Update copyright years.
[gcc.git] / gcc / tree-ssa-ccp.c
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2020 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
28 following values:
29
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
37
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
41 or not.
42
43 CONSTANT -> V_i has been found to hold a constant
44 value C.
45
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
48 at compile time.
49
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
51
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
59 can be visited.
60
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
65
66
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
72
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
75
76 if (PRED)
77 a_9 = 3;
78 else
79 a_10 = 100;
80 a_11 = PHI (a_9, a_10)
81
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
86
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
94
95
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
100
101 This algorithm uses wide-ints at the max precision of the target.
102 This means that, with one uninteresting exception, variables with
103 UNSIGNED types never go to VARYING because the bits above the
104 precision of the type of the variable are always zero. The
105 uninteresting case is a variable of UNSIGNED type that has the
106 maximum precision of the target. Such variables can go to VARYING,
107 but this causes no loss of infomation since these variables will
108 never be extended.
109
110 References:
111
112 Constant propagation with conditional branches,
113 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
114
115 Building an Optimizing Compiler,
116 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
117
118 Advanced Compiler Design and Implementation,
119 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
120
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "backend.h"
125 #include "target.h"
126 #include "tree.h"
127 #include "gimple.h"
128 #include "tree-pass.h"
129 #include "ssa.h"
130 #include "gimple-pretty-print.h"
131 #include "fold-const.h"
132 #include "gimple-fold.h"
133 #include "tree-eh.h"
134 #include "gimplify.h"
135 #include "gimple-iterator.h"
136 #include "tree-cfg.h"
137 #include "tree-ssa-propagate.h"
138 #include "dbgcnt.h"
139 #include "builtins.h"
140 #include "cfgloop.h"
141 #include "stor-layout.h"
142 #include "optabs-query.h"
143 #include "tree-ssa-ccp.h"
144 #include "tree-dfa.h"
145 #include "diagnostic-core.h"
146 #include "stringpool.h"
147 #include "attribs.h"
148 #include "tree-vector-builder.h"
149 #include "cgraph.h"
150 #include "alloc-pool.h"
151 #include "symbol-summary.h"
152 #include "ipa-utils.h"
153 #include "ipa-prop.h"
154
155 /* Possible lattice values. */
156 typedef enum
157 {
158 UNINITIALIZED,
159 UNDEFINED,
160 CONSTANT,
161 VARYING
162 } ccp_lattice_t;
163
164 class ccp_prop_value_t {
165 public:
166 /* Lattice value. */
167 ccp_lattice_t lattice_val;
168
169 /* Propagated value. */
170 tree value;
171
172 /* Mask that applies to the propagated value during CCP. For X
173 with a CONSTANT lattice value X & ~mask == value & ~mask. The
174 zero bits in the mask cover constant values. The ones mean no
175 information. */
176 widest_int mask;
177 };
178
179 class ccp_propagate : public ssa_propagation_engine
180 {
181 public:
182 enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE;
183 enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE;
184 };
185
186 /* Array of propagated constant values. After propagation,
187 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
188 the constant is held in an SSA name representing a memory store
189 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
190 memory reference used to store (i.e., the LHS of the assignment
191 doing the store). */
192 static ccp_prop_value_t *const_val;
193 static unsigned n_const_val;
194
195 static void canonicalize_value (ccp_prop_value_t *);
196 static void ccp_lattice_meet (ccp_prop_value_t *, ccp_prop_value_t *);
197
198 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
199
200 static void
201 dump_lattice_value (FILE *outf, const char *prefix, ccp_prop_value_t val)
202 {
203 switch (val.lattice_val)
204 {
205 case UNINITIALIZED:
206 fprintf (outf, "%sUNINITIALIZED", prefix);
207 break;
208 case UNDEFINED:
209 fprintf (outf, "%sUNDEFINED", prefix);
210 break;
211 case VARYING:
212 fprintf (outf, "%sVARYING", prefix);
213 break;
214 case CONSTANT:
215 if (TREE_CODE (val.value) != INTEGER_CST
216 || val.mask == 0)
217 {
218 fprintf (outf, "%sCONSTANT ", prefix);
219 print_generic_expr (outf, val.value, dump_flags);
220 }
221 else
222 {
223 widest_int cval = wi::bit_and_not (wi::to_widest (val.value),
224 val.mask);
225 fprintf (outf, "%sCONSTANT ", prefix);
226 print_hex (cval, outf);
227 fprintf (outf, " (");
228 print_hex (val.mask, outf);
229 fprintf (outf, ")");
230 }
231 break;
232 default:
233 gcc_unreachable ();
234 }
235 }
236
237
238 /* Print lattice value VAL to stderr. */
239
240 void debug_lattice_value (ccp_prop_value_t val);
241
242 DEBUG_FUNCTION void
243 debug_lattice_value (ccp_prop_value_t val)
244 {
245 dump_lattice_value (stderr, "", val);
246 fprintf (stderr, "\n");
247 }
248
249 /* Extend NONZERO_BITS to a full mask, based on sgn. */
250
251 static widest_int
252 extend_mask (const wide_int &nonzero_bits, signop sgn)
253 {
254 return widest_int::from (nonzero_bits, sgn);
255 }
256
257 /* Compute a default value for variable VAR and store it in the
258 CONST_VAL array. The following rules are used to get default
259 values:
260
261 1- Global and static variables that are declared constant are
262 considered CONSTANT.
263
264 2- Any other value is considered UNDEFINED. This is useful when
265 considering PHI nodes. PHI arguments that are undefined do not
266 change the constant value of the PHI node, which allows for more
267 constants to be propagated.
268
269 3- Variables defined by statements other than assignments and PHI
270 nodes are considered VARYING.
271
272 4- Initial values of variables that are not GIMPLE registers are
273 considered VARYING. */
274
275 static ccp_prop_value_t
276 get_default_value (tree var)
277 {
278 ccp_prop_value_t val = { UNINITIALIZED, NULL_TREE, 0 };
279 gimple *stmt;
280
281 stmt = SSA_NAME_DEF_STMT (var);
282
283 if (gimple_nop_p (stmt))
284 {
285 /* Variables defined by an empty statement are those used
286 before being initialized. If VAR is a local variable, we
287 can assume initially that it is UNDEFINED, otherwise we must
288 consider it VARYING. */
289 if (!virtual_operand_p (var)
290 && SSA_NAME_VAR (var)
291 && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
292 val.lattice_val = UNDEFINED;
293 else
294 {
295 val.lattice_val = VARYING;
296 val.mask = -1;
297 if (flag_tree_bit_ccp)
298 {
299 wide_int nonzero_bits = get_nonzero_bits (var);
300 tree value;
301 widest_int mask;
302
303 if (SSA_NAME_VAR (var)
304 && TREE_CODE (SSA_NAME_VAR (var)) == PARM_DECL
305 && ipcp_get_parm_bits (SSA_NAME_VAR (var), &value, &mask))
306 {
307 val.lattice_val = CONSTANT;
308 val.value = value;
309 val.mask = mask;
310 if (nonzero_bits != -1)
311 val.mask &= extend_mask (nonzero_bits,
312 TYPE_SIGN (TREE_TYPE (var)));
313 }
314 else if (nonzero_bits != -1)
315 {
316 val.lattice_val = CONSTANT;
317 val.value = build_zero_cst (TREE_TYPE (var));
318 val.mask = extend_mask (nonzero_bits,
319 TYPE_SIGN (TREE_TYPE (var)));
320 }
321 }
322 }
323 }
324 else if (is_gimple_assign (stmt))
325 {
326 tree cst;
327 if (gimple_assign_single_p (stmt)
328 && DECL_P (gimple_assign_rhs1 (stmt))
329 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
330 {
331 val.lattice_val = CONSTANT;
332 val.value = cst;
333 }
334 else
335 {
336 /* Any other variable defined by an assignment is considered
337 UNDEFINED. */
338 val.lattice_val = UNDEFINED;
339 }
340 }
341 else if ((is_gimple_call (stmt)
342 && gimple_call_lhs (stmt) != NULL_TREE)
343 || gimple_code (stmt) == GIMPLE_PHI)
344 {
345 /* A variable defined by a call or a PHI node is considered
346 UNDEFINED. */
347 val.lattice_val = UNDEFINED;
348 }
349 else
350 {
351 /* Otherwise, VAR will never take on a constant value. */
352 val.lattice_val = VARYING;
353 val.mask = -1;
354 }
355
356 return val;
357 }
358
359
360 /* Get the constant value associated with variable VAR. */
361
362 static inline ccp_prop_value_t *
363 get_value (tree var)
364 {
365 ccp_prop_value_t *val;
366
367 if (const_val == NULL
368 || SSA_NAME_VERSION (var) >= n_const_val)
369 return NULL;
370
371 val = &const_val[SSA_NAME_VERSION (var)];
372 if (val->lattice_val == UNINITIALIZED)
373 *val = get_default_value (var);
374
375 canonicalize_value (val);
376
377 return val;
378 }
379
380 /* Return the constant tree value associated with VAR. */
381
382 static inline tree
383 get_constant_value (tree var)
384 {
385 ccp_prop_value_t *val;
386 if (TREE_CODE (var) != SSA_NAME)
387 {
388 if (is_gimple_min_invariant (var))
389 return var;
390 return NULL_TREE;
391 }
392 val = get_value (var);
393 if (val
394 && val->lattice_val == CONSTANT
395 && (TREE_CODE (val->value) != INTEGER_CST
396 || val->mask == 0))
397 return val->value;
398 return NULL_TREE;
399 }
400
401 /* Sets the value associated with VAR to VARYING. */
402
403 static inline void
404 set_value_varying (tree var)
405 {
406 ccp_prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
407
408 val->lattice_val = VARYING;
409 val->value = NULL_TREE;
410 val->mask = -1;
411 }
412
413 /* For integer constants, make sure to drop TREE_OVERFLOW. */
414
415 static void
416 canonicalize_value (ccp_prop_value_t *val)
417 {
418 if (val->lattice_val != CONSTANT)
419 return;
420
421 if (TREE_OVERFLOW_P (val->value))
422 val->value = drop_tree_overflow (val->value);
423 }
424
425 /* Return whether the lattice transition is valid. */
426
427 static bool
428 valid_lattice_transition (ccp_prop_value_t old_val, ccp_prop_value_t new_val)
429 {
430 /* Lattice transitions must always be monotonically increasing in
431 value. */
432 if (old_val.lattice_val < new_val.lattice_val)
433 return true;
434
435 if (old_val.lattice_val != new_val.lattice_val)
436 return false;
437
438 if (!old_val.value && !new_val.value)
439 return true;
440
441 /* Now both lattice values are CONSTANT. */
442
443 /* Allow arbitrary copy changes as we might look through PHI <a_1, ...>
444 when only a single copy edge is executable. */
445 if (TREE_CODE (old_val.value) == SSA_NAME
446 && TREE_CODE (new_val.value) == SSA_NAME)
447 return true;
448
449 /* Allow transitioning from a constant to a copy. */
450 if (is_gimple_min_invariant (old_val.value)
451 && TREE_CODE (new_val.value) == SSA_NAME)
452 return true;
453
454 /* Allow transitioning from PHI <&x, not executable> == &x
455 to PHI <&x, &y> == common alignment. */
456 if (TREE_CODE (old_val.value) != INTEGER_CST
457 && TREE_CODE (new_val.value) == INTEGER_CST)
458 return true;
459
460 /* Bit-lattices have to agree in the still valid bits. */
461 if (TREE_CODE (old_val.value) == INTEGER_CST
462 && TREE_CODE (new_val.value) == INTEGER_CST)
463 return (wi::bit_and_not (wi::to_widest (old_val.value), new_val.mask)
464 == wi::bit_and_not (wi::to_widest (new_val.value), new_val.mask));
465
466 /* Otherwise constant values have to agree. */
467 if (operand_equal_p (old_val.value, new_val.value, 0))
468 return true;
469
470 /* At least the kinds and types should agree now. */
471 if (TREE_CODE (old_val.value) != TREE_CODE (new_val.value)
472 || !types_compatible_p (TREE_TYPE (old_val.value),
473 TREE_TYPE (new_val.value)))
474 return false;
475
476 /* For floats and !HONOR_NANS allow transitions from (partial) NaN
477 to non-NaN. */
478 tree type = TREE_TYPE (new_val.value);
479 if (SCALAR_FLOAT_TYPE_P (type)
480 && !HONOR_NANS (type))
481 {
482 if (REAL_VALUE_ISNAN (TREE_REAL_CST (old_val.value)))
483 return true;
484 }
485 else if (VECTOR_FLOAT_TYPE_P (type)
486 && !HONOR_NANS (type))
487 {
488 unsigned int count
489 = tree_vector_builder::binary_encoded_nelts (old_val.value,
490 new_val.value);
491 for (unsigned int i = 0; i < count; ++i)
492 if (!REAL_VALUE_ISNAN
493 (TREE_REAL_CST (VECTOR_CST_ENCODED_ELT (old_val.value, i)))
494 && !operand_equal_p (VECTOR_CST_ENCODED_ELT (old_val.value, i),
495 VECTOR_CST_ENCODED_ELT (new_val.value, i), 0))
496 return false;
497 return true;
498 }
499 else if (COMPLEX_FLOAT_TYPE_P (type)
500 && !HONOR_NANS (type))
501 {
502 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_REALPART (old_val.value)))
503 && !operand_equal_p (TREE_REALPART (old_val.value),
504 TREE_REALPART (new_val.value), 0))
505 return false;
506 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_IMAGPART (old_val.value)))
507 && !operand_equal_p (TREE_IMAGPART (old_val.value),
508 TREE_IMAGPART (new_val.value), 0))
509 return false;
510 return true;
511 }
512 return false;
513 }
514
515 /* Set the value for variable VAR to NEW_VAL. Return true if the new
516 value is different from VAR's previous value. */
517
518 static bool
519 set_lattice_value (tree var, ccp_prop_value_t *new_val)
520 {
521 /* We can deal with old UNINITIALIZED values just fine here. */
522 ccp_prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
523
524 canonicalize_value (new_val);
525
526 /* We have to be careful to not go up the bitwise lattice
527 represented by the mask. Instead of dropping to VARYING
528 use the meet operator to retain a conservative value.
529 Missed optimizations like PR65851 makes this necessary.
530 It also ensures we converge to a stable lattice solution. */
531 if (old_val->lattice_val != UNINITIALIZED)
532 ccp_lattice_meet (new_val, old_val);
533
534 gcc_checking_assert (valid_lattice_transition (*old_val, *new_val));
535
536 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
537 caller that this was a non-transition. */
538 if (old_val->lattice_val != new_val->lattice_val
539 || (new_val->lattice_val == CONSTANT
540 && (TREE_CODE (new_val->value) != TREE_CODE (old_val->value)
541 || (TREE_CODE (new_val->value) == INTEGER_CST
542 && (new_val->mask != old_val->mask
543 || (wi::bit_and_not (wi::to_widest (old_val->value),
544 new_val->mask)
545 != wi::bit_and_not (wi::to_widest (new_val->value),
546 new_val->mask))))
547 || (TREE_CODE (new_val->value) != INTEGER_CST
548 && !operand_equal_p (new_val->value, old_val->value, 0)))))
549 {
550 /* ??? We would like to delay creation of INTEGER_CSTs from
551 partially constants here. */
552
553 if (dump_file && (dump_flags & TDF_DETAILS))
554 {
555 dump_lattice_value (dump_file, "Lattice value changed to ", *new_val);
556 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
557 }
558
559 *old_val = *new_val;
560
561 gcc_assert (new_val->lattice_val != UNINITIALIZED);
562 return true;
563 }
564
565 return false;
566 }
567
568 static ccp_prop_value_t get_value_for_expr (tree, bool);
569 static ccp_prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
570 void bit_value_binop (enum tree_code, signop, int, widest_int *, widest_int *,
571 signop, int, const widest_int &, const widest_int &,
572 signop, int, const widest_int &, const widest_int &);
573
574 /* Return a widest_int that can be used for bitwise simplifications
575 from VAL. */
576
577 static widest_int
578 value_to_wide_int (ccp_prop_value_t val)
579 {
580 if (val.value
581 && TREE_CODE (val.value) == INTEGER_CST)
582 return wi::to_widest (val.value);
583
584 return 0;
585 }
586
587 /* Return the value for the address expression EXPR based on alignment
588 information. */
589
590 static ccp_prop_value_t
591 get_value_from_alignment (tree expr)
592 {
593 tree type = TREE_TYPE (expr);
594 ccp_prop_value_t val;
595 unsigned HOST_WIDE_INT bitpos;
596 unsigned int align;
597
598 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
599
600 get_pointer_alignment_1 (expr, &align, &bitpos);
601 val.mask = wi::bit_and_not
602 (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
603 ? wi::mask <widest_int> (TYPE_PRECISION (type), false)
604 : -1,
605 align / BITS_PER_UNIT - 1);
606 val.lattice_val
607 = wi::sext (val.mask, TYPE_PRECISION (type)) == -1 ? VARYING : CONSTANT;
608 if (val.lattice_val == CONSTANT)
609 val.value = build_int_cstu (type, bitpos / BITS_PER_UNIT);
610 else
611 val.value = NULL_TREE;
612
613 return val;
614 }
615
616 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
617 return constant bits extracted from alignment information for
618 invariant addresses. */
619
620 static ccp_prop_value_t
621 get_value_for_expr (tree expr, bool for_bits_p)
622 {
623 ccp_prop_value_t val;
624
625 if (TREE_CODE (expr) == SSA_NAME)
626 {
627 ccp_prop_value_t *val_ = get_value (expr);
628 if (val_)
629 val = *val_;
630 else
631 {
632 val.lattice_val = VARYING;
633 val.value = NULL_TREE;
634 val.mask = -1;
635 }
636 if (for_bits_p
637 && val.lattice_val == CONSTANT)
638 {
639 if (TREE_CODE (val.value) == ADDR_EXPR)
640 val = get_value_from_alignment (val.value);
641 else if (TREE_CODE (val.value) != INTEGER_CST)
642 {
643 val.lattice_val = VARYING;
644 val.value = NULL_TREE;
645 val.mask = -1;
646 }
647 }
648 /* Fall back to a copy value. */
649 if (!for_bits_p
650 && val.lattice_val == VARYING
651 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr))
652 {
653 val.lattice_val = CONSTANT;
654 val.value = expr;
655 val.mask = -1;
656 }
657 }
658 else if (is_gimple_min_invariant (expr)
659 && (!for_bits_p || TREE_CODE (expr) == INTEGER_CST))
660 {
661 val.lattice_val = CONSTANT;
662 val.value = expr;
663 val.mask = 0;
664 canonicalize_value (&val);
665 }
666 else if (TREE_CODE (expr) == ADDR_EXPR)
667 val = get_value_from_alignment (expr);
668 else
669 {
670 val.lattice_val = VARYING;
671 val.mask = -1;
672 val.value = NULL_TREE;
673 }
674
675 if (val.lattice_val == VARYING
676 && TYPE_UNSIGNED (TREE_TYPE (expr)))
677 val.mask = wi::zext (val.mask, TYPE_PRECISION (TREE_TYPE (expr)));
678
679 return val;
680 }
681
682 /* Return the likely CCP lattice value for STMT.
683
684 If STMT has no operands, then return CONSTANT.
685
686 Else if undefinedness of operands of STMT cause its value to be
687 undefined, then return UNDEFINED.
688
689 Else if any operands of STMT are constants, then return CONSTANT.
690
691 Else return VARYING. */
692
693 static ccp_lattice_t
694 likely_value (gimple *stmt)
695 {
696 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
697 bool has_nsa_operand;
698 tree use;
699 ssa_op_iter iter;
700 unsigned i;
701
702 enum gimple_code code = gimple_code (stmt);
703
704 /* This function appears to be called only for assignments, calls,
705 conditionals, and switches, due to the logic in visit_stmt. */
706 gcc_assert (code == GIMPLE_ASSIGN
707 || code == GIMPLE_CALL
708 || code == GIMPLE_COND
709 || code == GIMPLE_SWITCH);
710
711 /* If the statement has volatile operands, it won't fold to a
712 constant value. */
713 if (gimple_has_volatile_ops (stmt))
714 return VARYING;
715
716 /* Arrive here for more complex cases. */
717 has_constant_operand = false;
718 has_undefined_operand = false;
719 all_undefined_operands = true;
720 has_nsa_operand = false;
721 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
722 {
723 ccp_prop_value_t *val = get_value (use);
724
725 if (val && val->lattice_val == UNDEFINED)
726 has_undefined_operand = true;
727 else
728 all_undefined_operands = false;
729
730 if (val && val->lattice_val == CONSTANT)
731 has_constant_operand = true;
732
733 if (SSA_NAME_IS_DEFAULT_DEF (use)
734 || !prop_simulate_again_p (SSA_NAME_DEF_STMT (use)))
735 has_nsa_operand = true;
736 }
737
738 /* There may be constants in regular rhs operands. For calls we
739 have to ignore lhs, fndecl and static chain, otherwise only
740 the lhs. */
741 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
742 i < gimple_num_ops (stmt); ++i)
743 {
744 tree op = gimple_op (stmt, i);
745 if (!op || TREE_CODE (op) == SSA_NAME)
746 continue;
747 if (is_gimple_min_invariant (op))
748 has_constant_operand = true;
749 }
750
751 if (has_constant_operand)
752 all_undefined_operands = false;
753
754 if (has_undefined_operand
755 && code == GIMPLE_CALL
756 && gimple_call_internal_p (stmt))
757 switch (gimple_call_internal_fn (stmt))
758 {
759 /* These 3 builtins use the first argument just as a magic
760 way how to find out a decl uid. */
761 case IFN_GOMP_SIMD_LANE:
762 case IFN_GOMP_SIMD_VF:
763 case IFN_GOMP_SIMD_LAST_LANE:
764 has_undefined_operand = false;
765 break;
766 default:
767 break;
768 }
769
770 /* If the operation combines operands like COMPLEX_EXPR make sure to
771 not mark the result UNDEFINED if only one part of the result is
772 undefined. */
773 if (has_undefined_operand && all_undefined_operands)
774 return UNDEFINED;
775 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
776 {
777 switch (gimple_assign_rhs_code (stmt))
778 {
779 /* Unary operators are handled with all_undefined_operands. */
780 case PLUS_EXPR:
781 case MINUS_EXPR:
782 case POINTER_PLUS_EXPR:
783 case BIT_XOR_EXPR:
784 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
785 Not bitwise operators, one VARYING operand may specify the
786 result completely.
787 Not logical operators for the same reason, apart from XOR.
788 Not COMPLEX_EXPR as one VARYING operand makes the result partly
789 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
790 the undefined operand may be promoted. */
791 return UNDEFINED;
792
793 case ADDR_EXPR:
794 /* If any part of an address is UNDEFINED, like the index
795 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
796 return UNDEFINED;
797
798 default:
799 ;
800 }
801 }
802 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
803 fall back to CONSTANT. During iteration UNDEFINED may still drop
804 to CONSTANT. */
805 if (has_undefined_operand)
806 return CONSTANT;
807
808 /* We do not consider virtual operands here -- load from read-only
809 memory may have only VARYING virtual operands, but still be
810 constant. Also we can combine the stmt with definitions from
811 operands whose definitions are not simulated again. */
812 if (has_constant_operand
813 || has_nsa_operand
814 || gimple_references_memory_p (stmt))
815 return CONSTANT;
816
817 return VARYING;
818 }
819
820 /* Returns true if STMT cannot be constant. */
821
822 static bool
823 surely_varying_stmt_p (gimple *stmt)
824 {
825 /* If the statement has operands that we cannot handle, it cannot be
826 constant. */
827 if (gimple_has_volatile_ops (stmt))
828 return true;
829
830 /* If it is a call and does not return a value or is not a
831 builtin and not an indirect call or a call to function with
832 assume_aligned/alloc_align attribute, it is varying. */
833 if (is_gimple_call (stmt))
834 {
835 tree fndecl, fntype = gimple_call_fntype (stmt);
836 if (!gimple_call_lhs (stmt)
837 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
838 && !fndecl_built_in_p (fndecl)
839 && !lookup_attribute ("assume_aligned",
840 TYPE_ATTRIBUTES (fntype))
841 && !lookup_attribute ("alloc_align",
842 TYPE_ATTRIBUTES (fntype))))
843 return true;
844 }
845
846 /* Any other store operation is not interesting. */
847 else if (gimple_vdef (stmt))
848 return true;
849
850 /* Anything other than assignments and conditional jumps are not
851 interesting for CCP. */
852 if (gimple_code (stmt) != GIMPLE_ASSIGN
853 && gimple_code (stmt) != GIMPLE_COND
854 && gimple_code (stmt) != GIMPLE_SWITCH
855 && gimple_code (stmt) != GIMPLE_CALL)
856 return true;
857
858 return false;
859 }
860
861 /* Initialize local data structures for CCP. */
862
863 static void
864 ccp_initialize (void)
865 {
866 basic_block bb;
867
868 n_const_val = num_ssa_names;
869 const_val = XCNEWVEC (ccp_prop_value_t, n_const_val);
870
871 /* Initialize simulation flags for PHI nodes and statements. */
872 FOR_EACH_BB_FN (bb, cfun)
873 {
874 gimple_stmt_iterator i;
875
876 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
877 {
878 gimple *stmt = gsi_stmt (i);
879 bool is_varying;
880
881 /* If the statement is a control insn, then we do not
882 want to avoid simulating the statement once. Failure
883 to do so means that those edges will never get added. */
884 if (stmt_ends_bb_p (stmt))
885 is_varying = false;
886 else
887 is_varying = surely_varying_stmt_p (stmt);
888
889 if (is_varying)
890 {
891 tree def;
892 ssa_op_iter iter;
893
894 /* If the statement will not produce a constant, mark
895 all its outputs VARYING. */
896 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
897 set_value_varying (def);
898 }
899 prop_set_simulate_again (stmt, !is_varying);
900 }
901 }
902
903 /* Now process PHI nodes. We never clear the simulate_again flag on
904 phi nodes, since we do not know which edges are executable yet,
905 except for phi nodes for virtual operands when we do not do store ccp. */
906 FOR_EACH_BB_FN (bb, cfun)
907 {
908 gphi_iterator i;
909
910 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
911 {
912 gphi *phi = i.phi ();
913
914 if (virtual_operand_p (gimple_phi_result (phi)))
915 prop_set_simulate_again (phi, false);
916 else
917 prop_set_simulate_again (phi, true);
918 }
919 }
920 }
921
922 /* Debug count support. Reset the values of ssa names
923 VARYING when the total number ssa names analyzed is
924 beyond the debug count specified. */
925
926 static void
927 do_dbg_cnt (void)
928 {
929 unsigned i;
930 for (i = 0; i < num_ssa_names; i++)
931 {
932 if (!dbg_cnt (ccp))
933 {
934 const_val[i].lattice_val = VARYING;
935 const_val[i].mask = -1;
936 const_val[i].value = NULL_TREE;
937 }
938 }
939 }
940
941
942 /* We want to provide our own GET_VALUE and FOLD_STMT virtual methods. */
943 class ccp_folder : public substitute_and_fold_engine
944 {
945 public:
946 tree get_value (tree) FINAL OVERRIDE;
947 bool fold_stmt (gimple_stmt_iterator *) FINAL OVERRIDE;
948 };
949
950 /* This method just wraps GET_CONSTANT_VALUE for now. Over time
951 naked calls to GET_CONSTANT_VALUE should be eliminated in favor
952 of calling member functions. */
953
954 tree
955 ccp_folder::get_value (tree op)
956 {
957 return get_constant_value (op);
958 }
959
960 /* Do final substitution of propagated values, cleanup the flowgraph and
961 free allocated storage. If NONZERO_P, record nonzero bits.
962
963 Return TRUE when something was optimized. */
964
965 static bool
966 ccp_finalize (bool nonzero_p)
967 {
968 bool something_changed;
969 unsigned i;
970 tree name;
971
972 do_dbg_cnt ();
973
974 /* Derive alignment and misalignment information from partially
975 constant pointers in the lattice or nonzero bits from partially
976 constant integers. */
977 FOR_EACH_SSA_NAME (i, name, cfun)
978 {
979 ccp_prop_value_t *val;
980 unsigned int tem, align;
981
982 if (!POINTER_TYPE_P (TREE_TYPE (name))
983 && (!INTEGRAL_TYPE_P (TREE_TYPE (name))
984 /* Don't record nonzero bits before IPA to avoid
985 using too much memory. */
986 || !nonzero_p))
987 continue;
988
989 val = get_value (name);
990 if (val->lattice_val != CONSTANT
991 || TREE_CODE (val->value) != INTEGER_CST
992 || val->mask == 0)
993 continue;
994
995 if (POINTER_TYPE_P (TREE_TYPE (name)))
996 {
997 /* Trailing mask bits specify the alignment, trailing value
998 bits the misalignment. */
999 tem = val->mask.to_uhwi ();
1000 align = least_bit_hwi (tem);
1001 if (align > 1)
1002 set_ptr_info_alignment (get_ptr_info (name), align,
1003 (TREE_INT_CST_LOW (val->value)
1004 & (align - 1)));
1005 }
1006 else
1007 {
1008 unsigned int precision = TYPE_PRECISION (TREE_TYPE (val->value));
1009 wide_int nonzero_bits
1010 = (wide_int::from (val->mask, precision, UNSIGNED)
1011 | wi::to_wide (val->value));
1012 nonzero_bits &= get_nonzero_bits (name);
1013 set_nonzero_bits (name, nonzero_bits);
1014 }
1015 }
1016
1017 /* Perform substitutions based on the known constant values. */
1018 class ccp_folder ccp_folder;
1019 something_changed = ccp_folder.substitute_and_fold ();
1020
1021 free (const_val);
1022 const_val = NULL;
1023 return something_changed;
1024 }
1025
1026
1027 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
1028 in VAL1.
1029
1030 any M UNDEFINED = any
1031 any M VARYING = VARYING
1032 Ci M Cj = Ci if (i == j)
1033 Ci M Cj = VARYING if (i != j)
1034 */
1035
1036 static void
1037 ccp_lattice_meet (ccp_prop_value_t *val1, ccp_prop_value_t *val2)
1038 {
1039 if (val1->lattice_val == UNDEFINED
1040 /* For UNDEFINED M SSA we can't always SSA because its definition
1041 may not dominate the PHI node. Doing optimistic copy propagation
1042 also causes a lot of gcc.dg/uninit-pred*.c FAILs. */
1043 && (val2->lattice_val != CONSTANT
1044 || TREE_CODE (val2->value) != SSA_NAME))
1045 {
1046 /* UNDEFINED M any = any */
1047 *val1 = *val2;
1048 }
1049 else if (val2->lattice_val == UNDEFINED
1050 /* See above. */
1051 && (val1->lattice_val != CONSTANT
1052 || TREE_CODE (val1->value) != SSA_NAME))
1053 {
1054 /* any M UNDEFINED = any
1055 Nothing to do. VAL1 already contains the value we want. */
1056 ;
1057 }
1058 else if (val1->lattice_val == VARYING
1059 || val2->lattice_val == VARYING)
1060 {
1061 /* any M VARYING = VARYING. */
1062 val1->lattice_val = VARYING;
1063 val1->mask = -1;
1064 val1->value = NULL_TREE;
1065 }
1066 else if (val1->lattice_val == CONSTANT
1067 && val2->lattice_val == CONSTANT
1068 && TREE_CODE (val1->value) == INTEGER_CST
1069 && TREE_CODE (val2->value) == INTEGER_CST)
1070 {
1071 /* Ci M Cj = Ci if (i == j)
1072 Ci M Cj = VARYING if (i != j)
1073
1074 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
1075 drop to varying. */
1076 val1->mask = (val1->mask | val2->mask
1077 | (wi::to_widest (val1->value)
1078 ^ wi::to_widest (val2->value)));
1079 if (wi::sext (val1->mask, TYPE_PRECISION (TREE_TYPE (val1->value))) == -1)
1080 {
1081 val1->lattice_val = VARYING;
1082 val1->value = NULL_TREE;
1083 }
1084 }
1085 else if (val1->lattice_val == CONSTANT
1086 && val2->lattice_val == CONSTANT
1087 && operand_equal_p (val1->value, val2->value, 0))
1088 {
1089 /* Ci M Cj = Ci if (i == j)
1090 Ci M Cj = VARYING if (i != j)
1091
1092 VAL1 already contains the value we want for equivalent values. */
1093 }
1094 else if (val1->lattice_val == CONSTANT
1095 && val2->lattice_val == CONSTANT
1096 && (TREE_CODE (val1->value) == ADDR_EXPR
1097 || TREE_CODE (val2->value) == ADDR_EXPR))
1098 {
1099 /* When not equal addresses are involved try meeting for
1100 alignment. */
1101 ccp_prop_value_t tem = *val2;
1102 if (TREE_CODE (val1->value) == ADDR_EXPR)
1103 *val1 = get_value_for_expr (val1->value, true);
1104 if (TREE_CODE (val2->value) == ADDR_EXPR)
1105 tem = get_value_for_expr (val2->value, true);
1106 ccp_lattice_meet (val1, &tem);
1107 }
1108 else
1109 {
1110 /* Any other combination is VARYING. */
1111 val1->lattice_val = VARYING;
1112 val1->mask = -1;
1113 val1->value = NULL_TREE;
1114 }
1115 }
1116
1117
1118 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
1119 lattice values to determine PHI_NODE's lattice value. The value of a
1120 PHI node is determined calling ccp_lattice_meet with all the arguments
1121 of the PHI node that are incoming via executable edges. */
1122
1123 enum ssa_prop_result
1124 ccp_propagate::visit_phi (gphi *phi)
1125 {
1126 unsigned i;
1127 ccp_prop_value_t new_val;
1128
1129 if (dump_file && (dump_flags & TDF_DETAILS))
1130 {
1131 fprintf (dump_file, "\nVisiting PHI node: ");
1132 print_gimple_stmt (dump_file, phi, 0, dump_flags);
1133 }
1134
1135 new_val.lattice_val = UNDEFINED;
1136 new_val.value = NULL_TREE;
1137 new_val.mask = 0;
1138
1139 bool first = true;
1140 bool non_exec_edge = false;
1141 for (i = 0; i < gimple_phi_num_args (phi); i++)
1142 {
1143 /* Compute the meet operator over all the PHI arguments flowing
1144 through executable edges. */
1145 edge e = gimple_phi_arg_edge (phi, i);
1146
1147 if (dump_file && (dump_flags & TDF_DETAILS))
1148 {
1149 fprintf (dump_file,
1150 "\tArgument #%d (%d -> %d %sexecutable)\n",
1151 i, e->src->index, e->dest->index,
1152 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
1153 }
1154
1155 /* If the incoming edge is executable, Compute the meet operator for
1156 the existing value of the PHI node and the current PHI argument. */
1157 if (e->flags & EDGE_EXECUTABLE)
1158 {
1159 tree arg = gimple_phi_arg (phi, i)->def;
1160 ccp_prop_value_t arg_val = get_value_for_expr (arg, false);
1161
1162 if (first)
1163 {
1164 new_val = arg_val;
1165 first = false;
1166 }
1167 else
1168 ccp_lattice_meet (&new_val, &arg_val);
1169
1170 if (dump_file && (dump_flags & TDF_DETAILS))
1171 {
1172 fprintf (dump_file, "\t");
1173 print_generic_expr (dump_file, arg, dump_flags);
1174 dump_lattice_value (dump_file, "\tValue: ", arg_val);
1175 fprintf (dump_file, "\n");
1176 }
1177
1178 if (new_val.lattice_val == VARYING)
1179 break;
1180 }
1181 else
1182 non_exec_edge = true;
1183 }
1184
1185 /* In case there were non-executable edges and the value is a copy
1186 make sure its definition dominates the PHI node. */
1187 if (non_exec_edge
1188 && new_val.lattice_val == CONSTANT
1189 && TREE_CODE (new_val.value) == SSA_NAME
1190 && ! SSA_NAME_IS_DEFAULT_DEF (new_val.value)
1191 && ! dominated_by_p (CDI_DOMINATORS, gimple_bb (phi),
1192 gimple_bb (SSA_NAME_DEF_STMT (new_val.value))))
1193 {
1194 new_val.lattice_val = VARYING;
1195 new_val.value = NULL_TREE;
1196 new_val.mask = -1;
1197 }
1198
1199 if (dump_file && (dump_flags & TDF_DETAILS))
1200 {
1201 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
1202 fprintf (dump_file, "\n\n");
1203 }
1204
1205 /* Make the transition to the new value. */
1206 if (set_lattice_value (gimple_phi_result (phi), &new_val))
1207 {
1208 if (new_val.lattice_val == VARYING)
1209 return SSA_PROP_VARYING;
1210 else
1211 return SSA_PROP_INTERESTING;
1212 }
1213 else
1214 return SSA_PROP_NOT_INTERESTING;
1215 }
1216
1217 /* Return the constant value for OP or OP otherwise. */
1218
1219 static tree
1220 valueize_op (tree op)
1221 {
1222 if (TREE_CODE (op) == SSA_NAME)
1223 {
1224 tree tem = get_constant_value (op);
1225 if (tem)
1226 return tem;
1227 }
1228 return op;
1229 }
1230
1231 /* Return the constant value for OP, but signal to not follow SSA
1232 edges if the definition may be simulated again. */
1233
1234 static tree
1235 valueize_op_1 (tree op)
1236 {
1237 if (TREE_CODE (op) == SSA_NAME)
1238 {
1239 /* If the definition may be simulated again we cannot follow
1240 this SSA edge as the SSA propagator does not necessarily
1241 re-visit the use. */
1242 gimple *def_stmt = SSA_NAME_DEF_STMT (op);
1243 if (!gimple_nop_p (def_stmt)
1244 && prop_simulate_again_p (def_stmt))
1245 return NULL_TREE;
1246 tree tem = get_constant_value (op);
1247 if (tem)
1248 return tem;
1249 }
1250 return op;
1251 }
1252
1253 /* CCP specific front-end to the non-destructive constant folding
1254 routines.
1255
1256 Attempt to simplify the RHS of STMT knowing that one or more
1257 operands are constants.
1258
1259 If simplification is possible, return the simplified RHS,
1260 otherwise return the original RHS or NULL_TREE. */
1261
1262 static tree
1263 ccp_fold (gimple *stmt)
1264 {
1265 location_t loc = gimple_location (stmt);
1266 switch (gimple_code (stmt))
1267 {
1268 case GIMPLE_COND:
1269 {
1270 /* Handle comparison operators that can appear in GIMPLE form. */
1271 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1272 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1273 enum tree_code code = gimple_cond_code (stmt);
1274 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1275 }
1276
1277 case GIMPLE_SWITCH:
1278 {
1279 /* Return the constant switch index. */
1280 return valueize_op (gimple_switch_index (as_a <gswitch *> (stmt)));
1281 }
1282
1283 case GIMPLE_ASSIGN:
1284 case GIMPLE_CALL:
1285 return gimple_fold_stmt_to_constant_1 (stmt,
1286 valueize_op, valueize_op_1);
1287
1288 default:
1289 gcc_unreachable ();
1290 }
1291 }
1292
1293 /* Apply the operation CODE in type TYPE to the value, mask pair
1294 RVAL and RMASK representing a value of type RTYPE and set
1295 the value, mask pair *VAL and *MASK to the result. */
1296
1297 void
1298 bit_value_unop (enum tree_code code, signop type_sgn, int type_precision,
1299 widest_int *val, widest_int *mask,
1300 signop rtype_sgn, int rtype_precision,
1301 const widest_int &rval, const widest_int &rmask)
1302 {
1303 switch (code)
1304 {
1305 case BIT_NOT_EXPR:
1306 *mask = rmask;
1307 *val = ~rval;
1308 break;
1309
1310 case NEGATE_EXPR:
1311 {
1312 widest_int temv, temm;
1313 /* Return ~rval + 1. */
1314 bit_value_unop (BIT_NOT_EXPR, type_sgn, type_precision, &temv, &temm,
1315 type_sgn, type_precision, rval, rmask);
1316 bit_value_binop (PLUS_EXPR, type_sgn, type_precision, val, mask,
1317 type_sgn, type_precision, temv, temm,
1318 type_sgn, type_precision, 1, 0);
1319 break;
1320 }
1321
1322 CASE_CONVERT:
1323 {
1324 /* First extend mask and value according to the original type. */
1325 *mask = wi::ext (rmask, rtype_precision, rtype_sgn);
1326 *val = wi::ext (rval, rtype_precision, rtype_sgn);
1327
1328 /* Then extend mask and value according to the target type. */
1329 *mask = wi::ext (*mask, type_precision, type_sgn);
1330 *val = wi::ext (*val, type_precision, type_sgn);
1331 break;
1332 }
1333
1334 default:
1335 *mask = -1;
1336 break;
1337 }
1338 }
1339
1340 /* Apply the operation CODE in type TYPE to the value, mask pairs
1341 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1342 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1343
1344 void
1345 bit_value_binop (enum tree_code code, signop sgn, int width,
1346 widest_int *val, widest_int *mask,
1347 signop r1type_sgn, int r1type_precision,
1348 const widest_int &r1val, const widest_int &r1mask,
1349 signop r2type_sgn, int r2type_precision,
1350 const widest_int &r2val, const widest_int &r2mask)
1351 {
1352 bool swap_p = false;
1353
1354 /* Assume we'll get a constant result. Use an initial non varying
1355 value, we fall back to varying in the end if necessary. */
1356 *mask = -1;
1357
1358 switch (code)
1359 {
1360 case BIT_AND_EXPR:
1361 /* The mask is constant where there is a known not
1362 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1363 *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
1364 *val = r1val & r2val;
1365 break;
1366
1367 case BIT_IOR_EXPR:
1368 /* The mask is constant where there is a known
1369 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1370 *mask = wi::bit_and_not (r1mask | r2mask,
1371 wi::bit_and_not (r1val, r1mask)
1372 | wi::bit_and_not (r2val, r2mask));
1373 *val = r1val | r2val;
1374 break;
1375
1376 case BIT_XOR_EXPR:
1377 /* m1 | m2 */
1378 *mask = r1mask | r2mask;
1379 *val = r1val ^ r2val;
1380 break;
1381
1382 case LROTATE_EXPR:
1383 case RROTATE_EXPR:
1384 if (r2mask == 0)
1385 {
1386 widest_int shift = r2val;
1387 if (shift == 0)
1388 {
1389 *mask = r1mask;
1390 *val = r1val;
1391 }
1392 else
1393 {
1394 if (wi::neg_p (shift))
1395 {
1396 shift = -shift;
1397 if (code == RROTATE_EXPR)
1398 code = LROTATE_EXPR;
1399 else
1400 code = RROTATE_EXPR;
1401 }
1402 if (code == RROTATE_EXPR)
1403 {
1404 *mask = wi::rrotate (r1mask, shift, width);
1405 *val = wi::rrotate (r1val, shift, width);
1406 }
1407 else
1408 {
1409 *mask = wi::lrotate (r1mask, shift, width);
1410 *val = wi::lrotate (r1val, shift, width);
1411 }
1412 }
1413 }
1414 break;
1415
1416 case LSHIFT_EXPR:
1417 case RSHIFT_EXPR:
1418 /* ??? We can handle partially known shift counts if we know
1419 its sign. That way we can tell that (x << (y | 8)) & 255
1420 is zero. */
1421 if (r2mask == 0)
1422 {
1423 widest_int shift = r2val;
1424 if (shift == 0)
1425 {
1426 *mask = r1mask;
1427 *val = r1val;
1428 }
1429 else
1430 {
1431 if (wi::neg_p (shift))
1432 {
1433 shift = -shift;
1434 if (code == RSHIFT_EXPR)
1435 code = LSHIFT_EXPR;
1436 else
1437 code = RSHIFT_EXPR;
1438 }
1439 if (code == RSHIFT_EXPR)
1440 {
1441 *mask = wi::rshift (wi::ext (r1mask, width, sgn), shift, sgn);
1442 *val = wi::rshift (wi::ext (r1val, width, sgn), shift, sgn);
1443 }
1444 else
1445 {
1446 *mask = wi::ext (r1mask << shift, width, sgn);
1447 *val = wi::ext (r1val << shift, width, sgn);
1448 }
1449 }
1450 }
1451 break;
1452
1453 case PLUS_EXPR:
1454 case POINTER_PLUS_EXPR:
1455 {
1456 /* Do the addition with unknown bits set to zero, to give carry-ins of
1457 zero wherever possible. */
1458 widest_int lo = (wi::bit_and_not (r1val, r1mask)
1459 + wi::bit_and_not (r2val, r2mask));
1460 lo = wi::ext (lo, width, sgn);
1461 /* Do the addition with unknown bits set to one, to give carry-ins of
1462 one wherever possible. */
1463 widest_int hi = (r1val | r1mask) + (r2val | r2mask);
1464 hi = wi::ext (hi, width, sgn);
1465 /* Each bit in the result is known if (a) the corresponding bits in
1466 both inputs are known, and (b) the carry-in to that bit position
1467 is known. We can check condition (b) by seeing if we got the same
1468 result with minimised carries as with maximised carries. */
1469 *mask = r1mask | r2mask | (lo ^ hi);
1470 *mask = wi::ext (*mask, width, sgn);
1471 /* It shouldn't matter whether we choose lo or hi here. */
1472 *val = lo;
1473 break;
1474 }
1475
1476 case MINUS_EXPR:
1477 {
1478 widest_int temv, temm;
1479 bit_value_unop (NEGATE_EXPR, r2type_sgn, r2type_precision, &temv, &temm,
1480 r2type_sgn, r2type_precision, r2val, r2mask);
1481 bit_value_binop (PLUS_EXPR, sgn, width, val, mask,
1482 r1type_sgn, r1type_precision, r1val, r1mask,
1483 r2type_sgn, r2type_precision, temv, temm);
1484 break;
1485 }
1486
1487 case MULT_EXPR:
1488 {
1489 /* Just track trailing zeros in both operands and transfer
1490 them to the other. */
1491 int r1tz = wi::ctz (r1val | r1mask);
1492 int r2tz = wi::ctz (r2val | r2mask);
1493 if (r1tz + r2tz >= width)
1494 {
1495 *mask = 0;
1496 *val = 0;
1497 }
1498 else if (r1tz + r2tz > 0)
1499 {
1500 *mask = wi::ext (wi::mask <widest_int> (r1tz + r2tz, true),
1501 width, sgn);
1502 *val = 0;
1503 }
1504 break;
1505 }
1506
1507 case EQ_EXPR:
1508 case NE_EXPR:
1509 {
1510 widest_int m = r1mask | r2mask;
1511 if (wi::bit_and_not (r1val, m) != wi::bit_and_not (r2val, m))
1512 {
1513 *mask = 0;
1514 *val = ((code == EQ_EXPR) ? 0 : 1);
1515 }
1516 else
1517 {
1518 /* We know the result of a comparison is always one or zero. */
1519 *mask = 1;
1520 *val = 0;
1521 }
1522 break;
1523 }
1524
1525 case GE_EXPR:
1526 case GT_EXPR:
1527 swap_p = true;
1528 code = swap_tree_comparison (code);
1529 /* Fall through. */
1530 case LT_EXPR:
1531 case LE_EXPR:
1532 {
1533 int minmax, maxmin;
1534
1535 const widest_int &o1val = swap_p ? r2val : r1val;
1536 const widest_int &o1mask = swap_p ? r2mask : r1mask;
1537 const widest_int &o2val = swap_p ? r1val : r2val;
1538 const widest_int &o2mask = swap_p ? r1mask : r2mask;
1539
1540 /* If the most significant bits are not known we know nothing. */
1541 if (wi::neg_p (o1mask) || wi::neg_p (o2mask))
1542 break;
1543
1544 /* For comparisons the signedness is in the comparison operands. */
1545 sgn = r1type_sgn;
1546
1547 /* If we know the most significant bits we know the values
1548 value ranges by means of treating varying bits as zero
1549 or one. Do a cross comparison of the max/min pairs. */
1550 maxmin = wi::cmp (o1val | o1mask,
1551 wi::bit_and_not (o2val, o2mask), sgn);
1552 minmax = wi::cmp (wi::bit_and_not (o1val, o1mask),
1553 o2val | o2mask, sgn);
1554 if (maxmin < 0) /* o1 is less than o2. */
1555 {
1556 *mask = 0;
1557 *val = 1;
1558 }
1559 else if (minmax > 0) /* o1 is not less or equal to o2. */
1560 {
1561 *mask = 0;
1562 *val = 0;
1563 }
1564 else if (maxmin == minmax) /* o1 and o2 are equal. */
1565 {
1566 /* This probably should never happen as we'd have
1567 folded the thing during fully constant value folding. */
1568 *mask = 0;
1569 *val = (code == LE_EXPR ? 1 : 0);
1570 }
1571 else
1572 {
1573 /* We know the result of a comparison is always one or zero. */
1574 *mask = 1;
1575 *val = 0;
1576 }
1577 break;
1578 }
1579
1580 default:;
1581 }
1582 }
1583
1584 /* Return the propagation value when applying the operation CODE to
1585 the value RHS yielding type TYPE. */
1586
1587 static ccp_prop_value_t
1588 bit_value_unop (enum tree_code code, tree type, tree rhs)
1589 {
1590 ccp_prop_value_t rval = get_value_for_expr (rhs, true);
1591 widest_int value, mask;
1592 ccp_prop_value_t val;
1593
1594 if (rval.lattice_val == UNDEFINED)
1595 return rval;
1596
1597 gcc_assert ((rval.lattice_val == CONSTANT
1598 && TREE_CODE (rval.value) == INTEGER_CST)
1599 || wi::sext (rval.mask, TYPE_PRECISION (TREE_TYPE (rhs))) == -1);
1600 bit_value_unop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1601 TYPE_SIGN (TREE_TYPE (rhs)), TYPE_PRECISION (TREE_TYPE (rhs)),
1602 value_to_wide_int (rval), rval.mask);
1603 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1604 {
1605 val.lattice_val = CONSTANT;
1606 val.mask = mask;
1607 /* ??? Delay building trees here. */
1608 val.value = wide_int_to_tree (type, value);
1609 }
1610 else
1611 {
1612 val.lattice_val = VARYING;
1613 val.value = NULL_TREE;
1614 val.mask = -1;
1615 }
1616 return val;
1617 }
1618
1619 /* Return the propagation value when applying the operation CODE to
1620 the values RHS1 and RHS2 yielding type TYPE. */
1621
1622 static ccp_prop_value_t
1623 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
1624 {
1625 ccp_prop_value_t r1val = get_value_for_expr (rhs1, true);
1626 ccp_prop_value_t r2val = get_value_for_expr (rhs2, true);
1627 widest_int value, mask;
1628 ccp_prop_value_t val;
1629
1630 if (r1val.lattice_val == UNDEFINED
1631 || r2val.lattice_val == UNDEFINED)
1632 {
1633 val.lattice_val = VARYING;
1634 val.value = NULL_TREE;
1635 val.mask = -1;
1636 return val;
1637 }
1638
1639 gcc_assert ((r1val.lattice_val == CONSTANT
1640 && TREE_CODE (r1val.value) == INTEGER_CST)
1641 || wi::sext (r1val.mask,
1642 TYPE_PRECISION (TREE_TYPE (rhs1))) == -1);
1643 gcc_assert ((r2val.lattice_val == CONSTANT
1644 && TREE_CODE (r2val.value) == INTEGER_CST)
1645 || wi::sext (r2val.mask,
1646 TYPE_PRECISION (TREE_TYPE (rhs2))) == -1);
1647 bit_value_binop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1648 TYPE_SIGN (TREE_TYPE (rhs1)), TYPE_PRECISION (TREE_TYPE (rhs1)),
1649 value_to_wide_int (r1val), r1val.mask,
1650 TYPE_SIGN (TREE_TYPE (rhs2)), TYPE_PRECISION (TREE_TYPE (rhs2)),
1651 value_to_wide_int (r2val), r2val.mask);
1652
1653 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1654 {
1655 val.lattice_val = CONSTANT;
1656 val.mask = mask;
1657 /* ??? Delay building trees here. */
1658 val.value = wide_int_to_tree (type, value);
1659 }
1660 else
1661 {
1662 val.lattice_val = VARYING;
1663 val.value = NULL_TREE;
1664 val.mask = -1;
1665 }
1666 return val;
1667 }
1668
1669 /* Return the propagation value for __builtin_assume_aligned
1670 and functions with assume_aligned or alloc_aligned attribute.
1671 For __builtin_assume_aligned, ATTR is NULL_TREE,
1672 for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED
1673 is false, for alloc_aligned attribute ATTR is non-NULL and
1674 ALLOC_ALIGNED is true. */
1675
1676 static ccp_prop_value_t
1677 bit_value_assume_aligned (gimple *stmt, tree attr, ccp_prop_value_t ptrval,
1678 bool alloc_aligned)
1679 {
1680 tree align, misalign = NULL_TREE, type;
1681 unsigned HOST_WIDE_INT aligni, misaligni = 0;
1682 ccp_prop_value_t alignval;
1683 widest_int value, mask;
1684 ccp_prop_value_t val;
1685
1686 if (attr == NULL_TREE)
1687 {
1688 tree ptr = gimple_call_arg (stmt, 0);
1689 type = TREE_TYPE (ptr);
1690 ptrval = get_value_for_expr (ptr, true);
1691 }
1692 else
1693 {
1694 tree lhs = gimple_call_lhs (stmt);
1695 type = TREE_TYPE (lhs);
1696 }
1697
1698 if (ptrval.lattice_val == UNDEFINED)
1699 return ptrval;
1700 gcc_assert ((ptrval.lattice_val == CONSTANT
1701 && TREE_CODE (ptrval.value) == INTEGER_CST)
1702 || wi::sext (ptrval.mask, TYPE_PRECISION (type)) == -1);
1703 if (attr == NULL_TREE)
1704 {
1705 /* Get aligni and misaligni from __builtin_assume_aligned. */
1706 align = gimple_call_arg (stmt, 1);
1707 if (!tree_fits_uhwi_p (align))
1708 return ptrval;
1709 aligni = tree_to_uhwi (align);
1710 if (gimple_call_num_args (stmt) > 2)
1711 {
1712 misalign = gimple_call_arg (stmt, 2);
1713 if (!tree_fits_uhwi_p (misalign))
1714 return ptrval;
1715 misaligni = tree_to_uhwi (misalign);
1716 }
1717 }
1718 else
1719 {
1720 /* Get aligni and misaligni from assume_aligned or
1721 alloc_align attributes. */
1722 if (TREE_VALUE (attr) == NULL_TREE)
1723 return ptrval;
1724 attr = TREE_VALUE (attr);
1725 align = TREE_VALUE (attr);
1726 if (!tree_fits_uhwi_p (align))
1727 return ptrval;
1728 aligni = tree_to_uhwi (align);
1729 if (alloc_aligned)
1730 {
1731 if (aligni == 0 || aligni > gimple_call_num_args (stmt))
1732 return ptrval;
1733 align = gimple_call_arg (stmt, aligni - 1);
1734 if (!tree_fits_uhwi_p (align))
1735 return ptrval;
1736 aligni = tree_to_uhwi (align);
1737 }
1738 else if (TREE_CHAIN (attr) && TREE_VALUE (TREE_CHAIN (attr)))
1739 {
1740 misalign = TREE_VALUE (TREE_CHAIN (attr));
1741 if (!tree_fits_uhwi_p (misalign))
1742 return ptrval;
1743 misaligni = tree_to_uhwi (misalign);
1744 }
1745 }
1746 if (aligni <= 1 || (aligni & (aligni - 1)) != 0 || misaligni >= aligni)
1747 return ptrval;
1748
1749 align = build_int_cst_type (type, -aligni);
1750 alignval = get_value_for_expr (align, true);
1751 bit_value_binop (BIT_AND_EXPR, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1752 TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (ptrval), ptrval.mask,
1753 TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (alignval), alignval.mask);
1754
1755 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1756 {
1757 val.lattice_val = CONSTANT;
1758 val.mask = mask;
1759 gcc_assert ((mask.to_uhwi () & (aligni - 1)) == 0);
1760 gcc_assert ((value.to_uhwi () & (aligni - 1)) == 0);
1761 value |= misaligni;
1762 /* ??? Delay building trees here. */
1763 val.value = wide_int_to_tree (type, value);
1764 }
1765 else
1766 {
1767 val.lattice_val = VARYING;
1768 val.value = NULL_TREE;
1769 val.mask = -1;
1770 }
1771 return val;
1772 }
1773
1774 /* Evaluate statement STMT.
1775 Valid only for assignments, calls, conditionals, and switches. */
1776
1777 static ccp_prop_value_t
1778 evaluate_stmt (gimple *stmt)
1779 {
1780 ccp_prop_value_t val;
1781 tree simplified = NULL_TREE;
1782 ccp_lattice_t likelyvalue = likely_value (stmt);
1783 bool is_constant = false;
1784 unsigned int align;
1785
1786 if (dump_file && (dump_flags & TDF_DETAILS))
1787 {
1788 fprintf (dump_file, "which is likely ");
1789 switch (likelyvalue)
1790 {
1791 case CONSTANT:
1792 fprintf (dump_file, "CONSTANT");
1793 break;
1794 case UNDEFINED:
1795 fprintf (dump_file, "UNDEFINED");
1796 break;
1797 case VARYING:
1798 fprintf (dump_file, "VARYING");
1799 break;
1800 default:;
1801 }
1802 fprintf (dump_file, "\n");
1803 }
1804
1805 /* If the statement is likely to have a CONSTANT result, then try
1806 to fold the statement to determine the constant value. */
1807 /* FIXME. This is the only place that we call ccp_fold.
1808 Since likely_value never returns CONSTANT for calls, we will
1809 not attempt to fold them, including builtins that may profit. */
1810 if (likelyvalue == CONSTANT)
1811 {
1812 fold_defer_overflow_warnings ();
1813 simplified = ccp_fold (stmt);
1814 if (simplified
1815 && TREE_CODE (simplified) == SSA_NAME)
1816 {
1817 /* We may not use values of something that may be simulated again,
1818 see valueize_op_1. */
1819 if (SSA_NAME_IS_DEFAULT_DEF (simplified)
1820 || ! prop_simulate_again_p (SSA_NAME_DEF_STMT (simplified)))
1821 {
1822 ccp_prop_value_t *val = get_value (simplified);
1823 if (val && val->lattice_val != VARYING)
1824 {
1825 fold_undefer_overflow_warnings (true, stmt, 0);
1826 return *val;
1827 }
1828 }
1829 else
1830 /* We may also not place a non-valueized copy in the lattice
1831 as that might become stale if we never re-visit this stmt. */
1832 simplified = NULL_TREE;
1833 }
1834 is_constant = simplified && is_gimple_min_invariant (simplified);
1835 fold_undefer_overflow_warnings (is_constant, stmt, 0);
1836 if (is_constant)
1837 {
1838 /* The statement produced a constant value. */
1839 val.lattice_val = CONSTANT;
1840 val.value = simplified;
1841 val.mask = 0;
1842 return val;
1843 }
1844 }
1845 /* If the statement is likely to have a VARYING result, then do not
1846 bother folding the statement. */
1847 else if (likelyvalue == VARYING)
1848 {
1849 enum gimple_code code = gimple_code (stmt);
1850 if (code == GIMPLE_ASSIGN)
1851 {
1852 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1853
1854 /* Other cases cannot satisfy is_gimple_min_invariant
1855 without folding. */
1856 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
1857 simplified = gimple_assign_rhs1 (stmt);
1858 }
1859 else if (code == GIMPLE_SWITCH)
1860 simplified = gimple_switch_index (as_a <gswitch *> (stmt));
1861 else
1862 /* These cannot satisfy is_gimple_min_invariant without folding. */
1863 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
1864 is_constant = simplified && is_gimple_min_invariant (simplified);
1865 if (is_constant)
1866 {
1867 /* The statement produced a constant value. */
1868 val.lattice_val = CONSTANT;
1869 val.value = simplified;
1870 val.mask = 0;
1871 }
1872 }
1873 /* If the statement result is likely UNDEFINED, make it so. */
1874 else if (likelyvalue == UNDEFINED)
1875 {
1876 val.lattice_val = UNDEFINED;
1877 val.value = NULL_TREE;
1878 val.mask = 0;
1879 return val;
1880 }
1881
1882 /* Resort to simplification for bitwise tracking. */
1883 if (flag_tree_bit_ccp
1884 && (likelyvalue == CONSTANT || is_gimple_call (stmt)
1885 || (gimple_assign_single_p (stmt)
1886 && gimple_assign_rhs_code (stmt) == ADDR_EXPR))
1887 && !is_constant)
1888 {
1889 enum gimple_code code = gimple_code (stmt);
1890 val.lattice_val = VARYING;
1891 val.value = NULL_TREE;
1892 val.mask = -1;
1893 if (code == GIMPLE_ASSIGN)
1894 {
1895 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1896 tree rhs1 = gimple_assign_rhs1 (stmt);
1897 tree lhs = gimple_assign_lhs (stmt);
1898 if ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
1899 || POINTER_TYPE_P (TREE_TYPE (lhs)))
1900 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1901 || POINTER_TYPE_P (TREE_TYPE (rhs1))))
1902 switch (get_gimple_rhs_class (subcode))
1903 {
1904 case GIMPLE_SINGLE_RHS:
1905 val = get_value_for_expr (rhs1, true);
1906 break;
1907
1908 case GIMPLE_UNARY_RHS:
1909 val = bit_value_unop (subcode, TREE_TYPE (lhs), rhs1);
1910 break;
1911
1912 case GIMPLE_BINARY_RHS:
1913 val = bit_value_binop (subcode, TREE_TYPE (lhs), rhs1,
1914 gimple_assign_rhs2 (stmt));
1915 break;
1916
1917 default:;
1918 }
1919 }
1920 else if (code == GIMPLE_COND)
1921 {
1922 enum tree_code code = gimple_cond_code (stmt);
1923 tree rhs1 = gimple_cond_lhs (stmt);
1924 tree rhs2 = gimple_cond_rhs (stmt);
1925 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1926 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1927 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
1928 }
1929 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1930 {
1931 tree fndecl = gimple_call_fndecl (stmt);
1932 switch (DECL_FUNCTION_CODE (fndecl))
1933 {
1934 case BUILT_IN_MALLOC:
1935 case BUILT_IN_REALLOC:
1936 case BUILT_IN_CALLOC:
1937 case BUILT_IN_STRDUP:
1938 case BUILT_IN_STRNDUP:
1939 val.lattice_val = CONSTANT;
1940 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1941 val.mask = ~((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT
1942 / BITS_PER_UNIT - 1);
1943 break;
1944
1945 CASE_BUILT_IN_ALLOCA:
1946 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
1947 ? BIGGEST_ALIGNMENT
1948 : TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
1949 val.lattice_val = CONSTANT;
1950 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1951 val.mask = ~((HOST_WIDE_INT) align / BITS_PER_UNIT - 1);
1952 break;
1953
1954 /* These builtins return their first argument, unmodified. */
1955 case BUILT_IN_MEMCPY:
1956 case BUILT_IN_MEMMOVE:
1957 case BUILT_IN_MEMSET:
1958 case BUILT_IN_STRCPY:
1959 case BUILT_IN_STRNCPY:
1960 case BUILT_IN_MEMCPY_CHK:
1961 case BUILT_IN_MEMMOVE_CHK:
1962 case BUILT_IN_MEMSET_CHK:
1963 case BUILT_IN_STRCPY_CHK:
1964 case BUILT_IN_STRNCPY_CHK:
1965 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1966 break;
1967
1968 case BUILT_IN_ASSUME_ALIGNED:
1969 val = bit_value_assume_aligned (stmt, NULL_TREE, val, false);
1970 break;
1971
1972 case BUILT_IN_ALIGNED_ALLOC:
1973 {
1974 tree align = get_constant_value (gimple_call_arg (stmt, 0));
1975 if (align
1976 && tree_fits_uhwi_p (align))
1977 {
1978 unsigned HOST_WIDE_INT aligni = tree_to_uhwi (align);
1979 if (aligni > 1
1980 /* align must be power-of-two */
1981 && (aligni & (aligni - 1)) == 0)
1982 {
1983 val.lattice_val = CONSTANT;
1984 val.value = build_int_cst (ptr_type_node, 0);
1985 val.mask = -aligni;
1986 }
1987 }
1988 break;
1989 }
1990
1991 case BUILT_IN_BSWAP16:
1992 case BUILT_IN_BSWAP32:
1993 case BUILT_IN_BSWAP64:
1994 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1995 if (val.lattice_val == UNDEFINED)
1996 break;
1997 else if (val.lattice_val == CONSTANT
1998 && val.value
1999 && TREE_CODE (val.value) == INTEGER_CST)
2000 {
2001 tree type = TREE_TYPE (gimple_call_lhs (stmt));
2002 int prec = TYPE_PRECISION (type);
2003 wide_int wval = wi::to_wide (val.value);
2004 val.value
2005 = wide_int_to_tree (type,
2006 wide_int::from (wval, prec,
2007 UNSIGNED).bswap ());
2008 val.mask
2009 = widest_int::from (wide_int::from (val.mask, prec,
2010 UNSIGNED).bswap (),
2011 UNSIGNED);
2012 if (wi::sext (val.mask, prec) != -1)
2013 break;
2014 }
2015 val.lattice_val = VARYING;
2016 val.value = NULL_TREE;
2017 val.mask = -1;
2018 break;
2019
2020 default:;
2021 }
2022 }
2023 if (is_gimple_call (stmt) && gimple_call_lhs (stmt))
2024 {
2025 tree fntype = gimple_call_fntype (stmt);
2026 if (fntype)
2027 {
2028 tree attrs = lookup_attribute ("assume_aligned",
2029 TYPE_ATTRIBUTES (fntype));
2030 if (attrs)
2031 val = bit_value_assume_aligned (stmt, attrs, val, false);
2032 attrs = lookup_attribute ("alloc_align",
2033 TYPE_ATTRIBUTES (fntype));
2034 if (attrs)
2035 val = bit_value_assume_aligned (stmt, attrs, val, true);
2036 }
2037 }
2038 is_constant = (val.lattice_val == CONSTANT);
2039 }
2040
2041 if (flag_tree_bit_ccp
2042 && ((is_constant && TREE_CODE (val.value) == INTEGER_CST)
2043 || !is_constant)
2044 && gimple_get_lhs (stmt)
2045 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME)
2046 {
2047 tree lhs = gimple_get_lhs (stmt);
2048 wide_int nonzero_bits = get_nonzero_bits (lhs);
2049 if (nonzero_bits != -1)
2050 {
2051 if (!is_constant)
2052 {
2053 val.lattice_val = CONSTANT;
2054 val.value = build_zero_cst (TREE_TYPE (lhs));
2055 val.mask = extend_mask (nonzero_bits, TYPE_SIGN (TREE_TYPE (lhs)));
2056 is_constant = true;
2057 }
2058 else
2059 {
2060 if (wi::bit_and_not (wi::to_wide (val.value), nonzero_bits) != 0)
2061 val.value = wide_int_to_tree (TREE_TYPE (lhs),
2062 nonzero_bits
2063 & wi::to_wide (val.value));
2064 if (nonzero_bits == 0)
2065 val.mask = 0;
2066 else
2067 val.mask = val.mask & extend_mask (nonzero_bits,
2068 TYPE_SIGN (TREE_TYPE (lhs)));
2069 }
2070 }
2071 }
2072
2073 /* The statement produced a nonconstant value. */
2074 if (!is_constant)
2075 {
2076 /* The statement produced a copy. */
2077 if (simplified && TREE_CODE (simplified) == SSA_NAME
2078 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (simplified))
2079 {
2080 val.lattice_val = CONSTANT;
2081 val.value = simplified;
2082 val.mask = -1;
2083 }
2084 /* The statement is VARYING. */
2085 else
2086 {
2087 val.lattice_val = VARYING;
2088 val.value = NULL_TREE;
2089 val.mask = -1;
2090 }
2091 }
2092
2093 return val;
2094 }
2095
2096 typedef hash_table<nofree_ptr_hash<gimple> > gimple_htab;
2097
2098 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
2099 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
2100
2101 static void
2102 insert_clobber_before_stack_restore (tree saved_val, tree var,
2103 gimple_htab **visited)
2104 {
2105 gimple *stmt;
2106 gassign *clobber_stmt;
2107 tree clobber;
2108 imm_use_iterator iter;
2109 gimple_stmt_iterator i;
2110 gimple **slot;
2111
2112 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
2113 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
2114 {
2115 clobber = build_clobber (TREE_TYPE (var));
2116 clobber_stmt = gimple_build_assign (var, clobber);
2117
2118 i = gsi_for_stmt (stmt);
2119 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
2120 }
2121 else if (gimple_code (stmt) == GIMPLE_PHI)
2122 {
2123 if (!*visited)
2124 *visited = new gimple_htab (10);
2125
2126 slot = (*visited)->find_slot (stmt, INSERT);
2127 if (*slot != NULL)
2128 continue;
2129
2130 *slot = stmt;
2131 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
2132 visited);
2133 }
2134 else if (gimple_assign_ssa_name_copy_p (stmt))
2135 insert_clobber_before_stack_restore (gimple_assign_lhs (stmt), var,
2136 visited);
2137 }
2138
2139 /* Advance the iterator to the previous non-debug gimple statement in the same
2140 or dominating basic block. */
2141
2142 static inline void
2143 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
2144 {
2145 basic_block dom;
2146
2147 gsi_prev_nondebug (i);
2148 while (gsi_end_p (*i))
2149 {
2150 dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
2151 if (dom == NULL || dom == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2152 return;
2153
2154 *i = gsi_last_bb (dom);
2155 }
2156 }
2157
2158 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
2159 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
2160
2161 It is possible that BUILT_IN_STACK_SAVE cannot be found in a dominator when
2162 a previous pass (such as DOM) duplicated it along multiple paths to a BB.
2163 In that case the function gives up without inserting the clobbers. */
2164
2165 static void
2166 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
2167 {
2168 gimple *stmt;
2169 tree saved_val;
2170 gimple_htab *visited = NULL;
2171
2172 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
2173 {
2174 stmt = gsi_stmt (i);
2175
2176 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
2177 continue;
2178
2179 saved_val = gimple_call_lhs (stmt);
2180 if (saved_val == NULL_TREE)
2181 continue;
2182
2183 insert_clobber_before_stack_restore (saved_val, var, &visited);
2184 break;
2185 }
2186
2187 delete visited;
2188 }
2189
2190 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
2191 fixed-size array and returns the address, if found, otherwise returns
2192 NULL_TREE. */
2193
2194 static tree
2195 fold_builtin_alloca_with_align (gimple *stmt)
2196 {
2197 unsigned HOST_WIDE_INT size, threshold, n_elem;
2198 tree lhs, arg, block, var, elem_type, array_type;
2199
2200 /* Get lhs. */
2201 lhs = gimple_call_lhs (stmt);
2202 if (lhs == NULL_TREE)
2203 return NULL_TREE;
2204
2205 /* Detect constant argument. */
2206 arg = get_constant_value (gimple_call_arg (stmt, 0));
2207 if (arg == NULL_TREE
2208 || TREE_CODE (arg) != INTEGER_CST
2209 || !tree_fits_uhwi_p (arg))
2210 return NULL_TREE;
2211
2212 size = tree_to_uhwi (arg);
2213
2214 /* Heuristic: don't fold large allocas. */
2215 threshold = (unsigned HOST_WIDE_INT)param_large_stack_frame;
2216 /* In case the alloca is located at function entry, it has the same lifetime
2217 as a declared array, so we allow a larger size. */
2218 block = gimple_block (stmt);
2219 if (!(cfun->after_inlining
2220 && block
2221 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
2222 threshold /= 10;
2223 if (size > threshold)
2224 return NULL_TREE;
2225
2226 /* We have to be able to move points-to info. We used to assert
2227 that we can but IPA PTA might end up with two UIDs here
2228 as it might need to handle more than one instance being
2229 live at the same time. Instead of trying to detect this case
2230 (using the first UID would be OK) just give up for now. */
2231 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
2232 unsigned uid = 0;
2233 if (pi != NULL
2234 && !pi->pt.anything
2235 && !pt_solution_singleton_or_null_p (&pi->pt, &uid))
2236 return NULL_TREE;
2237
2238 /* Declare array. */
2239 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
2240 n_elem = size * 8 / BITS_PER_UNIT;
2241 array_type = build_array_type_nelts (elem_type, n_elem);
2242
2243 if (tree ssa_name = SSA_NAME_IDENTIFIER (lhs))
2244 {
2245 /* Give the temporary a name derived from the name of the VLA
2246 declaration so it can be referenced in diagnostics. */
2247 const char *name = IDENTIFIER_POINTER (ssa_name);
2248 var = create_tmp_var (array_type, name);
2249 }
2250 else
2251 var = create_tmp_var (array_type);
2252
2253 if (gimple *lhsdef = SSA_NAME_DEF_STMT (lhs))
2254 {
2255 /* Set the temporary's location to that of the VLA declaration
2256 so it can be pointed to in diagnostics. */
2257 location_t loc = gimple_location (lhsdef);
2258 DECL_SOURCE_LOCATION (var) = loc;
2259 }
2260
2261 SET_DECL_ALIGN (var, TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
2262 if (uid != 0)
2263 SET_DECL_PT_UID (var, uid);
2264
2265 /* Fold alloca to the address of the array. */
2266 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
2267 }
2268
2269 /* Fold the stmt at *GSI with CCP specific information that propagating
2270 and regular folding does not catch. */
2271
2272 bool
2273 ccp_folder::fold_stmt (gimple_stmt_iterator *gsi)
2274 {
2275 gimple *stmt = gsi_stmt (*gsi);
2276
2277 switch (gimple_code (stmt))
2278 {
2279 case GIMPLE_COND:
2280 {
2281 gcond *cond_stmt = as_a <gcond *> (stmt);
2282 ccp_prop_value_t val;
2283 /* Statement evaluation will handle type mismatches in constants
2284 more gracefully than the final propagation. This allows us to
2285 fold more conditionals here. */
2286 val = evaluate_stmt (stmt);
2287 if (val.lattice_val != CONSTANT
2288 || val.mask != 0)
2289 return false;
2290
2291 if (dump_file)
2292 {
2293 fprintf (dump_file, "Folding predicate ");
2294 print_gimple_expr (dump_file, stmt, 0);
2295 fprintf (dump_file, " to ");
2296 print_generic_expr (dump_file, val.value);
2297 fprintf (dump_file, "\n");
2298 }
2299
2300 if (integer_zerop (val.value))
2301 gimple_cond_make_false (cond_stmt);
2302 else
2303 gimple_cond_make_true (cond_stmt);
2304
2305 return true;
2306 }
2307
2308 case GIMPLE_CALL:
2309 {
2310 tree lhs = gimple_call_lhs (stmt);
2311 int flags = gimple_call_flags (stmt);
2312 tree val;
2313 tree argt;
2314 bool changed = false;
2315 unsigned i;
2316
2317 /* If the call was folded into a constant make sure it goes
2318 away even if we cannot propagate into all uses because of
2319 type issues. */
2320 if (lhs
2321 && TREE_CODE (lhs) == SSA_NAME
2322 && (val = get_constant_value (lhs))
2323 /* Don't optimize away calls that have side-effects. */
2324 && (flags & (ECF_CONST|ECF_PURE)) != 0
2325 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
2326 {
2327 tree new_rhs = unshare_expr (val);
2328 bool res;
2329 if (!useless_type_conversion_p (TREE_TYPE (lhs),
2330 TREE_TYPE (new_rhs)))
2331 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
2332 res = update_call_from_tree (gsi, new_rhs);
2333 gcc_assert (res);
2334 return true;
2335 }
2336
2337 /* Internal calls provide no argument types, so the extra laxity
2338 for normal calls does not apply. */
2339 if (gimple_call_internal_p (stmt))
2340 return false;
2341
2342 /* The heuristic of fold_builtin_alloca_with_align differs before and
2343 after inlining, so we don't require the arg to be changed into a
2344 constant for folding, but just to be constant. */
2345 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN)
2346 || gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX))
2347 {
2348 tree new_rhs = fold_builtin_alloca_with_align (stmt);
2349 if (new_rhs)
2350 {
2351 bool res = update_call_from_tree (gsi, new_rhs);
2352 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
2353 gcc_assert (res);
2354 insert_clobbers_for_var (*gsi, var);
2355 return true;
2356 }
2357 }
2358
2359 /* If there's no extra info from an assume_aligned call,
2360 drop it so it doesn't act as otherwise useless dataflow
2361 barrier. */
2362 if (gimple_call_builtin_p (stmt, BUILT_IN_ASSUME_ALIGNED))
2363 {
2364 tree ptr = gimple_call_arg (stmt, 0);
2365 ccp_prop_value_t ptrval = get_value_for_expr (ptr, true);
2366 if (ptrval.lattice_val == CONSTANT
2367 && TREE_CODE (ptrval.value) == INTEGER_CST
2368 && ptrval.mask != 0)
2369 {
2370 ccp_prop_value_t val
2371 = bit_value_assume_aligned (stmt, NULL_TREE, ptrval, false);
2372 unsigned int ptralign = least_bit_hwi (ptrval.mask.to_uhwi ());
2373 unsigned int align = least_bit_hwi (val.mask.to_uhwi ());
2374 if (ptralign == align
2375 && ((TREE_INT_CST_LOW (ptrval.value) & (align - 1))
2376 == (TREE_INT_CST_LOW (val.value) & (align - 1))))
2377 {
2378 bool res = update_call_from_tree (gsi, ptr);
2379 gcc_assert (res);
2380 return true;
2381 }
2382 }
2383 }
2384
2385 /* Propagate into the call arguments. Compared to replace_uses_in
2386 this can use the argument slot types for type verification
2387 instead of the current argument type. We also can safely
2388 drop qualifiers here as we are dealing with constants anyway. */
2389 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
2390 for (i = 0; i < gimple_call_num_args (stmt) && argt;
2391 ++i, argt = TREE_CHAIN (argt))
2392 {
2393 tree arg = gimple_call_arg (stmt, i);
2394 if (TREE_CODE (arg) == SSA_NAME
2395 && (val = get_constant_value (arg))
2396 && useless_type_conversion_p
2397 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
2398 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2399 {
2400 gimple_call_set_arg (stmt, i, unshare_expr (val));
2401 changed = true;
2402 }
2403 }
2404
2405 return changed;
2406 }
2407
2408 case GIMPLE_ASSIGN:
2409 {
2410 tree lhs = gimple_assign_lhs (stmt);
2411 tree val;
2412
2413 /* If we have a load that turned out to be constant replace it
2414 as we cannot propagate into all uses in all cases. */
2415 if (gimple_assign_single_p (stmt)
2416 && TREE_CODE (lhs) == SSA_NAME
2417 && (val = get_constant_value (lhs)))
2418 {
2419 tree rhs = unshare_expr (val);
2420 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2421 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
2422 gimple_assign_set_rhs_from_tree (gsi, rhs);
2423 return true;
2424 }
2425
2426 return false;
2427 }
2428
2429 default:
2430 return false;
2431 }
2432 }
2433
2434 /* Visit the assignment statement STMT. Set the value of its LHS to the
2435 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2436 creates virtual definitions, set the value of each new name to that
2437 of the RHS (if we can derive a constant out of the RHS).
2438 Value-returning call statements also perform an assignment, and
2439 are handled here. */
2440
2441 static enum ssa_prop_result
2442 visit_assignment (gimple *stmt, tree *output_p)
2443 {
2444 ccp_prop_value_t val;
2445 enum ssa_prop_result retval = SSA_PROP_NOT_INTERESTING;
2446
2447 tree lhs = gimple_get_lhs (stmt);
2448 if (TREE_CODE (lhs) == SSA_NAME)
2449 {
2450 /* Evaluate the statement, which could be
2451 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2452 val = evaluate_stmt (stmt);
2453
2454 /* If STMT is an assignment to an SSA_NAME, we only have one
2455 value to set. */
2456 if (set_lattice_value (lhs, &val))
2457 {
2458 *output_p = lhs;
2459 if (val.lattice_val == VARYING)
2460 retval = SSA_PROP_VARYING;
2461 else
2462 retval = SSA_PROP_INTERESTING;
2463 }
2464 }
2465
2466 return retval;
2467 }
2468
2469
2470 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2471 if it can determine which edge will be taken. Otherwise, return
2472 SSA_PROP_VARYING. */
2473
2474 static enum ssa_prop_result
2475 visit_cond_stmt (gimple *stmt, edge *taken_edge_p)
2476 {
2477 ccp_prop_value_t val;
2478 basic_block block;
2479
2480 block = gimple_bb (stmt);
2481 val = evaluate_stmt (stmt);
2482 if (val.lattice_val != CONSTANT
2483 || val.mask != 0)
2484 return SSA_PROP_VARYING;
2485
2486 /* Find which edge out of the conditional block will be taken and add it
2487 to the worklist. If no single edge can be determined statically,
2488 return SSA_PROP_VARYING to feed all the outgoing edges to the
2489 propagation engine. */
2490 *taken_edge_p = find_taken_edge (block, val.value);
2491 if (*taken_edge_p)
2492 return SSA_PROP_INTERESTING;
2493 else
2494 return SSA_PROP_VARYING;
2495 }
2496
2497
2498 /* Evaluate statement STMT. If the statement produces an output value and
2499 its evaluation changes the lattice value of its output, return
2500 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2501 output value.
2502
2503 If STMT is a conditional branch and we can determine its truth
2504 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2505 value, return SSA_PROP_VARYING. */
2506
2507 enum ssa_prop_result
2508 ccp_propagate::visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
2509 {
2510 tree def;
2511 ssa_op_iter iter;
2512
2513 if (dump_file && (dump_flags & TDF_DETAILS))
2514 {
2515 fprintf (dump_file, "\nVisiting statement:\n");
2516 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2517 }
2518
2519 switch (gimple_code (stmt))
2520 {
2521 case GIMPLE_ASSIGN:
2522 /* If the statement is an assignment that produces a single
2523 output value, evaluate its RHS to see if the lattice value of
2524 its output has changed. */
2525 return visit_assignment (stmt, output_p);
2526
2527 case GIMPLE_CALL:
2528 /* A value-returning call also performs an assignment. */
2529 if (gimple_call_lhs (stmt) != NULL_TREE)
2530 return visit_assignment (stmt, output_p);
2531 break;
2532
2533 case GIMPLE_COND:
2534 case GIMPLE_SWITCH:
2535 /* If STMT is a conditional branch, see if we can determine
2536 which branch will be taken. */
2537 /* FIXME. It appears that we should be able to optimize
2538 computed GOTOs here as well. */
2539 return visit_cond_stmt (stmt, taken_edge_p);
2540
2541 default:
2542 break;
2543 }
2544
2545 /* Any other kind of statement is not interesting for constant
2546 propagation and, therefore, not worth simulating. */
2547 if (dump_file && (dump_flags & TDF_DETAILS))
2548 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2549
2550 /* Definitions made by statements other than assignments to
2551 SSA_NAMEs represent unknown modifications to their outputs.
2552 Mark them VARYING. */
2553 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2554 set_value_varying (def);
2555
2556 return SSA_PROP_VARYING;
2557 }
2558
2559
2560 /* Main entry point for SSA Conditional Constant Propagation. If NONZERO_P,
2561 record nonzero bits. */
2562
2563 static unsigned int
2564 do_ssa_ccp (bool nonzero_p)
2565 {
2566 unsigned int todo = 0;
2567 calculate_dominance_info (CDI_DOMINATORS);
2568
2569 ccp_initialize ();
2570 class ccp_propagate ccp_propagate;
2571 ccp_propagate.ssa_propagate ();
2572 if (ccp_finalize (nonzero_p || flag_ipa_bit_cp))
2573 {
2574 todo = (TODO_cleanup_cfg | TODO_update_ssa);
2575
2576 /* ccp_finalize does not preserve loop-closed ssa. */
2577 loops_state_clear (LOOP_CLOSED_SSA);
2578 }
2579
2580 free_dominance_info (CDI_DOMINATORS);
2581 return todo;
2582 }
2583
2584
2585 namespace {
2586
2587 const pass_data pass_data_ccp =
2588 {
2589 GIMPLE_PASS, /* type */
2590 "ccp", /* name */
2591 OPTGROUP_NONE, /* optinfo_flags */
2592 TV_TREE_CCP, /* tv_id */
2593 ( PROP_cfg | PROP_ssa ), /* properties_required */
2594 0, /* properties_provided */
2595 0, /* properties_destroyed */
2596 0, /* todo_flags_start */
2597 TODO_update_address_taken, /* todo_flags_finish */
2598 };
2599
2600 class pass_ccp : public gimple_opt_pass
2601 {
2602 public:
2603 pass_ccp (gcc::context *ctxt)
2604 : gimple_opt_pass (pass_data_ccp, ctxt), nonzero_p (false)
2605 {}
2606
2607 /* opt_pass methods: */
2608 opt_pass * clone () { return new pass_ccp (m_ctxt); }
2609 void set_pass_param (unsigned int n, bool param)
2610 {
2611 gcc_assert (n == 0);
2612 nonzero_p = param;
2613 }
2614 virtual bool gate (function *) { return flag_tree_ccp != 0; }
2615 virtual unsigned int execute (function *) { return do_ssa_ccp (nonzero_p); }
2616
2617 private:
2618 /* Determines whether the pass instance records nonzero bits. */
2619 bool nonzero_p;
2620 }; // class pass_ccp
2621
2622 } // anon namespace
2623
2624 gimple_opt_pass *
2625 make_pass_ccp (gcc::context *ctxt)
2626 {
2627 return new pass_ccp (ctxt);
2628 }
2629
2630
2631
2632 /* Try to optimize out __builtin_stack_restore. Optimize it out
2633 if there is another __builtin_stack_restore in the same basic
2634 block and no calls or ASM_EXPRs are in between, or if this block's
2635 only outgoing edge is to EXIT_BLOCK and there are no calls or
2636 ASM_EXPRs after this __builtin_stack_restore. */
2637
2638 static tree
2639 optimize_stack_restore (gimple_stmt_iterator i)
2640 {
2641 tree callee;
2642 gimple *stmt;
2643
2644 basic_block bb = gsi_bb (i);
2645 gimple *call = gsi_stmt (i);
2646
2647 if (gimple_code (call) != GIMPLE_CALL
2648 || gimple_call_num_args (call) != 1
2649 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2650 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2651 return NULL_TREE;
2652
2653 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2654 {
2655 stmt = gsi_stmt (i);
2656 if (gimple_code (stmt) == GIMPLE_ASM)
2657 return NULL_TREE;
2658 if (gimple_code (stmt) != GIMPLE_CALL)
2659 continue;
2660
2661 callee = gimple_call_fndecl (stmt);
2662 if (!callee
2663 || !fndecl_built_in_p (callee, BUILT_IN_NORMAL)
2664 /* All regular builtins are ok, just obviously not alloca. */
2665 || ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (callee)))
2666 return NULL_TREE;
2667
2668 if (fndecl_built_in_p (callee, BUILT_IN_STACK_RESTORE))
2669 goto second_stack_restore;
2670 }
2671
2672 if (!gsi_end_p (i))
2673 return NULL_TREE;
2674
2675 /* Allow one successor of the exit block, or zero successors. */
2676 switch (EDGE_COUNT (bb->succs))
2677 {
2678 case 0:
2679 break;
2680 case 1:
2681 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2682 return NULL_TREE;
2683 break;
2684 default:
2685 return NULL_TREE;
2686 }
2687 second_stack_restore:
2688
2689 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2690 If there are multiple uses, then the last one should remove the call.
2691 In any case, whether the call to __builtin_stack_save can be removed
2692 or not is irrelevant to removing the call to __builtin_stack_restore. */
2693 if (has_single_use (gimple_call_arg (call, 0)))
2694 {
2695 gimple *stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2696 if (is_gimple_call (stack_save))
2697 {
2698 callee = gimple_call_fndecl (stack_save);
2699 if (callee && fndecl_built_in_p (callee, BUILT_IN_STACK_SAVE))
2700 {
2701 gimple_stmt_iterator stack_save_gsi;
2702 tree rhs;
2703
2704 stack_save_gsi = gsi_for_stmt (stack_save);
2705 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2706 update_call_from_tree (&stack_save_gsi, rhs);
2707 }
2708 }
2709 }
2710
2711 /* No effect, so the statement will be deleted. */
2712 return integer_zero_node;
2713 }
2714
2715 /* If va_list type is a simple pointer and nothing special is needed,
2716 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2717 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2718 pointer assignment. */
2719
2720 static tree
2721 optimize_stdarg_builtin (gimple *call)
2722 {
2723 tree callee, lhs, rhs, cfun_va_list;
2724 bool va_list_simple_ptr;
2725 location_t loc = gimple_location (call);
2726
2727 callee = gimple_call_fndecl (call);
2728
2729 cfun_va_list = targetm.fn_abi_va_list (callee);
2730 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2731 && (TREE_TYPE (cfun_va_list) == void_type_node
2732 || TREE_TYPE (cfun_va_list) == char_type_node);
2733
2734 switch (DECL_FUNCTION_CODE (callee))
2735 {
2736 case BUILT_IN_VA_START:
2737 if (!va_list_simple_ptr
2738 || targetm.expand_builtin_va_start != NULL
2739 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
2740 return NULL_TREE;
2741
2742 if (gimple_call_num_args (call) != 2)
2743 return NULL_TREE;
2744
2745 lhs = gimple_call_arg (call, 0);
2746 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2747 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2748 != TYPE_MAIN_VARIANT (cfun_va_list))
2749 return NULL_TREE;
2750
2751 lhs = build_fold_indirect_ref_loc (loc, lhs);
2752 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
2753 1, integer_zero_node);
2754 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2755 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2756
2757 case BUILT_IN_VA_COPY:
2758 if (!va_list_simple_ptr)
2759 return NULL_TREE;
2760
2761 if (gimple_call_num_args (call) != 2)
2762 return NULL_TREE;
2763
2764 lhs = gimple_call_arg (call, 0);
2765 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2766 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2767 != TYPE_MAIN_VARIANT (cfun_va_list))
2768 return NULL_TREE;
2769
2770 lhs = build_fold_indirect_ref_loc (loc, lhs);
2771 rhs = gimple_call_arg (call, 1);
2772 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2773 != TYPE_MAIN_VARIANT (cfun_va_list))
2774 return NULL_TREE;
2775
2776 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2777 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2778
2779 case BUILT_IN_VA_END:
2780 /* No effect, so the statement will be deleted. */
2781 return integer_zero_node;
2782
2783 default:
2784 gcc_unreachable ();
2785 }
2786 }
2787
2788 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2789 the incoming jumps. Return true if at least one jump was changed. */
2790
2791 static bool
2792 optimize_unreachable (gimple_stmt_iterator i)
2793 {
2794 basic_block bb = gsi_bb (i);
2795 gimple_stmt_iterator gsi;
2796 gimple *stmt;
2797 edge_iterator ei;
2798 edge e;
2799 bool ret;
2800
2801 if (flag_sanitize & SANITIZE_UNREACHABLE)
2802 return false;
2803
2804 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2805 {
2806 stmt = gsi_stmt (gsi);
2807
2808 if (is_gimple_debug (stmt))
2809 continue;
2810
2811 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2812 {
2813 /* Verify we do not need to preserve the label. */
2814 if (FORCED_LABEL (gimple_label_label (label_stmt)))
2815 return false;
2816
2817 continue;
2818 }
2819
2820 /* Only handle the case that __builtin_unreachable is the first statement
2821 in the block. We rely on DCE to remove stmts without side-effects
2822 before __builtin_unreachable. */
2823 if (gsi_stmt (gsi) != gsi_stmt (i))
2824 return false;
2825 }
2826
2827 ret = false;
2828 FOR_EACH_EDGE (e, ei, bb->preds)
2829 {
2830 gsi = gsi_last_bb (e->src);
2831 if (gsi_end_p (gsi))
2832 continue;
2833
2834 stmt = gsi_stmt (gsi);
2835 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
2836 {
2837 if (e->flags & EDGE_TRUE_VALUE)
2838 gimple_cond_make_false (cond_stmt);
2839 else if (e->flags & EDGE_FALSE_VALUE)
2840 gimple_cond_make_true (cond_stmt);
2841 else
2842 gcc_unreachable ();
2843 update_stmt (cond_stmt);
2844 }
2845 else
2846 {
2847 /* Todo: handle other cases. Note that unreachable switch case
2848 statements have already been removed. */
2849 continue;
2850 }
2851
2852 ret = true;
2853 }
2854
2855 return ret;
2856 }
2857
2858 /* Optimize
2859 mask_2 = 1 << cnt_1;
2860 _4 = __atomic_fetch_or_* (ptr_6, mask_2, _3);
2861 _5 = _4 & mask_2;
2862 to
2863 _4 = ATOMIC_BIT_TEST_AND_SET (ptr_6, cnt_1, 0, _3);
2864 _5 = _4;
2865 If _5 is only used in _5 != 0 or _5 == 0 comparisons, 1
2866 is passed instead of 0, and the builtin just returns a zero
2867 or 1 value instead of the actual bit.
2868 Similarly for __sync_fetch_and_or_* (without the ", _3" part
2869 in there), and/or if mask_2 is a power of 2 constant.
2870 Similarly for xor instead of or, use ATOMIC_BIT_TEST_AND_COMPLEMENT
2871 in that case. And similarly for and instead of or, except that
2872 the second argument to the builtin needs to be one's complement
2873 of the mask instead of mask. */
2874
2875 static void
2876 optimize_atomic_bit_test_and (gimple_stmt_iterator *gsip,
2877 enum internal_fn fn, bool has_model_arg,
2878 bool after)
2879 {
2880 gimple *call = gsi_stmt (*gsip);
2881 tree lhs = gimple_call_lhs (call);
2882 use_operand_p use_p;
2883 gimple *use_stmt;
2884 tree mask, bit;
2885 optab optab;
2886
2887 if (!flag_inline_atomics
2888 || optimize_debug
2889 || !gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2890 || !lhs
2891 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)
2892 || !single_imm_use (lhs, &use_p, &use_stmt)
2893 || !is_gimple_assign (use_stmt)
2894 || gimple_assign_rhs_code (use_stmt) != BIT_AND_EXPR
2895 || !gimple_vdef (call))
2896 return;
2897
2898 switch (fn)
2899 {
2900 case IFN_ATOMIC_BIT_TEST_AND_SET:
2901 optab = atomic_bit_test_and_set_optab;
2902 break;
2903 case IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT:
2904 optab = atomic_bit_test_and_complement_optab;
2905 break;
2906 case IFN_ATOMIC_BIT_TEST_AND_RESET:
2907 optab = atomic_bit_test_and_reset_optab;
2908 break;
2909 default:
2910 return;
2911 }
2912
2913 if (optab_handler (optab, TYPE_MODE (TREE_TYPE (lhs))) == CODE_FOR_nothing)
2914 return;
2915
2916 mask = gimple_call_arg (call, 1);
2917 tree use_lhs = gimple_assign_lhs (use_stmt);
2918 if (!use_lhs)
2919 return;
2920
2921 if (TREE_CODE (mask) == INTEGER_CST)
2922 {
2923 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
2924 mask = const_unop (BIT_NOT_EXPR, TREE_TYPE (mask), mask);
2925 mask = fold_convert (TREE_TYPE (lhs), mask);
2926 int ibit = tree_log2 (mask);
2927 if (ibit < 0)
2928 return;
2929 bit = build_int_cst (TREE_TYPE (lhs), ibit);
2930 }
2931 else if (TREE_CODE (mask) == SSA_NAME)
2932 {
2933 gimple *g = SSA_NAME_DEF_STMT (mask);
2934 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
2935 {
2936 if (!is_gimple_assign (g)
2937 || gimple_assign_rhs_code (g) != BIT_NOT_EXPR)
2938 return;
2939 mask = gimple_assign_rhs1 (g);
2940 if (TREE_CODE (mask) != SSA_NAME)
2941 return;
2942 g = SSA_NAME_DEF_STMT (mask);
2943 }
2944 if (!is_gimple_assign (g)
2945 || gimple_assign_rhs_code (g) != LSHIFT_EXPR
2946 || !integer_onep (gimple_assign_rhs1 (g)))
2947 return;
2948 bit = gimple_assign_rhs2 (g);
2949 }
2950 else
2951 return;
2952
2953 if (gimple_assign_rhs1 (use_stmt) == lhs)
2954 {
2955 if (!operand_equal_p (gimple_assign_rhs2 (use_stmt), mask, 0))
2956 return;
2957 }
2958 else if (gimple_assign_rhs2 (use_stmt) != lhs
2959 || !operand_equal_p (gimple_assign_rhs1 (use_stmt), mask, 0))
2960 return;
2961
2962 bool use_bool = true;
2963 bool has_debug_uses = false;
2964 imm_use_iterator iter;
2965 gimple *g;
2966
2967 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs))
2968 use_bool = false;
2969 FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
2970 {
2971 enum tree_code code = ERROR_MARK;
2972 tree op0 = NULL_TREE, op1 = NULL_TREE;
2973 if (is_gimple_debug (g))
2974 {
2975 has_debug_uses = true;
2976 continue;
2977 }
2978 else if (is_gimple_assign (g))
2979 switch (gimple_assign_rhs_code (g))
2980 {
2981 case COND_EXPR:
2982 op1 = gimple_assign_rhs1 (g);
2983 code = TREE_CODE (op1);
2984 op0 = TREE_OPERAND (op1, 0);
2985 op1 = TREE_OPERAND (op1, 1);
2986 break;
2987 case EQ_EXPR:
2988 case NE_EXPR:
2989 code = gimple_assign_rhs_code (g);
2990 op0 = gimple_assign_rhs1 (g);
2991 op1 = gimple_assign_rhs2 (g);
2992 break;
2993 default:
2994 break;
2995 }
2996 else if (gimple_code (g) == GIMPLE_COND)
2997 {
2998 code = gimple_cond_code (g);
2999 op0 = gimple_cond_lhs (g);
3000 op1 = gimple_cond_rhs (g);
3001 }
3002
3003 if ((code == EQ_EXPR || code == NE_EXPR)
3004 && op0 == use_lhs
3005 && integer_zerop (op1))
3006 {
3007 use_operand_p use_p;
3008 int n = 0;
3009 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3010 n++;
3011 if (n == 1)
3012 continue;
3013 }
3014
3015 use_bool = false;
3016 BREAK_FROM_IMM_USE_STMT (iter);
3017 }
3018
3019 tree new_lhs = make_ssa_name (TREE_TYPE (lhs));
3020 tree flag = build_int_cst (TREE_TYPE (lhs), use_bool);
3021 if (has_model_arg)
3022 g = gimple_build_call_internal (fn, 4, gimple_call_arg (call, 0),
3023 bit, flag, gimple_call_arg (call, 2));
3024 else
3025 g = gimple_build_call_internal (fn, 3, gimple_call_arg (call, 0),
3026 bit, flag);
3027 gimple_call_set_lhs (g, new_lhs);
3028 gimple_set_location (g, gimple_location (call));
3029 gimple_move_vops (g, call);
3030 bool throws = stmt_can_throw_internal (cfun, call);
3031 gimple_call_set_nothrow (as_a <gcall *> (g),
3032 gimple_call_nothrow_p (as_a <gcall *> (call)));
3033 gimple_stmt_iterator gsi = *gsip;
3034 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3035 edge e = NULL;
3036 if (throws)
3037 {
3038 maybe_clean_or_replace_eh_stmt (call, g);
3039 if (after || (use_bool && has_debug_uses))
3040 e = find_fallthru_edge (gsi_bb (gsi)->succs);
3041 }
3042 if (after)
3043 {
3044 /* The internal function returns the value of the specified bit
3045 before the atomic operation. If we are interested in the value
3046 of the specified bit after the atomic operation (makes only sense
3047 for xor, otherwise the bit content is compile time known),
3048 we need to invert the bit. */
3049 g = gimple_build_assign (make_ssa_name (TREE_TYPE (lhs)),
3050 BIT_XOR_EXPR, new_lhs,
3051 use_bool ? build_int_cst (TREE_TYPE (lhs), 1)
3052 : mask);
3053 new_lhs = gimple_assign_lhs (g);
3054 if (throws)
3055 {
3056 gsi_insert_on_edge_immediate (e, g);
3057 gsi = gsi_for_stmt (g);
3058 }
3059 else
3060 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3061 }
3062 if (use_bool && has_debug_uses)
3063 {
3064 tree temp = NULL_TREE;
3065 if (!throws || after || single_pred_p (e->dest))
3066 {
3067 temp = make_node (DEBUG_EXPR_DECL);
3068 DECL_ARTIFICIAL (temp) = 1;
3069 TREE_TYPE (temp) = TREE_TYPE (lhs);
3070 SET_DECL_MODE (temp, TYPE_MODE (TREE_TYPE (lhs)));
3071 tree t = build2 (LSHIFT_EXPR, TREE_TYPE (lhs), new_lhs, bit);
3072 g = gimple_build_debug_bind (temp, t, g);
3073 if (throws && !after)
3074 {
3075 gsi = gsi_after_labels (e->dest);
3076 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
3077 }
3078 else
3079 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3080 }
3081 FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
3082 if (is_gimple_debug (g))
3083 {
3084 use_operand_p use_p;
3085 if (temp == NULL_TREE)
3086 gimple_debug_bind_reset_value (g);
3087 else
3088 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3089 SET_USE (use_p, temp);
3090 update_stmt (g);
3091 }
3092 }
3093 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_lhs)
3094 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs);
3095 replace_uses_by (use_lhs, new_lhs);
3096 gsi = gsi_for_stmt (use_stmt);
3097 gsi_remove (&gsi, true);
3098 release_defs (use_stmt);
3099 gsi_remove (gsip, true);
3100 release_ssa_name (lhs);
3101 }
3102
3103 /* Optimize
3104 a = {};
3105 b = a;
3106 into
3107 a = {};
3108 b = {};
3109 Similarly for memset (&a, ..., sizeof (a)); instead of a = {};
3110 and/or memcpy (&b, &a, sizeof (a)); instead of b = a; */
3111
3112 static void
3113 optimize_memcpy (gimple_stmt_iterator *gsip, tree dest, tree src, tree len)
3114 {
3115 gimple *stmt = gsi_stmt (*gsip);
3116 if (gimple_has_volatile_ops (stmt))
3117 return;
3118
3119 tree vuse = gimple_vuse (stmt);
3120 if (vuse == NULL)
3121 return;
3122
3123 gimple *defstmt = SSA_NAME_DEF_STMT (vuse);
3124 tree src2 = NULL_TREE, len2 = NULL_TREE;
3125 poly_int64 offset, offset2;
3126 tree val = integer_zero_node;
3127 if (gimple_store_p (defstmt)
3128 && gimple_assign_single_p (defstmt)
3129 && TREE_CODE (gimple_assign_rhs1 (defstmt)) == CONSTRUCTOR
3130 && !gimple_clobber_p (defstmt))
3131 src2 = gimple_assign_lhs (defstmt);
3132 else if (gimple_call_builtin_p (defstmt, BUILT_IN_MEMSET)
3133 && TREE_CODE (gimple_call_arg (defstmt, 0)) == ADDR_EXPR
3134 && TREE_CODE (gimple_call_arg (defstmt, 1)) == INTEGER_CST)
3135 {
3136 src2 = TREE_OPERAND (gimple_call_arg (defstmt, 0), 0);
3137 len2 = gimple_call_arg (defstmt, 2);
3138 val = gimple_call_arg (defstmt, 1);
3139 /* For non-0 val, we'd have to transform stmt from assignment
3140 into memset (only if dest is addressable). */
3141 if (!integer_zerop (val) && is_gimple_assign (stmt))
3142 src2 = NULL_TREE;
3143 }
3144
3145 if (src2 == NULL_TREE)
3146 return;
3147
3148 if (len == NULL_TREE)
3149 len = (TREE_CODE (src) == COMPONENT_REF
3150 ? DECL_SIZE_UNIT (TREE_OPERAND (src, 1))
3151 : TYPE_SIZE_UNIT (TREE_TYPE (src)));
3152 if (len2 == NULL_TREE)
3153 len2 = (TREE_CODE (src2) == COMPONENT_REF
3154 ? DECL_SIZE_UNIT (TREE_OPERAND (src2, 1))
3155 : TYPE_SIZE_UNIT (TREE_TYPE (src2)));
3156 if (len == NULL_TREE
3157 || !poly_int_tree_p (len)
3158 || len2 == NULL_TREE
3159 || !poly_int_tree_p (len2))
3160 return;
3161
3162 src = get_addr_base_and_unit_offset (src, &offset);
3163 src2 = get_addr_base_and_unit_offset (src2, &offset2);
3164 if (src == NULL_TREE
3165 || src2 == NULL_TREE
3166 || maybe_lt (offset, offset2))
3167 return;
3168
3169 if (!operand_equal_p (src, src2, 0))
3170 return;
3171
3172 /* [ src + offset2, src + offset2 + len2 - 1 ] is set to val.
3173 Make sure that
3174 [ src + offset, src + offset + len - 1 ] is a subset of that. */
3175 if (maybe_gt (wi::to_poly_offset (len) + (offset - offset2),
3176 wi::to_poly_offset (len2)))
3177 return;
3178
3179 if (dump_file && (dump_flags & TDF_DETAILS))
3180 {
3181 fprintf (dump_file, "Simplified\n ");
3182 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3183 fprintf (dump_file, "after previous\n ");
3184 print_gimple_stmt (dump_file, defstmt, 0, dump_flags);
3185 }
3186
3187 /* For simplicity, don't change the kind of the stmt,
3188 turn dest = src; into dest = {}; and memcpy (&dest, &src, len);
3189 into memset (&dest, val, len);
3190 In theory we could change dest = src into memset if dest
3191 is addressable (maybe beneficial if val is not 0), or
3192 memcpy (&dest, &src, len) into dest = {} if len is the size
3193 of dest, dest isn't volatile. */
3194 if (is_gimple_assign (stmt))
3195 {
3196 tree ctor = build_constructor (TREE_TYPE (dest), NULL);
3197 gimple_assign_set_rhs_from_tree (gsip, ctor);
3198 update_stmt (stmt);
3199 }
3200 else /* If stmt is memcpy, transform it into memset. */
3201 {
3202 gcall *call = as_a <gcall *> (stmt);
3203 tree fndecl = builtin_decl_implicit (BUILT_IN_MEMSET);
3204 gimple_call_set_fndecl (call, fndecl);
3205 gimple_call_set_fntype (call, TREE_TYPE (fndecl));
3206 gimple_call_set_arg (call, 1, val);
3207 update_stmt (stmt);
3208 }
3209
3210 if (dump_file && (dump_flags & TDF_DETAILS))
3211 {
3212 fprintf (dump_file, "into\n ");
3213 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3214 }
3215 }
3216
3217 /* A simple pass that attempts to fold all builtin functions. This pass
3218 is run after we've propagated as many constants as we can. */
3219
3220 namespace {
3221
3222 const pass_data pass_data_fold_builtins =
3223 {
3224 GIMPLE_PASS, /* type */
3225 "fab", /* name */
3226 OPTGROUP_NONE, /* optinfo_flags */
3227 TV_NONE, /* tv_id */
3228 ( PROP_cfg | PROP_ssa ), /* properties_required */
3229 0, /* properties_provided */
3230 0, /* properties_destroyed */
3231 0, /* todo_flags_start */
3232 TODO_update_ssa, /* todo_flags_finish */
3233 };
3234
3235 class pass_fold_builtins : public gimple_opt_pass
3236 {
3237 public:
3238 pass_fold_builtins (gcc::context *ctxt)
3239 : gimple_opt_pass (pass_data_fold_builtins, ctxt)
3240 {}
3241
3242 /* opt_pass methods: */
3243 opt_pass * clone () { return new pass_fold_builtins (m_ctxt); }
3244 virtual unsigned int execute (function *);
3245
3246 }; // class pass_fold_builtins
3247
3248 unsigned int
3249 pass_fold_builtins::execute (function *fun)
3250 {
3251 bool cfg_changed = false;
3252 basic_block bb;
3253 unsigned int todoflags = 0;
3254
3255 FOR_EACH_BB_FN (bb, fun)
3256 {
3257 gimple_stmt_iterator i;
3258 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
3259 {
3260 gimple *stmt, *old_stmt;
3261 tree callee;
3262 enum built_in_function fcode;
3263
3264 stmt = gsi_stmt (i);
3265
3266 if (gimple_code (stmt) != GIMPLE_CALL)
3267 {
3268 /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
3269 after the last GIMPLE DSE they aren't needed and might
3270 unnecessarily keep the SSA_NAMEs live. */
3271 if (gimple_clobber_p (stmt))
3272 {
3273 tree lhs = gimple_assign_lhs (stmt);
3274 if (TREE_CODE (lhs) == MEM_REF
3275 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME)
3276 {
3277 unlink_stmt_vdef (stmt);
3278 gsi_remove (&i, true);
3279 release_defs (stmt);
3280 continue;
3281 }
3282 }
3283 else if (gimple_assign_load_p (stmt) && gimple_store_p (stmt))
3284 optimize_memcpy (&i, gimple_assign_lhs (stmt),
3285 gimple_assign_rhs1 (stmt), NULL_TREE);
3286 gsi_next (&i);
3287 continue;
3288 }
3289
3290 callee = gimple_call_fndecl (stmt);
3291 if (!callee || !fndecl_built_in_p (callee, BUILT_IN_NORMAL))
3292 {
3293 gsi_next (&i);
3294 continue;
3295 }
3296
3297 fcode = DECL_FUNCTION_CODE (callee);
3298 if (fold_stmt (&i))
3299 ;
3300 else
3301 {
3302 tree result = NULL_TREE;
3303 switch (DECL_FUNCTION_CODE (callee))
3304 {
3305 case BUILT_IN_CONSTANT_P:
3306 /* Resolve __builtin_constant_p. If it hasn't been
3307 folded to integer_one_node by now, it's fairly
3308 certain that the value simply isn't constant. */
3309 result = integer_zero_node;
3310 break;
3311
3312 case BUILT_IN_ASSUME_ALIGNED:
3313 /* Remove __builtin_assume_aligned. */
3314 result = gimple_call_arg (stmt, 0);
3315 break;
3316
3317 case BUILT_IN_STACK_RESTORE:
3318 result = optimize_stack_restore (i);
3319 if (result)
3320 break;
3321 gsi_next (&i);
3322 continue;
3323
3324 case BUILT_IN_UNREACHABLE:
3325 if (optimize_unreachable (i))
3326 cfg_changed = true;
3327 break;
3328
3329 case BUILT_IN_ATOMIC_FETCH_OR_1:
3330 case BUILT_IN_ATOMIC_FETCH_OR_2:
3331 case BUILT_IN_ATOMIC_FETCH_OR_4:
3332 case BUILT_IN_ATOMIC_FETCH_OR_8:
3333 case BUILT_IN_ATOMIC_FETCH_OR_16:
3334 optimize_atomic_bit_test_and (&i,
3335 IFN_ATOMIC_BIT_TEST_AND_SET,
3336 true, false);
3337 break;
3338 case BUILT_IN_SYNC_FETCH_AND_OR_1:
3339 case BUILT_IN_SYNC_FETCH_AND_OR_2:
3340 case BUILT_IN_SYNC_FETCH_AND_OR_4:
3341 case BUILT_IN_SYNC_FETCH_AND_OR_8:
3342 case BUILT_IN_SYNC_FETCH_AND_OR_16:
3343 optimize_atomic_bit_test_and (&i,
3344 IFN_ATOMIC_BIT_TEST_AND_SET,
3345 false, false);
3346 break;
3347
3348 case BUILT_IN_ATOMIC_FETCH_XOR_1:
3349 case BUILT_IN_ATOMIC_FETCH_XOR_2:
3350 case BUILT_IN_ATOMIC_FETCH_XOR_4:
3351 case BUILT_IN_ATOMIC_FETCH_XOR_8:
3352 case BUILT_IN_ATOMIC_FETCH_XOR_16:
3353 optimize_atomic_bit_test_and
3354 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, false);
3355 break;
3356 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
3357 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
3358 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
3359 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
3360 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
3361 optimize_atomic_bit_test_and
3362 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, false);
3363 break;
3364
3365 case BUILT_IN_ATOMIC_XOR_FETCH_1:
3366 case BUILT_IN_ATOMIC_XOR_FETCH_2:
3367 case BUILT_IN_ATOMIC_XOR_FETCH_4:
3368 case BUILT_IN_ATOMIC_XOR_FETCH_8:
3369 case BUILT_IN_ATOMIC_XOR_FETCH_16:
3370 optimize_atomic_bit_test_and
3371 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, true);
3372 break;
3373 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
3374 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
3375 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
3376 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
3377 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
3378 optimize_atomic_bit_test_and
3379 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, true);
3380 break;
3381
3382 case BUILT_IN_ATOMIC_FETCH_AND_1:
3383 case BUILT_IN_ATOMIC_FETCH_AND_2:
3384 case BUILT_IN_ATOMIC_FETCH_AND_4:
3385 case BUILT_IN_ATOMIC_FETCH_AND_8:
3386 case BUILT_IN_ATOMIC_FETCH_AND_16:
3387 optimize_atomic_bit_test_and (&i,
3388 IFN_ATOMIC_BIT_TEST_AND_RESET,
3389 true, false);
3390 break;
3391 case BUILT_IN_SYNC_FETCH_AND_AND_1:
3392 case BUILT_IN_SYNC_FETCH_AND_AND_2:
3393 case BUILT_IN_SYNC_FETCH_AND_AND_4:
3394 case BUILT_IN_SYNC_FETCH_AND_AND_8:
3395 case BUILT_IN_SYNC_FETCH_AND_AND_16:
3396 optimize_atomic_bit_test_and (&i,
3397 IFN_ATOMIC_BIT_TEST_AND_RESET,
3398 false, false);
3399 break;
3400
3401 case BUILT_IN_MEMCPY:
3402 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL)
3403 && TREE_CODE (gimple_call_arg (stmt, 0)) == ADDR_EXPR
3404 && TREE_CODE (gimple_call_arg (stmt, 1)) == ADDR_EXPR
3405 && TREE_CODE (gimple_call_arg (stmt, 2)) == INTEGER_CST)
3406 {
3407 tree dest = TREE_OPERAND (gimple_call_arg (stmt, 0), 0);
3408 tree src = TREE_OPERAND (gimple_call_arg (stmt, 1), 0);
3409 tree len = gimple_call_arg (stmt, 2);
3410 optimize_memcpy (&i, dest, src, len);
3411 }
3412 break;
3413
3414 case BUILT_IN_VA_START:
3415 case BUILT_IN_VA_END:
3416 case BUILT_IN_VA_COPY:
3417 /* These shouldn't be folded before pass_stdarg. */
3418 result = optimize_stdarg_builtin (stmt);
3419 break;
3420
3421 default:;
3422 }
3423
3424 if (!result)
3425 {
3426 gsi_next (&i);
3427 continue;
3428 }
3429
3430 if (!update_call_from_tree (&i, result))
3431 gimplify_and_update_call_from_tree (&i, result);
3432 }
3433
3434 todoflags |= TODO_update_address_taken;
3435
3436 if (dump_file && (dump_flags & TDF_DETAILS))
3437 {
3438 fprintf (dump_file, "Simplified\n ");
3439 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3440 }
3441
3442 old_stmt = stmt;
3443 stmt = gsi_stmt (i);
3444 update_stmt (stmt);
3445
3446 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
3447 && gimple_purge_dead_eh_edges (bb))
3448 cfg_changed = true;
3449
3450 if (dump_file && (dump_flags & TDF_DETAILS))
3451 {
3452 fprintf (dump_file, "to\n ");
3453 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3454 fprintf (dump_file, "\n");
3455 }
3456
3457 /* Retry the same statement if it changed into another
3458 builtin, there might be new opportunities now. */
3459 if (gimple_code (stmt) != GIMPLE_CALL)
3460 {
3461 gsi_next (&i);
3462 continue;
3463 }
3464 callee = gimple_call_fndecl (stmt);
3465 if (!callee
3466 || !fndecl_built_in_p (callee, fcode))
3467 gsi_next (&i);
3468 }
3469 }
3470
3471 /* Delete unreachable blocks. */
3472 if (cfg_changed)
3473 todoflags |= TODO_cleanup_cfg;
3474
3475 return todoflags;
3476 }
3477
3478 } // anon namespace
3479
3480 gimple_opt_pass *
3481 make_pass_fold_builtins (gcc::context *ctxt)
3482 {
3483 return new pass_fold_builtins (ctxt);
3484 }
3485
3486 /* A simple pass that emits some warnings post IPA. */
3487
3488 namespace {
3489
3490 const pass_data pass_data_post_ipa_warn =
3491 {
3492 GIMPLE_PASS, /* type */
3493 "post_ipa_warn", /* name */
3494 OPTGROUP_NONE, /* optinfo_flags */
3495 TV_NONE, /* tv_id */
3496 ( PROP_cfg | PROP_ssa ), /* properties_required */
3497 0, /* properties_provided */
3498 0, /* properties_destroyed */
3499 0, /* todo_flags_start */
3500 0, /* todo_flags_finish */
3501 };
3502
3503 class pass_post_ipa_warn : public gimple_opt_pass
3504 {
3505 public:
3506 pass_post_ipa_warn (gcc::context *ctxt)
3507 : gimple_opt_pass (pass_data_post_ipa_warn, ctxt)
3508 {}
3509
3510 /* opt_pass methods: */
3511 opt_pass * clone () { return new pass_post_ipa_warn (m_ctxt); }
3512 virtual bool gate (function *) { return warn_nonnull != 0; }
3513 virtual unsigned int execute (function *);
3514
3515 }; // class pass_fold_builtins
3516
3517 unsigned int
3518 pass_post_ipa_warn::execute (function *fun)
3519 {
3520 basic_block bb;
3521
3522 FOR_EACH_BB_FN (bb, fun)
3523 {
3524 gimple_stmt_iterator gsi;
3525 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3526 {
3527 gimple *stmt = gsi_stmt (gsi);
3528 if (!is_gimple_call (stmt) || gimple_no_warning_p (stmt))
3529 continue;
3530
3531 if (warn_nonnull)
3532 {
3533 bitmap nonnullargs
3534 = get_nonnull_args (gimple_call_fntype (stmt));
3535 if (nonnullargs)
3536 {
3537 for (unsigned i = 0; i < gimple_call_num_args (stmt); i++)
3538 {
3539 tree arg = gimple_call_arg (stmt, i);
3540 if (TREE_CODE (TREE_TYPE (arg)) != POINTER_TYPE)
3541 continue;
3542 if (!integer_zerop (arg))
3543 continue;
3544 if (!bitmap_empty_p (nonnullargs)
3545 && !bitmap_bit_p (nonnullargs, i))
3546 continue;
3547
3548 location_t loc = gimple_location (stmt);
3549 auto_diagnostic_group d;
3550 if (warning_at (loc, OPT_Wnonnull,
3551 "%Gargument %u null where non-null "
3552 "expected", stmt, i + 1))
3553 {
3554 tree fndecl = gimple_call_fndecl (stmt);
3555 if (fndecl && DECL_IS_BUILTIN (fndecl))
3556 inform (loc, "in a call to built-in function %qD",
3557 fndecl);
3558 else if (fndecl)
3559 inform (DECL_SOURCE_LOCATION (fndecl),
3560 "in a call to function %qD declared here",
3561 fndecl);
3562
3563 }
3564 }
3565 BITMAP_FREE (nonnullargs);
3566 }
3567 }
3568 }
3569 }
3570 return 0;
3571 }
3572
3573 } // anon namespace
3574
3575 gimple_opt_pass *
3576 make_pass_post_ipa_warn (gcc::context *ctxt)
3577 {
3578 return new pass_post_ipa_warn (ctxt);
3579 }