passes.def: Remove copy propagation passes run directly after CCP.
[gcc.git] / gcc / tree-ssa-ccp.c
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
28 following values:
29
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
37
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
41 or not.
42
43 CONSTANT -> V_i has been found to hold a constant
44 value C.
45
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
48 at compile time.
49
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
51
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
59 can be visited.
60
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
65
66
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
72
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
75
76 if (PRED)
77 a_9 = 3;
78 else
79 a_10 = 100;
80 a_11 = PHI (a_9, a_10)
81
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
86
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
94
95
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
100
101 This algorithm uses wide-ints at the max precision of the target.
102 This means that, with one uninteresting exception, variables with
103 UNSIGNED types never go to VARYING because the bits above the
104 precision of the type of the variable are always zero. The
105 uninteresting case is a variable of UNSIGNED type that has the
106 maximum precision of the target. Such variables can go to VARYING,
107 but this causes no loss of infomation since these variables will
108 never be extended.
109
110 References:
111
112 Constant propagation with conditional branches,
113 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
114
115 Building an Optimizing Compiler,
116 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
117
118 Advanced Compiler Design and Implementation,
119 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
120
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "hash-set.h"
126 #include "machmode.h"
127 #include "vec.h"
128 #include "double-int.h"
129 #include "input.h"
130 #include "alias.h"
131 #include "symtab.h"
132 #include "wide-int.h"
133 #include "inchash.h"
134 #include "real.h"
135 #include "tree.h"
136 #include "fold-const.h"
137 #include "stor-layout.h"
138 #include "flags.h"
139 #include "tm_p.h"
140 #include "predict.h"
141 #include "hard-reg-set.h"
142 #include "input.h"
143 #include "function.h"
144 #include "dominance.h"
145 #include "cfg.h"
146 #include "basic-block.h"
147 #include "gimple-pretty-print.h"
148 #include "hash-table.h"
149 #include "tree-ssa-alias.h"
150 #include "internal-fn.h"
151 #include "gimple-fold.h"
152 #include "tree-eh.h"
153 #include "gimple-expr.h"
154 #include "is-a.h"
155 #include "gimple.h"
156 #include "gimplify.h"
157 #include "gimple-iterator.h"
158 #include "gimple-ssa.h"
159 #include "tree-cfg.h"
160 #include "tree-phinodes.h"
161 #include "ssa-iterators.h"
162 #include "stringpool.h"
163 #include "tree-ssanames.h"
164 #include "tree-pass.h"
165 #include "tree-ssa-propagate.h"
166 #include "value-prof.h"
167 #include "langhooks.h"
168 #include "target.h"
169 #include "diagnostic-core.h"
170 #include "dbgcnt.h"
171 #include "params.h"
172 #include "wide-int-print.h"
173 #include "builtins.h"
174 #include "tree-chkp.h"
175
176
177 /* Possible lattice values. */
178 typedef enum
179 {
180 UNINITIALIZED,
181 UNDEFINED,
182 CONSTANT,
183 VARYING
184 } ccp_lattice_t;
185
186 struct ccp_prop_value_t {
187 /* Lattice value. */
188 ccp_lattice_t lattice_val;
189
190 /* Propagated value. */
191 tree value;
192
193 /* Mask that applies to the propagated value during CCP. For X
194 with a CONSTANT lattice value X & ~mask == value & ~mask. The
195 zero bits in the mask cover constant values. The ones mean no
196 information. */
197 widest_int mask;
198 };
199
200 /* Array of propagated constant values. After propagation,
201 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
202 the constant is held in an SSA name representing a memory store
203 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
204 memory reference used to store (i.e., the LHS of the assignment
205 doing the store). */
206 static ccp_prop_value_t *const_val;
207 static unsigned n_const_val;
208
209 static void canonicalize_value (ccp_prop_value_t *);
210 static bool ccp_fold_stmt (gimple_stmt_iterator *);
211
212 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
213
214 static void
215 dump_lattice_value (FILE *outf, const char *prefix, ccp_prop_value_t val)
216 {
217 switch (val.lattice_val)
218 {
219 case UNINITIALIZED:
220 fprintf (outf, "%sUNINITIALIZED", prefix);
221 break;
222 case UNDEFINED:
223 fprintf (outf, "%sUNDEFINED", prefix);
224 break;
225 case VARYING:
226 fprintf (outf, "%sVARYING", prefix);
227 break;
228 case CONSTANT:
229 if (TREE_CODE (val.value) != INTEGER_CST
230 || val.mask == 0)
231 {
232 fprintf (outf, "%sCONSTANT ", prefix);
233 print_generic_expr (outf, val.value, dump_flags);
234 }
235 else
236 {
237 widest_int cval = wi::bit_and_not (wi::to_widest (val.value),
238 val.mask);
239 fprintf (outf, "%sCONSTANT ", prefix);
240 print_hex (cval, outf);
241 fprintf (outf, " (");
242 print_hex (val.mask, outf);
243 fprintf (outf, ")");
244 }
245 break;
246 default:
247 gcc_unreachable ();
248 }
249 }
250
251
252 /* Print lattice value VAL to stderr. */
253
254 void debug_lattice_value (ccp_prop_value_t val);
255
256 DEBUG_FUNCTION void
257 debug_lattice_value (ccp_prop_value_t val)
258 {
259 dump_lattice_value (stderr, "", val);
260 fprintf (stderr, "\n");
261 }
262
263 /* Extend NONZERO_BITS to a full mask, with the upper bits being set. */
264
265 static widest_int
266 extend_mask (const wide_int &nonzero_bits)
267 {
268 return (wi::mask <widest_int> (wi::get_precision (nonzero_bits), true)
269 | widest_int::from (nonzero_bits, UNSIGNED));
270 }
271
272 /* Compute a default value for variable VAR and store it in the
273 CONST_VAL array. The following rules are used to get default
274 values:
275
276 1- Global and static variables that are declared constant are
277 considered CONSTANT.
278
279 2- Any other value is considered UNDEFINED. This is useful when
280 considering PHI nodes. PHI arguments that are undefined do not
281 change the constant value of the PHI node, which allows for more
282 constants to be propagated.
283
284 3- Variables defined by statements other than assignments and PHI
285 nodes are considered VARYING.
286
287 4- Initial values of variables that are not GIMPLE registers are
288 considered VARYING. */
289
290 static ccp_prop_value_t
291 get_default_value (tree var)
292 {
293 ccp_prop_value_t val = { UNINITIALIZED, NULL_TREE, 0 };
294 gimple stmt;
295
296 stmt = SSA_NAME_DEF_STMT (var);
297
298 if (gimple_nop_p (stmt))
299 {
300 /* Variables defined by an empty statement are those used
301 before being initialized. If VAR is a local variable, we
302 can assume initially that it is UNDEFINED, otherwise we must
303 consider it VARYING. */
304 if (!virtual_operand_p (var)
305 && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
306 val.lattice_val = UNDEFINED;
307 else
308 {
309 val.lattice_val = VARYING;
310 val.mask = -1;
311 if (flag_tree_bit_ccp)
312 {
313 wide_int nonzero_bits = get_nonzero_bits (var);
314 if (nonzero_bits != -1)
315 {
316 val.lattice_val = CONSTANT;
317 val.value = build_zero_cst (TREE_TYPE (var));
318 val.mask = extend_mask (nonzero_bits);
319 }
320 }
321 }
322 }
323 else if (is_gimple_assign (stmt))
324 {
325 tree cst;
326 if (gimple_assign_single_p (stmt)
327 && DECL_P (gimple_assign_rhs1 (stmt))
328 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
329 {
330 val.lattice_val = CONSTANT;
331 val.value = cst;
332 }
333 else
334 {
335 /* Any other variable defined by an assignment is considered
336 UNDEFINED. */
337 val.lattice_val = UNDEFINED;
338 }
339 }
340 else if ((is_gimple_call (stmt)
341 && gimple_call_lhs (stmt) != NULL_TREE)
342 || gimple_code (stmt) == GIMPLE_PHI)
343 {
344 /* A variable defined by a call or a PHI node is considered
345 UNDEFINED. */
346 val.lattice_val = UNDEFINED;
347 }
348 else
349 {
350 /* Otherwise, VAR will never take on a constant value. */
351 val.lattice_val = VARYING;
352 val.mask = -1;
353 }
354
355 return val;
356 }
357
358
359 /* Get the constant value associated with variable VAR. */
360
361 static inline ccp_prop_value_t *
362 get_value (tree var)
363 {
364 ccp_prop_value_t *val;
365
366 if (const_val == NULL
367 || SSA_NAME_VERSION (var) >= n_const_val)
368 return NULL;
369
370 val = &const_val[SSA_NAME_VERSION (var)];
371 if (val->lattice_val == UNINITIALIZED)
372 *val = get_default_value (var);
373
374 canonicalize_value (val);
375
376 return val;
377 }
378
379 /* Return the constant tree value associated with VAR. */
380
381 static inline tree
382 get_constant_value (tree var)
383 {
384 ccp_prop_value_t *val;
385 if (TREE_CODE (var) != SSA_NAME)
386 {
387 if (is_gimple_min_invariant (var))
388 return var;
389 return NULL_TREE;
390 }
391 val = get_value (var);
392 if (val
393 && val->lattice_val == CONSTANT
394 && (TREE_CODE (val->value) != INTEGER_CST
395 || val->mask == 0))
396 return val->value;
397 return NULL_TREE;
398 }
399
400 /* Sets the value associated with VAR to VARYING. */
401
402 static inline void
403 set_value_varying (tree var)
404 {
405 ccp_prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
406
407 val->lattice_val = VARYING;
408 val->value = NULL_TREE;
409 val->mask = -1;
410 }
411
412 /* For integer constants, make sure to drop TREE_OVERFLOW. */
413
414 static void
415 canonicalize_value (ccp_prop_value_t *val)
416 {
417 if (val->lattice_val != CONSTANT)
418 return;
419
420 if (TREE_OVERFLOW_P (val->value))
421 val->value = drop_tree_overflow (val->value);
422 }
423
424 /* Return whether the lattice transition is valid. */
425
426 static bool
427 valid_lattice_transition (ccp_prop_value_t old_val, ccp_prop_value_t new_val)
428 {
429 /* Lattice transitions must always be monotonically increasing in
430 value. */
431 if (old_val.lattice_val < new_val.lattice_val)
432 return true;
433
434 if (old_val.lattice_val != new_val.lattice_val)
435 return false;
436
437 if (!old_val.value && !new_val.value)
438 return true;
439
440 /* Now both lattice values are CONSTANT. */
441
442 /* Allow arbitrary copy changes as we might look through PHI <a_1, ...>
443 when only a single copy edge is executable. */
444 if (TREE_CODE (old_val.value) == SSA_NAME
445 && TREE_CODE (new_val.value) == SSA_NAME)
446 return true;
447
448 /* Allow transitioning from a constant to a copy. */
449 if (is_gimple_min_invariant (old_val.value)
450 && TREE_CODE (new_val.value) == SSA_NAME)
451 return true;
452
453 /* Allow transitioning from PHI <&x, not executable> == &x
454 to PHI <&x, &y> == common alignment. */
455 if (TREE_CODE (old_val.value) != INTEGER_CST
456 && TREE_CODE (new_val.value) == INTEGER_CST)
457 return true;
458
459 /* Bit-lattices have to agree in the still valid bits. */
460 if (TREE_CODE (old_val.value) == INTEGER_CST
461 && TREE_CODE (new_val.value) == INTEGER_CST)
462 return (wi::bit_and_not (wi::to_widest (old_val.value), new_val.mask)
463 == wi::bit_and_not (wi::to_widest (new_val.value), new_val.mask));
464
465 /* Otherwise constant values have to agree. */
466 if (operand_equal_p (old_val.value, new_val.value, 0))
467 return true;
468
469 /* At least the kinds and types should agree now. */
470 if (TREE_CODE (old_val.value) != TREE_CODE (new_val.value)
471 || !types_compatible_p (TREE_TYPE (old_val.value),
472 TREE_TYPE (new_val.value)))
473 return false;
474
475 /* For floats and !HONOR_NANS allow transitions from (partial) NaN
476 to non-NaN. */
477 tree type = TREE_TYPE (new_val.value);
478 if (SCALAR_FLOAT_TYPE_P (type)
479 && !HONOR_NANS (type))
480 {
481 if (REAL_VALUE_ISNAN (TREE_REAL_CST (old_val.value)))
482 return true;
483 }
484 else if (VECTOR_FLOAT_TYPE_P (type)
485 && !HONOR_NANS (type))
486 {
487 for (unsigned i = 0; i < VECTOR_CST_NELTS (old_val.value); ++i)
488 if (!REAL_VALUE_ISNAN
489 (TREE_REAL_CST (VECTOR_CST_ELT (old_val.value, i)))
490 && !operand_equal_p (VECTOR_CST_ELT (old_val.value, i),
491 VECTOR_CST_ELT (new_val.value, i), 0))
492 return false;
493 return true;
494 }
495 else if (COMPLEX_FLOAT_TYPE_P (type)
496 && !HONOR_NANS (type))
497 {
498 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_REALPART (old_val.value)))
499 && !operand_equal_p (TREE_REALPART (old_val.value),
500 TREE_REALPART (new_val.value), 0))
501 return false;
502 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_IMAGPART (old_val.value)))
503 && !operand_equal_p (TREE_IMAGPART (old_val.value),
504 TREE_IMAGPART (new_val.value), 0))
505 return false;
506 return true;
507 }
508 return false;
509 }
510
511 /* Set the value for variable VAR to NEW_VAL. Return true if the new
512 value is different from VAR's previous value. */
513
514 static bool
515 set_lattice_value (tree var, ccp_prop_value_t new_val)
516 {
517 /* We can deal with old UNINITIALIZED values just fine here. */
518 ccp_prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
519
520 canonicalize_value (&new_val);
521
522 /* We have to be careful to not go up the bitwise lattice
523 represented by the mask.
524 ??? This doesn't seem to be the best place to enforce this. */
525 if (new_val.lattice_val == CONSTANT
526 && old_val->lattice_val == CONSTANT
527 && TREE_CODE (new_val.value) == INTEGER_CST
528 && TREE_CODE (old_val->value) == INTEGER_CST)
529 {
530 widest_int diff = (wi::to_widest (new_val.value)
531 ^ wi::to_widest (old_val->value));
532 new_val.mask = new_val.mask | old_val->mask | diff;
533 }
534
535 gcc_checking_assert (valid_lattice_transition (*old_val, new_val));
536
537 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
538 caller that this was a non-transition. */
539 if (old_val->lattice_val != new_val.lattice_val
540 || (new_val.lattice_val == CONSTANT
541 && (TREE_CODE (new_val.value) != TREE_CODE (old_val->value)
542 || (TREE_CODE (new_val.value) == INTEGER_CST
543 && (new_val.mask != old_val->mask
544 || (wi::bit_and_not (wi::to_widest (old_val->value),
545 new_val.mask)
546 != wi::bit_and_not (wi::to_widest (new_val.value),
547 new_val.mask))))
548 || (TREE_CODE (new_val.value) != INTEGER_CST
549 && !operand_equal_p (new_val.value, old_val->value, 0)))))
550 {
551 /* ??? We would like to delay creation of INTEGER_CSTs from
552 partially constants here. */
553
554 if (dump_file && (dump_flags & TDF_DETAILS))
555 {
556 dump_lattice_value (dump_file, "Lattice value changed to ", new_val);
557 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
558 }
559
560 *old_val = new_val;
561
562 gcc_assert (new_val.lattice_val != UNINITIALIZED);
563 return true;
564 }
565
566 return false;
567 }
568
569 static ccp_prop_value_t get_value_for_expr (tree, bool);
570 static ccp_prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
571 static void bit_value_binop_1 (enum tree_code, tree, widest_int *, widest_int *,
572 tree, const widest_int &, const widest_int &,
573 tree, const widest_int &, const widest_int &);
574
575 /* Return a widest_int that can be used for bitwise simplifications
576 from VAL. */
577
578 static widest_int
579 value_to_wide_int (ccp_prop_value_t val)
580 {
581 if (val.value
582 && TREE_CODE (val.value) == INTEGER_CST)
583 return wi::to_widest (val.value);
584
585 return 0;
586 }
587
588 /* Return the value for the address expression EXPR based on alignment
589 information. */
590
591 static ccp_prop_value_t
592 get_value_from_alignment (tree expr)
593 {
594 tree type = TREE_TYPE (expr);
595 ccp_prop_value_t val;
596 unsigned HOST_WIDE_INT bitpos;
597 unsigned int align;
598
599 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
600
601 get_pointer_alignment_1 (expr, &align, &bitpos);
602 val.mask = (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
603 ? wi::mask <widest_int> (TYPE_PRECISION (type), false)
604 : -1).and_not (align / BITS_PER_UNIT - 1);
605 val.lattice_val
606 = wi::sext (val.mask, TYPE_PRECISION (type)) == -1 ? VARYING : CONSTANT;
607 if (val.lattice_val == CONSTANT)
608 val.value = build_int_cstu (type, bitpos / BITS_PER_UNIT);
609 else
610 val.value = NULL_TREE;
611
612 return val;
613 }
614
615 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
616 return constant bits extracted from alignment information for
617 invariant addresses. */
618
619 static ccp_prop_value_t
620 get_value_for_expr (tree expr, bool for_bits_p)
621 {
622 ccp_prop_value_t val;
623
624 if (TREE_CODE (expr) == SSA_NAME)
625 {
626 val = *get_value (expr);
627 if (for_bits_p
628 && val.lattice_val == CONSTANT
629 && TREE_CODE (val.value) == ADDR_EXPR)
630 val = get_value_from_alignment (val.value);
631 /* Fall back to a copy value. */
632 if (!for_bits_p
633 && val.lattice_val == VARYING
634 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr))
635 {
636 val.lattice_val = CONSTANT;
637 val.value = expr;
638 val.mask = -1;
639 }
640 }
641 else if (is_gimple_min_invariant (expr)
642 && (!for_bits_p || TREE_CODE (expr) != ADDR_EXPR))
643 {
644 val.lattice_val = CONSTANT;
645 val.value = expr;
646 val.mask = 0;
647 canonicalize_value (&val);
648 }
649 else if (TREE_CODE (expr) == ADDR_EXPR)
650 val = get_value_from_alignment (expr);
651 else
652 {
653 val.lattice_val = VARYING;
654 val.mask = -1;
655 val.value = NULL_TREE;
656 }
657 return val;
658 }
659
660 /* Return the likely CCP lattice value for STMT.
661
662 If STMT has no operands, then return CONSTANT.
663
664 Else if undefinedness of operands of STMT cause its value to be
665 undefined, then return UNDEFINED.
666
667 Else if any operands of STMT are constants, then return CONSTANT.
668
669 Else return VARYING. */
670
671 static ccp_lattice_t
672 likely_value (gimple stmt)
673 {
674 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
675 bool has_nsa_operand;
676 tree use;
677 ssa_op_iter iter;
678 unsigned i;
679
680 enum gimple_code code = gimple_code (stmt);
681
682 /* This function appears to be called only for assignments, calls,
683 conditionals, and switches, due to the logic in visit_stmt. */
684 gcc_assert (code == GIMPLE_ASSIGN
685 || code == GIMPLE_CALL
686 || code == GIMPLE_COND
687 || code == GIMPLE_SWITCH);
688
689 /* If the statement has volatile operands, it won't fold to a
690 constant value. */
691 if (gimple_has_volatile_ops (stmt))
692 return VARYING;
693
694 /* Arrive here for more complex cases. */
695 has_constant_operand = false;
696 has_undefined_operand = false;
697 all_undefined_operands = true;
698 has_nsa_operand = false;
699 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
700 {
701 ccp_prop_value_t *val = get_value (use);
702
703 if (val->lattice_val == UNDEFINED)
704 has_undefined_operand = true;
705 else
706 all_undefined_operands = false;
707
708 if (val->lattice_val == CONSTANT)
709 has_constant_operand = true;
710
711 if (SSA_NAME_IS_DEFAULT_DEF (use)
712 || !prop_simulate_again_p (SSA_NAME_DEF_STMT (use)))
713 has_nsa_operand = true;
714 }
715
716 /* There may be constants in regular rhs operands. For calls we
717 have to ignore lhs, fndecl and static chain, otherwise only
718 the lhs. */
719 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
720 i < gimple_num_ops (stmt); ++i)
721 {
722 tree op = gimple_op (stmt, i);
723 if (!op || TREE_CODE (op) == SSA_NAME)
724 continue;
725 if (is_gimple_min_invariant (op))
726 has_constant_operand = true;
727 }
728
729 if (has_constant_operand)
730 all_undefined_operands = false;
731
732 if (has_undefined_operand
733 && code == GIMPLE_CALL
734 && gimple_call_internal_p (stmt))
735 switch (gimple_call_internal_fn (stmt))
736 {
737 /* These 3 builtins use the first argument just as a magic
738 way how to find out a decl uid. */
739 case IFN_GOMP_SIMD_LANE:
740 case IFN_GOMP_SIMD_VF:
741 case IFN_GOMP_SIMD_LAST_LANE:
742 has_undefined_operand = false;
743 break;
744 default:
745 break;
746 }
747
748 /* If the operation combines operands like COMPLEX_EXPR make sure to
749 not mark the result UNDEFINED if only one part of the result is
750 undefined. */
751 if (has_undefined_operand && all_undefined_operands)
752 return UNDEFINED;
753 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
754 {
755 switch (gimple_assign_rhs_code (stmt))
756 {
757 /* Unary operators are handled with all_undefined_operands. */
758 case PLUS_EXPR:
759 case MINUS_EXPR:
760 case POINTER_PLUS_EXPR:
761 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
762 Not bitwise operators, one VARYING operand may specify the
763 result completely. Not logical operators for the same reason.
764 Not COMPLEX_EXPR as one VARYING operand makes the result partly
765 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
766 the undefined operand may be promoted. */
767 return UNDEFINED;
768
769 case ADDR_EXPR:
770 /* If any part of an address is UNDEFINED, like the index
771 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
772 return UNDEFINED;
773
774 default:
775 ;
776 }
777 }
778 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
779 fall back to CONSTANT. During iteration UNDEFINED may still drop
780 to CONSTANT. */
781 if (has_undefined_operand)
782 return CONSTANT;
783
784 /* We do not consider virtual operands here -- load from read-only
785 memory may have only VARYING virtual operands, but still be
786 constant. Also we can combine the stmt with definitions from
787 operands whose definitions are not simulated again. */
788 if (has_constant_operand
789 || has_nsa_operand
790 || gimple_references_memory_p (stmt))
791 return CONSTANT;
792
793 return VARYING;
794 }
795
796 /* Returns true if STMT cannot be constant. */
797
798 static bool
799 surely_varying_stmt_p (gimple stmt)
800 {
801 /* If the statement has operands that we cannot handle, it cannot be
802 constant. */
803 if (gimple_has_volatile_ops (stmt))
804 return true;
805
806 /* If it is a call and does not return a value or is not a
807 builtin and not an indirect call or a call to function with
808 assume_aligned/alloc_align attribute, it is varying. */
809 if (is_gimple_call (stmt))
810 {
811 tree fndecl, fntype = gimple_call_fntype (stmt);
812 if (!gimple_call_lhs (stmt)
813 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
814 && !DECL_BUILT_IN (fndecl)
815 && !lookup_attribute ("assume_aligned",
816 TYPE_ATTRIBUTES (fntype))
817 && !lookup_attribute ("alloc_align",
818 TYPE_ATTRIBUTES (fntype))))
819 return true;
820 }
821
822 /* Any other store operation is not interesting. */
823 else if (gimple_vdef (stmt))
824 return true;
825
826 /* Anything other than assignments and conditional jumps are not
827 interesting for CCP. */
828 if (gimple_code (stmt) != GIMPLE_ASSIGN
829 && gimple_code (stmt) != GIMPLE_COND
830 && gimple_code (stmt) != GIMPLE_SWITCH
831 && gimple_code (stmt) != GIMPLE_CALL)
832 return true;
833
834 return false;
835 }
836
837 /* Initialize local data structures for CCP. */
838
839 static void
840 ccp_initialize (void)
841 {
842 basic_block bb;
843
844 n_const_val = num_ssa_names;
845 const_val = XCNEWVEC (ccp_prop_value_t, n_const_val);
846
847 /* Initialize simulation flags for PHI nodes and statements. */
848 FOR_EACH_BB_FN (bb, cfun)
849 {
850 gimple_stmt_iterator i;
851
852 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
853 {
854 gimple stmt = gsi_stmt (i);
855 bool is_varying;
856
857 /* If the statement is a control insn, then we do not
858 want to avoid simulating the statement once. Failure
859 to do so means that those edges will never get added. */
860 if (stmt_ends_bb_p (stmt))
861 is_varying = false;
862 else
863 is_varying = surely_varying_stmt_p (stmt);
864
865 if (is_varying)
866 {
867 tree def;
868 ssa_op_iter iter;
869
870 /* If the statement will not produce a constant, mark
871 all its outputs VARYING. */
872 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
873 set_value_varying (def);
874 }
875 prop_set_simulate_again (stmt, !is_varying);
876 }
877 }
878
879 /* Now process PHI nodes. We never clear the simulate_again flag on
880 phi nodes, since we do not know which edges are executable yet,
881 except for phi nodes for virtual operands when we do not do store ccp. */
882 FOR_EACH_BB_FN (bb, cfun)
883 {
884 gphi_iterator i;
885
886 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
887 {
888 gphi *phi = i.phi ();
889
890 if (virtual_operand_p (gimple_phi_result (phi)))
891 prop_set_simulate_again (phi, false);
892 else
893 prop_set_simulate_again (phi, true);
894 }
895 }
896 }
897
898 /* Debug count support. Reset the values of ssa names
899 VARYING when the total number ssa names analyzed is
900 beyond the debug count specified. */
901
902 static void
903 do_dbg_cnt (void)
904 {
905 unsigned i;
906 for (i = 0; i < num_ssa_names; i++)
907 {
908 if (!dbg_cnt (ccp))
909 {
910 const_val[i].lattice_val = VARYING;
911 const_val[i].mask = -1;
912 const_val[i].value = NULL_TREE;
913 }
914 }
915 }
916
917
918 /* Do final substitution of propagated values, cleanup the flowgraph and
919 free allocated storage.
920
921 Return TRUE when something was optimized. */
922
923 static bool
924 ccp_finalize (void)
925 {
926 bool something_changed;
927 unsigned i;
928
929 do_dbg_cnt ();
930
931 /* Derive alignment and misalignment information from partially
932 constant pointers in the lattice or nonzero bits from partially
933 constant integers. */
934 for (i = 1; i < num_ssa_names; ++i)
935 {
936 tree name = ssa_name (i);
937 ccp_prop_value_t *val;
938 unsigned int tem, align;
939
940 if (!name
941 || (!POINTER_TYPE_P (TREE_TYPE (name))
942 && (!INTEGRAL_TYPE_P (TREE_TYPE (name))
943 /* Don't record nonzero bits before IPA to avoid
944 using too much memory. */
945 || first_pass_instance)))
946 continue;
947
948 val = get_value (name);
949 if (val->lattice_val != CONSTANT
950 || TREE_CODE (val->value) != INTEGER_CST)
951 continue;
952
953 if (POINTER_TYPE_P (TREE_TYPE (name)))
954 {
955 /* Trailing mask bits specify the alignment, trailing value
956 bits the misalignment. */
957 tem = val->mask.to_uhwi ();
958 align = (tem & -tem);
959 if (align > 1)
960 set_ptr_info_alignment (get_ptr_info (name), align,
961 (TREE_INT_CST_LOW (val->value)
962 & (align - 1)));
963 }
964 else
965 {
966 unsigned int precision = TYPE_PRECISION (TREE_TYPE (val->value));
967 wide_int nonzero_bits = wide_int::from (val->mask, precision,
968 UNSIGNED) | val->value;
969 nonzero_bits &= get_nonzero_bits (name);
970 set_nonzero_bits (name, nonzero_bits);
971 }
972 }
973
974 /* Perform substitutions based on the known constant values. */
975 something_changed = substitute_and_fold (get_constant_value,
976 ccp_fold_stmt, true);
977
978 free (const_val);
979 const_val = NULL;
980 return something_changed;;
981 }
982
983
984 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
985 in VAL1.
986
987 any M UNDEFINED = any
988 any M VARYING = VARYING
989 Ci M Cj = Ci if (i == j)
990 Ci M Cj = VARYING if (i != j)
991 */
992
993 static void
994 ccp_lattice_meet (basic_block where,
995 ccp_prop_value_t *val1, ccp_prop_value_t *val2)
996 {
997 if (val1->lattice_val == UNDEFINED
998 /* For UNDEFINED M SSA we can't always SSA because its definition
999 may not dominate the PHI node. Doing optimistic copy propagation
1000 also causes a lot of gcc.dg/uninit-pred*.c FAILs. */
1001 && (val2->lattice_val != CONSTANT
1002 || TREE_CODE (val2->value) != SSA_NAME))
1003 {
1004 /* UNDEFINED M any = any */
1005 *val1 = *val2;
1006 }
1007 else if (val2->lattice_val == UNDEFINED
1008 /* See above. */
1009 && (val1->lattice_val != CONSTANT
1010 || TREE_CODE (val1->value) != SSA_NAME))
1011 {
1012 /* any M UNDEFINED = any
1013 Nothing to do. VAL1 already contains the value we want. */
1014 ;
1015 }
1016 else if (val1->lattice_val == VARYING
1017 || val2->lattice_val == VARYING)
1018 {
1019 /* any M VARYING = VARYING. */
1020 val1->lattice_val = VARYING;
1021 val1->mask = -1;
1022 val1->value = NULL_TREE;
1023 }
1024 else if (val1->lattice_val == CONSTANT
1025 && val2->lattice_val == CONSTANT
1026 && TREE_CODE (val1->value) == INTEGER_CST
1027 && TREE_CODE (val2->value) == INTEGER_CST)
1028 {
1029 /* Ci M Cj = Ci if (i == j)
1030 Ci M Cj = VARYING if (i != j)
1031
1032 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
1033 drop to varying. */
1034 val1->mask = (val1->mask | val2->mask
1035 | (wi::to_widest (val1->value)
1036 ^ wi::to_widest (val2->value)));
1037 if (wi::sext (val1->mask, TYPE_PRECISION (TREE_TYPE (val1->value))) == -1)
1038 {
1039 val1->lattice_val = VARYING;
1040 val1->value = NULL_TREE;
1041 }
1042 }
1043 else if (val1->lattice_val == CONSTANT
1044 && val2->lattice_val == CONSTANT
1045 && simple_cst_equal (val1->value, val2->value) == 1)
1046 {
1047 /* Ci M Cj = Ci if (i == j)
1048 Ci M Cj = VARYING if (i != j)
1049
1050 VAL1 already contains the value we want for equivalent values. */
1051 }
1052 else if (val1->lattice_val == CONSTANT
1053 && val2->lattice_val == CONSTANT
1054 && (TREE_CODE (val1->value) == ADDR_EXPR
1055 || TREE_CODE (val2->value) == ADDR_EXPR))
1056 {
1057 /* When not equal addresses are involved try meeting for
1058 alignment. */
1059 ccp_prop_value_t tem = *val2;
1060 if (TREE_CODE (val1->value) == ADDR_EXPR)
1061 *val1 = get_value_for_expr (val1->value, true);
1062 if (TREE_CODE (val2->value) == ADDR_EXPR)
1063 tem = get_value_for_expr (val2->value, true);
1064 ccp_lattice_meet (where, val1, &tem);
1065 }
1066 else
1067 {
1068 /* Any other combination is VARYING. */
1069 val1->lattice_val = VARYING;
1070 val1->mask = -1;
1071 val1->value = NULL_TREE;
1072 }
1073 }
1074
1075
1076 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
1077 lattice values to determine PHI_NODE's lattice value. The value of a
1078 PHI node is determined calling ccp_lattice_meet with all the arguments
1079 of the PHI node that are incoming via executable edges. */
1080
1081 static enum ssa_prop_result
1082 ccp_visit_phi_node (gphi *phi)
1083 {
1084 unsigned i;
1085 ccp_prop_value_t new_val;
1086
1087 if (dump_file && (dump_flags & TDF_DETAILS))
1088 {
1089 fprintf (dump_file, "\nVisiting PHI node: ");
1090 print_gimple_stmt (dump_file, phi, 0, dump_flags);
1091 }
1092
1093 new_val.lattice_val = UNDEFINED;
1094 new_val.value = NULL_TREE;
1095 new_val.mask = 0;
1096
1097 bool first = true;
1098 for (i = 0; i < gimple_phi_num_args (phi); i++)
1099 {
1100 /* Compute the meet operator over all the PHI arguments flowing
1101 through executable edges. */
1102 edge e = gimple_phi_arg_edge (phi, i);
1103
1104 if (dump_file && (dump_flags & TDF_DETAILS))
1105 {
1106 fprintf (dump_file,
1107 "\n Argument #%d (%d -> %d %sexecutable)\n",
1108 i, e->src->index, e->dest->index,
1109 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
1110 }
1111
1112 /* If the incoming edge is executable, Compute the meet operator for
1113 the existing value of the PHI node and the current PHI argument. */
1114 if (e->flags & EDGE_EXECUTABLE)
1115 {
1116 tree arg = gimple_phi_arg (phi, i)->def;
1117 ccp_prop_value_t arg_val = get_value_for_expr (arg, false);
1118
1119 if (first)
1120 {
1121 new_val = arg_val;
1122 first = false;
1123 }
1124 else
1125 ccp_lattice_meet (gimple_bb (phi), &new_val, &arg_val);
1126
1127 if (dump_file && (dump_flags & TDF_DETAILS))
1128 {
1129 fprintf (dump_file, "\t");
1130 print_generic_expr (dump_file, arg, dump_flags);
1131 dump_lattice_value (dump_file, "\tValue: ", arg_val);
1132 fprintf (dump_file, "\n");
1133 }
1134
1135 if (new_val.lattice_val == VARYING)
1136 break;
1137 }
1138 }
1139
1140 if (dump_file && (dump_flags & TDF_DETAILS))
1141 {
1142 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
1143 fprintf (dump_file, "\n\n");
1144 }
1145
1146 /* Make the transition to the new value. */
1147 if (set_lattice_value (gimple_phi_result (phi), new_val))
1148 {
1149 if (new_val.lattice_val == VARYING)
1150 return SSA_PROP_VARYING;
1151 else
1152 return SSA_PROP_INTERESTING;
1153 }
1154 else
1155 return SSA_PROP_NOT_INTERESTING;
1156 }
1157
1158 /* Return the constant value for OP or OP otherwise. */
1159
1160 static tree
1161 valueize_op (tree op)
1162 {
1163 if (TREE_CODE (op) == SSA_NAME)
1164 {
1165 tree tem = get_constant_value (op);
1166 if (tem)
1167 return tem;
1168 }
1169 return op;
1170 }
1171
1172 /* Return the constant value for OP, but signal to not follow SSA
1173 edges if the definition may be simulated again. */
1174
1175 static tree
1176 valueize_op_1 (tree op)
1177 {
1178 if (TREE_CODE (op) == SSA_NAME)
1179 {
1180 /* If the definition may be simulated again we cannot follow
1181 this SSA edge as the SSA propagator does not necessarily
1182 re-visit the use. */
1183 gimple def_stmt = SSA_NAME_DEF_STMT (op);
1184 if (!gimple_nop_p (def_stmt)
1185 && prop_simulate_again_p (def_stmt))
1186 return NULL_TREE;
1187 tree tem = get_constant_value (op);
1188 if (tem)
1189 return tem;
1190 }
1191 return op;
1192 }
1193
1194 /* CCP specific front-end to the non-destructive constant folding
1195 routines.
1196
1197 Attempt to simplify the RHS of STMT knowing that one or more
1198 operands are constants.
1199
1200 If simplification is possible, return the simplified RHS,
1201 otherwise return the original RHS or NULL_TREE. */
1202
1203 static tree
1204 ccp_fold (gimple stmt)
1205 {
1206 location_t loc = gimple_location (stmt);
1207 switch (gimple_code (stmt))
1208 {
1209 case GIMPLE_COND:
1210 {
1211 /* Handle comparison operators that can appear in GIMPLE form. */
1212 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1213 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1214 enum tree_code code = gimple_cond_code (stmt);
1215 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1216 }
1217
1218 case GIMPLE_SWITCH:
1219 {
1220 /* Return the constant switch index. */
1221 return valueize_op (gimple_switch_index (as_a <gswitch *> (stmt)));
1222 }
1223
1224 case GIMPLE_ASSIGN:
1225 case GIMPLE_CALL:
1226 return gimple_fold_stmt_to_constant_1 (stmt,
1227 valueize_op, valueize_op_1);
1228
1229 default:
1230 gcc_unreachable ();
1231 }
1232 }
1233
1234 /* Apply the operation CODE in type TYPE to the value, mask pair
1235 RVAL and RMASK representing a value of type RTYPE and set
1236 the value, mask pair *VAL and *MASK to the result. */
1237
1238 static void
1239 bit_value_unop_1 (enum tree_code code, tree type,
1240 widest_int *val, widest_int *mask,
1241 tree rtype, const widest_int &rval, const widest_int &rmask)
1242 {
1243 switch (code)
1244 {
1245 case BIT_NOT_EXPR:
1246 *mask = rmask;
1247 *val = ~rval;
1248 break;
1249
1250 case NEGATE_EXPR:
1251 {
1252 widest_int temv, temm;
1253 /* Return ~rval + 1. */
1254 bit_value_unop_1 (BIT_NOT_EXPR, type, &temv, &temm, type, rval, rmask);
1255 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1256 type, temv, temm, type, 1, 0);
1257 break;
1258 }
1259
1260 CASE_CONVERT:
1261 {
1262 signop sgn;
1263
1264 /* First extend mask and value according to the original type. */
1265 sgn = TYPE_SIGN (rtype);
1266 *mask = wi::ext (rmask, TYPE_PRECISION (rtype), sgn);
1267 *val = wi::ext (rval, TYPE_PRECISION (rtype), sgn);
1268
1269 /* Then extend mask and value according to the target type. */
1270 sgn = TYPE_SIGN (type);
1271 *mask = wi::ext (*mask, TYPE_PRECISION (type), sgn);
1272 *val = wi::ext (*val, TYPE_PRECISION (type), sgn);
1273 break;
1274 }
1275
1276 default:
1277 *mask = -1;
1278 break;
1279 }
1280 }
1281
1282 /* Apply the operation CODE in type TYPE to the value, mask pairs
1283 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1284 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1285
1286 static void
1287 bit_value_binop_1 (enum tree_code code, tree type,
1288 widest_int *val, widest_int *mask,
1289 tree r1type, const widest_int &r1val,
1290 const widest_int &r1mask, tree r2type,
1291 const widest_int &r2val, const widest_int &r2mask)
1292 {
1293 signop sgn = TYPE_SIGN (type);
1294 int width = TYPE_PRECISION (type);
1295 bool swap_p = false;
1296
1297 /* Assume we'll get a constant result. Use an initial non varying
1298 value, we fall back to varying in the end if necessary. */
1299 *mask = -1;
1300
1301 switch (code)
1302 {
1303 case BIT_AND_EXPR:
1304 /* The mask is constant where there is a known not
1305 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1306 *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
1307 *val = r1val & r2val;
1308 break;
1309
1310 case BIT_IOR_EXPR:
1311 /* The mask is constant where there is a known
1312 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1313 *mask = (r1mask | r2mask)
1314 .and_not (r1val.and_not (r1mask) | r2val.and_not (r2mask));
1315 *val = r1val | r2val;
1316 break;
1317
1318 case BIT_XOR_EXPR:
1319 /* m1 | m2 */
1320 *mask = r1mask | r2mask;
1321 *val = r1val ^ r2val;
1322 break;
1323
1324 case LROTATE_EXPR:
1325 case RROTATE_EXPR:
1326 if (r2mask == 0)
1327 {
1328 widest_int shift = r2val;
1329 if (shift == 0)
1330 {
1331 *mask = r1mask;
1332 *val = r1val;
1333 }
1334 else
1335 {
1336 if (wi::neg_p (shift))
1337 {
1338 shift = -shift;
1339 if (code == RROTATE_EXPR)
1340 code = LROTATE_EXPR;
1341 else
1342 code = RROTATE_EXPR;
1343 }
1344 if (code == RROTATE_EXPR)
1345 {
1346 *mask = wi::rrotate (r1mask, shift, width);
1347 *val = wi::rrotate (r1val, shift, width);
1348 }
1349 else
1350 {
1351 *mask = wi::lrotate (r1mask, shift, width);
1352 *val = wi::lrotate (r1val, shift, width);
1353 }
1354 }
1355 }
1356 break;
1357
1358 case LSHIFT_EXPR:
1359 case RSHIFT_EXPR:
1360 /* ??? We can handle partially known shift counts if we know
1361 its sign. That way we can tell that (x << (y | 8)) & 255
1362 is zero. */
1363 if (r2mask == 0)
1364 {
1365 widest_int shift = r2val;
1366 if (shift == 0)
1367 {
1368 *mask = r1mask;
1369 *val = r1val;
1370 }
1371 else
1372 {
1373 if (wi::neg_p (shift))
1374 {
1375 shift = -shift;
1376 if (code == RSHIFT_EXPR)
1377 code = LSHIFT_EXPR;
1378 else
1379 code = RSHIFT_EXPR;
1380 }
1381 if (code == RSHIFT_EXPR)
1382 {
1383 *mask = wi::rshift (wi::ext (r1mask, width, sgn), shift, sgn);
1384 *val = wi::rshift (wi::ext (r1val, width, sgn), shift, sgn);
1385 }
1386 else
1387 {
1388 *mask = wi::ext (wi::lshift (r1mask, shift), width, sgn);
1389 *val = wi::ext (wi::lshift (r1val, shift), width, sgn);
1390 }
1391 }
1392 }
1393 break;
1394
1395 case PLUS_EXPR:
1396 case POINTER_PLUS_EXPR:
1397 {
1398 /* Do the addition with unknown bits set to zero, to give carry-ins of
1399 zero wherever possible. */
1400 widest_int lo = r1val.and_not (r1mask) + r2val.and_not (r2mask);
1401 lo = wi::ext (lo, width, sgn);
1402 /* Do the addition with unknown bits set to one, to give carry-ins of
1403 one wherever possible. */
1404 widest_int hi = (r1val | r1mask) + (r2val | r2mask);
1405 hi = wi::ext (hi, width, sgn);
1406 /* Each bit in the result is known if (a) the corresponding bits in
1407 both inputs are known, and (b) the carry-in to that bit position
1408 is known. We can check condition (b) by seeing if we got the same
1409 result with minimised carries as with maximised carries. */
1410 *mask = r1mask | r2mask | (lo ^ hi);
1411 *mask = wi::ext (*mask, width, sgn);
1412 /* It shouldn't matter whether we choose lo or hi here. */
1413 *val = lo;
1414 break;
1415 }
1416
1417 case MINUS_EXPR:
1418 {
1419 widest_int temv, temm;
1420 bit_value_unop_1 (NEGATE_EXPR, r2type, &temv, &temm,
1421 r2type, r2val, r2mask);
1422 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1423 r1type, r1val, r1mask,
1424 r2type, temv, temm);
1425 break;
1426 }
1427
1428 case MULT_EXPR:
1429 {
1430 /* Just track trailing zeros in both operands and transfer
1431 them to the other. */
1432 int r1tz = wi::ctz (r1val | r1mask);
1433 int r2tz = wi::ctz (r2val | r2mask);
1434 if (r1tz + r2tz >= width)
1435 {
1436 *mask = 0;
1437 *val = 0;
1438 }
1439 else if (r1tz + r2tz > 0)
1440 {
1441 *mask = wi::ext (wi::mask <widest_int> (r1tz + r2tz, true),
1442 width, sgn);
1443 *val = 0;
1444 }
1445 break;
1446 }
1447
1448 case EQ_EXPR:
1449 case NE_EXPR:
1450 {
1451 widest_int m = r1mask | r2mask;
1452 if (r1val.and_not (m) != r2val.and_not (m))
1453 {
1454 *mask = 0;
1455 *val = ((code == EQ_EXPR) ? 0 : 1);
1456 }
1457 else
1458 {
1459 /* We know the result of a comparison is always one or zero. */
1460 *mask = 1;
1461 *val = 0;
1462 }
1463 break;
1464 }
1465
1466 case GE_EXPR:
1467 case GT_EXPR:
1468 swap_p = true;
1469 code = swap_tree_comparison (code);
1470 /* Fall through. */
1471 case LT_EXPR:
1472 case LE_EXPR:
1473 {
1474 int minmax, maxmin;
1475
1476 const widest_int &o1val = swap_p ? r2val : r1val;
1477 const widest_int &o1mask = swap_p ? r2mask : r1mask;
1478 const widest_int &o2val = swap_p ? r1val : r2val;
1479 const widest_int &o2mask = swap_p ? r1mask : r2mask;
1480
1481 /* If the most significant bits are not known we know nothing. */
1482 if (wi::neg_p (o1mask) || wi::neg_p (o2mask))
1483 break;
1484
1485 /* For comparisons the signedness is in the comparison operands. */
1486 sgn = TYPE_SIGN (r1type);
1487
1488 /* If we know the most significant bits we know the values
1489 value ranges by means of treating varying bits as zero
1490 or one. Do a cross comparison of the max/min pairs. */
1491 maxmin = wi::cmp (o1val | o1mask, o2val.and_not (o2mask), sgn);
1492 minmax = wi::cmp (o1val.and_not (o1mask), o2val | o2mask, sgn);
1493 if (maxmin < 0) /* o1 is less than o2. */
1494 {
1495 *mask = 0;
1496 *val = 1;
1497 }
1498 else if (minmax > 0) /* o1 is not less or equal to o2. */
1499 {
1500 *mask = 0;
1501 *val = 0;
1502 }
1503 else if (maxmin == minmax) /* o1 and o2 are equal. */
1504 {
1505 /* This probably should never happen as we'd have
1506 folded the thing during fully constant value folding. */
1507 *mask = 0;
1508 *val = (code == LE_EXPR ? 1 : 0);
1509 }
1510 else
1511 {
1512 /* We know the result of a comparison is always one or zero. */
1513 *mask = 1;
1514 *val = 0;
1515 }
1516 break;
1517 }
1518
1519 default:;
1520 }
1521 }
1522
1523 /* Return the propagation value when applying the operation CODE to
1524 the value RHS yielding type TYPE. */
1525
1526 static ccp_prop_value_t
1527 bit_value_unop (enum tree_code code, tree type, tree rhs)
1528 {
1529 ccp_prop_value_t rval = get_value_for_expr (rhs, true);
1530 widest_int value, mask;
1531 ccp_prop_value_t val;
1532
1533 if (rval.lattice_val == UNDEFINED)
1534 return rval;
1535
1536 gcc_assert ((rval.lattice_val == CONSTANT
1537 && TREE_CODE (rval.value) == INTEGER_CST)
1538 || wi::sext (rval.mask, TYPE_PRECISION (TREE_TYPE (rhs))) == -1);
1539 bit_value_unop_1 (code, type, &value, &mask,
1540 TREE_TYPE (rhs), value_to_wide_int (rval), rval.mask);
1541 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1542 {
1543 val.lattice_val = CONSTANT;
1544 val.mask = mask;
1545 /* ??? Delay building trees here. */
1546 val.value = wide_int_to_tree (type, value);
1547 }
1548 else
1549 {
1550 val.lattice_val = VARYING;
1551 val.value = NULL_TREE;
1552 val.mask = -1;
1553 }
1554 return val;
1555 }
1556
1557 /* Return the propagation value when applying the operation CODE to
1558 the values RHS1 and RHS2 yielding type TYPE. */
1559
1560 static ccp_prop_value_t
1561 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
1562 {
1563 ccp_prop_value_t r1val = get_value_for_expr (rhs1, true);
1564 ccp_prop_value_t r2val = get_value_for_expr (rhs2, true);
1565 widest_int value, mask;
1566 ccp_prop_value_t val;
1567
1568 if (r1val.lattice_val == UNDEFINED
1569 || r2val.lattice_val == UNDEFINED)
1570 {
1571 val.lattice_val = VARYING;
1572 val.value = NULL_TREE;
1573 val.mask = -1;
1574 return val;
1575 }
1576
1577 gcc_assert ((r1val.lattice_val == CONSTANT
1578 && TREE_CODE (r1val.value) == INTEGER_CST)
1579 || wi::sext (r1val.mask,
1580 TYPE_PRECISION (TREE_TYPE (rhs1))) == -1);
1581 gcc_assert ((r2val.lattice_val == CONSTANT
1582 && TREE_CODE (r2val.value) == INTEGER_CST)
1583 || wi::sext (r2val.mask,
1584 TYPE_PRECISION (TREE_TYPE (rhs2))) == -1);
1585 bit_value_binop_1 (code, type, &value, &mask,
1586 TREE_TYPE (rhs1), value_to_wide_int (r1val), r1val.mask,
1587 TREE_TYPE (rhs2), value_to_wide_int (r2val), r2val.mask);
1588 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1589 {
1590 val.lattice_val = CONSTANT;
1591 val.mask = mask;
1592 /* ??? Delay building trees here. */
1593 val.value = wide_int_to_tree (type, value);
1594 }
1595 else
1596 {
1597 val.lattice_val = VARYING;
1598 val.value = NULL_TREE;
1599 val.mask = -1;
1600 }
1601 return val;
1602 }
1603
1604 /* Return the propagation value for __builtin_assume_aligned
1605 and functions with assume_aligned or alloc_aligned attribute.
1606 For __builtin_assume_aligned, ATTR is NULL_TREE,
1607 for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED
1608 is false, for alloc_aligned attribute ATTR is non-NULL and
1609 ALLOC_ALIGNED is true. */
1610
1611 static ccp_prop_value_t
1612 bit_value_assume_aligned (gimple stmt, tree attr, ccp_prop_value_t ptrval,
1613 bool alloc_aligned)
1614 {
1615 tree align, misalign = NULL_TREE, type;
1616 unsigned HOST_WIDE_INT aligni, misaligni = 0;
1617 ccp_prop_value_t alignval;
1618 widest_int value, mask;
1619 ccp_prop_value_t val;
1620
1621 if (attr == NULL_TREE)
1622 {
1623 tree ptr = gimple_call_arg (stmt, 0);
1624 type = TREE_TYPE (ptr);
1625 ptrval = get_value_for_expr (ptr, true);
1626 }
1627 else
1628 {
1629 tree lhs = gimple_call_lhs (stmt);
1630 type = TREE_TYPE (lhs);
1631 }
1632
1633 if (ptrval.lattice_val == UNDEFINED)
1634 return ptrval;
1635 gcc_assert ((ptrval.lattice_val == CONSTANT
1636 && TREE_CODE (ptrval.value) == INTEGER_CST)
1637 || wi::sext (ptrval.mask, TYPE_PRECISION (type)) == -1);
1638 if (attr == NULL_TREE)
1639 {
1640 /* Get aligni and misaligni from __builtin_assume_aligned. */
1641 align = gimple_call_arg (stmt, 1);
1642 if (!tree_fits_uhwi_p (align))
1643 return ptrval;
1644 aligni = tree_to_uhwi (align);
1645 if (gimple_call_num_args (stmt) > 2)
1646 {
1647 misalign = gimple_call_arg (stmt, 2);
1648 if (!tree_fits_uhwi_p (misalign))
1649 return ptrval;
1650 misaligni = tree_to_uhwi (misalign);
1651 }
1652 }
1653 else
1654 {
1655 /* Get aligni and misaligni from assume_aligned or
1656 alloc_align attributes. */
1657 if (TREE_VALUE (attr) == NULL_TREE)
1658 return ptrval;
1659 attr = TREE_VALUE (attr);
1660 align = TREE_VALUE (attr);
1661 if (!tree_fits_uhwi_p (align))
1662 return ptrval;
1663 aligni = tree_to_uhwi (align);
1664 if (alloc_aligned)
1665 {
1666 if (aligni == 0 || aligni > gimple_call_num_args (stmt))
1667 return ptrval;
1668 align = gimple_call_arg (stmt, aligni - 1);
1669 if (!tree_fits_uhwi_p (align))
1670 return ptrval;
1671 aligni = tree_to_uhwi (align);
1672 }
1673 else if (TREE_CHAIN (attr) && TREE_VALUE (TREE_CHAIN (attr)))
1674 {
1675 misalign = TREE_VALUE (TREE_CHAIN (attr));
1676 if (!tree_fits_uhwi_p (misalign))
1677 return ptrval;
1678 misaligni = tree_to_uhwi (misalign);
1679 }
1680 }
1681 if (aligni <= 1 || (aligni & (aligni - 1)) != 0 || misaligni >= aligni)
1682 return ptrval;
1683
1684 align = build_int_cst_type (type, -aligni);
1685 alignval = get_value_for_expr (align, true);
1686 bit_value_binop_1 (BIT_AND_EXPR, type, &value, &mask,
1687 type, value_to_wide_int (ptrval), ptrval.mask,
1688 type, value_to_wide_int (alignval), alignval.mask);
1689 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1690 {
1691 val.lattice_val = CONSTANT;
1692 val.mask = mask;
1693 gcc_assert ((mask.to_uhwi () & (aligni - 1)) == 0);
1694 gcc_assert ((value.to_uhwi () & (aligni - 1)) == 0);
1695 value |= misaligni;
1696 /* ??? Delay building trees here. */
1697 val.value = wide_int_to_tree (type, value);
1698 }
1699 else
1700 {
1701 val.lattice_val = VARYING;
1702 val.value = NULL_TREE;
1703 val.mask = -1;
1704 }
1705 return val;
1706 }
1707
1708 /* Evaluate statement STMT.
1709 Valid only for assignments, calls, conditionals, and switches. */
1710
1711 static ccp_prop_value_t
1712 evaluate_stmt (gimple stmt)
1713 {
1714 ccp_prop_value_t val;
1715 tree simplified = NULL_TREE;
1716 ccp_lattice_t likelyvalue = likely_value (stmt);
1717 bool is_constant = false;
1718 unsigned int align;
1719
1720 if (dump_file && (dump_flags & TDF_DETAILS))
1721 {
1722 fprintf (dump_file, "which is likely ");
1723 switch (likelyvalue)
1724 {
1725 case CONSTANT:
1726 fprintf (dump_file, "CONSTANT");
1727 break;
1728 case UNDEFINED:
1729 fprintf (dump_file, "UNDEFINED");
1730 break;
1731 case VARYING:
1732 fprintf (dump_file, "VARYING");
1733 break;
1734 default:;
1735 }
1736 fprintf (dump_file, "\n");
1737 }
1738
1739 /* If the statement is likely to have a CONSTANT result, then try
1740 to fold the statement to determine the constant value. */
1741 /* FIXME. This is the only place that we call ccp_fold.
1742 Since likely_value never returns CONSTANT for calls, we will
1743 not attempt to fold them, including builtins that may profit. */
1744 if (likelyvalue == CONSTANT)
1745 {
1746 fold_defer_overflow_warnings ();
1747 simplified = ccp_fold (stmt);
1748 is_constant = simplified && is_gimple_min_invariant (simplified);
1749 fold_undefer_overflow_warnings (is_constant, stmt, 0);
1750 if (is_constant)
1751 {
1752 /* The statement produced a constant value. */
1753 val.lattice_val = CONSTANT;
1754 val.value = simplified;
1755 val.mask = 0;
1756 }
1757 }
1758 /* If the statement is likely to have a VARYING result, then do not
1759 bother folding the statement. */
1760 else if (likelyvalue == VARYING)
1761 {
1762 enum gimple_code code = gimple_code (stmt);
1763 if (code == GIMPLE_ASSIGN)
1764 {
1765 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1766
1767 /* Other cases cannot satisfy is_gimple_min_invariant
1768 without folding. */
1769 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
1770 simplified = gimple_assign_rhs1 (stmt);
1771 }
1772 else if (code == GIMPLE_SWITCH)
1773 simplified = gimple_switch_index (as_a <gswitch *> (stmt));
1774 else
1775 /* These cannot satisfy is_gimple_min_invariant without folding. */
1776 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
1777 is_constant = simplified && is_gimple_min_invariant (simplified);
1778 if (is_constant)
1779 {
1780 /* The statement produced a constant value. */
1781 val.lattice_val = CONSTANT;
1782 val.value = simplified;
1783 val.mask = 0;
1784 }
1785 }
1786 /* If the statement result is likely UNDEFINED, make it so. */
1787 else if (likelyvalue == UNDEFINED)
1788 {
1789 val.lattice_val = UNDEFINED;
1790 val.value = NULL_TREE;
1791 val.mask = 0;
1792 return val;
1793 }
1794
1795 /* Resort to simplification for bitwise tracking. */
1796 if (flag_tree_bit_ccp
1797 && (likelyvalue == CONSTANT || is_gimple_call (stmt)
1798 || (gimple_assign_single_p (stmt)
1799 && gimple_assign_rhs_code (stmt) == ADDR_EXPR))
1800 && !is_constant)
1801 {
1802 enum gimple_code code = gimple_code (stmt);
1803 val.lattice_val = VARYING;
1804 val.value = NULL_TREE;
1805 val.mask = -1;
1806 if (code == GIMPLE_ASSIGN)
1807 {
1808 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1809 tree rhs1 = gimple_assign_rhs1 (stmt);
1810 tree lhs = gimple_assign_lhs (stmt);
1811 if ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
1812 || POINTER_TYPE_P (TREE_TYPE (lhs)))
1813 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1814 || POINTER_TYPE_P (TREE_TYPE (rhs1))))
1815 switch (get_gimple_rhs_class (subcode))
1816 {
1817 case GIMPLE_SINGLE_RHS:
1818 val = get_value_for_expr (rhs1, true);
1819 break;
1820
1821 case GIMPLE_UNARY_RHS:
1822 val = bit_value_unop (subcode, TREE_TYPE (lhs), rhs1);
1823 break;
1824
1825 case GIMPLE_BINARY_RHS:
1826 val = bit_value_binop (subcode, TREE_TYPE (lhs), rhs1,
1827 gimple_assign_rhs2 (stmt));
1828 break;
1829
1830 default:;
1831 }
1832 }
1833 else if (code == GIMPLE_COND)
1834 {
1835 enum tree_code code = gimple_cond_code (stmt);
1836 tree rhs1 = gimple_cond_lhs (stmt);
1837 tree rhs2 = gimple_cond_rhs (stmt);
1838 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1839 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1840 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
1841 }
1842 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1843 {
1844 tree fndecl = gimple_call_fndecl (stmt);
1845 switch (DECL_FUNCTION_CODE (fndecl))
1846 {
1847 case BUILT_IN_MALLOC:
1848 case BUILT_IN_REALLOC:
1849 case BUILT_IN_CALLOC:
1850 case BUILT_IN_STRDUP:
1851 case BUILT_IN_STRNDUP:
1852 val.lattice_val = CONSTANT;
1853 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1854 val.mask = ~((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT
1855 / BITS_PER_UNIT - 1);
1856 break;
1857
1858 case BUILT_IN_ALLOCA:
1859 case BUILT_IN_ALLOCA_WITH_ALIGN:
1860 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN
1861 ? TREE_INT_CST_LOW (gimple_call_arg (stmt, 1))
1862 : BIGGEST_ALIGNMENT);
1863 val.lattice_val = CONSTANT;
1864 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1865 val.mask = ~((HOST_WIDE_INT) align / BITS_PER_UNIT - 1);
1866 break;
1867
1868 /* These builtins return their first argument, unmodified. */
1869 case BUILT_IN_MEMCPY:
1870 case BUILT_IN_MEMMOVE:
1871 case BUILT_IN_MEMSET:
1872 case BUILT_IN_STRCPY:
1873 case BUILT_IN_STRNCPY:
1874 case BUILT_IN_MEMCPY_CHK:
1875 case BUILT_IN_MEMMOVE_CHK:
1876 case BUILT_IN_MEMSET_CHK:
1877 case BUILT_IN_STRCPY_CHK:
1878 case BUILT_IN_STRNCPY_CHK:
1879 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1880 break;
1881
1882 case BUILT_IN_ASSUME_ALIGNED:
1883 val = bit_value_assume_aligned (stmt, NULL_TREE, val, false);
1884 break;
1885
1886 case BUILT_IN_ALIGNED_ALLOC:
1887 {
1888 tree align = get_constant_value (gimple_call_arg (stmt, 0));
1889 if (align
1890 && tree_fits_uhwi_p (align))
1891 {
1892 unsigned HOST_WIDE_INT aligni = tree_to_uhwi (align);
1893 if (aligni > 1
1894 /* align must be power-of-two */
1895 && (aligni & (aligni - 1)) == 0)
1896 {
1897 val.lattice_val = CONSTANT;
1898 val.value = build_int_cst (ptr_type_node, 0);
1899 val.mask = -aligni;
1900 }
1901 }
1902 break;
1903 }
1904
1905 default:;
1906 }
1907 }
1908 if (is_gimple_call (stmt) && gimple_call_lhs (stmt))
1909 {
1910 tree fntype = gimple_call_fntype (stmt);
1911 if (fntype)
1912 {
1913 tree attrs = lookup_attribute ("assume_aligned",
1914 TYPE_ATTRIBUTES (fntype));
1915 if (attrs)
1916 val = bit_value_assume_aligned (stmt, attrs, val, false);
1917 attrs = lookup_attribute ("alloc_align",
1918 TYPE_ATTRIBUTES (fntype));
1919 if (attrs)
1920 val = bit_value_assume_aligned (stmt, attrs, val, true);
1921 }
1922 }
1923 is_constant = (val.lattice_val == CONSTANT);
1924 }
1925
1926 if (flag_tree_bit_ccp
1927 && ((is_constant && TREE_CODE (val.value) == INTEGER_CST)
1928 || !is_constant)
1929 && gimple_get_lhs (stmt)
1930 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME)
1931 {
1932 tree lhs = gimple_get_lhs (stmt);
1933 wide_int nonzero_bits = get_nonzero_bits (lhs);
1934 if (nonzero_bits != -1)
1935 {
1936 if (!is_constant)
1937 {
1938 val.lattice_val = CONSTANT;
1939 val.value = build_zero_cst (TREE_TYPE (lhs));
1940 val.mask = extend_mask (nonzero_bits);
1941 is_constant = true;
1942 }
1943 else
1944 {
1945 if (wi::bit_and_not (val.value, nonzero_bits) != 0)
1946 val.value = wide_int_to_tree (TREE_TYPE (lhs),
1947 nonzero_bits & val.value);
1948 if (nonzero_bits == 0)
1949 val.mask = 0;
1950 else
1951 val.mask = val.mask & extend_mask (nonzero_bits);
1952 }
1953 }
1954 }
1955
1956 /* The statement produced a nonconstant value. */
1957 if (!is_constant)
1958 {
1959 /* The statement produced a copy. */
1960 if (simplified && TREE_CODE (simplified) == SSA_NAME
1961 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (simplified))
1962 {
1963 val.lattice_val = CONSTANT;
1964 val.value = simplified;
1965 val.mask = -1;
1966 }
1967 /* The statement is VARYING. */
1968 else
1969 {
1970 val.lattice_val = VARYING;
1971 val.value = NULL_TREE;
1972 val.mask = -1;
1973 }
1974 }
1975
1976 return val;
1977 }
1978
1979 typedef hash_table<pointer_hash<gimple_statement_base> > gimple_htab;
1980
1981 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
1982 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
1983
1984 static void
1985 insert_clobber_before_stack_restore (tree saved_val, tree var,
1986 gimple_htab **visited)
1987 {
1988 gimple stmt;
1989 gassign *clobber_stmt;
1990 tree clobber;
1991 imm_use_iterator iter;
1992 gimple_stmt_iterator i;
1993 gimple *slot;
1994
1995 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
1996 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
1997 {
1998 clobber = build_constructor (TREE_TYPE (var),
1999 NULL);
2000 TREE_THIS_VOLATILE (clobber) = 1;
2001 clobber_stmt = gimple_build_assign (var, clobber);
2002
2003 i = gsi_for_stmt (stmt);
2004 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
2005 }
2006 else if (gimple_code (stmt) == GIMPLE_PHI)
2007 {
2008 if (!*visited)
2009 *visited = new gimple_htab (10);
2010
2011 slot = (*visited)->find_slot (stmt, INSERT);
2012 if (*slot != NULL)
2013 continue;
2014
2015 *slot = stmt;
2016 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
2017 visited);
2018 }
2019 else if (gimple_assign_ssa_name_copy_p (stmt))
2020 insert_clobber_before_stack_restore (gimple_assign_lhs (stmt), var,
2021 visited);
2022 else if (chkp_gimple_call_builtin_p (stmt, BUILT_IN_CHKP_BNDRET))
2023 continue;
2024 else
2025 gcc_assert (is_gimple_debug (stmt));
2026 }
2027
2028 /* Advance the iterator to the previous non-debug gimple statement in the same
2029 or dominating basic block. */
2030
2031 static inline void
2032 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
2033 {
2034 basic_block dom;
2035
2036 gsi_prev_nondebug (i);
2037 while (gsi_end_p (*i))
2038 {
2039 dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
2040 if (dom == NULL || dom == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2041 return;
2042
2043 *i = gsi_last_bb (dom);
2044 }
2045 }
2046
2047 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
2048 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
2049
2050 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
2051 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
2052 that case the function gives up without inserting the clobbers. */
2053
2054 static void
2055 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
2056 {
2057 gimple stmt;
2058 tree saved_val;
2059 gimple_htab *visited = NULL;
2060
2061 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
2062 {
2063 stmt = gsi_stmt (i);
2064
2065 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
2066 continue;
2067
2068 saved_val = gimple_call_lhs (stmt);
2069 if (saved_val == NULL_TREE)
2070 continue;
2071
2072 insert_clobber_before_stack_restore (saved_val, var, &visited);
2073 break;
2074 }
2075
2076 delete visited;
2077 }
2078
2079 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
2080 fixed-size array and returns the address, if found, otherwise returns
2081 NULL_TREE. */
2082
2083 static tree
2084 fold_builtin_alloca_with_align (gimple stmt)
2085 {
2086 unsigned HOST_WIDE_INT size, threshold, n_elem;
2087 tree lhs, arg, block, var, elem_type, array_type;
2088
2089 /* Get lhs. */
2090 lhs = gimple_call_lhs (stmt);
2091 if (lhs == NULL_TREE)
2092 return NULL_TREE;
2093
2094 /* Detect constant argument. */
2095 arg = get_constant_value (gimple_call_arg (stmt, 0));
2096 if (arg == NULL_TREE
2097 || TREE_CODE (arg) != INTEGER_CST
2098 || !tree_fits_uhwi_p (arg))
2099 return NULL_TREE;
2100
2101 size = tree_to_uhwi (arg);
2102
2103 /* Heuristic: don't fold large allocas. */
2104 threshold = (unsigned HOST_WIDE_INT)PARAM_VALUE (PARAM_LARGE_STACK_FRAME);
2105 /* In case the alloca is located at function entry, it has the same lifetime
2106 as a declared array, so we allow a larger size. */
2107 block = gimple_block (stmt);
2108 if (!(cfun->after_inlining
2109 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
2110 threshold /= 10;
2111 if (size > threshold)
2112 return NULL_TREE;
2113
2114 /* Declare array. */
2115 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
2116 n_elem = size * 8 / BITS_PER_UNIT;
2117 array_type = build_array_type_nelts (elem_type, n_elem);
2118 var = create_tmp_var (array_type);
2119 DECL_ALIGN (var) = TREE_INT_CST_LOW (gimple_call_arg (stmt, 1));
2120 {
2121 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
2122 if (pi != NULL && !pi->pt.anything)
2123 {
2124 bool singleton_p;
2125 unsigned uid;
2126 singleton_p = pt_solution_singleton_p (&pi->pt, &uid);
2127 gcc_assert (singleton_p);
2128 SET_DECL_PT_UID (var, uid);
2129 }
2130 }
2131
2132 /* Fold alloca to the address of the array. */
2133 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
2134 }
2135
2136 /* Fold the stmt at *GSI with CCP specific information that propagating
2137 and regular folding does not catch. */
2138
2139 static bool
2140 ccp_fold_stmt (gimple_stmt_iterator *gsi)
2141 {
2142 gimple stmt = gsi_stmt (*gsi);
2143
2144 switch (gimple_code (stmt))
2145 {
2146 case GIMPLE_COND:
2147 {
2148 gcond *cond_stmt = as_a <gcond *> (stmt);
2149 ccp_prop_value_t val;
2150 /* Statement evaluation will handle type mismatches in constants
2151 more gracefully than the final propagation. This allows us to
2152 fold more conditionals here. */
2153 val = evaluate_stmt (stmt);
2154 if (val.lattice_val != CONSTANT
2155 || val.mask != 0)
2156 return false;
2157
2158 if (dump_file)
2159 {
2160 fprintf (dump_file, "Folding predicate ");
2161 print_gimple_expr (dump_file, stmt, 0, 0);
2162 fprintf (dump_file, " to ");
2163 print_generic_expr (dump_file, val.value, 0);
2164 fprintf (dump_file, "\n");
2165 }
2166
2167 if (integer_zerop (val.value))
2168 gimple_cond_make_false (cond_stmt);
2169 else
2170 gimple_cond_make_true (cond_stmt);
2171
2172 return true;
2173 }
2174
2175 case GIMPLE_CALL:
2176 {
2177 tree lhs = gimple_call_lhs (stmt);
2178 int flags = gimple_call_flags (stmt);
2179 tree val;
2180 tree argt;
2181 bool changed = false;
2182 unsigned i;
2183
2184 /* If the call was folded into a constant make sure it goes
2185 away even if we cannot propagate into all uses because of
2186 type issues. */
2187 if (lhs
2188 && TREE_CODE (lhs) == SSA_NAME
2189 && (val = get_constant_value (lhs))
2190 /* Don't optimize away calls that have side-effects. */
2191 && (flags & (ECF_CONST|ECF_PURE)) != 0
2192 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
2193 {
2194 tree new_rhs = unshare_expr (val);
2195 bool res;
2196 if (!useless_type_conversion_p (TREE_TYPE (lhs),
2197 TREE_TYPE (new_rhs)))
2198 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
2199 res = update_call_from_tree (gsi, new_rhs);
2200 gcc_assert (res);
2201 return true;
2202 }
2203
2204 /* Internal calls provide no argument types, so the extra laxity
2205 for normal calls does not apply. */
2206 if (gimple_call_internal_p (stmt))
2207 return false;
2208
2209 /* The heuristic of fold_builtin_alloca_with_align differs before and
2210 after inlining, so we don't require the arg to be changed into a
2211 constant for folding, but just to be constant. */
2212 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN))
2213 {
2214 tree new_rhs = fold_builtin_alloca_with_align (stmt);
2215 if (new_rhs)
2216 {
2217 bool res = update_call_from_tree (gsi, new_rhs);
2218 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
2219 gcc_assert (res);
2220 insert_clobbers_for_var (*gsi, var);
2221 return true;
2222 }
2223 }
2224
2225 /* Propagate into the call arguments. Compared to replace_uses_in
2226 this can use the argument slot types for type verification
2227 instead of the current argument type. We also can safely
2228 drop qualifiers here as we are dealing with constants anyway. */
2229 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
2230 for (i = 0; i < gimple_call_num_args (stmt) && argt;
2231 ++i, argt = TREE_CHAIN (argt))
2232 {
2233 tree arg = gimple_call_arg (stmt, i);
2234 if (TREE_CODE (arg) == SSA_NAME
2235 && (val = get_constant_value (arg))
2236 && useless_type_conversion_p
2237 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
2238 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2239 {
2240 gimple_call_set_arg (stmt, i, unshare_expr (val));
2241 changed = true;
2242 }
2243 }
2244
2245 return changed;
2246 }
2247
2248 case GIMPLE_ASSIGN:
2249 {
2250 tree lhs = gimple_assign_lhs (stmt);
2251 tree val;
2252
2253 /* If we have a load that turned out to be constant replace it
2254 as we cannot propagate into all uses in all cases. */
2255 if (gimple_assign_single_p (stmt)
2256 && TREE_CODE (lhs) == SSA_NAME
2257 && (val = get_constant_value (lhs)))
2258 {
2259 tree rhs = unshare_expr (val);
2260 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2261 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
2262 gimple_assign_set_rhs_from_tree (gsi, rhs);
2263 return true;
2264 }
2265
2266 return false;
2267 }
2268
2269 default:
2270 return false;
2271 }
2272 }
2273
2274 /* Visit the assignment statement STMT. Set the value of its LHS to the
2275 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2276 creates virtual definitions, set the value of each new name to that
2277 of the RHS (if we can derive a constant out of the RHS).
2278 Value-returning call statements also perform an assignment, and
2279 are handled here. */
2280
2281 static enum ssa_prop_result
2282 visit_assignment (gimple stmt, tree *output_p)
2283 {
2284 ccp_prop_value_t val;
2285 enum ssa_prop_result retval = SSA_PROP_NOT_INTERESTING;
2286
2287 tree lhs = gimple_get_lhs (stmt);
2288 if (TREE_CODE (lhs) == SSA_NAME)
2289 {
2290 /* Evaluate the statement, which could be
2291 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2292 val = evaluate_stmt (stmt);
2293
2294 /* If STMT is an assignment to an SSA_NAME, we only have one
2295 value to set. */
2296 if (set_lattice_value (lhs, val))
2297 {
2298 *output_p = lhs;
2299 if (val.lattice_val == VARYING)
2300 retval = SSA_PROP_VARYING;
2301 else
2302 retval = SSA_PROP_INTERESTING;
2303 }
2304 }
2305
2306 return retval;
2307 }
2308
2309
2310 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2311 if it can determine which edge will be taken. Otherwise, return
2312 SSA_PROP_VARYING. */
2313
2314 static enum ssa_prop_result
2315 visit_cond_stmt (gimple stmt, edge *taken_edge_p)
2316 {
2317 ccp_prop_value_t val;
2318 basic_block block;
2319
2320 block = gimple_bb (stmt);
2321 val = evaluate_stmt (stmt);
2322 if (val.lattice_val != CONSTANT
2323 || val.mask != 0)
2324 return SSA_PROP_VARYING;
2325
2326 /* Find which edge out of the conditional block will be taken and add it
2327 to the worklist. If no single edge can be determined statically,
2328 return SSA_PROP_VARYING to feed all the outgoing edges to the
2329 propagation engine. */
2330 *taken_edge_p = find_taken_edge (block, val.value);
2331 if (*taken_edge_p)
2332 return SSA_PROP_INTERESTING;
2333 else
2334 return SSA_PROP_VARYING;
2335 }
2336
2337
2338 /* Evaluate statement STMT. If the statement produces an output value and
2339 its evaluation changes the lattice value of its output, return
2340 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2341 output value.
2342
2343 If STMT is a conditional branch and we can determine its truth
2344 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2345 value, return SSA_PROP_VARYING. */
2346
2347 static enum ssa_prop_result
2348 ccp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
2349 {
2350 tree def;
2351 ssa_op_iter iter;
2352
2353 if (dump_file && (dump_flags & TDF_DETAILS))
2354 {
2355 fprintf (dump_file, "\nVisiting statement:\n");
2356 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2357 }
2358
2359 switch (gimple_code (stmt))
2360 {
2361 case GIMPLE_ASSIGN:
2362 /* If the statement is an assignment that produces a single
2363 output value, evaluate its RHS to see if the lattice value of
2364 its output has changed. */
2365 return visit_assignment (stmt, output_p);
2366
2367 case GIMPLE_CALL:
2368 /* A value-returning call also performs an assignment. */
2369 if (gimple_call_lhs (stmt) != NULL_TREE)
2370 return visit_assignment (stmt, output_p);
2371 break;
2372
2373 case GIMPLE_COND:
2374 case GIMPLE_SWITCH:
2375 /* If STMT is a conditional branch, see if we can determine
2376 which branch will be taken. */
2377 /* FIXME. It appears that we should be able to optimize
2378 computed GOTOs here as well. */
2379 return visit_cond_stmt (stmt, taken_edge_p);
2380
2381 default:
2382 break;
2383 }
2384
2385 /* Any other kind of statement is not interesting for constant
2386 propagation and, therefore, not worth simulating. */
2387 if (dump_file && (dump_flags & TDF_DETAILS))
2388 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2389
2390 /* Definitions made by statements other than assignments to
2391 SSA_NAMEs represent unknown modifications to their outputs.
2392 Mark them VARYING. */
2393 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2394 {
2395 ccp_prop_value_t v = { VARYING, NULL_TREE, -1 };
2396 set_lattice_value (def, v);
2397 }
2398
2399 return SSA_PROP_VARYING;
2400 }
2401
2402
2403 /* Main entry point for SSA Conditional Constant Propagation. */
2404
2405 static unsigned int
2406 do_ssa_ccp (void)
2407 {
2408 unsigned int todo = 0;
2409 calculate_dominance_info (CDI_DOMINATORS);
2410 ccp_initialize ();
2411 ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node);
2412 if (ccp_finalize ())
2413 todo = (TODO_cleanup_cfg | TODO_update_ssa);
2414 free_dominance_info (CDI_DOMINATORS);
2415 return todo;
2416 }
2417
2418
2419 namespace {
2420
2421 const pass_data pass_data_ccp =
2422 {
2423 GIMPLE_PASS, /* type */
2424 "ccp", /* name */
2425 OPTGROUP_NONE, /* optinfo_flags */
2426 TV_TREE_CCP, /* tv_id */
2427 ( PROP_cfg | PROP_ssa ), /* properties_required */
2428 0, /* properties_provided */
2429 0, /* properties_destroyed */
2430 0, /* todo_flags_start */
2431 TODO_update_address_taken, /* todo_flags_finish */
2432 };
2433
2434 class pass_ccp : public gimple_opt_pass
2435 {
2436 public:
2437 pass_ccp (gcc::context *ctxt)
2438 : gimple_opt_pass (pass_data_ccp, ctxt)
2439 {}
2440
2441 /* opt_pass methods: */
2442 opt_pass * clone () { return new pass_ccp (m_ctxt); }
2443 virtual bool gate (function *) { return flag_tree_ccp != 0; }
2444 virtual unsigned int execute (function *) { return do_ssa_ccp (); }
2445
2446 }; // class pass_ccp
2447
2448 } // anon namespace
2449
2450 gimple_opt_pass *
2451 make_pass_ccp (gcc::context *ctxt)
2452 {
2453 return new pass_ccp (ctxt);
2454 }
2455
2456
2457
2458 /* Try to optimize out __builtin_stack_restore. Optimize it out
2459 if there is another __builtin_stack_restore in the same basic
2460 block and no calls or ASM_EXPRs are in between, or if this block's
2461 only outgoing edge is to EXIT_BLOCK and there are no calls or
2462 ASM_EXPRs after this __builtin_stack_restore. */
2463
2464 static tree
2465 optimize_stack_restore (gimple_stmt_iterator i)
2466 {
2467 tree callee;
2468 gimple stmt;
2469
2470 basic_block bb = gsi_bb (i);
2471 gimple call = gsi_stmt (i);
2472
2473 if (gimple_code (call) != GIMPLE_CALL
2474 || gimple_call_num_args (call) != 1
2475 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2476 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2477 return NULL_TREE;
2478
2479 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2480 {
2481 stmt = gsi_stmt (i);
2482 if (gimple_code (stmt) == GIMPLE_ASM)
2483 return NULL_TREE;
2484 if (gimple_code (stmt) != GIMPLE_CALL)
2485 continue;
2486
2487 callee = gimple_call_fndecl (stmt);
2488 if (!callee
2489 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2490 /* All regular builtins are ok, just obviously not alloca. */
2491 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
2492 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA_WITH_ALIGN)
2493 return NULL_TREE;
2494
2495 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
2496 goto second_stack_restore;
2497 }
2498
2499 if (!gsi_end_p (i))
2500 return NULL_TREE;
2501
2502 /* Allow one successor of the exit block, or zero successors. */
2503 switch (EDGE_COUNT (bb->succs))
2504 {
2505 case 0:
2506 break;
2507 case 1:
2508 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2509 return NULL_TREE;
2510 break;
2511 default:
2512 return NULL_TREE;
2513 }
2514 second_stack_restore:
2515
2516 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2517 If there are multiple uses, then the last one should remove the call.
2518 In any case, whether the call to __builtin_stack_save can be removed
2519 or not is irrelevant to removing the call to __builtin_stack_restore. */
2520 if (has_single_use (gimple_call_arg (call, 0)))
2521 {
2522 gimple stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2523 if (is_gimple_call (stack_save))
2524 {
2525 callee = gimple_call_fndecl (stack_save);
2526 if (callee
2527 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2528 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE)
2529 {
2530 gimple_stmt_iterator stack_save_gsi;
2531 tree rhs;
2532
2533 stack_save_gsi = gsi_for_stmt (stack_save);
2534 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2535 update_call_from_tree (&stack_save_gsi, rhs);
2536 }
2537 }
2538 }
2539
2540 /* No effect, so the statement will be deleted. */
2541 return integer_zero_node;
2542 }
2543
2544 /* If va_list type is a simple pointer and nothing special is needed,
2545 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2546 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2547 pointer assignment. */
2548
2549 static tree
2550 optimize_stdarg_builtin (gimple call)
2551 {
2552 tree callee, lhs, rhs, cfun_va_list;
2553 bool va_list_simple_ptr;
2554 location_t loc = gimple_location (call);
2555
2556 if (gimple_code (call) != GIMPLE_CALL)
2557 return NULL_TREE;
2558
2559 callee = gimple_call_fndecl (call);
2560
2561 cfun_va_list = targetm.fn_abi_va_list (callee);
2562 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2563 && (TREE_TYPE (cfun_va_list) == void_type_node
2564 || TREE_TYPE (cfun_va_list) == char_type_node);
2565
2566 switch (DECL_FUNCTION_CODE (callee))
2567 {
2568 case BUILT_IN_VA_START:
2569 if (!va_list_simple_ptr
2570 || targetm.expand_builtin_va_start != NULL
2571 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
2572 return NULL_TREE;
2573
2574 if (gimple_call_num_args (call) != 2)
2575 return NULL_TREE;
2576
2577 lhs = gimple_call_arg (call, 0);
2578 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2579 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2580 != TYPE_MAIN_VARIANT (cfun_va_list))
2581 return NULL_TREE;
2582
2583 lhs = build_fold_indirect_ref_loc (loc, lhs);
2584 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
2585 1, integer_zero_node);
2586 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2587 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2588
2589 case BUILT_IN_VA_COPY:
2590 if (!va_list_simple_ptr)
2591 return NULL_TREE;
2592
2593 if (gimple_call_num_args (call) != 2)
2594 return NULL_TREE;
2595
2596 lhs = gimple_call_arg (call, 0);
2597 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2598 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2599 != TYPE_MAIN_VARIANT (cfun_va_list))
2600 return NULL_TREE;
2601
2602 lhs = build_fold_indirect_ref_loc (loc, lhs);
2603 rhs = gimple_call_arg (call, 1);
2604 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2605 != TYPE_MAIN_VARIANT (cfun_va_list))
2606 return NULL_TREE;
2607
2608 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2609 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2610
2611 case BUILT_IN_VA_END:
2612 /* No effect, so the statement will be deleted. */
2613 return integer_zero_node;
2614
2615 default:
2616 gcc_unreachable ();
2617 }
2618 }
2619
2620 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2621 the incoming jumps. Return true if at least one jump was changed. */
2622
2623 static bool
2624 optimize_unreachable (gimple_stmt_iterator i)
2625 {
2626 basic_block bb = gsi_bb (i);
2627 gimple_stmt_iterator gsi;
2628 gimple stmt;
2629 edge_iterator ei;
2630 edge e;
2631 bool ret;
2632
2633 if (flag_sanitize & SANITIZE_UNREACHABLE)
2634 return false;
2635
2636 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2637 {
2638 stmt = gsi_stmt (gsi);
2639
2640 if (is_gimple_debug (stmt))
2641 continue;
2642
2643 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2644 {
2645 /* Verify we do not need to preserve the label. */
2646 if (FORCED_LABEL (gimple_label_label (label_stmt)))
2647 return false;
2648
2649 continue;
2650 }
2651
2652 /* Only handle the case that __builtin_unreachable is the first statement
2653 in the block. We rely on DCE to remove stmts without side-effects
2654 before __builtin_unreachable. */
2655 if (gsi_stmt (gsi) != gsi_stmt (i))
2656 return false;
2657 }
2658
2659 ret = false;
2660 FOR_EACH_EDGE (e, ei, bb->preds)
2661 {
2662 gsi = gsi_last_bb (e->src);
2663 if (gsi_end_p (gsi))
2664 continue;
2665
2666 stmt = gsi_stmt (gsi);
2667 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
2668 {
2669 if (e->flags & EDGE_TRUE_VALUE)
2670 gimple_cond_make_false (cond_stmt);
2671 else if (e->flags & EDGE_FALSE_VALUE)
2672 gimple_cond_make_true (cond_stmt);
2673 else
2674 gcc_unreachable ();
2675 update_stmt (cond_stmt);
2676 }
2677 else
2678 {
2679 /* Todo: handle other cases, f.i. switch statement. */
2680 continue;
2681 }
2682
2683 ret = true;
2684 }
2685
2686 return ret;
2687 }
2688
2689 /* A simple pass that attempts to fold all builtin functions. This pass
2690 is run after we've propagated as many constants as we can. */
2691
2692 namespace {
2693
2694 const pass_data pass_data_fold_builtins =
2695 {
2696 GIMPLE_PASS, /* type */
2697 "fab", /* name */
2698 OPTGROUP_NONE, /* optinfo_flags */
2699 TV_NONE, /* tv_id */
2700 ( PROP_cfg | PROP_ssa ), /* properties_required */
2701 0, /* properties_provided */
2702 0, /* properties_destroyed */
2703 0, /* todo_flags_start */
2704 TODO_update_ssa, /* todo_flags_finish */
2705 };
2706
2707 class pass_fold_builtins : public gimple_opt_pass
2708 {
2709 public:
2710 pass_fold_builtins (gcc::context *ctxt)
2711 : gimple_opt_pass (pass_data_fold_builtins, ctxt)
2712 {}
2713
2714 /* opt_pass methods: */
2715 opt_pass * clone () { return new pass_fold_builtins (m_ctxt); }
2716 virtual unsigned int execute (function *);
2717
2718 }; // class pass_fold_builtins
2719
2720 unsigned int
2721 pass_fold_builtins::execute (function *fun)
2722 {
2723 bool cfg_changed = false;
2724 basic_block bb;
2725 unsigned int todoflags = 0;
2726
2727 FOR_EACH_BB_FN (bb, fun)
2728 {
2729 gimple_stmt_iterator i;
2730 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
2731 {
2732 gimple stmt, old_stmt;
2733 tree callee;
2734 enum built_in_function fcode;
2735
2736 stmt = gsi_stmt (i);
2737
2738 if (gimple_code (stmt) != GIMPLE_CALL)
2739 {
2740 /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
2741 after the last GIMPLE DSE they aren't needed and might
2742 unnecessarily keep the SSA_NAMEs live. */
2743 if (gimple_clobber_p (stmt))
2744 {
2745 tree lhs = gimple_assign_lhs (stmt);
2746 if (TREE_CODE (lhs) == MEM_REF
2747 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME)
2748 {
2749 unlink_stmt_vdef (stmt);
2750 gsi_remove (&i, true);
2751 release_defs (stmt);
2752 continue;
2753 }
2754 }
2755 gsi_next (&i);
2756 continue;
2757 }
2758
2759 callee = gimple_call_fndecl (stmt);
2760 if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL)
2761 {
2762 gsi_next (&i);
2763 continue;
2764 }
2765
2766 fcode = DECL_FUNCTION_CODE (callee);
2767 if (fold_stmt (&i))
2768 ;
2769 else
2770 {
2771 tree result = NULL_TREE;
2772 switch (DECL_FUNCTION_CODE (callee))
2773 {
2774 case BUILT_IN_CONSTANT_P:
2775 /* Resolve __builtin_constant_p. If it hasn't been
2776 folded to integer_one_node by now, it's fairly
2777 certain that the value simply isn't constant. */
2778 result = integer_zero_node;
2779 break;
2780
2781 case BUILT_IN_ASSUME_ALIGNED:
2782 /* Remove __builtin_assume_aligned. */
2783 result = gimple_call_arg (stmt, 0);
2784 break;
2785
2786 case BUILT_IN_STACK_RESTORE:
2787 result = optimize_stack_restore (i);
2788 if (result)
2789 break;
2790 gsi_next (&i);
2791 continue;
2792
2793 case BUILT_IN_UNREACHABLE:
2794 if (optimize_unreachable (i))
2795 cfg_changed = true;
2796 break;
2797
2798 case BUILT_IN_VA_START:
2799 case BUILT_IN_VA_END:
2800 case BUILT_IN_VA_COPY:
2801 /* These shouldn't be folded before pass_stdarg. */
2802 result = optimize_stdarg_builtin (stmt);
2803 if (result)
2804 break;
2805 /* FALLTHRU */
2806
2807 default:;
2808 }
2809
2810 if (!result)
2811 {
2812 gsi_next (&i);
2813 continue;
2814 }
2815
2816 if (!update_call_from_tree (&i, result))
2817 gimplify_and_update_call_from_tree (&i, result);
2818 }
2819
2820 todoflags |= TODO_update_address_taken;
2821
2822 if (dump_file && (dump_flags & TDF_DETAILS))
2823 {
2824 fprintf (dump_file, "Simplified\n ");
2825 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2826 }
2827
2828 old_stmt = stmt;
2829 stmt = gsi_stmt (i);
2830 update_stmt (stmt);
2831
2832 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
2833 && gimple_purge_dead_eh_edges (bb))
2834 cfg_changed = true;
2835
2836 if (dump_file && (dump_flags & TDF_DETAILS))
2837 {
2838 fprintf (dump_file, "to\n ");
2839 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2840 fprintf (dump_file, "\n");
2841 }
2842
2843 /* Retry the same statement if it changed into another
2844 builtin, there might be new opportunities now. */
2845 if (gimple_code (stmt) != GIMPLE_CALL)
2846 {
2847 gsi_next (&i);
2848 continue;
2849 }
2850 callee = gimple_call_fndecl (stmt);
2851 if (!callee
2852 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2853 || DECL_FUNCTION_CODE (callee) == fcode)
2854 gsi_next (&i);
2855 }
2856 }
2857
2858 /* Delete unreachable blocks. */
2859 if (cfg_changed)
2860 todoflags |= TODO_cleanup_cfg;
2861
2862 return todoflags;
2863 }
2864
2865 } // anon namespace
2866
2867 gimple_opt_pass *
2868 make_pass_fold_builtins (gcc::context *ctxt)
2869 {
2870 return new pass_fold_builtins (ctxt);
2871 }