tree-ssa-propagate.c (replace_phi_args_in): Remove no longer required hack.
[gcc.git] / gcc / tree-ssa-ccp.c
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2016 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
28 following values:
29
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
37
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
41 or not.
42
43 CONSTANT -> V_i has been found to hold a constant
44 value C.
45
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
48 at compile time.
49
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
51
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
59 can be visited.
60
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
65
66
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
72
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
75
76 if (PRED)
77 a_9 = 3;
78 else
79 a_10 = 100;
80 a_11 = PHI (a_9, a_10)
81
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
86
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
94
95
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
100
101 This algorithm uses wide-ints at the max precision of the target.
102 This means that, with one uninteresting exception, variables with
103 UNSIGNED types never go to VARYING because the bits above the
104 precision of the type of the variable are always zero. The
105 uninteresting case is a variable of UNSIGNED type that has the
106 maximum precision of the target. Such variables can go to VARYING,
107 but this causes no loss of infomation since these variables will
108 never be extended.
109
110 References:
111
112 Constant propagation with conditional branches,
113 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
114
115 Building an Optimizing Compiler,
116 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
117
118 Advanced Compiler Design and Implementation,
119 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
120
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "backend.h"
125 #include "target.h"
126 #include "tree.h"
127 #include "gimple.h"
128 #include "tree-pass.h"
129 #include "ssa.h"
130 #include "gimple-pretty-print.h"
131 #include "fold-const.h"
132 #include "gimple-fold.h"
133 #include "tree-eh.h"
134 #include "gimplify.h"
135 #include "gimple-iterator.h"
136 #include "tree-cfg.h"
137 #include "tree-ssa-propagate.h"
138 #include "dbgcnt.h"
139 #include "params.h"
140 #include "builtins.h"
141 #include "tree-chkp.h"
142 #include "cfgloop.h"
143 #include "stor-layout.h"
144 #include "optabs-query.h"
145 #include "tree-ssa-ccp.h"
146
147 /* Possible lattice values. */
148 typedef enum
149 {
150 UNINITIALIZED,
151 UNDEFINED,
152 CONSTANT,
153 VARYING
154 } ccp_lattice_t;
155
156 struct ccp_prop_value_t {
157 /* Lattice value. */
158 ccp_lattice_t lattice_val;
159
160 /* Propagated value. */
161 tree value;
162
163 /* Mask that applies to the propagated value during CCP. For X
164 with a CONSTANT lattice value X & ~mask == value & ~mask. The
165 zero bits in the mask cover constant values. The ones mean no
166 information. */
167 widest_int mask;
168 };
169
170 /* Array of propagated constant values. After propagation,
171 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
172 the constant is held in an SSA name representing a memory store
173 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
174 memory reference used to store (i.e., the LHS of the assignment
175 doing the store). */
176 static ccp_prop_value_t *const_val;
177 static unsigned n_const_val;
178
179 static void canonicalize_value (ccp_prop_value_t *);
180 static bool ccp_fold_stmt (gimple_stmt_iterator *);
181 static void ccp_lattice_meet (ccp_prop_value_t *, ccp_prop_value_t *);
182
183 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
184
185 static void
186 dump_lattice_value (FILE *outf, const char *prefix, ccp_prop_value_t val)
187 {
188 switch (val.lattice_val)
189 {
190 case UNINITIALIZED:
191 fprintf (outf, "%sUNINITIALIZED", prefix);
192 break;
193 case UNDEFINED:
194 fprintf (outf, "%sUNDEFINED", prefix);
195 break;
196 case VARYING:
197 fprintf (outf, "%sVARYING", prefix);
198 break;
199 case CONSTANT:
200 if (TREE_CODE (val.value) != INTEGER_CST
201 || val.mask == 0)
202 {
203 fprintf (outf, "%sCONSTANT ", prefix);
204 print_generic_expr (outf, val.value, dump_flags);
205 }
206 else
207 {
208 widest_int cval = wi::bit_and_not (wi::to_widest (val.value),
209 val.mask);
210 fprintf (outf, "%sCONSTANT ", prefix);
211 print_hex (cval, outf);
212 fprintf (outf, " (");
213 print_hex (val.mask, outf);
214 fprintf (outf, ")");
215 }
216 break;
217 default:
218 gcc_unreachable ();
219 }
220 }
221
222
223 /* Print lattice value VAL to stderr. */
224
225 void debug_lattice_value (ccp_prop_value_t val);
226
227 DEBUG_FUNCTION void
228 debug_lattice_value (ccp_prop_value_t val)
229 {
230 dump_lattice_value (stderr, "", val);
231 fprintf (stderr, "\n");
232 }
233
234 /* Extend NONZERO_BITS to a full mask, based on sgn. */
235
236 static widest_int
237 extend_mask (const wide_int &nonzero_bits, signop sgn)
238 {
239 return widest_int::from (nonzero_bits, sgn);
240 }
241
242 /* Compute a default value for variable VAR and store it in the
243 CONST_VAL array. The following rules are used to get default
244 values:
245
246 1- Global and static variables that are declared constant are
247 considered CONSTANT.
248
249 2- Any other value is considered UNDEFINED. This is useful when
250 considering PHI nodes. PHI arguments that are undefined do not
251 change the constant value of the PHI node, which allows for more
252 constants to be propagated.
253
254 3- Variables defined by statements other than assignments and PHI
255 nodes are considered VARYING.
256
257 4- Initial values of variables that are not GIMPLE registers are
258 considered VARYING. */
259
260 static ccp_prop_value_t
261 get_default_value (tree var)
262 {
263 ccp_prop_value_t val = { UNINITIALIZED, NULL_TREE, 0 };
264 gimple *stmt;
265
266 stmt = SSA_NAME_DEF_STMT (var);
267
268 if (gimple_nop_p (stmt))
269 {
270 /* Variables defined by an empty statement are those used
271 before being initialized. If VAR is a local variable, we
272 can assume initially that it is UNDEFINED, otherwise we must
273 consider it VARYING. */
274 if (!virtual_operand_p (var)
275 && SSA_NAME_VAR (var)
276 && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
277 val.lattice_val = UNDEFINED;
278 else
279 {
280 val.lattice_val = VARYING;
281 val.mask = -1;
282 if (flag_tree_bit_ccp)
283 {
284 wide_int nonzero_bits = get_nonzero_bits (var);
285 if (nonzero_bits != -1)
286 {
287 val.lattice_val = CONSTANT;
288 val.value = build_zero_cst (TREE_TYPE (var));
289 val.mask = extend_mask (nonzero_bits, TYPE_SIGN (TREE_TYPE (var)));
290 }
291 }
292 }
293 }
294 else if (is_gimple_assign (stmt))
295 {
296 tree cst;
297 if (gimple_assign_single_p (stmt)
298 && DECL_P (gimple_assign_rhs1 (stmt))
299 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
300 {
301 val.lattice_val = CONSTANT;
302 val.value = cst;
303 }
304 else
305 {
306 /* Any other variable defined by an assignment is considered
307 UNDEFINED. */
308 val.lattice_val = UNDEFINED;
309 }
310 }
311 else if ((is_gimple_call (stmt)
312 && gimple_call_lhs (stmt) != NULL_TREE)
313 || gimple_code (stmt) == GIMPLE_PHI)
314 {
315 /* A variable defined by a call or a PHI node is considered
316 UNDEFINED. */
317 val.lattice_val = UNDEFINED;
318 }
319 else
320 {
321 /* Otherwise, VAR will never take on a constant value. */
322 val.lattice_val = VARYING;
323 val.mask = -1;
324 }
325
326 return val;
327 }
328
329
330 /* Get the constant value associated with variable VAR. */
331
332 static inline ccp_prop_value_t *
333 get_value (tree var)
334 {
335 ccp_prop_value_t *val;
336
337 if (const_val == NULL
338 || SSA_NAME_VERSION (var) >= n_const_val)
339 return NULL;
340
341 val = &const_val[SSA_NAME_VERSION (var)];
342 if (val->lattice_val == UNINITIALIZED)
343 *val = get_default_value (var);
344
345 canonicalize_value (val);
346
347 return val;
348 }
349
350 /* Return the constant tree value associated with VAR. */
351
352 static inline tree
353 get_constant_value (tree var)
354 {
355 ccp_prop_value_t *val;
356 if (TREE_CODE (var) != SSA_NAME)
357 {
358 if (is_gimple_min_invariant (var))
359 return var;
360 return NULL_TREE;
361 }
362 val = get_value (var);
363 if (val
364 && val->lattice_val == CONSTANT
365 && (TREE_CODE (val->value) != INTEGER_CST
366 || val->mask == 0))
367 return val->value;
368 return NULL_TREE;
369 }
370
371 /* Sets the value associated with VAR to VARYING. */
372
373 static inline void
374 set_value_varying (tree var)
375 {
376 ccp_prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
377
378 val->lattice_val = VARYING;
379 val->value = NULL_TREE;
380 val->mask = -1;
381 }
382
383 /* For integer constants, make sure to drop TREE_OVERFLOW. */
384
385 static void
386 canonicalize_value (ccp_prop_value_t *val)
387 {
388 if (val->lattice_val != CONSTANT)
389 return;
390
391 if (TREE_OVERFLOW_P (val->value))
392 val->value = drop_tree_overflow (val->value);
393 }
394
395 /* Return whether the lattice transition is valid. */
396
397 static bool
398 valid_lattice_transition (ccp_prop_value_t old_val, ccp_prop_value_t new_val)
399 {
400 /* Lattice transitions must always be monotonically increasing in
401 value. */
402 if (old_val.lattice_val < new_val.lattice_val)
403 return true;
404
405 if (old_val.lattice_val != new_val.lattice_val)
406 return false;
407
408 if (!old_val.value && !new_val.value)
409 return true;
410
411 /* Now both lattice values are CONSTANT. */
412
413 /* Allow arbitrary copy changes as we might look through PHI <a_1, ...>
414 when only a single copy edge is executable. */
415 if (TREE_CODE (old_val.value) == SSA_NAME
416 && TREE_CODE (new_val.value) == SSA_NAME)
417 return true;
418
419 /* Allow transitioning from a constant to a copy. */
420 if (is_gimple_min_invariant (old_val.value)
421 && TREE_CODE (new_val.value) == SSA_NAME)
422 return true;
423
424 /* Allow transitioning from PHI <&x, not executable> == &x
425 to PHI <&x, &y> == common alignment. */
426 if (TREE_CODE (old_val.value) != INTEGER_CST
427 && TREE_CODE (new_val.value) == INTEGER_CST)
428 return true;
429
430 /* Bit-lattices have to agree in the still valid bits. */
431 if (TREE_CODE (old_val.value) == INTEGER_CST
432 && TREE_CODE (new_val.value) == INTEGER_CST)
433 return (wi::bit_and_not (wi::to_widest (old_val.value), new_val.mask)
434 == wi::bit_and_not (wi::to_widest (new_val.value), new_val.mask));
435
436 /* Otherwise constant values have to agree. */
437 if (operand_equal_p (old_val.value, new_val.value, 0))
438 return true;
439
440 /* At least the kinds and types should agree now. */
441 if (TREE_CODE (old_val.value) != TREE_CODE (new_val.value)
442 || !types_compatible_p (TREE_TYPE (old_val.value),
443 TREE_TYPE (new_val.value)))
444 return false;
445
446 /* For floats and !HONOR_NANS allow transitions from (partial) NaN
447 to non-NaN. */
448 tree type = TREE_TYPE (new_val.value);
449 if (SCALAR_FLOAT_TYPE_P (type)
450 && !HONOR_NANS (type))
451 {
452 if (REAL_VALUE_ISNAN (TREE_REAL_CST (old_val.value)))
453 return true;
454 }
455 else if (VECTOR_FLOAT_TYPE_P (type)
456 && !HONOR_NANS (type))
457 {
458 for (unsigned i = 0; i < VECTOR_CST_NELTS (old_val.value); ++i)
459 if (!REAL_VALUE_ISNAN
460 (TREE_REAL_CST (VECTOR_CST_ELT (old_val.value, i)))
461 && !operand_equal_p (VECTOR_CST_ELT (old_val.value, i),
462 VECTOR_CST_ELT (new_val.value, i), 0))
463 return false;
464 return true;
465 }
466 else if (COMPLEX_FLOAT_TYPE_P (type)
467 && !HONOR_NANS (type))
468 {
469 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_REALPART (old_val.value)))
470 && !operand_equal_p (TREE_REALPART (old_val.value),
471 TREE_REALPART (new_val.value), 0))
472 return false;
473 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_IMAGPART (old_val.value)))
474 && !operand_equal_p (TREE_IMAGPART (old_val.value),
475 TREE_IMAGPART (new_val.value), 0))
476 return false;
477 return true;
478 }
479 return false;
480 }
481
482 /* Set the value for variable VAR to NEW_VAL. Return true if the new
483 value is different from VAR's previous value. */
484
485 static bool
486 set_lattice_value (tree var, ccp_prop_value_t *new_val)
487 {
488 /* We can deal with old UNINITIALIZED values just fine here. */
489 ccp_prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
490
491 canonicalize_value (new_val);
492
493 /* We have to be careful to not go up the bitwise lattice
494 represented by the mask. Instead of dropping to VARYING
495 use the meet operator to retain a conservative value.
496 Missed optimizations like PR65851 makes this necessary.
497 It also ensures we converge to a stable lattice solution. */
498 if (new_val->lattice_val == CONSTANT
499 && old_val->lattice_val == CONSTANT
500 && TREE_CODE (new_val->value) != SSA_NAME)
501 ccp_lattice_meet (new_val, old_val);
502
503 gcc_checking_assert (valid_lattice_transition (*old_val, *new_val));
504
505 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
506 caller that this was a non-transition. */
507 if (old_val->lattice_val != new_val->lattice_val
508 || (new_val->lattice_val == CONSTANT
509 && (TREE_CODE (new_val->value) != TREE_CODE (old_val->value)
510 || (TREE_CODE (new_val->value) == INTEGER_CST
511 && (new_val->mask != old_val->mask
512 || (wi::bit_and_not (wi::to_widest (old_val->value),
513 new_val->mask)
514 != wi::bit_and_not (wi::to_widest (new_val->value),
515 new_val->mask))))
516 || (TREE_CODE (new_val->value) != INTEGER_CST
517 && !operand_equal_p (new_val->value, old_val->value, 0)))))
518 {
519 /* ??? We would like to delay creation of INTEGER_CSTs from
520 partially constants here. */
521
522 if (dump_file && (dump_flags & TDF_DETAILS))
523 {
524 dump_lattice_value (dump_file, "Lattice value changed to ", *new_val);
525 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
526 }
527
528 *old_val = *new_val;
529
530 gcc_assert (new_val->lattice_val != UNINITIALIZED);
531 return true;
532 }
533
534 return false;
535 }
536
537 static ccp_prop_value_t get_value_for_expr (tree, bool);
538 static ccp_prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
539 void bit_value_binop (enum tree_code, signop, int, widest_int *, widest_int *,
540 signop, int, const widest_int &, const widest_int &,
541 signop, int, const widest_int &, const widest_int &);
542
543 /* Return a widest_int that can be used for bitwise simplifications
544 from VAL. */
545
546 static widest_int
547 value_to_wide_int (ccp_prop_value_t val)
548 {
549 if (val.value
550 && TREE_CODE (val.value) == INTEGER_CST)
551 return wi::to_widest (val.value);
552
553 return 0;
554 }
555
556 /* Return the value for the address expression EXPR based on alignment
557 information. */
558
559 static ccp_prop_value_t
560 get_value_from_alignment (tree expr)
561 {
562 tree type = TREE_TYPE (expr);
563 ccp_prop_value_t val;
564 unsigned HOST_WIDE_INT bitpos;
565 unsigned int align;
566
567 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
568
569 get_pointer_alignment_1 (expr, &align, &bitpos);
570 val.mask = (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
571 ? wi::mask <widest_int> (TYPE_PRECISION (type), false)
572 : -1).and_not (align / BITS_PER_UNIT - 1);
573 val.lattice_val
574 = wi::sext (val.mask, TYPE_PRECISION (type)) == -1 ? VARYING : CONSTANT;
575 if (val.lattice_val == CONSTANT)
576 val.value = build_int_cstu (type, bitpos / BITS_PER_UNIT);
577 else
578 val.value = NULL_TREE;
579
580 return val;
581 }
582
583 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
584 return constant bits extracted from alignment information for
585 invariant addresses. */
586
587 static ccp_prop_value_t
588 get_value_for_expr (tree expr, bool for_bits_p)
589 {
590 ccp_prop_value_t val;
591
592 if (TREE_CODE (expr) == SSA_NAME)
593 {
594 ccp_prop_value_t *val_ = get_value (expr);
595 if (val_)
596 val = *val_;
597 else
598 {
599 val.lattice_val = VARYING;
600 val.value = NULL_TREE;
601 val.mask = -1;
602 }
603 if (for_bits_p
604 && val.lattice_val == CONSTANT
605 && TREE_CODE (val.value) == ADDR_EXPR)
606 val = get_value_from_alignment (val.value);
607 /* Fall back to a copy value. */
608 if (!for_bits_p
609 && val.lattice_val == VARYING
610 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr))
611 {
612 val.lattice_val = CONSTANT;
613 val.value = expr;
614 val.mask = -1;
615 }
616 }
617 else if (is_gimple_min_invariant (expr)
618 && (!for_bits_p || TREE_CODE (expr) != ADDR_EXPR))
619 {
620 val.lattice_val = CONSTANT;
621 val.value = expr;
622 val.mask = 0;
623 canonicalize_value (&val);
624 }
625 else if (TREE_CODE (expr) == ADDR_EXPR)
626 val = get_value_from_alignment (expr);
627 else
628 {
629 val.lattice_val = VARYING;
630 val.mask = -1;
631 val.value = NULL_TREE;
632 }
633
634 if (val.lattice_val == VARYING
635 && TYPE_UNSIGNED (TREE_TYPE (expr)))
636 val.mask = wi::zext (val.mask, TYPE_PRECISION (TREE_TYPE (expr)));
637
638 return val;
639 }
640
641 /* Return the likely CCP lattice value for STMT.
642
643 If STMT has no operands, then return CONSTANT.
644
645 Else if undefinedness of operands of STMT cause its value to be
646 undefined, then return UNDEFINED.
647
648 Else if any operands of STMT are constants, then return CONSTANT.
649
650 Else return VARYING. */
651
652 static ccp_lattice_t
653 likely_value (gimple *stmt)
654 {
655 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
656 bool has_nsa_operand;
657 tree use;
658 ssa_op_iter iter;
659 unsigned i;
660
661 enum gimple_code code = gimple_code (stmt);
662
663 /* This function appears to be called only for assignments, calls,
664 conditionals, and switches, due to the logic in visit_stmt. */
665 gcc_assert (code == GIMPLE_ASSIGN
666 || code == GIMPLE_CALL
667 || code == GIMPLE_COND
668 || code == GIMPLE_SWITCH);
669
670 /* If the statement has volatile operands, it won't fold to a
671 constant value. */
672 if (gimple_has_volatile_ops (stmt))
673 return VARYING;
674
675 /* Arrive here for more complex cases. */
676 has_constant_operand = false;
677 has_undefined_operand = false;
678 all_undefined_operands = true;
679 has_nsa_operand = false;
680 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
681 {
682 ccp_prop_value_t *val = get_value (use);
683
684 if (val && val->lattice_val == UNDEFINED)
685 has_undefined_operand = true;
686 else
687 all_undefined_operands = false;
688
689 if (val && val->lattice_val == CONSTANT)
690 has_constant_operand = true;
691
692 if (SSA_NAME_IS_DEFAULT_DEF (use)
693 || !prop_simulate_again_p (SSA_NAME_DEF_STMT (use)))
694 has_nsa_operand = true;
695 }
696
697 /* There may be constants in regular rhs operands. For calls we
698 have to ignore lhs, fndecl and static chain, otherwise only
699 the lhs. */
700 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
701 i < gimple_num_ops (stmt); ++i)
702 {
703 tree op = gimple_op (stmt, i);
704 if (!op || TREE_CODE (op) == SSA_NAME)
705 continue;
706 if (is_gimple_min_invariant (op))
707 has_constant_operand = true;
708 }
709
710 if (has_constant_operand)
711 all_undefined_operands = false;
712
713 if (has_undefined_operand
714 && code == GIMPLE_CALL
715 && gimple_call_internal_p (stmt))
716 switch (gimple_call_internal_fn (stmt))
717 {
718 /* These 3 builtins use the first argument just as a magic
719 way how to find out a decl uid. */
720 case IFN_GOMP_SIMD_LANE:
721 case IFN_GOMP_SIMD_VF:
722 case IFN_GOMP_SIMD_LAST_LANE:
723 has_undefined_operand = false;
724 break;
725 default:
726 break;
727 }
728
729 /* If the operation combines operands like COMPLEX_EXPR make sure to
730 not mark the result UNDEFINED if only one part of the result is
731 undefined. */
732 if (has_undefined_operand && all_undefined_operands)
733 return UNDEFINED;
734 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
735 {
736 switch (gimple_assign_rhs_code (stmt))
737 {
738 /* Unary operators are handled with all_undefined_operands. */
739 case PLUS_EXPR:
740 case MINUS_EXPR:
741 case POINTER_PLUS_EXPR:
742 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
743 Not bitwise operators, one VARYING operand may specify the
744 result completely. Not logical operators for the same reason.
745 Not COMPLEX_EXPR as one VARYING operand makes the result partly
746 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
747 the undefined operand may be promoted. */
748 return UNDEFINED;
749
750 case ADDR_EXPR:
751 /* If any part of an address is UNDEFINED, like the index
752 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
753 return UNDEFINED;
754
755 default:
756 ;
757 }
758 }
759 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
760 fall back to CONSTANT. During iteration UNDEFINED may still drop
761 to CONSTANT. */
762 if (has_undefined_operand)
763 return CONSTANT;
764
765 /* We do not consider virtual operands here -- load from read-only
766 memory may have only VARYING virtual operands, but still be
767 constant. Also we can combine the stmt with definitions from
768 operands whose definitions are not simulated again. */
769 if (has_constant_operand
770 || has_nsa_operand
771 || gimple_references_memory_p (stmt))
772 return CONSTANT;
773
774 return VARYING;
775 }
776
777 /* Returns true if STMT cannot be constant. */
778
779 static bool
780 surely_varying_stmt_p (gimple *stmt)
781 {
782 /* If the statement has operands that we cannot handle, it cannot be
783 constant. */
784 if (gimple_has_volatile_ops (stmt))
785 return true;
786
787 /* If it is a call and does not return a value or is not a
788 builtin and not an indirect call or a call to function with
789 assume_aligned/alloc_align attribute, it is varying. */
790 if (is_gimple_call (stmt))
791 {
792 tree fndecl, fntype = gimple_call_fntype (stmt);
793 if (!gimple_call_lhs (stmt)
794 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
795 && !DECL_BUILT_IN (fndecl)
796 && !lookup_attribute ("assume_aligned",
797 TYPE_ATTRIBUTES (fntype))
798 && !lookup_attribute ("alloc_align",
799 TYPE_ATTRIBUTES (fntype))))
800 return true;
801 }
802
803 /* Any other store operation is not interesting. */
804 else if (gimple_vdef (stmt))
805 return true;
806
807 /* Anything other than assignments and conditional jumps are not
808 interesting for CCP. */
809 if (gimple_code (stmt) != GIMPLE_ASSIGN
810 && gimple_code (stmt) != GIMPLE_COND
811 && gimple_code (stmt) != GIMPLE_SWITCH
812 && gimple_code (stmt) != GIMPLE_CALL)
813 return true;
814
815 return false;
816 }
817
818 /* Initialize local data structures for CCP. */
819
820 static void
821 ccp_initialize (void)
822 {
823 basic_block bb;
824
825 n_const_val = num_ssa_names;
826 const_val = XCNEWVEC (ccp_prop_value_t, n_const_val);
827
828 /* Initialize simulation flags for PHI nodes and statements. */
829 FOR_EACH_BB_FN (bb, cfun)
830 {
831 gimple_stmt_iterator i;
832
833 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
834 {
835 gimple *stmt = gsi_stmt (i);
836 bool is_varying;
837
838 /* If the statement is a control insn, then we do not
839 want to avoid simulating the statement once. Failure
840 to do so means that those edges will never get added. */
841 if (stmt_ends_bb_p (stmt))
842 is_varying = false;
843 else
844 is_varying = surely_varying_stmt_p (stmt);
845
846 if (is_varying)
847 {
848 tree def;
849 ssa_op_iter iter;
850
851 /* If the statement will not produce a constant, mark
852 all its outputs VARYING. */
853 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
854 set_value_varying (def);
855 }
856 prop_set_simulate_again (stmt, !is_varying);
857 }
858 }
859
860 /* Now process PHI nodes. We never clear the simulate_again flag on
861 phi nodes, since we do not know which edges are executable yet,
862 except for phi nodes for virtual operands when we do not do store ccp. */
863 FOR_EACH_BB_FN (bb, cfun)
864 {
865 gphi_iterator i;
866
867 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
868 {
869 gphi *phi = i.phi ();
870
871 if (virtual_operand_p (gimple_phi_result (phi)))
872 prop_set_simulate_again (phi, false);
873 else
874 prop_set_simulate_again (phi, true);
875 }
876 }
877 }
878
879 /* Debug count support. Reset the values of ssa names
880 VARYING when the total number ssa names analyzed is
881 beyond the debug count specified. */
882
883 static void
884 do_dbg_cnt (void)
885 {
886 unsigned i;
887 for (i = 0; i < num_ssa_names; i++)
888 {
889 if (!dbg_cnt (ccp))
890 {
891 const_val[i].lattice_val = VARYING;
892 const_val[i].mask = -1;
893 const_val[i].value = NULL_TREE;
894 }
895 }
896 }
897
898
899 /* Do final substitution of propagated values, cleanup the flowgraph and
900 free allocated storage. If NONZERO_P, record nonzero bits.
901
902 Return TRUE when something was optimized. */
903
904 static bool
905 ccp_finalize (bool nonzero_p)
906 {
907 bool something_changed;
908 unsigned i;
909 tree name;
910
911 do_dbg_cnt ();
912
913 /* Derive alignment and misalignment information from partially
914 constant pointers in the lattice or nonzero bits from partially
915 constant integers. */
916 FOR_EACH_SSA_NAME (i, name, cfun)
917 {
918 ccp_prop_value_t *val;
919 unsigned int tem, align;
920
921 if (!POINTER_TYPE_P (TREE_TYPE (name))
922 && (!INTEGRAL_TYPE_P (TREE_TYPE (name))
923 /* Don't record nonzero bits before IPA to avoid
924 using too much memory. */
925 || !nonzero_p))
926 continue;
927
928 val = get_value (name);
929 if (val->lattice_val != CONSTANT
930 || TREE_CODE (val->value) != INTEGER_CST
931 || val->mask == 0)
932 continue;
933
934 if (POINTER_TYPE_P (TREE_TYPE (name)))
935 {
936 /* Trailing mask bits specify the alignment, trailing value
937 bits the misalignment. */
938 tem = val->mask.to_uhwi ();
939 align = least_bit_hwi (tem);
940 if (align > 1)
941 set_ptr_info_alignment (get_ptr_info (name), align,
942 (TREE_INT_CST_LOW (val->value)
943 & (align - 1)));
944 }
945 else
946 {
947 unsigned int precision = TYPE_PRECISION (TREE_TYPE (val->value));
948 wide_int nonzero_bits = wide_int::from (val->mask, precision,
949 UNSIGNED) | val->value;
950 nonzero_bits &= get_nonzero_bits (name);
951 set_nonzero_bits (name, nonzero_bits);
952 }
953 }
954
955 /* Perform substitutions based on the known constant values. */
956 something_changed = substitute_and_fold (get_constant_value,
957 ccp_fold_stmt, true);
958
959 free (const_val);
960 const_val = NULL;
961 return something_changed;;
962 }
963
964
965 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
966 in VAL1.
967
968 any M UNDEFINED = any
969 any M VARYING = VARYING
970 Ci M Cj = Ci if (i == j)
971 Ci M Cj = VARYING if (i != j)
972 */
973
974 static void
975 ccp_lattice_meet (ccp_prop_value_t *val1, ccp_prop_value_t *val2)
976 {
977 if (val1->lattice_val == UNDEFINED
978 /* For UNDEFINED M SSA we can't always SSA because its definition
979 may not dominate the PHI node. Doing optimistic copy propagation
980 also causes a lot of gcc.dg/uninit-pred*.c FAILs. */
981 && (val2->lattice_val != CONSTANT
982 || TREE_CODE (val2->value) != SSA_NAME))
983 {
984 /* UNDEFINED M any = any */
985 *val1 = *val2;
986 }
987 else if (val2->lattice_val == UNDEFINED
988 /* See above. */
989 && (val1->lattice_val != CONSTANT
990 || TREE_CODE (val1->value) != SSA_NAME))
991 {
992 /* any M UNDEFINED = any
993 Nothing to do. VAL1 already contains the value we want. */
994 ;
995 }
996 else if (val1->lattice_val == VARYING
997 || val2->lattice_val == VARYING)
998 {
999 /* any M VARYING = VARYING. */
1000 val1->lattice_val = VARYING;
1001 val1->mask = -1;
1002 val1->value = NULL_TREE;
1003 }
1004 else if (val1->lattice_val == CONSTANT
1005 && val2->lattice_val == CONSTANT
1006 && TREE_CODE (val1->value) == INTEGER_CST
1007 && TREE_CODE (val2->value) == INTEGER_CST)
1008 {
1009 /* Ci M Cj = Ci if (i == j)
1010 Ci M Cj = VARYING if (i != j)
1011
1012 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
1013 drop to varying. */
1014 val1->mask = (val1->mask | val2->mask
1015 | (wi::to_widest (val1->value)
1016 ^ wi::to_widest (val2->value)));
1017 if (wi::sext (val1->mask, TYPE_PRECISION (TREE_TYPE (val1->value))) == -1)
1018 {
1019 val1->lattice_val = VARYING;
1020 val1->value = NULL_TREE;
1021 }
1022 }
1023 else if (val1->lattice_val == CONSTANT
1024 && val2->lattice_val == CONSTANT
1025 && operand_equal_p (val1->value, val2->value, 0))
1026 {
1027 /* Ci M Cj = Ci if (i == j)
1028 Ci M Cj = VARYING if (i != j)
1029
1030 VAL1 already contains the value we want for equivalent values. */
1031 }
1032 else if (val1->lattice_val == CONSTANT
1033 && val2->lattice_val == CONSTANT
1034 && (TREE_CODE (val1->value) == ADDR_EXPR
1035 || TREE_CODE (val2->value) == ADDR_EXPR))
1036 {
1037 /* When not equal addresses are involved try meeting for
1038 alignment. */
1039 ccp_prop_value_t tem = *val2;
1040 if (TREE_CODE (val1->value) == ADDR_EXPR)
1041 *val1 = get_value_for_expr (val1->value, true);
1042 if (TREE_CODE (val2->value) == ADDR_EXPR)
1043 tem = get_value_for_expr (val2->value, true);
1044 ccp_lattice_meet (val1, &tem);
1045 }
1046 else
1047 {
1048 /* Any other combination is VARYING. */
1049 val1->lattice_val = VARYING;
1050 val1->mask = -1;
1051 val1->value = NULL_TREE;
1052 }
1053 }
1054
1055
1056 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
1057 lattice values to determine PHI_NODE's lattice value. The value of a
1058 PHI node is determined calling ccp_lattice_meet with all the arguments
1059 of the PHI node that are incoming via executable edges. */
1060
1061 static enum ssa_prop_result
1062 ccp_visit_phi_node (gphi *phi)
1063 {
1064 unsigned i;
1065 ccp_prop_value_t new_val;
1066
1067 if (dump_file && (dump_flags & TDF_DETAILS))
1068 {
1069 fprintf (dump_file, "\nVisiting PHI node: ");
1070 print_gimple_stmt (dump_file, phi, 0, dump_flags);
1071 }
1072
1073 new_val.lattice_val = UNDEFINED;
1074 new_val.value = NULL_TREE;
1075 new_val.mask = 0;
1076
1077 bool first = true;
1078 bool non_exec_edge = false;
1079 for (i = 0; i < gimple_phi_num_args (phi); i++)
1080 {
1081 /* Compute the meet operator over all the PHI arguments flowing
1082 through executable edges. */
1083 edge e = gimple_phi_arg_edge (phi, i);
1084
1085 if (dump_file && (dump_flags & TDF_DETAILS))
1086 {
1087 fprintf (dump_file,
1088 "\n Argument #%d (%d -> %d %sexecutable)\n",
1089 i, e->src->index, e->dest->index,
1090 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
1091 }
1092
1093 /* If the incoming edge is executable, Compute the meet operator for
1094 the existing value of the PHI node and the current PHI argument. */
1095 if (e->flags & EDGE_EXECUTABLE)
1096 {
1097 tree arg = gimple_phi_arg (phi, i)->def;
1098 ccp_prop_value_t arg_val = get_value_for_expr (arg, false);
1099
1100 if (first)
1101 {
1102 new_val = arg_val;
1103 first = false;
1104 }
1105 else
1106 ccp_lattice_meet (&new_val, &arg_val);
1107
1108 if (dump_file && (dump_flags & TDF_DETAILS))
1109 {
1110 fprintf (dump_file, "\t");
1111 print_generic_expr (dump_file, arg, dump_flags);
1112 dump_lattice_value (dump_file, "\tValue: ", arg_val);
1113 fprintf (dump_file, "\n");
1114 }
1115
1116 if (new_val.lattice_val == VARYING)
1117 break;
1118 }
1119 else
1120 non_exec_edge = true;
1121 }
1122
1123 /* In case there were non-executable edges and the value is a copy
1124 make sure its definition dominates the PHI node. */
1125 if (non_exec_edge
1126 && new_val.lattice_val == CONSTANT
1127 && TREE_CODE (new_val.value) == SSA_NAME
1128 && ! SSA_NAME_IS_DEFAULT_DEF (new_val.value)
1129 && ! dominated_by_p (CDI_DOMINATORS, gimple_bb (phi),
1130 gimple_bb (SSA_NAME_DEF_STMT (new_val.value))))
1131 {
1132 new_val.lattice_val = VARYING;
1133 new_val.value = NULL_TREE;
1134 new_val.mask = -1;
1135 }
1136
1137 if (dump_file && (dump_flags & TDF_DETAILS))
1138 {
1139 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
1140 fprintf (dump_file, "\n\n");
1141 }
1142
1143 /* Make the transition to the new value. */
1144 if (set_lattice_value (gimple_phi_result (phi), &new_val))
1145 {
1146 if (new_val.lattice_val == VARYING)
1147 return SSA_PROP_VARYING;
1148 else
1149 return SSA_PROP_INTERESTING;
1150 }
1151 else
1152 return SSA_PROP_NOT_INTERESTING;
1153 }
1154
1155 /* Return the constant value for OP or OP otherwise. */
1156
1157 static tree
1158 valueize_op (tree op)
1159 {
1160 if (TREE_CODE (op) == SSA_NAME)
1161 {
1162 tree tem = get_constant_value (op);
1163 if (tem)
1164 return tem;
1165 }
1166 return op;
1167 }
1168
1169 /* Return the constant value for OP, but signal to not follow SSA
1170 edges if the definition may be simulated again. */
1171
1172 static tree
1173 valueize_op_1 (tree op)
1174 {
1175 if (TREE_CODE (op) == SSA_NAME)
1176 {
1177 /* If the definition may be simulated again we cannot follow
1178 this SSA edge as the SSA propagator does not necessarily
1179 re-visit the use. */
1180 gimple *def_stmt = SSA_NAME_DEF_STMT (op);
1181 if (!gimple_nop_p (def_stmt)
1182 && prop_simulate_again_p (def_stmt))
1183 return NULL_TREE;
1184 tree tem = get_constant_value (op);
1185 if (tem)
1186 return tem;
1187 }
1188 return op;
1189 }
1190
1191 /* CCP specific front-end to the non-destructive constant folding
1192 routines.
1193
1194 Attempt to simplify the RHS of STMT knowing that one or more
1195 operands are constants.
1196
1197 If simplification is possible, return the simplified RHS,
1198 otherwise return the original RHS or NULL_TREE. */
1199
1200 static tree
1201 ccp_fold (gimple *stmt)
1202 {
1203 location_t loc = gimple_location (stmt);
1204 switch (gimple_code (stmt))
1205 {
1206 case GIMPLE_COND:
1207 {
1208 /* Handle comparison operators that can appear in GIMPLE form. */
1209 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1210 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1211 enum tree_code code = gimple_cond_code (stmt);
1212 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1213 }
1214
1215 case GIMPLE_SWITCH:
1216 {
1217 /* Return the constant switch index. */
1218 return valueize_op (gimple_switch_index (as_a <gswitch *> (stmt)));
1219 }
1220
1221 case GIMPLE_ASSIGN:
1222 case GIMPLE_CALL:
1223 return gimple_fold_stmt_to_constant_1 (stmt,
1224 valueize_op, valueize_op_1);
1225
1226 default:
1227 gcc_unreachable ();
1228 }
1229 }
1230
1231 /* Apply the operation CODE in type TYPE to the value, mask pair
1232 RVAL and RMASK representing a value of type RTYPE and set
1233 the value, mask pair *VAL and *MASK to the result. */
1234
1235 void
1236 bit_value_unop (enum tree_code code, signop type_sgn, int type_precision,
1237 widest_int *val, widest_int *mask,
1238 signop rtype_sgn, int rtype_precision,
1239 const widest_int &rval, const widest_int &rmask)
1240 {
1241 switch (code)
1242 {
1243 case BIT_NOT_EXPR:
1244 *mask = rmask;
1245 *val = ~rval;
1246 break;
1247
1248 case NEGATE_EXPR:
1249 {
1250 widest_int temv, temm;
1251 /* Return ~rval + 1. */
1252 bit_value_unop (BIT_NOT_EXPR, type_sgn, type_precision, &temv, &temm,
1253 type_sgn, type_precision, rval, rmask);
1254 bit_value_binop (PLUS_EXPR, type_sgn, type_precision, val, mask,
1255 type_sgn, type_precision, temv, temm,
1256 type_sgn, type_precision, 1, 0);
1257 break;
1258 }
1259
1260 CASE_CONVERT:
1261 {
1262 /* First extend mask and value according to the original type. */
1263 *mask = wi::ext (rmask, rtype_precision, rtype_sgn);
1264 *val = wi::ext (rval, rtype_precision, rtype_sgn);
1265
1266 /* Then extend mask and value according to the target type. */
1267 *mask = wi::ext (*mask, type_precision, type_sgn);
1268 *val = wi::ext (*val, type_precision, type_sgn);
1269 break;
1270 }
1271
1272 default:
1273 *mask = -1;
1274 break;
1275 }
1276 }
1277
1278 /* Apply the operation CODE in type TYPE to the value, mask pairs
1279 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1280 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1281
1282 void
1283 bit_value_binop (enum tree_code code, signop sgn, int width,
1284 widest_int *val, widest_int *mask,
1285 signop r1type_sgn, int r1type_precision,
1286 const widest_int &r1val, const widest_int &r1mask,
1287 signop r2type_sgn, int r2type_precision,
1288 const widest_int &r2val, const widest_int &r2mask)
1289 {
1290 bool swap_p = false;
1291
1292 /* Assume we'll get a constant result. Use an initial non varying
1293 value, we fall back to varying in the end if necessary. */
1294 *mask = -1;
1295
1296 switch (code)
1297 {
1298 case BIT_AND_EXPR:
1299 /* The mask is constant where there is a known not
1300 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1301 *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
1302 *val = r1val & r2val;
1303 break;
1304
1305 case BIT_IOR_EXPR:
1306 /* The mask is constant where there is a known
1307 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1308 *mask = (r1mask | r2mask)
1309 .and_not (r1val.and_not (r1mask) | r2val.and_not (r2mask));
1310 *val = r1val | r2val;
1311 break;
1312
1313 case BIT_XOR_EXPR:
1314 /* m1 | m2 */
1315 *mask = r1mask | r2mask;
1316 *val = r1val ^ r2val;
1317 break;
1318
1319 case LROTATE_EXPR:
1320 case RROTATE_EXPR:
1321 if (r2mask == 0)
1322 {
1323 widest_int shift = r2val;
1324 if (shift == 0)
1325 {
1326 *mask = r1mask;
1327 *val = r1val;
1328 }
1329 else
1330 {
1331 if (wi::neg_p (shift))
1332 {
1333 shift = -shift;
1334 if (code == RROTATE_EXPR)
1335 code = LROTATE_EXPR;
1336 else
1337 code = RROTATE_EXPR;
1338 }
1339 if (code == RROTATE_EXPR)
1340 {
1341 *mask = wi::rrotate (r1mask, shift, width);
1342 *val = wi::rrotate (r1val, shift, width);
1343 }
1344 else
1345 {
1346 *mask = wi::lrotate (r1mask, shift, width);
1347 *val = wi::lrotate (r1val, shift, width);
1348 }
1349 }
1350 }
1351 break;
1352
1353 case LSHIFT_EXPR:
1354 case RSHIFT_EXPR:
1355 /* ??? We can handle partially known shift counts if we know
1356 its sign. That way we can tell that (x << (y | 8)) & 255
1357 is zero. */
1358 if (r2mask == 0)
1359 {
1360 widest_int shift = r2val;
1361 if (shift == 0)
1362 {
1363 *mask = r1mask;
1364 *val = r1val;
1365 }
1366 else
1367 {
1368 if (wi::neg_p (shift))
1369 {
1370 shift = -shift;
1371 if (code == RSHIFT_EXPR)
1372 code = LSHIFT_EXPR;
1373 else
1374 code = RSHIFT_EXPR;
1375 }
1376 if (code == RSHIFT_EXPR)
1377 {
1378 *mask = wi::rshift (wi::ext (r1mask, width, sgn), shift, sgn);
1379 *val = wi::rshift (wi::ext (r1val, width, sgn), shift, sgn);
1380 }
1381 else
1382 {
1383 *mask = wi::ext (r1mask << shift, width, sgn);
1384 *val = wi::ext (r1val << shift, width, sgn);
1385 }
1386 }
1387 }
1388 break;
1389
1390 case PLUS_EXPR:
1391 case POINTER_PLUS_EXPR:
1392 {
1393 /* Do the addition with unknown bits set to zero, to give carry-ins of
1394 zero wherever possible. */
1395 widest_int lo = r1val.and_not (r1mask) + r2val.and_not (r2mask);
1396 lo = wi::ext (lo, width, sgn);
1397 /* Do the addition with unknown bits set to one, to give carry-ins of
1398 one wherever possible. */
1399 widest_int hi = (r1val | r1mask) + (r2val | r2mask);
1400 hi = wi::ext (hi, width, sgn);
1401 /* Each bit in the result is known if (a) the corresponding bits in
1402 both inputs are known, and (b) the carry-in to that bit position
1403 is known. We can check condition (b) by seeing if we got the same
1404 result with minimised carries as with maximised carries. */
1405 *mask = r1mask | r2mask | (lo ^ hi);
1406 *mask = wi::ext (*mask, width, sgn);
1407 /* It shouldn't matter whether we choose lo or hi here. */
1408 *val = lo;
1409 break;
1410 }
1411
1412 case MINUS_EXPR:
1413 {
1414 widest_int temv, temm;
1415 bit_value_unop (NEGATE_EXPR, r2type_sgn, r2type_precision, &temv, &temm,
1416 r2type_sgn, r2type_precision, r2val, r2mask);
1417 bit_value_binop (PLUS_EXPR, sgn, width, val, mask,
1418 r1type_sgn, r1type_precision, r1val, r1mask,
1419 r2type_sgn, r2type_precision, temv, temm);
1420 break;
1421 }
1422
1423 case MULT_EXPR:
1424 {
1425 /* Just track trailing zeros in both operands and transfer
1426 them to the other. */
1427 int r1tz = wi::ctz (r1val | r1mask);
1428 int r2tz = wi::ctz (r2val | r2mask);
1429 if (r1tz + r2tz >= width)
1430 {
1431 *mask = 0;
1432 *val = 0;
1433 }
1434 else if (r1tz + r2tz > 0)
1435 {
1436 *mask = wi::ext (wi::mask <widest_int> (r1tz + r2tz, true),
1437 width, sgn);
1438 *val = 0;
1439 }
1440 break;
1441 }
1442
1443 case EQ_EXPR:
1444 case NE_EXPR:
1445 {
1446 widest_int m = r1mask | r2mask;
1447 if (r1val.and_not (m) != r2val.and_not (m))
1448 {
1449 *mask = 0;
1450 *val = ((code == EQ_EXPR) ? 0 : 1);
1451 }
1452 else
1453 {
1454 /* We know the result of a comparison is always one or zero. */
1455 *mask = 1;
1456 *val = 0;
1457 }
1458 break;
1459 }
1460
1461 case GE_EXPR:
1462 case GT_EXPR:
1463 swap_p = true;
1464 code = swap_tree_comparison (code);
1465 /* Fall through. */
1466 case LT_EXPR:
1467 case LE_EXPR:
1468 {
1469 int minmax, maxmin;
1470
1471 const widest_int &o1val = swap_p ? r2val : r1val;
1472 const widest_int &o1mask = swap_p ? r2mask : r1mask;
1473 const widest_int &o2val = swap_p ? r1val : r2val;
1474 const widest_int &o2mask = swap_p ? r1mask : r2mask;
1475
1476 /* If the most significant bits are not known we know nothing. */
1477 if (wi::neg_p (o1mask) || wi::neg_p (o2mask))
1478 break;
1479
1480 /* For comparisons the signedness is in the comparison operands. */
1481 sgn = r1type_sgn;
1482
1483 /* If we know the most significant bits we know the values
1484 value ranges by means of treating varying bits as zero
1485 or one. Do a cross comparison of the max/min pairs. */
1486 maxmin = wi::cmp (o1val | o1mask, o2val.and_not (o2mask), sgn);
1487 minmax = wi::cmp (o1val.and_not (o1mask), o2val | o2mask, sgn);
1488 if (maxmin < 0) /* o1 is less than o2. */
1489 {
1490 *mask = 0;
1491 *val = 1;
1492 }
1493 else if (minmax > 0) /* o1 is not less or equal to o2. */
1494 {
1495 *mask = 0;
1496 *val = 0;
1497 }
1498 else if (maxmin == minmax) /* o1 and o2 are equal. */
1499 {
1500 /* This probably should never happen as we'd have
1501 folded the thing during fully constant value folding. */
1502 *mask = 0;
1503 *val = (code == LE_EXPR ? 1 : 0);
1504 }
1505 else
1506 {
1507 /* We know the result of a comparison is always one or zero. */
1508 *mask = 1;
1509 *val = 0;
1510 }
1511 break;
1512 }
1513
1514 default:;
1515 }
1516 }
1517
1518 /* Return the propagation value when applying the operation CODE to
1519 the value RHS yielding type TYPE. */
1520
1521 static ccp_prop_value_t
1522 bit_value_unop (enum tree_code code, tree type, tree rhs)
1523 {
1524 ccp_prop_value_t rval = get_value_for_expr (rhs, true);
1525 widest_int value, mask;
1526 ccp_prop_value_t val;
1527
1528 if (rval.lattice_val == UNDEFINED)
1529 return rval;
1530
1531 gcc_assert ((rval.lattice_val == CONSTANT
1532 && TREE_CODE (rval.value) == INTEGER_CST)
1533 || wi::sext (rval.mask, TYPE_PRECISION (TREE_TYPE (rhs))) == -1);
1534 bit_value_unop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1535 TYPE_SIGN (TREE_TYPE (rhs)), TYPE_PRECISION (TREE_TYPE (rhs)),
1536 value_to_wide_int (rval), rval.mask);
1537 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1538 {
1539 val.lattice_val = CONSTANT;
1540 val.mask = mask;
1541 /* ??? Delay building trees here. */
1542 val.value = wide_int_to_tree (type, value);
1543 }
1544 else
1545 {
1546 val.lattice_val = VARYING;
1547 val.value = NULL_TREE;
1548 val.mask = -1;
1549 }
1550 return val;
1551 }
1552
1553 /* Return the propagation value when applying the operation CODE to
1554 the values RHS1 and RHS2 yielding type TYPE. */
1555
1556 static ccp_prop_value_t
1557 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
1558 {
1559 ccp_prop_value_t r1val = get_value_for_expr (rhs1, true);
1560 ccp_prop_value_t r2val = get_value_for_expr (rhs2, true);
1561 widest_int value, mask;
1562 ccp_prop_value_t val;
1563
1564 if (r1val.lattice_val == UNDEFINED
1565 || r2val.lattice_val == UNDEFINED)
1566 {
1567 val.lattice_val = VARYING;
1568 val.value = NULL_TREE;
1569 val.mask = -1;
1570 return val;
1571 }
1572
1573 gcc_assert ((r1val.lattice_val == CONSTANT
1574 && TREE_CODE (r1val.value) == INTEGER_CST)
1575 || wi::sext (r1val.mask,
1576 TYPE_PRECISION (TREE_TYPE (rhs1))) == -1);
1577 gcc_assert ((r2val.lattice_val == CONSTANT
1578 && TREE_CODE (r2val.value) == INTEGER_CST)
1579 || wi::sext (r2val.mask,
1580 TYPE_PRECISION (TREE_TYPE (rhs2))) == -1);
1581 bit_value_binop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1582 TYPE_SIGN (TREE_TYPE (rhs1)), TYPE_PRECISION (TREE_TYPE (rhs1)),
1583 value_to_wide_int (r1val), r1val.mask,
1584 TYPE_SIGN (TREE_TYPE (rhs2)), TYPE_PRECISION (TREE_TYPE (rhs2)),
1585 value_to_wide_int (r2val), r2val.mask);
1586
1587 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1588 {
1589 val.lattice_val = CONSTANT;
1590 val.mask = mask;
1591 /* ??? Delay building trees here. */
1592 val.value = wide_int_to_tree (type, value);
1593 }
1594 else
1595 {
1596 val.lattice_val = VARYING;
1597 val.value = NULL_TREE;
1598 val.mask = -1;
1599 }
1600 return val;
1601 }
1602
1603 /* Return the propagation value for __builtin_assume_aligned
1604 and functions with assume_aligned or alloc_aligned attribute.
1605 For __builtin_assume_aligned, ATTR is NULL_TREE,
1606 for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED
1607 is false, for alloc_aligned attribute ATTR is non-NULL and
1608 ALLOC_ALIGNED is true. */
1609
1610 static ccp_prop_value_t
1611 bit_value_assume_aligned (gimple *stmt, tree attr, ccp_prop_value_t ptrval,
1612 bool alloc_aligned)
1613 {
1614 tree align, misalign = NULL_TREE, type;
1615 unsigned HOST_WIDE_INT aligni, misaligni = 0;
1616 ccp_prop_value_t alignval;
1617 widest_int value, mask;
1618 ccp_prop_value_t val;
1619
1620 if (attr == NULL_TREE)
1621 {
1622 tree ptr = gimple_call_arg (stmt, 0);
1623 type = TREE_TYPE (ptr);
1624 ptrval = get_value_for_expr (ptr, true);
1625 }
1626 else
1627 {
1628 tree lhs = gimple_call_lhs (stmt);
1629 type = TREE_TYPE (lhs);
1630 }
1631
1632 if (ptrval.lattice_val == UNDEFINED)
1633 return ptrval;
1634 gcc_assert ((ptrval.lattice_val == CONSTANT
1635 && TREE_CODE (ptrval.value) == INTEGER_CST)
1636 || wi::sext (ptrval.mask, TYPE_PRECISION (type)) == -1);
1637 if (attr == NULL_TREE)
1638 {
1639 /* Get aligni and misaligni from __builtin_assume_aligned. */
1640 align = gimple_call_arg (stmt, 1);
1641 if (!tree_fits_uhwi_p (align))
1642 return ptrval;
1643 aligni = tree_to_uhwi (align);
1644 if (gimple_call_num_args (stmt) > 2)
1645 {
1646 misalign = gimple_call_arg (stmt, 2);
1647 if (!tree_fits_uhwi_p (misalign))
1648 return ptrval;
1649 misaligni = tree_to_uhwi (misalign);
1650 }
1651 }
1652 else
1653 {
1654 /* Get aligni and misaligni from assume_aligned or
1655 alloc_align attributes. */
1656 if (TREE_VALUE (attr) == NULL_TREE)
1657 return ptrval;
1658 attr = TREE_VALUE (attr);
1659 align = TREE_VALUE (attr);
1660 if (!tree_fits_uhwi_p (align))
1661 return ptrval;
1662 aligni = tree_to_uhwi (align);
1663 if (alloc_aligned)
1664 {
1665 if (aligni == 0 || aligni > gimple_call_num_args (stmt))
1666 return ptrval;
1667 align = gimple_call_arg (stmt, aligni - 1);
1668 if (!tree_fits_uhwi_p (align))
1669 return ptrval;
1670 aligni = tree_to_uhwi (align);
1671 }
1672 else if (TREE_CHAIN (attr) && TREE_VALUE (TREE_CHAIN (attr)))
1673 {
1674 misalign = TREE_VALUE (TREE_CHAIN (attr));
1675 if (!tree_fits_uhwi_p (misalign))
1676 return ptrval;
1677 misaligni = tree_to_uhwi (misalign);
1678 }
1679 }
1680 if (aligni <= 1 || (aligni & (aligni - 1)) != 0 || misaligni >= aligni)
1681 return ptrval;
1682
1683 align = build_int_cst_type (type, -aligni);
1684 alignval = get_value_for_expr (align, true);
1685 bit_value_binop (BIT_AND_EXPR, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1686 TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (ptrval), ptrval.mask,
1687 TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (alignval), alignval.mask);
1688
1689 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1690 {
1691 val.lattice_val = CONSTANT;
1692 val.mask = mask;
1693 gcc_assert ((mask.to_uhwi () & (aligni - 1)) == 0);
1694 gcc_assert ((value.to_uhwi () & (aligni - 1)) == 0);
1695 value |= misaligni;
1696 /* ??? Delay building trees here. */
1697 val.value = wide_int_to_tree (type, value);
1698 }
1699 else
1700 {
1701 val.lattice_val = VARYING;
1702 val.value = NULL_TREE;
1703 val.mask = -1;
1704 }
1705 return val;
1706 }
1707
1708 /* Evaluate statement STMT.
1709 Valid only for assignments, calls, conditionals, and switches. */
1710
1711 static ccp_prop_value_t
1712 evaluate_stmt (gimple *stmt)
1713 {
1714 ccp_prop_value_t val;
1715 tree simplified = NULL_TREE;
1716 ccp_lattice_t likelyvalue = likely_value (stmt);
1717 bool is_constant = false;
1718 unsigned int align;
1719
1720 if (dump_file && (dump_flags & TDF_DETAILS))
1721 {
1722 fprintf (dump_file, "which is likely ");
1723 switch (likelyvalue)
1724 {
1725 case CONSTANT:
1726 fprintf (dump_file, "CONSTANT");
1727 break;
1728 case UNDEFINED:
1729 fprintf (dump_file, "UNDEFINED");
1730 break;
1731 case VARYING:
1732 fprintf (dump_file, "VARYING");
1733 break;
1734 default:;
1735 }
1736 fprintf (dump_file, "\n");
1737 }
1738
1739 /* If the statement is likely to have a CONSTANT result, then try
1740 to fold the statement to determine the constant value. */
1741 /* FIXME. This is the only place that we call ccp_fold.
1742 Since likely_value never returns CONSTANT for calls, we will
1743 not attempt to fold them, including builtins that may profit. */
1744 if (likelyvalue == CONSTANT)
1745 {
1746 fold_defer_overflow_warnings ();
1747 simplified = ccp_fold (stmt);
1748 if (simplified && TREE_CODE (simplified) == SSA_NAME)
1749 {
1750 ccp_prop_value_t *val = get_value (simplified);
1751 if (val && val->lattice_val != VARYING)
1752 {
1753 fold_undefer_overflow_warnings (true, stmt, 0);
1754 return *val;
1755 }
1756 }
1757 is_constant = simplified && is_gimple_min_invariant (simplified);
1758 fold_undefer_overflow_warnings (is_constant, stmt, 0);
1759 if (is_constant)
1760 {
1761 /* The statement produced a constant value. */
1762 val.lattice_val = CONSTANT;
1763 val.value = simplified;
1764 val.mask = 0;
1765 return val;
1766 }
1767 }
1768 /* If the statement is likely to have a VARYING result, then do not
1769 bother folding the statement. */
1770 else if (likelyvalue == VARYING)
1771 {
1772 enum gimple_code code = gimple_code (stmt);
1773 if (code == GIMPLE_ASSIGN)
1774 {
1775 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1776
1777 /* Other cases cannot satisfy is_gimple_min_invariant
1778 without folding. */
1779 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
1780 simplified = gimple_assign_rhs1 (stmt);
1781 }
1782 else if (code == GIMPLE_SWITCH)
1783 simplified = gimple_switch_index (as_a <gswitch *> (stmt));
1784 else
1785 /* These cannot satisfy is_gimple_min_invariant without folding. */
1786 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
1787 is_constant = simplified && is_gimple_min_invariant (simplified);
1788 if (is_constant)
1789 {
1790 /* The statement produced a constant value. */
1791 val.lattice_val = CONSTANT;
1792 val.value = simplified;
1793 val.mask = 0;
1794 }
1795 }
1796 /* If the statement result is likely UNDEFINED, make it so. */
1797 else if (likelyvalue == UNDEFINED)
1798 {
1799 val.lattice_val = UNDEFINED;
1800 val.value = NULL_TREE;
1801 val.mask = 0;
1802 return val;
1803 }
1804
1805 /* Resort to simplification for bitwise tracking. */
1806 if (flag_tree_bit_ccp
1807 && (likelyvalue == CONSTANT || is_gimple_call (stmt)
1808 || (gimple_assign_single_p (stmt)
1809 && gimple_assign_rhs_code (stmt) == ADDR_EXPR))
1810 && !is_constant)
1811 {
1812 enum gimple_code code = gimple_code (stmt);
1813 val.lattice_val = VARYING;
1814 val.value = NULL_TREE;
1815 val.mask = -1;
1816 if (code == GIMPLE_ASSIGN)
1817 {
1818 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1819 tree rhs1 = gimple_assign_rhs1 (stmt);
1820 tree lhs = gimple_assign_lhs (stmt);
1821 if ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
1822 || POINTER_TYPE_P (TREE_TYPE (lhs)))
1823 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1824 || POINTER_TYPE_P (TREE_TYPE (rhs1))))
1825 switch (get_gimple_rhs_class (subcode))
1826 {
1827 case GIMPLE_SINGLE_RHS:
1828 val = get_value_for_expr (rhs1, true);
1829 break;
1830
1831 case GIMPLE_UNARY_RHS:
1832 val = bit_value_unop (subcode, TREE_TYPE (lhs), rhs1);
1833 break;
1834
1835 case GIMPLE_BINARY_RHS:
1836 val = bit_value_binop (subcode, TREE_TYPE (lhs), rhs1,
1837 gimple_assign_rhs2 (stmt));
1838 break;
1839
1840 default:;
1841 }
1842 }
1843 else if (code == GIMPLE_COND)
1844 {
1845 enum tree_code code = gimple_cond_code (stmt);
1846 tree rhs1 = gimple_cond_lhs (stmt);
1847 tree rhs2 = gimple_cond_rhs (stmt);
1848 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1849 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1850 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
1851 }
1852 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1853 {
1854 tree fndecl = gimple_call_fndecl (stmt);
1855 switch (DECL_FUNCTION_CODE (fndecl))
1856 {
1857 case BUILT_IN_MALLOC:
1858 case BUILT_IN_REALLOC:
1859 case BUILT_IN_CALLOC:
1860 case BUILT_IN_STRDUP:
1861 case BUILT_IN_STRNDUP:
1862 val.lattice_val = CONSTANT;
1863 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1864 val.mask = ~((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT
1865 / BITS_PER_UNIT - 1);
1866 break;
1867
1868 case BUILT_IN_ALLOCA:
1869 case BUILT_IN_ALLOCA_WITH_ALIGN:
1870 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN
1871 ? TREE_INT_CST_LOW (gimple_call_arg (stmt, 1))
1872 : BIGGEST_ALIGNMENT);
1873 val.lattice_val = CONSTANT;
1874 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1875 val.mask = ~((HOST_WIDE_INT) align / BITS_PER_UNIT - 1);
1876 break;
1877
1878 /* These builtins return their first argument, unmodified. */
1879 case BUILT_IN_MEMCPY:
1880 case BUILT_IN_MEMMOVE:
1881 case BUILT_IN_MEMSET:
1882 case BUILT_IN_STRCPY:
1883 case BUILT_IN_STRNCPY:
1884 case BUILT_IN_MEMCPY_CHK:
1885 case BUILT_IN_MEMMOVE_CHK:
1886 case BUILT_IN_MEMSET_CHK:
1887 case BUILT_IN_STRCPY_CHK:
1888 case BUILT_IN_STRNCPY_CHK:
1889 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1890 break;
1891
1892 case BUILT_IN_ASSUME_ALIGNED:
1893 val = bit_value_assume_aligned (stmt, NULL_TREE, val, false);
1894 break;
1895
1896 case BUILT_IN_ALIGNED_ALLOC:
1897 {
1898 tree align = get_constant_value (gimple_call_arg (stmt, 0));
1899 if (align
1900 && tree_fits_uhwi_p (align))
1901 {
1902 unsigned HOST_WIDE_INT aligni = tree_to_uhwi (align);
1903 if (aligni > 1
1904 /* align must be power-of-two */
1905 && (aligni & (aligni - 1)) == 0)
1906 {
1907 val.lattice_val = CONSTANT;
1908 val.value = build_int_cst (ptr_type_node, 0);
1909 val.mask = -aligni;
1910 }
1911 }
1912 break;
1913 }
1914
1915 default:;
1916 }
1917 }
1918 if (is_gimple_call (stmt) && gimple_call_lhs (stmt))
1919 {
1920 tree fntype = gimple_call_fntype (stmt);
1921 if (fntype)
1922 {
1923 tree attrs = lookup_attribute ("assume_aligned",
1924 TYPE_ATTRIBUTES (fntype));
1925 if (attrs)
1926 val = bit_value_assume_aligned (stmt, attrs, val, false);
1927 attrs = lookup_attribute ("alloc_align",
1928 TYPE_ATTRIBUTES (fntype));
1929 if (attrs)
1930 val = bit_value_assume_aligned (stmt, attrs, val, true);
1931 }
1932 }
1933 is_constant = (val.lattice_val == CONSTANT);
1934 }
1935
1936 if (flag_tree_bit_ccp
1937 && ((is_constant && TREE_CODE (val.value) == INTEGER_CST)
1938 || !is_constant)
1939 && gimple_get_lhs (stmt)
1940 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME)
1941 {
1942 tree lhs = gimple_get_lhs (stmt);
1943 wide_int nonzero_bits = get_nonzero_bits (lhs);
1944 if (nonzero_bits != -1)
1945 {
1946 if (!is_constant)
1947 {
1948 val.lattice_val = CONSTANT;
1949 val.value = build_zero_cst (TREE_TYPE (lhs));
1950 val.mask = extend_mask (nonzero_bits, TYPE_SIGN (TREE_TYPE (lhs)));
1951 is_constant = true;
1952 }
1953 else
1954 {
1955 if (wi::bit_and_not (val.value, nonzero_bits) != 0)
1956 val.value = wide_int_to_tree (TREE_TYPE (lhs),
1957 nonzero_bits & val.value);
1958 if (nonzero_bits == 0)
1959 val.mask = 0;
1960 else
1961 val.mask = val.mask & extend_mask (nonzero_bits,
1962 TYPE_SIGN (TREE_TYPE (lhs)));
1963 }
1964 }
1965 }
1966
1967 /* The statement produced a nonconstant value. */
1968 if (!is_constant)
1969 {
1970 /* The statement produced a copy. */
1971 if (simplified && TREE_CODE (simplified) == SSA_NAME
1972 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (simplified))
1973 {
1974 val.lattice_val = CONSTANT;
1975 val.value = simplified;
1976 val.mask = -1;
1977 }
1978 /* The statement is VARYING. */
1979 else
1980 {
1981 val.lattice_val = VARYING;
1982 val.value = NULL_TREE;
1983 val.mask = -1;
1984 }
1985 }
1986
1987 return val;
1988 }
1989
1990 typedef hash_table<nofree_ptr_hash<gimple> > gimple_htab;
1991
1992 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
1993 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
1994
1995 static void
1996 insert_clobber_before_stack_restore (tree saved_val, tree var,
1997 gimple_htab **visited)
1998 {
1999 gimple *stmt;
2000 gassign *clobber_stmt;
2001 tree clobber;
2002 imm_use_iterator iter;
2003 gimple_stmt_iterator i;
2004 gimple **slot;
2005
2006 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
2007 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
2008 {
2009 clobber = build_constructor (TREE_TYPE (var),
2010 NULL);
2011 TREE_THIS_VOLATILE (clobber) = 1;
2012 clobber_stmt = gimple_build_assign (var, clobber);
2013
2014 i = gsi_for_stmt (stmt);
2015 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
2016 }
2017 else if (gimple_code (stmt) == GIMPLE_PHI)
2018 {
2019 if (!*visited)
2020 *visited = new gimple_htab (10);
2021
2022 slot = (*visited)->find_slot (stmt, INSERT);
2023 if (*slot != NULL)
2024 continue;
2025
2026 *slot = stmt;
2027 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
2028 visited);
2029 }
2030 else if (gimple_assign_ssa_name_copy_p (stmt))
2031 insert_clobber_before_stack_restore (gimple_assign_lhs (stmt), var,
2032 visited);
2033 else if (chkp_gimple_call_builtin_p (stmt, BUILT_IN_CHKP_BNDRET))
2034 continue;
2035 else
2036 gcc_assert (is_gimple_debug (stmt));
2037 }
2038
2039 /* Advance the iterator to the previous non-debug gimple statement in the same
2040 or dominating basic block. */
2041
2042 static inline void
2043 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
2044 {
2045 basic_block dom;
2046
2047 gsi_prev_nondebug (i);
2048 while (gsi_end_p (*i))
2049 {
2050 dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
2051 if (dom == NULL || dom == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2052 return;
2053
2054 *i = gsi_last_bb (dom);
2055 }
2056 }
2057
2058 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
2059 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
2060
2061 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
2062 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
2063 that case the function gives up without inserting the clobbers. */
2064
2065 static void
2066 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
2067 {
2068 gimple *stmt;
2069 tree saved_val;
2070 gimple_htab *visited = NULL;
2071
2072 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
2073 {
2074 stmt = gsi_stmt (i);
2075
2076 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
2077 continue;
2078
2079 saved_val = gimple_call_lhs (stmt);
2080 if (saved_val == NULL_TREE)
2081 continue;
2082
2083 insert_clobber_before_stack_restore (saved_val, var, &visited);
2084 break;
2085 }
2086
2087 delete visited;
2088 }
2089
2090 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
2091 fixed-size array and returns the address, if found, otherwise returns
2092 NULL_TREE. */
2093
2094 static tree
2095 fold_builtin_alloca_with_align (gimple *stmt)
2096 {
2097 unsigned HOST_WIDE_INT size, threshold, n_elem;
2098 tree lhs, arg, block, var, elem_type, array_type;
2099
2100 /* Get lhs. */
2101 lhs = gimple_call_lhs (stmt);
2102 if (lhs == NULL_TREE)
2103 return NULL_TREE;
2104
2105 /* Detect constant argument. */
2106 arg = get_constant_value (gimple_call_arg (stmt, 0));
2107 if (arg == NULL_TREE
2108 || TREE_CODE (arg) != INTEGER_CST
2109 || !tree_fits_uhwi_p (arg))
2110 return NULL_TREE;
2111
2112 size = tree_to_uhwi (arg);
2113
2114 /* Heuristic: don't fold large allocas. */
2115 threshold = (unsigned HOST_WIDE_INT)PARAM_VALUE (PARAM_LARGE_STACK_FRAME);
2116 /* In case the alloca is located at function entry, it has the same lifetime
2117 as a declared array, so we allow a larger size. */
2118 block = gimple_block (stmt);
2119 if (!(cfun->after_inlining
2120 && block
2121 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
2122 threshold /= 10;
2123 if (size > threshold)
2124 return NULL_TREE;
2125
2126 /* Declare array. */
2127 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
2128 n_elem = size * 8 / BITS_PER_UNIT;
2129 array_type = build_array_type_nelts (elem_type, n_elem);
2130 var = create_tmp_var (array_type);
2131 SET_DECL_ALIGN (var, TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
2132 {
2133 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
2134 if (pi != NULL && !pi->pt.anything)
2135 {
2136 bool singleton_p;
2137 unsigned uid;
2138 singleton_p = pt_solution_singleton_p (&pi->pt, &uid);
2139 gcc_assert (singleton_p);
2140 SET_DECL_PT_UID (var, uid);
2141 }
2142 }
2143
2144 /* Fold alloca to the address of the array. */
2145 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
2146 }
2147
2148 /* Fold the stmt at *GSI with CCP specific information that propagating
2149 and regular folding does not catch. */
2150
2151 static bool
2152 ccp_fold_stmt (gimple_stmt_iterator *gsi)
2153 {
2154 gimple *stmt = gsi_stmt (*gsi);
2155
2156 switch (gimple_code (stmt))
2157 {
2158 case GIMPLE_COND:
2159 {
2160 gcond *cond_stmt = as_a <gcond *> (stmt);
2161 ccp_prop_value_t val;
2162 /* Statement evaluation will handle type mismatches in constants
2163 more gracefully than the final propagation. This allows us to
2164 fold more conditionals here. */
2165 val = evaluate_stmt (stmt);
2166 if (val.lattice_val != CONSTANT
2167 || val.mask != 0)
2168 return false;
2169
2170 if (dump_file)
2171 {
2172 fprintf (dump_file, "Folding predicate ");
2173 print_gimple_expr (dump_file, stmt, 0, 0);
2174 fprintf (dump_file, " to ");
2175 print_generic_expr (dump_file, val.value, 0);
2176 fprintf (dump_file, "\n");
2177 }
2178
2179 if (integer_zerop (val.value))
2180 gimple_cond_make_false (cond_stmt);
2181 else
2182 gimple_cond_make_true (cond_stmt);
2183
2184 return true;
2185 }
2186
2187 case GIMPLE_CALL:
2188 {
2189 tree lhs = gimple_call_lhs (stmt);
2190 int flags = gimple_call_flags (stmt);
2191 tree val;
2192 tree argt;
2193 bool changed = false;
2194 unsigned i;
2195
2196 /* If the call was folded into a constant make sure it goes
2197 away even if we cannot propagate into all uses because of
2198 type issues. */
2199 if (lhs
2200 && TREE_CODE (lhs) == SSA_NAME
2201 && (val = get_constant_value (lhs))
2202 /* Don't optimize away calls that have side-effects. */
2203 && (flags & (ECF_CONST|ECF_PURE)) != 0
2204 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
2205 {
2206 tree new_rhs = unshare_expr (val);
2207 bool res;
2208 if (!useless_type_conversion_p (TREE_TYPE (lhs),
2209 TREE_TYPE (new_rhs)))
2210 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
2211 res = update_call_from_tree (gsi, new_rhs);
2212 gcc_assert (res);
2213 return true;
2214 }
2215
2216 /* Internal calls provide no argument types, so the extra laxity
2217 for normal calls does not apply. */
2218 if (gimple_call_internal_p (stmt))
2219 return false;
2220
2221 /* The heuristic of fold_builtin_alloca_with_align differs before and
2222 after inlining, so we don't require the arg to be changed into a
2223 constant for folding, but just to be constant. */
2224 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN))
2225 {
2226 tree new_rhs = fold_builtin_alloca_with_align (stmt);
2227 if (new_rhs)
2228 {
2229 bool res = update_call_from_tree (gsi, new_rhs);
2230 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
2231 gcc_assert (res);
2232 insert_clobbers_for_var (*gsi, var);
2233 return true;
2234 }
2235 }
2236
2237 /* Propagate into the call arguments. Compared to replace_uses_in
2238 this can use the argument slot types for type verification
2239 instead of the current argument type. We also can safely
2240 drop qualifiers here as we are dealing with constants anyway. */
2241 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
2242 for (i = 0; i < gimple_call_num_args (stmt) && argt;
2243 ++i, argt = TREE_CHAIN (argt))
2244 {
2245 tree arg = gimple_call_arg (stmt, i);
2246 if (TREE_CODE (arg) == SSA_NAME
2247 && (val = get_constant_value (arg))
2248 && useless_type_conversion_p
2249 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
2250 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2251 {
2252 gimple_call_set_arg (stmt, i, unshare_expr (val));
2253 changed = true;
2254 }
2255 }
2256
2257 return changed;
2258 }
2259
2260 case GIMPLE_ASSIGN:
2261 {
2262 tree lhs = gimple_assign_lhs (stmt);
2263 tree val;
2264
2265 /* If we have a load that turned out to be constant replace it
2266 as we cannot propagate into all uses in all cases. */
2267 if (gimple_assign_single_p (stmt)
2268 && TREE_CODE (lhs) == SSA_NAME
2269 && (val = get_constant_value (lhs)))
2270 {
2271 tree rhs = unshare_expr (val);
2272 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2273 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
2274 gimple_assign_set_rhs_from_tree (gsi, rhs);
2275 return true;
2276 }
2277
2278 return false;
2279 }
2280
2281 default:
2282 return false;
2283 }
2284 }
2285
2286 /* Visit the assignment statement STMT. Set the value of its LHS to the
2287 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2288 creates virtual definitions, set the value of each new name to that
2289 of the RHS (if we can derive a constant out of the RHS).
2290 Value-returning call statements also perform an assignment, and
2291 are handled here. */
2292
2293 static enum ssa_prop_result
2294 visit_assignment (gimple *stmt, tree *output_p)
2295 {
2296 ccp_prop_value_t val;
2297 enum ssa_prop_result retval = SSA_PROP_NOT_INTERESTING;
2298
2299 tree lhs = gimple_get_lhs (stmt);
2300 if (TREE_CODE (lhs) == SSA_NAME)
2301 {
2302 /* Evaluate the statement, which could be
2303 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2304 val = evaluate_stmt (stmt);
2305
2306 /* If STMT is an assignment to an SSA_NAME, we only have one
2307 value to set. */
2308 if (set_lattice_value (lhs, &val))
2309 {
2310 *output_p = lhs;
2311 if (val.lattice_val == VARYING)
2312 retval = SSA_PROP_VARYING;
2313 else
2314 retval = SSA_PROP_INTERESTING;
2315 }
2316 }
2317
2318 return retval;
2319 }
2320
2321
2322 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2323 if it can determine which edge will be taken. Otherwise, return
2324 SSA_PROP_VARYING. */
2325
2326 static enum ssa_prop_result
2327 visit_cond_stmt (gimple *stmt, edge *taken_edge_p)
2328 {
2329 ccp_prop_value_t val;
2330 basic_block block;
2331
2332 block = gimple_bb (stmt);
2333 val = evaluate_stmt (stmt);
2334 if (val.lattice_val != CONSTANT
2335 || val.mask != 0)
2336 return SSA_PROP_VARYING;
2337
2338 /* Find which edge out of the conditional block will be taken and add it
2339 to the worklist. If no single edge can be determined statically,
2340 return SSA_PROP_VARYING to feed all the outgoing edges to the
2341 propagation engine. */
2342 *taken_edge_p = find_taken_edge (block, val.value);
2343 if (*taken_edge_p)
2344 return SSA_PROP_INTERESTING;
2345 else
2346 return SSA_PROP_VARYING;
2347 }
2348
2349
2350 /* Evaluate statement STMT. If the statement produces an output value and
2351 its evaluation changes the lattice value of its output, return
2352 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2353 output value.
2354
2355 If STMT is a conditional branch and we can determine its truth
2356 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2357 value, return SSA_PROP_VARYING. */
2358
2359 static enum ssa_prop_result
2360 ccp_visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
2361 {
2362 tree def;
2363 ssa_op_iter iter;
2364
2365 if (dump_file && (dump_flags & TDF_DETAILS))
2366 {
2367 fprintf (dump_file, "\nVisiting statement:\n");
2368 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2369 }
2370
2371 switch (gimple_code (stmt))
2372 {
2373 case GIMPLE_ASSIGN:
2374 /* If the statement is an assignment that produces a single
2375 output value, evaluate its RHS to see if the lattice value of
2376 its output has changed. */
2377 return visit_assignment (stmt, output_p);
2378
2379 case GIMPLE_CALL:
2380 /* A value-returning call also performs an assignment. */
2381 if (gimple_call_lhs (stmt) != NULL_TREE)
2382 return visit_assignment (stmt, output_p);
2383 break;
2384
2385 case GIMPLE_COND:
2386 case GIMPLE_SWITCH:
2387 /* If STMT is a conditional branch, see if we can determine
2388 which branch will be taken. */
2389 /* FIXME. It appears that we should be able to optimize
2390 computed GOTOs here as well. */
2391 return visit_cond_stmt (stmt, taken_edge_p);
2392
2393 default:
2394 break;
2395 }
2396
2397 /* Any other kind of statement is not interesting for constant
2398 propagation and, therefore, not worth simulating. */
2399 if (dump_file && (dump_flags & TDF_DETAILS))
2400 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2401
2402 /* Definitions made by statements other than assignments to
2403 SSA_NAMEs represent unknown modifications to their outputs.
2404 Mark them VARYING. */
2405 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2406 set_value_varying (def);
2407
2408 return SSA_PROP_VARYING;
2409 }
2410
2411
2412 /* Main entry point for SSA Conditional Constant Propagation. If NONZERO_P,
2413 record nonzero bits. */
2414
2415 static unsigned int
2416 do_ssa_ccp (bool nonzero_p)
2417 {
2418 unsigned int todo = 0;
2419 calculate_dominance_info (CDI_DOMINATORS);
2420
2421 ccp_initialize ();
2422 ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node);
2423 if (ccp_finalize (nonzero_p || flag_ipa_bit_cp))
2424 {
2425 todo = (TODO_cleanup_cfg | TODO_update_ssa);
2426
2427 /* ccp_finalize does not preserve loop-closed ssa. */
2428 loops_state_clear (LOOP_CLOSED_SSA);
2429 }
2430
2431 free_dominance_info (CDI_DOMINATORS);
2432 return todo;
2433 }
2434
2435
2436 namespace {
2437
2438 const pass_data pass_data_ccp =
2439 {
2440 GIMPLE_PASS, /* type */
2441 "ccp", /* name */
2442 OPTGROUP_NONE, /* optinfo_flags */
2443 TV_TREE_CCP, /* tv_id */
2444 ( PROP_cfg | PROP_ssa ), /* properties_required */
2445 0, /* properties_provided */
2446 0, /* properties_destroyed */
2447 0, /* todo_flags_start */
2448 TODO_update_address_taken, /* todo_flags_finish */
2449 };
2450
2451 class pass_ccp : public gimple_opt_pass
2452 {
2453 public:
2454 pass_ccp (gcc::context *ctxt)
2455 : gimple_opt_pass (pass_data_ccp, ctxt), nonzero_p (false)
2456 {}
2457
2458 /* opt_pass methods: */
2459 opt_pass * clone () { return new pass_ccp (m_ctxt); }
2460 void set_pass_param (unsigned int n, bool param)
2461 {
2462 gcc_assert (n == 0);
2463 nonzero_p = param;
2464 }
2465 virtual bool gate (function *) { return flag_tree_ccp != 0; }
2466 virtual unsigned int execute (function *) { return do_ssa_ccp (nonzero_p); }
2467
2468 private:
2469 /* Determines whether the pass instance records nonzero bits. */
2470 bool nonzero_p;
2471 }; // class pass_ccp
2472
2473 } // anon namespace
2474
2475 gimple_opt_pass *
2476 make_pass_ccp (gcc::context *ctxt)
2477 {
2478 return new pass_ccp (ctxt);
2479 }
2480
2481
2482
2483 /* Try to optimize out __builtin_stack_restore. Optimize it out
2484 if there is another __builtin_stack_restore in the same basic
2485 block and no calls or ASM_EXPRs are in between, or if this block's
2486 only outgoing edge is to EXIT_BLOCK and there are no calls or
2487 ASM_EXPRs after this __builtin_stack_restore. */
2488
2489 static tree
2490 optimize_stack_restore (gimple_stmt_iterator i)
2491 {
2492 tree callee;
2493 gimple *stmt;
2494
2495 basic_block bb = gsi_bb (i);
2496 gimple *call = gsi_stmt (i);
2497
2498 if (gimple_code (call) != GIMPLE_CALL
2499 || gimple_call_num_args (call) != 1
2500 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2501 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2502 return NULL_TREE;
2503
2504 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2505 {
2506 stmt = gsi_stmt (i);
2507 if (gimple_code (stmt) == GIMPLE_ASM)
2508 return NULL_TREE;
2509 if (gimple_code (stmt) != GIMPLE_CALL)
2510 continue;
2511
2512 callee = gimple_call_fndecl (stmt);
2513 if (!callee
2514 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2515 /* All regular builtins are ok, just obviously not alloca. */
2516 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
2517 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA_WITH_ALIGN)
2518 return NULL_TREE;
2519
2520 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
2521 goto second_stack_restore;
2522 }
2523
2524 if (!gsi_end_p (i))
2525 return NULL_TREE;
2526
2527 /* Allow one successor of the exit block, or zero successors. */
2528 switch (EDGE_COUNT (bb->succs))
2529 {
2530 case 0:
2531 break;
2532 case 1:
2533 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2534 return NULL_TREE;
2535 break;
2536 default:
2537 return NULL_TREE;
2538 }
2539 second_stack_restore:
2540
2541 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2542 If there are multiple uses, then the last one should remove the call.
2543 In any case, whether the call to __builtin_stack_save can be removed
2544 or not is irrelevant to removing the call to __builtin_stack_restore. */
2545 if (has_single_use (gimple_call_arg (call, 0)))
2546 {
2547 gimple *stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2548 if (is_gimple_call (stack_save))
2549 {
2550 callee = gimple_call_fndecl (stack_save);
2551 if (callee
2552 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2553 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE)
2554 {
2555 gimple_stmt_iterator stack_save_gsi;
2556 tree rhs;
2557
2558 stack_save_gsi = gsi_for_stmt (stack_save);
2559 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2560 update_call_from_tree (&stack_save_gsi, rhs);
2561 }
2562 }
2563 }
2564
2565 /* No effect, so the statement will be deleted. */
2566 return integer_zero_node;
2567 }
2568
2569 /* If va_list type is a simple pointer and nothing special is needed,
2570 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2571 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2572 pointer assignment. */
2573
2574 static tree
2575 optimize_stdarg_builtin (gimple *call)
2576 {
2577 tree callee, lhs, rhs, cfun_va_list;
2578 bool va_list_simple_ptr;
2579 location_t loc = gimple_location (call);
2580
2581 if (gimple_code (call) != GIMPLE_CALL)
2582 return NULL_TREE;
2583
2584 callee = gimple_call_fndecl (call);
2585
2586 cfun_va_list = targetm.fn_abi_va_list (callee);
2587 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2588 && (TREE_TYPE (cfun_va_list) == void_type_node
2589 || TREE_TYPE (cfun_va_list) == char_type_node);
2590
2591 switch (DECL_FUNCTION_CODE (callee))
2592 {
2593 case BUILT_IN_VA_START:
2594 if (!va_list_simple_ptr
2595 || targetm.expand_builtin_va_start != NULL
2596 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
2597 return NULL_TREE;
2598
2599 if (gimple_call_num_args (call) != 2)
2600 return NULL_TREE;
2601
2602 lhs = gimple_call_arg (call, 0);
2603 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2604 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2605 != TYPE_MAIN_VARIANT (cfun_va_list))
2606 return NULL_TREE;
2607
2608 lhs = build_fold_indirect_ref_loc (loc, lhs);
2609 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
2610 1, integer_zero_node);
2611 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2612 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2613
2614 case BUILT_IN_VA_COPY:
2615 if (!va_list_simple_ptr)
2616 return NULL_TREE;
2617
2618 if (gimple_call_num_args (call) != 2)
2619 return NULL_TREE;
2620
2621 lhs = gimple_call_arg (call, 0);
2622 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2623 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2624 != TYPE_MAIN_VARIANT (cfun_va_list))
2625 return NULL_TREE;
2626
2627 lhs = build_fold_indirect_ref_loc (loc, lhs);
2628 rhs = gimple_call_arg (call, 1);
2629 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2630 != TYPE_MAIN_VARIANT (cfun_va_list))
2631 return NULL_TREE;
2632
2633 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2634 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2635
2636 case BUILT_IN_VA_END:
2637 /* No effect, so the statement will be deleted. */
2638 return integer_zero_node;
2639
2640 default:
2641 gcc_unreachable ();
2642 }
2643 }
2644
2645 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2646 the incoming jumps. Return true if at least one jump was changed. */
2647
2648 static bool
2649 optimize_unreachable (gimple_stmt_iterator i)
2650 {
2651 basic_block bb = gsi_bb (i);
2652 gimple_stmt_iterator gsi;
2653 gimple *stmt;
2654 edge_iterator ei;
2655 edge e;
2656 bool ret;
2657
2658 if (flag_sanitize & SANITIZE_UNREACHABLE)
2659 return false;
2660
2661 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2662 {
2663 stmt = gsi_stmt (gsi);
2664
2665 if (is_gimple_debug (stmt))
2666 continue;
2667
2668 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2669 {
2670 /* Verify we do not need to preserve the label. */
2671 if (FORCED_LABEL (gimple_label_label (label_stmt)))
2672 return false;
2673
2674 continue;
2675 }
2676
2677 /* Only handle the case that __builtin_unreachable is the first statement
2678 in the block. We rely on DCE to remove stmts without side-effects
2679 before __builtin_unreachable. */
2680 if (gsi_stmt (gsi) != gsi_stmt (i))
2681 return false;
2682 }
2683
2684 ret = false;
2685 FOR_EACH_EDGE (e, ei, bb->preds)
2686 {
2687 gsi = gsi_last_bb (e->src);
2688 if (gsi_end_p (gsi))
2689 continue;
2690
2691 stmt = gsi_stmt (gsi);
2692 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
2693 {
2694 if (e->flags & EDGE_TRUE_VALUE)
2695 gimple_cond_make_false (cond_stmt);
2696 else if (e->flags & EDGE_FALSE_VALUE)
2697 gimple_cond_make_true (cond_stmt);
2698 else
2699 gcc_unreachable ();
2700 update_stmt (cond_stmt);
2701 }
2702 else
2703 {
2704 /* Todo: handle other cases, f.i. switch statement. */
2705 continue;
2706 }
2707
2708 ret = true;
2709 }
2710
2711 return ret;
2712 }
2713
2714 /* Optimize
2715 mask_2 = 1 << cnt_1;
2716 _4 = __atomic_fetch_or_* (ptr_6, mask_2, _3);
2717 _5 = _4 & mask_2;
2718 to
2719 _4 = ATOMIC_BIT_TEST_AND_SET (ptr_6, cnt_1, 0, _3);
2720 _5 = _4;
2721 If _5 is only used in _5 != 0 or _5 == 0 comparisons, 1
2722 is passed instead of 0, and the builtin just returns a zero
2723 or 1 value instead of the actual bit.
2724 Similarly for __sync_fetch_and_or_* (without the ", _3" part
2725 in there), and/or if mask_2 is a power of 2 constant.
2726 Similarly for xor instead of or, use ATOMIC_BIT_TEST_AND_COMPLEMENT
2727 in that case. And similarly for and instead of or, except that
2728 the second argument to the builtin needs to be one's complement
2729 of the mask instead of mask. */
2730
2731 static void
2732 optimize_atomic_bit_test_and (gimple_stmt_iterator *gsip,
2733 enum internal_fn fn, bool has_model_arg,
2734 bool after)
2735 {
2736 gimple *call = gsi_stmt (*gsip);
2737 tree lhs = gimple_call_lhs (call);
2738 use_operand_p use_p;
2739 gimple *use_stmt;
2740 tree mask, bit;
2741 optab optab;
2742
2743 if (!flag_inline_atomics
2744 || optimize_debug
2745 || !gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2746 || !lhs
2747 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)
2748 || !single_imm_use (lhs, &use_p, &use_stmt)
2749 || !is_gimple_assign (use_stmt)
2750 || gimple_assign_rhs_code (use_stmt) != BIT_AND_EXPR
2751 || !gimple_vdef (call))
2752 return;
2753
2754 switch (fn)
2755 {
2756 case IFN_ATOMIC_BIT_TEST_AND_SET:
2757 optab = atomic_bit_test_and_set_optab;
2758 break;
2759 case IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT:
2760 optab = atomic_bit_test_and_complement_optab;
2761 break;
2762 case IFN_ATOMIC_BIT_TEST_AND_RESET:
2763 optab = atomic_bit_test_and_reset_optab;
2764 break;
2765 default:
2766 return;
2767 }
2768
2769 if (optab_handler (optab, TYPE_MODE (TREE_TYPE (lhs))) == CODE_FOR_nothing)
2770 return;
2771
2772 mask = gimple_call_arg (call, 1);
2773 tree use_lhs = gimple_assign_lhs (use_stmt);
2774 if (!use_lhs)
2775 return;
2776
2777 if (TREE_CODE (mask) == INTEGER_CST)
2778 {
2779 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
2780 mask = const_unop (BIT_NOT_EXPR, TREE_TYPE (mask), mask);
2781 mask = fold_convert (TREE_TYPE (lhs), mask);
2782 int ibit = tree_log2 (mask);
2783 if (ibit < 0)
2784 return;
2785 bit = build_int_cst (TREE_TYPE (lhs), ibit);
2786 }
2787 else if (TREE_CODE (mask) == SSA_NAME)
2788 {
2789 gimple *g = SSA_NAME_DEF_STMT (mask);
2790 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
2791 {
2792 if (!is_gimple_assign (g)
2793 || gimple_assign_rhs_code (g) != BIT_NOT_EXPR)
2794 return;
2795 mask = gimple_assign_rhs1 (g);
2796 if (TREE_CODE (mask) != SSA_NAME)
2797 return;
2798 g = SSA_NAME_DEF_STMT (mask);
2799 }
2800 if (!is_gimple_assign (g)
2801 || gimple_assign_rhs_code (g) != LSHIFT_EXPR
2802 || !integer_onep (gimple_assign_rhs1 (g)))
2803 return;
2804 bit = gimple_assign_rhs2 (g);
2805 }
2806 else
2807 return;
2808
2809 if (gimple_assign_rhs1 (use_stmt) == lhs)
2810 {
2811 if (!operand_equal_p (gimple_assign_rhs2 (use_stmt), mask, 0))
2812 return;
2813 }
2814 else if (gimple_assign_rhs2 (use_stmt) != lhs
2815 || !operand_equal_p (gimple_assign_rhs1 (use_stmt), mask, 0))
2816 return;
2817
2818 bool use_bool = true;
2819 bool has_debug_uses = false;
2820 imm_use_iterator iter;
2821 gimple *g;
2822
2823 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs))
2824 use_bool = false;
2825 FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
2826 {
2827 enum tree_code code = ERROR_MARK;
2828 tree op0 = NULL_TREE, op1 = NULL_TREE;
2829 if (is_gimple_debug (g))
2830 {
2831 has_debug_uses = true;
2832 continue;
2833 }
2834 else if (is_gimple_assign (g))
2835 switch (gimple_assign_rhs_code (g))
2836 {
2837 case COND_EXPR:
2838 op1 = gimple_assign_rhs1 (g);
2839 code = TREE_CODE (op1);
2840 op0 = TREE_OPERAND (op1, 0);
2841 op1 = TREE_OPERAND (op1, 1);
2842 break;
2843 case EQ_EXPR:
2844 case NE_EXPR:
2845 code = gimple_assign_rhs_code (g);
2846 op0 = gimple_assign_rhs1 (g);
2847 op1 = gimple_assign_rhs2 (g);
2848 break;
2849 default:
2850 break;
2851 }
2852 else if (gimple_code (g) == GIMPLE_COND)
2853 {
2854 code = gimple_cond_code (g);
2855 op0 = gimple_cond_lhs (g);
2856 op1 = gimple_cond_rhs (g);
2857 }
2858
2859 if ((code == EQ_EXPR || code == NE_EXPR)
2860 && op0 == use_lhs
2861 && integer_zerop (op1))
2862 {
2863 use_operand_p use_p;
2864 int n = 0;
2865 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2866 n++;
2867 if (n == 1)
2868 continue;
2869 }
2870
2871 use_bool = false;
2872 BREAK_FROM_IMM_USE_STMT (iter);
2873 }
2874
2875 tree new_lhs = make_ssa_name (TREE_TYPE (lhs));
2876 tree flag = build_int_cst (TREE_TYPE (lhs), use_bool);
2877 if (has_model_arg)
2878 g = gimple_build_call_internal (fn, 4, gimple_call_arg (call, 0),
2879 bit, flag, gimple_call_arg (call, 2));
2880 else
2881 g = gimple_build_call_internal (fn, 3, gimple_call_arg (call, 0),
2882 bit, flag);
2883 gimple_call_set_lhs (g, new_lhs);
2884 gimple_set_location (g, gimple_location (call));
2885 gimple_set_vuse (g, gimple_vuse (call));
2886 gimple_set_vdef (g, gimple_vdef (call));
2887 SSA_NAME_DEF_STMT (gimple_vdef (call)) = g;
2888 gimple_stmt_iterator gsi = *gsip;
2889 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2890 if (after)
2891 {
2892 /* The internal function returns the value of the specified bit
2893 before the atomic operation. If we are interested in the value
2894 of the specified bit after the atomic operation (makes only sense
2895 for xor, otherwise the bit content is compile time known),
2896 we need to invert the bit. */
2897 g = gimple_build_assign (make_ssa_name (TREE_TYPE (lhs)),
2898 BIT_XOR_EXPR, new_lhs,
2899 use_bool ? build_int_cst (TREE_TYPE (lhs), 1)
2900 : mask);
2901 new_lhs = gimple_assign_lhs (g);
2902 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2903 }
2904 if (use_bool && has_debug_uses)
2905 {
2906 tree temp = make_node (DEBUG_EXPR_DECL);
2907 DECL_ARTIFICIAL (temp) = 1;
2908 TREE_TYPE (temp) = TREE_TYPE (lhs);
2909 DECL_MODE (temp) = TYPE_MODE (TREE_TYPE (lhs));
2910 tree t = build2 (LSHIFT_EXPR, TREE_TYPE (lhs), new_lhs, bit);
2911 g = gimple_build_debug_bind (temp, t, g);
2912 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2913 FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
2914 if (is_gimple_debug (g))
2915 {
2916 use_operand_p use_p;
2917 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2918 SET_USE (use_p, temp);
2919 update_stmt (g);
2920 }
2921 }
2922 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_lhs)
2923 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs);
2924 replace_uses_by (use_lhs, new_lhs);
2925 gsi = gsi_for_stmt (use_stmt);
2926 gsi_remove (&gsi, true);
2927 release_defs (use_stmt);
2928 gsi_remove (gsip, true);
2929 release_ssa_name (lhs);
2930 }
2931
2932 /* A simple pass that attempts to fold all builtin functions. This pass
2933 is run after we've propagated as many constants as we can. */
2934
2935 namespace {
2936
2937 const pass_data pass_data_fold_builtins =
2938 {
2939 GIMPLE_PASS, /* type */
2940 "fab", /* name */
2941 OPTGROUP_NONE, /* optinfo_flags */
2942 TV_NONE, /* tv_id */
2943 ( PROP_cfg | PROP_ssa ), /* properties_required */
2944 0, /* properties_provided */
2945 0, /* properties_destroyed */
2946 0, /* todo_flags_start */
2947 TODO_update_ssa, /* todo_flags_finish */
2948 };
2949
2950 class pass_fold_builtins : public gimple_opt_pass
2951 {
2952 public:
2953 pass_fold_builtins (gcc::context *ctxt)
2954 : gimple_opt_pass (pass_data_fold_builtins, ctxt)
2955 {}
2956
2957 /* opt_pass methods: */
2958 opt_pass * clone () { return new pass_fold_builtins (m_ctxt); }
2959 virtual unsigned int execute (function *);
2960
2961 }; // class pass_fold_builtins
2962
2963 unsigned int
2964 pass_fold_builtins::execute (function *fun)
2965 {
2966 bool cfg_changed = false;
2967 basic_block bb;
2968 unsigned int todoflags = 0;
2969
2970 FOR_EACH_BB_FN (bb, fun)
2971 {
2972 gimple_stmt_iterator i;
2973 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
2974 {
2975 gimple *stmt, *old_stmt;
2976 tree callee;
2977 enum built_in_function fcode;
2978
2979 stmt = gsi_stmt (i);
2980
2981 if (gimple_code (stmt) != GIMPLE_CALL)
2982 {
2983 /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
2984 after the last GIMPLE DSE they aren't needed and might
2985 unnecessarily keep the SSA_NAMEs live. */
2986 if (gimple_clobber_p (stmt))
2987 {
2988 tree lhs = gimple_assign_lhs (stmt);
2989 if (TREE_CODE (lhs) == MEM_REF
2990 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME)
2991 {
2992 unlink_stmt_vdef (stmt);
2993 gsi_remove (&i, true);
2994 release_defs (stmt);
2995 continue;
2996 }
2997 }
2998 gsi_next (&i);
2999 continue;
3000 }
3001
3002 callee = gimple_call_fndecl (stmt);
3003 if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL)
3004 {
3005 gsi_next (&i);
3006 continue;
3007 }
3008
3009 fcode = DECL_FUNCTION_CODE (callee);
3010 if (fold_stmt (&i))
3011 ;
3012 else
3013 {
3014 tree result = NULL_TREE;
3015 switch (DECL_FUNCTION_CODE (callee))
3016 {
3017 case BUILT_IN_CONSTANT_P:
3018 /* Resolve __builtin_constant_p. If it hasn't been
3019 folded to integer_one_node by now, it's fairly
3020 certain that the value simply isn't constant. */
3021 result = integer_zero_node;
3022 break;
3023
3024 case BUILT_IN_ASSUME_ALIGNED:
3025 /* Remove __builtin_assume_aligned. */
3026 result = gimple_call_arg (stmt, 0);
3027 break;
3028
3029 case BUILT_IN_STACK_RESTORE:
3030 result = optimize_stack_restore (i);
3031 if (result)
3032 break;
3033 gsi_next (&i);
3034 continue;
3035
3036 case BUILT_IN_UNREACHABLE:
3037 if (optimize_unreachable (i))
3038 cfg_changed = true;
3039 break;
3040
3041 case BUILT_IN_ATOMIC_FETCH_OR_1:
3042 case BUILT_IN_ATOMIC_FETCH_OR_2:
3043 case BUILT_IN_ATOMIC_FETCH_OR_4:
3044 case BUILT_IN_ATOMIC_FETCH_OR_8:
3045 case BUILT_IN_ATOMIC_FETCH_OR_16:
3046 optimize_atomic_bit_test_and (&i,
3047 IFN_ATOMIC_BIT_TEST_AND_SET,
3048 true, false);
3049 break;
3050 case BUILT_IN_SYNC_FETCH_AND_OR_1:
3051 case BUILT_IN_SYNC_FETCH_AND_OR_2:
3052 case BUILT_IN_SYNC_FETCH_AND_OR_4:
3053 case BUILT_IN_SYNC_FETCH_AND_OR_8:
3054 case BUILT_IN_SYNC_FETCH_AND_OR_16:
3055 optimize_atomic_bit_test_and (&i,
3056 IFN_ATOMIC_BIT_TEST_AND_SET,
3057 false, false);
3058 break;
3059
3060 case BUILT_IN_ATOMIC_FETCH_XOR_1:
3061 case BUILT_IN_ATOMIC_FETCH_XOR_2:
3062 case BUILT_IN_ATOMIC_FETCH_XOR_4:
3063 case BUILT_IN_ATOMIC_FETCH_XOR_8:
3064 case BUILT_IN_ATOMIC_FETCH_XOR_16:
3065 optimize_atomic_bit_test_and
3066 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, false);
3067 break;
3068 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
3069 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
3070 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
3071 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
3072 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
3073 optimize_atomic_bit_test_and
3074 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, false);
3075 break;
3076
3077 case BUILT_IN_ATOMIC_XOR_FETCH_1:
3078 case BUILT_IN_ATOMIC_XOR_FETCH_2:
3079 case BUILT_IN_ATOMIC_XOR_FETCH_4:
3080 case BUILT_IN_ATOMIC_XOR_FETCH_8:
3081 case BUILT_IN_ATOMIC_XOR_FETCH_16:
3082 optimize_atomic_bit_test_and
3083 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, true);
3084 break;
3085 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
3086 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
3087 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
3088 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
3089 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
3090 optimize_atomic_bit_test_and
3091 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, true);
3092 break;
3093
3094 case BUILT_IN_ATOMIC_FETCH_AND_1:
3095 case BUILT_IN_ATOMIC_FETCH_AND_2:
3096 case BUILT_IN_ATOMIC_FETCH_AND_4:
3097 case BUILT_IN_ATOMIC_FETCH_AND_8:
3098 case BUILT_IN_ATOMIC_FETCH_AND_16:
3099 optimize_atomic_bit_test_and (&i,
3100 IFN_ATOMIC_BIT_TEST_AND_RESET,
3101 true, false);
3102 break;
3103 case BUILT_IN_SYNC_FETCH_AND_AND_1:
3104 case BUILT_IN_SYNC_FETCH_AND_AND_2:
3105 case BUILT_IN_SYNC_FETCH_AND_AND_4:
3106 case BUILT_IN_SYNC_FETCH_AND_AND_8:
3107 case BUILT_IN_SYNC_FETCH_AND_AND_16:
3108 optimize_atomic_bit_test_and (&i,
3109 IFN_ATOMIC_BIT_TEST_AND_RESET,
3110 false, false);
3111 break;
3112
3113 case BUILT_IN_VA_START:
3114 case BUILT_IN_VA_END:
3115 case BUILT_IN_VA_COPY:
3116 /* These shouldn't be folded before pass_stdarg. */
3117 result = optimize_stdarg_builtin (stmt);
3118 if (result)
3119 break;
3120 /* FALLTHRU */
3121
3122 default:;
3123 }
3124
3125 if (!result)
3126 {
3127 gsi_next (&i);
3128 continue;
3129 }
3130
3131 if (!update_call_from_tree (&i, result))
3132 gimplify_and_update_call_from_tree (&i, result);
3133 }
3134
3135 todoflags |= TODO_update_address_taken;
3136
3137 if (dump_file && (dump_flags & TDF_DETAILS))
3138 {
3139 fprintf (dump_file, "Simplified\n ");
3140 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3141 }
3142
3143 old_stmt = stmt;
3144 stmt = gsi_stmt (i);
3145 update_stmt (stmt);
3146
3147 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
3148 && gimple_purge_dead_eh_edges (bb))
3149 cfg_changed = true;
3150
3151 if (dump_file && (dump_flags & TDF_DETAILS))
3152 {
3153 fprintf (dump_file, "to\n ");
3154 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3155 fprintf (dump_file, "\n");
3156 }
3157
3158 /* Retry the same statement if it changed into another
3159 builtin, there might be new opportunities now. */
3160 if (gimple_code (stmt) != GIMPLE_CALL)
3161 {
3162 gsi_next (&i);
3163 continue;
3164 }
3165 callee = gimple_call_fndecl (stmt);
3166 if (!callee
3167 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
3168 || DECL_FUNCTION_CODE (callee) == fcode)
3169 gsi_next (&i);
3170 }
3171 }
3172
3173 /* Delete unreachable blocks. */
3174 if (cfg_changed)
3175 todoflags |= TODO_cleanup_cfg;
3176
3177 return todoflags;
3178 }
3179
3180 } // anon namespace
3181
3182 gimple_opt_pass *
3183 make_pass_fold_builtins (gcc::context *ctxt)
3184 {
3185 return new pass_fold_builtins (ctxt);
3186 }