re PR tree-optimization/91482 (__builtin_assume_aligned should not break write combining)
[gcc.git] / gcc / tree-ssa-ccp.c
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2019 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
28 following values:
29
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
37
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
41 or not.
42
43 CONSTANT -> V_i has been found to hold a constant
44 value C.
45
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
48 at compile time.
49
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
51
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
59 can be visited.
60
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
65
66
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
72
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
75
76 if (PRED)
77 a_9 = 3;
78 else
79 a_10 = 100;
80 a_11 = PHI (a_9, a_10)
81
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
86
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
94
95
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
100
101 This algorithm uses wide-ints at the max precision of the target.
102 This means that, with one uninteresting exception, variables with
103 UNSIGNED types never go to VARYING because the bits above the
104 precision of the type of the variable are always zero. The
105 uninteresting case is a variable of UNSIGNED type that has the
106 maximum precision of the target. Such variables can go to VARYING,
107 but this causes no loss of infomation since these variables will
108 never be extended.
109
110 References:
111
112 Constant propagation with conditional branches,
113 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
114
115 Building an Optimizing Compiler,
116 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
117
118 Advanced Compiler Design and Implementation,
119 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
120
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "backend.h"
125 #include "target.h"
126 #include "tree.h"
127 #include "gimple.h"
128 #include "tree-pass.h"
129 #include "ssa.h"
130 #include "gimple-pretty-print.h"
131 #include "fold-const.h"
132 #include "gimple-fold.h"
133 #include "tree-eh.h"
134 #include "gimplify.h"
135 #include "gimple-iterator.h"
136 #include "tree-cfg.h"
137 #include "tree-ssa-propagate.h"
138 #include "dbgcnt.h"
139 #include "params.h"
140 #include "builtins.h"
141 #include "cfgloop.h"
142 #include "stor-layout.h"
143 #include "optabs-query.h"
144 #include "tree-ssa-ccp.h"
145 #include "tree-dfa.h"
146 #include "diagnostic-core.h"
147 #include "stringpool.h"
148 #include "attribs.h"
149 #include "tree-vector-builder.h"
150
151 /* Possible lattice values. */
152 typedef enum
153 {
154 UNINITIALIZED,
155 UNDEFINED,
156 CONSTANT,
157 VARYING
158 } ccp_lattice_t;
159
160 class ccp_prop_value_t {
161 public:
162 /* Lattice value. */
163 ccp_lattice_t lattice_val;
164
165 /* Propagated value. */
166 tree value;
167
168 /* Mask that applies to the propagated value during CCP. For X
169 with a CONSTANT lattice value X & ~mask == value & ~mask. The
170 zero bits in the mask cover constant values. The ones mean no
171 information. */
172 widest_int mask;
173 };
174
175 class ccp_propagate : public ssa_propagation_engine
176 {
177 public:
178 enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE;
179 enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE;
180 };
181
182 /* Array of propagated constant values. After propagation,
183 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
184 the constant is held in an SSA name representing a memory store
185 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
186 memory reference used to store (i.e., the LHS of the assignment
187 doing the store). */
188 static ccp_prop_value_t *const_val;
189 static unsigned n_const_val;
190
191 static void canonicalize_value (ccp_prop_value_t *);
192 static void ccp_lattice_meet (ccp_prop_value_t *, ccp_prop_value_t *);
193
194 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
195
196 static void
197 dump_lattice_value (FILE *outf, const char *prefix, ccp_prop_value_t val)
198 {
199 switch (val.lattice_val)
200 {
201 case UNINITIALIZED:
202 fprintf (outf, "%sUNINITIALIZED", prefix);
203 break;
204 case UNDEFINED:
205 fprintf (outf, "%sUNDEFINED", prefix);
206 break;
207 case VARYING:
208 fprintf (outf, "%sVARYING", prefix);
209 break;
210 case CONSTANT:
211 if (TREE_CODE (val.value) != INTEGER_CST
212 || val.mask == 0)
213 {
214 fprintf (outf, "%sCONSTANT ", prefix);
215 print_generic_expr (outf, val.value, dump_flags);
216 }
217 else
218 {
219 widest_int cval = wi::bit_and_not (wi::to_widest (val.value),
220 val.mask);
221 fprintf (outf, "%sCONSTANT ", prefix);
222 print_hex (cval, outf);
223 fprintf (outf, " (");
224 print_hex (val.mask, outf);
225 fprintf (outf, ")");
226 }
227 break;
228 default:
229 gcc_unreachable ();
230 }
231 }
232
233
234 /* Print lattice value VAL to stderr. */
235
236 void debug_lattice_value (ccp_prop_value_t val);
237
238 DEBUG_FUNCTION void
239 debug_lattice_value (ccp_prop_value_t val)
240 {
241 dump_lattice_value (stderr, "", val);
242 fprintf (stderr, "\n");
243 }
244
245 /* Extend NONZERO_BITS to a full mask, based on sgn. */
246
247 static widest_int
248 extend_mask (const wide_int &nonzero_bits, signop sgn)
249 {
250 return widest_int::from (nonzero_bits, sgn);
251 }
252
253 /* Compute a default value for variable VAR and store it in the
254 CONST_VAL array. The following rules are used to get default
255 values:
256
257 1- Global and static variables that are declared constant are
258 considered CONSTANT.
259
260 2- Any other value is considered UNDEFINED. This is useful when
261 considering PHI nodes. PHI arguments that are undefined do not
262 change the constant value of the PHI node, which allows for more
263 constants to be propagated.
264
265 3- Variables defined by statements other than assignments and PHI
266 nodes are considered VARYING.
267
268 4- Initial values of variables that are not GIMPLE registers are
269 considered VARYING. */
270
271 static ccp_prop_value_t
272 get_default_value (tree var)
273 {
274 ccp_prop_value_t val = { UNINITIALIZED, NULL_TREE, 0 };
275 gimple *stmt;
276
277 stmt = SSA_NAME_DEF_STMT (var);
278
279 if (gimple_nop_p (stmt))
280 {
281 /* Variables defined by an empty statement are those used
282 before being initialized. If VAR is a local variable, we
283 can assume initially that it is UNDEFINED, otherwise we must
284 consider it VARYING. */
285 if (!virtual_operand_p (var)
286 && SSA_NAME_VAR (var)
287 && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
288 val.lattice_val = UNDEFINED;
289 else
290 {
291 val.lattice_val = VARYING;
292 val.mask = -1;
293 if (flag_tree_bit_ccp)
294 {
295 wide_int nonzero_bits = get_nonzero_bits (var);
296 if (nonzero_bits != -1)
297 {
298 val.lattice_val = CONSTANT;
299 val.value = build_zero_cst (TREE_TYPE (var));
300 val.mask = extend_mask (nonzero_bits, TYPE_SIGN (TREE_TYPE (var)));
301 }
302 }
303 }
304 }
305 else if (is_gimple_assign (stmt))
306 {
307 tree cst;
308 if (gimple_assign_single_p (stmt)
309 && DECL_P (gimple_assign_rhs1 (stmt))
310 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
311 {
312 val.lattice_val = CONSTANT;
313 val.value = cst;
314 }
315 else
316 {
317 /* Any other variable defined by an assignment is considered
318 UNDEFINED. */
319 val.lattice_val = UNDEFINED;
320 }
321 }
322 else if ((is_gimple_call (stmt)
323 && gimple_call_lhs (stmt) != NULL_TREE)
324 || gimple_code (stmt) == GIMPLE_PHI)
325 {
326 /* A variable defined by a call or a PHI node is considered
327 UNDEFINED. */
328 val.lattice_val = UNDEFINED;
329 }
330 else
331 {
332 /* Otherwise, VAR will never take on a constant value. */
333 val.lattice_val = VARYING;
334 val.mask = -1;
335 }
336
337 return val;
338 }
339
340
341 /* Get the constant value associated with variable VAR. */
342
343 static inline ccp_prop_value_t *
344 get_value (tree var)
345 {
346 ccp_prop_value_t *val;
347
348 if (const_val == NULL
349 || SSA_NAME_VERSION (var) >= n_const_val)
350 return NULL;
351
352 val = &const_val[SSA_NAME_VERSION (var)];
353 if (val->lattice_val == UNINITIALIZED)
354 *val = get_default_value (var);
355
356 canonicalize_value (val);
357
358 return val;
359 }
360
361 /* Return the constant tree value associated with VAR. */
362
363 static inline tree
364 get_constant_value (tree var)
365 {
366 ccp_prop_value_t *val;
367 if (TREE_CODE (var) != SSA_NAME)
368 {
369 if (is_gimple_min_invariant (var))
370 return var;
371 return NULL_TREE;
372 }
373 val = get_value (var);
374 if (val
375 && val->lattice_val == CONSTANT
376 && (TREE_CODE (val->value) != INTEGER_CST
377 || val->mask == 0))
378 return val->value;
379 return NULL_TREE;
380 }
381
382 /* Sets the value associated with VAR to VARYING. */
383
384 static inline void
385 set_value_varying (tree var)
386 {
387 ccp_prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
388
389 val->lattice_val = VARYING;
390 val->value = NULL_TREE;
391 val->mask = -1;
392 }
393
394 /* For integer constants, make sure to drop TREE_OVERFLOW. */
395
396 static void
397 canonicalize_value (ccp_prop_value_t *val)
398 {
399 if (val->lattice_val != CONSTANT)
400 return;
401
402 if (TREE_OVERFLOW_P (val->value))
403 val->value = drop_tree_overflow (val->value);
404 }
405
406 /* Return whether the lattice transition is valid. */
407
408 static bool
409 valid_lattice_transition (ccp_prop_value_t old_val, ccp_prop_value_t new_val)
410 {
411 /* Lattice transitions must always be monotonically increasing in
412 value. */
413 if (old_val.lattice_val < new_val.lattice_val)
414 return true;
415
416 if (old_val.lattice_val != new_val.lattice_val)
417 return false;
418
419 if (!old_val.value && !new_val.value)
420 return true;
421
422 /* Now both lattice values are CONSTANT. */
423
424 /* Allow arbitrary copy changes as we might look through PHI <a_1, ...>
425 when only a single copy edge is executable. */
426 if (TREE_CODE (old_val.value) == SSA_NAME
427 && TREE_CODE (new_val.value) == SSA_NAME)
428 return true;
429
430 /* Allow transitioning from a constant to a copy. */
431 if (is_gimple_min_invariant (old_val.value)
432 && TREE_CODE (new_val.value) == SSA_NAME)
433 return true;
434
435 /* Allow transitioning from PHI <&x, not executable> == &x
436 to PHI <&x, &y> == common alignment. */
437 if (TREE_CODE (old_val.value) != INTEGER_CST
438 && TREE_CODE (new_val.value) == INTEGER_CST)
439 return true;
440
441 /* Bit-lattices have to agree in the still valid bits. */
442 if (TREE_CODE (old_val.value) == INTEGER_CST
443 && TREE_CODE (new_val.value) == INTEGER_CST)
444 return (wi::bit_and_not (wi::to_widest (old_val.value), new_val.mask)
445 == wi::bit_and_not (wi::to_widest (new_val.value), new_val.mask));
446
447 /* Otherwise constant values have to agree. */
448 if (operand_equal_p (old_val.value, new_val.value, 0))
449 return true;
450
451 /* At least the kinds and types should agree now. */
452 if (TREE_CODE (old_val.value) != TREE_CODE (new_val.value)
453 || !types_compatible_p (TREE_TYPE (old_val.value),
454 TREE_TYPE (new_val.value)))
455 return false;
456
457 /* For floats and !HONOR_NANS allow transitions from (partial) NaN
458 to non-NaN. */
459 tree type = TREE_TYPE (new_val.value);
460 if (SCALAR_FLOAT_TYPE_P (type)
461 && !HONOR_NANS (type))
462 {
463 if (REAL_VALUE_ISNAN (TREE_REAL_CST (old_val.value)))
464 return true;
465 }
466 else if (VECTOR_FLOAT_TYPE_P (type)
467 && !HONOR_NANS (type))
468 {
469 unsigned int count
470 = tree_vector_builder::binary_encoded_nelts (old_val.value,
471 new_val.value);
472 for (unsigned int i = 0; i < count; ++i)
473 if (!REAL_VALUE_ISNAN
474 (TREE_REAL_CST (VECTOR_CST_ENCODED_ELT (old_val.value, i)))
475 && !operand_equal_p (VECTOR_CST_ENCODED_ELT (old_val.value, i),
476 VECTOR_CST_ENCODED_ELT (new_val.value, i), 0))
477 return false;
478 return true;
479 }
480 else if (COMPLEX_FLOAT_TYPE_P (type)
481 && !HONOR_NANS (type))
482 {
483 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_REALPART (old_val.value)))
484 && !operand_equal_p (TREE_REALPART (old_val.value),
485 TREE_REALPART (new_val.value), 0))
486 return false;
487 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_IMAGPART (old_val.value)))
488 && !operand_equal_p (TREE_IMAGPART (old_val.value),
489 TREE_IMAGPART (new_val.value), 0))
490 return false;
491 return true;
492 }
493 return false;
494 }
495
496 /* Set the value for variable VAR to NEW_VAL. Return true if the new
497 value is different from VAR's previous value. */
498
499 static bool
500 set_lattice_value (tree var, ccp_prop_value_t *new_val)
501 {
502 /* We can deal with old UNINITIALIZED values just fine here. */
503 ccp_prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
504
505 canonicalize_value (new_val);
506
507 /* We have to be careful to not go up the bitwise lattice
508 represented by the mask. Instead of dropping to VARYING
509 use the meet operator to retain a conservative value.
510 Missed optimizations like PR65851 makes this necessary.
511 It also ensures we converge to a stable lattice solution. */
512 if (old_val->lattice_val != UNINITIALIZED)
513 ccp_lattice_meet (new_val, old_val);
514
515 gcc_checking_assert (valid_lattice_transition (*old_val, *new_val));
516
517 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
518 caller that this was a non-transition. */
519 if (old_val->lattice_val != new_val->lattice_val
520 || (new_val->lattice_val == CONSTANT
521 && (TREE_CODE (new_val->value) != TREE_CODE (old_val->value)
522 || (TREE_CODE (new_val->value) == INTEGER_CST
523 && (new_val->mask != old_val->mask
524 || (wi::bit_and_not (wi::to_widest (old_val->value),
525 new_val->mask)
526 != wi::bit_and_not (wi::to_widest (new_val->value),
527 new_val->mask))))
528 || (TREE_CODE (new_val->value) != INTEGER_CST
529 && !operand_equal_p (new_val->value, old_val->value, 0)))))
530 {
531 /* ??? We would like to delay creation of INTEGER_CSTs from
532 partially constants here. */
533
534 if (dump_file && (dump_flags & TDF_DETAILS))
535 {
536 dump_lattice_value (dump_file, "Lattice value changed to ", *new_val);
537 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
538 }
539
540 *old_val = *new_val;
541
542 gcc_assert (new_val->lattice_val != UNINITIALIZED);
543 return true;
544 }
545
546 return false;
547 }
548
549 static ccp_prop_value_t get_value_for_expr (tree, bool);
550 static ccp_prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
551 void bit_value_binop (enum tree_code, signop, int, widest_int *, widest_int *,
552 signop, int, const widest_int &, const widest_int &,
553 signop, int, const widest_int &, const widest_int &);
554
555 /* Return a widest_int that can be used for bitwise simplifications
556 from VAL. */
557
558 static widest_int
559 value_to_wide_int (ccp_prop_value_t val)
560 {
561 if (val.value
562 && TREE_CODE (val.value) == INTEGER_CST)
563 return wi::to_widest (val.value);
564
565 return 0;
566 }
567
568 /* Return the value for the address expression EXPR based on alignment
569 information. */
570
571 static ccp_prop_value_t
572 get_value_from_alignment (tree expr)
573 {
574 tree type = TREE_TYPE (expr);
575 ccp_prop_value_t val;
576 unsigned HOST_WIDE_INT bitpos;
577 unsigned int align;
578
579 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
580
581 get_pointer_alignment_1 (expr, &align, &bitpos);
582 val.mask = wi::bit_and_not
583 (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
584 ? wi::mask <widest_int> (TYPE_PRECISION (type), false)
585 : -1,
586 align / BITS_PER_UNIT - 1);
587 val.lattice_val
588 = wi::sext (val.mask, TYPE_PRECISION (type)) == -1 ? VARYING : CONSTANT;
589 if (val.lattice_val == CONSTANT)
590 val.value = build_int_cstu (type, bitpos / BITS_PER_UNIT);
591 else
592 val.value = NULL_TREE;
593
594 return val;
595 }
596
597 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
598 return constant bits extracted from alignment information for
599 invariant addresses. */
600
601 static ccp_prop_value_t
602 get_value_for_expr (tree expr, bool for_bits_p)
603 {
604 ccp_prop_value_t val;
605
606 if (TREE_CODE (expr) == SSA_NAME)
607 {
608 ccp_prop_value_t *val_ = get_value (expr);
609 if (val_)
610 val = *val_;
611 else
612 {
613 val.lattice_val = VARYING;
614 val.value = NULL_TREE;
615 val.mask = -1;
616 }
617 if (for_bits_p
618 && val.lattice_val == CONSTANT
619 && TREE_CODE (val.value) == ADDR_EXPR)
620 val = get_value_from_alignment (val.value);
621 /* Fall back to a copy value. */
622 if (!for_bits_p
623 && val.lattice_val == VARYING
624 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr))
625 {
626 val.lattice_val = CONSTANT;
627 val.value = expr;
628 val.mask = -1;
629 }
630 }
631 else if (is_gimple_min_invariant (expr)
632 && (!for_bits_p || TREE_CODE (expr) == INTEGER_CST))
633 {
634 val.lattice_val = CONSTANT;
635 val.value = expr;
636 val.mask = 0;
637 canonicalize_value (&val);
638 }
639 else if (TREE_CODE (expr) == ADDR_EXPR)
640 val = get_value_from_alignment (expr);
641 else
642 {
643 val.lattice_val = VARYING;
644 val.mask = -1;
645 val.value = NULL_TREE;
646 }
647
648 if (val.lattice_val == VARYING
649 && TYPE_UNSIGNED (TREE_TYPE (expr)))
650 val.mask = wi::zext (val.mask, TYPE_PRECISION (TREE_TYPE (expr)));
651
652 return val;
653 }
654
655 /* Return the likely CCP lattice value for STMT.
656
657 If STMT has no operands, then return CONSTANT.
658
659 Else if undefinedness of operands of STMT cause its value to be
660 undefined, then return UNDEFINED.
661
662 Else if any operands of STMT are constants, then return CONSTANT.
663
664 Else return VARYING. */
665
666 static ccp_lattice_t
667 likely_value (gimple *stmt)
668 {
669 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
670 bool has_nsa_operand;
671 tree use;
672 ssa_op_iter iter;
673 unsigned i;
674
675 enum gimple_code code = gimple_code (stmt);
676
677 /* This function appears to be called only for assignments, calls,
678 conditionals, and switches, due to the logic in visit_stmt. */
679 gcc_assert (code == GIMPLE_ASSIGN
680 || code == GIMPLE_CALL
681 || code == GIMPLE_COND
682 || code == GIMPLE_SWITCH);
683
684 /* If the statement has volatile operands, it won't fold to a
685 constant value. */
686 if (gimple_has_volatile_ops (stmt))
687 return VARYING;
688
689 /* Arrive here for more complex cases. */
690 has_constant_operand = false;
691 has_undefined_operand = false;
692 all_undefined_operands = true;
693 has_nsa_operand = false;
694 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
695 {
696 ccp_prop_value_t *val = get_value (use);
697
698 if (val && val->lattice_val == UNDEFINED)
699 has_undefined_operand = true;
700 else
701 all_undefined_operands = false;
702
703 if (val && val->lattice_val == CONSTANT)
704 has_constant_operand = true;
705
706 if (SSA_NAME_IS_DEFAULT_DEF (use)
707 || !prop_simulate_again_p (SSA_NAME_DEF_STMT (use)))
708 has_nsa_operand = true;
709 }
710
711 /* There may be constants in regular rhs operands. For calls we
712 have to ignore lhs, fndecl and static chain, otherwise only
713 the lhs. */
714 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
715 i < gimple_num_ops (stmt); ++i)
716 {
717 tree op = gimple_op (stmt, i);
718 if (!op || TREE_CODE (op) == SSA_NAME)
719 continue;
720 if (is_gimple_min_invariant (op))
721 has_constant_operand = true;
722 }
723
724 if (has_constant_operand)
725 all_undefined_operands = false;
726
727 if (has_undefined_operand
728 && code == GIMPLE_CALL
729 && gimple_call_internal_p (stmt))
730 switch (gimple_call_internal_fn (stmt))
731 {
732 /* These 3 builtins use the first argument just as a magic
733 way how to find out a decl uid. */
734 case IFN_GOMP_SIMD_LANE:
735 case IFN_GOMP_SIMD_VF:
736 case IFN_GOMP_SIMD_LAST_LANE:
737 has_undefined_operand = false;
738 break;
739 default:
740 break;
741 }
742
743 /* If the operation combines operands like COMPLEX_EXPR make sure to
744 not mark the result UNDEFINED if only one part of the result is
745 undefined. */
746 if (has_undefined_operand && all_undefined_operands)
747 return UNDEFINED;
748 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
749 {
750 switch (gimple_assign_rhs_code (stmt))
751 {
752 /* Unary operators are handled with all_undefined_operands. */
753 case PLUS_EXPR:
754 case MINUS_EXPR:
755 case POINTER_PLUS_EXPR:
756 case BIT_XOR_EXPR:
757 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
758 Not bitwise operators, one VARYING operand may specify the
759 result completely.
760 Not logical operators for the same reason, apart from XOR.
761 Not COMPLEX_EXPR as one VARYING operand makes the result partly
762 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
763 the undefined operand may be promoted. */
764 return UNDEFINED;
765
766 case ADDR_EXPR:
767 /* If any part of an address is UNDEFINED, like the index
768 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
769 return UNDEFINED;
770
771 default:
772 ;
773 }
774 }
775 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
776 fall back to CONSTANT. During iteration UNDEFINED may still drop
777 to CONSTANT. */
778 if (has_undefined_operand)
779 return CONSTANT;
780
781 /* We do not consider virtual operands here -- load from read-only
782 memory may have only VARYING virtual operands, but still be
783 constant. Also we can combine the stmt with definitions from
784 operands whose definitions are not simulated again. */
785 if (has_constant_operand
786 || has_nsa_operand
787 || gimple_references_memory_p (stmt))
788 return CONSTANT;
789
790 return VARYING;
791 }
792
793 /* Returns true if STMT cannot be constant. */
794
795 static bool
796 surely_varying_stmt_p (gimple *stmt)
797 {
798 /* If the statement has operands that we cannot handle, it cannot be
799 constant. */
800 if (gimple_has_volatile_ops (stmt))
801 return true;
802
803 /* If it is a call and does not return a value or is not a
804 builtin and not an indirect call or a call to function with
805 assume_aligned/alloc_align attribute, it is varying. */
806 if (is_gimple_call (stmt))
807 {
808 tree fndecl, fntype = gimple_call_fntype (stmt);
809 if (!gimple_call_lhs (stmt)
810 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
811 && !fndecl_built_in_p (fndecl)
812 && !lookup_attribute ("assume_aligned",
813 TYPE_ATTRIBUTES (fntype))
814 && !lookup_attribute ("alloc_align",
815 TYPE_ATTRIBUTES (fntype))))
816 return true;
817 }
818
819 /* Any other store operation is not interesting. */
820 else if (gimple_vdef (stmt))
821 return true;
822
823 /* Anything other than assignments and conditional jumps are not
824 interesting for CCP. */
825 if (gimple_code (stmt) != GIMPLE_ASSIGN
826 && gimple_code (stmt) != GIMPLE_COND
827 && gimple_code (stmt) != GIMPLE_SWITCH
828 && gimple_code (stmt) != GIMPLE_CALL)
829 return true;
830
831 return false;
832 }
833
834 /* Initialize local data structures for CCP. */
835
836 static void
837 ccp_initialize (void)
838 {
839 basic_block bb;
840
841 n_const_val = num_ssa_names;
842 const_val = XCNEWVEC (ccp_prop_value_t, n_const_val);
843
844 /* Initialize simulation flags for PHI nodes and statements. */
845 FOR_EACH_BB_FN (bb, cfun)
846 {
847 gimple_stmt_iterator i;
848
849 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
850 {
851 gimple *stmt = gsi_stmt (i);
852 bool is_varying;
853
854 /* If the statement is a control insn, then we do not
855 want to avoid simulating the statement once. Failure
856 to do so means that those edges will never get added. */
857 if (stmt_ends_bb_p (stmt))
858 is_varying = false;
859 else
860 is_varying = surely_varying_stmt_p (stmt);
861
862 if (is_varying)
863 {
864 tree def;
865 ssa_op_iter iter;
866
867 /* If the statement will not produce a constant, mark
868 all its outputs VARYING. */
869 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
870 set_value_varying (def);
871 }
872 prop_set_simulate_again (stmt, !is_varying);
873 }
874 }
875
876 /* Now process PHI nodes. We never clear the simulate_again flag on
877 phi nodes, since we do not know which edges are executable yet,
878 except for phi nodes for virtual operands when we do not do store ccp. */
879 FOR_EACH_BB_FN (bb, cfun)
880 {
881 gphi_iterator i;
882
883 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
884 {
885 gphi *phi = i.phi ();
886
887 if (virtual_operand_p (gimple_phi_result (phi)))
888 prop_set_simulate_again (phi, false);
889 else
890 prop_set_simulate_again (phi, true);
891 }
892 }
893 }
894
895 /* Debug count support. Reset the values of ssa names
896 VARYING when the total number ssa names analyzed is
897 beyond the debug count specified. */
898
899 static void
900 do_dbg_cnt (void)
901 {
902 unsigned i;
903 for (i = 0; i < num_ssa_names; i++)
904 {
905 if (!dbg_cnt (ccp))
906 {
907 const_val[i].lattice_val = VARYING;
908 const_val[i].mask = -1;
909 const_val[i].value = NULL_TREE;
910 }
911 }
912 }
913
914
915 /* We want to provide our own GET_VALUE and FOLD_STMT virtual methods. */
916 class ccp_folder : public substitute_and_fold_engine
917 {
918 public:
919 tree get_value (tree) FINAL OVERRIDE;
920 bool fold_stmt (gimple_stmt_iterator *) FINAL OVERRIDE;
921 };
922
923 /* This method just wraps GET_CONSTANT_VALUE for now. Over time
924 naked calls to GET_CONSTANT_VALUE should be eliminated in favor
925 of calling member functions. */
926
927 tree
928 ccp_folder::get_value (tree op)
929 {
930 return get_constant_value (op);
931 }
932
933 /* Do final substitution of propagated values, cleanup the flowgraph and
934 free allocated storage. If NONZERO_P, record nonzero bits.
935
936 Return TRUE when something was optimized. */
937
938 static bool
939 ccp_finalize (bool nonzero_p)
940 {
941 bool something_changed;
942 unsigned i;
943 tree name;
944
945 do_dbg_cnt ();
946
947 /* Derive alignment and misalignment information from partially
948 constant pointers in the lattice or nonzero bits from partially
949 constant integers. */
950 FOR_EACH_SSA_NAME (i, name, cfun)
951 {
952 ccp_prop_value_t *val;
953 unsigned int tem, align;
954
955 if (!POINTER_TYPE_P (TREE_TYPE (name))
956 && (!INTEGRAL_TYPE_P (TREE_TYPE (name))
957 /* Don't record nonzero bits before IPA to avoid
958 using too much memory. */
959 || !nonzero_p))
960 continue;
961
962 val = get_value (name);
963 if (val->lattice_val != CONSTANT
964 || TREE_CODE (val->value) != INTEGER_CST
965 || val->mask == 0)
966 continue;
967
968 if (POINTER_TYPE_P (TREE_TYPE (name)))
969 {
970 /* Trailing mask bits specify the alignment, trailing value
971 bits the misalignment. */
972 tem = val->mask.to_uhwi ();
973 align = least_bit_hwi (tem);
974 if (align > 1)
975 set_ptr_info_alignment (get_ptr_info (name), align,
976 (TREE_INT_CST_LOW (val->value)
977 & (align - 1)));
978 }
979 else
980 {
981 unsigned int precision = TYPE_PRECISION (TREE_TYPE (val->value));
982 wide_int nonzero_bits
983 = (wide_int::from (val->mask, precision, UNSIGNED)
984 | wi::to_wide (val->value));
985 nonzero_bits &= get_nonzero_bits (name);
986 set_nonzero_bits (name, nonzero_bits);
987 }
988 }
989
990 /* Perform substitutions based on the known constant values. */
991 class ccp_folder ccp_folder;
992 something_changed = ccp_folder.substitute_and_fold ();
993
994 free (const_val);
995 const_val = NULL;
996 return something_changed;
997 }
998
999
1000 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
1001 in VAL1.
1002
1003 any M UNDEFINED = any
1004 any M VARYING = VARYING
1005 Ci M Cj = Ci if (i == j)
1006 Ci M Cj = VARYING if (i != j)
1007 */
1008
1009 static void
1010 ccp_lattice_meet (ccp_prop_value_t *val1, ccp_prop_value_t *val2)
1011 {
1012 if (val1->lattice_val == UNDEFINED
1013 /* For UNDEFINED M SSA we can't always SSA because its definition
1014 may not dominate the PHI node. Doing optimistic copy propagation
1015 also causes a lot of gcc.dg/uninit-pred*.c FAILs. */
1016 && (val2->lattice_val != CONSTANT
1017 || TREE_CODE (val2->value) != SSA_NAME))
1018 {
1019 /* UNDEFINED M any = any */
1020 *val1 = *val2;
1021 }
1022 else if (val2->lattice_val == UNDEFINED
1023 /* See above. */
1024 && (val1->lattice_val != CONSTANT
1025 || TREE_CODE (val1->value) != SSA_NAME))
1026 {
1027 /* any M UNDEFINED = any
1028 Nothing to do. VAL1 already contains the value we want. */
1029 ;
1030 }
1031 else if (val1->lattice_val == VARYING
1032 || val2->lattice_val == VARYING)
1033 {
1034 /* any M VARYING = VARYING. */
1035 val1->lattice_val = VARYING;
1036 val1->mask = -1;
1037 val1->value = NULL_TREE;
1038 }
1039 else if (val1->lattice_val == CONSTANT
1040 && val2->lattice_val == CONSTANT
1041 && TREE_CODE (val1->value) == INTEGER_CST
1042 && TREE_CODE (val2->value) == INTEGER_CST)
1043 {
1044 /* Ci M Cj = Ci if (i == j)
1045 Ci M Cj = VARYING if (i != j)
1046
1047 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
1048 drop to varying. */
1049 val1->mask = (val1->mask | val2->mask
1050 | (wi::to_widest (val1->value)
1051 ^ wi::to_widest (val2->value)));
1052 if (wi::sext (val1->mask, TYPE_PRECISION (TREE_TYPE (val1->value))) == -1)
1053 {
1054 val1->lattice_val = VARYING;
1055 val1->value = NULL_TREE;
1056 }
1057 }
1058 else if (val1->lattice_val == CONSTANT
1059 && val2->lattice_val == CONSTANT
1060 && operand_equal_p (val1->value, val2->value, 0))
1061 {
1062 /* Ci M Cj = Ci if (i == j)
1063 Ci M Cj = VARYING if (i != j)
1064
1065 VAL1 already contains the value we want for equivalent values. */
1066 }
1067 else if (val1->lattice_val == CONSTANT
1068 && val2->lattice_val == CONSTANT
1069 && (TREE_CODE (val1->value) == ADDR_EXPR
1070 || TREE_CODE (val2->value) == ADDR_EXPR))
1071 {
1072 /* When not equal addresses are involved try meeting for
1073 alignment. */
1074 ccp_prop_value_t tem = *val2;
1075 if (TREE_CODE (val1->value) == ADDR_EXPR)
1076 *val1 = get_value_for_expr (val1->value, true);
1077 if (TREE_CODE (val2->value) == ADDR_EXPR)
1078 tem = get_value_for_expr (val2->value, true);
1079 ccp_lattice_meet (val1, &tem);
1080 }
1081 else
1082 {
1083 /* Any other combination is VARYING. */
1084 val1->lattice_val = VARYING;
1085 val1->mask = -1;
1086 val1->value = NULL_TREE;
1087 }
1088 }
1089
1090
1091 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
1092 lattice values to determine PHI_NODE's lattice value. The value of a
1093 PHI node is determined calling ccp_lattice_meet with all the arguments
1094 of the PHI node that are incoming via executable edges. */
1095
1096 enum ssa_prop_result
1097 ccp_propagate::visit_phi (gphi *phi)
1098 {
1099 unsigned i;
1100 ccp_prop_value_t new_val;
1101
1102 if (dump_file && (dump_flags & TDF_DETAILS))
1103 {
1104 fprintf (dump_file, "\nVisiting PHI node: ");
1105 print_gimple_stmt (dump_file, phi, 0, dump_flags);
1106 }
1107
1108 new_val.lattice_val = UNDEFINED;
1109 new_val.value = NULL_TREE;
1110 new_val.mask = 0;
1111
1112 bool first = true;
1113 bool non_exec_edge = false;
1114 for (i = 0; i < gimple_phi_num_args (phi); i++)
1115 {
1116 /* Compute the meet operator over all the PHI arguments flowing
1117 through executable edges. */
1118 edge e = gimple_phi_arg_edge (phi, i);
1119
1120 if (dump_file && (dump_flags & TDF_DETAILS))
1121 {
1122 fprintf (dump_file,
1123 "\tArgument #%d (%d -> %d %sexecutable)\n",
1124 i, e->src->index, e->dest->index,
1125 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
1126 }
1127
1128 /* If the incoming edge is executable, Compute the meet operator for
1129 the existing value of the PHI node and the current PHI argument. */
1130 if (e->flags & EDGE_EXECUTABLE)
1131 {
1132 tree arg = gimple_phi_arg (phi, i)->def;
1133 ccp_prop_value_t arg_val = get_value_for_expr (arg, false);
1134
1135 if (first)
1136 {
1137 new_val = arg_val;
1138 first = false;
1139 }
1140 else
1141 ccp_lattice_meet (&new_val, &arg_val);
1142
1143 if (dump_file && (dump_flags & TDF_DETAILS))
1144 {
1145 fprintf (dump_file, "\t");
1146 print_generic_expr (dump_file, arg, dump_flags);
1147 dump_lattice_value (dump_file, "\tValue: ", arg_val);
1148 fprintf (dump_file, "\n");
1149 }
1150
1151 if (new_val.lattice_val == VARYING)
1152 break;
1153 }
1154 else
1155 non_exec_edge = true;
1156 }
1157
1158 /* In case there were non-executable edges and the value is a copy
1159 make sure its definition dominates the PHI node. */
1160 if (non_exec_edge
1161 && new_val.lattice_val == CONSTANT
1162 && TREE_CODE (new_val.value) == SSA_NAME
1163 && ! SSA_NAME_IS_DEFAULT_DEF (new_val.value)
1164 && ! dominated_by_p (CDI_DOMINATORS, gimple_bb (phi),
1165 gimple_bb (SSA_NAME_DEF_STMT (new_val.value))))
1166 {
1167 new_val.lattice_val = VARYING;
1168 new_val.value = NULL_TREE;
1169 new_val.mask = -1;
1170 }
1171
1172 if (dump_file && (dump_flags & TDF_DETAILS))
1173 {
1174 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
1175 fprintf (dump_file, "\n\n");
1176 }
1177
1178 /* Make the transition to the new value. */
1179 if (set_lattice_value (gimple_phi_result (phi), &new_val))
1180 {
1181 if (new_val.lattice_val == VARYING)
1182 return SSA_PROP_VARYING;
1183 else
1184 return SSA_PROP_INTERESTING;
1185 }
1186 else
1187 return SSA_PROP_NOT_INTERESTING;
1188 }
1189
1190 /* Return the constant value for OP or OP otherwise. */
1191
1192 static tree
1193 valueize_op (tree op)
1194 {
1195 if (TREE_CODE (op) == SSA_NAME)
1196 {
1197 tree tem = get_constant_value (op);
1198 if (tem)
1199 return tem;
1200 }
1201 return op;
1202 }
1203
1204 /* Return the constant value for OP, but signal to not follow SSA
1205 edges if the definition may be simulated again. */
1206
1207 static tree
1208 valueize_op_1 (tree op)
1209 {
1210 if (TREE_CODE (op) == SSA_NAME)
1211 {
1212 /* If the definition may be simulated again we cannot follow
1213 this SSA edge as the SSA propagator does not necessarily
1214 re-visit the use. */
1215 gimple *def_stmt = SSA_NAME_DEF_STMT (op);
1216 if (!gimple_nop_p (def_stmt)
1217 && prop_simulate_again_p (def_stmt))
1218 return NULL_TREE;
1219 tree tem = get_constant_value (op);
1220 if (tem)
1221 return tem;
1222 }
1223 return op;
1224 }
1225
1226 /* CCP specific front-end to the non-destructive constant folding
1227 routines.
1228
1229 Attempt to simplify the RHS of STMT knowing that one or more
1230 operands are constants.
1231
1232 If simplification is possible, return the simplified RHS,
1233 otherwise return the original RHS or NULL_TREE. */
1234
1235 static tree
1236 ccp_fold (gimple *stmt)
1237 {
1238 location_t loc = gimple_location (stmt);
1239 switch (gimple_code (stmt))
1240 {
1241 case GIMPLE_COND:
1242 {
1243 /* Handle comparison operators that can appear in GIMPLE form. */
1244 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1245 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1246 enum tree_code code = gimple_cond_code (stmt);
1247 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1248 }
1249
1250 case GIMPLE_SWITCH:
1251 {
1252 /* Return the constant switch index. */
1253 return valueize_op (gimple_switch_index (as_a <gswitch *> (stmt)));
1254 }
1255
1256 case GIMPLE_ASSIGN:
1257 case GIMPLE_CALL:
1258 return gimple_fold_stmt_to_constant_1 (stmt,
1259 valueize_op, valueize_op_1);
1260
1261 default:
1262 gcc_unreachable ();
1263 }
1264 }
1265
1266 /* Apply the operation CODE in type TYPE to the value, mask pair
1267 RVAL and RMASK representing a value of type RTYPE and set
1268 the value, mask pair *VAL and *MASK to the result. */
1269
1270 void
1271 bit_value_unop (enum tree_code code, signop type_sgn, int type_precision,
1272 widest_int *val, widest_int *mask,
1273 signop rtype_sgn, int rtype_precision,
1274 const widest_int &rval, const widest_int &rmask)
1275 {
1276 switch (code)
1277 {
1278 case BIT_NOT_EXPR:
1279 *mask = rmask;
1280 *val = ~rval;
1281 break;
1282
1283 case NEGATE_EXPR:
1284 {
1285 widest_int temv, temm;
1286 /* Return ~rval + 1. */
1287 bit_value_unop (BIT_NOT_EXPR, type_sgn, type_precision, &temv, &temm,
1288 type_sgn, type_precision, rval, rmask);
1289 bit_value_binop (PLUS_EXPR, type_sgn, type_precision, val, mask,
1290 type_sgn, type_precision, temv, temm,
1291 type_sgn, type_precision, 1, 0);
1292 break;
1293 }
1294
1295 CASE_CONVERT:
1296 {
1297 /* First extend mask and value according to the original type. */
1298 *mask = wi::ext (rmask, rtype_precision, rtype_sgn);
1299 *val = wi::ext (rval, rtype_precision, rtype_sgn);
1300
1301 /* Then extend mask and value according to the target type. */
1302 *mask = wi::ext (*mask, type_precision, type_sgn);
1303 *val = wi::ext (*val, type_precision, type_sgn);
1304 break;
1305 }
1306
1307 default:
1308 *mask = -1;
1309 break;
1310 }
1311 }
1312
1313 /* Apply the operation CODE in type TYPE to the value, mask pairs
1314 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1315 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1316
1317 void
1318 bit_value_binop (enum tree_code code, signop sgn, int width,
1319 widest_int *val, widest_int *mask,
1320 signop r1type_sgn, int r1type_precision,
1321 const widest_int &r1val, const widest_int &r1mask,
1322 signop r2type_sgn, int r2type_precision,
1323 const widest_int &r2val, const widest_int &r2mask)
1324 {
1325 bool swap_p = false;
1326
1327 /* Assume we'll get a constant result. Use an initial non varying
1328 value, we fall back to varying in the end if necessary. */
1329 *mask = -1;
1330
1331 switch (code)
1332 {
1333 case BIT_AND_EXPR:
1334 /* The mask is constant where there is a known not
1335 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1336 *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
1337 *val = r1val & r2val;
1338 break;
1339
1340 case BIT_IOR_EXPR:
1341 /* The mask is constant where there is a known
1342 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1343 *mask = wi::bit_and_not (r1mask | r2mask,
1344 wi::bit_and_not (r1val, r1mask)
1345 | wi::bit_and_not (r2val, r2mask));
1346 *val = r1val | r2val;
1347 break;
1348
1349 case BIT_XOR_EXPR:
1350 /* m1 | m2 */
1351 *mask = r1mask | r2mask;
1352 *val = r1val ^ r2val;
1353 break;
1354
1355 case LROTATE_EXPR:
1356 case RROTATE_EXPR:
1357 if (r2mask == 0)
1358 {
1359 widest_int shift = r2val;
1360 if (shift == 0)
1361 {
1362 *mask = r1mask;
1363 *val = r1val;
1364 }
1365 else
1366 {
1367 if (wi::neg_p (shift))
1368 {
1369 shift = -shift;
1370 if (code == RROTATE_EXPR)
1371 code = LROTATE_EXPR;
1372 else
1373 code = RROTATE_EXPR;
1374 }
1375 if (code == RROTATE_EXPR)
1376 {
1377 *mask = wi::rrotate (r1mask, shift, width);
1378 *val = wi::rrotate (r1val, shift, width);
1379 }
1380 else
1381 {
1382 *mask = wi::lrotate (r1mask, shift, width);
1383 *val = wi::lrotate (r1val, shift, width);
1384 }
1385 }
1386 }
1387 break;
1388
1389 case LSHIFT_EXPR:
1390 case RSHIFT_EXPR:
1391 /* ??? We can handle partially known shift counts if we know
1392 its sign. That way we can tell that (x << (y | 8)) & 255
1393 is zero. */
1394 if (r2mask == 0)
1395 {
1396 widest_int shift = r2val;
1397 if (shift == 0)
1398 {
1399 *mask = r1mask;
1400 *val = r1val;
1401 }
1402 else
1403 {
1404 if (wi::neg_p (shift))
1405 {
1406 shift = -shift;
1407 if (code == RSHIFT_EXPR)
1408 code = LSHIFT_EXPR;
1409 else
1410 code = RSHIFT_EXPR;
1411 }
1412 if (code == RSHIFT_EXPR)
1413 {
1414 *mask = wi::rshift (wi::ext (r1mask, width, sgn), shift, sgn);
1415 *val = wi::rshift (wi::ext (r1val, width, sgn), shift, sgn);
1416 }
1417 else
1418 {
1419 *mask = wi::ext (r1mask << shift, width, sgn);
1420 *val = wi::ext (r1val << shift, width, sgn);
1421 }
1422 }
1423 }
1424 break;
1425
1426 case PLUS_EXPR:
1427 case POINTER_PLUS_EXPR:
1428 {
1429 /* Do the addition with unknown bits set to zero, to give carry-ins of
1430 zero wherever possible. */
1431 widest_int lo = (wi::bit_and_not (r1val, r1mask)
1432 + wi::bit_and_not (r2val, r2mask));
1433 lo = wi::ext (lo, width, sgn);
1434 /* Do the addition with unknown bits set to one, to give carry-ins of
1435 one wherever possible. */
1436 widest_int hi = (r1val | r1mask) + (r2val | r2mask);
1437 hi = wi::ext (hi, width, sgn);
1438 /* Each bit in the result is known if (a) the corresponding bits in
1439 both inputs are known, and (b) the carry-in to that bit position
1440 is known. We can check condition (b) by seeing if we got the same
1441 result with minimised carries as with maximised carries. */
1442 *mask = r1mask | r2mask | (lo ^ hi);
1443 *mask = wi::ext (*mask, width, sgn);
1444 /* It shouldn't matter whether we choose lo or hi here. */
1445 *val = lo;
1446 break;
1447 }
1448
1449 case MINUS_EXPR:
1450 {
1451 widest_int temv, temm;
1452 bit_value_unop (NEGATE_EXPR, r2type_sgn, r2type_precision, &temv, &temm,
1453 r2type_sgn, r2type_precision, r2val, r2mask);
1454 bit_value_binop (PLUS_EXPR, sgn, width, val, mask,
1455 r1type_sgn, r1type_precision, r1val, r1mask,
1456 r2type_sgn, r2type_precision, temv, temm);
1457 break;
1458 }
1459
1460 case MULT_EXPR:
1461 {
1462 /* Just track trailing zeros in both operands and transfer
1463 them to the other. */
1464 int r1tz = wi::ctz (r1val | r1mask);
1465 int r2tz = wi::ctz (r2val | r2mask);
1466 if (r1tz + r2tz >= width)
1467 {
1468 *mask = 0;
1469 *val = 0;
1470 }
1471 else if (r1tz + r2tz > 0)
1472 {
1473 *mask = wi::ext (wi::mask <widest_int> (r1tz + r2tz, true),
1474 width, sgn);
1475 *val = 0;
1476 }
1477 break;
1478 }
1479
1480 case EQ_EXPR:
1481 case NE_EXPR:
1482 {
1483 widest_int m = r1mask | r2mask;
1484 if (wi::bit_and_not (r1val, m) != wi::bit_and_not (r2val, m))
1485 {
1486 *mask = 0;
1487 *val = ((code == EQ_EXPR) ? 0 : 1);
1488 }
1489 else
1490 {
1491 /* We know the result of a comparison is always one or zero. */
1492 *mask = 1;
1493 *val = 0;
1494 }
1495 break;
1496 }
1497
1498 case GE_EXPR:
1499 case GT_EXPR:
1500 swap_p = true;
1501 code = swap_tree_comparison (code);
1502 /* Fall through. */
1503 case LT_EXPR:
1504 case LE_EXPR:
1505 {
1506 int minmax, maxmin;
1507
1508 const widest_int &o1val = swap_p ? r2val : r1val;
1509 const widest_int &o1mask = swap_p ? r2mask : r1mask;
1510 const widest_int &o2val = swap_p ? r1val : r2val;
1511 const widest_int &o2mask = swap_p ? r1mask : r2mask;
1512
1513 /* If the most significant bits are not known we know nothing. */
1514 if (wi::neg_p (o1mask) || wi::neg_p (o2mask))
1515 break;
1516
1517 /* For comparisons the signedness is in the comparison operands. */
1518 sgn = r1type_sgn;
1519
1520 /* If we know the most significant bits we know the values
1521 value ranges by means of treating varying bits as zero
1522 or one. Do a cross comparison of the max/min pairs. */
1523 maxmin = wi::cmp (o1val | o1mask,
1524 wi::bit_and_not (o2val, o2mask), sgn);
1525 minmax = wi::cmp (wi::bit_and_not (o1val, o1mask),
1526 o2val | o2mask, sgn);
1527 if (maxmin < 0) /* o1 is less than o2. */
1528 {
1529 *mask = 0;
1530 *val = 1;
1531 }
1532 else if (minmax > 0) /* o1 is not less or equal to o2. */
1533 {
1534 *mask = 0;
1535 *val = 0;
1536 }
1537 else if (maxmin == minmax) /* o1 and o2 are equal. */
1538 {
1539 /* This probably should never happen as we'd have
1540 folded the thing during fully constant value folding. */
1541 *mask = 0;
1542 *val = (code == LE_EXPR ? 1 : 0);
1543 }
1544 else
1545 {
1546 /* We know the result of a comparison is always one or zero. */
1547 *mask = 1;
1548 *val = 0;
1549 }
1550 break;
1551 }
1552
1553 default:;
1554 }
1555 }
1556
1557 /* Return the propagation value when applying the operation CODE to
1558 the value RHS yielding type TYPE. */
1559
1560 static ccp_prop_value_t
1561 bit_value_unop (enum tree_code code, tree type, tree rhs)
1562 {
1563 ccp_prop_value_t rval = get_value_for_expr (rhs, true);
1564 widest_int value, mask;
1565 ccp_prop_value_t val;
1566
1567 if (rval.lattice_val == UNDEFINED)
1568 return rval;
1569
1570 gcc_assert ((rval.lattice_val == CONSTANT
1571 && TREE_CODE (rval.value) == INTEGER_CST)
1572 || wi::sext (rval.mask, TYPE_PRECISION (TREE_TYPE (rhs))) == -1);
1573 bit_value_unop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1574 TYPE_SIGN (TREE_TYPE (rhs)), TYPE_PRECISION (TREE_TYPE (rhs)),
1575 value_to_wide_int (rval), rval.mask);
1576 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1577 {
1578 val.lattice_val = CONSTANT;
1579 val.mask = mask;
1580 /* ??? Delay building trees here. */
1581 val.value = wide_int_to_tree (type, value);
1582 }
1583 else
1584 {
1585 val.lattice_val = VARYING;
1586 val.value = NULL_TREE;
1587 val.mask = -1;
1588 }
1589 return val;
1590 }
1591
1592 /* Return the propagation value when applying the operation CODE to
1593 the values RHS1 and RHS2 yielding type TYPE. */
1594
1595 static ccp_prop_value_t
1596 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
1597 {
1598 ccp_prop_value_t r1val = get_value_for_expr (rhs1, true);
1599 ccp_prop_value_t r2val = get_value_for_expr (rhs2, true);
1600 widest_int value, mask;
1601 ccp_prop_value_t val;
1602
1603 if (r1val.lattice_val == UNDEFINED
1604 || r2val.lattice_val == UNDEFINED)
1605 {
1606 val.lattice_val = VARYING;
1607 val.value = NULL_TREE;
1608 val.mask = -1;
1609 return val;
1610 }
1611
1612 gcc_assert ((r1val.lattice_val == CONSTANT
1613 && TREE_CODE (r1val.value) == INTEGER_CST)
1614 || wi::sext (r1val.mask,
1615 TYPE_PRECISION (TREE_TYPE (rhs1))) == -1);
1616 gcc_assert ((r2val.lattice_val == CONSTANT
1617 && TREE_CODE (r2val.value) == INTEGER_CST)
1618 || wi::sext (r2val.mask,
1619 TYPE_PRECISION (TREE_TYPE (rhs2))) == -1);
1620 bit_value_binop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1621 TYPE_SIGN (TREE_TYPE (rhs1)), TYPE_PRECISION (TREE_TYPE (rhs1)),
1622 value_to_wide_int (r1val), r1val.mask,
1623 TYPE_SIGN (TREE_TYPE (rhs2)), TYPE_PRECISION (TREE_TYPE (rhs2)),
1624 value_to_wide_int (r2val), r2val.mask);
1625
1626 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1627 {
1628 val.lattice_val = CONSTANT;
1629 val.mask = mask;
1630 /* ??? Delay building trees here. */
1631 val.value = wide_int_to_tree (type, value);
1632 }
1633 else
1634 {
1635 val.lattice_val = VARYING;
1636 val.value = NULL_TREE;
1637 val.mask = -1;
1638 }
1639 return val;
1640 }
1641
1642 /* Return the propagation value for __builtin_assume_aligned
1643 and functions with assume_aligned or alloc_aligned attribute.
1644 For __builtin_assume_aligned, ATTR is NULL_TREE,
1645 for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED
1646 is false, for alloc_aligned attribute ATTR is non-NULL and
1647 ALLOC_ALIGNED is true. */
1648
1649 static ccp_prop_value_t
1650 bit_value_assume_aligned (gimple *stmt, tree attr, ccp_prop_value_t ptrval,
1651 bool alloc_aligned)
1652 {
1653 tree align, misalign = NULL_TREE, type;
1654 unsigned HOST_WIDE_INT aligni, misaligni = 0;
1655 ccp_prop_value_t alignval;
1656 widest_int value, mask;
1657 ccp_prop_value_t val;
1658
1659 if (attr == NULL_TREE)
1660 {
1661 tree ptr = gimple_call_arg (stmt, 0);
1662 type = TREE_TYPE (ptr);
1663 ptrval = get_value_for_expr (ptr, true);
1664 }
1665 else
1666 {
1667 tree lhs = gimple_call_lhs (stmt);
1668 type = TREE_TYPE (lhs);
1669 }
1670
1671 if (ptrval.lattice_val == UNDEFINED)
1672 return ptrval;
1673 gcc_assert ((ptrval.lattice_val == CONSTANT
1674 && TREE_CODE (ptrval.value) == INTEGER_CST)
1675 || wi::sext (ptrval.mask, TYPE_PRECISION (type)) == -1);
1676 if (attr == NULL_TREE)
1677 {
1678 /* Get aligni and misaligni from __builtin_assume_aligned. */
1679 align = gimple_call_arg (stmt, 1);
1680 if (!tree_fits_uhwi_p (align))
1681 return ptrval;
1682 aligni = tree_to_uhwi (align);
1683 if (gimple_call_num_args (stmt) > 2)
1684 {
1685 misalign = gimple_call_arg (stmt, 2);
1686 if (!tree_fits_uhwi_p (misalign))
1687 return ptrval;
1688 misaligni = tree_to_uhwi (misalign);
1689 }
1690 }
1691 else
1692 {
1693 /* Get aligni and misaligni from assume_aligned or
1694 alloc_align attributes. */
1695 if (TREE_VALUE (attr) == NULL_TREE)
1696 return ptrval;
1697 attr = TREE_VALUE (attr);
1698 align = TREE_VALUE (attr);
1699 if (!tree_fits_uhwi_p (align))
1700 return ptrval;
1701 aligni = tree_to_uhwi (align);
1702 if (alloc_aligned)
1703 {
1704 if (aligni == 0 || aligni > gimple_call_num_args (stmt))
1705 return ptrval;
1706 align = gimple_call_arg (stmt, aligni - 1);
1707 if (!tree_fits_uhwi_p (align))
1708 return ptrval;
1709 aligni = tree_to_uhwi (align);
1710 }
1711 else if (TREE_CHAIN (attr) && TREE_VALUE (TREE_CHAIN (attr)))
1712 {
1713 misalign = TREE_VALUE (TREE_CHAIN (attr));
1714 if (!tree_fits_uhwi_p (misalign))
1715 return ptrval;
1716 misaligni = tree_to_uhwi (misalign);
1717 }
1718 }
1719 if (aligni <= 1 || (aligni & (aligni - 1)) != 0 || misaligni >= aligni)
1720 return ptrval;
1721
1722 align = build_int_cst_type (type, -aligni);
1723 alignval = get_value_for_expr (align, true);
1724 bit_value_binop (BIT_AND_EXPR, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1725 TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (ptrval), ptrval.mask,
1726 TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (alignval), alignval.mask);
1727
1728 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1729 {
1730 val.lattice_val = CONSTANT;
1731 val.mask = mask;
1732 gcc_assert ((mask.to_uhwi () & (aligni - 1)) == 0);
1733 gcc_assert ((value.to_uhwi () & (aligni - 1)) == 0);
1734 value |= misaligni;
1735 /* ??? Delay building trees here. */
1736 val.value = wide_int_to_tree (type, value);
1737 }
1738 else
1739 {
1740 val.lattice_val = VARYING;
1741 val.value = NULL_TREE;
1742 val.mask = -1;
1743 }
1744 return val;
1745 }
1746
1747 /* Evaluate statement STMT.
1748 Valid only for assignments, calls, conditionals, and switches. */
1749
1750 static ccp_prop_value_t
1751 evaluate_stmt (gimple *stmt)
1752 {
1753 ccp_prop_value_t val;
1754 tree simplified = NULL_TREE;
1755 ccp_lattice_t likelyvalue = likely_value (stmt);
1756 bool is_constant = false;
1757 unsigned int align;
1758
1759 if (dump_file && (dump_flags & TDF_DETAILS))
1760 {
1761 fprintf (dump_file, "which is likely ");
1762 switch (likelyvalue)
1763 {
1764 case CONSTANT:
1765 fprintf (dump_file, "CONSTANT");
1766 break;
1767 case UNDEFINED:
1768 fprintf (dump_file, "UNDEFINED");
1769 break;
1770 case VARYING:
1771 fprintf (dump_file, "VARYING");
1772 break;
1773 default:;
1774 }
1775 fprintf (dump_file, "\n");
1776 }
1777
1778 /* If the statement is likely to have a CONSTANT result, then try
1779 to fold the statement to determine the constant value. */
1780 /* FIXME. This is the only place that we call ccp_fold.
1781 Since likely_value never returns CONSTANT for calls, we will
1782 not attempt to fold them, including builtins that may profit. */
1783 if (likelyvalue == CONSTANT)
1784 {
1785 fold_defer_overflow_warnings ();
1786 simplified = ccp_fold (stmt);
1787 if (simplified
1788 && TREE_CODE (simplified) == SSA_NAME)
1789 {
1790 /* We may not use values of something that may be simulated again,
1791 see valueize_op_1. */
1792 if (SSA_NAME_IS_DEFAULT_DEF (simplified)
1793 || ! prop_simulate_again_p (SSA_NAME_DEF_STMT (simplified)))
1794 {
1795 ccp_prop_value_t *val = get_value (simplified);
1796 if (val && val->lattice_val != VARYING)
1797 {
1798 fold_undefer_overflow_warnings (true, stmt, 0);
1799 return *val;
1800 }
1801 }
1802 else
1803 /* We may also not place a non-valueized copy in the lattice
1804 as that might become stale if we never re-visit this stmt. */
1805 simplified = NULL_TREE;
1806 }
1807 is_constant = simplified && is_gimple_min_invariant (simplified);
1808 fold_undefer_overflow_warnings (is_constant, stmt, 0);
1809 if (is_constant)
1810 {
1811 /* The statement produced a constant value. */
1812 val.lattice_val = CONSTANT;
1813 val.value = simplified;
1814 val.mask = 0;
1815 return val;
1816 }
1817 }
1818 /* If the statement is likely to have a VARYING result, then do not
1819 bother folding the statement. */
1820 else if (likelyvalue == VARYING)
1821 {
1822 enum gimple_code code = gimple_code (stmt);
1823 if (code == GIMPLE_ASSIGN)
1824 {
1825 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1826
1827 /* Other cases cannot satisfy is_gimple_min_invariant
1828 without folding. */
1829 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
1830 simplified = gimple_assign_rhs1 (stmt);
1831 }
1832 else if (code == GIMPLE_SWITCH)
1833 simplified = gimple_switch_index (as_a <gswitch *> (stmt));
1834 else
1835 /* These cannot satisfy is_gimple_min_invariant without folding. */
1836 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
1837 is_constant = simplified && is_gimple_min_invariant (simplified);
1838 if (is_constant)
1839 {
1840 /* The statement produced a constant value. */
1841 val.lattice_val = CONSTANT;
1842 val.value = simplified;
1843 val.mask = 0;
1844 }
1845 }
1846 /* If the statement result is likely UNDEFINED, make it so. */
1847 else if (likelyvalue == UNDEFINED)
1848 {
1849 val.lattice_val = UNDEFINED;
1850 val.value = NULL_TREE;
1851 val.mask = 0;
1852 return val;
1853 }
1854
1855 /* Resort to simplification for bitwise tracking. */
1856 if (flag_tree_bit_ccp
1857 && (likelyvalue == CONSTANT || is_gimple_call (stmt)
1858 || (gimple_assign_single_p (stmt)
1859 && gimple_assign_rhs_code (stmt) == ADDR_EXPR))
1860 && !is_constant)
1861 {
1862 enum gimple_code code = gimple_code (stmt);
1863 val.lattice_val = VARYING;
1864 val.value = NULL_TREE;
1865 val.mask = -1;
1866 if (code == GIMPLE_ASSIGN)
1867 {
1868 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1869 tree rhs1 = gimple_assign_rhs1 (stmt);
1870 tree lhs = gimple_assign_lhs (stmt);
1871 if ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
1872 || POINTER_TYPE_P (TREE_TYPE (lhs)))
1873 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1874 || POINTER_TYPE_P (TREE_TYPE (rhs1))))
1875 switch (get_gimple_rhs_class (subcode))
1876 {
1877 case GIMPLE_SINGLE_RHS:
1878 val = get_value_for_expr (rhs1, true);
1879 break;
1880
1881 case GIMPLE_UNARY_RHS:
1882 val = bit_value_unop (subcode, TREE_TYPE (lhs), rhs1);
1883 break;
1884
1885 case GIMPLE_BINARY_RHS:
1886 val = bit_value_binop (subcode, TREE_TYPE (lhs), rhs1,
1887 gimple_assign_rhs2 (stmt));
1888 break;
1889
1890 default:;
1891 }
1892 }
1893 else if (code == GIMPLE_COND)
1894 {
1895 enum tree_code code = gimple_cond_code (stmt);
1896 tree rhs1 = gimple_cond_lhs (stmt);
1897 tree rhs2 = gimple_cond_rhs (stmt);
1898 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1899 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1900 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
1901 }
1902 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1903 {
1904 tree fndecl = gimple_call_fndecl (stmt);
1905 switch (DECL_FUNCTION_CODE (fndecl))
1906 {
1907 case BUILT_IN_MALLOC:
1908 case BUILT_IN_REALLOC:
1909 case BUILT_IN_CALLOC:
1910 case BUILT_IN_STRDUP:
1911 case BUILT_IN_STRNDUP:
1912 val.lattice_val = CONSTANT;
1913 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1914 val.mask = ~((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT
1915 / BITS_PER_UNIT - 1);
1916 break;
1917
1918 CASE_BUILT_IN_ALLOCA:
1919 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
1920 ? BIGGEST_ALIGNMENT
1921 : TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
1922 val.lattice_val = CONSTANT;
1923 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1924 val.mask = ~((HOST_WIDE_INT) align / BITS_PER_UNIT - 1);
1925 break;
1926
1927 /* These builtins return their first argument, unmodified. */
1928 case BUILT_IN_MEMCPY:
1929 case BUILT_IN_MEMMOVE:
1930 case BUILT_IN_MEMSET:
1931 case BUILT_IN_STRCPY:
1932 case BUILT_IN_STRNCPY:
1933 case BUILT_IN_MEMCPY_CHK:
1934 case BUILT_IN_MEMMOVE_CHK:
1935 case BUILT_IN_MEMSET_CHK:
1936 case BUILT_IN_STRCPY_CHK:
1937 case BUILT_IN_STRNCPY_CHK:
1938 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1939 break;
1940
1941 case BUILT_IN_ASSUME_ALIGNED:
1942 val = bit_value_assume_aligned (stmt, NULL_TREE, val, false);
1943 break;
1944
1945 case BUILT_IN_ALIGNED_ALLOC:
1946 {
1947 tree align = get_constant_value (gimple_call_arg (stmt, 0));
1948 if (align
1949 && tree_fits_uhwi_p (align))
1950 {
1951 unsigned HOST_WIDE_INT aligni = tree_to_uhwi (align);
1952 if (aligni > 1
1953 /* align must be power-of-two */
1954 && (aligni & (aligni - 1)) == 0)
1955 {
1956 val.lattice_val = CONSTANT;
1957 val.value = build_int_cst (ptr_type_node, 0);
1958 val.mask = -aligni;
1959 }
1960 }
1961 break;
1962 }
1963
1964 case BUILT_IN_BSWAP16:
1965 case BUILT_IN_BSWAP32:
1966 case BUILT_IN_BSWAP64:
1967 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1968 if (val.lattice_val == UNDEFINED)
1969 break;
1970 else if (val.lattice_val == CONSTANT
1971 && val.value
1972 && TREE_CODE (val.value) == INTEGER_CST)
1973 {
1974 tree type = TREE_TYPE (gimple_call_lhs (stmt));
1975 int prec = TYPE_PRECISION (type);
1976 wide_int wval = wi::to_wide (val.value);
1977 val.value
1978 = wide_int_to_tree (type,
1979 wide_int::from (wval, prec,
1980 UNSIGNED).bswap ());
1981 val.mask
1982 = widest_int::from (wide_int::from (val.mask, prec,
1983 UNSIGNED).bswap (),
1984 UNSIGNED);
1985 if (wi::sext (val.mask, prec) != -1)
1986 break;
1987 }
1988 val.lattice_val = VARYING;
1989 val.value = NULL_TREE;
1990 val.mask = -1;
1991 break;
1992
1993 default:;
1994 }
1995 }
1996 if (is_gimple_call (stmt) && gimple_call_lhs (stmt))
1997 {
1998 tree fntype = gimple_call_fntype (stmt);
1999 if (fntype)
2000 {
2001 tree attrs = lookup_attribute ("assume_aligned",
2002 TYPE_ATTRIBUTES (fntype));
2003 if (attrs)
2004 val = bit_value_assume_aligned (stmt, attrs, val, false);
2005 attrs = lookup_attribute ("alloc_align",
2006 TYPE_ATTRIBUTES (fntype));
2007 if (attrs)
2008 val = bit_value_assume_aligned (stmt, attrs, val, true);
2009 }
2010 }
2011 is_constant = (val.lattice_val == CONSTANT);
2012 }
2013
2014 if (flag_tree_bit_ccp
2015 && ((is_constant && TREE_CODE (val.value) == INTEGER_CST)
2016 || !is_constant)
2017 && gimple_get_lhs (stmt)
2018 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME)
2019 {
2020 tree lhs = gimple_get_lhs (stmt);
2021 wide_int nonzero_bits = get_nonzero_bits (lhs);
2022 if (nonzero_bits != -1)
2023 {
2024 if (!is_constant)
2025 {
2026 val.lattice_val = CONSTANT;
2027 val.value = build_zero_cst (TREE_TYPE (lhs));
2028 val.mask = extend_mask (nonzero_bits, TYPE_SIGN (TREE_TYPE (lhs)));
2029 is_constant = true;
2030 }
2031 else
2032 {
2033 if (wi::bit_and_not (wi::to_wide (val.value), nonzero_bits) != 0)
2034 val.value = wide_int_to_tree (TREE_TYPE (lhs),
2035 nonzero_bits
2036 & wi::to_wide (val.value));
2037 if (nonzero_bits == 0)
2038 val.mask = 0;
2039 else
2040 val.mask = val.mask & extend_mask (nonzero_bits,
2041 TYPE_SIGN (TREE_TYPE (lhs)));
2042 }
2043 }
2044 }
2045
2046 /* The statement produced a nonconstant value. */
2047 if (!is_constant)
2048 {
2049 /* The statement produced a copy. */
2050 if (simplified && TREE_CODE (simplified) == SSA_NAME
2051 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (simplified))
2052 {
2053 val.lattice_val = CONSTANT;
2054 val.value = simplified;
2055 val.mask = -1;
2056 }
2057 /* The statement is VARYING. */
2058 else
2059 {
2060 val.lattice_val = VARYING;
2061 val.value = NULL_TREE;
2062 val.mask = -1;
2063 }
2064 }
2065
2066 return val;
2067 }
2068
2069 typedef hash_table<nofree_ptr_hash<gimple> > gimple_htab;
2070
2071 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
2072 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
2073
2074 static void
2075 insert_clobber_before_stack_restore (tree saved_val, tree var,
2076 gimple_htab **visited)
2077 {
2078 gimple *stmt;
2079 gassign *clobber_stmt;
2080 tree clobber;
2081 imm_use_iterator iter;
2082 gimple_stmt_iterator i;
2083 gimple **slot;
2084
2085 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
2086 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
2087 {
2088 clobber = build_constructor (TREE_TYPE (var),
2089 NULL);
2090 TREE_THIS_VOLATILE (clobber) = 1;
2091 clobber_stmt = gimple_build_assign (var, clobber);
2092
2093 i = gsi_for_stmt (stmt);
2094 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
2095 }
2096 else if (gimple_code (stmt) == GIMPLE_PHI)
2097 {
2098 if (!*visited)
2099 *visited = new gimple_htab (10);
2100
2101 slot = (*visited)->find_slot (stmt, INSERT);
2102 if (*slot != NULL)
2103 continue;
2104
2105 *slot = stmt;
2106 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
2107 visited);
2108 }
2109 else if (gimple_assign_ssa_name_copy_p (stmt))
2110 insert_clobber_before_stack_restore (gimple_assign_lhs (stmt), var,
2111 visited);
2112 else
2113 gcc_assert (is_gimple_debug (stmt));
2114 }
2115
2116 /* Advance the iterator to the previous non-debug gimple statement in the same
2117 or dominating basic block. */
2118
2119 static inline void
2120 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
2121 {
2122 basic_block dom;
2123
2124 gsi_prev_nondebug (i);
2125 while (gsi_end_p (*i))
2126 {
2127 dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
2128 if (dom == NULL || dom == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2129 return;
2130
2131 *i = gsi_last_bb (dom);
2132 }
2133 }
2134
2135 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
2136 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
2137
2138 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
2139 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
2140 that case the function gives up without inserting the clobbers. */
2141
2142 static void
2143 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
2144 {
2145 gimple *stmt;
2146 tree saved_val;
2147 gimple_htab *visited = NULL;
2148
2149 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
2150 {
2151 stmt = gsi_stmt (i);
2152
2153 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
2154 continue;
2155
2156 saved_val = gimple_call_lhs (stmt);
2157 if (saved_val == NULL_TREE)
2158 continue;
2159
2160 insert_clobber_before_stack_restore (saved_val, var, &visited);
2161 break;
2162 }
2163
2164 delete visited;
2165 }
2166
2167 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
2168 fixed-size array and returns the address, if found, otherwise returns
2169 NULL_TREE. */
2170
2171 static tree
2172 fold_builtin_alloca_with_align (gimple *stmt)
2173 {
2174 unsigned HOST_WIDE_INT size, threshold, n_elem;
2175 tree lhs, arg, block, var, elem_type, array_type;
2176
2177 /* Get lhs. */
2178 lhs = gimple_call_lhs (stmt);
2179 if (lhs == NULL_TREE)
2180 return NULL_TREE;
2181
2182 /* Detect constant argument. */
2183 arg = get_constant_value (gimple_call_arg (stmt, 0));
2184 if (arg == NULL_TREE
2185 || TREE_CODE (arg) != INTEGER_CST
2186 || !tree_fits_uhwi_p (arg))
2187 return NULL_TREE;
2188
2189 size = tree_to_uhwi (arg);
2190
2191 /* Heuristic: don't fold large allocas. */
2192 threshold = (unsigned HOST_WIDE_INT)PARAM_VALUE (PARAM_LARGE_STACK_FRAME);
2193 /* In case the alloca is located at function entry, it has the same lifetime
2194 as a declared array, so we allow a larger size. */
2195 block = gimple_block (stmt);
2196 if (!(cfun->after_inlining
2197 && block
2198 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
2199 threshold /= 10;
2200 if (size > threshold)
2201 return NULL_TREE;
2202
2203 /* We have to be able to move points-to info. We used to assert
2204 that we can but IPA PTA might end up with two UIDs here
2205 as it might need to handle more than one instance being
2206 live at the same time. Instead of trying to detect this case
2207 (using the first UID would be OK) just give up for now. */
2208 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
2209 unsigned uid = 0;
2210 if (pi != NULL
2211 && !pi->pt.anything
2212 && !pt_solution_singleton_or_null_p (&pi->pt, &uid))
2213 return NULL_TREE;
2214
2215 /* Declare array. */
2216 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
2217 n_elem = size * 8 / BITS_PER_UNIT;
2218 array_type = build_array_type_nelts (elem_type, n_elem);
2219 var = create_tmp_var (array_type);
2220 SET_DECL_ALIGN (var, TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
2221 if (uid != 0)
2222 SET_DECL_PT_UID (var, uid);
2223
2224 /* Fold alloca to the address of the array. */
2225 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
2226 }
2227
2228 /* Fold the stmt at *GSI with CCP specific information that propagating
2229 and regular folding does not catch. */
2230
2231 bool
2232 ccp_folder::fold_stmt (gimple_stmt_iterator *gsi)
2233 {
2234 gimple *stmt = gsi_stmt (*gsi);
2235
2236 switch (gimple_code (stmt))
2237 {
2238 case GIMPLE_COND:
2239 {
2240 gcond *cond_stmt = as_a <gcond *> (stmt);
2241 ccp_prop_value_t val;
2242 /* Statement evaluation will handle type mismatches in constants
2243 more gracefully than the final propagation. This allows us to
2244 fold more conditionals here. */
2245 val = evaluate_stmt (stmt);
2246 if (val.lattice_val != CONSTANT
2247 || val.mask != 0)
2248 return false;
2249
2250 if (dump_file)
2251 {
2252 fprintf (dump_file, "Folding predicate ");
2253 print_gimple_expr (dump_file, stmt, 0);
2254 fprintf (dump_file, " to ");
2255 print_generic_expr (dump_file, val.value);
2256 fprintf (dump_file, "\n");
2257 }
2258
2259 if (integer_zerop (val.value))
2260 gimple_cond_make_false (cond_stmt);
2261 else
2262 gimple_cond_make_true (cond_stmt);
2263
2264 return true;
2265 }
2266
2267 case GIMPLE_CALL:
2268 {
2269 tree lhs = gimple_call_lhs (stmt);
2270 int flags = gimple_call_flags (stmt);
2271 tree val;
2272 tree argt;
2273 bool changed = false;
2274 unsigned i;
2275
2276 /* If the call was folded into a constant make sure it goes
2277 away even if we cannot propagate into all uses because of
2278 type issues. */
2279 if (lhs
2280 && TREE_CODE (lhs) == SSA_NAME
2281 && (val = get_constant_value (lhs))
2282 /* Don't optimize away calls that have side-effects. */
2283 && (flags & (ECF_CONST|ECF_PURE)) != 0
2284 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
2285 {
2286 tree new_rhs = unshare_expr (val);
2287 bool res;
2288 if (!useless_type_conversion_p (TREE_TYPE (lhs),
2289 TREE_TYPE (new_rhs)))
2290 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
2291 res = update_call_from_tree (gsi, new_rhs);
2292 gcc_assert (res);
2293 return true;
2294 }
2295
2296 /* Internal calls provide no argument types, so the extra laxity
2297 for normal calls does not apply. */
2298 if (gimple_call_internal_p (stmt))
2299 return false;
2300
2301 /* The heuristic of fold_builtin_alloca_with_align differs before and
2302 after inlining, so we don't require the arg to be changed into a
2303 constant for folding, but just to be constant. */
2304 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN)
2305 || gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX))
2306 {
2307 tree new_rhs = fold_builtin_alloca_with_align (stmt);
2308 if (new_rhs)
2309 {
2310 bool res = update_call_from_tree (gsi, new_rhs);
2311 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
2312 gcc_assert (res);
2313 insert_clobbers_for_var (*gsi, var);
2314 return true;
2315 }
2316 }
2317
2318 /* If there's no extra info from an assume_aligned call,
2319 drop it so it doesn't act as otherwise useless dataflow
2320 barrier. */
2321 if (gimple_call_builtin_p (stmt, BUILT_IN_ASSUME_ALIGNED))
2322 {
2323 tree ptr = gimple_call_arg (stmt, 0);
2324 ccp_prop_value_t ptrval = get_value_for_expr (ptr, true);
2325 if (ptrval.lattice_val == CONSTANT
2326 && TREE_CODE (ptrval.value) == INTEGER_CST
2327 && ptrval.mask != 0)
2328 {
2329 ccp_prop_value_t val
2330 = bit_value_assume_aligned (stmt, NULL_TREE, ptrval, false);
2331 unsigned int ptralign = least_bit_hwi (ptrval.mask.to_uhwi ());
2332 unsigned int align = least_bit_hwi (val.mask.to_uhwi ());
2333 if (ptralign == align
2334 && ((TREE_INT_CST_LOW (ptrval.value) & (align - 1))
2335 == (TREE_INT_CST_LOW (val.value) & (align - 1))))
2336 {
2337 bool res = update_call_from_tree (gsi, ptr);
2338 gcc_assert (res);
2339 return true;
2340 }
2341 }
2342 }
2343
2344 /* Propagate into the call arguments. Compared to replace_uses_in
2345 this can use the argument slot types for type verification
2346 instead of the current argument type. We also can safely
2347 drop qualifiers here as we are dealing with constants anyway. */
2348 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
2349 for (i = 0; i < gimple_call_num_args (stmt) && argt;
2350 ++i, argt = TREE_CHAIN (argt))
2351 {
2352 tree arg = gimple_call_arg (stmt, i);
2353 if (TREE_CODE (arg) == SSA_NAME
2354 && (val = get_constant_value (arg))
2355 && useless_type_conversion_p
2356 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
2357 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2358 {
2359 gimple_call_set_arg (stmt, i, unshare_expr (val));
2360 changed = true;
2361 }
2362 }
2363
2364 return changed;
2365 }
2366
2367 case GIMPLE_ASSIGN:
2368 {
2369 tree lhs = gimple_assign_lhs (stmt);
2370 tree val;
2371
2372 /* If we have a load that turned out to be constant replace it
2373 as we cannot propagate into all uses in all cases. */
2374 if (gimple_assign_single_p (stmt)
2375 && TREE_CODE (lhs) == SSA_NAME
2376 && (val = get_constant_value (lhs)))
2377 {
2378 tree rhs = unshare_expr (val);
2379 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2380 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
2381 gimple_assign_set_rhs_from_tree (gsi, rhs);
2382 return true;
2383 }
2384
2385 return false;
2386 }
2387
2388 default:
2389 return false;
2390 }
2391 }
2392
2393 /* Visit the assignment statement STMT. Set the value of its LHS to the
2394 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2395 creates virtual definitions, set the value of each new name to that
2396 of the RHS (if we can derive a constant out of the RHS).
2397 Value-returning call statements also perform an assignment, and
2398 are handled here. */
2399
2400 static enum ssa_prop_result
2401 visit_assignment (gimple *stmt, tree *output_p)
2402 {
2403 ccp_prop_value_t val;
2404 enum ssa_prop_result retval = SSA_PROP_NOT_INTERESTING;
2405
2406 tree lhs = gimple_get_lhs (stmt);
2407 if (TREE_CODE (lhs) == SSA_NAME)
2408 {
2409 /* Evaluate the statement, which could be
2410 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2411 val = evaluate_stmt (stmt);
2412
2413 /* If STMT is an assignment to an SSA_NAME, we only have one
2414 value to set. */
2415 if (set_lattice_value (lhs, &val))
2416 {
2417 *output_p = lhs;
2418 if (val.lattice_val == VARYING)
2419 retval = SSA_PROP_VARYING;
2420 else
2421 retval = SSA_PROP_INTERESTING;
2422 }
2423 }
2424
2425 return retval;
2426 }
2427
2428
2429 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2430 if it can determine which edge will be taken. Otherwise, return
2431 SSA_PROP_VARYING. */
2432
2433 static enum ssa_prop_result
2434 visit_cond_stmt (gimple *stmt, edge *taken_edge_p)
2435 {
2436 ccp_prop_value_t val;
2437 basic_block block;
2438
2439 block = gimple_bb (stmt);
2440 val = evaluate_stmt (stmt);
2441 if (val.lattice_val != CONSTANT
2442 || val.mask != 0)
2443 return SSA_PROP_VARYING;
2444
2445 /* Find which edge out of the conditional block will be taken and add it
2446 to the worklist. If no single edge can be determined statically,
2447 return SSA_PROP_VARYING to feed all the outgoing edges to the
2448 propagation engine. */
2449 *taken_edge_p = find_taken_edge (block, val.value);
2450 if (*taken_edge_p)
2451 return SSA_PROP_INTERESTING;
2452 else
2453 return SSA_PROP_VARYING;
2454 }
2455
2456
2457 /* Evaluate statement STMT. If the statement produces an output value and
2458 its evaluation changes the lattice value of its output, return
2459 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2460 output value.
2461
2462 If STMT is a conditional branch and we can determine its truth
2463 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2464 value, return SSA_PROP_VARYING. */
2465
2466 enum ssa_prop_result
2467 ccp_propagate::visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
2468 {
2469 tree def;
2470 ssa_op_iter iter;
2471
2472 if (dump_file && (dump_flags & TDF_DETAILS))
2473 {
2474 fprintf (dump_file, "\nVisiting statement:\n");
2475 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2476 }
2477
2478 switch (gimple_code (stmt))
2479 {
2480 case GIMPLE_ASSIGN:
2481 /* If the statement is an assignment that produces a single
2482 output value, evaluate its RHS to see if the lattice value of
2483 its output has changed. */
2484 return visit_assignment (stmt, output_p);
2485
2486 case GIMPLE_CALL:
2487 /* A value-returning call also performs an assignment. */
2488 if (gimple_call_lhs (stmt) != NULL_TREE)
2489 return visit_assignment (stmt, output_p);
2490 break;
2491
2492 case GIMPLE_COND:
2493 case GIMPLE_SWITCH:
2494 /* If STMT is a conditional branch, see if we can determine
2495 which branch will be taken. */
2496 /* FIXME. It appears that we should be able to optimize
2497 computed GOTOs here as well. */
2498 return visit_cond_stmt (stmt, taken_edge_p);
2499
2500 default:
2501 break;
2502 }
2503
2504 /* Any other kind of statement is not interesting for constant
2505 propagation and, therefore, not worth simulating. */
2506 if (dump_file && (dump_flags & TDF_DETAILS))
2507 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2508
2509 /* Definitions made by statements other than assignments to
2510 SSA_NAMEs represent unknown modifications to their outputs.
2511 Mark them VARYING. */
2512 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2513 set_value_varying (def);
2514
2515 return SSA_PROP_VARYING;
2516 }
2517
2518
2519 /* Main entry point for SSA Conditional Constant Propagation. If NONZERO_P,
2520 record nonzero bits. */
2521
2522 static unsigned int
2523 do_ssa_ccp (bool nonzero_p)
2524 {
2525 unsigned int todo = 0;
2526 calculate_dominance_info (CDI_DOMINATORS);
2527
2528 ccp_initialize ();
2529 class ccp_propagate ccp_propagate;
2530 ccp_propagate.ssa_propagate ();
2531 if (ccp_finalize (nonzero_p || flag_ipa_bit_cp))
2532 {
2533 todo = (TODO_cleanup_cfg | TODO_update_ssa);
2534
2535 /* ccp_finalize does not preserve loop-closed ssa. */
2536 loops_state_clear (LOOP_CLOSED_SSA);
2537 }
2538
2539 free_dominance_info (CDI_DOMINATORS);
2540 return todo;
2541 }
2542
2543
2544 namespace {
2545
2546 const pass_data pass_data_ccp =
2547 {
2548 GIMPLE_PASS, /* type */
2549 "ccp", /* name */
2550 OPTGROUP_NONE, /* optinfo_flags */
2551 TV_TREE_CCP, /* tv_id */
2552 ( PROP_cfg | PROP_ssa ), /* properties_required */
2553 0, /* properties_provided */
2554 0, /* properties_destroyed */
2555 0, /* todo_flags_start */
2556 TODO_update_address_taken, /* todo_flags_finish */
2557 };
2558
2559 class pass_ccp : public gimple_opt_pass
2560 {
2561 public:
2562 pass_ccp (gcc::context *ctxt)
2563 : gimple_opt_pass (pass_data_ccp, ctxt), nonzero_p (false)
2564 {}
2565
2566 /* opt_pass methods: */
2567 opt_pass * clone () { return new pass_ccp (m_ctxt); }
2568 void set_pass_param (unsigned int n, bool param)
2569 {
2570 gcc_assert (n == 0);
2571 nonzero_p = param;
2572 }
2573 virtual bool gate (function *) { return flag_tree_ccp != 0; }
2574 virtual unsigned int execute (function *) { return do_ssa_ccp (nonzero_p); }
2575
2576 private:
2577 /* Determines whether the pass instance records nonzero bits. */
2578 bool nonzero_p;
2579 }; // class pass_ccp
2580
2581 } // anon namespace
2582
2583 gimple_opt_pass *
2584 make_pass_ccp (gcc::context *ctxt)
2585 {
2586 return new pass_ccp (ctxt);
2587 }
2588
2589
2590
2591 /* Try to optimize out __builtin_stack_restore. Optimize it out
2592 if there is another __builtin_stack_restore in the same basic
2593 block and no calls or ASM_EXPRs are in between, or if this block's
2594 only outgoing edge is to EXIT_BLOCK and there are no calls or
2595 ASM_EXPRs after this __builtin_stack_restore. */
2596
2597 static tree
2598 optimize_stack_restore (gimple_stmt_iterator i)
2599 {
2600 tree callee;
2601 gimple *stmt;
2602
2603 basic_block bb = gsi_bb (i);
2604 gimple *call = gsi_stmt (i);
2605
2606 if (gimple_code (call) != GIMPLE_CALL
2607 || gimple_call_num_args (call) != 1
2608 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2609 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2610 return NULL_TREE;
2611
2612 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2613 {
2614 stmt = gsi_stmt (i);
2615 if (gimple_code (stmt) == GIMPLE_ASM)
2616 return NULL_TREE;
2617 if (gimple_code (stmt) != GIMPLE_CALL)
2618 continue;
2619
2620 callee = gimple_call_fndecl (stmt);
2621 if (!callee
2622 || !fndecl_built_in_p (callee, BUILT_IN_NORMAL)
2623 /* All regular builtins are ok, just obviously not alloca. */
2624 || ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (callee)))
2625 return NULL_TREE;
2626
2627 if (fndecl_built_in_p (callee, BUILT_IN_STACK_RESTORE))
2628 goto second_stack_restore;
2629 }
2630
2631 if (!gsi_end_p (i))
2632 return NULL_TREE;
2633
2634 /* Allow one successor of the exit block, or zero successors. */
2635 switch (EDGE_COUNT (bb->succs))
2636 {
2637 case 0:
2638 break;
2639 case 1:
2640 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2641 return NULL_TREE;
2642 break;
2643 default:
2644 return NULL_TREE;
2645 }
2646 second_stack_restore:
2647
2648 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2649 If there are multiple uses, then the last one should remove the call.
2650 In any case, whether the call to __builtin_stack_save can be removed
2651 or not is irrelevant to removing the call to __builtin_stack_restore. */
2652 if (has_single_use (gimple_call_arg (call, 0)))
2653 {
2654 gimple *stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2655 if (is_gimple_call (stack_save))
2656 {
2657 callee = gimple_call_fndecl (stack_save);
2658 if (callee && fndecl_built_in_p (callee, BUILT_IN_STACK_SAVE))
2659 {
2660 gimple_stmt_iterator stack_save_gsi;
2661 tree rhs;
2662
2663 stack_save_gsi = gsi_for_stmt (stack_save);
2664 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2665 update_call_from_tree (&stack_save_gsi, rhs);
2666 }
2667 }
2668 }
2669
2670 /* No effect, so the statement will be deleted. */
2671 return integer_zero_node;
2672 }
2673
2674 /* If va_list type is a simple pointer and nothing special is needed,
2675 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2676 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2677 pointer assignment. */
2678
2679 static tree
2680 optimize_stdarg_builtin (gimple *call)
2681 {
2682 tree callee, lhs, rhs, cfun_va_list;
2683 bool va_list_simple_ptr;
2684 location_t loc = gimple_location (call);
2685
2686 callee = gimple_call_fndecl (call);
2687
2688 cfun_va_list = targetm.fn_abi_va_list (callee);
2689 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2690 && (TREE_TYPE (cfun_va_list) == void_type_node
2691 || TREE_TYPE (cfun_va_list) == char_type_node);
2692
2693 switch (DECL_FUNCTION_CODE (callee))
2694 {
2695 case BUILT_IN_VA_START:
2696 if (!va_list_simple_ptr
2697 || targetm.expand_builtin_va_start != NULL
2698 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
2699 return NULL_TREE;
2700
2701 if (gimple_call_num_args (call) != 2)
2702 return NULL_TREE;
2703
2704 lhs = gimple_call_arg (call, 0);
2705 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2706 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2707 != TYPE_MAIN_VARIANT (cfun_va_list))
2708 return NULL_TREE;
2709
2710 lhs = build_fold_indirect_ref_loc (loc, lhs);
2711 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
2712 1, integer_zero_node);
2713 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2714 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2715
2716 case BUILT_IN_VA_COPY:
2717 if (!va_list_simple_ptr)
2718 return NULL_TREE;
2719
2720 if (gimple_call_num_args (call) != 2)
2721 return NULL_TREE;
2722
2723 lhs = gimple_call_arg (call, 0);
2724 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2725 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2726 != TYPE_MAIN_VARIANT (cfun_va_list))
2727 return NULL_TREE;
2728
2729 lhs = build_fold_indirect_ref_loc (loc, lhs);
2730 rhs = gimple_call_arg (call, 1);
2731 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2732 != TYPE_MAIN_VARIANT (cfun_va_list))
2733 return NULL_TREE;
2734
2735 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2736 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2737
2738 case BUILT_IN_VA_END:
2739 /* No effect, so the statement will be deleted. */
2740 return integer_zero_node;
2741
2742 default:
2743 gcc_unreachable ();
2744 }
2745 }
2746
2747 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2748 the incoming jumps. Return true if at least one jump was changed. */
2749
2750 static bool
2751 optimize_unreachable (gimple_stmt_iterator i)
2752 {
2753 basic_block bb = gsi_bb (i);
2754 gimple_stmt_iterator gsi;
2755 gimple *stmt;
2756 edge_iterator ei;
2757 edge e;
2758 bool ret;
2759
2760 if (flag_sanitize & SANITIZE_UNREACHABLE)
2761 return false;
2762
2763 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2764 {
2765 stmt = gsi_stmt (gsi);
2766
2767 if (is_gimple_debug (stmt))
2768 continue;
2769
2770 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2771 {
2772 /* Verify we do not need to preserve the label. */
2773 if (FORCED_LABEL (gimple_label_label (label_stmt)))
2774 return false;
2775
2776 continue;
2777 }
2778
2779 /* Only handle the case that __builtin_unreachable is the first statement
2780 in the block. We rely on DCE to remove stmts without side-effects
2781 before __builtin_unreachable. */
2782 if (gsi_stmt (gsi) != gsi_stmt (i))
2783 return false;
2784 }
2785
2786 ret = false;
2787 FOR_EACH_EDGE (e, ei, bb->preds)
2788 {
2789 gsi = gsi_last_bb (e->src);
2790 if (gsi_end_p (gsi))
2791 continue;
2792
2793 stmt = gsi_stmt (gsi);
2794 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
2795 {
2796 if (e->flags & EDGE_TRUE_VALUE)
2797 gimple_cond_make_false (cond_stmt);
2798 else if (e->flags & EDGE_FALSE_VALUE)
2799 gimple_cond_make_true (cond_stmt);
2800 else
2801 gcc_unreachable ();
2802 update_stmt (cond_stmt);
2803 }
2804 else
2805 {
2806 /* Todo: handle other cases. Note that unreachable switch case
2807 statements have already been removed. */
2808 continue;
2809 }
2810
2811 ret = true;
2812 }
2813
2814 return ret;
2815 }
2816
2817 /* Optimize
2818 mask_2 = 1 << cnt_1;
2819 _4 = __atomic_fetch_or_* (ptr_6, mask_2, _3);
2820 _5 = _4 & mask_2;
2821 to
2822 _4 = ATOMIC_BIT_TEST_AND_SET (ptr_6, cnt_1, 0, _3);
2823 _5 = _4;
2824 If _5 is only used in _5 != 0 or _5 == 0 comparisons, 1
2825 is passed instead of 0, and the builtin just returns a zero
2826 or 1 value instead of the actual bit.
2827 Similarly for __sync_fetch_and_or_* (without the ", _3" part
2828 in there), and/or if mask_2 is a power of 2 constant.
2829 Similarly for xor instead of or, use ATOMIC_BIT_TEST_AND_COMPLEMENT
2830 in that case. And similarly for and instead of or, except that
2831 the second argument to the builtin needs to be one's complement
2832 of the mask instead of mask. */
2833
2834 static void
2835 optimize_atomic_bit_test_and (gimple_stmt_iterator *gsip,
2836 enum internal_fn fn, bool has_model_arg,
2837 bool after)
2838 {
2839 gimple *call = gsi_stmt (*gsip);
2840 tree lhs = gimple_call_lhs (call);
2841 use_operand_p use_p;
2842 gimple *use_stmt;
2843 tree mask, bit;
2844 optab optab;
2845
2846 if (!flag_inline_atomics
2847 || optimize_debug
2848 || !gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2849 || !lhs
2850 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)
2851 || !single_imm_use (lhs, &use_p, &use_stmt)
2852 || !is_gimple_assign (use_stmt)
2853 || gimple_assign_rhs_code (use_stmt) != BIT_AND_EXPR
2854 || !gimple_vdef (call))
2855 return;
2856
2857 switch (fn)
2858 {
2859 case IFN_ATOMIC_BIT_TEST_AND_SET:
2860 optab = atomic_bit_test_and_set_optab;
2861 break;
2862 case IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT:
2863 optab = atomic_bit_test_and_complement_optab;
2864 break;
2865 case IFN_ATOMIC_BIT_TEST_AND_RESET:
2866 optab = atomic_bit_test_and_reset_optab;
2867 break;
2868 default:
2869 return;
2870 }
2871
2872 if (optab_handler (optab, TYPE_MODE (TREE_TYPE (lhs))) == CODE_FOR_nothing)
2873 return;
2874
2875 mask = gimple_call_arg (call, 1);
2876 tree use_lhs = gimple_assign_lhs (use_stmt);
2877 if (!use_lhs)
2878 return;
2879
2880 if (TREE_CODE (mask) == INTEGER_CST)
2881 {
2882 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
2883 mask = const_unop (BIT_NOT_EXPR, TREE_TYPE (mask), mask);
2884 mask = fold_convert (TREE_TYPE (lhs), mask);
2885 int ibit = tree_log2 (mask);
2886 if (ibit < 0)
2887 return;
2888 bit = build_int_cst (TREE_TYPE (lhs), ibit);
2889 }
2890 else if (TREE_CODE (mask) == SSA_NAME)
2891 {
2892 gimple *g = SSA_NAME_DEF_STMT (mask);
2893 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
2894 {
2895 if (!is_gimple_assign (g)
2896 || gimple_assign_rhs_code (g) != BIT_NOT_EXPR)
2897 return;
2898 mask = gimple_assign_rhs1 (g);
2899 if (TREE_CODE (mask) != SSA_NAME)
2900 return;
2901 g = SSA_NAME_DEF_STMT (mask);
2902 }
2903 if (!is_gimple_assign (g)
2904 || gimple_assign_rhs_code (g) != LSHIFT_EXPR
2905 || !integer_onep (gimple_assign_rhs1 (g)))
2906 return;
2907 bit = gimple_assign_rhs2 (g);
2908 }
2909 else
2910 return;
2911
2912 if (gimple_assign_rhs1 (use_stmt) == lhs)
2913 {
2914 if (!operand_equal_p (gimple_assign_rhs2 (use_stmt), mask, 0))
2915 return;
2916 }
2917 else if (gimple_assign_rhs2 (use_stmt) != lhs
2918 || !operand_equal_p (gimple_assign_rhs1 (use_stmt), mask, 0))
2919 return;
2920
2921 bool use_bool = true;
2922 bool has_debug_uses = false;
2923 imm_use_iterator iter;
2924 gimple *g;
2925
2926 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs))
2927 use_bool = false;
2928 FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
2929 {
2930 enum tree_code code = ERROR_MARK;
2931 tree op0 = NULL_TREE, op1 = NULL_TREE;
2932 if (is_gimple_debug (g))
2933 {
2934 has_debug_uses = true;
2935 continue;
2936 }
2937 else if (is_gimple_assign (g))
2938 switch (gimple_assign_rhs_code (g))
2939 {
2940 case COND_EXPR:
2941 op1 = gimple_assign_rhs1 (g);
2942 code = TREE_CODE (op1);
2943 op0 = TREE_OPERAND (op1, 0);
2944 op1 = TREE_OPERAND (op1, 1);
2945 break;
2946 case EQ_EXPR:
2947 case NE_EXPR:
2948 code = gimple_assign_rhs_code (g);
2949 op0 = gimple_assign_rhs1 (g);
2950 op1 = gimple_assign_rhs2 (g);
2951 break;
2952 default:
2953 break;
2954 }
2955 else if (gimple_code (g) == GIMPLE_COND)
2956 {
2957 code = gimple_cond_code (g);
2958 op0 = gimple_cond_lhs (g);
2959 op1 = gimple_cond_rhs (g);
2960 }
2961
2962 if ((code == EQ_EXPR || code == NE_EXPR)
2963 && op0 == use_lhs
2964 && integer_zerop (op1))
2965 {
2966 use_operand_p use_p;
2967 int n = 0;
2968 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2969 n++;
2970 if (n == 1)
2971 continue;
2972 }
2973
2974 use_bool = false;
2975 BREAK_FROM_IMM_USE_STMT (iter);
2976 }
2977
2978 tree new_lhs = make_ssa_name (TREE_TYPE (lhs));
2979 tree flag = build_int_cst (TREE_TYPE (lhs), use_bool);
2980 if (has_model_arg)
2981 g = gimple_build_call_internal (fn, 4, gimple_call_arg (call, 0),
2982 bit, flag, gimple_call_arg (call, 2));
2983 else
2984 g = gimple_build_call_internal (fn, 3, gimple_call_arg (call, 0),
2985 bit, flag);
2986 gimple_call_set_lhs (g, new_lhs);
2987 gimple_set_location (g, gimple_location (call));
2988 gimple_move_vops (g, call);
2989 bool throws = stmt_can_throw_internal (cfun, call);
2990 gimple_call_set_nothrow (as_a <gcall *> (g),
2991 gimple_call_nothrow_p (as_a <gcall *> (call)));
2992 gimple_stmt_iterator gsi = *gsip;
2993 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2994 edge e = NULL;
2995 if (throws)
2996 {
2997 maybe_clean_or_replace_eh_stmt (call, g);
2998 if (after || (use_bool && has_debug_uses))
2999 e = find_fallthru_edge (gsi_bb (gsi)->succs);
3000 }
3001 if (after)
3002 {
3003 /* The internal function returns the value of the specified bit
3004 before the atomic operation. If we are interested in the value
3005 of the specified bit after the atomic operation (makes only sense
3006 for xor, otherwise the bit content is compile time known),
3007 we need to invert the bit. */
3008 g = gimple_build_assign (make_ssa_name (TREE_TYPE (lhs)),
3009 BIT_XOR_EXPR, new_lhs,
3010 use_bool ? build_int_cst (TREE_TYPE (lhs), 1)
3011 : mask);
3012 new_lhs = gimple_assign_lhs (g);
3013 if (throws)
3014 {
3015 gsi_insert_on_edge_immediate (e, g);
3016 gsi = gsi_for_stmt (g);
3017 }
3018 else
3019 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3020 }
3021 if (use_bool && has_debug_uses)
3022 {
3023 tree temp = NULL_TREE;
3024 if (!throws || after || single_pred_p (e->dest))
3025 {
3026 temp = make_node (DEBUG_EXPR_DECL);
3027 DECL_ARTIFICIAL (temp) = 1;
3028 TREE_TYPE (temp) = TREE_TYPE (lhs);
3029 SET_DECL_MODE (temp, TYPE_MODE (TREE_TYPE (lhs)));
3030 tree t = build2 (LSHIFT_EXPR, TREE_TYPE (lhs), new_lhs, bit);
3031 g = gimple_build_debug_bind (temp, t, g);
3032 if (throws && !after)
3033 {
3034 gsi = gsi_after_labels (e->dest);
3035 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
3036 }
3037 else
3038 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3039 }
3040 FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
3041 if (is_gimple_debug (g))
3042 {
3043 use_operand_p use_p;
3044 if (temp == NULL_TREE)
3045 gimple_debug_bind_reset_value (g);
3046 else
3047 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3048 SET_USE (use_p, temp);
3049 update_stmt (g);
3050 }
3051 }
3052 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_lhs)
3053 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs);
3054 replace_uses_by (use_lhs, new_lhs);
3055 gsi = gsi_for_stmt (use_stmt);
3056 gsi_remove (&gsi, true);
3057 release_defs (use_stmt);
3058 gsi_remove (gsip, true);
3059 release_ssa_name (lhs);
3060 }
3061
3062 /* Optimize
3063 a = {};
3064 b = a;
3065 into
3066 a = {};
3067 b = {};
3068 Similarly for memset (&a, ..., sizeof (a)); instead of a = {};
3069 and/or memcpy (&b, &a, sizeof (a)); instead of b = a; */
3070
3071 static void
3072 optimize_memcpy (gimple_stmt_iterator *gsip, tree dest, tree src, tree len)
3073 {
3074 gimple *stmt = gsi_stmt (*gsip);
3075 if (gimple_has_volatile_ops (stmt))
3076 return;
3077
3078 tree vuse = gimple_vuse (stmt);
3079 if (vuse == NULL)
3080 return;
3081
3082 gimple *defstmt = SSA_NAME_DEF_STMT (vuse);
3083 tree src2 = NULL_TREE, len2 = NULL_TREE;
3084 poly_int64 offset, offset2;
3085 tree val = integer_zero_node;
3086 if (gimple_store_p (defstmt)
3087 && gimple_assign_single_p (defstmt)
3088 && TREE_CODE (gimple_assign_rhs1 (defstmt)) == CONSTRUCTOR
3089 && !gimple_clobber_p (defstmt))
3090 src2 = gimple_assign_lhs (defstmt);
3091 else if (gimple_call_builtin_p (defstmt, BUILT_IN_MEMSET)
3092 && TREE_CODE (gimple_call_arg (defstmt, 0)) == ADDR_EXPR
3093 && TREE_CODE (gimple_call_arg (defstmt, 1)) == INTEGER_CST)
3094 {
3095 src2 = TREE_OPERAND (gimple_call_arg (defstmt, 0), 0);
3096 len2 = gimple_call_arg (defstmt, 2);
3097 val = gimple_call_arg (defstmt, 1);
3098 /* For non-0 val, we'd have to transform stmt from assignment
3099 into memset (only if dest is addressable). */
3100 if (!integer_zerop (val) && is_gimple_assign (stmt))
3101 src2 = NULL_TREE;
3102 }
3103
3104 if (src2 == NULL_TREE)
3105 return;
3106
3107 if (len == NULL_TREE)
3108 len = (TREE_CODE (src) == COMPONENT_REF
3109 ? DECL_SIZE_UNIT (TREE_OPERAND (src, 1))
3110 : TYPE_SIZE_UNIT (TREE_TYPE (src)));
3111 if (len2 == NULL_TREE)
3112 len2 = (TREE_CODE (src2) == COMPONENT_REF
3113 ? DECL_SIZE_UNIT (TREE_OPERAND (src2, 1))
3114 : TYPE_SIZE_UNIT (TREE_TYPE (src2)));
3115 if (len == NULL_TREE
3116 || !poly_int_tree_p (len)
3117 || len2 == NULL_TREE
3118 || !poly_int_tree_p (len2))
3119 return;
3120
3121 src = get_addr_base_and_unit_offset (src, &offset);
3122 src2 = get_addr_base_and_unit_offset (src2, &offset2);
3123 if (src == NULL_TREE
3124 || src2 == NULL_TREE
3125 || maybe_lt (offset, offset2))
3126 return;
3127
3128 if (!operand_equal_p (src, src2, 0))
3129 return;
3130
3131 /* [ src + offset2, src + offset2 + len2 - 1 ] is set to val.
3132 Make sure that
3133 [ src + offset, src + offset + len - 1 ] is a subset of that. */
3134 if (maybe_gt (wi::to_poly_offset (len) + (offset - offset2),
3135 wi::to_poly_offset (len2)))
3136 return;
3137
3138 if (dump_file && (dump_flags & TDF_DETAILS))
3139 {
3140 fprintf (dump_file, "Simplified\n ");
3141 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3142 fprintf (dump_file, "after previous\n ");
3143 print_gimple_stmt (dump_file, defstmt, 0, dump_flags);
3144 }
3145
3146 /* For simplicity, don't change the kind of the stmt,
3147 turn dest = src; into dest = {}; and memcpy (&dest, &src, len);
3148 into memset (&dest, val, len);
3149 In theory we could change dest = src into memset if dest
3150 is addressable (maybe beneficial if val is not 0), or
3151 memcpy (&dest, &src, len) into dest = {} if len is the size
3152 of dest, dest isn't volatile. */
3153 if (is_gimple_assign (stmt))
3154 {
3155 tree ctor = build_constructor (TREE_TYPE (dest), NULL);
3156 gimple_assign_set_rhs_from_tree (gsip, ctor);
3157 update_stmt (stmt);
3158 }
3159 else /* If stmt is memcpy, transform it into memset. */
3160 {
3161 gcall *call = as_a <gcall *> (stmt);
3162 tree fndecl = builtin_decl_implicit (BUILT_IN_MEMSET);
3163 gimple_call_set_fndecl (call, fndecl);
3164 gimple_call_set_fntype (call, TREE_TYPE (fndecl));
3165 gimple_call_set_arg (call, 1, val);
3166 update_stmt (stmt);
3167 }
3168
3169 if (dump_file && (dump_flags & TDF_DETAILS))
3170 {
3171 fprintf (dump_file, "into\n ");
3172 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3173 }
3174 }
3175
3176 /* A simple pass that attempts to fold all builtin functions. This pass
3177 is run after we've propagated as many constants as we can. */
3178
3179 namespace {
3180
3181 const pass_data pass_data_fold_builtins =
3182 {
3183 GIMPLE_PASS, /* type */
3184 "fab", /* name */
3185 OPTGROUP_NONE, /* optinfo_flags */
3186 TV_NONE, /* tv_id */
3187 ( PROP_cfg | PROP_ssa ), /* properties_required */
3188 0, /* properties_provided */
3189 0, /* properties_destroyed */
3190 0, /* todo_flags_start */
3191 TODO_update_ssa, /* todo_flags_finish */
3192 };
3193
3194 class pass_fold_builtins : public gimple_opt_pass
3195 {
3196 public:
3197 pass_fold_builtins (gcc::context *ctxt)
3198 : gimple_opt_pass (pass_data_fold_builtins, ctxt)
3199 {}
3200
3201 /* opt_pass methods: */
3202 opt_pass * clone () { return new pass_fold_builtins (m_ctxt); }
3203 virtual unsigned int execute (function *);
3204
3205 }; // class pass_fold_builtins
3206
3207 unsigned int
3208 pass_fold_builtins::execute (function *fun)
3209 {
3210 bool cfg_changed = false;
3211 basic_block bb;
3212 unsigned int todoflags = 0;
3213
3214 FOR_EACH_BB_FN (bb, fun)
3215 {
3216 gimple_stmt_iterator i;
3217 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
3218 {
3219 gimple *stmt, *old_stmt;
3220 tree callee;
3221 enum built_in_function fcode;
3222
3223 stmt = gsi_stmt (i);
3224
3225 if (gimple_code (stmt) != GIMPLE_CALL)
3226 {
3227 /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
3228 after the last GIMPLE DSE they aren't needed and might
3229 unnecessarily keep the SSA_NAMEs live. */
3230 if (gimple_clobber_p (stmt))
3231 {
3232 tree lhs = gimple_assign_lhs (stmt);
3233 if (TREE_CODE (lhs) == MEM_REF
3234 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME)
3235 {
3236 unlink_stmt_vdef (stmt);
3237 gsi_remove (&i, true);
3238 release_defs (stmt);
3239 continue;
3240 }
3241 }
3242 else if (gimple_assign_load_p (stmt) && gimple_store_p (stmt))
3243 optimize_memcpy (&i, gimple_assign_lhs (stmt),
3244 gimple_assign_rhs1 (stmt), NULL_TREE);
3245 gsi_next (&i);
3246 continue;
3247 }
3248
3249 callee = gimple_call_fndecl (stmt);
3250 if (!callee || !fndecl_built_in_p (callee, BUILT_IN_NORMAL))
3251 {
3252 gsi_next (&i);
3253 continue;
3254 }
3255
3256 fcode = DECL_FUNCTION_CODE (callee);
3257 if (fold_stmt (&i))
3258 ;
3259 else
3260 {
3261 tree result = NULL_TREE;
3262 switch (DECL_FUNCTION_CODE (callee))
3263 {
3264 case BUILT_IN_CONSTANT_P:
3265 /* Resolve __builtin_constant_p. If it hasn't been
3266 folded to integer_one_node by now, it's fairly
3267 certain that the value simply isn't constant. */
3268 result = integer_zero_node;
3269 break;
3270
3271 case BUILT_IN_ASSUME_ALIGNED:
3272 /* Remove __builtin_assume_aligned. */
3273 result = gimple_call_arg (stmt, 0);
3274 break;
3275
3276 case BUILT_IN_STACK_RESTORE:
3277 result = optimize_stack_restore (i);
3278 if (result)
3279 break;
3280 gsi_next (&i);
3281 continue;
3282
3283 case BUILT_IN_UNREACHABLE:
3284 if (optimize_unreachable (i))
3285 cfg_changed = true;
3286 break;
3287
3288 case BUILT_IN_ATOMIC_FETCH_OR_1:
3289 case BUILT_IN_ATOMIC_FETCH_OR_2:
3290 case BUILT_IN_ATOMIC_FETCH_OR_4:
3291 case BUILT_IN_ATOMIC_FETCH_OR_8:
3292 case BUILT_IN_ATOMIC_FETCH_OR_16:
3293 optimize_atomic_bit_test_and (&i,
3294 IFN_ATOMIC_BIT_TEST_AND_SET,
3295 true, false);
3296 break;
3297 case BUILT_IN_SYNC_FETCH_AND_OR_1:
3298 case BUILT_IN_SYNC_FETCH_AND_OR_2:
3299 case BUILT_IN_SYNC_FETCH_AND_OR_4:
3300 case BUILT_IN_SYNC_FETCH_AND_OR_8:
3301 case BUILT_IN_SYNC_FETCH_AND_OR_16:
3302 optimize_atomic_bit_test_and (&i,
3303 IFN_ATOMIC_BIT_TEST_AND_SET,
3304 false, false);
3305 break;
3306
3307 case BUILT_IN_ATOMIC_FETCH_XOR_1:
3308 case BUILT_IN_ATOMIC_FETCH_XOR_2:
3309 case BUILT_IN_ATOMIC_FETCH_XOR_4:
3310 case BUILT_IN_ATOMIC_FETCH_XOR_8:
3311 case BUILT_IN_ATOMIC_FETCH_XOR_16:
3312 optimize_atomic_bit_test_and
3313 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, false);
3314 break;
3315 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
3316 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
3317 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
3318 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
3319 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
3320 optimize_atomic_bit_test_and
3321 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, false);
3322 break;
3323
3324 case BUILT_IN_ATOMIC_XOR_FETCH_1:
3325 case BUILT_IN_ATOMIC_XOR_FETCH_2:
3326 case BUILT_IN_ATOMIC_XOR_FETCH_4:
3327 case BUILT_IN_ATOMIC_XOR_FETCH_8:
3328 case BUILT_IN_ATOMIC_XOR_FETCH_16:
3329 optimize_atomic_bit_test_and
3330 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, true);
3331 break;
3332 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
3333 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
3334 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
3335 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
3336 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
3337 optimize_atomic_bit_test_and
3338 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, true);
3339 break;
3340
3341 case BUILT_IN_ATOMIC_FETCH_AND_1:
3342 case BUILT_IN_ATOMIC_FETCH_AND_2:
3343 case BUILT_IN_ATOMIC_FETCH_AND_4:
3344 case BUILT_IN_ATOMIC_FETCH_AND_8:
3345 case BUILT_IN_ATOMIC_FETCH_AND_16:
3346 optimize_atomic_bit_test_and (&i,
3347 IFN_ATOMIC_BIT_TEST_AND_RESET,
3348 true, false);
3349 break;
3350 case BUILT_IN_SYNC_FETCH_AND_AND_1:
3351 case BUILT_IN_SYNC_FETCH_AND_AND_2:
3352 case BUILT_IN_SYNC_FETCH_AND_AND_4:
3353 case BUILT_IN_SYNC_FETCH_AND_AND_8:
3354 case BUILT_IN_SYNC_FETCH_AND_AND_16:
3355 optimize_atomic_bit_test_and (&i,
3356 IFN_ATOMIC_BIT_TEST_AND_RESET,
3357 false, false);
3358 break;
3359
3360 case BUILT_IN_MEMCPY:
3361 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL)
3362 && TREE_CODE (gimple_call_arg (stmt, 0)) == ADDR_EXPR
3363 && TREE_CODE (gimple_call_arg (stmt, 1)) == ADDR_EXPR
3364 && TREE_CODE (gimple_call_arg (stmt, 2)) == INTEGER_CST)
3365 {
3366 tree dest = TREE_OPERAND (gimple_call_arg (stmt, 0), 0);
3367 tree src = TREE_OPERAND (gimple_call_arg (stmt, 1), 0);
3368 tree len = gimple_call_arg (stmt, 2);
3369 optimize_memcpy (&i, dest, src, len);
3370 }
3371 break;
3372
3373 case BUILT_IN_VA_START:
3374 case BUILT_IN_VA_END:
3375 case BUILT_IN_VA_COPY:
3376 /* These shouldn't be folded before pass_stdarg. */
3377 result = optimize_stdarg_builtin (stmt);
3378 break;
3379
3380 default:;
3381 }
3382
3383 if (!result)
3384 {
3385 gsi_next (&i);
3386 continue;
3387 }
3388
3389 if (!update_call_from_tree (&i, result))
3390 gimplify_and_update_call_from_tree (&i, result);
3391 }
3392
3393 todoflags |= TODO_update_address_taken;
3394
3395 if (dump_file && (dump_flags & TDF_DETAILS))
3396 {
3397 fprintf (dump_file, "Simplified\n ");
3398 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3399 }
3400
3401 old_stmt = stmt;
3402 stmt = gsi_stmt (i);
3403 update_stmt (stmt);
3404
3405 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
3406 && gimple_purge_dead_eh_edges (bb))
3407 cfg_changed = true;
3408
3409 if (dump_file && (dump_flags & TDF_DETAILS))
3410 {
3411 fprintf (dump_file, "to\n ");
3412 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3413 fprintf (dump_file, "\n");
3414 }
3415
3416 /* Retry the same statement if it changed into another
3417 builtin, there might be new opportunities now. */
3418 if (gimple_code (stmt) != GIMPLE_CALL)
3419 {
3420 gsi_next (&i);
3421 continue;
3422 }
3423 callee = gimple_call_fndecl (stmt);
3424 if (!callee
3425 || !fndecl_built_in_p (callee, fcode))
3426 gsi_next (&i);
3427 }
3428 }
3429
3430 /* Delete unreachable blocks. */
3431 if (cfg_changed)
3432 todoflags |= TODO_cleanup_cfg;
3433
3434 return todoflags;
3435 }
3436
3437 } // anon namespace
3438
3439 gimple_opt_pass *
3440 make_pass_fold_builtins (gcc::context *ctxt)
3441 {
3442 return new pass_fold_builtins (ctxt);
3443 }
3444
3445 /* A simple pass that emits some warnings post IPA. */
3446
3447 namespace {
3448
3449 const pass_data pass_data_post_ipa_warn =
3450 {
3451 GIMPLE_PASS, /* type */
3452 "post_ipa_warn", /* name */
3453 OPTGROUP_NONE, /* optinfo_flags */
3454 TV_NONE, /* tv_id */
3455 ( PROP_cfg | PROP_ssa ), /* properties_required */
3456 0, /* properties_provided */
3457 0, /* properties_destroyed */
3458 0, /* todo_flags_start */
3459 0, /* todo_flags_finish */
3460 };
3461
3462 class pass_post_ipa_warn : public gimple_opt_pass
3463 {
3464 public:
3465 pass_post_ipa_warn (gcc::context *ctxt)
3466 : gimple_opt_pass (pass_data_post_ipa_warn, ctxt)
3467 {}
3468
3469 /* opt_pass methods: */
3470 opt_pass * clone () { return new pass_post_ipa_warn (m_ctxt); }
3471 virtual bool gate (function *) { return warn_nonnull != 0; }
3472 virtual unsigned int execute (function *);
3473
3474 }; // class pass_fold_builtins
3475
3476 unsigned int
3477 pass_post_ipa_warn::execute (function *fun)
3478 {
3479 basic_block bb;
3480
3481 FOR_EACH_BB_FN (bb, fun)
3482 {
3483 gimple_stmt_iterator gsi;
3484 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3485 {
3486 gimple *stmt = gsi_stmt (gsi);
3487 if (!is_gimple_call (stmt) || gimple_no_warning_p (stmt))
3488 continue;
3489
3490 if (warn_nonnull)
3491 {
3492 bitmap nonnullargs
3493 = get_nonnull_args (gimple_call_fntype (stmt));
3494 if (nonnullargs)
3495 {
3496 for (unsigned i = 0; i < gimple_call_num_args (stmt); i++)
3497 {
3498 tree arg = gimple_call_arg (stmt, i);
3499 if (TREE_CODE (TREE_TYPE (arg)) != POINTER_TYPE)
3500 continue;
3501 if (!integer_zerop (arg))
3502 continue;
3503 if (!bitmap_empty_p (nonnullargs)
3504 && !bitmap_bit_p (nonnullargs, i))
3505 continue;
3506
3507 location_t loc = gimple_location (stmt);
3508 auto_diagnostic_group d;
3509 if (warning_at (loc, OPT_Wnonnull,
3510 "%Gargument %u null where non-null "
3511 "expected", stmt, i + 1))
3512 {
3513 tree fndecl = gimple_call_fndecl (stmt);
3514 if (fndecl && DECL_IS_BUILTIN (fndecl))
3515 inform (loc, "in a call to built-in function %qD",
3516 fndecl);
3517 else if (fndecl)
3518 inform (DECL_SOURCE_LOCATION (fndecl),
3519 "in a call to function %qD declared here",
3520 fndecl);
3521
3522 }
3523 }
3524 BITMAP_FREE (nonnullargs);
3525 }
3526 }
3527 }
3528 }
3529 return 0;
3530 }
3531
3532 } // anon namespace
3533
3534 gimple_opt_pass *
3535 make_pass_post_ipa_warn (gcc::context *ctxt)
3536 {
3537 return new pass_post_ipa_warn (ctxt);
3538 }