re PR middle-end/65788 (416.gamess in SPEC CPU 2006 failed to build)
[gcc.git] / gcc / tree-ssa-ccp.c
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
28 following values:
29
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
37
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
41 or not.
42
43 CONSTANT -> V_i has been found to hold a constant
44 value C.
45
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
48 at compile time.
49
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
51
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
59 can be visited.
60
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
65
66
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
72
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
75
76 if (PRED)
77 a_9 = 3;
78 else
79 a_10 = 100;
80 a_11 = PHI (a_9, a_10)
81
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
86
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
94
95
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
100
101 This algorithm uses wide-ints at the max precision of the target.
102 This means that, with one uninteresting exception, variables with
103 UNSIGNED types never go to VARYING because the bits above the
104 precision of the type of the variable are always zero. The
105 uninteresting case is a variable of UNSIGNED type that has the
106 maximum precision of the target. Such variables can go to VARYING,
107 but this causes no loss of infomation since these variables will
108 never be extended.
109
110 References:
111
112 Constant propagation with conditional branches,
113 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
114
115 Building an Optimizing Compiler,
116 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
117
118 Advanced Compiler Design and Implementation,
119 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
120
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "hash-set.h"
126 #include "machmode.h"
127 #include "vec.h"
128 #include "double-int.h"
129 #include "input.h"
130 #include "alias.h"
131 #include "symtab.h"
132 #include "wide-int.h"
133 #include "inchash.h"
134 #include "real.h"
135 #include "tree.h"
136 #include "fold-const.h"
137 #include "stor-layout.h"
138 #include "flags.h"
139 #include "tm_p.h"
140 #include "predict.h"
141 #include "hard-reg-set.h"
142 #include "input.h"
143 #include "function.h"
144 #include "dominance.h"
145 #include "cfg.h"
146 #include "basic-block.h"
147 #include "gimple-pretty-print.h"
148 #include "hash-table.h"
149 #include "tree-ssa-alias.h"
150 #include "internal-fn.h"
151 #include "gimple-fold.h"
152 #include "tree-eh.h"
153 #include "gimple-expr.h"
154 #include "is-a.h"
155 #include "gimple.h"
156 #include "gimplify.h"
157 #include "gimple-iterator.h"
158 #include "gimple-ssa.h"
159 #include "tree-cfg.h"
160 #include "tree-phinodes.h"
161 #include "ssa-iterators.h"
162 #include "stringpool.h"
163 #include "tree-ssanames.h"
164 #include "tree-pass.h"
165 #include "tree-ssa-propagate.h"
166 #include "value-prof.h"
167 #include "langhooks.h"
168 #include "target.h"
169 #include "diagnostic-core.h"
170 #include "dbgcnt.h"
171 #include "params.h"
172 #include "wide-int-print.h"
173 #include "builtins.h"
174 #include "tree-chkp.h"
175
176
177 /* Possible lattice values. */
178 typedef enum
179 {
180 UNINITIALIZED,
181 UNDEFINED,
182 CONSTANT,
183 VARYING
184 } ccp_lattice_t;
185
186 struct ccp_prop_value_t {
187 /* Lattice value. */
188 ccp_lattice_t lattice_val;
189
190 /* Propagated value. */
191 tree value;
192
193 /* Mask that applies to the propagated value during CCP. For X
194 with a CONSTANT lattice value X & ~mask == value & ~mask. The
195 zero bits in the mask cover constant values. The ones mean no
196 information. */
197 widest_int mask;
198 };
199
200 /* Array of propagated constant values. After propagation,
201 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
202 the constant is held in an SSA name representing a memory store
203 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
204 memory reference used to store (i.e., the LHS of the assignment
205 doing the store). */
206 static ccp_prop_value_t *const_val;
207 static unsigned n_const_val;
208
209 static void canonicalize_value (ccp_prop_value_t *);
210 static bool ccp_fold_stmt (gimple_stmt_iterator *);
211
212 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
213
214 static void
215 dump_lattice_value (FILE *outf, const char *prefix, ccp_prop_value_t val)
216 {
217 switch (val.lattice_val)
218 {
219 case UNINITIALIZED:
220 fprintf (outf, "%sUNINITIALIZED", prefix);
221 break;
222 case UNDEFINED:
223 fprintf (outf, "%sUNDEFINED", prefix);
224 break;
225 case VARYING:
226 fprintf (outf, "%sVARYING", prefix);
227 break;
228 case CONSTANT:
229 if (TREE_CODE (val.value) != INTEGER_CST
230 || val.mask == 0)
231 {
232 fprintf (outf, "%sCONSTANT ", prefix);
233 print_generic_expr (outf, val.value, dump_flags);
234 }
235 else
236 {
237 widest_int cval = wi::bit_and_not (wi::to_widest (val.value),
238 val.mask);
239 fprintf (outf, "%sCONSTANT ", prefix);
240 print_hex (cval, outf);
241 fprintf (outf, " (");
242 print_hex (val.mask, outf);
243 fprintf (outf, ")");
244 }
245 break;
246 default:
247 gcc_unreachable ();
248 }
249 }
250
251
252 /* Print lattice value VAL to stderr. */
253
254 void debug_lattice_value (ccp_prop_value_t val);
255
256 DEBUG_FUNCTION void
257 debug_lattice_value (ccp_prop_value_t val)
258 {
259 dump_lattice_value (stderr, "", val);
260 fprintf (stderr, "\n");
261 }
262
263 /* Extend NONZERO_BITS to a full mask, with the upper bits being set. */
264
265 static widest_int
266 extend_mask (const wide_int &nonzero_bits)
267 {
268 return (wi::mask <widest_int> (wi::get_precision (nonzero_bits), true)
269 | widest_int::from (nonzero_bits, UNSIGNED));
270 }
271
272 /* Compute a default value for variable VAR and store it in the
273 CONST_VAL array. The following rules are used to get default
274 values:
275
276 1- Global and static variables that are declared constant are
277 considered CONSTANT.
278
279 2- Any other value is considered UNDEFINED. This is useful when
280 considering PHI nodes. PHI arguments that are undefined do not
281 change the constant value of the PHI node, which allows for more
282 constants to be propagated.
283
284 3- Variables defined by statements other than assignments and PHI
285 nodes are considered VARYING.
286
287 4- Initial values of variables that are not GIMPLE registers are
288 considered VARYING. */
289
290 static ccp_prop_value_t
291 get_default_value (tree var)
292 {
293 ccp_prop_value_t val = { UNINITIALIZED, NULL_TREE, 0 };
294 gimple stmt;
295
296 stmt = SSA_NAME_DEF_STMT (var);
297
298 if (gimple_nop_p (stmt))
299 {
300 /* Variables defined by an empty statement are those used
301 before being initialized. If VAR is a local variable, we
302 can assume initially that it is UNDEFINED, otherwise we must
303 consider it VARYING. */
304 if (!virtual_operand_p (var)
305 && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
306 val.lattice_val = UNDEFINED;
307 else
308 {
309 val.lattice_val = VARYING;
310 val.mask = -1;
311 if (flag_tree_bit_ccp)
312 {
313 wide_int nonzero_bits = get_nonzero_bits (var);
314 if (nonzero_bits != -1)
315 {
316 val.lattice_val = CONSTANT;
317 val.value = build_zero_cst (TREE_TYPE (var));
318 val.mask = extend_mask (nonzero_bits);
319 }
320 }
321 }
322 }
323 else if (is_gimple_assign (stmt))
324 {
325 tree cst;
326 if (gimple_assign_single_p (stmt)
327 && DECL_P (gimple_assign_rhs1 (stmt))
328 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
329 {
330 val.lattice_val = CONSTANT;
331 val.value = cst;
332 }
333 else
334 {
335 /* Any other variable defined by an assignment is considered
336 UNDEFINED. */
337 val.lattice_val = UNDEFINED;
338 }
339 }
340 else if ((is_gimple_call (stmt)
341 && gimple_call_lhs (stmt) != NULL_TREE)
342 || gimple_code (stmt) == GIMPLE_PHI)
343 {
344 /* A variable defined by a call or a PHI node is considered
345 UNDEFINED. */
346 val.lattice_val = UNDEFINED;
347 }
348 else
349 {
350 /* Otherwise, VAR will never take on a constant value. */
351 val.lattice_val = VARYING;
352 val.mask = -1;
353 }
354
355 return val;
356 }
357
358
359 /* Get the constant value associated with variable VAR. */
360
361 static inline ccp_prop_value_t *
362 get_value (tree var)
363 {
364 ccp_prop_value_t *val;
365
366 if (const_val == NULL
367 || SSA_NAME_VERSION (var) >= n_const_val)
368 return NULL;
369
370 val = &const_val[SSA_NAME_VERSION (var)];
371 if (val->lattice_val == UNINITIALIZED)
372 *val = get_default_value (var);
373
374 canonicalize_value (val);
375
376 return val;
377 }
378
379 /* Return the constant tree value associated with VAR. */
380
381 static inline tree
382 get_constant_value (tree var)
383 {
384 ccp_prop_value_t *val;
385 if (TREE_CODE (var) != SSA_NAME)
386 {
387 if (is_gimple_min_invariant (var))
388 return var;
389 return NULL_TREE;
390 }
391 val = get_value (var);
392 if (val
393 && val->lattice_val == CONSTANT
394 && (TREE_CODE (val->value) != INTEGER_CST
395 || val->mask == 0))
396 return val->value;
397 return NULL_TREE;
398 }
399
400 /* Sets the value associated with VAR to VARYING. */
401
402 static inline void
403 set_value_varying (tree var)
404 {
405 ccp_prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
406
407 val->lattice_val = VARYING;
408 val->value = NULL_TREE;
409 val->mask = -1;
410 }
411
412 /* For integer constants, make sure to drop TREE_OVERFLOW. */
413
414 static void
415 canonicalize_value (ccp_prop_value_t *val)
416 {
417 if (val->lattice_val != CONSTANT)
418 return;
419
420 if (TREE_OVERFLOW_P (val->value))
421 val->value = drop_tree_overflow (val->value);
422 }
423
424 /* Return whether the lattice transition is valid. */
425
426 static bool
427 valid_lattice_transition (ccp_prop_value_t old_val, ccp_prop_value_t new_val)
428 {
429 /* Lattice transitions must always be monotonically increasing in
430 value. */
431 if (old_val.lattice_val < new_val.lattice_val)
432 return true;
433
434 if (old_val.lattice_val != new_val.lattice_val)
435 return false;
436
437 if (!old_val.value && !new_val.value)
438 return true;
439
440 /* Now both lattice values are CONSTANT. */
441
442 /* Allow transitioning from PHI <&x, not executable> == &x
443 to PHI <&x, &y> == common alignment. */
444 if (TREE_CODE (old_val.value) != INTEGER_CST
445 && TREE_CODE (new_val.value) == INTEGER_CST)
446 return true;
447
448 /* Bit-lattices have to agree in the still valid bits. */
449 if (TREE_CODE (old_val.value) == INTEGER_CST
450 && TREE_CODE (new_val.value) == INTEGER_CST)
451 return (wi::bit_and_not (wi::to_widest (old_val.value), new_val.mask)
452 == wi::bit_and_not (wi::to_widest (new_val.value), new_val.mask));
453
454 /* Otherwise constant values have to agree. */
455 if (operand_equal_p (old_val.value, new_val.value, 0))
456 return true;
457
458 /* At least the kinds and types should agree now. */
459 if (TREE_CODE (old_val.value) != TREE_CODE (new_val.value)
460 || !types_compatible_p (TREE_TYPE (old_val.value),
461 TREE_TYPE (new_val.value)))
462 return false;
463
464 /* For floats and !HONOR_NANS allow transitions from (partial) NaN
465 to non-NaN. */
466 tree type = TREE_TYPE (new_val.value);
467 if (SCALAR_FLOAT_TYPE_P (type)
468 && !HONOR_NANS (type))
469 {
470 if (REAL_VALUE_ISNAN (TREE_REAL_CST (old_val.value)))
471 return true;
472 }
473 else if (VECTOR_FLOAT_TYPE_P (type)
474 && !HONOR_NANS (type))
475 {
476 for (unsigned i = 0; i < VECTOR_CST_NELTS (old_val.value); ++i)
477 if (!REAL_VALUE_ISNAN
478 (TREE_REAL_CST (VECTOR_CST_ELT (old_val.value, i)))
479 && !operand_equal_p (VECTOR_CST_ELT (old_val.value, i),
480 VECTOR_CST_ELT (new_val.value, i), 0))
481 return false;
482 return true;
483 }
484 else if (COMPLEX_FLOAT_TYPE_P (type)
485 && !HONOR_NANS (type))
486 {
487 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_REALPART (old_val.value)))
488 && !operand_equal_p (TREE_REALPART (old_val.value),
489 TREE_REALPART (new_val.value), 0))
490 return false;
491 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_IMAGPART (old_val.value)))
492 && !operand_equal_p (TREE_IMAGPART (old_val.value),
493 TREE_IMAGPART (new_val.value), 0))
494 return false;
495 return true;
496 }
497 return false;
498 }
499
500 /* Set the value for variable VAR to NEW_VAL. Return true if the new
501 value is different from VAR's previous value. */
502
503 static bool
504 set_lattice_value (tree var, ccp_prop_value_t new_val)
505 {
506 /* We can deal with old UNINITIALIZED values just fine here. */
507 ccp_prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
508
509 canonicalize_value (&new_val);
510
511 /* We have to be careful to not go up the bitwise lattice
512 represented by the mask.
513 ??? This doesn't seem to be the best place to enforce this. */
514 if (new_val.lattice_val == CONSTANT
515 && old_val->lattice_val == CONSTANT
516 && TREE_CODE (new_val.value) == INTEGER_CST
517 && TREE_CODE (old_val->value) == INTEGER_CST)
518 {
519 widest_int diff = (wi::to_widest (new_val.value)
520 ^ wi::to_widest (old_val->value));
521 new_val.mask = new_val.mask | old_val->mask | diff;
522 }
523
524 gcc_checking_assert (valid_lattice_transition (*old_val, new_val));
525
526 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
527 caller that this was a non-transition. */
528 if (old_val->lattice_val != new_val.lattice_val
529 || (new_val.lattice_val == CONSTANT
530 && TREE_CODE (new_val.value) == INTEGER_CST
531 && (TREE_CODE (old_val->value) != INTEGER_CST
532 || new_val.mask != old_val->mask)))
533 {
534 /* ??? We would like to delay creation of INTEGER_CSTs from
535 partially constants here. */
536
537 if (dump_file && (dump_flags & TDF_DETAILS))
538 {
539 dump_lattice_value (dump_file, "Lattice value changed to ", new_val);
540 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
541 }
542
543 *old_val = new_val;
544
545 gcc_assert (new_val.lattice_val != UNINITIALIZED);
546 return true;
547 }
548
549 return false;
550 }
551
552 static ccp_prop_value_t get_value_for_expr (tree, bool);
553 static ccp_prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
554 static void bit_value_binop_1 (enum tree_code, tree, widest_int *, widest_int *,
555 tree, const widest_int &, const widest_int &,
556 tree, const widest_int &, const widest_int &);
557
558 /* Return a widest_int that can be used for bitwise simplifications
559 from VAL. */
560
561 static widest_int
562 value_to_wide_int (ccp_prop_value_t val)
563 {
564 if (val.value
565 && TREE_CODE (val.value) == INTEGER_CST)
566 return wi::to_widest (val.value);
567
568 return 0;
569 }
570
571 /* Return the value for the address expression EXPR based on alignment
572 information. */
573
574 static ccp_prop_value_t
575 get_value_from_alignment (tree expr)
576 {
577 tree type = TREE_TYPE (expr);
578 ccp_prop_value_t val;
579 unsigned HOST_WIDE_INT bitpos;
580 unsigned int align;
581
582 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
583
584 get_pointer_alignment_1 (expr, &align, &bitpos);
585 val.mask = (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
586 ? wi::mask <widest_int> (TYPE_PRECISION (type), false)
587 : -1).and_not (align / BITS_PER_UNIT - 1);
588 val.lattice_val
589 = wi::sext (val.mask, TYPE_PRECISION (type)) == -1 ? VARYING : CONSTANT;
590 if (val.lattice_val == CONSTANT)
591 val.value = build_int_cstu (type, bitpos / BITS_PER_UNIT);
592 else
593 val.value = NULL_TREE;
594
595 return val;
596 }
597
598 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
599 return constant bits extracted from alignment information for
600 invariant addresses. */
601
602 static ccp_prop_value_t
603 get_value_for_expr (tree expr, bool for_bits_p)
604 {
605 ccp_prop_value_t val;
606
607 if (TREE_CODE (expr) == SSA_NAME)
608 {
609 val = *get_value (expr);
610 if (for_bits_p
611 && val.lattice_val == CONSTANT
612 && TREE_CODE (val.value) == ADDR_EXPR)
613 val = get_value_from_alignment (val.value);
614 }
615 else if (is_gimple_min_invariant (expr)
616 && (!for_bits_p || TREE_CODE (expr) != ADDR_EXPR))
617 {
618 val.lattice_val = CONSTANT;
619 val.value = expr;
620 val.mask = 0;
621 canonicalize_value (&val);
622 }
623 else if (TREE_CODE (expr) == ADDR_EXPR)
624 val = get_value_from_alignment (expr);
625 else
626 {
627 val.lattice_val = VARYING;
628 val.mask = -1;
629 val.value = NULL_TREE;
630 }
631 return val;
632 }
633
634 /* Return the likely CCP lattice value for STMT.
635
636 If STMT has no operands, then return CONSTANT.
637
638 Else if undefinedness of operands of STMT cause its value to be
639 undefined, then return UNDEFINED.
640
641 Else if any operands of STMT are constants, then return CONSTANT.
642
643 Else return VARYING. */
644
645 static ccp_lattice_t
646 likely_value (gimple stmt)
647 {
648 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
649 bool has_nsa_operand;
650 tree use;
651 ssa_op_iter iter;
652 unsigned i;
653
654 enum gimple_code code = gimple_code (stmt);
655
656 /* This function appears to be called only for assignments, calls,
657 conditionals, and switches, due to the logic in visit_stmt. */
658 gcc_assert (code == GIMPLE_ASSIGN
659 || code == GIMPLE_CALL
660 || code == GIMPLE_COND
661 || code == GIMPLE_SWITCH);
662
663 /* If the statement has volatile operands, it won't fold to a
664 constant value. */
665 if (gimple_has_volatile_ops (stmt))
666 return VARYING;
667
668 /* Arrive here for more complex cases. */
669 has_constant_operand = false;
670 has_undefined_operand = false;
671 all_undefined_operands = true;
672 has_nsa_operand = false;
673 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
674 {
675 ccp_prop_value_t *val = get_value (use);
676
677 if (val->lattice_val == UNDEFINED)
678 has_undefined_operand = true;
679 else
680 all_undefined_operands = false;
681
682 if (val->lattice_val == CONSTANT)
683 has_constant_operand = true;
684
685 if (SSA_NAME_IS_DEFAULT_DEF (use)
686 || !prop_simulate_again_p (SSA_NAME_DEF_STMT (use)))
687 has_nsa_operand = true;
688 }
689
690 /* There may be constants in regular rhs operands. For calls we
691 have to ignore lhs, fndecl and static chain, otherwise only
692 the lhs. */
693 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
694 i < gimple_num_ops (stmt); ++i)
695 {
696 tree op = gimple_op (stmt, i);
697 if (!op || TREE_CODE (op) == SSA_NAME)
698 continue;
699 if (is_gimple_min_invariant (op))
700 has_constant_operand = true;
701 }
702
703 if (has_constant_operand)
704 all_undefined_operands = false;
705
706 if (has_undefined_operand
707 && code == GIMPLE_CALL
708 && gimple_call_internal_p (stmt))
709 switch (gimple_call_internal_fn (stmt))
710 {
711 /* These 3 builtins use the first argument just as a magic
712 way how to find out a decl uid. */
713 case IFN_GOMP_SIMD_LANE:
714 case IFN_GOMP_SIMD_VF:
715 case IFN_GOMP_SIMD_LAST_LANE:
716 has_undefined_operand = false;
717 break;
718 default:
719 break;
720 }
721
722 /* If the operation combines operands like COMPLEX_EXPR make sure to
723 not mark the result UNDEFINED if only one part of the result is
724 undefined. */
725 if (has_undefined_operand && all_undefined_operands)
726 return UNDEFINED;
727 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
728 {
729 switch (gimple_assign_rhs_code (stmt))
730 {
731 /* Unary operators are handled with all_undefined_operands. */
732 case PLUS_EXPR:
733 case MINUS_EXPR:
734 case POINTER_PLUS_EXPR:
735 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
736 Not bitwise operators, one VARYING operand may specify the
737 result completely. Not logical operators for the same reason.
738 Not COMPLEX_EXPR as one VARYING operand makes the result partly
739 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
740 the undefined operand may be promoted. */
741 return UNDEFINED;
742
743 case ADDR_EXPR:
744 /* If any part of an address is UNDEFINED, like the index
745 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
746 return UNDEFINED;
747
748 default:
749 ;
750 }
751 }
752 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
753 fall back to CONSTANT. During iteration UNDEFINED may still drop
754 to CONSTANT. */
755 if (has_undefined_operand)
756 return CONSTANT;
757
758 /* We do not consider virtual operands here -- load from read-only
759 memory may have only VARYING virtual operands, but still be
760 constant. Also we can combine the stmt with definitions from
761 operands whose definitions are not simulated again. */
762 if (has_constant_operand
763 || has_nsa_operand
764 || gimple_references_memory_p (stmt))
765 return CONSTANT;
766
767 return VARYING;
768 }
769
770 /* Returns true if STMT cannot be constant. */
771
772 static bool
773 surely_varying_stmt_p (gimple stmt)
774 {
775 /* If the statement has operands that we cannot handle, it cannot be
776 constant. */
777 if (gimple_has_volatile_ops (stmt))
778 return true;
779
780 /* If it is a call and does not return a value or is not a
781 builtin and not an indirect call or a call to function with
782 assume_aligned/alloc_align attribute, it is varying. */
783 if (is_gimple_call (stmt))
784 {
785 tree fndecl, fntype = gimple_call_fntype (stmt);
786 if (!gimple_call_lhs (stmt)
787 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
788 && !DECL_BUILT_IN (fndecl)
789 && !lookup_attribute ("assume_aligned",
790 TYPE_ATTRIBUTES (fntype))
791 && !lookup_attribute ("alloc_align",
792 TYPE_ATTRIBUTES (fntype))))
793 return true;
794 }
795
796 /* Any other store operation is not interesting. */
797 else if (gimple_vdef (stmt))
798 return true;
799
800 /* Anything other than assignments and conditional jumps are not
801 interesting for CCP. */
802 if (gimple_code (stmt) != GIMPLE_ASSIGN
803 && gimple_code (stmt) != GIMPLE_COND
804 && gimple_code (stmt) != GIMPLE_SWITCH
805 && gimple_code (stmt) != GIMPLE_CALL)
806 return true;
807
808 return false;
809 }
810
811 /* Initialize local data structures for CCP. */
812
813 static void
814 ccp_initialize (void)
815 {
816 basic_block bb;
817
818 n_const_val = num_ssa_names;
819 const_val = XCNEWVEC (ccp_prop_value_t, n_const_val);
820
821 /* Initialize simulation flags for PHI nodes and statements. */
822 FOR_EACH_BB_FN (bb, cfun)
823 {
824 gimple_stmt_iterator i;
825
826 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
827 {
828 gimple stmt = gsi_stmt (i);
829 bool is_varying;
830
831 /* If the statement is a control insn, then we do not
832 want to avoid simulating the statement once. Failure
833 to do so means that those edges will never get added. */
834 if (stmt_ends_bb_p (stmt))
835 is_varying = false;
836 else
837 is_varying = surely_varying_stmt_p (stmt);
838
839 if (is_varying)
840 {
841 tree def;
842 ssa_op_iter iter;
843
844 /* If the statement will not produce a constant, mark
845 all its outputs VARYING. */
846 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
847 set_value_varying (def);
848 }
849 prop_set_simulate_again (stmt, !is_varying);
850 }
851 }
852
853 /* Now process PHI nodes. We never clear the simulate_again flag on
854 phi nodes, since we do not know which edges are executable yet,
855 except for phi nodes for virtual operands when we do not do store ccp. */
856 FOR_EACH_BB_FN (bb, cfun)
857 {
858 gphi_iterator i;
859
860 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
861 {
862 gphi *phi = i.phi ();
863
864 if (virtual_operand_p (gimple_phi_result (phi)))
865 prop_set_simulate_again (phi, false);
866 else
867 prop_set_simulate_again (phi, true);
868 }
869 }
870 }
871
872 /* Debug count support. Reset the values of ssa names
873 VARYING when the total number ssa names analyzed is
874 beyond the debug count specified. */
875
876 static void
877 do_dbg_cnt (void)
878 {
879 unsigned i;
880 for (i = 0; i < num_ssa_names; i++)
881 {
882 if (!dbg_cnt (ccp))
883 {
884 const_val[i].lattice_val = VARYING;
885 const_val[i].mask = -1;
886 const_val[i].value = NULL_TREE;
887 }
888 }
889 }
890
891
892 /* Do final substitution of propagated values, cleanup the flowgraph and
893 free allocated storage.
894
895 Return TRUE when something was optimized. */
896
897 static bool
898 ccp_finalize (void)
899 {
900 bool something_changed;
901 unsigned i;
902
903 do_dbg_cnt ();
904
905 /* Derive alignment and misalignment information from partially
906 constant pointers in the lattice or nonzero bits from partially
907 constant integers. */
908 for (i = 1; i < num_ssa_names; ++i)
909 {
910 tree name = ssa_name (i);
911 ccp_prop_value_t *val;
912 unsigned int tem, align;
913
914 if (!name
915 || (!POINTER_TYPE_P (TREE_TYPE (name))
916 && (!INTEGRAL_TYPE_P (TREE_TYPE (name))
917 /* Don't record nonzero bits before IPA to avoid
918 using too much memory. */
919 || first_pass_instance)))
920 continue;
921
922 val = get_value (name);
923 if (val->lattice_val != CONSTANT
924 || TREE_CODE (val->value) != INTEGER_CST)
925 continue;
926
927 if (POINTER_TYPE_P (TREE_TYPE (name)))
928 {
929 /* Trailing mask bits specify the alignment, trailing value
930 bits the misalignment. */
931 tem = val->mask.to_uhwi ();
932 align = (tem & -tem);
933 if (align > 1)
934 set_ptr_info_alignment (get_ptr_info (name), align,
935 (TREE_INT_CST_LOW (val->value)
936 & (align - 1)));
937 }
938 else
939 {
940 unsigned int precision = TYPE_PRECISION (TREE_TYPE (val->value));
941 wide_int nonzero_bits = wide_int::from (val->mask, precision,
942 UNSIGNED) | val->value;
943 nonzero_bits &= get_nonzero_bits (name);
944 set_nonzero_bits (name, nonzero_bits);
945 }
946 }
947
948 /* Perform substitutions based on the known constant values. */
949 something_changed = substitute_and_fold (get_constant_value,
950 ccp_fold_stmt, true);
951
952 free (const_val);
953 const_val = NULL;
954 return something_changed;;
955 }
956
957
958 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
959 in VAL1.
960
961 any M UNDEFINED = any
962 any M VARYING = VARYING
963 Ci M Cj = Ci if (i == j)
964 Ci M Cj = VARYING if (i != j)
965 */
966
967 static void
968 ccp_lattice_meet (ccp_prop_value_t *val1, ccp_prop_value_t *val2)
969 {
970 if (val1->lattice_val == UNDEFINED)
971 {
972 /* UNDEFINED M any = any */
973 *val1 = *val2;
974 }
975 else if (val2->lattice_val == UNDEFINED)
976 {
977 /* any M UNDEFINED = any
978 Nothing to do. VAL1 already contains the value we want. */
979 ;
980 }
981 else if (val1->lattice_val == VARYING
982 || val2->lattice_val == VARYING)
983 {
984 /* any M VARYING = VARYING. */
985 val1->lattice_val = VARYING;
986 val1->mask = -1;
987 val1->value = NULL_TREE;
988 }
989 else if (val1->lattice_val == CONSTANT
990 && val2->lattice_val == CONSTANT
991 && TREE_CODE (val1->value) == INTEGER_CST
992 && TREE_CODE (val2->value) == INTEGER_CST)
993 {
994 /* Ci M Cj = Ci if (i == j)
995 Ci M Cj = VARYING if (i != j)
996
997 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
998 drop to varying. */
999 val1->mask = (val1->mask | val2->mask
1000 | (wi::to_widest (val1->value)
1001 ^ wi::to_widest (val2->value)));
1002 if (wi::sext (val1->mask, TYPE_PRECISION (TREE_TYPE (val1->value))) == -1)
1003 {
1004 val1->lattice_val = VARYING;
1005 val1->value = NULL_TREE;
1006 }
1007 }
1008 else if (val1->lattice_val == CONSTANT
1009 && val2->lattice_val == CONSTANT
1010 && simple_cst_equal (val1->value, val2->value) == 1)
1011 {
1012 /* Ci M Cj = Ci if (i == j)
1013 Ci M Cj = VARYING if (i != j)
1014
1015 VAL1 already contains the value we want for equivalent values. */
1016 }
1017 else if (val1->lattice_val == CONSTANT
1018 && val2->lattice_val == CONSTANT
1019 && (TREE_CODE (val1->value) == ADDR_EXPR
1020 || TREE_CODE (val2->value) == ADDR_EXPR))
1021 {
1022 /* When not equal addresses are involved try meeting for
1023 alignment. */
1024 ccp_prop_value_t tem = *val2;
1025 if (TREE_CODE (val1->value) == ADDR_EXPR)
1026 *val1 = get_value_for_expr (val1->value, true);
1027 if (TREE_CODE (val2->value) == ADDR_EXPR)
1028 tem = get_value_for_expr (val2->value, true);
1029 ccp_lattice_meet (val1, &tem);
1030 }
1031 else
1032 {
1033 /* Any other combination is VARYING. */
1034 val1->lattice_val = VARYING;
1035 val1->mask = -1;
1036 val1->value = NULL_TREE;
1037 }
1038 }
1039
1040
1041 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
1042 lattice values to determine PHI_NODE's lattice value. The value of a
1043 PHI node is determined calling ccp_lattice_meet with all the arguments
1044 of the PHI node that are incoming via executable edges. */
1045
1046 static enum ssa_prop_result
1047 ccp_visit_phi_node (gphi *phi)
1048 {
1049 unsigned i;
1050 ccp_prop_value_t *old_val, new_val;
1051
1052 if (dump_file && (dump_flags & TDF_DETAILS))
1053 {
1054 fprintf (dump_file, "\nVisiting PHI node: ");
1055 print_gimple_stmt (dump_file, phi, 0, dump_flags);
1056 }
1057
1058 old_val = get_value (gimple_phi_result (phi));
1059 switch (old_val->lattice_val)
1060 {
1061 case VARYING:
1062 return SSA_PROP_VARYING;
1063
1064 case CONSTANT:
1065 new_val = *old_val;
1066 break;
1067
1068 case UNDEFINED:
1069 new_val.lattice_val = UNDEFINED;
1070 new_val.value = NULL_TREE;
1071 break;
1072
1073 default:
1074 gcc_unreachable ();
1075 }
1076
1077 for (i = 0; i < gimple_phi_num_args (phi); i++)
1078 {
1079 /* Compute the meet operator over all the PHI arguments flowing
1080 through executable edges. */
1081 edge e = gimple_phi_arg_edge (phi, i);
1082
1083 if (dump_file && (dump_flags & TDF_DETAILS))
1084 {
1085 fprintf (dump_file,
1086 "\n Argument #%d (%d -> %d %sexecutable)\n",
1087 i, e->src->index, e->dest->index,
1088 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
1089 }
1090
1091 /* If the incoming edge is executable, Compute the meet operator for
1092 the existing value of the PHI node and the current PHI argument. */
1093 if (e->flags & EDGE_EXECUTABLE)
1094 {
1095 tree arg = gimple_phi_arg (phi, i)->def;
1096 ccp_prop_value_t arg_val = get_value_for_expr (arg, false);
1097
1098 ccp_lattice_meet (&new_val, &arg_val);
1099
1100 if (dump_file && (dump_flags & TDF_DETAILS))
1101 {
1102 fprintf (dump_file, "\t");
1103 print_generic_expr (dump_file, arg, dump_flags);
1104 dump_lattice_value (dump_file, "\tValue: ", arg_val);
1105 fprintf (dump_file, "\n");
1106 }
1107
1108 if (new_val.lattice_val == VARYING)
1109 break;
1110 }
1111 }
1112
1113 if (dump_file && (dump_flags & TDF_DETAILS))
1114 {
1115 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
1116 fprintf (dump_file, "\n\n");
1117 }
1118
1119 /* Make the transition to the new value. */
1120 if (set_lattice_value (gimple_phi_result (phi), new_val))
1121 {
1122 if (new_val.lattice_val == VARYING)
1123 return SSA_PROP_VARYING;
1124 else
1125 return SSA_PROP_INTERESTING;
1126 }
1127 else
1128 return SSA_PROP_NOT_INTERESTING;
1129 }
1130
1131 /* Return the constant value for OP or OP otherwise. */
1132
1133 static tree
1134 valueize_op (tree op)
1135 {
1136 if (TREE_CODE (op) == SSA_NAME)
1137 {
1138 tree tem = get_constant_value (op);
1139 if (tem)
1140 return tem;
1141 }
1142 return op;
1143 }
1144
1145 /* Return the constant value for OP, but signal to not follow SSA
1146 edges if the definition may be simulated again. */
1147
1148 static tree
1149 valueize_op_1 (tree op)
1150 {
1151 if (TREE_CODE (op) == SSA_NAME)
1152 {
1153 /* If the definition may be simulated again we cannot follow
1154 this SSA edge as the SSA propagator does not necessarily
1155 re-visit the use. */
1156 gimple def_stmt = SSA_NAME_DEF_STMT (op);
1157 if (!gimple_nop_p (def_stmt)
1158 && prop_simulate_again_p (def_stmt))
1159 return NULL_TREE;
1160 tree tem = get_constant_value (op);
1161 if (tem)
1162 return tem;
1163 }
1164 return op;
1165 }
1166
1167 /* CCP specific front-end to the non-destructive constant folding
1168 routines.
1169
1170 Attempt to simplify the RHS of STMT knowing that one or more
1171 operands are constants.
1172
1173 If simplification is possible, return the simplified RHS,
1174 otherwise return the original RHS or NULL_TREE. */
1175
1176 static tree
1177 ccp_fold (gimple stmt)
1178 {
1179 location_t loc = gimple_location (stmt);
1180 switch (gimple_code (stmt))
1181 {
1182 case GIMPLE_COND:
1183 {
1184 /* Handle comparison operators that can appear in GIMPLE form. */
1185 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1186 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1187 enum tree_code code = gimple_cond_code (stmt);
1188 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1189 }
1190
1191 case GIMPLE_SWITCH:
1192 {
1193 /* Return the constant switch index. */
1194 return valueize_op (gimple_switch_index (as_a <gswitch *> (stmt)));
1195 }
1196
1197 case GIMPLE_ASSIGN:
1198 case GIMPLE_CALL:
1199 return gimple_fold_stmt_to_constant_1 (stmt,
1200 valueize_op, valueize_op_1);
1201
1202 default:
1203 gcc_unreachable ();
1204 }
1205 }
1206
1207 /* Apply the operation CODE in type TYPE to the value, mask pair
1208 RVAL and RMASK representing a value of type RTYPE and set
1209 the value, mask pair *VAL and *MASK to the result. */
1210
1211 static void
1212 bit_value_unop_1 (enum tree_code code, tree type,
1213 widest_int *val, widest_int *mask,
1214 tree rtype, const widest_int &rval, const widest_int &rmask)
1215 {
1216 switch (code)
1217 {
1218 case BIT_NOT_EXPR:
1219 *mask = rmask;
1220 *val = ~rval;
1221 break;
1222
1223 case NEGATE_EXPR:
1224 {
1225 widest_int temv, temm;
1226 /* Return ~rval + 1. */
1227 bit_value_unop_1 (BIT_NOT_EXPR, type, &temv, &temm, type, rval, rmask);
1228 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1229 type, temv, temm, type, 1, 0);
1230 break;
1231 }
1232
1233 CASE_CONVERT:
1234 {
1235 signop sgn;
1236
1237 /* First extend mask and value according to the original type. */
1238 sgn = TYPE_SIGN (rtype);
1239 *mask = wi::ext (rmask, TYPE_PRECISION (rtype), sgn);
1240 *val = wi::ext (rval, TYPE_PRECISION (rtype), sgn);
1241
1242 /* Then extend mask and value according to the target type. */
1243 sgn = TYPE_SIGN (type);
1244 *mask = wi::ext (*mask, TYPE_PRECISION (type), sgn);
1245 *val = wi::ext (*val, TYPE_PRECISION (type), sgn);
1246 break;
1247 }
1248
1249 default:
1250 *mask = -1;
1251 break;
1252 }
1253 }
1254
1255 /* Apply the operation CODE in type TYPE to the value, mask pairs
1256 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1257 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1258
1259 static void
1260 bit_value_binop_1 (enum tree_code code, tree type,
1261 widest_int *val, widest_int *mask,
1262 tree r1type, const widest_int &r1val,
1263 const widest_int &r1mask, tree r2type,
1264 const widest_int &r2val, const widest_int &r2mask)
1265 {
1266 signop sgn = TYPE_SIGN (type);
1267 int width = TYPE_PRECISION (type);
1268 bool swap_p = false;
1269
1270 /* Assume we'll get a constant result. Use an initial non varying
1271 value, we fall back to varying in the end if necessary. */
1272 *mask = -1;
1273
1274 switch (code)
1275 {
1276 case BIT_AND_EXPR:
1277 /* The mask is constant where there is a known not
1278 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1279 *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
1280 *val = r1val & r2val;
1281 break;
1282
1283 case BIT_IOR_EXPR:
1284 /* The mask is constant where there is a known
1285 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1286 *mask = (r1mask | r2mask)
1287 .and_not (r1val.and_not (r1mask) | r2val.and_not (r2mask));
1288 *val = r1val | r2val;
1289 break;
1290
1291 case BIT_XOR_EXPR:
1292 /* m1 | m2 */
1293 *mask = r1mask | r2mask;
1294 *val = r1val ^ r2val;
1295 break;
1296
1297 case LROTATE_EXPR:
1298 case RROTATE_EXPR:
1299 if (r2mask == 0)
1300 {
1301 widest_int shift = r2val;
1302 if (shift == 0)
1303 {
1304 *mask = r1mask;
1305 *val = r1val;
1306 }
1307 else
1308 {
1309 if (wi::neg_p (shift))
1310 {
1311 shift = -shift;
1312 if (code == RROTATE_EXPR)
1313 code = LROTATE_EXPR;
1314 else
1315 code = RROTATE_EXPR;
1316 }
1317 if (code == RROTATE_EXPR)
1318 {
1319 *mask = wi::rrotate (r1mask, shift, width);
1320 *val = wi::rrotate (r1val, shift, width);
1321 }
1322 else
1323 {
1324 *mask = wi::lrotate (r1mask, shift, width);
1325 *val = wi::lrotate (r1val, shift, width);
1326 }
1327 }
1328 }
1329 break;
1330
1331 case LSHIFT_EXPR:
1332 case RSHIFT_EXPR:
1333 /* ??? We can handle partially known shift counts if we know
1334 its sign. That way we can tell that (x << (y | 8)) & 255
1335 is zero. */
1336 if (r2mask == 0)
1337 {
1338 widest_int shift = r2val;
1339 if (shift == 0)
1340 {
1341 *mask = r1mask;
1342 *val = r1val;
1343 }
1344 else
1345 {
1346 if (wi::neg_p (shift))
1347 {
1348 shift = -shift;
1349 if (code == RSHIFT_EXPR)
1350 code = LSHIFT_EXPR;
1351 else
1352 code = RSHIFT_EXPR;
1353 }
1354 if (code == RSHIFT_EXPR)
1355 {
1356 *mask = wi::rshift (wi::ext (r1mask, width, sgn), shift, sgn);
1357 *val = wi::rshift (wi::ext (r1val, width, sgn), shift, sgn);
1358 }
1359 else
1360 {
1361 *mask = wi::ext (wi::lshift (r1mask, shift), width, sgn);
1362 *val = wi::ext (wi::lshift (r1val, shift), width, sgn);
1363 }
1364 }
1365 }
1366 break;
1367
1368 case PLUS_EXPR:
1369 case POINTER_PLUS_EXPR:
1370 {
1371 /* Do the addition with unknown bits set to zero, to give carry-ins of
1372 zero wherever possible. */
1373 widest_int lo = r1val.and_not (r1mask) + r2val.and_not (r2mask);
1374 lo = wi::ext (lo, width, sgn);
1375 /* Do the addition with unknown bits set to one, to give carry-ins of
1376 one wherever possible. */
1377 widest_int hi = (r1val | r1mask) + (r2val | r2mask);
1378 hi = wi::ext (hi, width, sgn);
1379 /* Each bit in the result is known if (a) the corresponding bits in
1380 both inputs are known, and (b) the carry-in to that bit position
1381 is known. We can check condition (b) by seeing if we got the same
1382 result with minimised carries as with maximised carries. */
1383 *mask = r1mask | r2mask | (lo ^ hi);
1384 *mask = wi::ext (*mask, width, sgn);
1385 /* It shouldn't matter whether we choose lo or hi here. */
1386 *val = lo;
1387 break;
1388 }
1389
1390 case MINUS_EXPR:
1391 {
1392 widest_int temv, temm;
1393 bit_value_unop_1 (NEGATE_EXPR, r2type, &temv, &temm,
1394 r2type, r2val, r2mask);
1395 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1396 r1type, r1val, r1mask,
1397 r2type, temv, temm);
1398 break;
1399 }
1400
1401 case MULT_EXPR:
1402 {
1403 /* Just track trailing zeros in both operands and transfer
1404 them to the other. */
1405 int r1tz = wi::ctz (r1val | r1mask);
1406 int r2tz = wi::ctz (r2val | r2mask);
1407 if (r1tz + r2tz >= width)
1408 {
1409 *mask = 0;
1410 *val = 0;
1411 }
1412 else if (r1tz + r2tz > 0)
1413 {
1414 *mask = wi::ext (wi::mask <widest_int> (r1tz + r2tz, true),
1415 width, sgn);
1416 *val = 0;
1417 }
1418 break;
1419 }
1420
1421 case EQ_EXPR:
1422 case NE_EXPR:
1423 {
1424 widest_int m = r1mask | r2mask;
1425 if (r1val.and_not (m) != r2val.and_not (m))
1426 {
1427 *mask = 0;
1428 *val = ((code == EQ_EXPR) ? 0 : 1);
1429 }
1430 else
1431 {
1432 /* We know the result of a comparison is always one or zero. */
1433 *mask = 1;
1434 *val = 0;
1435 }
1436 break;
1437 }
1438
1439 case GE_EXPR:
1440 case GT_EXPR:
1441 swap_p = true;
1442 code = swap_tree_comparison (code);
1443 /* Fall through. */
1444 case LT_EXPR:
1445 case LE_EXPR:
1446 {
1447 int minmax, maxmin;
1448
1449 const widest_int &o1val = swap_p ? r2val : r1val;
1450 const widest_int &o1mask = swap_p ? r2mask : r1mask;
1451 const widest_int &o2val = swap_p ? r1val : r2val;
1452 const widest_int &o2mask = swap_p ? r1mask : r2mask;
1453
1454 /* If the most significant bits are not known we know nothing. */
1455 if (wi::neg_p (o1mask) || wi::neg_p (o2mask))
1456 break;
1457
1458 /* For comparisons the signedness is in the comparison operands. */
1459 sgn = TYPE_SIGN (r1type);
1460
1461 /* If we know the most significant bits we know the values
1462 value ranges by means of treating varying bits as zero
1463 or one. Do a cross comparison of the max/min pairs. */
1464 maxmin = wi::cmp (o1val | o1mask, o2val.and_not (o2mask), sgn);
1465 minmax = wi::cmp (o1val.and_not (o1mask), o2val | o2mask, sgn);
1466 if (maxmin < 0) /* o1 is less than o2. */
1467 {
1468 *mask = 0;
1469 *val = 1;
1470 }
1471 else if (minmax > 0) /* o1 is not less or equal to o2. */
1472 {
1473 *mask = 0;
1474 *val = 0;
1475 }
1476 else if (maxmin == minmax) /* o1 and o2 are equal. */
1477 {
1478 /* This probably should never happen as we'd have
1479 folded the thing during fully constant value folding. */
1480 *mask = 0;
1481 *val = (code == LE_EXPR ? 1 : 0);
1482 }
1483 else
1484 {
1485 /* We know the result of a comparison is always one or zero. */
1486 *mask = 1;
1487 *val = 0;
1488 }
1489 break;
1490 }
1491
1492 default:;
1493 }
1494 }
1495
1496 /* Return the propagation value when applying the operation CODE to
1497 the value RHS yielding type TYPE. */
1498
1499 static ccp_prop_value_t
1500 bit_value_unop (enum tree_code code, tree type, tree rhs)
1501 {
1502 ccp_prop_value_t rval = get_value_for_expr (rhs, true);
1503 widest_int value, mask;
1504 ccp_prop_value_t val;
1505
1506 if (rval.lattice_val == UNDEFINED)
1507 return rval;
1508
1509 gcc_assert ((rval.lattice_val == CONSTANT
1510 && TREE_CODE (rval.value) == INTEGER_CST)
1511 || wi::sext (rval.mask, TYPE_PRECISION (TREE_TYPE (rhs))) == -1);
1512 bit_value_unop_1 (code, type, &value, &mask,
1513 TREE_TYPE (rhs), value_to_wide_int (rval), rval.mask);
1514 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1515 {
1516 val.lattice_val = CONSTANT;
1517 val.mask = mask;
1518 /* ??? Delay building trees here. */
1519 val.value = wide_int_to_tree (type, value);
1520 }
1521 else
1522 {
1523 val.lattice_val = VARYING;
1524 val.value = NULL_TREE;
1525 val.mask = -1;
1526 }
1527 return val;
1528 }
1529
1530 /* Return the propagation value when applying the operation CODE to
1531 the values RHS1 and RHS2 yielding type TYPE. */
1532
1533 static ccp_prop_value_t
1534 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
1535 {
1536 ccp_prop_value_t r1val = get_value_for_expr (rhs1, true);
1537 ccp_prop_value_t r2val = get_value_for_expr (rhs2, true);
1538 widest_int value, mask;
1539 ccp_prop_value_t val;
1540
1541 if (r1val.lattice_val == UNDEFINED
1542 || r2val.lattice_val == UNDEFINED)
1543 {
1544 val.lattice_val = VARYING;
1545 val.value = NULL_TREE;
1546 val.mask = -1;
1547 return val;
1548 }
1549
1550 gcc_assert ((r1val.lattice_val == CONSTANT
1551 && TREE_CODE (r1val.value) == INTEGER_CST)
1552 || wi::sext (r1val.mask,
1553 TYPE_PRECISION (TREE_TYPE (rhs1))) == -1);
1554 gcc_assert ((r2val.lattice_val == CONSTANT
1555 && TREE_CODE (r2val.value) == INTEGER_CST)
1556 || wi::sext (r2val.mask,
1557 TYPE_PRECISION (TREE_TYPE (rhs2))) == -1);
1558 bit_value_binop_1 (code, type, &value, &mask,
1559 TREE_TYPE (rhs1), value_to_wide_int (r1val), r1val.mask,
1560 TREE_TYPE (rhs2), value_to_wide_int (r2val), r2val.mask);
1561 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1562 {
1563 val.lattice_val = CONSTANT;
1564 val.mask = mask;
1565 /* ??? Delay building trees here. */
1566 val.value = wide_int_to_tree (type, value);
1567 }
1568 else
1569 {
1570 val.lattice_val = VARYING;
1571 val.value = NULL_TREE;
1572 val.mask = -1;
1573 }
1574 return val;
1575 }
1576
1577 /* Return the propagation value for __builtin_assume_aligned
1578 and functions with assume_aligned or alloc_aligned attribute.
1579 For __builtin_assume_aligned, ATTR is NULL_TREE,
1580 for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED
1581 is false, for alloc_aligned attribute ATTR is non-NULL and
1582 ALLOC_ALIGNED is true. */
1583
1584 static ccp_prop_value_t
1585 bit_value_assume_aligned (gimple stmt, tree attr, ccp_prop_value_t ptrval,
1586 bool alloc_aligned)
1587 {
1588 tree align, misalign = NULL_TREE, type;
1589 unsigned HOST_WIDE_INT aligni, misaligni = 0;
1590 ccp_prop_value_t alignval;
1591 widest_int value, mask;
1592 ccp_prop_value_t val;
1593
1594 if (attr == NULL_TREE)
1595 {
1596 tree ptr = gimple_call_arg (stmt, 0);
1597 type = TREE_TYPE (ptr);
1598 ptrval = get_value_for_expr (ptr, true);
1599 }
1600 else
1601 {
1602 tree lhs = gimple_call_lhs (stmt);
1603 type = TREE_TYPE (lhs);
1604 }
1605
1606 if (ptrval.lattice_val == UNDEFINED)
1607 return ptrval;
1608 gcc_assert ((ptrval.lattice_val == CONSTANT
1609 && TREE_CODE (ptrval.value) == INTEGER_CST)
1610 || wi::sext (ptrval.mask, TYPE_PRECISION (type)) == -1);
1611 if (attr == NULL_TREE)
1612 {
1613 /* Get aligni and misaligni from __builtin_assume_aligned. */
1614 align = gimple_call_arg (stmt, 1);
1615 if (!tree_fits_uhwi_p (align))
1616 return ptrval;
1617 aligni = tree_to_uhwi (align);
1618 if (gimple_call_num_args (stmt) > 2)
1619 {
1620 misalign = gimple_call_arg (stmt, 2);
1621 if (!tree_fits_uhwi_p (misalign))
1622 return ptrval;
1623 misaligni = tree_to_uhwi (misalign);
1624 }
1625 }
1626 else
1627 {
1628 /* Get aligni and misaligni from assume_aligned or
1629 alloc_align attributes. */
1630 if (TREE_VALUE (attr) == NULL_TREE)
1631 return ptrval;
1632 attr = TREE_VALUE (attr);
1633 align = TREE_VALUE (attr);
1634 if (!tree_fits_uhwi_p (align))
1635 return ptrval;
1636 aligni = tree_to_uhwi (align);
1637 if (alloc_aligned)
1638 {
1639 if (aligni == 0 || aligni > gimple_call_num_args (stmt))
1640 return ptrval;
1641 align = gimple_call_arg (stmt, aligni - 1);
1642 if (!tree_fits_uhwi_p (align))
1643 return ptrval;
1644 aligni = tree_to_uhwi (align);
1645 }
1646 else if (TREE_CHAIN (attr) && TREE_VALUE (TREE_CHAIN (attr)))
1647 {
1648 misalign = TREE_VALUE (TREE_CHAIN (attr));
1649 if (!tree_fits_uhwi_p (misalign))
1650 return ptrval;
1651 misaligni = tree_to_uhwi (misalign);
1652 }
1653 }
1654 if (aligni <= 1 || (aligni & (aligni - 1)) != 0 || misaligni >= aligni)
1655 return ptrval;
1656
1657 align = build_int_cst_type (type, -aligni);
1658 alignval = get_value_for_expr (align, true);
1659 bit_value_binop_1 (BIT_AND_EXPR, type, &value, &mask,
1660 type, value_to_wide_int (ptrval), ptrval.mask,
1661 type, value_to_wide_int (alignval), alignval.mask);
1662 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1663 {
1664 val.lattice_val = CONSTANT;
1665 val.mask = mask;
1666 gcc_assert ((mask.to_uhwi () & (aligni - 1)) == 0);
1667 gcc_assert ((value.to_uhwi () & (aligni - 1)) == 0);
1668 value |= misaligni;
1669 /* ??? Delay building trees here. */
1670 val.value = wide_int_to_tree (type, value);
1671 }
1672 else
1673 {
1674 val.lattice_val = VARYING;
1675 val.value = NULL_TREE;
1676 val.mask = -1;
1677 }
1678 return val;
1679 }
1680
1681 /* Evaluate statement STMT.
1682 Valid only for assignments, calls, conditionals, and switches. */
1683
1684 static ccp_prop_value_t
1685 evaluate_stmt (gimple stmt)
1686 {
1687 ccp_prop_value_t val;
1688 tree simplified = NULL_TREE;
1689 ccp_lattice_t likelyvalue = likely_value (stmt);
1690 bool is_constant = false;
1691 unsigned int align;
1692
1693 if (dump_file && (dump_flags & TDF_DETAILS))
1694 {
1695 fprintf (dump_file, "which is likely ");
1696 switch (likelyvalue)
1697 {
1698 case CONSTANT:
1699 fprintf (dump_file, "CONSTANT");
1700 break;
1701 case UNDEFINED:
1702 fprintf (dump_file, "UNDEFINED");
1703 break;
1704 case VARYING:
1705 fprintf (dump_file, "VARYING");
1706 break;
1707 default:;
1708 }
1709 fprintf (dump_file, "\n");
1710 }
1711
1712 /* If the statement is likely to have a CONSTANT result, then try
1713 to fold the statement to determine the constant value. */
1714 /* FIXME. This is the only place that we call ccp_fold.
1715 Since likely_value never returns CONSTANT for calls, we will
1716 not attempt to fold them, including builtins that may profit. */
1717 if (likelyvalue == CONSTANT)
1718 {
1719 fold_defer_overflow_warnings ();
1720 simplified = ccp_fold (stmt);
1721 is_constant = simplified && is_gimple_min_invariant (simplified);
1722 fold_undefer_overflow_warnings (is_constant, stmt, 0);
1723 if (is_constant)
1724 {
1725 /* The statement produced a constant value. */
1726 val.lattice_val = CONSTANT;
1727 val.value = simplified;
1728 val.mask = 0;
1729 }
1730 }
1731 /* If the statement is likely to have a VARYING result, then do not
1732 bother folding the statement. */
1733 else if (likelyvalue == VARYING)
1734 {
1735 enum gimple_code code = gimple_code (stmt);
1736 if (code == GIMPLE_ASSIGN)
1737 {
1738 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1739
1740 /* Other cases cannot satisfy is_gimple_min_invariant
1741 without folding. */
1742 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
1743 simplified = gimple_assign_rhs1 (stmt);
1744 }
1745 else if (code == GIMPLE_SWITCH)
1746 simplified = gimple_switch_index (as_a <gswitch *> (stmt));
1747 else
1748 /* These cannot satisfy is_gimple_min_invariant without folding. */
1749 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
1750 is_constant = simplified && is_gimple_min_invariant (simplified);
1751 if (is_constant)
1752 {
1753 /* The statement produced a constant value. */
1754 val.lattice_val = CONSTANT;
1755 val.value = simplified;
1756 val.mask = 0;
1757 }
1758 }
1759 /* If the statement result is likely UNDEFINED, make it so. */
1760 else if (likelyvalue == UNDEFINED)
1761 {
1762 val.lattice_val = UNDEFINED;
1763 val.value = NULL_TREE;
1764 val.mask = 0;
1765 return val;
1766 }
1767
1768 /* Resort to simplification for bitwise tracking. */
1769 if (flag_tree_bit_ccp
1770 && (likelyvalue == CONSTANT || is_gimple_call (stmt)
1771 || (gimple_assign_single_p (stmt)
1772 && gimple_assign_rhs_code (stmt) == ADDR_EXPR))
1773 && !is_constant)
1774 {
1775 enum gimple_code code = gimple_code (stmt);
1776 val.lattice_val = VARYING;
1777 val.value = NULL_TREE;
1778 val.mask = -1;
1779 if (code == GIMPLE_ASSIGN)
1780 {
1781 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1782 tree rhs1 = gimple_assign_rhs1 (stmt);
1783 tree lhs = gimple_assign_lhs (stmt);
1784 if ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
1785 || POINTER_TYPE_P (TREE_TYPE (lhs)))
1786 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1787 || POINTER_TYPE_P (TREE_TYPE (rhs1))))
1788 switch (get_gimple_rhs_class (subcode))
1789 {
1790 case GIMPLE_SINGLE_RHS:
1791 val = get_value_for_expr (rhs1, true);
1792 break;
1793
1794 case GIMPLE_UNARY_RHS:
1795 val = bit_value_unop (subcode, TREE_TYPE (lhs), rhs1);
1796 break;
1797
1798 case GIMPLE_BINARY_RHS:
1799 val = bit_value_binop (subcode, TREE_TYPE (lhs), rhs1,
1800 gimple_assign_rhs2 (stmt));
1801 break;
1802
1803 default:;
1804 }
1805 }
1806 else if (code == GIMPLE_COND)
1807 {
1808 enum tree_code code = gimple_cond_code (stmt);
1809 tree rhs1 = gimple_cond_lhs (stmt);
1810 tree rhs2 = gimple_cond_rhs (stmt);
1811 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1812 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1813 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
1814 }
1815 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1816 {
1817 tree fndecl = gimple_call_fndecl (stmt);
1818 switch (DECL_FUNCTION_CODE (fndecl))
1819 {
1820 case BUILT_IN_MALLOC:
1821 case BUILT_IN_REALLOC:
1822 case BUILT_IN_CALLOC:
1823 case BUILT_IN_STRDUP:
1824 case BUILT_IN_STRNDUP:
1825 val.lattice_val = CONSTANT;
1826 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1827 val.mask = ~((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT
1828 / BITS_PER_UNIT - 1);
1829 break;
1830
1831 case BUILT_IN_ALLOCA:
1832 case BUILT_IN_ALLOCA_WITH_ALIGN:
1833 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN
1834 ? TREE_INT_CST_LOW (gimple_call_arg (stmt, 1))
1835 : BIGGEST_ALIGNMENT);
1836 val.lattice_val = CONSTANT;
1837 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1838 val.mask = ~((HOST_WIDE_INT) align / BITS_PER_UNIT - 1);
1839 break;
1840
1841 /* These builtins return their first argument, unmodified. */
1842 case BUILT_IN_MEMCPY:
1843 case BUILT_IN_MEMMOVE:
1844 case BUILT_IN_MEMSET:
1845 case BUILT_IN_STRCPY:
1846 case BUILT_IN_STRNCPY:
1847 case BUILT_IN_MEMCPY_CHK:
1848 case BUILT_IN_MEMMOVE_CHK:
1849 case BUILT_IN_MEMSET_CHK:
1850 case BUILT_IN_STRCPY_CHK:
1851 case BUILT_IN_STRNCPY_CHK:
1852 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1853 break;
1854
1855 case BUILT_IN_ASSUME_ALIGNED:
1856 val = bit_value_assume_aligned (stmt, NULL_TREE, val, false);
1857 break;
1858
1859 case BUILT_IN_ALIGNED_ALLOC:
1860 {
1861 tree align = get_constant_value (gimple_call_arg (stmt, 0));
1862 if (align
1863 && tree_fits_uhwi_p (align))
1864 {
1865 unsigned HOST_WIDE_INT aligni = tree_to_uhwi (align);
1866 if (aligni > 1
1867 /* align must be power-of-two */
1868 && (aligni & (aligni - 1)) == 0)
1869 {
1870 val.lattice_val = CONSTANT;
1871 val.value = build_int_cst (ptr_type_node, 0);
1872 val.mask = -aligni;
1873 }
1874 }
1875 break;
1876 }
1877
1878 default:;
1879 }
1880 }
1881 if (is_gimple_call (stmt) && gimple_call_lhs (stmt))
1882 {
1883 tree fntype = gimple_call_fntype (stmt);
1884 if (fntype)
1885 {
1886 tree attrs = lookup_attribute ("assume_aligned",
1887 TYPE_ATTRIBUTES (fntype));
1888 if (attrs)
1889 val = bit_value_assume_aligned (stmt, attrs, val, false);
1890 attrs = lookup_attribute ("alloc_align",
1891 TYPE_ATTRIBUTES (fntype));
1892 if (attrs)
1893 val = bit_value_assume_aligned (stmt, attrs, val, true);
1894 }
1895 }
1896 is_constant = (val.lattice_val == CONSTANT);
1897 }
1898
1899 if (flag_tree_bit_ccp
1900 && ((is_constant && TREE_CODE (val.value) == INTEGER_CST)
1901 || !is_constant)
1902 && gimple_get_lhs (stmt)
1903 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME)
1904 {
1905 tree lhs = gimple_get_lhs (stmt);
1906 wide_int nonzero_bits = get_nonzero_bits (lhs);
1907 if (nonzero_bits != -1)
1908 {
1909 if (!is_constant)
1910 {
1911 val.lattice_val = CONSTANT;
1912 val.value = build_zero_cst (TREE_TYPE (lhs));
1913 val.mask = extend_mask (nonzero_bits);
1914 is_constant = true;
1915 }
1916 else
1917 {
1918 if (wi::bit_and_not (val.value, nonzero_bits) != 0)
1919 val.value = wide_int_to_tree (TREE_TYPE (lhs),
1920 nonzero_bits & val.value);
1921 if (nonzero_bits == 0)
1922 val.mask = 0;
1923 else
1924 val.mask = val.mask & extend_mask (nonzero_bits);
1925 }
1926 }
1927 }
1928
1929 /* The statement produced a nonconstant value. */
1930 if (!is_constant)
1931 {
1932 val.lattice_val = VARYING;
1933 val.mask = -1;
1934 val.value = NULL_TREE;
1935 }
1936
1937 return val;
1938 }
1939
1940 typedef hash_table<pointer_hash<gimple_statement_base> > gimple_htab;
1941
1942 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
1943 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
1944
1945 static void
1946 insert_clobber_before_stack_restore (tree saved_val, tree var,
1947 gimple_htab **visited)
1948 {
1949 gimple stmt;
1950 gassign *clobber_stmt;
1951 tree clobber;
1952 imm_use_iterator iter;
1953 gimple_stmt_iterator i;
1954 gimple *slot;
1955
1956 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
1957 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
1958 {
1959 clobber = build_constructor (TREE_TYPE (var),
1960 NULL);
1961 TREE_THIS_VOLATILE (clobber) = 1;
1962 clobber_stmt = gimple_build_assign (var, clobber);
1963
1964 i = gsi_for_stmt (stmt);
1965 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
1966 }
1967 else if (gimple_code (stmt) == GIMPLE_PHI)
1968 {
1969 if (!*visited)
1970 *visited = new gimple_htab (10);
1971
1972 slot = (*visited)->find_slot (stmt, INSERT);
1973 if (*slot != NULL)
1974 continue;
1975
1976 *slot = stmt;
1977 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
1978 visited);
1979 }
1980 else if (gimple_assign_ssa_name_copy_p (stmt))
1981 insert_clobber_before_stack_restore (gimple_assign_lhs (stmt), var,
1982 visited);
1983 else if (chkp_gimple_call_builtin_p (stmt, BUILT_IN_CHKP_BNDRET))
1984 continue;
1985 else
1986 gcc_assert (is_gimple_debug (stmt));
1987 }
1988
1989 /* Advance the iterator to the previous non-debug gimple statement in the same
1990 or dominating basic block. */
1991
1992 static inline void
1993 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
1994 {
1995 basic_block dom;
1996
1997 gsi_prev_nondebug (i);
1998 while (gsi_end_p (*i))
1999 {
2000 dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
2001 if (dom == NULL || dom == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2002 return;
2003
2004 *i = gsi_last_bb (dom);
2005 }
2006 }
2007
2008 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
2009 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
2010
2011 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
2012 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
2013 that case the function gives up without inserting the clobbers. */
2014
2015 static void
2016 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
2017 {
2018 gimple stmt;
2019 tree saved_val;
2020 gimple_htab *visited = NULL;
2021
2022 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
2023 {
2024 stmt = gsi_stmt (i);
2025
2026 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
2027 continue;
2028
2029 saved_val = gimple_call_lhs (stmt);
2030 if (saved_val == NULL_TREE)
2031 continue;
2032
2033 insert_clobber_before_stack_restore (saved_val, var, &visited);
2034 break;
2035 }
2036
2037 delete visited;
2038 }
2039
2040 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
2041 fixed-size array and returns the address, if found, otherwise returns
2042 NULL_TREE. */
2043
2044 static tree
2045 fold_builtin_alloca_with_align (gimple stmt)
2046 {
2047 unsigned HOST_WIDE_INT size, threshold, n_elem;
2048 tree lhs, arg, block, var, elem_type, array_type;
2049
2050 /* Get lhs. */
2051 lhs = gimple_call_lhs (stmt);
2052 if (lhs == NULL_TREE)
2053 return NULL_TREE;
2054
2055 /* Detect constant argument. */
2056 arg = get_constant_value (gimple_call_arg (stmt, 0));
2057 if (arg == NULL_TREE
2058 || TREE_CODE (arg) != INTEGER_CST
2059 || !tree_fits_uhwi_p (arg))
2060 return NULL_TREE;
2061
2062 size = tree_to_uhwi (arg);
2063
2064 /* Heuristic: don't fold large allocas. */
2065 threshold = (unsigned HOST_WIDE_INT)PARAM_VALUE (PARAM_LARGE_STACK_FRAME);
2066 /* In case the alloca is located at function entry, it has the same lifetime
2067 as a declared array, so we allow a larger size. */
2068 block = gimple_block (stmt);
2069 if (!(cfun->after_inlining
2070 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
2071 threshold /= 10;
2072 if (size > threshold)
2073 return NULL_TREE;
2074
2075 /* Declare array. */
2076 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
2077 n_elem = size * 8 / BITS_PER_UNIT;
2078 array_type = build_array_type_nelts (elem_type, n_elem);
2079 var = create_tmp_var (array_type);
2080 DECL_ALIGN (var) = TREE_INT_CST_LOW (gimple_call_arg (stmt, 1));
2081 {
2082 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
2083 if (pi != NULL && !pi->pt.anything)
2084 {
2085 bool singleton_p;
2086 unsigned uid;
2087 singleton_p = pt_solution_singleton_p (&pi->pt, &uid);
2088 gcc_assert (singleton_p);
2089 SET_DECL_PT_UID (var, uid);
2090 }
2091 }
2092
2093 /* Fold alloca to the address of the array. */
2094 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
2095 }
2096
2097 /* Fold the stmt at *GSI with CCP specific information that propagating
2098 and regular folding does not catch. */
2099
2100 static bool
2101 ccp_fold_stmt (gimple_stmt_iterator *gsi)
2102 {
2103 gimple stmt = gsi_stmt (*gsi);
2104
2105 switch (gimple_code (stmt))
2106 {
2107 case GIMPLE_COND:
2108 {
2109 gcond *cond_stmt = as_a <gcond *> (stmt);
2110 ccp_prop_value_t val;
2111 /* Statement evaluation will handle type mismatches in constants
2112 more gracefully than the final propagation. This allows us to
2113 fold more conditionals here. */
2114 val = evaluate_stmt (stmt);
2115 if (val.lattice_val != CONSTANT
2116 || val.mask != 0)
2117 return false;
2118
2119 if (dump_file)
2120 {
2121 fprintf (dump_file, "Folding predicate ");
2122 print_gimple_expr (dump_file, stmt, 0, 0);
2123 fprintf (dump_file, " to ");
2124 print_generic_expr (dump_file, val.value, 0);
2125 fprintf (dump_file, "\n");
2126 }
2127
2128 if (integer_zerop (val.value))
2129 gimple_cond_make_false (cond_stmt);
2130 else
2131 gimple_cond_make_true (cond_stmt);
2132
2133 return true;
2134 }
2135
2136 case GIMPLE_CALL:
2137 {
2138 tree lhs = gimple_call_lhs (stmt);
2139 int flags = gimple_call_flags (stmt);
2140 tree val;
2141 tree argt;
2142 bool changed = false;
2143 unsigned i;
2144
2145 /* If the call was folded into a constant make sure it goes
2146 away even if we cannot propagate into all uses because of
2147 type issues. */
2148 if (lhs
2149 && TREE_CODE (lhs) == SSA_NAME
2150 && (val = get_constant_value (lhs))
2151 /* Don't optimize away calls that have side-effects. */
2152 && (flags & (ECF_CONST|ECF_PURE)) != 0
2153 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
2154 {
2155 tree new_rhs = unshare_expr (val);
2156 bool res;
2157 if (!useless_type_conversion_p (TREE_TYPE (lhs),
2158 TREE_TYPE (new_rhs)))
2159 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
2160 res = update_call_from_tree (gsi, new_rhs);
2161 gcc_assert (res);
2162 return true;
2163 }
2164
2165 /* Internal calls provide no argument types, so the extra laxity
2166 for normal calls does not apply. */
2167 if (gimple_call_internal_p (stmt))
2168 return false;
2169
2170 /* The heuristic of fold_builtin_alloca_with_align differs before and
2171 after inlining, so we don't require the arg to be changed into a
2172 constant for folding, but just to be constant. */
2173 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN))
2174 {
2175 tree new_rhs = fold_builtin_alloca_with_align (stmt);
2176 if (new_rhs)
2177 {
2178 bool res = update_call_from_tree (gsi, new_rhs);
2179 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
2180 gcc_assert (res);
2181 insert_clobbers_for_var (*gsi, var);
2182 return true;
2183 }
2184 }
2185
2186 /* Propagate into the call arguments. Compared to replace_uses_in
2187 this can use the argument slot types for type verification
2188 instead of the current argument type. We also can safely
2189 drop qualifiers here as we are dealing with constants anyway. */
2190 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
2191 for (i = 0; i < gimple_call_num_args (stmt) && argt;
2192 ++i, argt = TREE_CHAIN (argt))
2193 {
2194 tree arg = gimple_call_arg (stmt, i);
2195 if (TREE_CODE (arg) == SSA_NAME
2196 && (val = get_constant_value (arg))
2197 && useless_type_conversion_p
2198 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
2199 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2200 {
2201 gimple_call_set_arg (stmt, i, unshare_expr (val));
2202 changed = true;
2203 }
2204 }
2205
2206 return changed;
2207 }
2208
2209 case GIMPLE_ASSIGN:
2210 {
2211 tree lhs = gimple_assign_lhs (stmt);
2212 tree val;
2213
2214 /* If we have a load that turned out to be constant replace it
2215 as we cannot propagate into all uses in all cases. */
2216 if (gimple_assign_single_p (stmt)
2217 && TREE_CODE (lhs) == SSA_NAME
2218 && (val = get_constant_value (lhs)))
2219 {
2220 tree rhs = unshare_expr (val);
2221 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2222 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
2223 gimple_assign_set_rhs_from_tree (gsi, rhs);
2224 return true;
2225 }
2226
2227 return false;
2228 }
2229
2230 default:
2231 return false;
2232 }
2233 }
2234
2235 /* Visit the assignment statement STMT. Set the value of its LHS to the
2236 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2237 creates virtual definitions, set the value of each new name to that
2238 of the RHS (if we can derive a constant out of the RHS).
2239 Value-returning call statements also perform an assignment, and
2240 are handled here. */
2241
2242 static enum ssa_prop_result
2243 visit_assignment (gimple stmt, tree *output_p)
2244 {
2245 ccp_prop_value_t val;
2246 enum ssa_prop_result retval;
2247
2248 tree lhs = gimple_get_lhs (stmt);
2249
2250 gcc_assert (gimple_code (stmt) != GIMPLE_CALL
2251 || gimple_call_lhs (stmt) != NULL_TREE);
2252
2253 if (gimple_assign_single_p (stmt)
2254 && gimple_assign_rhs_code (stmt) == SSA_NAME)
2255 /* For a simple copy operation, we copy the lattice values. */
2256 val = *get_value (gimple_assign_rhs1 (stmt));
2257 else
2258 /* Evaluate the statement, which could be
2259 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2260 val = evaluate_stmt (stmt);
2261
2262 retval = SSA_PROP_NOT_INTERESTING;
2263
2264 /* Set the lattice value of the statement's output. */
2265 if (TREE_CODE (lhs) == SSA_NAME)
2266 {
2267 /* If STMT is an assignment to an SSA_NAME, we only have one
2268 value to set. */
2269 if (set_lattice_value (lhs, val))
2270 {
2271 *output_p = lhs;
2272 if (val.lattice_val == VARYING)
2273 retval = SSA_PROP_VARYING;
2274 else
2275 retval = SSA_PROP_INTERESTING;
2276 }
2277 }
2278
2279 return retval;
2280 }
2281
2282
2283 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2284 if it can determine which edge will be taken. Otherwise, return
2285 SSA_PROP_VARYING. */
2286
2287 static enum ssa_prop_result
2288 visit_cond_stmt (gimple stmt, edge *taken_edge_p)
2289 {
2290 ccp_prop_value_t val;
2291 basic_block block;
2292
2293 block = gimple_bb (stmt);
2294 val = evaluate_stmt (stmt);
2295 if (val.lattice_val != CONSTANT
2296 || val.mask != 0)
2297 return SSA_PROP_VARYING;
2298
2299 /* Find which edge out of the conditional block will be taken and add it
2300 to the worklist. If no single edge can be determined statically,
2301 return SSA_PROP_VARYING to feed all the outgoing edges to the
2302 propagation engine. */
2303 *taken_edge_p = find_taken_edge (block, val.value);
2304 if (*taken_edge_p)
2305 return SSA_PROP_INTERESTING;
2306 else
2307 return SSA_PROP_VARYING;
2308 }
2309
2310
2311 /* Evaluate statement STMT. If the statement produces an output value and
2312 its evaluation changes the lattice value of its output, return
2313 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2314 output value.
2315
2316 If STMT is a conditional branch and we can determine its truth
2317 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2318 value, return SSA_PROP_VARYING. */
2319
2320 static enum ssa_prop_result
2321 ccp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
2322 {
2323 tree def;
2324 ssa_op_iter iter;
2325
2326 if (dump_file && (dump_flags & TDF_DETAILS))
2327 {
2328 fprintf (dump_file, "\nVisiting statement:\n");
2329 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2330 }
2331
2332 switch (gimple_code (stmt))
2333 {
2334 case GIMPLE_ASSIGN:
2335 /* If the statement is an assignment that produces a single
2336 output value, evaluate its RHS to see if the lattice value of
2337 its output has changed. */
2338 return visit_assignment (stmt, output_p);
2339
2340 case GIMPLE_CALL:
2341 /* A value-returning call also performs an assignment. */
2342 if (gimple_call_lhs (stmt) != NULL_TREE)
2343 return visit_assignment (stmt, output_p);
2344 break;
2345
2346 case GIMPLE_COND:
2347 case GIMPLE_SWITCH:
2348 /* If STMT is a conditional branch, see if we can determine
2349 which branch will be taken. */
2350 /* FIXME. It appears that we should be able to optimize
2351 computed GOTOs here as well. */
2352 return visit_cond_stmt (stmt, taken_edge_p);
2353
2354 default:
2355 break;
2356 }
2357
2358 /* Any other kind of statement is not interesting for constant
2359 propagation and, therefore, not worth simulating. */
2360 if (dump_file && (dump_flags & TDF_DETAILS))
2361 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2362
2363 /* Definitions made by statements other than assignments to
2364 SSA_NAMEs represent unknown modifications to their outputs.
2365 Mark them VARYING. */
2366 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2367 {
2368 ccp_prop_value_t v = { VARYING, NULL_TREE, -1 };
2369 set_lattice_value (def, v);
2370 }
2371
2372 return SSA_PROP_VARYING;
2373 }
2374
2375
2376 /* Main entry point for SSA Conditional Constant Propagation. */
2377
2378 static unsigned int
2379 do_ssa_ccp (void)
2380 {
2381 unsigned int todo = 0;
2382 calculate_dominance_info (CDI_DOMINATORS);
2383 ccp_initialize ();
2384 ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node);
2385 if (ccp_finalize ())
2386 todo = (TODO_cleanup_cfg | TODO_update_ssa);
2387 free_dominance_info (CDI_DOMINATORS);
2388 return todo;
2389 }
2390
2391
2392 namespace {
2393
2394 const pass_data pass_data_ccp =
2395 {
2396 GIMPLE_PASS, /* type */
2397 "ccp", /* name */
2398 OPTGROUP_NONE, /* optinfo_flags */
2399 TV_TREE_CCP, /* tv_id */
2400 ( PROP_cfg | PROP_ssa ), /* properties_required */
2401 0, /* properties_provided */
2402 0, /* properties_destroyed */
2403 0, /* todo_flags_start */
2404 TODO_update_address_taken, /* todo_flags_finish */
2405 };
2406
2407 class pass_ccp : public gimple_opt_pass
2408 {
2409 public:
2410 pass_ccp (gcc::context *ctxt)
2411 : gimple_opt_pass (pass_data_ccp, ctxt)
2412 {}
2413
2414 /* opt_pass methods: */
2415 opt_pass * clone () { return new pass_ccp (m_ctxt); }
2416 virtual bool gate (function *) { return flag_tree_ccp != 0; }
2417 virtual unsigned int execute (function *) { return do_ssa_ccp (); }
2418
2419 }; // class pass_ccp
2420
2421 } // anon namespace
2422
2423 gimple_opt_pass *
2424 make_pass_ccp (gcc::context *ctxt)
2425 {
2426 return new pass_ccp (ctxt);
2427 }
2428
2429
2430
2431 /* Try to optimize out __builtin_stack_restore. Optimize it out
2432 if there is another __builtin_stack_restore in the same basic
2433 block and no calls or ASM_EXPRs are in between, or if this block's
2434 only outgoing edge is to EXIT_BLOCK and there are no calls or
2435 ASM_EXPRs after this __builtin_stack_restore. */
2436
2437 static tree
2438 optimize_stack_restore (gimple_stmt_iterator i)
2439 {
2440 tree callee;
2441 gimple stmt;
2442
2443 basic_block bb = gsi_bb (i);
2444 gimple call = gsi_stmt (i);
2445
2446 if (gimple_code (call) != GIMPLE_CALL
2447 || gimple_call_num_args (call) != 1
2448 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2449 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2450 return NULL_TREE;
2451
2452 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2453 {
2454 stmt = gsi_stmt (i);
2455 if (gimple_code (stmt) == GIMPLE_ASM)
2456 return NULL_TREE;
2457 if (gimple_code (stmt) != GIMPLE_CALL)
2458 continue;
2459
2460 callee = gimple_call_fndecl (stmt);
2461 if (!callee
2462 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2463 /* All regular builtins are ok, just obviously not alloca. */
2464 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
2465 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA_WITH_ALIGN)
2466 return NULL_TREE;
2467
2468 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
2469 goto second_stack_restore;
2470 }
2471
2472 if (!gsi_end_p (i))
2473 return NULL_TREE;
2474
2475 /* Allow one successor of the exit block, or zero successors. */
2476 switch (EDGE_COUNT (bb->succs))
2477 {
2478 case 0:
2479 break;
2480 case 1:
2481 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2482 return NULL_TREE;
2483 break;
2484 default:
2485 return NULL_TREE;
2486 }
2487 second_stack_restore:
2488
2489 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2490 If there are multiple uses, then the last one should remove the call.
2491 In any case, whether the call to __builtin_stack_save can be removed
2492 or not is irrelevant to removing the call to __builtin_stack_restore. */
2493 if (has_single_use (gimple_call_arg (call, 0)))
2494 {
2495 gimple stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2496 if (is_gimple_call (stack_save))
2497 {
2498 callee = gimple_call_fndecl (stack_save);
2499 if (callee
2500 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2501 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE)
2502 {
2503 gimple_stmt_iterator stack_save_gsi;
2504 tree rhs;
2505
2506 stack_save_gsi = gsi_for_stmt (stack_save);
2507 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2508 update_call_from_tree (&stack_save_gsi, rhs);
2509 }
2510 }
2511 }
2512
2513 /* No effect, so the statement will be deleted. */
2514 return integer_zero_node;
2515 }
2516
2517 /* If va_list type is a simple pointer and nothing special is needed,
2518 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2519 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2520 pointer assignment. */
2521
2522 static tree
2523 optimize_stdarg_builtin (gimple call)
2524 {
2525 tree callee, lhs, rhs, cfun_va_list;
2526 bool va_list_simple_ptr;
2527 location_t loc = gimple_location (call);
2528
2529 if (gimple_code (call) != GIMPLE_CALL)
2530 return NULL_TREE;
2531
2532 callee = gimple_call_fndecl (call);
2533
2534 cfun_va_list = targetm.fn_abi_va_list (callee);
2535 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2536 && (TREE_TYPE (cfun_va_list) == void_type_node
2537 || TREE_TYPE (cfun_va_list) == char_type_node);
2538
2539 switch (DECL_FUNCTION_CODE (callee))
2540 {
2541 case BUILT_IN_VA_START:
2542 if (!va_list_simple_ptr
2543 || targetm.expand_builtin_va_start != NULL
2544 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
2545 return NULL_TREE;
2546
2547 if (gimple_call_num_args (call) != 2)
2548 return NULL_TREE;
2549
2550 lhs = gimple_call_arg (call, 0);
2551 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2552 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2553 != TYPE_MAIN_VARIANT (cfun_va_list))
2554 return NULL_TREE;
2555
2556 lhs = build_fold_indirect_ref_loc (loc, lhs);
2557 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
2558 1, integer_zero_node);
2559 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2560 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2561
2562 case BUILT_IN_VA_COPY:
2563 if (!va_list_simple_ptr)
2564 return NULL_TREE;
2565
2566 if (gimple_call_num_args (call) != 2)
2567 return NULL_TREE;
2568
2569 lhs = gimple_call_arg (call, 0);
2570 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2571 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2572 != TYPE_MAIN_VARIANT (cfun_va_list))
2573 return NULL_TREE;
2574
2575 lhs = build_fold_indirect_ref_loc (loc, lhs);
2576 rhs = gimple_call_arg (call, 1);
2577 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2578 != TYPE_MAIN_VARIANT (cfun_va_list))
2579 return NULL_TREE;
2580
2581 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2582 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2583
2584 case BUILT_IN_VA_END:
2585 /* No effect, so the statement will be deleted. */
2586 return integer_zero_node;
2587
2588 default:
2589 gcc_unreachable ();
2590 }
2591 }
2592
2593 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2594 the incoming jumps. Return true if at least one jump was changed. */
2595
2596 static bool
2597 optimize_unreachable (gimple_stmt_iterator i)
2598 {
2599 basic_block bb = gsi_bb (i);
2600 gimple_stmt_iterator gsi;
2601 gimple stmt;
2602 edge_iterator ei;
2603 edge e;
2604 bool ret;
2605
2606 if (flag_sanitize & SANITIZE_UNREACHABLE)
2607 return false;
2608
2609 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2610 {
2611 stmt = gsi_stmt (gsi);
2612
2613 if (is_gimple_debug (stmt))
2614 continue;
2615
2616 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2617 {
2618 /* Verify we do not need to preserve the label. */
2619 if (FORCED_LABEL (gimple_label_label (label_stmt)))
2620 return false;
2621
2622 continue;
2623 }
2624
2625 /* Only handle the case that __builtin_unreachable is the first statement
2626 in the block. We rely on DCE to remove stmts without side-effects
2627 before __builtin_unreachable. */
2628 if (gsi_stmt (gsi) != gsi_stmt (i))
2629 return false;
2630 }
2631
2632 ret = false;
2633 FOR_EACH_EDGE (e, ei, bb->preds)
2634 {
2635 gsi = gsi_last_bb (e->src);
2636 if (gsi_end_p (gsi))
2637 continue;
2638
2639 stmt = gsi_stmt (gsi);
2640 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
2641 {
2642 if (e->flags & EDGE_TRUE_VALUE)
2643 gimple_cond_make_false (cond_stmt);
2644 else if (e->flags & EDGE_FALSE_VALUE)
2645 gimple_cond_make_true (cond_stmt);
2646 else
2647 gcc_unreachable ();
2648 update_stmt (cond_stmt);
2649 }
2650 else
2651 {
2652 /* Todo: handle other cases, f.i. switch statement. */
2653 continue;
2654 }
2655
2656 ret = true;
2657 }
2658
2659 return ret;
2660 }
2661
2662 /* A simple pass that attempts to fold all builtin functions. This pass
2663 is run after we've propagated as many constants as we can. */
2664
2665 namespace {
2666
2667 const pass_data pass_data_fold_builtins =
2668 {
2669 GIMPLE_PASS, /* type */
2670 "fab", /* name */
2671 OPTGROUP_NONE, /* optinfo_flags */
2672 TV_NONE, /* tv_id */
2673 ( PROP_cfg | PROP_ssa ), /* properties_required */
2674 0, /* properties_provided */
2675 0, /* properties_destroyed */
2676 0, /* todo_flags_start */
2677 TODO_update_ssa, /* todo_flags_finish */
2678 };
2679
2680 class pass_fold_builtins : public gimple_opt_pass
2681 {
2682 public:
2683 pass_fold_builtins (gcc::context *ctxt)
2684 : gimple_opt_pass (pass_data_fold_builtins, ctxt)
2685 {}
2686
2687 /* opt_pass methods: */
2688 opt_pass * clone () { return new pass_fold_builtins (m_ctxt); }
2689 virtual unsigned int execute (function *);
2690
2691 }; // class pass_fold_builtins
2692
2693 unsigned int
2694 pass_fold_builtins::execute (function *fun)
2695 {
2696 bool cfg_changed = false;
2697 basic_block bb;
2698 unsigned int todoflags = 0;
2699
2700 FOR_EACH_BB_FN (bb, fun)
2701 {
2702 gimple_stmt_iterator i;
2703 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
2704 {
2705 gimple stmt, old_stmt;
2706 tree callee;
2707 enum built_in_function fcode;
2708
2709 stmt = gsi_stmt (i);
2710
2711 if (gimple_code (stmt) != GIMPLE_CALL)
2712 {
2713 /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
2714 after the last GIMPLE DSE they aren't needed and might
2715 unnecessarily keep the SSA_NAMEs live. */
2716 if (gimple_clobber_p (stmt))
2717 {
2718 tree lhs = gimple_assign_lhs (stmt);
2719 if (TREE_CODE (lhs) == MEM_REF
2720 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME)
2721 {
2722 unlink_stmt_vdef (stmt);
2723 gsi_remove (&i, true);
2724 release_defs (stmt);
2725 continue;
2726 }
2727 }
2728 gsi_next (&i);
2729 continue;
2730 }
2731
2732 callee = gimple_call_fndecl (stmt);
2733 if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL)
2734 {
2735 gsi_next (&i);
2736 continue;
2737 }
2738
2739 fcode = DECL_FUNCTION_CODE (callee);
2740 if (fold_stmt (&i))
2741 ;
2742 else
2743 {
2744 tree result = NULL_TREE;
2745 switch (DECL_FUNCTION_CODE (callee))
2746 {
2747 case BUILT_IN_CONSTANT_P:
2748 /* Resolve __builtin_constant_p. If it hasn't been
2749 folded to integer_one_node by now, it's fairly
2750 certain that the value simply isn't constant. */
2751 result = integer_zero_node;
2752 break;
2753
2754 case BUILT_IN_ASSUME_ALIGNED:
2755 /* Remove __builtin_assume_aligned. */
2756 result = gimple_call_arg (stmt, 0);
2757 break;
2758
2759 case BUILT_IN_STACK_RESTORE:
2760 result = optimize_stack_restore (i);
2761 if (result)
2762 break;
2763 gsi_next (&i);
2764 continue;
2765
2766 case BUILT_IN_UNREACHABLE:
2767 if (optimize_unreachable (i))
2768 cfg_changed = true;
2769 break;
2770
2771 case BUILT_IN_VA_START:
2772 case BUILT_IN_VA_END:
2773 case BUILT_IN_VA_COPY:
2774 /* These shouldn't be folded before pass_stdarg. */
2775 result = optimize_stdarg_builtin (stmt);
2776 if (result)
2777 break;
2778 /* FALLTHRU */
2779
2780 default:;
2781 }
2782
2783 if (!result)
2784 {
2785 gsi_next (&i);
2786 continue;
2787 }
2788
2789 if (!update_call_from_tree (&i, result))
2790 gimplify_and_update_call_from_tree (&i, result);
2791 }
2792
2793 todoflags |= TODO_update_address_taken;
2794
2795 if (dump_file && (dump_flags & TDF_DETAILS))
2796 {
2797 fprintf (dump_file, "Simplified\n ");
2798 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2799 }
2800
2801 old_stmt = stmt;
2802 stmt = gsi_stmt (i);
2803 update_stmt (stmt);
2804
2805 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
2806 && gimple_purge_dead_eh_edges (bb))
2807 cfg_changed = true;
2808
2809 if (dump_file && (dump_flags & TDF_DETAILS))
2810 {
2811 fprintf (dump_file, "to\n ");
2812 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2813 fprintf (dump_file, "\n");
2814 }
2815
2816 /* Retry the same statement if it changed into another
2817 builtin, there might be new opportunities now. */
2818 if (gimple_code (stmt) != GIMPLE_CALL)
2819 {
2820 gsi_next (&i);
2821 continue;
2822 }
2823 callee = gimple_call_fndecl (stmt);
2824 if (!callee
2825 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2826 || DECL_FUNCTION_CODE (callee) == fcode)
2827 gsi_next (&i);
2828 }
2829 }
2830
2831 /* Delete unreachable blocks. */
2832 if (cfg_changed)
2833 todoflags |= TODO_cleanup_cfg;
2834
2835 return todoflags;
2836 }
2837
2838 } // anon namespace
2839
2840 gimple_opt_pass *
2841 make_pass_fold_builtins (gcc::context *ctxt)
2842 {
2843 return new pass_fold_builtins (ctxt);
2844 }