coretypes.h: Include machmode.h...
[gcc.git] / gcc / tree-ssa-ccp.c
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
28 following values:
29
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
37
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
41 or not.
42
43 CONSTANT -> V_i has been found to hold a constant
44 value C.
45
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
48 at compile time.
49
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
51
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
59 can be visited.
60
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
65
66
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
72
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
75
76 if (PRED)
77 a_9 = 3;
78 else
79 a_10 = 100;
80 a_11 = PHI (a_9, a_10)
81
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
86
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
94
95
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
100
101 This algorithm uses wide-ints at the max precision of the target.
102 This means that, with one uninteresting exception, variables with
103 UNSIGNED types never go to VARYING because the bits above the
104 precision of the type of the variable are always zero. The
105 uninteresting case is a variable of UNSIGNED type that has the
106 maximum precision of the target. Such variables can go to VARYING,
107 but this causes no loss of infomation since these variables will
108 never be extended.
109
110 References:
111
112 Constant propagation with conditional branches,
113 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
114
115 Building an Optimizing Compiler,
116 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
117
118 Advanced Compiler Design and Implementation,
119 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
120
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "hash-set.h"
126 #include "vec.h"
127 #include "input.h"
128 #include "alias.h"
129 #include "symtab.h"
130 #include "inchash.h"
131 #include "tree.h"
132 #include "fold-const.h"
133 #include "stor-layout.h"
134 #include "flags.h"
135 #include "tm_p.h"
136 #include "predict.h"
137 #include "hard-reg-set.h"
138 #include "input.h"
139 #include "function.h"
140 #include "dominance.h"
141 #include "cfg.h"
142 #include "basic-block.h"
143 #include "gimple-pretty-print.h"
144 #include "hash-table.h"
145 #include "tree-ssa-alias.h"
146 #include "internal-fn.h"
147 #include "gimple-fold.h"
148 #include "tree-eh.h"
149 #include "gimple-expr.h"
150 #include "is-a.h"
151 #include "gimple.h"
152 #include "gimplify.h"
153 #include "gimple-iterator.h"
154 #include "gimple-ssa.h"
155 #include "tree-cfg.h"
156 #include "tree-phinodes.h"
157 #include "ssa-iterators.h"
158 #include "stringpool.h"
159 #include "tree-ssanames.h"
160 #include "tree-pass.h"
161 #include "tree-ssa-propagate.h"
162 #include "value-prof.h"
163 #include "langhooks.h"
164 #include "target.h"
165 #include "diagnostic-core.h"
166 #include "dbgcnt.h"
167 #include "params.h"
168 #include "wide-int-print.h"
169 #include "builtins.h"
170 #include "tree-chkp.h"
171
172
173 /* Possible lattice values. */
174 typedef enum
175 {
176 UNINITIALIZED,
177 UNDEFINED,
178 CONSTANT,
179 VARYING
180 } ccp_lattice_t;
181
182 struct ccp_prop_value_t {
183 /* Lattice value. */
184 ccp_lattice_t lattice_val;
185
186 /* Propagated value. */
187 tree value;
188
189 /* Mask that applies to the propagated value during CCP. For X
190 with a CONSTANT lattice value X & ~mask == value & ~mask. The
191 zero bits in the mask cover constant values. The ones mean no
192 information. */
193 widest_int mask;
194 };
195
196 /* Array of propagated constant values. After propagation,
197 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
198 the constant is held in an SSA name representing a memory store
199 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
200 memory reference used to store (i.e., the LHS of the assignment
201 doing the store). */
202 static ccp_prop_value_t *const_val;
203 static unsigned n_const_val;
204
205 static void canonicalize_value (ccp_prop_value_t *);
206 static bool ccp_fold_stmt (gimple_stmt_iterator *);
207 static void ccp_lattice_meet (ccp_prop_value_t *, ccp_prop_value_t *);
208
209 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
210
211 static void
212 dump_lattice_value (FILE *outf, const char *prefix, ccp_prop_value_t val)
213 {
214 switch (val.lattice_val)
215 {
216 case UNINITIALIZED:
217 fprintf (outf, "%sUNINITIALIZED", prefix);
218 break;
219 case UNDEFINED:
220 fprintf (outf, "%sUNDEFINED", prefix);
221 break;
222 case VARYING:
223 fprintf (outf, "%sVARYING", prefix);
224 break;
225 case CONSTANT:
226 if (TREE_CODE (val.value) != INTEGER_CST
227 || val.mask == 0)
228 {
229 fprintf (outf, "%sCONSTANT ", prefix);
230 print_generic_expr (outf, val.value, dump_flags);
231 }
232 else
233 {
234 widest_int cval = wi::bit_and_not (wi::to_widest (val.value),
235 val.mask);
236 fprintf (outf, "%sCONSTANT ", prefix);
237 print_hex (cval, outf);
238 fprintf (outf, " (");
239 print_hex (val.mask, outf);
240 fprintf (outf, ")");
241 }
242 break;
243 default:
244 gcc_unreachable ();
245 }
246 }
247
248
249 /* Print lattice value VAL to stderr. */
250
251 void debug_lattice_value (ccp_prop_value_t val);
252
253 DEBUG_FUNCTION void
254 debug_lattice_value (ccp_prop_value_t val)
255 {
256 dump_lattice_value (stderr, "", val);
257 fprintf (stderr, "\n");
258 }
259
260 /* Extend NONZERO_BITS to a full mask, with the upper bits being set. */
261
262 static widest_int
263 extend_mask (const wide_int &nonzero_bits)
264 {
265 return (wi::mask <widest_int> (wi::get_precision (nonzero_bits), true)
266 | widest_int::from (nonzero_bits, UNSIGNED));
267 }
268
269 /* Compute a default value for variable VAR and store it in the
270 CONST_VAL array. The following rules are used to get default
271 values:
272
273 1- Global and static variables that are declared constant are
274 considered CONSTANT.
275
276 2- Any other value is considered UNDEFINED. This is useful when
277 considering PHI nodes. PHI arguments that are undefined do not
278 change the constant value of the PHI node, which allows for more
279 constants to be propagated.
280
281 3- Variables defined by statements other than assignments and PHI
282 nodes are considered VARYING.
283
284 4- Initial values of variables that are not GIMPLE registers are
285 considered VARYING. */
286
287 static ccp_prop_value_t
288 get_default_value (tree var)
289 {
290 ccp_prop_value_t val = { UNINITIALIZED, NULL_TREE, 0 };
291 gimple stmt;
292
293 stmt = SSA_NAME_DEF_STMT (var);
294
295 if (gimple_nop_p (stmt))
296 {
297 /* Variables defined by an empty statement are those used
298 before being initialized. If VAR is a local variable, we
299 can assume initially that it is UNDEFINED, otherwise we must
300 consider it VARYING. */
301 if (!virtual_operand_p (var)
302 && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
303 val.lattice_val = UNDEFINED;
304 else
305 {
306 val.lattice_val = VARYING;
307 val.mask = -1;
308 if (flag_tree_bit_ccp)
309 {
310 wide_int nonzero_bits = get_nonzero_bits (var);
311 if (nonzero_bits != -1)
312 {
313 val.lattice_val = CONSTANT;
314 val.value = build_zero_cst (TREE_TYPE (var));
315 val.mask = extend_mask (nonzero_bits);
316 }
317 }
318 }
319 }
320 else if (is_gimple_assign (stmt))
321 {
322 tree cst;
323 if (gimple_assign_single_p (stmt)
324 && DECL_P (gimple_assign_rhs1 (stmt))
325 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
326 {
327 val.lattice_val = CONSTANT;
328 val.value = cst;
329 }
330 else
331 {
332 /* Any other variable defined by an assignment is considered
333 UNDEFINED. */
334 val.lattice_val = UNDEFINED;
335 }
336 }
337 else if ((is_gimple_call (stmt)
338 && gimple_call_lhs (stmt) != NULL_TREE)
339 || gimple_code (stmt) == GIMPLE_PHI)
340 {
341 /* A variable defined by a call or a PHI node is considered
342 UNDEFINED. */
343 val.lattice_val = UNDEFINED;
344 }
345 else
346 {
347 /* Otherwise, VAR will never take on a constant value. */
348 val.lattice_val = VARYING;
349 val.mask = -1;
350 }
351
352 return val;
353 }
354
355
356 /* Get the constant value associated with variable VAR. */
357
358 static inline ccp_prop_value_t *
359 get_value (tree var)
360 {
361 ccp_prop_value_t *val;
362
363 if (const_val == NULL
364 || SSA_NAME_VERSION (var) >= n_const_val)
365 return NULL;
366
367 val = &const_val[SSA_NAME_VERSION (var)];
368 if (val->lattice_val == UNINITIALIZED)
369 *val = get_default_value (var);
370
371 canonicalize_value (val);
372
373 return val;
374 }
375
376 /* Return the constant tree value associated with VAR. */
377
378 static inline tree
379 get_constant_value (tree var)
380 {
381 ccp_prop_value_t *val;
382 if (TREE_CODE (var) != SSA_NAME)
383 {
384 if (is_gimple_min_invariant (var))
385 return var;
386 return NULL_TREE;
387 }
388 val = get_value (var);
389 if (val
390 && val->lattice_val == CONSTANT
391 && (TREE_CODE (val->value) != INTEGER_CST
392 || val->mask == 0))
393 return val->value;
394 return NULL_TREE;
395 }
396
397 /* Sets the value associated with VAR to VARYING. */
398
399 static inline void
400 set_value_varying (tree var)
401 {
402 ccp_prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
403
404 val->lattice_val = VARYING;
405 val->value = NULL_TREE;
406 val->mask = -1;
407 }
408
409 /* For integer constants, make sure to drop TREE_OVERFLOW. */
410
411 static void
412 canonicalize_value (ccp_prop_value_t *val)
413 {
414 if (val->lattice_val != CONSTANT)
415 return;
416
417 if (TREE_OVERFLOW_P (val->value))
418 val->value = drop_tree_overflow (val->value);
419 }
420
421 /* Return whether the lattice transition is valid. */
422
423 static bool
424 valid_lattice_transition (ccp_prop_value_t old_val, ccp_prop_value_t new_val)
425 {
426 /* Lattice transitions must always be monotonically increasing in
427 value. */
428 if (old_val.lattice_val < new_val.lattice_val)
429 return true;
430
431 if (old_val.lattice_val != new_val.lattice_val)
432 return false;
433
434 if (!old_val.value && !new_val.value)
435 return true;
436
437 /* Now both lattice values are CONSTANT. */
438
439 /* Allow arbitrary copy changes as we might look through PHI <a_1, ...>
440 when only a single copy edge is executable. */
441 if (TREE_CODE (old_val.value) == SSA_NAME
442 && TREE_CODE (new_val.value) == SSA_NAME)
443 return true;
444
445 /* Allow transitioning from a constant to a copy. */
446 if (is_gimple_min_invariant (old_val.value)
447 && TREE_CODE (new_val.value) == SSA_NAME)
448 return true;
449
450 /* Allow transitioning from PHI <&x, not executable> == &x
451 to PHI <&x, &y> == common alignment. */
452 if (TREE_CODE (old_val.value) != INTEGER_CST
453 && TREE_CODE (new_val.value) == INTEGER_CST)
454 return true;
455
456 /* Bit-lattices have to agree in the still valid bits. */
457 if (TREE_CODE (old_val.value) == INTEGER_CST
458 && TREE_CODE (new_val.value) == INTEGER_CST)
459 return (wi::bit_and_not (wi::to_widest (old_val.value), new_val.mask)
460 == wi::bit_and_not (wi::to_widest (new_val.value), new_val.mask));
461
462 /* Otherwise constant values have to agree. */
463 if (operand_equal_p (old_val.value, new_val.value, 0))
464 return true;
465
466 /* At least the kinds and types should agree now. */
467 if (TREE_CODE (old_val.value) != TREE_CODE (new_val.value)
468 || !types_compatible_p (TREE_TYPE (old_val.value),
469 TREE_TYPE (new_val.value)))
470 return false;
471
472 /* For floats and !HONOR_NANS allow transitions from (partial) NaN
473 to non-NaN. */
474 tree type = TREE_TYPE (new_val.value);
475 if (SCALAR_FLOAT_TYPE_P (type)
476 && !HONOR_NANS (type))
477 {
478 if (REAL_VALUE_ISNAN (TREE_REAL_CST (old_val.value)))
479 return true;
480 }
481 else if (VECTOR_FLOAT_TYPE_P (type)
482 && !HONOR_NANS (type))
483 {
484 for (unsigned i = 0; i < VECTOR_CST_NELTS (old_val.value); ++i)
485 if (!REAL_VALUE_ISNAN
486 (TREE_REAL_CST (VECTOR_CST_ELT (old_val.value, i)))
487 && !operand_equal_p (VECTOR_CST_ELT (old_val.value, i),
488 VECTOR_CST_ELT (new_val.value, i), 0))
489 return false;
490 return true;
491 }
492 else if (COMPLEX_FLOAT_TYPE_P (type)
493 && !HONOR_NANS (type))
494 {
495 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_REALPART (old_val.value)))
496 && !operand_equal_p (TREE_REALPART (old_val.value),
497 TREE_REALPART (new_val.value), 0))
498 return false;
499 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_IMAGPART (old_val.value)))
500 && !operand_equal_p (TREE_IMAGPART (old_val.value),
501 TREE_IMAGPART (new_val.value), 0))
502 return false;
503 return true;
504 }
505 return false;
506 }
507
508 /* Set the value for variable VAR to NEW_VAL. Return true if the new
509 value is different from VAR's previous value. */
510
511 static bool
512 set_lattice_value (tree var, ccp_prop_value_t *new_val)
513 {
514 /* We can deal with old UNINITIALIZED values just fine here. */
515 ccp_prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
516
517 canonicalize_value (new_val);
518
519 /* We have to be careful to not go up the bitwise lattice
520 represented by the mask. Instead of dropping to VARYING
521 use the meet operator to retain a conservative value.
522 Missed optimizations like PR65851 makes this necessary.
523 It also ensures we converge to a stable lattice solution. */
524 if (new_val->lattice_val == CONSTANT
525 && old_val->lattice_val == CONSTANT
526 && TREE_CODE (new_val->value) != SSA_NAME)
527 ccp_lattice_meet (new_val, old_val);
528
529 gcc_checking_assert (valid_lattice_transition (*old_val, *new_val));
530
531 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
532 caller that this was a non-transition. */
533 if (old_val->lattice_val != new_val->lattice_val
534 || (new_val->lattice_val == CONSTANT
535 && (TREE_CODE (new_val->value) != TREE_CODE (old_val->value)
536 || (TREE_CODE (new_val->value) == INTEGER_CST
537 && (new_val->mask != old_val->mask
538 || (wi::bit_and_not (wi::to_widest (old_val->value),
539 new_val->mask)
540 != wi::bit_and_not (wi::to_widest (new_val->value),
541 new_val->mask))))
542 || (TREE_CODE (new_val->value) != INTEGER_CST
543 && !operand_equal_p (new_val->value, old_val->value, 0)))))
544 {
545 /* ??? We would like to delay creation of INTEGER_CSTs from
546 partially constants here. */
547
548 if (dump_file && (dump_flags & TDF_DETAILS))
549 {
550 dump_lattice_value (dump_file, "Lattice value changed to ", *new_val);
551 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
552 }
553
554 *old_val = *new_val;
555
556 gcc_assert (new_val->lattice_val != UNINITIALIZED);
557 return true;
558 }
559
560 return false;
561 }
562
563 static ccp_prop_value_t get_value_for_expr (tree, bool);
564 static ccp_prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
565 static void bit_value_binop_1 (enum tree_code, tree, widest_int *, widest_int *,
566 tree, const widest_int &, const widest_int &,
567 tree, const widest_int &, const widest_int &);
568
569 /* Return a widest_int that can be used for bitwise simplifications
570 from VAL. */
571
572 static widest_int
573 value_to_wide_int (ccp_prop_value_t val)
574 {
575 if (val.value
576 && TREE_CODE (val.value) == INTEGER_CST)
577 return wi::to_widest (val.value);
578
579 return 0;
580 }
581
582 /* Return the value for the address expression EXPR based on alignment
583 information. */
584
585 static ccp_prop_value_t
586 get_value_from_alignment (tree expr)
587 {
588 tree type = TREE_TYPE (expr);
589 ccp_prop_value_t val;
590 unsigned HOST_WIDE_INT bitpos;
591 unsigned int align;
592
593 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
594
595 get_pointer_alignment_1 (expr, &align, &bitpos);
596 val.mask = (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
597 ? wi::mask <widest_int> (TYPE_PRECISION (type), false)
598 : -1).and_not (align / BITS_PER_UNIT - 1);
599 val.lattice_val
600 = wi::sext (val.mask, TYPE_PRECISION (type)) == -1 ? VARYING : CONSTANT;
601 if (val.lattice_val == CONSTANT)
602 val.value = build_int_cstu (type, bitpos / BITS_PER_UNIT);
603 else
604 val.value = NULL_TREE;
605
606 return val;
607 }
608
609 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
610 return constant bits extracted from alignment information for
611 invariant addresses. */
612
613 static ccp_prop_value_t
614 get_value_for_expr (tree expr, bool for_bits_p)
615 {
616 ccp_prop_value_t val;
617
618 if (TREE_CODE (expr) == SSA_NAME)
619 {
620 val = *get_value (expr);
621 if (for_bits_p
622 && val.lattice_val == CONSTANT
623 && TREE_CODE (val.value) == ADDR_EXPR)
624 val = get_value_from_alignment (val.value);
625 /* Fall back to a copy value. */
626 if (!for_bits_p
627 && val.lattice_val == VARYING
628 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr))
629 {
630 val.lattice_val = CONSTANT;
631 val.value = expr;
632 val.mask = -1;
633 }
634 }
635 else if (is_gimple_min_invariant (expr)
636 && (!for_bits_p || TREE_CODE (expr) != ADDR_EXPR))
637 {
638 val.lattice_val = CONSTANT;
639 val.value = expr;
640 val.mask = 0;
641 canonicalize_value (&val);
642 }
643 else if (TREE_CODE (expr) == ADDR_EXPR)
644 val = get_value_from_alignment (expr);
645 else
646 {
647 val.lattice_val = VARYING;
648 val.mask = -1;
649 val.value = NULL_TREE;
650 }
651 return val;
652 }
653
654 /* Return the likely CCP lattice value for STMT.
655
656 If STMT has no operands, then return CONSTANT.
657
658 Else if undefinedness of operands of STMT cause its value to be
659 undefined, then return UNDEFINED.
660
661 Else if any operands of STMT are constants, then return CONSTANT.
662
663 Else return VARYING. */
664
665 static ccp_lattice_t
666 likely_value (gimple stmt)
667 {
668 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
669 bool has_nsa_operand;
670 tree use;
671 ssa_op_iter iter;
672 unsigned i;
673
674 enum gimple_code code = gimple_code (stmt);
675
676 /* This function appears to be called only for assignments, calls,
677 conditionals, and switches, due to the logic in visit_stmt. */
678 gcc_assert (code == GIMPLE_ASSIGN
679 || code == GIMPLE_CALL
680 || code == GIMPLE_COND
681 || code == GIMPLE_SWITCH);
682
683 /* If the statement has volatile operands, it won't fold to a
684 constant value. */
685 if (gimple_has_volatile_ops (stmt))
686 return VARYING;
687
688 /* Arrive here for more complex cases. */
689 has_constant_operand = false;
690 has_undefined_operand = false;
691 all_undefined_operands = true;
692 has_nsa_operand = false;
693 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
694 {
695 ccp_prop_value_t *val = get_value (use);
696
697 if (val->lattice_val == UNDEFINED)
698 has_undefined_operand = true;
699 else
700 all_undefined_operands = false;
701
702 if (val->lattice_val == CONSTANT)
703 has_constant_operand = true;
704
705 if (SSA_NAME_IS_DEFAULT_DEF (use)
706 || !prop_simulate_again_p (SSA_NAME_DEF_STMT (use)))
707 has_nsa_operand = true;
708 }
709
710 /* There may be constants in regular rhs operands. For calls we
711 have to ignore lhs, fndecl and static chain, otherwise only
712 the lhs. */
713 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
714 i < gimple_num_ops (stmt); ++i)
715 {
716 tree op = gimple_op (stmt, i);
717 if (!op || TREE_CODE (op) == SSA_NAME)
718 continue;
719 if (is_gimple_min_invariant (op))
720 has_constant_operand = true;
721 }
722
723 if (has_constant_operand)
724 all_undefined_operands = false;
725
726 if (has_undefined_operand
727 && code == GIMPLE_CALL
728 && gimple_call_internal_p (stmt))
729 switch (gimple_call_internal_fn (stmt))
730 {
731 /* These 3 builtins use the first argument just as a magic
732 way how to find out a decl uid. */
733 case IFN_GOMP_SIMD_LANE:
734 case IFN_GOMP_SIMD_VF:
735 case IFN_GOMP_SIMD_LAST_LANE:
736 has_undefined_operand = false;
737 break;
738 default:
739 break;
740 }
741
742 /* If the operation combines operands like COMPLEX_EXPR make sure to
743 not mark the result UNDEFINED if only one part of the result is
744 undefined. */
745 if (has_undefined_operand && all_undefined_operands)
746 return UNDEFINED;
747 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
748 {
749 switch (gimple_assign_rhs_code (stmt))
750 {
751 /* Unary operators are handled with all_undefined_operands. */
752 case PLUS_EXPR:
753 case MINUS_EXPR:
754 case POINTER_PLUS_EXPR:
755 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
756 Not bitwise operators, one VARYING operand may specify the
757 result completely. Not logical operators for the same reason.
758 Not COMPLEX_EXPR as one VARYING operand makes the result partly
759 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
760 the undefined operand may be promoted. */
761 return UNDEFINED;
762
763 case ADDR_EXPR:
764 /* If any part of an address is UNDEFINED, like the index
765 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
766 return UNDEFINED;
767
768 default:
769 ;
770 }
771 }
772 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
773 fall back to CONSTANT. During iteration UNDEFINED may still drop
774 to CONSTANT. */
775 if (has_undefined_operand)
776 return CONSTANT;
777
778 /* We do not consider virtual operands here -- load from read-only
779 memory may have only VARYING virtual operands, but still be
780 constant. Also we can combine the stmt with definitions from
781 operands whose definitions are not simulated again. */
782 if (has_constant_operand
783 || has_nsa_operand
784 || gimple_references_memory_p (stmt))
785 return CONSTANT;
786
787 return VARYING;
788 }
789
790 /* Returns true if STMT cannot be constant. */
791
792 static bool
793 surely_varying_stmt_p (gimple stmt)
794 {
795 /* If the statement has operands that we cannot handle, it cannot be
796 constant. */
797 if (gimple_has_volatile_ops (stmt))
798 return true;
799
800 /* If it is a call and does not return a value or is not a
801 builtin and not an indirect call or a call to function with
802 assume_aligned/alloc_align attribute, it is varying. */
803 if (is_gimple_call (stmt))
804 {
805 tree fndecl, fntype = gimple_call_fntype (stmt);
806 if (!gimple_call_lhs (stmt)
807 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
808 && !DECL_BUILT_IN (fndecl)
809 && !lookup_attribute ("assume_aligned",
810 TYPE_ATTRIBUTES (fntype))
811 && !lookup_attribute ("alloc_align",
812 TYPE_ATTRIBUTES (fntype))))
813 return true;
814 }
815
816 /* Any other store operation is not interesting. */
817 else if (gimple_vdef (stmt))
818 return true;
819
820 /* Anything other than assignments and conditional jumps are not
821 interesting for CCP. */
822 if (gimple_code (stmt) != GIMPLE_ASSIGN
823 && gimple_code (stmt) != GIMPLE_COND
824 && gimple_code (stmt) != GIMPLE_SWITCH
825 && gimple_code (stmt) != GIMPLE_CALL)
826 return true;
827
828 return false;
829 }
830
831 /* Initialize local data structures for CCP. */
832
833 static void
834 ccp_initialize (void)
835 {
836 basic_block bb;
837
838 n_const_val = num_ssa_names;
839 const_val = XCNEWVEC (ccp_prop_value_t, n_const_val);
840
841 /* Initialize simulation flags for PHI nodes and statements. */
842 FOR_EACH_BB_FN (bb, cfun)
843 {
844 gimple_stmt_iterator i;
845
846 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
847 {
848 gimple stmt = gsi_stmt (i);
849 bool is_varying;
850
851 /* If the statement is a control insn, then we do not
852 want to avoid simulating the statement once. Failure
853 to do so means that those edges will never get added. */
854 if (stmt_ends_bb_p (stmt))
855 is_varying = false;
856 else
857 is_varying = surely_varying_stmt_p (stmt);
858
859 if (is_varying)
860 {
861 tree def;
862 ssa_op_iter iter;
863
864 /* If the statement will not produce a constant, mark
865 all its outputs VARYING. */
866 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
867 set_value_varying (def);
868 }
869 prop_set_simulate_again (stmt, !is_varying);
870 }
871 }
872
873 /* Now process PHI nodes. We never clear the simulate_again flag on
874 phi nodes, since we do not know which edges are executable yet,
875 except for phi nodes for virtual operands when we do not do store ccp. */
876 FOR_EACH_BB_FN (bb, cfun)
877 {
878 gphi_iterator i;
879
880 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
881 {
882 gphi *phi = i.phi ();
883
884 if (virtual_operand_p (gimple_phi_result (phi)))
885 prop_set_simulate_again (phi, false);
886 else
887 prop_set_simulate_again (phi, true);
888 }
889 }
890 }
891
892 /* Debug count support. Reset the values of ssa names
893 VARYING when the total number ssa names analyzed is
894 beyond the debug count specified. */
895
896 static void
897 do_dbg_cnt (void)
898 {
899 unsigned i;
900 for (i = 0; i < num_ssa_names; i++)
901 {
902 if (!dbg_cnt (ccp))
903 {
904 const_val[i].lattice_val = VARYING;
905 const_val[i].mask = -1;
906 const_val[i].value = NULL_TREE;
907 }
908 }
909 }
910
911
912 /* Do final substitution of propagated values, cleanup the flowgraph and
913 free allocated storage.
914
915 Return TRUE when something was optimized. */
916
917 static bool
918 ccp_finalize (void)
919 {
920 bool something_changed;
921 unsigned i;
922
923 do_dbg_cnt ();
924
925 /* Derive alignment and misalignment information from partially
926 constant pointers in the lattice or nonzero bits from partially
927 constant integers. */
928 for (i = 1; i < num_ssa_names; ++i)
929 {
930 tree name = ssa_name (i);
931 ccp_prop_value_t *val;
932 unsigned int tem, align;
933
934 if (!name
935 || (!POINTER_TYPE_P (TREE_TYPE (name))
936 && (!INTEGRAL_TYPE_P (TREE_TYPE (name))
937 /* Don't record nonzero bits before IPA to avoid
938 using too much memory. */
939 || first_pass_instance)))
940 continue;
941
942 val = get_value (name);
943 if (val->lattice_val != CONSTANT
944 || TREE_CODE (val->value) != INTEGER_CST)
945 continue;
946
947 if (POINTER_TYPE_P (TREE_TYPE (name)))
948 {
949 /* Trailing mask bits specify the alignment, trailing value
950 bits the misalignment. */
951 tem = val->mask.to_uhwi ();
952 align = (tem & -tem);
953 if (align > 1)
954 set_ptr_info_alignment (get_ptr_info (name), align,
955 (TREE_INT_CST_LOW (val->value)
956 & (align - 1)));
957 }
958 else
959 {
960 unsigned int precision = TYPE_PRECISION (TREE_TYPE (val->value));
961 wide_int nonzero_bits = wide_int::from (val->mask, precision,
962 UNSIGNED) | val->value;
963 nonzero_bits &= get_nonzero_bits (name);
964 set_nonzero_bits (name, nonzero_bits);
965 }
966 }
967
968 /* Perform substitutions based on the known constant values. */
969 something_changed = substitute_and_fold (get_constant_value,
970 ccp_fold_stmt, true);
971
972 free (const_val);
973 const_val = NULL;
974 return something_changed;;
975 }
976
977
978 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
979 in VAL1.
980
981 any M UNDEFINED = any
982 any M VARYING = VARYING
983 Ci M Cj = Ci if (i == j)
984 Ci M Cj = VARYING if (i != j)
985 */
986
987 static void
988 ccp_lattice_meet (ccp_prop_value_t *val1, ccp_prop_value_t *val2)
989 {
990 if (val1->lattice_val == UNDEFINED
991 /* For UNDEFINED M SSA we can't always SSA because its definition
992 may not dominate the PHI node. Doing optimistic copy propagation
993 also causes a lot of gcc.dg/uninit-pred*.c FAILs. */
994 && (val2->lattice_val != CONSTANT
995 || TREE_CODE (val2->value) != SSA_NAME))
996 {
997 /* UNDEFINED M any = any */
998 *val1 = *val2;
999 }
1000 else if (val2->lattice_val == UNDEFINED
1001 /* See above. */
1002 && (val1->lattice_val != CONSTANT
1003 || TREE_CODE (val1->value) != SSA_NAME))
1004 {
1005 /* any M UNDEFINED = any
1006 Nothing to do. VAL1 already contains the value we want. */
1007 ;
1008 }
1009 else if (val1->lattice_val == VARYING
1010 || val2->lattice_val == VARYING)
1011 {
1012 /* any M VARYING = VARYING. */
1013 val1->lattice_val = VARYING;
1014 val1->mask = -1;
1015 val1->value = NULL_TREE;
1016 }
1017 else if (val1->lattice_val == CONSTANT
1018 && val2->lattice_val == CONSTANT
1019 && TREE_CODE (val1->value) == INTEGER_CST
1020 && TREE_CODE (val2->value) == INTEGER_CST)
1021 {
1022 /* Ci M Cj = Ci if (i == j)
1023 Ci M Cj = VARYING if (i != j)
1024
1025 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
1026 drop to varying. */
1027 val1->mask = (val1->mask | val2->mask
1028 | (wi::to_widest (val1->value)
1029 ^ wi::to_widest (val2->value)));
1030 if (wi::sext (val1->mask, TYPE_PRECISION (TREE_TYPE (val1->value))) == -1)
1031 {
1032 val1->lattice_val = VARYING;
1033 val1->value = NULL_TREE;
1034 }
1035 }
1036 else if (val1->lattice_val == CONSTANT
1037 && val2->lattice_val == CONSTANT
1038 && operand_equal_p (val1->value, val2->value, 0))
1039 {
1040 /* Ci M Cj = Ci if (i == j)
1041 Ci M Cj = VARYING if (i != j)
1042
1043 VAL1 already contains the value we want for equivalent values. */
1044 }
1045 else if (val1->lattice_val == CONSTANT
1046 && val2->lattice_val == CONSTANT
1047 && (TREE_CODE (val1->value) == ADDR_EXPR
1048 || TREE_CODE (val2->value) == ADDR_EXPR))
1049 {
1050 /* When not equal addresses are involved try meeting for
1051 alignment. */
1052 ccp_prop_value_t tem = *val2;
1053 if (TREE_CODE (val1->value) == ADDR_EXPR)
1054 *val1 = get_value_for_expr (val1->value, true);
1055 if (TREE_CODE (val2->value) == ADDR_EXPR)
1056 tem = get_value_for_expr (val2->value, true);
1057 ccp_lattice_meet (val1, &tem);
1058 }
1059 else
1060 {
1061 /* Any other combination is VARYING. */
1062 val1->lattice_val = VARYING;
1063 val1->mask = -1;
1064 val1->value = NULL_TREE;
1065 }
1066 }
1067
1068
1069 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
1070 lattice values to determine PHI_NODE's lattice value. The value of a
1071 PHI node is determined calling ccp_lattice_meet with all the arguments
1072 of the PHI node that are incoming via executable edges. */
1073
1074 static enum ssa_prop_result
1075 ccp_visit_phi_node (gphi *phi)
1076 {
1077 unsigned i;
1078 ccp_prop_value_t new_val;
1079
1080 if (dump_file && (dump_flags & TDF_DETAILS))
1081 {
1082 fprintf (dump_file, "\nVisiting PHI node: ");
1083 print_gimple_stmt (dump_file, phi, 0, dump_flags);
1084 }
1085
1086 new_val.lattice_val = UNDEFINED;
1087 new_val.value = NULL_TREE;
1088 new_val.mask = 0;
1089
1090 bool first = true;
1091 for (i = 0; i < gimple_phi_num_args (phi); i++)
1092 {
1093 /* Compute the meet operator over all the PHI arguments flowing
1094 through executable edges. */
1095 edge e = gimple_phi_arg_edge (phi, i);
1096
1097 if (dump_file && (dump_flags & TDF_DETAILS))
1098 {
1099 fprintf (dump_file,
1100 "\n Argument #%d (%d -> %d %sexecutable)\n",
1101 i, e->src->index, e->dest->index,
1102 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
1103 }
1104
1105 /* If the incoming edge is executable, Compute the meet operator for
1106 the existing value of the PHI node and the current PHI argument. */
1107 if (e->flags & EDGE_EXECUTABLE)
1108 {
1109 tree arg = gimple_phi_arg (phi, i)->def;
1110 ccp_prop_value_t arg_val = get_value_for_expr (arg, false);
1111
1112 if (first)
1113 {
1114 new_val = arg_val;
1115 first = false;
1116 }
1117 else
1118 ccp_lattice_meet (&new_val, &arg_val);
1119
1120 if (dump_file && (dump_flags & TDF_DETAILS))
1121 {
1122 fprintf (dump_file, "\t");
1123 print_generic_expr (dump_file, arg, dump_flags);
1124 dump_lattice_value (dump_file, "\tValue: ", arg_val);
1125 fprintf (dump_file, "\n");
1126 }
1127
1128 if (new_val.lattice_val == VARYING)
1129 break;
1130 }
1131 }
1132
1133 if (dump_file && (dump_flags & TDF_DETAILS))
1134 {
1135 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
1136 fprintf (dump_file, "\n\n");
1137 }
1138
1139 /* Make the transition to the new value. */
1140 if (set_lattice_value (gimple_phi_result (phi), &new_val))
1141 {
1142 if (new_val.lattice_val == VARYING)
1143 return SSA_PROP_VARYING;
1144 else
1145 return SSA_PROP_INTERESTING;
1146 }
1147 else
1148 return SSA_PROP_NOT_INTERESTING;
1149 }
1150
1151 /* Return the constant value for OP or OP otherwise. */
1152
1153 static tree
1154 valueize_op (tree op)
1155 {
1156 if (TREE_CODE (op) == SSA_NAME)
1157 {
1158 tree tem = get_constant_value (op);
1159 if (tem)
1160 return tem;
1161 }
1162 return op;
1163 }
1164
1165 /* Return the constant value for OP, but signal to not follow SSA
1166 edges if the definition may be simulated again. */
1167
1168 static tree
1169 valueize_op_1 (tree op)
1170 {
1171 if (TREE_CODE (op) == SSA_NAME)
1172 {
1173 /* If the definition may be simulated again we cannot follow
1174 this SSA edge as the SSA propagator does not necessarily
1175 re-visit the use. */
1176 gimple def_stmt = SSA_NAME_DEF_STMT (op);
1177 if (!gimple_nop_p (def_stmt)
1178 && prop_simulate_again_p (def_stmt))
1179 return NULL_TREE;
1180 tree tem = get_constant_value (op);
1181 if (tem)
1182 return tem;
1183 }
1184 return op;
1185 }
1186
1187 /* CCP specific front-end to the non-destructive constant folding
1188 routines.
1189
1190 Attempt to simplify the RHS of STMT knowing that one or more
1191 operands are constants.
1192
1193 If simplification is possible, return the simplified RHS,
1194 otherwise return the original RHS or NULL_TREE. */
1195
1196 static tree
1197 ccp_fold (gimple stmt)
1198 {
1199 location_t loc = gimple_location (stmt);
1200 switch (gimple_code (stmt))
1201 {
1202 case GIMPLE_COND:
1203 {
1204 /* Handle comparison operators that can appear in GIMPLE form. */
1205 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1206 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1207 enum tree_code code = gimple_cond_code (stmt);
1208 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1209 }
1210
1211 case GIMPLE_SWITCH:
1212 {
1213 /* Return the constant switch index. */
1214 return valueize_op (gimple_switch_index (as_a <gswitch *> (stmt)));
1215 }
1216
1217 case GIMPLE_ASSIGN:
1218 case GIMPLE_CALL:
1219 return gimple_fold_stmt_to_constant_1 (stmt,
1220 valueize_op, valueize_op_1);
1221
1222 default:
1223 gcc_unreachable ();
1224 }
1225 }
1226
1227 /* Apply the operation CODE in type TYPE to the value, mask pair
1228 RVAL and RMASK representing a value of type RTYPE and set
1229 the value, mask pair *VAL and *MASK to the result. */
1230
1231 static void
1232 bit_value_unop_1 (enum tree_code code, tree type,
1233 widest_int *val, widest_int *mask,
1234 tree rtype, const widest_int &rval, const widest_int &rmask)
1235 {
1236 switch (code)
1237 {
1238 case BIT_NOT_EXPR:
1239 *mask = rmask;
1240 *val = ~rval;
1241 break;
1242
1243 case NEGATE_EXPR:
1244 {
1245 widest_int temv, temm;
1246 /* Return ~rval + 1. */
1247 bit_value_unop_1 (BIT_NOT_EXPR, type, &temv, &temm, type, rval, rmask);
1248 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1249 type, temv, temm, type, 1, 0);
1250 break;
1251 }
1252
1253 CASE_CONVERT:
1254 {
1255 signop sgn;
1256
1257 /* First extend mask and value according to the original type. */
1258 sgn = TYPE_SIGN (rtype);
1259 *mask = wi::ext (rmask, TYPE_PRECISION (rtype), sgn);
1260 *val = wi::ext (rval, TYPE_PRECISION (rtype), sgn);
1261
1262 /* Then extend mask and value according to the target type. */
1263 sgn = TYPE_SIGN (type);
1264 *mask = wi::ext (*mask, TYPE_PRECISION (type), sgn);
1265 *val = wi::ext (*val, TYPE_PRECISION (type), sgn);
1266 break;
1267 }
1268
1269 default:
1270 *mask = -1;
1271 break;
1272 }
1273 }
1274
1275 /* Apply the operation CODE in type TYPE to the value, mask pairs
1276 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1277 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1278
1279 static void
1280 bit_value_binop_1 (enum tree_code code, tree type,
1281 widest_int *val, widest_int *mask,
1282 tree r1type, const widest_int &r1val,
1283 const widest_int &r1mask, tree r2type,
1284 const widest_int &r2val, const widest_int &r2mask)
1285 {
1286 signop sgn = TYPE_SIGN (type);
1287 int width = TYPE_PRECISION (type);
1288 bool swap_p = false;
1289
1290 /* Assume we'll get a constant result. Use an initial non varying
1291 value, we fall back to varying in the end if necessary. */
1292 *mask = -1;
1293
1294 switch (code)
1295 {
1296 case BIT_AND_EXPR:
1297 /* The mask is constant where there is a known not
1298 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1299 *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
1300 *val = r1val & r2val;
1301 break;
1302
1303 case BIT_IOR_EXPR:
1304 /* The mask is constant where there is a known
1305 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1306 *mask = (r1mask | r2mask)
1307 .and_not (r1val.and_not (r1mask) | r2val.and_not (r2mask));
1308 *val = r1val | r2val;
1309 break;
1310
1311 case BIT_XOR_EXPR:
1312 /* m1 | m2 */
1313 *mask = r1mask | r2mask;
1314 *val = r1val ^ r2val;
1315 break;
1316
1317 case LROTATE_EXPR:
1318 case RROTATE_EXPR:
1319 if (r2mask == 0)
1320 {
1321 widest_int shift = r2val;
1322 if (shift == 0)
1323 {
1324 *mask = r1mask;
1325 *val = r1val;
1326 }
1327 else
1328 {
1329 if (wi::neg_p (shift))
1330 {
1331 shift = -shift;
1332 if (code == RROTATE_EXPR)
1333 code = LROTATE_EXPR;
1334 else
1335 code = RROTATE_EXPR;
1336 }
1337 if (code == RROTATE_EXPR)
1338 {
1339 *mask = wi::rrotate (r1mask, shift, width);
1340 *val = wi::rrotate (r1val, shift, width);
1341 }
1342 else
1343 {
1344 *mask = wi::lrotate (r1mask, shift, width);
1345 *val = wi::lrotate (r1val, shift, width);
1346 }
1347 }
1348 }
1349 break;
1350
1351 case LSHIFT_EXPR:
1352 case RSHIFT_EXPR:
1353 /* ??? We can handle partially known shift counts if we know
1354 its sign. That way we can tell that (x << (y | 8)) & 255
1355 is zero. */
1356 if (r2mask == 0)
1357 {
1358 widest_int shift = r2val;
1359 if (shift == 0)
1360 {
1361 *mask = r1mask;
1362 *val = r1val;
1363 }
1364 else
1365 {
1366 if (wi::neg_p (shift))
1367 {
1368 shift = -shift;
1369 if (code == RSHIFT_EXPR)
1370 code = LSHIFT_EXPR;
1371 else
1372 code = RSHIFT_EXPR;
1373 }
1374 if (code == RSHIFT_EXPR)
1375 {
1376 *mask = wi::rshift (wi::ext (r1mask, width, sgn), shift, sgn);
1377 *val = wi::rshift (wi::ext (r1val, width, sgn), shift, sgn);
1378 }
1379 else
1380 {
1381 *mask = wi::ext (wi::lshift (r1mask, shift), width, sgn);
1382 *val = wi::ext (wi::lshift (r1val, shift), width, sgn);
1383 }
1384 }
1385 }
1386 break;
1387
1388 case PLUS_EXPR:
1389 case POINTER_PLUS_EXPR:
1390 {
1391 /* Do the addition with unknown bits set to zero, to give carry-ins of
1392 zero wherever possible. */
1393 widest_int lo = r1val.and_not (r1mask) + r2val.and_not (r2mask);
1394 lo = wi::ext (lo, width, sgn);
1395 /* Do the addition with unknown bits set to one, to give carry-ins of
1396 one wherever possible. */
1397 widest_int hi = (r1val | r1mask) + (r2val | r2mask);
1398 hi = wi::ext (hi, width, sgn);
1399 /* Each bit in the result is known if (a) the corresponding bits in
1400 both inputs are known, and (b) the carry-in to that bit position
1401 is known. We can check condition (b) by seeing if we got the same
1402 result with minimised carries as with maximised carries. */
1403 *mask = r1mask | r2mask | (lo ^ hi);
1404 *mask = wi::ext (*mask, width, sgn);
1405 /* It shouldn't matter whether we choose lo or hi here. */
1406 *val = lo;
1407 break;
1408 }
1409
1410 case MINUS_EXPR:
1411 {
1412 widest_int temv, temm;
1413 bit_value_unop_1 (NEGATE_EXPR, r2type, &temv, &temm,
1414 r2type, r2val, r2mask);
1415 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1416 r1type, r1val, r1mask,
1417 r2type, temv, temm);
1418 break;
1419 }
1420
1421 case MULT_EXPR:
1422 {
1423 /* Just track trailing zeros in both operands and transfer
1424 them to the other. */
1425 int r1tz = wi::ctz (r1val | r1mask);
1426 int r2tz = wi::ctz (r2val | r2mask);
1427 if (r1tz + r2tz >= width)
1428 {
1429 *mask = 0;
1430 *val = 0;
1431 }
1432 else if (r1tz + r2tz > 0)
1433 {
1434 *mask = wi::ext (wi::mask <widest_int> (r1tz + r2tz, true),
1435 width, sgn);
1436 *val = 0;
1437 }
1438 break;
1439 }
1440
1441 case EQ_EXPR:
1442 case NE_EXPR:
1443 {
1444 widest_int m = r1mask | r2mask;
1445 if (r1val.and_not (m) != r2val.and_not (m))
1446 {
1447 *mask = 0;
1448 *val = ((code == EQ_EXPR) ? 0 : 1);
1449 }
1450 else
1451 {
1452 /* We know the result of a comparison is always one or zero. */
1453 *mask = 1;
1454 *val = 0;
1455 }
1456 break;
1457 }
1458
1459 case GE_EXPR:
1460 case GT_EXPR:
1461 swap_p = true;
1462 code = swap_tree_comparison (code);
1463 /* Fall through. */
1464 case LT_EXPR:
1465 case LE_EXPR:
1466 {
1467 int minmax, maxmin;
1468
1469 const widest_int &o1val = swap_p ? r2val : r1val;
1470 const widest_int &o1mask = swap_p ? r2mask : r1mask;
1471 const widest_int &o2val = swap_p ? r1val : r2val;
1472 const widest_int &o2mask = swap_p ? r1mask : r2mask;
1473
1474 /* If the most significant bits are not known we know nothing. */
1475 if (wi::neg_p (o1mask) || wi::neg_p (o2mask))
1476 break;
1477
1478 /* For comparisons the signedness is in the comparison operands. */
1479 sgn = TYPE_SIGN (r1type);
1480
1481 /* If we know the most significant bits we know the values
1482 value ranges by means of treating varying bits as zero
1483 or one. Do a cross comparison of the max/min pairs. */
1484 maxmin = wi::cmp (o1val | o1mask, o2val.and_not (o2mask), sgn);
1485 minmax = wi::cmp (o1val.and_not (o1mask), o2val | o2mask, sgn);
1486 if (maxmin < 0) /* o1 is less than o2. */
1487 {
1488 *mask = 0;
1489 *val = 1;
1490 }
1491 else if (minmax > 0) /* o1 is not less or equal to o2. */
1492 {
1493 *mask = 0;
1494 *val = 0;
1495 }
1496 else if (maxmin == minmax) /* o1 and o2 are equal. */
1497 {
1498 /* This probably should never happen as we'd have
1499 folded the thing during fully constant value folding. */
1500 *mask = 0;
1501 *val = (code == LE_EXPR ? 1 : 0);
1502 }
1503 else
1504 {
1505 /* We know the result of a comparison is always one or zero. */
1506 *mask = 1;
1507 *val = 0;
1508 }
1509 break;
1510 }
1511
1512 default:;
1513 }
1514 }
1515
1516 /* Return the propagation value when applying the operation CODE to
1517 the value RHS yielding type TYPE. */
1518
1519 static ccp_prop_value_t
1520 bit_value_unop (enum tree_code code, tree type, tree rhs)
1521 {
1522 ccp_prop_value_t rval = get_value_for_expr (rhs, true);
1523 widest_int value, mask;
1524 ccp_prop_value_t val;
1525
1526 if (rval.lattice_val == UNDEFINED)
1527 return rval;
1528
1529 gcc_assert ((rval.lattice_val == CONSTANT
1530 && TREE_CODE (rval.value) == INTEGER_CST)
1531 || wi::sext (rval.mask, TYPE_PRECISION (TREE_TYPE (rhs))) == -1);
1532 bit_value_unop_1 (code, type, &value, &mask,
1533 TREE_TYPE (rhs), value_to_wide_int (rval), rval.mask);
1534 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1535 {
1536 val.lattice_val = CONSTANT;
1537 val.mask = mask;
1538 /* ??? Delay building trees here. */
1539 val.value = wide_int_to_tree (type, value);
1540 }
1541 else
1542 {
1543 val.lattice_val = VARYING;
1544 val.value = NULL_TREE;
1545 val.mask = -1;
1546 }
1547 return val;
1548 }
1549
1550 /* Return the propagation value when applying the operation CODE to
1551 the values RHS1 and RHS2 yielding type TYPE. */
1552
1553 static ccp_prop_value_t
1554 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
1555 {
1556 ccp_prop_value_t r1val = get_value_for_expr (rhs1, true);
1557 ccp_prop_value_t r2val = get_value_for_expr (rhs2, true);
1558 widest_int value, mask;
1559 ccp_prop_value_t val;
1560
1561 if (r1val.lattice_val == UNDEFINED
1562 || r2val.lattice_val == UNDEFINED)
1563 {
1564 val.lattice_val = VARYING;
1565 val.value = NULL_TREE;
1566 val.mask = -1;
1567 return val;
1568 }
1569
1570 gcc_assert ((r1val.lattice_val == CONSTANT
1571 && TREE_CODE (r1val.value) == INTEGER_CST)
1572 || wi::sext (r1val.mask,
1573 TYPE_PRECISION (TREE_TYPE (rhs1))) == -1);
1574 gcc_assert ((r2val.lattice_val == CONSTANT
1575 && TREE_CODE (r2val.value) == INTEGER_CST)
1576 || wi::sext (r2val.mask,
1577 TYPE_PRECISION (TREE_TYPE (rhs2))) == -1);
1578 bit_value_binop_1 (code, type, &value, &mask,
1579 TREE_TYPE (rhs1), value_to_wide_int (r1val), r1val.mask,
1580 TREE_TYPE (rhs2), value_to_wide_int (r2val), r2val.mask);
1581 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1582 {
1583 val.lattice_val = CONSTANT;
1584 val.mask = mask;
1585 /* ??? Delay building trees here. */
1586 val.value = wide_int_to_tree (type, value);
1587 }
1588 else
1589 {
1590 val.lattice_val = VARYING;
1591 val.value = NULL_TREE;
1592 val.mask = -1;
1593 }
1594 return val;
1595 }
1596
1597 /* Return the propagation value for __builtin_assume_aligned
1598 and functions with assume_aligned or alloc_aligned attribute.
1599 For __builtin_assume_aligned, ATTR is NULL_TREE,
1600 for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED
1601 is false, for alloc_aligned attribute ATTR is non-NULL and
1602 ALLOC_ALIGNED is true. */
1603
1604 static ccp_prop_value_t
1605 bit_value_assume_aligned (gimple stmt, tree attr, ccp_prop_value_t ptrval,
1606 bool alloc_aligned)
1607 {
1608 tree align, misalign = NULL_TREE, type;
1609 unsigned HOST_WIDE_INT aligni, misaligni = 0;
1610 ccp_prop_value_t alignval;
1611 widest_int value, mask;
1612 ccp_prop_value_t val;
1613
1614 if (attr == NULL_TREE)
1615 {
1616 tree ptr = gimple_call_arg (stmt, 0);
1617 type = TREE_TYPE (ptr);
1618 ptrval = get_value_for_expr (ptr, true);
1619 }
1620 else
1621 {
1622 tree lhs = gimple_call_lhs (stmt);
1623 type = TREE_TYPE (lhs);
1624 }
1625
1626 if (ptrval.lattice_val == UNDEFINED)
1627 return ptrval;
1628 gcc_assert ((ptrval.lattice_val == CONSTANT
1629 && TREE_CODE (ptrval.value) == INTEGER_CST)
1630 || wi::sext (ptrval.mask, TYPE_PRECISION (type)) == -1);
1631 if (attr == NULL_TREE)
1632 {
1633 /* Get aligni and misaligni from __builtin_assume_aligned. */
1634 align = gimple_call_arg (stmt, 1);
1635 if (!tree_fits_uhwi_p (align))
1636 return ptrval;
1637 aligni = tree_to_uhwi (align);
1638 if (gimple_call_num_args (stmt) > 2)
1639 {
1640 misalign = gimple_call_arg (stmt, 2);
1641 if (!tree_fits_uhwi_p (misalign))
1642 return ptrval;
1643 misaligni = tree_to_uhwi (misalign);
1644 }
1645 }
1646 else
1647 {
1648 /* Get aligni and misaligni from assume_aligned or
1649 alloc_align attributes. */
1650 if (TREE_VALUE (attr) == NULL_TREE)
1651 return ptrval;
1652 attr = TREE_VALUE (attr);
1653 align = TREE_VALUE (attr);
1654 if (!tree_fits_uhwi_p (align))
1655 return ptrval;
1656 aligni = tree_to_uhwi (align);
1657 if (alloc_aligned)
1658 {
1659 if (aligni == 0 || aligni > gimple_call_num_args (stmt))
1660 return ptrval;
1661 align = gimple_call_arg (stmt, aligni - 1);
1662 if (!tree_fits_uhwi_p (align))
1663 return ptrval;
1664 aligni = tree_to_uhwi (align);
1665 }
1666 else if (TREE_CHAIN (attr) && TREE_VALUE (TREE_CHAIN (attr)))
1667 {
1668 misalign = TREE_VALUE (TREE_CHAIN (attr));
1669 if (!tree_fits_uhwi_p (misalign))
1670 return ptrval;
1671 misaligni = tree_to_uhwi (misalign);
1672 }
1673 }
1674 if (aligni <= 1 || (aligni & (aligni - 1)) != 0 || misaligni >= aligni)
1675 return ptrval;
1676
1677 align = build_int_cst_type (type, -aligni);
1678 alignval = get_value_for_expr (align, true);
1679 bit_value_binop_1 (BIT_AND_EXPR, type, &value, &mask,
1680 type, value_to_wide_int (ptrval), ptrval.mask,
1681 type, value_to_wide_int (alignval), alignval.mask);
1682 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1683 {
1684 val.lattice_val = CONSTANT;
1685 val.mask = mask;
1686 gcc_assert ((mask.to_uhwi () & (aligni - 1)) == 0);
1687 gcc_assert ((value.to_uhwi () & (aligni - 1)) == 0);
1688 value |= misaligni;
1689 /* ??? Delay building trees here. */
1690 val.value = wide_int_to_tree (type, value);
1691 }
1692 else
1693 {
1694 val.lattice_val = VARYING;
1695 val.value = NULL_TREE;
1696 val.mask = -1;
1697 }
1698 return val;
1699 }
1700
1701 /* Evaluate statement STMT.
1702 Valid only for assignments, calls, conditionals, and switches. */
1703
1704 static ccp_prop_value_t
1705 evaluate_stmt (gimple stmt)
1706 {
1707 ccp_prop_value_t val;
1708 tree simplified = NULL_TREE;
1709 ccp_lattice_t likelyvalue = likely_value (stmt);
1710 bool is_constant = false;
1711 unsigned int align;
1712
1713 if (dump_file && (dump_flags & TDF_DETAILS))
1714 {
1715 fprintf (dump_file, "which is likely ");
1716 switch (likelyvalue)
1717 {
1718 case CONSTANT:
1719 fprintf (dump_file, "CONSTANT");
1720 break;
1721 case UNDEFINED:
1722 fprintf (dump_file, "UNDEFINED");
1723 break;
1724 case VARYING:
1725 fprintf (dump_file, "VARYING");
1726 break;
1727 default:;
1728 }
1729 fprintf (dump_file, "\n");
1730 }
1731
1732 /* If the statement is likely to have a CONSTANT result, then try
1733 to fold the statement to determine the constant value. */
1734 /* FIXME. This is the only place that we call ccp_fold.
1735 Since likely_value never returns CONSTANT for calls, we will
1736 not attempt to fold them, including builtins that may profit. */
1737 if (likelyvalue == CONSTANT)
1738 {
1739 fold_defer_overflow_warnings ();
1740 simplified = ccp_fold (stmt);
1741 if (simplified && TREE_CODE (simplified) == SSA_NAME)
1742 {
1743 val = *get_value (simplified);
1744 if (val.lattice_val != VARYING)
1745 {
1746 fold_undefer_overflow_warnings (true, stmt, 0);
1747 return val;
1748 }
1749 }
1750 is_constant = simplified && is_gimple_min_invariant (simplified);
1751 fold_undefer_overflow_warnings (is_constant, stmt, 0);
1752 if (is_constant)
1753 {
1754 /* The statement produced a constant value. */
1755 val.lattice_val = CONSTANT;
1756 val.value = simplified;
1757 val.mask = 0;
1758 return val;
1759 }
1760 }
1761 /* If the statement is likely to have a VARYING result, then do not
1762 bother folding the statement. */
1763 else if (likelyvalue == VARYING)
1764 {
1765 enum gimple_code code = gimple_code (stmt);
1766 if (code == GIMPLE_ASSIGN)
1767 {
1768 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1769
1770 /* Other cases cannot satisfy is_gimple_min_invariant
1771 without folding. */
1772 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
1773 simplified = gimple_assign_rhs1 (stmt);
1774 }
1775 else if (code == GIMPLE_SWITCH)
1776 simplified = gimple_switch_index (as_a <gswitch *> (stmt));
1777 else
1778 /* These cannot satisfy is_gimple_min_invariant without folding. */
1779 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
1780 is_constant = simplified && is_gimple_min_invariant (simplified);
1781 if (is_constant)
1782 {
1783 /* The statement produced a constant value. */
1784 val.lattice_val = CONSTANT;
1785 val.value = simplified;
1786 val.mask = 0;
1787 }
1788 }
1789 /* If the statement result is likely UNDEFINED, make it so. */
1790 else if (likelyvalue == UNDEFINED)
1791 {
1792 val.lattice_val = UNDEFINED;
1793 val.value = NULL_TREE;
1794 val.mask = 0;
1795 return val;
1796 }
1797
1798 /* Resort to simplification for bitwise tracking. */
1799 if (flag_tree_bit_ccp
1800 && (likelyvalue == CONSTANT || is_gimple_call (stmt)
1801 || (gimple_assign_single_p (stmt)
1802 && gimple_assign_rhs_code (stmt) == ADDR_EXPR))
1803 && !is_constant)
1804 {
1805 enum gimple_code code = gimple_code (stmt);
1806 val.lattice_val = VARYING;
1807 val.value = NULL_TREE;
1808 val.mask = -1;
1809 if (code == GIMPLE_ASSIGN)
1810 {
1811 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1812 tree rhs1 = gimple_assign_rhs1 (stmt);
1813 tree lhs = gimple_assign_lhs (stmt);
1814 if ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
1815 || POINTER_TYPE_P (TREE_TYPE (lhs)))
1816 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1817 || POINTER_TYPE_P (TREE_TYPE (rhs1))))
1818 switch (get_gimple_rhs_class (subcode))
1819 {
1820 case GIMPLE_SINGLE_RHS:
1821 val = get_value_for_expr (rhs1, true);
1822 break;
1823
1824 case GIMPLE_UNARY_RHS:
1825 val = bit_value_unop (subcode, TREE_TYPE (lhs), rhs1);
1826 break;
1827
1828 case GIMPLE_BINARY_RHS:
1829 val = bit_value_binop (subcode, TREE_TYPE (lhs), rhs1,
1830 gimple_assign_rhs2 (stmt));
1831 break;
1832
1833 default:;
1834 }
1835 }
1836 else if (code == GIMPLE_COND)
1837 {
1838 enum tree_code code = gimple_cond_code (stmt);
1839 tree rhs1 = gimple_cond_lhs (stmt);
1840 tree rhs2 = gimple_cond_rhs (stmt);
1841 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1842 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1843 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
1844 }
1845 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1846 {
1847 tree fndecl = gimple_call_fndecl (stmt);
1848 switch (DECL_FUNCTION_CODE (fndecl))
1849 {
1850 case BUILT_IN_MALLOC:
1851 case BUILT_IN_REALLOC:
1852 case BUILT_IN_CALLOC:
1853 case BUILT_IN_STRDUP:
1854 case BUILT_IN_STRNDUP:
1855 val.lattice_val = CONSTANT;
1856 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1857 val.mask = ~((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT
1858 / BITS_PER_UNIT - 1);
1859 break;
1860
1861 case BUILT_IN_ALLOCA:
1862 case BUILT_IN_ALLOCA_WITH_ALIGN:
1863 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN
1864 ? TREE_INT_CST_LOW (gimple_call_arg (stmt, 1))
1865 : BIGGEST_ALIGNMENT);
1866 val.lattice_val = CONSTANT;
1867 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1868 val.mask = ~((HOST_WIDE_INT) align / BITS_PER_UNIT - 1);
1869 break;
1870
1871 /* These builtins return their first argument, unmodified. */
1872 case BUILT_IN_MEMCPY:
1873 case BUILT_IN_MEMMOVE:
1874 case BUILT_IN_MEMSET:
1875 case BUILT_IN_STRCPY:
1876 case BUILT_IN_STRNCPY:
1877 case BUILT_IN_MEMCPY_CHK:
1878 case BUILT_IN_MEMMOVE_CHK:
1879 case BUILT_IN_MEMSET_CHK:
1880 case BUILT_IN_STRCPY_CHK:
1881 case BUILT_IN_STRNCPY_CHK:
1882 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1883 break;
1884
1885 case BUILT_IN_ASSUME_ALIGNED:
1886 val = bit_value_assume_aligned (stmt, NULL_TREE, val, false);
1887 break;
1888
1889 case BUILT_IN_ALIGNED_ALLOC:
1890 {
1891 tree align = get_constant_value (gimple_call_arg (stmt, 0));
1892 if (align
1893 && tree_fits_uhwi_p (align))
1894 {
1895 unsigned HOST_WIDE_INT aligni = tree_to_uhwi (align);
1896 if (aligni > 1
1897 /* align must be power-of-two */
1898 && (aligni & (aligni - 1)) == 0)
1899 {
1900 val.lattice_val = CONSTANT;
1901 val.value = build_int_cst (ptr_type_node, 0);
1902 val.mask = -aligni;
1903 }
1904 }
1905 break;
1906 }
1907
1908 default:;
1909 }
1910 }
1911 if (is_gimple_call (stmt) && gimple_call_lhs (stmt))
1912 {
1913 tree fntype = gimple_call_fntype (stmt);
1914 if (fntype)
1915 {
1916 tree attrs = lookup_attribute ("assume_aligned",
1917 TYPE_ATTRIBUTES (fntype));
1918 if (attrs)
1919 val = bit_value_assume_aligned (stmt, attrs, val, false);
1920 attrs = lookup_attribute ("alloc_align",
1921 TYPE_ATTRIBUTES (fntype));
1922 if (attrs)
1923 val = bit_value_assume_aligned (stmt, attrs, val, true);
1924 }
1925 }
1926 is_constant = (val.lattice_val == CONSTANT);
1927 }
1928
1929 if (flag_tree_bit_ccp
1930 && ((is_constant && TREE_CODE (val.value) == INTEGER_CST)
1931 || !is_constant)
1932 && gimple_get_lhs (stmt)
1933 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME)
1934 {
1935 tree lhs = gimple_get_lhs (stmt);
1936 wide_int nonzero_bits = get_nonzero_bits (lhs);
1937 if (nonzero_bits != -1)
1938 {
1939 if (!is_constant)
1940 {
1941 val.lattice_val = CONSTANT;
1942 val.value = build_zero_cst (TREE_TYPE (lhs));
1943 val.mask = extend_mask (nonzero_bits);
1944 is_constant = true;
1945 }
1946 else
1947 {
1948 if (wi::bit_and_not (val.value, nonzero_bits) != 0)
1949 val.value = wide_int_to_tree (TREE_TYPE (lhs),
1950 nonzero_bits & val.value);
1951 if (nonzero_bits == 0)
1952 val.mask = 0;
1953 else
1954 val.mask = val.mask & extend_mask (nonzero_bits);
1955 }
1956 }
1957 }
1958
1959 /* The statement produced a nonconstant value. */
1960 if (!is_constant)
1961 {
1962 /* The statement produced a copy. */
1963 if (simplified && TREE_CODE (simplified) == SSA_NAME
1964 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (simplified))
1965 {
1966 val.lattice_val = CONSTANT;
1967 val.value = simplified;
1968 val.mask = -1;
1969 }
1970 /* The statement is VARYING. */
1971 else
1972 {
1973 val.lattice_val = VARYING;
1974 val.value = NULL_TREE;
1975 val.mask = -1;
1976 }
1977 }
1978
1979 return val;
1980 }
1981
1982 typedef hash_table<pointer_hash<gimple_statement_base> > gimple_htab;
1983
1984 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
1985 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
1986
1987 static void
1988 insert_clobber_before_stack_restore (tree saved_val, tree var,
1989 gimple_htab **visited)
1990 {
1991 gimple stmt;
1992 gassign *clobber_stmt;
1993 tree clobber;
1994 imm_use_iterator iter;
1995 gimple_stmt_iterator i;
1996 gimple *slot;
1997
1998 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
1999 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
2000 {
2001 clobber = build_constructor (TREE_TYPE (var),
2002 NULL);
2003 TREE_THIS_VOLATILE (clobber) = 1;
2004 clobber_stmt = gimple_build_assign (var, clobber);
2005
2006 i = gsi_for_stmt (stmt);
2007 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
2008 }
2009 else if (gimple_code (stmt) == GIMPLE_PHI)
2010 {
2011 if (!*visited)
2012 *visited = new gimple_htab (10);
2013
2014 slot = (*visited)->find_slot (stmt, INSERT);
2015 if (*slot != NULL)
2016 continue;
2017
2018 *slot = stmt;
2019 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
2020 visited);
2021 }
2022 else if (gimple_assign_ssa_name_copy_p (stmt))
2023 insert_clobber_before_stack_restore (gimple_assign_lhs (stmt), var,
2024 visited);
2025 else if (chkp_gimple_call_builtin_p (stmt, BUILT_IN_CHKP_BNDRET))
2026 continue;
2027 else
2028 gcc_assert (is_gimple_debug (stmt));
2029 }
2030
2031 /* Advance the iterator to the previous non-debug gimple statement in the same
2032 or dominating basic block. */
2033
2034 static inline void
2035 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
2036 {
2037 basic_block dom;
2038
2039 gsi_prev_nondebug (i);
2040 while (gsi_end_p (*i))
2041 {
2042 dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
2043 if (dom == NULL || dom == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2044 return;
2045
2046 *i = gsi_last_bb (dom);
2047 }
2048 }
2049
2050 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
2051 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
2052
2053 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
2054 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
2055 that case the function gives up without inserting the clobbers. */
2056
2057 static void
2058 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
2059 {
2060 gimple stmt;
2061 tree saved_val;
2062 gimple_htab *visited = NULL;
2063
2064 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
2065 {
2066 stmt = gsi_stmt (i);
2067
2068 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
2069 continue;
2070
2071 saved_val = gimple_call_lhs (stmt);
2072 if (saved_val == NULL_TREE)
2073 continue;
2074
2075 insert_clobber_before_stack_restore (saved_val, var, &visited);
2076 break;
2077 }
2078
2079 delete visited;
2080 }
2081
2082 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
2083 fixed-size array and returns the address, if found, otherwise returns
2084 NULL_TREE. */
2085
2086 static tree
2087 fold_builtin_alloca_with_align (gimple stmt)
2088 {
2089 unsigned HOST_WIDE_INT size, threshold, n_elem;
2090 tree lhs, arg, block, var, elem_type, array_type;
2091
2092 /* Get lhs. */
2093 lhs = gimple_call_lhs (stmt);
2094 if (lhs == NULL_TREE)
2095 return NULL_TREE;
2096
2097 /* Detect constant argument. */
2098 arg = get_constant_value (gimple_call_arg (stmt, 0));
2099 if (arg == NULL_TREE
2100 || TREE_CODE (arg) != INTEGER_CST
2101 || !tree_fits_uhwi_p (arg))
2102 return NULL_TREE;
2103
2104 size = tree_to_uhwi (arg);
2105
2106 /* Heuristic: don't fold large allocas. */
2107 threshold = (unsigned HOST_WIDE_INT)PARAM_VALUE (PARAM_LARGE_STACK_FRAME);
2108 /* In case the alloca is located at function entry, it has the same lifetime
2109 as a declared array, so we allow a larger size. */
2110 block = gimple_block (stmt);
2111 if (!(cfun->after_inlining
2112 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
2113 threshold /= 10;
2114 if (size > threshold)
2115 return NULL_TREE;
2116
2117 /* Declare array. */
2118 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
2119 n_elem = size * 8 / BITS_PER_UNIT;
2120 array_type = build_array_type_nelts (elem_type, n_elem);
2121 var = create_tmp_var (array_type);
2122 DECL_ALIGN (var) = TREE_INT_CST_LOW (gimple_call_arg (stmt, 1));
2123 {
2124 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
2125 if (pi != NULL && !pi->pt.anything)
2126 {
2127 bool singleton_p;
2128 unsigned uid;
2129 singleton_p = pt_solution_singleton_p (&pi->pt, &uid);
2130 gcc_assert (singleton_p);
2131 SET_DECL_PT_UID (var, uid);
2132 }
2133 }
2134
2135 /* Fold alloca to the address of the array. */
2136 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
2137 }
2138
2139 /* Fold the stmt at *GSI with CCP specific information that propagating
2140 and regular folding does not catch. */
2141
2142 static bool
2143 ccp_fold_stmt (gimple_stmt_iterator *gsi)
2144 {
2145 gimple stmt = gsi_stmt (*gsi);
2146
2147 switch (gimple_code (stmt))
2148 {
2149 case GIMPLE_COND:
2150 {
2151 gcond *cond_stmt = as_a <gcond *> (stmt);
2152 ccp_prop_value_t val;
2153 /* Statement evaluation will handle type mismatches in constants
2154 more gracefully than the final propagation. This allows us to
2155 fold more conditionals here. */
2156 val = evaluate_stmt (stmt);
2157 if (val.lattice_val != CONSTANT
2158 || val.mask != 0)
2159 return false;
2160
2161 if (dump_file)
2162 {
2163 fprintf (dump_file, "Folding predicate ");
2164 print_gimple_expr (dump_file, stmt, 0, 0);
2165 fprintf (dump_file, " to ");
2166 print_generic_expr (dump_file, val.value, 0);
2167 fprintf (dump_file, "\n");
2168 }
2169
2170 if (integer_zerop (val.value))
2171 gimple_cond_make_false (cond_stmt);
2172 else
2173 gimple_cond_make_true (cond_stmt);
2174
2175 return true;
2176 }
2177
2178 case GIMPLE_CALL:
2179 {
2180 tree lhs = gimple_call_lhs (stmt);
2181 int flags = gimple_call_flags (stmt);
2182 tree val;
2183 tree argt;
2184 bool changed = false;
2185 unsigned i;
2186
2187 /* If the call was folded into a constant make sure it goes
2188 away even if we cannot propagate into all uses because of
2189 type issues. */
2190 if (lhs
2191 && TREE_CODE (lhs) == SSA_NAME
2192 && (val = get_constant_value (lhs))
2193 /* Don't optimize away calls that have side-effects. */
2194 && (flags & (ECF_CONST|ECF_PURE)) != 0
2195 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
2196 {
2197 tree new_rhs = unshare_expr (val);
2198 bool res;
2199 if (!useless_type_conversion_p (TREE_TYPE (lhs),
2200 TREE_TYPE (new_rhs)))
2201 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
2202 res = update_call_from_tree (gsi, new_rhs);
2203 gcc_assert (res);
2204 return true;
2205 }
2206
2207 /* Internal calls provide no argument types, so the extra laxity
2208 for normal calls does not apply. */
2209 if (gimple_call_internal_p (stmt))
2210 return false;
2211
2212 /* The heuristic of fold_builtin_alloca_with_align differs before and
2213 after inlining, so we don't require the arg to be changed into a
2214 constant for folding, but just to be constant. */
2215 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN))
2216 {
2217 tree new_rhs = fold_builtin_alloca_with_align (stmt);
2218 if (new_rhs)
2219 {
2220 bool res = update_call_from_tree (gsi, new_rhs);
2221 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
2222 gcc_assert (res);
2223 insert_clobbers_for_var (*gsi, var);
2224 return true;
2225 }
2226 }
2227
2228 /* Propagate into the call arguments. Compared to replace_uses_in
2229 this can use the argument slot types for type verification
2230 instead of the current argument type. We also can safely
2231 drop qualifiers here as we are dealing with constants anyway. */
2232 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
2233 for (i = 0; i < gimple_call_num_args (stmt) && argt;
2234 ++i, argt = TREE_CHAIN (argt))
2235 {
2236 tree arg = gimple_call_arg (stmt, i);
2237 if (TREE_CODE (arg) == SSA_NAME
2238 && (val = get_constant_value (arg))
2239 && useless_type_conversion_p
2240 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
2241 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2242 {
2243 gimple_call_set_arg (stmt, i, unshare_expr (val));
2244 changed = true;
2245 }
2246 }
2247
2248 return changed;
2249 }
2250
2251 case GIMPLE_ASSIGN:
2252 {
2253 tree lhs = gimple_assign_lhs (stmt);
2254 tree val;
2255
2256 /* If we have a load that turned out to be constant replace it
2257 as we cannot propagate into all uses in all cases. */
2258 if (gimple_assign_single_p (stmt)
2259 && TREE_CODE (lhs) == SSA_NAME
2260 && (val = get_constant_value (lhs)))
2261 {
2262 tree rhs = unshare_expr (val);
2263 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2264 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
2265 gimple_assign_set_rhs_from_tree (gsi, rhs);
2266 return true;
2267 }
2268
2269 return false;
2270 }
2271
2272 default:
2273 return false;
2274 }
2275 }
2276
2277 /* Visit the assignment statement STMT. Set the value of its LHS to the
2278 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2279 creates virtual definitions, set the value of each new name to that
2280 of the RHS (if we can derive a constant out of the RHS).
2281 Value-returning call statements also perform an assignment, and
2282 are handled here. */
2283
2284 static enum ssa_prop_result
2285 visit_assignment (gimple stmt, tree *output_p)
2286 {
2287 ccp_prop_value_t val;
2288 enum ssa_prop_result retval = SSA_PROP_NOT_INTERESTING;
2289
2290 tree lhs = gimple_get_lhs (stmt);
2291 if (TREE_CODE (lhs) == SSA_NAME)
2292 {
2293 /* Evaluate the statement, which could be
2294 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2295 val = evaluate_stmt (stmt);
2296
2297 /* If STMT is an assignment to an SSA_NAME, we only have one
2298 value to set. */
2299 if (set_lattice_value (lhs, &val))
2300 {
2301 *output_p = lhs;
2302 if (val.lattice_val == VARYING)
2303 retval = SSA_PROP_VARYING;
2304 else
2305 retval = SSA_PROP_INTERESTING;
2306 }
2307 }
2308
2309 return retval;
2310 }
2311
2312
2313 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2314 if it can determine which edge will be taken. Otherwise, return
2315 SSA_PROP_VARYING. */
2316
2317 static enum ssa_prop_result
2318 visit_cond_stmt (gimple stmt, edge *taken_edge_p)
2319 {
2320 ccp_prop_value_t val;
2321 basic_block block;
2322
2323 block = gimple_bb (stmt);
2324 val = evaluate_stmt (stmt);
2325 if (val.lattice_val != CONSTANT
2326 || val.mask != 0)
2327 return SSA_PROP_VARYING;
2328
2329 /* Find which edge out of the conditional block will be taken and add it
2330 to the worklist. If no single edge can be determined statically,
2331 return SSA_PROP_VARYING to feed all the outgoing edges to the
2332 propagation engine. */
2333 *taken_edge_p = find_taken_edge (block, val.value);
2334 if (*taken_edge_p)
2335 return SSA_PROP_INTERESTING;
2336 else
2337 return SSA_PROP_VARYING;
2338 }
2339
2340
2341 /* Evaluate statement STMT. If the statement produces an output value and
2342 its evaluation changes the lattice value of its output, return
2343 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2344 output value.
2345
2346 If STMT is a conditional branch and we can determine its truth
2347 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2348 value, return SSA_PROP_VARYING. */
2349
2350 static enum ssa_prop_result
2351 ccp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
2352 {
2353 tree def;
2354 ssa_op_iter iter;
2355
2356 if (dump_file && (dump_flags & TDF_DETAILS))
2357 {
2358 fprintf (dump_file, "\nVisiting statement:\n");
2359 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2360 }
2361
2362 switch (gimple_code (stmt))
2363 {
2364 case GIMPLE_ASSIGN:
2365 /* If the statement is an assignment that produces a single
2366 output value, evaluate its RHS to see if the lattice value of
2367 its output has changed. */
2368 return visit_assignment (stmt, output_p);
2369
2370 case GIMPLE_CALL:
2371 /* A value-returning call also performs an assignment. */
2372 if (gimple_call_lhs (stmt) != NULL_TREE)
2373 return visit_assignment (stmt, output_p);
2374 break;
2375
2376 case GIMPLE_COND:
2377 case GIMPLE_SWITCH:
2378 /* If STMT is a conditional branch, see if we can determine
2379 which branch will be taken. */
2380 /* FIXME. It appears that we should be able to optimize
2381 computed GOTOs here as well. */
2382 return visit_cond_stmt (stmt, taken_edge_p);
2383
2384 default:
2385 break;
2386 }
2387
2388 /* Any other kind of statement is not interesting for constant
2389 propagation and, therefore, not worth simulating. */
2390 if (dump_file && (dump_flags & TDF_DETAILS))
2391 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2392
2393 /* Definitions made by statements other than assignments to
2394 SSA_NAMEs represent unknown modifications to their outputs.
2395 Mark them VARYING. */
2396 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2397 set_value_varying (def);
2398
2399 return SSA_PROP_VARYING;
2400 }
2401
2402
2403 /* Main entry point for SSA Conditional Constant Propagation. */
2404
2405 static unsigned int
2406 do_ssa_ccp (void)
2407 {
2408 unsigned int todo = 0;
2409 calculate_dominance_info (CDI_DOMINATORS);
2410 ccp_initialize ();
2411 ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node);
2412 if (ccp_finalize ())
2413 todo = (TODO_cleanup_cfg | TODO_update_ssa);
2414 free_dominance_info (CDI_DOMINATORS);
2415 return todo;
2416 }
2417
2418
2419 namespace {
2420
2421 const pass_data pass_data_ccp =
2422 {
2423 GIMPLE_PASS, /* type */
2424 "ccp", /* name */
2425 OPTGROUP_NONE, /* optinfo_flags */
2426 TV_TREE_CCP, /* tv_id */
2427 ( PROP_cfg | PROP_ssa ), /* properties_required */
2428 0, /* properties_provided */
2429 0, /* properties_destroyed */
2430 0, /* todo_flags_start */
2431 TODO_update_address_taken, /* todo_flags_finish */
2432 };
2433
2434 class pass_ccp : public gimple_opt_pass
2435 {
2436 public:
2437 pass_ccp (gcc::context *ctxt)
2438 : gimple_opt_pass (pass_data_ccp, ctxt)
2439 {}
2440
2441 /* opt_pass methods: */
2442 opt_pass * clone () { return new pass_ccp (m_ctxt); }
2443 virtual bool gate (function *) { return flag_tree_ccp != 0; }
2444 virtual unsigned int execute (function *) { return do_ssa_ccp (); }
2445
2446 }; // class pass_ccp
2447
2448 } // anon namespace
2449
2450 gimple_opt_pass *
2451 make_pass_ccp (gcc::context *ctxt)
2452 {
2453 return new pass_ccp (ctxt);
2454 }
2455
2456
2457
2458 /* Try to optimize out __builtin_stack_restore. Optimize it out
2459 if there is another __builtin_stack_restore in the same basic
2460 block and no calls or ASM_EXPRs are in between, or if this block's
2461 only outgoing edge is to EXIT_BLOCK and there are no calls or
2462 ASM_EXPRs after this __builtin_stack_restore. */
2463
2464 static tree
2465 optimize_stack_restore (gimple_stmt_iterator i)
2466 {
2467 tree callee;
2468 gimple stmt;
2469
2470 basic_block bb = gsi_bb (i);
2471 gimple call = gsi_stmt (i);
2472
2473 if (gimple_code (call) != GIMPLE_CALL
2474 || gimple_call_num_args (call) != 1
2475 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2476 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2477 return NULL_TREE;
2478
2479 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2480 {
2481 stmt = gsi_stmt (i);
2482 if (gimple_code (stmt) == GIMPLE_ASM)
2483 return NULL_TREE;
2484 if (gimple_code (stmt) != GIMPLE_CALL)
2485 continue;
2486
2487 callee = gimple_call_fndecl (stmt);
2488 if (!callee
2489 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2490 /* All regular builtins are ok, just obviously not alloca. */
2491 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
2492 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA_WITH_ALIGN)
2493 return NULL_TREE;
2494
2495 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
2496 goto second_stack_restore;
2497 }
2498
2499 if (!gsi_end_p (i))
2500 return NULL_TREE;
2501
2502 /* Allow one successor of the exit block, or zero successors. */
2503 switch (EDGE_COUNT (bb->succs))
2504 {
2505 case 0:
2506 break;
2507 case 1:
2508 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2509 return NULL_TREE;
2510 break;
2511 default:
2512 return NULL_TREE;
2513 }
2514 second_stack_restore:
2515
2516 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2517 If there are multiple uses, then the last one should remove the call.
2518 In any case, whether the call to __builtin_stack_save can be removed
2519 or not is irrelevant to removing the call to __builtin_stack_restore. */
2520 if (has_single_use (gimple_call_arg (call, 0)))
2521 {
2522 gimple stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2523 if (is_gimple_call (stack_save))
2524 {
2525 callee = gimple_call_fndecl (stack_save);
2526 if (callee
2527 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2528 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE)
2529 {
2530 gimple_stmt_iterator stack_save_gsi;
2531 tree rhs;
2532
2533 stack_save_gsi = gsi_for_stmt (stack_save);
2534 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2535 update_call_from_tree (&stack_save_gsi, rhs);
2536 }
2537 }
2538 }
2539
2540 /* No effect, so the statement will be deleted. */
2541 return integer_zero_node;
2542 }
2543
2544 /* If va_list type is a simple pointer and nothing special is needed,
2545 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2546 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2547 pointer assignment. */
2548
2549 static tree
2550 optimize_stdarg_builtin (gimple call)
2551 {
2552 tree callee, lhs, rhs, cfun_va_list;
2553 bool va_list_simple_ptr;
2554 location_t loc = gimple_location (call);
2555
2556 if (gimple_code (call) != GIMPLE_CALL)
2557 return NULL_TREE;
2558
2559 callee = gimple_call_fndecl (call);
2560
2561 cfun_va_list = targetm.fn_abi_va_list (callee);
2562 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2563 && (TREE_TYPE (cfun_va_list) == void_type_node
2564 || TREE_TYPE (cfun_va_list) == char_type_node);
2565
2566 switch (DECL_FUNCTION_CODE (callee))
2567 {
2568 case BUILT_IN_VA_START:
2569 if (!va_list_simple_ptr
2570 || targetm.expand_builtin_va_start != NULL
2571 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
2572 return NULL_TREE;
2573
2574 if (gimple_call_num_args (call) != 2)
2575 return NULL_TREE;
2576
2577 lhs = gimple_call_arg (call, 0);
2578 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2579 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2580 != TYPE_MAIN_VARIANT (cfun_va_list))
2581 return NULL_TREE;
2582
2583 lhs = build_fold_indirect_ref_loc (loc, lhs);
2584 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
2585 1, integer_zero_node);
2586 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2587 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2588
2589 case BUILT_IN_VA_COPY:
2590 if (!va_list_simple_ptr)
2591 return NULL_TREE;
2592
2593 if (gimple_call_num_args (call) != 2)
2594 return NULL_TREE;
2595
2596 lhs = gimple_call_arg (call, 0);
2597 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2598 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2599 != TYPE_MAIN_VARIANT (cfun_va_list))
2600 return NULL_TREE;
2601
2602 lhs = build_fold_indirect_ref_loc (loc, lhs);
2603 rhs = gimple_call_arg (call, 1);
2604 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2605 != TYPE_MAIN_VARIANT (cfun_va_list))
2606 return NULL_TREE;
2607
2608 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2609 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2610
2611 case BUILT_IN_VA_END:
2612 /* No effect, so the statement will be deleted. */
2613 return integer_zero_node;
2614
2615 default:
2616 gcc_unreachable ();
2617 }
2618 }
2619
2620 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2621 the incoming jumps. Return true if at least one jump was changed. */
2622
2623 static bool
2624 optimize_unreachable (gimple_stmt_iterator i)
2625 {
2626 basic_block bb = gsi_bb (i);
2627 gimple_stmt_iterator gsi;
2628 gimple stmt;
2629 edge_iterator ei;
2630 edge e;
2631 bool ret;
2632
2633 if (flag_sanitize & SANITIZE_UNREACHABLE)
2634 return false;
2635
2636 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2637 {
2638 stmt = gsi_stmt (gsi);
2639
2640 if (is_gimple_debug (stmt))
2641 continue;
2642
2643 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2644 {
2645 /* Verify we do not need to preserve the label. */
2646 if (FORCED_LABEL (gimple_label_label (label_stmt)))
2647 return false;
2648
2649 continue;
2650 }
2651
2652 /* Only handle the case that __builtin_unreachable is the first statement
2653 in the block. We rely on DCE to remove stmts without side-effects
2654 before __builtin_unreachable. */
2655 if (gsi_stmt (gsi) != gsi_stmt (i))
2656 return false;
2657 }
2658
2659 ret = false;
2660 FOR_EACH_EDGE (e, ei, bb->preds)
2661 {
2662 gsi = gsi_last_bb (e->src);
2663 if (gsi_end_p (gsi))
2664 continue;
2665
2666 stmt = gsi_stmt (gsi);
2667 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
2668 {
2669 if (e->flags & EDGE_TRUE_VALUE)
2670 gimple_cond_make_false (cond_stmt);
2671 else if (e->flags & EDGE_FALSE_VALUE)
2672 gimple_cond_make_true (cond_stmt);
2673 else
2674 gcc_unreachable ();
2675 update_stmt (cond_stmt);
2676 }
2677 else
2678 {
2679 /* Todo: handle other cases, f.i. switch statement. */
2680 continue;
2681 }
2682
2683 ret = true;
2684 }
2685
2686 return ret;
2687 }
2688
2689 /* A simple pass that attempts to fold all builtin functions. This pass
2690 is run after we've propagated as many constants as we can. */
2691
2692 namespace {
2693
2694 const pass_data pass_data_fold_builtins =
2695 {
2696 GIMPLE_PASS, /* type */
2697 "fab", /* name */
2698 OPTGROUP_NONE, /* optinfo_flags */
2699 TV_NONE, /* tv_id */
2700 ( PROP_cfg | PROP_ssa ), /* properties_required */
2701 0, /* properties_provided */
2702 0, /* properties_destroyed */
2703 0, /* todo_flags_start */
2704 TODO_update_ssa, /* todo_flags_finish */
2705 };
2706
2707 class pass_fold_builtins : public gimple_opt_pass
2708 {
2709 public:
2710 pass_fold_builtins (gcc::context *ctxt)
2711 : gimple_opt_pass (pass_data_fold_builtins, ctxt)
2712 {}
2713
2714 /* opt_pass methods: */
2715 opt_pass * clone () { return new pass_fold_builtins (m_ctxt); }
2716 virtual unsigned int execute (function *);
2717
2718 }; // class pass_fold_builtins
2719
2720 unsigned int
2721 pass_fold_builtins::execute (function *fun)
2722 {
2723 bool cfg_changed = false;
2724 basic_block bb;
2725 unsigned int todoflags = 0;
2726
2727 FOR_EACH_BB_FN (bb, fun)
2728 {
2729 gimple_stmt_iterator i;
2730 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
2731 {
2732 gimple stmt, old_stmt;
2733 tree callee;
2734 enum built_in_function fcode;
2735
2736 stmt = gsi_stmt (i);
2737
2738 if (gimple_code (stmt) != GIMPLE_CALL)
2739 {
2740 /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
2741 after the last GIMPLE DSE they aren't needed and might
2742 unnecessarily keep the SSA_NAMEs live. */
2743 if (gimple_clobber_p (stmt))
2744 {
2745 tree lhs = gimple_assign_lhs (stmt);
2746 if (TREE_CODE (lhs) == MEM_REF
2747 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME)
2748 {
2749 unlink_stmt_vdef (stmt);
2750 gsi_remove (&i, true);
2751 release_defs (stmt);
2752 continue;
2753 }
2754 }
2755 gsi_next (&i);
2756 continue;
2757 }
2758
2759 callee = gimple_call_fndecl (stmt);
2760 if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL)
2761 {
2762 gsi_next (&i);
2763 continue;
2764 }
2765
2766 fcode = DECL_FUNCTION_CODE (callee);
2767 if (fold_stmt (&i))
2768 ;
2769 else
2770 {
2771 tree result = NULL_TREE;
2772 switch (DECL_FUNCTION_CODE (callee))
2773 {
2774 case BUILT_IN_CONSTANT_P:
2775 /* Resolve __builtin_constant_p. If it hasn't been
2776 folded to integer_one_node by now, it's fairly
2777 certain that the value simply isn't constant. */
2778 result = integer_zero_node;
2779 break;
2780
2781 case BUILT_IN_ASSUME_ALIGNED:
2782 /* Remove __builtin_assume_aligned. */
2783 result = gimple_call_arg (stmt, 0);
2784 break;
2785
2786 case BUILT_IN_STACK_RESTORE:
2787 result = optimize_stack_restore (i);
2788 if (result)
2789 break;
2790 gsi_next (&i);
2791 continue;
2792
2793 case BUILT_IN_UNREACHABLE:
2794 if (optimize_unreachable (i))
2795 cfg_changed = true;
2796 break;
2797
2798 case BUILT_IN_VA_START:
2799 case BUILT_IN_VA_END:
2800 case BUILT_IN_VA_COPY:
2801 /* These shouldn't be folded before pass_stdarg. */
2802 result = optimize_stdarg_builtin (stmt);
2803 if (result)
2804 break;
2805 /* FALLTHRU */
2806
2807 default:;
2808 }
2809
2810 if (!result)
2811 {
2812 gsi_next (&i);
2813 continue;
2814 }
2815
2816 if (!update_call_from_tree (&i, result))
2817 gimplify_and_update_call_from_tree (&i, result);
2818 }
2819
2820 todoflags |= TODO_update_address_taken;
2821
2822 if (dump_file && (dump_flags & TDF_DETAILS))
2823 {
2824 fprintf (dump_file, "Simplified\n ");
2825 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2826 }
2827
2828 old_stmt = stmt;
2829 stmt = gsi_stmt (i);
2830 update_stmt (stmt);
2831
2832 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
2833 && gimple_purge_dead_eh_edges (bb))
2834 cfg_changed = true;
2835
2836 if (dump_file && (dump_flags & TDF_DETAILS))
2837 {
2838 fprintf (dump_file, "to\n ");
2839 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2840 fprintf (dump_file, "\n");
2841 }
2842
2843 /* Retry the same statement if it changed into another
2844 builtin, there might be new opportunities now. */
2845 if (gimple_code (stmt) != GIMPLE_CALL)
2846 {
2847 gsi_next (&i);
2848 continue;
2849 }
2850 callee = gimple_call_fndecl (stmt);
2851 if (!callee
2852 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2853 || DECL_FUNCTION_CODE (callee) == fcode)
2854 gsi_next (&i);
2855 }
2856 }
2857
2858 /* Delete unreachable blocks. */
2859 if (cfg_changed)
2860 todoflags |= TODO_cleanup_cfg;
2861
2862 return todoflags;
2863 }
2864
2865 } // anon namespace
2866
2867 gimple_opt_pass *
2868 make_pass_fold_builtins (gcc::context *ctxt)
2869 {
2870 return new pass_fold_builtins (ctxt);
2871 }