "\n Argument #%d (%d -> %d %sexecutable)\n",
1087 i, e->src->index, e->dest->index,
1088 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
1089 }
1090
1091 /* If the incoming edge is executable, Compute the meet operator for
1092 the existing value of the PHI node and the current PHI argument. */
1093 if (e->flags & EDGE_EXECUTABLE)
1094 {
1095 tree arg = gimple_phi_arg (phi, i)->def;
1096 ccp_prop_value_t arg_val = get_value_for_expr (arg, false);
1097
1098 ccp_lattice_meet (&new_val, &arg_val);
1099
1100 if (dump_file && (dump_flags & TDF_DETAILS))
1101 {
1102 fprintf (dump_file, "\t");
1103 print_generic_expr (dump_file, arg, dump_flags);
1104 dump_lattice_value (dump_file, "\tValue: ", arg_val);
1105 fprintf (dump_file, "\n");
1106 }
1107
1108 if (new_val.lattice_val == VARYING)
1109 break;
1110 }
1111 }
1112
1113 if (dump_file && (dump_flags & TDF_DETAILS))
1114 {
1115 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
1116 fprintf (dump_file, "\n\n");
1117 }
1118
1119 /* Make the transition to the new value. */
1120 if (set_lattice_value (gimple_phi_result (phi), new_val))
1121 {
1122 if (new_val.lattice_val == VARYING)
1123 return SSA_PROP_VARYING;
1124 else
1125 return SSA_PROP_INTERESTING;
1126 }
1127 else
1128 return SSA_PROP_NOT_INTERESTING;
1129 }
1130
1131 /* Return the constant value for OP or OP otherwise. */
1132
1133 static tree
1134 valueize_op (tree op)
1135 {
1136 if (TREE_CODE (op) == SSA_NAME)
1137 {
1138 tree tem = get_constant_value (op);
1139 if (tem)
1140 return tem;
1141 }
1142 return op;
1143 }
1144
1145 /* Return the constant value for OP, but signal to not follow SSA
1146 edges if the definition may be simulated again. */
1147
1148 static tree
1149 valueize_op_1 (tree op)
1150 {
1151 if (TREE_CODE (op) == SSA_NAME)
1152 {
1153 /* If the definition may be simulated again we cannot follow
1154 this SSA edge as the SSA propagator does not necessarily
1155 re-visit the use. */
1156 gimple def_stmt = SSA_NAME_DEF_STMT (op);
1157 if (!gimple_nop_p (def_stmt)
1158 && prop_simulate_again_p (def_stmt))
1159 return NULL_TREE;
1160 tree tem = get_constant_value (op);
1161 if (tem)
1162 return tem;
1163 }
1164 return op;
1165 }
1166
1167 /* CCP specific front-end to the non-destructive constant folding
1168 routines.
1169
1170 Attempt to simplify the RHS of STMT knowing that one or more
1171 operands are constants.
1172
1173 If simplification is possible, return the simplified RHS,
1174 otherwise return the original RHS or NULL_TREE. */
1175
1176 static tree
1177 ccp_fold (gimple stmt)
1178 {
1179 location_t loc = gimple_location (stmt);
1180 switch (gimple_code (stmt))
1181 {
1182 case GIMPLE_COND:
1183 {
1184 /* Handle comparison operators that can appear in GIMPLE form. */
1185 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1186 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1187 enum tree_code code = gimple_cond_code (stmt);
1188 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1189 }
1190
1191 case GIMPLE_SWITCH:
1192 {
1193 /* Return the constant switch index. */
1194 return valueize_op (gimple_switch_index (as_a <gswitch *> (stmt)));
1195 }
1196
1197 case GIMPLE_ASSIGN:
1198 case GIMPLE_CALL:
1199 return gimple_fold_stmt_to_constant_1 (stmt,
1200 valueize_op, valueize_op_1);
1201
1202 default:
1203 gcc_unreachable ();
1204 }
1205 }
1206
1207 /* Apply the operation CODE in type TYPE to the value, mask pair
1208 RVAL and RMASK representing a value of type RTYPE and set
1209 the value, mask pair *VAL and *MASK to the result. */
1210
1211 static void
1212 bit_value_unop_1 (enum tree_code code, tree type,
1213 widest_int *val, widest_int *mask,
1214 tree rtype, const widest_int &rval, const widest_int &rmask)
1215 {
1216 switch (code)
1217 {
1218 case BIT_NOT_EXPR:
1219 *mask = rmask;
1220 *val = ~rval;
1221 break;
1222
1223 case NEGATE_EXPR:
1224 {
1225 widest_int temv, temm;
1226 /* Return ~rval + 1. */
1227 bit_value_unop_1 (BIT_NOT_EXPR, type, &temv, &temm, type, rval, rmask);
1228 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1229 type, temv, temm, type, 1, 0);
1230 break;
1231 }
1232
1233 CASE_CONVERT:
1234 {
1235 signop sgn;
1236
1237 /* First extend mask and value according to the original type. */
1238 sgn = TYPE_SIGN (rtype);
1239 *mask = wi::ext (rmask, TYPE_PRECISION (rtype), sgn);
1240 *val = wi::ext (rval, TYPE_PRECISION (rtype), sgn);
1241
1242 /* Then extend mask and value according to the target type. */
1243 sgn = TYPE_SIGN (type);
1244 *mask = wi::ext (*mask, TYPE_PRECISION (type), sgn);
1245 *val = wi::ext (*val, TYPE_PRECISION (type), sgn);
1246 break;
1247 }
1248
1249 default:
1250 *mask = -1;
1251 break;
1252 }
1253 }
1254
1255 /* Apply the operation CODE in type TYPE to the value, mask pairs
1256 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1257 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1258
1259 static void
1260 bit_value_binop_1 (enum tree_code code, tree type,
1261 widest_int *val, widest_int *mask,
1262 tree r1type, const widest_int &r1val,
1263 const widest_int &r1mask, tree r2type,
1264 const widest_int &r2val, const widest_int &r2mask)
1265 {
1266 signop sgn = TYPE_SIGN (type);
1267 int width = TYPE_PRECISION (type);
1268 bool swap_p = false;
1269
1270 /* Assume we'll get a constant result. Use an initial non varying
1271 value, we fall back to varying in the end if necessary. */
1272 *mask = -1;
1273
1274 switch (code)
1275 {
1276 case BIT_AND_EXPR:
1277 /* The mask is constant where there is a known not
1278 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1279 *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
1280 *val = r1val & r2val;
1281 break;
1282
1283 case BIT_IOR_EXPR:
1284 /* The mask is constant where there is a known
1285 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1286 *mask = (r1mask | r2mask)
1287 .and_not (r1val.and_not (r1mask) | r2val.and_not (r2mask));
1288 *val = r1val | r2val;
1289 break;
1290
1291 case BIT_XOR_EXPR:
1292 /* m1 | m2 */
1293 *mask = r1mask | r2mask;
1294 *val = r1val ^ r2val;
1295 break;
1296
1297 case LROTATE_EXPR:
1298 case RROTATE_EXPR:
1299 if (r2mask == 0)
1300 {
1301 widest_int shift = r2val;
1302 if (shift == 0)
1303 {
1304 *mask = r1mask;
1305 *val = r1val;
1306 }
1307 else
1308 {
1309 if (wi::neg_p (shift))
1310 {
1311 shift = -shift;
1312 if (code == RROTATE_EXPR)
1313 code = LROTATE_EXPR;
1314 else
1315 code = RROTATE_EXPR;
1316 }
1317 if (code == RROTATE_EXPR)
1318 {
1319 *mask = wi::rrotate (r1mask, shift, width);
1320 *val = wi::rrotate (r1val, shift, width);
1321 }
1322 else
1323 {
1324 *mask = wi::lrotate (r1mask, shift, width);
1325 *val = wi::lrotate (r1val, shift, width);
1326 }
1327 }
1328 }
1329 break;
1330
1331 case LSHIFT_EXPR:
1332 case RSHIFT_EXPR:
1333 /* ??? We can handle partially known shift counts if we know
1334 its sign. That way we can tell that (x << (y | 8)) & 255
1335 is zero. */
1336 if (r2mask == 0)
1337 {
1338 widest_int shift = r2val;
1339 if (shift == 0)
1340 {
1341 *mask = r1mask;
1342 *val = r1val;
1343 }
1344 else
1345 {
1346 if (wi::neg_p (shift))
1347 {
1348 shift = -shift;
1349 if (code == RSHIFT_EXPR)
1350 code = LSHIFT_EXPR;
1351 else
1352 code = RSHIFT_EXPR;
1353 }
1354 if (code == RSHIFT_EXPR)
1355 {
1356 *mask = wi::rshift (wi::ext (r1mask, width, sgn), shift, sgn);
1357 *val = wi::rshift (wi::ext (r1val, width, sgn), shift, sgn);
1358 }
1359 else
1360 {
1361 *mask = wi::ext (wi::lshift (r1mask, shift), width, sgn);
1362 *val = wi::ext (wi::lshift (r1val, shift), width, sgn);
1363 }
1364 }
1365 }
1366 break;
1367
1368 case PLUS_EXPR:
1369 case POINTER_PLUS_EXPR:
1370 {
1371 /* Do the addition with unknown bits set to zero, to give carry-ins of
1372 zero wherever possible. */
1373 widest_int lo = r1val.and_not (r1mask) + r2val.and_not (r2mask);
1374 lo = wi::ext (lo, width, sgn);
1375 /* Do the addition with unknown bits set to one, to give carry-ins of
1376 one wherever possible. */
1377 widest_int hi = (r1val | r1mask) + (r2val | r2mask);
1378 hi = wi::ext (hi, width, sgn);
1379 /* Each bit in the result is known if (a) the corresponding bits in
1380 both inputs are known, and (b) the carry-in to that bit position
1381 is known. We can check condition (b) by seeing if we got the same
1382 result with minimised carries as with maximised carries. */
1383 *mask = r1mask | r2mask | (lo ^ hi);
1384 *mask = wi::ext (*mask, width, sgn);
1385 /* It shouldn't matter whether we choose lo or hi here. */
1386 *val = lo;
1387 break;
1388 }
1389
1390 case MINUS_EXPR:
1391 {
1392 widest_int temv, temm;
1393 bit_value_unop_1 (NEGATE_EXPR, r2type, &temv, &temm,
1394 r2type, r2val, r2mask);
1395 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1396 r1type, r1val, r1mask,
1397 r2type, temv, temm);
1398 break;
1399 }
1400
1401 case MULT_EXPR:
1402 {
1403 /* Just track trailing zeros in both operands and transfer
1404 them to the other. */
1405 int r1tz = wi::ctz (r1val | r1mask);
1406 int r2tz = wi::ctz (r2val | r2mask);
1407 if (r1tz + r2tz >= width)
1408 {
1409 *mask = 0;
1410 *val = 0;
1411 }
1412 else if (r1tz + r2tz > 0)
1413 {
1414 *mask = wi::ext (wi::mask <widest_int> (r1tz + r2tz, true),
1415 width, sgn);
1416 *val = 0;
1417 }
1418 break;
1419 }
1420
1421 case EQ_EXPR:
1422 case NE_EXPR:
1423 {
1424 widest_int m = r1mask | r2mask;
1425 if (r1val.and_not (m) != r2val.and_not (m))
1426 {
1427 *mask = 0;
1428 *val = ((code == EQ_EXPR) ? 0 : 1);
1429 }
1430 else
1431 {
1432 /* We know the result of a comparison is always one or zero. */
1433 *mask = 1;
1434 *val = 0;
1435 }
1436 break;
1437 }
1438
1439 case GE_EXPR:
1440 case GT_EXPR:
1441 swap_p = true;
1442 code = swap_tree_comparison (code);
1443 /* Fall through. */
1444 case LT_EXPR:
1445 case LE_EXPR:
1446 {
1447 int minmax, maxmin;
1448
1449 const widest_int &o1val = swap_p ? r2val : r1val;
1450 const widest_int &o1mask = swap_p ? r2mask : r1mask;
1451 const widest_int &o2val = swap_p ? r1val : r2val;
1452 const widest_int &o2mask = swap_p ? r1mask : r2mask;
1453
1454 /* If the most significant bits are not known we know nothing. */
1455 if (wi::neg_p (o1mask) || wi::neg_p (o2mask))
1456 break;
1457
1458 /* For comparisons the signedness is in the comparison operands. */
1459 sgn = TYPE_SIGN (r1type);
1460
1461 /* If we know the most significant bits we know the values
1462 value ranges by means of treating varying bits as zero
1463 or one. Do a cross comparison of the max/min pairs. */
1464 maxmin = wi::cmp (o1val | o1mask, o2val.and_not (o2mask), sgn);
1465 minmax = wi::cmp (o1val.and_not (o1mask), o2val | o2mask, sgn);
1466 if (maxmin < 0) /* o1 is less than o2. */
1467 {
1468 *mask = 0;
1469 *val = 1;
1470 }
1471 else if (minmax > 0) /* o1 is not less or equal to o2. */
1472 {
1473 *mask = 0;
1474 *val = 0;
1475 }
1476 else if (maxmin == minmax) /* o1 and o2 are equal. */
1477 {
1478 /* This probably should never happen as we'd have
1479 folded the thing during fully constant value folding. */
1480 *mask = 0;
1481 *val = (code == LE_EXPR ? 1 : 0);
1482 }
1483 else
1484 {
1485 /* We know the result of a comparison is always one or zero. */
1486 *mask = 1;
1487 *val = 0;
1488 }
1489 break;
1490 }
1491
1492 default:;
1493 }
1494 }
1495
1496 /* Return the propagation value when applying the operation CODE to
1497 the value RHS yielding type TYPE. */
1498
1499 static ccp_prop_value_t
1500 bit_value_unop (enum tree_code code, tree type, tree rhs)
1501 {
1502 ccp_prop_value_t rval = get_value_for_expr (rhs, true);
1503 widest_int value, mask;
1504 ccp_prop_value_t val;
1505
1506 if (rval.lattice_val == UNDEFINED)
1507 return rval;
1508
1509 gcc_assert ((rval.lattice_val == CONSTANT
1510 && TREE_CODE (rval.value) == INTEGER_CST)
1511 || wi::sext (rval.mask, TYPE_PRECISION (TREE_TYPE (rhs))) == -1);
1512 bit_value_unop_1 (code, type, &value, &mask,
1513 TREE_TYPE (rhs), value_to_wide_int (rval), rval.mask);
1514 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1515 {
1516 val.lattice_val = CONSTANT;
1517 val.mask = mask;
1518 /* ??? Delay building trees here. */
1519 val.value = wide_int_to_tree (type, value);
1520 }
1521 else
1522 {
1523 val.lattice_val = VARYING;
1524 val.value = NULL_TREE;
1525 val.mask = -1;
1526 }
1527 return val;
1528 }
1529
1530 /* Return the propagation value when applying the operation CODE to
1531 the values RHS1 and RHS2 yielding type TYPE. */
1532
1533 static ccp_prop_value_t
1534 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
1535 {
1536 ccp_prop_value_t r1val = get_value_for_expr (rhs1, true);
1537 ccp_prop_value_t r2val = get_value_for_expr (rhs2, true);
1538 widest_int value, mask;
1539 ccp_prop_value_t val;
1540
1541 if (r1val.lattice_val == UNDEFINED
1542 || r2val.lattice_val == UNDEFINED)
1543 {
1544 val.lattice_val = VARYING;
1545 val.value = NULL_TREE;
1546 val.mask = -1;
1547 return val;
1548 }
1549
1550 gcc_assert ((r1val.lattice_val == CONSTANT
1551 && TREE_CODE (r1val.value) == INTEGER_CST)
1552 || wi::sext (r1val.mask,
1553 TYPE_PRECISION (TREE_TYPE (rhs1))) == -1);
1554 gcc_assert ((r2val.lattice_val == CONSTANT
1555 && TREE_CODE (r2val.value) == INTEGER_CST)
1556 || wi::sext (r2val.mask,
1557 TYPE_PRECISION (TREE_TYPE (rhs2))) == -1);
1558 bit_value_binop_1 (code, type, &value, &mask,
1559 TREE_TYPE (rhs1), value_to_wide_int (r1val), r1val.mask,
1560 TREE_TYPE (rhs2), value_to_wide_int (r2val), r2val.mask);
1561 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1562 {
1563 val.lattice_val = CONSTANT;
1564 val.mask = mask;
1565 /* ??? Delay building trees here. */
1566 val.value = wide_int_to_tree (type, value);
1567 }
1568 else
1569 {
1570 val.lattice_val = VARYING;
1571 val.value = NULL_TREE;
1572 val.mask = -1;
1573 }
1574 return val;
1575 }
1576
1577 /* Return the propagation value for __builtin_assume_aligned
1578 and functions with assume_aligned or alloc_aligned attribute.
1579 For __builtin_assume_aligned, ATTR is NULL_TREE,
1580 for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED
1581 is false, for alloc_aligned attribute ATTR is non-NULL and
1582 ALLOC_ALIGNED is true. */
1583
1584 static ccp_prop_value_t
1585 bit_value_assume_aligned (gimple stmt, tree attr, ccp_prop_value_t ptrval,
1586 bool alloc_aligned)
1587 {
1588 tree align, misalign = NULL_TREE, type;
1589 unsigned HOST_WIDE_INT aligni, misaligni = 0;
1590 ccp_prop_value_t alignval;
1591 widest_int value, mask;
1592 ccp_prop_value_t val;
1593
1594 if (attr == NULL_TREE)
1595 {
1596 tree ptr = gimple_call_arg (stmt, 0);
1597 type = TREE_TYPE (ptr);
1598 ptrval = get_value_for_expr (ptr, true);
1599 }
1600 else
1601 {
1602 tree lhs = gimple_call_lhs (stmt);
1603 type = TREE_TYPE (lhs);
1604 }
1605
1606 if (ptrval.lattice_val == UNDEFINED)
1607 return ptrval;
1608 gcc_assert ((ptrval.lattice_val == CONSTANT
1609 && TREE_CODE (ptrval.value) == INTEGER_CST)
1610 || wi::sext (ptrval.mask, TYPE_PRECISION (type)) == -1);
1611 if (attr == NULL_TREE)
1612 {
1613 /* Get aligni and misaligni from __builtin_assume_aligned. */
1614 align = gimple_call_arg (stmt, 1);
1615 if (!tree_fits_uhwi_p (align))
1616 return ptrval;
1617 aligni = tree_to_uhwi (align);
1618 if (gimple_call_num_args (stmt) > 2)
1619 {
1620 misalign = gimple_call_arg (stmt, 2);
1621 if (!tree_fits_uhwi_p (misalign))
1622 return ptrval;
1623 misaligni = tree_to_uhwi (misalign);
1624 }
1625 }
1626 else
1627 {
1628 /* Get aligni and misaligni from assume_aligned or
1629 alloc_align attributes. */
1630 if (TREE_VALUE (attr) == NULL_TREE)
1631 return ptrval;
1632 attr = TREE_VALUE (attr);
1633 align = TREE_VALUE (attr);
1634 if (!tree_fits_uhwi_p (align))
1635 return ptrval;
1636 aligni = tree_to_uhwi (align);
1637 if (alloc_aligned)
1638 {
1639 if (aligni == 0 || aligni > gimple_call_num_args (stmt))
1640 return ptrval;
1641 align = gimple_call_arg (stmt, aligni - 1);
1642 if (!tree_fits_uhwi_p (align))
1643 return ptrval;
1644 aligni = tree_to_uhwi (align);
1645 }
1646 else if (TREE_CHAIN (attr) && TREE_VALUE (TREE_CHAIN (attr)))
1647 {
1648 misalign = TREE_VALUE (TREE_CHAIN (attr));
1649 if (!tree_fits_uhwi_p (misalign))
1650 return ptrval;
1651 misaligni = tree_to_uhwi (misalign);
1652 }
1653 }
1654 if (aligni <= 1 || (aligni & (aligni - 1)) != 0 || misaligni >= aligni)
1655 return ptrval;
1656
1657 align = build_int_cst_type (type, -aligni);
1658 alignval = get_value_for_expr (align, true);
1659 bit_value_binop_1 (BIT_AND_EXPR, type, &value, &mask,
1660 type, value_to_wide_int (ptrval), ptrval.mask,
1661 type, value_to_wide_int (alignval), alignval.mask);
1662 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1663 {
1664 val.lattice_val = CONSTANT;
1665 val.mask = mask;
1666 gcc_assert ((mask.to_uhwi () & (aligni - 1)) == 0);
1667 gcc_assert ((value.to_uhwi () & (aligni - 1)) == 0);
1668 value |= misaligni;
1669 /* ??? Delay building trees here. */
1670 val.value = wide_int_to_tree (type, value);
1671 }
1672 else
1673 {
1674 val.lattice_val = VARYING;
1675 val.value = NULL_TREE;
1676 val.mask = -1;
1677 }
1678 return val;
1679 }
1680
1681 /* Evaluate statement STMT.
1682 Valid only for assignments, calls, conditionals, and switches. */
1683
1684 static ccp_prop_value_t
1685 evaluate_stmt (gimple stmt)
1686 {
1687 ccp_prop_value_t val;
1688 tree simplified = NULL_TREE;
1689 ccp_lattice_t likelyvalue = likely_value (stmt);
1690 bool is_constant = false;
1691 unsigned int align;
1692
1693 if (dump_file && (dump_flags & TDF_DETAILS))
1694 {
1695 fprintf (dump_file, "which is likely ");
1696 switch (likelyvalue)
1697 {
1698 case CONSTANT:
1699 fprintf (dump_file, "CONSTANT");
1700 break;
1701 case UNDEFINED:
1702 fprintf (dump_file, "UNDEFINED");
1703 break;
1704 case VARYING:
1705 fprintf (dump_file, "VARYING");
1706 break;
1707 default:;
1708 }
1709 fprintf (dump_file, "\n");
1710 }
1711
1712 /* If the statement is likely to have a CONSTANT result, then try
1713 to fold the statement to determine the constant value. */
1714 /* FIXME. This is the only place that we call ccp_fold.
1715 Since likely_value never returns CONSTANT for calls, we will
1716 not attempt to fold them, including builtins that may profit. */
1717 if (likelyvalue == CONSTANT)
1718 {
1719 fold_defer_overflow_warnings ();
1720 simplified = ccp_fold (stmt);
1721 is_constant = simplified && is_gimple_min_invariant (simplified);
1722 fold_undefer_overflow_warnings (is_constant, stmt, 0);
1723 if (is_constant)
1724 {
1725 /* The statement produced a constant value. */
1726 val.lattice_val = CONSTANT;
1727 val.value = simplified;
1728 val.mask = 0;
1729 }
1730 }
1731 /* If the statement is likely to have a VARYING result, then do not
1732 bother folding the statement. */
1733 else if (likelyvalue == VARYING)
1734 {
1735 enum gimple_code code = gimple_code (stmt);
1736 if (code == GIMPLE_ASSIGN)
1737 {
1738 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1739
1740 /* Other cases cannot satisfy is_gimple_min_invariant
1741 without folding. */
1742 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
1743 simplified = gimple_assign_rhs1 (stmt);
1744 }
1745 else if (code == GIMPLE_SWITCH)
1746 simplified = gimple_switch_index (as_a <gswitch *> (stmt));
1747 else
1748 /* These cannot satisfy is_gimple_min_invariant without folding. */
1749 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
1750 is_constant = simplified && is_gimple_min_invariant (simplified);
1751 if (is_constant)
1752 {
1753 /* The statement produced a constant value. */
1754 val.lattice_val = CONSTANT;
1755 val.value = simplified;
1756 val.mask = 0;
1757 }
1758 }
1759
1760 /* Resort to simplification for bitwise tracking. */
1761 if (flag_tree_bit_ccp
1762 && (likelyvalue == CONSTANT || is_gimple_call (stmt)
1763 || (gimple_assign_single_p (stmt)
1764 && gimple_assign_rhs_code (stmt) == ADDR_EXPR))
1765 && !is_constant)
1766 {
1767 enum gimple_code code = gimple_code (stmt);
1768 val.lattice_val = VARYING;
1769 val.value = NULL_TREE;
1770 val.mask = -1;
1771 if (code == GIMPLE_ASSIGN)
1772 {
1773 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1774 tree rhs1 = gimple_assign_rhs1 (stmt);
1775 switch (get_gimple_rhs_class (subcode))
1776 {
1777 case GIMPLE_SINGLE_RHS:
1778 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1779 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1780 val = get_value_for_expr (rhs1, true);
1781 break;
1782
1783 case GIMPLE_UNARY_RHS:
1784 if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1785 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1786 && (INTEGRAL_TYPE_P (gimple_expr_type (stmt))
1787 || POINTER_TYPE_P (gimple_expr_type (stmt))))
1788 val = bit_value_unop (subcode, gimple_expr_type (stmt), rhs1);
1789 break;
1790
1791 case GIMPLE_BINARY_RHS:
1792 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1793 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1794 {
1795 tree lhs = gimple_assign_lhs (stmt);
1796 tree rhs2 = gimple_assign_rhs2 (stmt);
1797 val = bit_value_binop (subcode,
1798 TREE_TYPE (lhs), rhs1, rhs2);
1799 }
1800 break;
1801
1802 default:;
1803 }
1804 }
1805 else if (code == GIMPLE_COND)
1806 {
1807 enum tree_code code = gimple_cond_code (stmt);
1808 tree rhs1 = gimple_cond_lhs (stmt);
1809 tree rhs2 = gimple_cond_rhs (stmt);
1810 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1811 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1812 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
1813 }
1814 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1815 {
1816 tree fndecl = gimple_call_fndecl (stmt);
1817 switch (DECL_FUNCTION_CODE (fndecl))
1818 {
1819 case BUILT_IN_MALLOC:
1820 case BUILT_IN_REALLOC:
1821 case BUILT_IN_CALLOC:
1822 case BUILT_IN_STRDUP:
1823 case BUILT_IN_STRNDUP:
1824 val.lattice_val = CONSTANT;
1825 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1826 val.mask = ~((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT
1827 / BITS_PER_UNIT - 1);
1828 break;
1829
1830 case BUILT_IN_ALLOCA:
1831 case BUILT_IN_ALLOCA_WITH_ALIGN:
1832 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN
1833 ? TREE_INT_CST_LOW (gimple_call_arg (stmt, 1))
1834 : BIGGEST_ALIGNMENT);
1835 val.lattice_val = CONSTANT;
1836 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1837 val.mask = ~((HOST_WIDE_INT) align / BITS_PER_UNIT - 1);
1838 break;
1839
1840 /* These builtins return their first argument, unmodified. */
1841 case BUILT_IN_MEMCPY:
1842 case BUILT_IN_MEMMOVE:
1843 case BUILT_IN_MEMSET:
1844 case BUILT_IN_STRCPY:
1845 case BUILT_IN_STRNCPY:
1846 case BUILT_IN_MEMCPY_CHK:
1847 case BUILT_IN_MEMMOVE_CHK:
1848 case BUILT_IN_MEMSET_CHK:
1849 case BUILT_IN_STRCPY_CHK:
1850 case BUILT_IN_STRNCPY_CHK:
1851 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1852 break;
1853
1854 case BUILT_IN_ASSUME_ALIGNED:
1855 val = bit_value_assume_aligned (stmt, NULL_TREE, val, false);
1856 break;
1857
1858 case BUILT_IN_ALIGNED_ALLOC:
1859 {
1860 tree align = get_constant_value (gimple_call_arg (stmt, 0));
1861 if (align
1862 && tree_fits_uhwi_p (align))
1863 {
1864 unsigned HOST_WIDE_INT aligni = tree_to_uhwi (align);
1865 if (aligni > 1
1866 /* align must be power-of-two */
1867 && (aligni & (aligni - 1)) == 0)
1868 {
1869 val.lattice_val = CONSTANT;
1870 val.value = build_int_cst (ptr_type_node, 0);
1871 val.mask = -aligni;
1872 }
1873 }
1874 break;
1875 }
1876
1877 default:;
1878 }
1879 }
1880 if (is_gimple_call (stmt) && gimple_call_lhs (stmt))
1881 {
1882 tree fntype = gimple_call_fntype (stmt);
1883 if (fntype)
1884 {
1885 tree attrs = lookup_attribute ("assume_aligned",
1886 TYPE_ATTRIBUTES (fntype));
1887 if (attrs)
1888 val = bit_value_assume_aligned (stmt, attrs, val, false);
1889 attrs = lookup_attribute ("alloc_align",
1890 TYPE_ATTRIBUTES (fntype));
1891 if (attrs)
1892 val = bit_value_assume_aligned (stmt, attrs, val, true);
1893 }
1894 }
1895 is_constant = (val.lattice_val == CONSTANT);
1896 }
1897
1898 if (flag_tree_bit_ccp
1899 && ((is_constant && TREE_CODE (val.value) == INTEGER_CST)
1900 || (!is_constant && likelyvalue != UNDEFINED))
1901 && gimple_get_lhs (stmt)
1902 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME)
1903 {
1904 tree lhs = gimple_get_lhs (stmt);
1905 wide_int nonzero_bits = get_nonzero_bits (lhs);
1906 if (nonzero_bits != -1)
1907 {
1908 if (!is_constant)
1909 {
1910 val.lattice_val = CONSTANT;
1911 val.value = build_zero_cst (TREE_TYPE (lhs));
1912 val.mask = extend_mask (nonzero_bits);
1913 is_constant = true;
1914 }
1915 else
1916 {
1917 if (wi::bit_and_not (val.value, nonzero_bits) != 0)
1918 val.value = wide_int_to_tree (TREE_TYPE (lhs),
1919 nonzero_bits & val.value);
1920 if (nonzero_bits == 0)
1921 val.mask = 0;
1922 else
1923 val.mask = val.mask & extend_mask (nonzero_bits);
1924 }
1925 }
1926 }
1927
1928 if (!is_constant)
1929 {
1930 /* The statement produced a nonconstant value. If the statement
1931 had UNDEFINED operands, then the result of the statement
1932 should be UNDEFINED. Otherwise, the statement is VARYING. */
1933 if (likelyvalue == UNDEFINED)
1934 {
1935 val.lattice_val = likelyvalue;
1936 val.mask = 0;
1937 }
1938 else
1939 {
1940 val.lattice_val = VARYING;
1941 val.mask = -1;
1942 }
1943
1944 val.value = NULL_TREE;
1945 }
1946
1947 return val;
1948 }
1949
1950 typedef hash_table<pointer_hash<gimple_statement_base> > gimple_htab;
1951
1952 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
1953 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
1954
1955 static void
1956 insert_clobber_before_stack_restore (tree saved_val, tree var,
1957 gimple_htab **visited)
1958 {
1959 gimple stmt;
1960 gassign *clobber_stmt;
1961 tree clobber;
1962 imm_use_iterator iter;
1963 gimple_stmt_iterator i;
1964 gimple *slot;
1965
1966 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
1967 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
1968 {
1969 clobber = build_constructor (TREE_TYPE (var),
1970 NULL);
1971 TREE_THIS_VOLATILE (clobber) = 1;
1972 clobber_stmt = gimple_build_assign (var, clobber);
1973
1974 i = gsi_for_stmt (stmt);
1975 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
1976 }
1977 else if (gimple_code (stmt) == GIMPLE_PHI)
1978 {
1979 if (!*visited)
1980 *visited = new gimple_htab (10);
1981
1982 slot = (*visited)->find_slot (stmt, INSERT);
1983 if (*slot != NULL)
1984 continue;
1985
1986 *slot = stmt;
1987 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
1988 visited);
1989 }
1990 else if (gimple_assign_ssa_name_copy_p (stmt))
1991 insert_clobber_before_stack_restore (gimple_assign_lhs (stmt), var,
1992 visited);
1993 else if (chkp_gimple_call_builtin_p (stmt, BUILT_IN_CHKP_BNDRET))
1994 continue;
1995 else
1996 gcc_assert (is_gimple_debug (stmt));
1997 }
1998
1999 /* Advance the iterator to the previous non-debug gimple statement in the same
2000 or dominating basic block. */
2001
2002 static inline void
2003 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
2004 {
2005 basic_block dom;
2006
2007 gsi_prev_nondebug (i);
2008 while (gsi_end_p (*i))
2009 {
2010 dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
2011 if (dom == NULL || dom == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2012 return;
2013
2014 *i = gsi_last_bb (dom);
2015 }
2016 }
2017
2018 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
2019 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
2020
2021 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
2022 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
2023 that case the function gives up without inserting the clobbers. */
2024
2025 static void
2026 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
2027 {
2028 gimple stmt;
2029 tree saved_val;
2030 gimple_htab *visited = NULL;
2031
2032 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
2033 {
2034 stmt = gsi_stmt (i);
2035
2036 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
2037 continue;
2038
2039 saved_val = gimple_call_lhs (stmt);
2040 if (saved_val == NULL_TREE)
2041 continue;
2042
2043 insert_clobber_before_stack_restore (saved_val, var, &visited);
2044 break;
2045 }
2046
2047 delete visited;
2048 }
2049
2050 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
2051 fixed-size array and returns the address, if found, otherwise returns
2052 NULL_TREE. */
2053
2054 static tree
2055 fold_builtin_alloca_with_align (gimple stmt)
2056 {
2057 unsigned HOST_WIDE_INT size, threshold, n_elem;
2058 tree lhs, arg, block, var, elem_type, array_type;
2059
2060 /* Get lhs. */
2061 lhs = gimple_call_lhs (stmt);
2062 if (lhs == NULL_TREE)
2063 return NULL_TREE;
2064
2065 /* Detect constant argument. */
2066 arg = get_constant_value (gimple_call_arg (stmt, 0));
2067 if (arg == NULL_TREE
2068 || TREE_CODE (arg) != INTEGER_CST
2069 || !tree_fits_uhwi_p (arg))
2070 return NULL_TREE;
2071
2072 size = tree_to_uhwi (arg);
2073
2074 /* Heuristic: don't fold large allocas. */
2075 threshold = (unsigned HOST_WIDE_INT)PARAM_VALUE (PARAM_LARGE_STACK_FRAME);
2076 /* In case the alloca is located at function entry, it has the same lifetime
2077 as a declared array, so we allow a larger size. */
2078 block = gimple_block (stmt);
2079 if (!(cfun->after_inlining
2080 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
2081 threshold /= 10;
2082 if (size > threshold)
2083 return NULL_TREE;
2084
2085 /* Declare array. */
2086 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
2087 n_elem = size * 8 / BITS_PER_UNIT;
2088 array_type = build_array_type_nelts (elem_type, n_elem);
2089 var = create_tmp_var (array_type);
2090 DECL_ALIGN (var) = TREE_INT_CST_LOW (gimple_call_arg (stmt, 1));
2091 {
2092 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
2093 if (pi != NULL && !pi->pt.anything)
2094 {
2095 bool singleton_p;
2096 unsigned uid;
2097 singleton_p = pt_solution_singleton_p (&pi->pt, &uid);
2098 gcc_assert (singleton_p);
2099 SET_DECL_PT_UID (var, uid);
2100 }
2101 }
2102
2103 /* Fold alloca to the address of the array. */
2104 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
2105 }
2106
2107 /* Fold the stmt at *GSI with CCP specific information that propagating
2108 and regular folding does not catch. */
2109
2110 static bool
2111 ccp_fold_stmt (gimple_stmt_iterator *gsi)
2112 {
2113 gimple stmt = gsi_stmt (*gsi);
2114
2115 switch (gimple_code (stmt))
2116 {
2117 case GIMPLE_COND:
2118 {
2119 gcond *cond_stmt = as_a <gcond *> (stmt);
2120 ccp_prop_value_t val;
2121 /* Statement evaluation will handle type mismatches in constants
2122 more gracefully than the final propagation. This allows us to
2123 fold more conditionals here. */
2124 val = evaluate_stmt (stmt);
2125 if (val.lattice_val != CONSTANT
2126 || val.mask != 0)
2127 return false;
2128
2129 if (dump_file)
2130 {
2131 fprintf (dump_file, "Folding predicate ");
2132 print_gimple_expr (dump_file, stmt, 0, 0);
2133 fprintf (dump_file, " to ");
2134 print_generic_expr (dump_file, val.value, 0);
2135 fprintf (dump_file, "\n");
2136 }
2137
2138 if (integer_zerop (val.value))
2139 gimple_cond_make_false (cond_stmt);
2140 else
2141 gimple_cond_make_true (cond_stmt);
2142
2143 return true;
2144 }
2145
2146 case GIMPLE_CALL:
2147 {
2148 tree lhs = gimple_call_lhs (stmt);
2149 int flags = gimple_call_flags (stmt);
2150 tree val;
2151 tree argt;
2152 bool changed = false;
2153 unsigned i;
2154
2155 /* If the call was folded into a constant make sure it goes
2156 away even if we cannot propagate into all uses because of
2157 type issues. */
2158 if (lhs
2159 && TREE_CODE (lhs) == SSA_NAME
2160 && (val = get_constant_value (lhs))
2161 /* Don't optimize away calls that have side-effects. */
2162 && (flags & (ECF_CONST|ECF_PURE)) != 0
2163 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
2164 {
2165 tree new_rhs = unshare_expr (val);
2166 bool res;
2167 if (!useless_type_conversion_p (TREE_TYPE (lhs),
2168 TREE_TYPE (new_rhs)))
2169 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
2170 res = update_call_from_tree (gsi, new_rhs);
2171 gcc_assert (res);
2172 return true;
2173 }
2174
2175 /* Internal calls provide no argument types, so the extra laxity
2176 for normal calls does not apply. */
2177 if (gimple_call_internal_p (stmt))
2178 return false;
2179
2180 /* The heuristic of fold_builtin_alloca_with_align differs before and
2181 after inlining, so we don't require the arg to be changed into a
2182 constant for folding, but just to be constant. */
2183 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN))
2184 {
2185 tree new_rhs = fold_builtin_alloca_with_align (stmt);
2186 if (new_rhs)
2187 {
2188 bool res = update_call_from_tree (gsi, new_rhs);
2189 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
2190 gcc_assert (res);
2191 insert_clobbers_for_var (*gsi, var);
2192 return true;
2193 }
2194 }
2195
2196 /* Propagate into the call arguments. Compared to replace_uses_in
2197 this can use the argument slot types for type verification
2198 instead of the current argument type. We also can safely
2199 drop qualifiers here as we are dealing with constants anyway. */
2200 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
2201 for (i = 0; i < gimple_call_num_args (stmt) && argt;
2202 ++i, argt = TREE_CHAIN (argt))
2203 {
2204 tree arg = gimple_call_arg (stmt, i);
2205 if (TREE_CODE (arg) == SSA_NAME
2206 && (val = get_constant_value (arg))
2207 && useless_type_conversion_p
2208 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
2209 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2210 {
2211 gimple_call_set_arg (stmt, i, unshare_expr (val));
2212 changed = true;
2213 }
2214 }
2215
2216 return changed;
2217 }
2218
2219 case GIMPLE_ASSIGN:
2220 {
2221 tree lhs = gimple_assign_lhs (stmt);
2222 tree val;
2223
2224 /* If we have a load that turned out to be constant replace it
2225 as we cannot propagate into all uses in all cases. */
2226 if (gimple_assign_single_p (stmt)
2227 && TREE_CODE (lhs) == SSA_NAME
2228 && (val = get_constant_value (lhs)))
2229 {
2230 tree rhs = unshare_expr (val);
2231 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2232 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
2233 gimple_assign_set_rhs_from_tree (gsi, rhs);
2234 return true;
2235 }
2236
2237 return false;
2238 }
2239
2240 default:
2241 return false;
2242 }
2243 }
2244
2245 /* Visit the assignment statement STMT. Set the value of its LHS to the
2246 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2247 creates virtual definitions, set the value of each new name to that
2248 of the RHS (if we can derive a constant out of the RHS).
2249 Value-returning call statements also perform an assignment, and
2250 are handled here. */
2251
2252 static enum ssa_prop_result
2253 visit_assignment (gimple stmt, tree *output_p)
2254 {
2255 ccp_prop_value_t val;
2256 enum ssa_prop_result retval;
2257
2258 tree lhs = gimple_get_lhs (stmt);
2259
2260 gcc_assert (gimple_code (stmt) != GIMPLE_CALL
2261 || gimple_call_lhs (stmt) != NULL_TREE);
2262
2263 if (gimple_assign_single_p (stmt)
2264 && gimple_assign_rhs_code (stmt) == SSA_NAME)
2265 /* For a simple copy operation, we copy the lattice values. */
2266 val = *get_value (gimple_assign_rhs1 (stmt));
2267 else
2268 /* Evaluate the statement, which could be
2269 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2270 val = evaluate_stmt (stmt);
2271
2272 retval = SSA_PROP_NOT_INTERESTING;
2273
2274 /* Set the lattice value of the statement's output. */
2275 if (TREE_CODE (lhs) == SSA_NAME)
2276 {
2277 /* If STMT is an assignment to an SSA_NAME, we only have one
2278 value to set. */
2279 if (set_lattice_value (lhs, val))
2280 {
2281 *output_p = lhs;
2282 if (val.lattice_val == VARYING)
2283 retval = SSA_PROP_VARYING;
2284 else
2285 retval = SSA_PROP_INTERESTING;
2286 }
2287 }
2288
2289 return retval;
2290 }
2291
2292
2293 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2294 if it can determine which edge will be taken. Otherwise, return
2295 SSA_PROP_VARYING. */
2296
2297 static enum ssa_prop_result
2298 visit_cond_stmt (gimple stmt, edge *taken_edge_p)
2299 {
2300 ccp_prop_value_t val;
2301 basic_block block;
2302
2303 block = gimple_bb (stmt);
2304 val = evaluate_stmt (stmt);
2305 if (val.lattice_val != CONSTANT
2306 || val.mask != 0)
2307 return SSA_PROP_VARYING;
2308
2309 /* Find which edge out of the conditional block will be taken and add it
2310 to the worklist. If no single edge can be determined statically,
2311 return SSA_PROP_VARYING to feed all the outgoing edges to the
2312 propagation engine. */
2313 *taken_edge_p = find_taken_edge (block, val.value);
2314 if (*taken_edge_p)
2315 return SSA_PROP_INTERESTING;
2316 else
2317 return SSA_PROP_VARYING;
2318 }
2319
2320
2321 /* Evaluate statement STMT. If the statement produces an output value and
2322 its evaluation changes the lattice value of its output, return
2323 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2324 output value.
2325
2326 If STMT is a conditional branch and we can determine its truth
2327 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2328 value, return SSA_PROP_VARYING. */
2329
2330 static enum ssa_prop_result
2331 ccp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
2332 {
2333 tree def;
2334 ssa_op_iter iter;
2335
2336 if (dump_file && (dump_flags & TDF_DETAILS))
2337 {
2338 fprintf (dump_file, "\nVisiting statement:\n");
2339 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2340 }
2341
2342 switch (gimple_code (stmt))
2343 {
2344 case GIMPLE_ASSIGN:
2345 /* If the statement is an assignment that produces a single
2346 output value, evaluate its RHS to see if the lattice value of
2347 its output has changed. */
2348 return visit_assignment (stmt, output_p);
2349
2350 case GIMPLE_CALL:
2351 /* A value-returning call also performs an assignment. */
2352 if (gimple_call_lhs (stmt) != NULL_TREE)
2353 return visit_assignment (stmt, output_p);
2354 break;
2355
2356 case GIMPLE_COND:
2357 case GIMPLE_SWITCH:
2358 /* If STMT is a conditional branch, see if we can determine
2359 which branch will be taken. */
2360 /* FIXME. It appears that we should be able to optimize
2361 computed GOTOs here as well. */
2362 return visit_cond_stmt (stmt, taken_edge_p);
2363
2364 default:
2365 break;
2366 }
2367
2368 /* Any other kind of statement is not interesting for constant
2369 propagation and, therefore, not worth simulating. */
2370 if (dump_file && (dump_flags & TDF_DETAILS))
2371 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2372
2373 /* Definitions made by statements other than assignments to
2374 SSA_NAMEs represent unknown modifications to their outputs.
2375 Mark them VARYING. */
2376 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2377 {
2378 ccp_prop_value_t v = { VARYING, NULL_TREE, -1 };
2379 set_lattice_value (def, v);
2380 }
2381
2382 return SSA_PROP_VARYING;
2383 }
2384
2385
2386 /* Main entry point for SSA Conditional Constant Propagation. */
2387
2388 static unsigned int
2389 do_ssa_ccp (void)
2390 {
2391 unsigned int todo = 0;
2392 calculate_dominance_info (CDI_DOMINATORS);
2393 ccp_initialize ();
2394 ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node);
2395 if (ccp_finalize ())
2396 todo = (TODO_cleanup_cfg | TODO_update_ssa);
2397 free_dominance_info (CDI_DOMINATORS);
2398 return todo;
2399 }
2400
2401
2402 namespace {
2403
2404 const pass_data pass_data_ccp =
2405 {
2406 GIMPLE_PASS, /* type */
2407 "ccp", /* name */
2408 OPTGROUP_NONE, /* optinfo_flags */
2409 TV_TREE_CCP, /* tv_id */
2410 ( PROP_cfg | PROP_ssa ), /* properties_required */
2411 0, /* properties_provided */
2412 0, /* properties_destroyed */
2413 0, /* todo_flags_start */
2414 TODO_update_address_taken, /* todo_flags_finish */
2415 };
2416
2417 class pass_ccp : public gimple_opt_pass
2418 {
2419 public:
2420 pass_ccp (gcc::context *ctxt)
2421 : gimple_opt_pass (pass_data_ccp, ctxt)
2422 {}
2423
2424 /* opt_pass methods: */
2425 opt_pass * clone () { return new pass_ccp (m_ctxt); }
2426 virtual bool gate (function *) { return flag_tree_ccp != 0; }
2427 virtual unsigned int execute (function *) { return do_ssa_ccp (); }
2428
2429 }; // class pass_ccp
2430
2431 } // anon namespace
2432
2433 gimple_opt_pass *
2434 make_pass_ccp (gcc::context *ctxt)
2435 {
2436 return new pass_ccp (ctxt);
2437 }
2438
2439
2440
2441 /* Try to optimize out __builtin_stack_restore. Optimize it out
2442 if there is another __builtin_stack_restore in the same basic
2443 block and no calls or ASM_EXPRs are in between, or if this block's
2444 only outgoing edge is to EXIT_BLOCK and there are no calls or
2445 ASM_EXPRs after this __builtin_stack_restore. */
2446
2447 static tree
2448 optimize_stack_restore (gimple_stmt_iterator i)
2449 {
2450 tree callee;
2451 gimple stmt;
2452
2453 basic_block bb = gsi_bb (i);
2454 gimple call = gsi_stmt (i);
2455
2456 if (gimple_code (call) != GIMPLE_CALL
2457 || gimple_call_num_args (call) != 1
2458 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2459 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2460 return NULL_TREE;
2461
2462 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2463 {
2464 stmt = gsi_stmt (i);
2465 if (gimple_code (stmt) == GIMPLE_ASM)
2466 return NULL_TREE;
2467 if (gimple_code (stmt) != GIMPLE_CALL)
2468 continue;
2469
2470 callee = gimple_call_fndecl (stmt);
2471 if (!callee
2472 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2473 /* All regular builtins are ok, just obviously not alloca. */
2474 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
2475 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA_WITH_ALIGN)
2476 return NULL_TREE;
2477
2478 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
2479 goto second_stack_restore;
2480 }
2481
2482 if (!gsi_end_p (i))
2483 return NULL_TREE;
2484
2485 /* Allow one successor of the exit block, or zero successors. */
2486 switch (EDGE_COUNT (bb->succs))
2487 {
2488 case 0:
2489 break;
2490 case 1:
2491 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2492 return NULL_TREE;
2493 break;
2494 default:
2495 return NULL_TREE;
2496 }
2497 second_stack_restore:
2498
2499 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2500 If there are multiple uses, then the last one should remove the call.
2501 In any case, whether the call to __builtin_stack_save can be removed
2502 or not is irrelevant to removing the call to __builtin_stack_restore. */
2503 if (has_single_use (gimple_call_arg (call, 0)))
2504 {
2505 gimple stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2506 if (is_gimple_call (stack_save))
2507 {
2508 callee = gimple_call_fndecl (stack_save);
2509 if (callee
2510 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2511 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE)
2512 {
2513 gimple_stmt_iterator stack_save_gsi;
2514 tree rhs;
2515
2516 stack_save_gsi = gsi_for_stmt (stack_save);
2517 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2518 update_call_from_tree (&stack_save_gsi, rhs);
2519 }
2520 }
2521 }
2522
2523 /* No effect, so the statement will be deleted. */
2524 return integer_zero_node;
2525 }
2526
2527 /* If va_list type is a simple pointer and nothing special is needed,
2528 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2529 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2530 pointer assignment. */
2531
2532 static tree
2533 optimize_stdarg_builtin (gimple call)
2534 {
2535 tree callee, lhs, rhs, cfun_va_list;
2536 bool va_list_simple_ptr;
2537 location_t loc = gimple_location (call);
2538
2539 if (gimple_code (call) != GIMPLE_CALL)
2540 return NULL_TREE;
2541
2542 callee = gimple_call_fndecl (call);
2543
2544 cfun_va_list = targetm.fn_abi_va_list (callee);
2545 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2546 && (TREE_TYPE (cfun_va_list) == void_type_node
2547 || TREE_TYPE (cfun_va_list) == char_type_node);
2548
2549 switch (DECL_FUNCTION_CODE (callee))
2550 {
2551 case BUILT_IN_VA_START:
2552 if (!va_list_simple_ptr
2553 || targetm.expand_builtin_va_start != NULL
2554 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
2555 return NULL_TREE;
2556
2557 if (gimple_call_num_args (call) != 2)
2558 return NULL_TREE;
2559
2560 lhs = gimple_call_arg (call, 0);
2561 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2562 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2563 != TYPE_MAIN_VARIANT (cfun_va_list))
2564 return NULL_TREE;
2565
2566 lhs = build_fold_indirect_ref_loc (loc, lhs);
2567 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
2568 1, integer_zero_node);
2569 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2570 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2571
2572 case BUILT_IN_VA_COPY:
2573 if (!va_list_simple_ptr)
2574 return NULL_TREE;
2575
2576 if (gimple_call_num_args (call) != 2)
2577 return NULL_TREE;
2578
2579 lhs = gimple_call_arg (call, 0);
2580 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2581 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2582 != TYPE_MAIN_VARIANT (cfun_va_list))
2583 return NULL_TREE;
2584
2585 lhs = build_fold_indirect_ref_loc (loc, lhs);
2586 rhs = gimple_call_arg (call, 1);
2587 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2588 != TYPE_MAIN_VARIANT (cfun_va_list))
2589 return NULL_TREE;
2590
2591 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2592 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2593
2594 case BUILT_IN_VA_END:
2595 /* No effect, so the statement will be deleted. */
2596 return integer_zero_node;
2597
2598 default:
2599 gcc_unreachable ();
2600 }
2601 }
2602
2603 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2604 the incoming jumps. Return true if at least one jump was changed. */
2605
2606 static bool
2607 optimize_unreachable (gimple_stmt_iterator i)
2608 {
2609 basic_block bb = gsi_bb (i);
2610 gimple_stmt_iterator gsi;
2611 gimple stmt;
2612 edge_iterator ei;
2613 edge e;
2614 bool ret;
2615
2616 if (flag_sanitize & SANITIZE_UNREACHABLE)
2617 return false;
2618
2619 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2620 {
2621 stmt = gsi_stmt (gsi);
2622
2623 if (is_gimple_debug (stmt))
2624 continue;
2625
2626 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2627 {
2628 /* Verify we do not need to preserve the label. */
2629 if (FORCED_LABEL (gimple_label_label (label_stmt)))
2630 return false;
2631
2632 continue;
2633 }
2634
2635 /* Only handle the case that __builtin_unreachable is the first statement
2636 in the block. We rely on DCE to remove stmts without side-effects
2637 before __builtin_unreachable. */
2638 if (gsi_stmt (gsi) != gsi_stmt (i))
2639 return false;
2640 }
2641
2642 ret = false;
2643 FOR_EACH_EDGE (e, ei, bb->preds)
2644 {
2645 gsi = gsi_last_bb (e->src);
2646 if (gsi_end_p (gsi))
2647 continue;
2648
2649 stmt = gsi_stmt (gsi);
2650 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
2651 {
2652 if (e->flags & EDGE_TRUE_VALUE)
2653 gimple_cond_make_false (cond_stmt);
2654 else if (e->flags & EDGE_FALSE_VALUE)
2655 gimple_cond_make_true (cond_stmt);
2656 else
2657 gcc_unreachable ();
2658 update_stmt (cond_stmt);
2659 }
2660 else
2661 {
2662 /* Todo: handle other cases, f.i. switch statement. */
2663 continue;
2664 }
2665
2666 ret = true;
2667 }
2668
2669 return ret;
2670 }
2671
2672 /* A simple pass that attempts to fold all builtin functions. This pass
2673 is run after we've propagated as many constants as we can. */
2674
2675 namespace {
2676
2677 const pass_data pass_data_fold_builtins =
2678 {
2679 GIMPLE_PASS, /* type */
2680 "fab", /* name */
2681 OPTGROUP_NONE, /* optinfo_flags */
2682 TV_NONE, /* tv_id */
2683 ( PROP_cfg | PROP_ssa ), /* properties_required */
2684 0, /* properties_provided */
2685 0, /* properties_destroyed */
2686 0, /* todo_flags_start */
2687 TODO_update_ssa, /* todo_flags_finish */
2688 };
2689
2690 class pass_fold_builtins : public gimple_opt_pass
2691 {
2692 public:
2693 pass_fold_builtins (gcc::context *ctxt)
2694 : gimple_opt_pass (pass_data_fold_builtins, ctxt)
2695 {}
2696
2697 /* opt_pass methods: */
2698 opt_pass * clone () { return new pass_fold_builtins (m_ctxt); }
2699 virtual unsigned int execute (function *);
2700
2701 }; // class pass_fold_builtins
2702
2703 unsigned int
2704 pass_fold_builtins::execute (function *fun)
2705 {
2706 bool cfg_changed = false;
2707 basic_block bb;
2708 unsigned int todoflags = 0;
2709
2710 FOR_EACH_BB_FN (bb, fun)
2711 {
2712 gimple_stmt_iterator i;
2713 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
2714 {
2715 gimple stmt, old_stmt;
2716 tree callee;
2717 enum built_in_function fcode;
2718
2719 stmt = gsi_stmt (i);
2720
2721 if (gimple_code (stmt) != GIMPLE_CALL)
2722 {
2723 /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
2724 after the last GIMPLE DSE they aren't needed and might
2725 unnecessarily keep the SSA_NAMEs live. */
2726 if (gimple_clobber_p (stmt))
2727 {
2728 tree lhs = gimple_assign_lhs (stmt);
2729 if (TREE_CODE (lhs) == MEM_REF
2730 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME)
2731 {
2732 unlink_stmt_vdef (stmt);
2733 gsi_remove (&i, true);
2734 release_defs (stmt);
2735 continue;
2736 }
2737 }
2738 gsi_next (&i);
2739 continue;
2740 }
2741
2742 callee = gimple_call_fndecl (stmt);
2743 if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL)
2744 {
2745 gsi_next (&i);
2746 continue;
2747 }
2748
2749 fcode = DECL_FUNCTION_CODE (callee);
2750 if (fold_stmt (&i))
2751 ;
2752 else
2753 {
2754 tree result = NULL_TREE;
2755 switch (DECL_FUNCTION_CODE (callee))
2756 {
2757 case BUILT_IN_CONSTANT_P:
2758 /* Resolve __builtin_constant_p. If it hasn't been
2759 folded to integer_one_node by now, it's fairly
2760 certain that the value simply isn't constant. */
2761 result = integer_zero_node;
2762 break;
2763
2764 case BUILT_IN_ASSUME_ALIGNED:
2765 /* Remove __builtin_assume_aligned. */
2766 result = gimple_call_arg (stmt, 0);
2767 break;
2768
2769 case BUILT_IN_STACK_RESTORE:
2770 result = optimize_stack_restore (i);
2771 if (result)
2772 break;
2773 gsi_next (&i);
2774 continue;
2775
2776 case BUILT_IN_UNREACHABLE:
2777 if (optimize_unreachable (i))
2778 cfg_changed = true;
2779 break;
2780
2781 case BUILT_IN_VA_START:
2782 case BUILT_IN_VA_END:
2783 case BUILT_IN_VA_COPY:
2784 /* These shouldn't be folded before pass_stdarg. */
2785 result = optimize_stdarg_builtin (stmt);
2786 if (result)
2787 break;
2788 /* FALLTHRU */
2789
2790 default:;
2791 }
2792
2793 if (!result)
2794 {
2795 gsi_next (&i);
2796 continue;
2797 }
2798
2799 if (!update_call_from_tree (&i, result))
2800 gimplify_and_update_call_from_tree (&i, result);
2801 }
2802
2803 todoflags |= TODO_update_address_taken;
2804
2805 if (dump_file && (dump_flags & TDF_DETAILS))
2806 {
2807 fprintf (dump_file, "Simplified\n ");
2808 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2809 }
2810
2811 old_stmt = stmt;
2812 stmt = gsi_stmt (i);
2813 update_stmt (stmt);
2814
2815 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
2816 && gimple_purge_dead_eh_edges (bb))
2817 cfg_changed = true;
2818
2819 if (dump_file && (dump_flags & TDF_DETAILS))
2820 {
2821 fprintf (dump_file, "to\n ");
2822 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2823 fprintf (dump_file, "\n");
2824 }
2825
2826 /* Retry the same statement if it changed into another
2827 builtin, there might be new opportunities now. */
2828 if (gimple_code (stmt) != GIMPLE_CALL)
2829 {
2830 gsi_next (&i);
2831 continue;
2832 }
2833 callee = gimple_call_fndecl (stmt);
2834 if (!callee
2835 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2836 || DECL_FUNCTION_CODE (callee) == fcode)
2837 gsi_next (&i);
2838 }
2839 }
2840
2841 /* Delete unreachable blocks. */
2842 if (cfg_changed)
2843 todoflags |= TODO_cleanup_cfg;
2844
2845 return todoflags;
2846 }
2847
2848 } // anon namespace
2849
2850 gimple_opt_pass *
2851 make_pass_fold_builtins (gcc::context *ctxt)
2852 {
2853 return new pass_fold_builtins (ctxt);
2854 }