rs6000.md (fseldfsf4): Add TARGET_SINGLE_FLOAT condition.
[gcc.git] / gcc / tree-ssa-coalesce.c
1 /* Coalesce SSA_NAMES together for the out-of-ssa pass.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008 Free Software Foundation,
3 Inc.
4 Contributed by Andrew MacLeod <amacleod@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "diagnostic.h"
29 #include "bitmap.h"
30 #include "tree-flow.h"
31 #include "hashtab.h"
32 #include "tree-dump.h"
33 #include "tree-ssa-live.h"
34 #include "toplev.h"
35
36
37 /* This set of routines implements a coalesce_list. This is an object which
38 is used to track pairs of ssa_names which are desirable to coalesce
39 together to avoid copies. Costs are associated with each pair, and when
40 all desired information has been collected, the object can be used to
41 order the pairs for processing. */
42
43 /* This structure defines a pair entry. */
44
45 typedef struct coalesce_pair
46 {
47 int first_element;
48 int second_element;
49 int cost;
50 } * coalesce_pair_p;
51 typedef const struct coalesce_pair *const_coalesce_pair_p;
52
53 typedef struct cost_one_pair_d
54 {
55 int first_element;
56 int second_element;
57 struct cost_one_pair_d *next;
58 } * cost_one_pair_p;
59
60 /* This structure maintains the list of coalesce pairs. */
61
62 typedef struct coalesce_list_d
63 {
64 htab_t list; /* Hash table. */
65 coalesce_pair_p *sorted; /* List when sorted. */
66 int num_sorted; /* Number in the sorted list. */
67 cost_one_pair_p cost_one_list;/* Single use coalesces with cost 1. */
68 } *coalesce_list_p;
69
70 #define NO_BEST_COALESCE -1
71 #define MUST_COALESCE_COST INT_MAX
72
73
74 /* Return cost of execution of copy instruction with FREQUENCY
75 possibly on CRITICAL edge and in HOT basic block. */
76
77 static inline int
78 coalesce_cost (int frequency, bool optimize_for_size, bool critical)
79 {
80 /* Base costs on BB frequencies bounded by 1. */
81 int cost = frequency;
82
83 if (!cost)
84 cost = 1;
85
86 if (optimize_for_size)
87 cost = 1;
88
89 /* Inserting copy on critical edge costs more than inserting it elsewhere. */
90 if (critical)
91 cost *= 2;
92 return cost;
93 }
94
95
96 /* Return the cost of executing a copy instruction in basic block BB. */
97
98 static inline int
99 coalesce_cost_bb (basic_block bb)
100 {
101 return coalesce_cost (bb->frequency, optimize_bb_for_size_p (bb), false);
102 }
103
104
105 /* Return the cost of executing a copy instruction on edge E. */
106
107 static inline int
108 coalesce_cost_edge (edge e)
109 {
110 if (e->flags & EDGE_ABNORMAL)
111 return MUST_COALESCE_COST;
112
113 return coalesce_cost (EDGE_FREQUENCY (e),
114 optimize_edge_for_size_p (e),
115 EDGE_CRITICAL_P (e));
116 }
117
118
119 /* Retrieve a pair to coalesce from the cost_one_list in CL. Returns the
120 2 elements via P1 and P2. 1 is returned by the function if there is a pair,
121 NO_BEST_COALESCE is returned if there aren't any. */
122
123 static inline int
124 pop_cost_one_pair (coalesce_list_p cl, int *p1, int *p2)
125 {
126 cost_one_pair_p ptr;
127
128 ptr = cl->cost_one_list;
129 if (!ptr)
130 return NO_BEST_COALESCE;
131
132 *p1 = ptr->first_element;
133 *p2 = ptr->second_element;
134 cl->cost_one_list = ptr->next;
135
136 free (ptr);
137
138 return 1;
139 }
140
141 /* Retrieve the most expensive remaining pair to coalesce from CL. Returns the
142 2 elements via P1 and P2. Their calculated cost is returned by the function.
143 NO_BEST_COALESCE is returned if the coalesce list is empty. */
144
145 static inline int
146 pop_best_coalesce (coalesce_list_p cl, int *p1, int *p2)
147 {
148 coalesce_pair_p node;
149 int ret;
150
151 if (cl->sorted == NULL)
152 return pop_cost_one_pair (cl, p1, p2);
153
154 if (cl->num_sorted == 0)
155 return pop_cost_one_pair (cl, p1, p2);
156
157 node = cl->sorted[--(cl->num_sorted)];
158 *p1 = node->first_element;
159 *p2 = node->second_element;
160 ret = node->cost;
161 free (node);
162
163 return ret;
164 }
165
166
167 #define COALESCE_HASH_FN(R1, R2) ((R2) * ((R2) - 1) / 2 + (R1))
168
169 /* Hash function for coalesce list. Calculate hash for PAIR. */
170
171 static unsigned int
172 coalesce_pair_map_hash (const void *pair)
173 {
174 hashval_t a = (hashval_t)(((const_coalesce_pair_p)pair)->first_element);
175 hashval_t b = (hashval_t)(((const_coalesce_pair_p)pair)->second_element);
176
177 return COALESCE_HASH_FN (a,b);
178 }
179
180
181 /* Equality function for coalesce list hash table. Compare PAIR1 and PAIR2,
182 returning TRUE if the two pairs are equivalent. */
183
184 static int
185 coalesce_pair_map_eq (const void *pair1, const void *pair2)
186 {
187 const_coalesce_pair_p const p1 = (const_coalesce_pair_p) pair1;
188 const_coalesce_pair_p const p2 = (const_coalesce_pair_p) pair2;
189
190 return (p1->first_element == p2->first_element
191 && p1->second_element == p2->second_element);
192 }
193
194
195 /* Create a new empty coalesce list object and return it. */
196
197 static inline coalesce_list_p
198 create_coalesce_list (void)
199 {
200 coalesce_list_p list;
201 unsigned size = num_ssa_names * 3;
202
203 if (size < 40)
204 size = 40;
205
206 list = (coalesce_list_p) xmalloc (sizeof (struct coalesce_list_d));
207 list->list = htab_create (size, coalesce_pair_map_hash,
208 coalesce_pair_map_eq, NULL);
209 list->sorted = NULL;
210 list->num_sorted = 0;
211 list->cost_one_list = NULL;
212 return list;
213 }
214
215
216 /* Delete coalesce list CL. */
217
218 static inline void
219 delete_coalesce_list (coalesce_list_p cl)
220 {
221 gcc_assert (cl->cost_one_list == NULL);
222 htab_delete (cl->list);
223 if (cl->sorted)
224 free (cl->sorted);
225 gcc_assert (cl->num_sorted == 0);
226 free (cl);
227 }
228
229
230 /* Find a matching coalesce pair object in CL for the pair P1 and P2. If
231 one isn't found, return NULL if CREATE is false, otherwise create a new
232 coalesce pair object and return it. */
233
234 static coalesce_pair_p
235 find_coalesce_pair (coalesce_list_p cl, int p1, int p2, bool create)
236 {
237 struct coalesce_pair p, *pair;
238 void **slot;
239 unsigned int hash;
240
241 /* Normalize so that p1 is the smaller value. */
242 if (p2 < p1)
243 {
244 p.first_element = p2;
245 p.second_element = p1;
246 }
247 else
248 {
249 p.first_element = p1;
250 p.second_element = p2;
251 }
252
253
254 hash = coalesce_pair_map_hash (&p);
255 pair = (struct coalesce_pair *) htab_find_with_hash (cl->list, &p, hash);
256
257 if (create && !pair)
258 {
259 gcc_assert (cl->sorted == NULL);
260 pair = XNEW (struct coalesce_pair);
261 pair->first_element = p.first_element;
262 pair->second_element = p.second_element;
263 pair->cost = 0;
264 slot = htab_find_slot_with_hash (cl->list, pair, hash, INSERT);
265 *(struct coalesce_pair **)slot = pair;
266 }
267
268 return pair;
269 }
270
271 static inline void
272 add_cost_one_coalesce (coalesce_list_p cl, int p1, int p2)
273 {
274 cost_one_pair_p pair;
275
276 pair = XNEW (struct cost_one_pair_d);
277 pair->first_element = p1;
278 pair->second_element = p2;
279 pair->next = cl->cost_one_list;
280 cl->cost_one_list = pair;
281 }
282
283
284 /* Add a coalesce between P1 and P2 in list CL with a cost of VALUE. */
285
286 static inline void
287 add_coalesce (coalesce_list_p cl, int p1, int p2,
288 int value)
289 {
290 coalesce_pair_p node;
291
292 gcc_assert (cl->sorted == NULL);
293 if (p1 == p2)
294 return;
295
296 node = find_coalesce_pair (cl, p1, p2, true);
297
298 /* Once the value is MUST_COALESCE_COST, leave it that way. */
299 if (node->cost != MUST_COALESCE_COST)
300 {
301 if (value == MUST_COALESCE_COST)
302 node->cost = value;
303 else
304 node->cost += value;
305 }
306 }
307
308
309 /* Comparison function to allow qsort to sort P1 and P2 in Ascending order. */
310
311 static int
312 compare_pairs (const void *p1, const void *p2)
313 {
314 const_coalesce_pair_p const *const pp1 = (const_coalesce_pair_p const *) p1;
315 const_coalesce_pair_p const *const pp2 = (const_coalesce_pair_p const *) p2;
316 int result;
317
318 result = (* pp2)->cost - (* pp1)->cost;
319 /* Since qsort does not guarantee stability we use the elements
320 as a secondary key. This provides us with independence from
321 the host's implementation of the sorting algorithm. */
322 if (result == 0)
323 {
324 result = (* pp2)->first_element - (* pp1)->first_element;
325 if (result == 0)
326 result = (* pp2)->second_element - (* pp1)->second_element;
327 }
328
329 return result;
330 }
331
332
333 /* Return the number of unique coalesce pairs in CL. */
334
335 static inline int
336 num_coalesce_pairs (coalesce_list_p cl)
337 {
338 return htab_elements (cl->list);
339 }
340
341
342 /* Iterator over hash table pairs. */
343 typedef struct
344 {
345 htab_iterator hti;
346 } coalesce_pair_iterator;
347
348
349 /* Return first partition pair from list CL, initializing iterator ITER. */
350
351 static inline coalesce_pair_p
352 first_coalesce_pair (coalesce_list_p cl, coalesce_pair_iterator *iter)
353 {
354 coalesce_pair_p pair;
355
356 pair = (coalesce_pair_p) first_htab_element (&(iter->hti), cl->list);
357 return pair;
358 }
359
360
361 /* Return TRUE if there are no more partitions in for ITER to process. */
362
363 static inline bool
364 end_coalesce_pair_p (coalesce_pair_iterator *iter)
365 {
366 return end_htab_p (&(iter->hti));
367 }
368
369
370 /* Return the next partition pair to be visited by ITER. */
371
372 static inline coalesce_pair_p
373 next_coalesce_pair (coalesce_pair_iterator *iter)
374 {
375 coalesce_pair_p pair;
376
377 pair = (coalesce_pair_p) next_htab_element (&(iter->hti));
378 return pair;
379 }
380
381
382 /* Iterate over CL using ITER, returning values in PAIR. */
383
384 #define FOR_EACH_PARTITION_PAIR(PAIR, ITER, CL) \
385 for ((PAIR) = first_coalesce_pair ((CL), &(ITER)); \
386 !end_coalesce_pair_p (&(ITER)); \
387 (PAIR) = next_coalesce_pair (&(ITER)))
388
389
390 /* Prepare CL for removal of preferred pairs. When finished they are sorted
391 in order from most important coalesce to least important. */
392
393 static void
394 sort_coalesce_list (coalesce_list_p cl)
395 {
396 unsigned x, num;
397 coalesce_pair_p p;
398 coalesce_pair_iterator ppi;
399
400 gcc_assert (cl->sorted == NULL);
401
402 num = num_coalesce_pairs (cl);
403 cl->num_sorted = num;
404 if (num == 0)
405 return;
406
407 /* Allocate a vector for the pair pointers. */
408 cl->sorted = XNEWVEC (coalesce_pair_p, num);
409
410 /* Populate the vector with pointers to the pairs. */
411 x = 0;
412 FOR_EACH_PARTITION_PAIR (p, ppi, cl)
413 cl->sorted[x++] = p;
414 gcc_assert (x == num);
415
416 /* Already sorted. */
417 if (num == 1)
418 return;
419
420 /* If there are only 2, just pick swap them if the order isn't correct. */
421 if (num == 2)
422 {
423 if (cl->sorted[0]->cost > cl->sorted[1]->cost)
424 {
425 p = cl->sorted[0];
426 cl->sorted[0] = cl->sorted[1];
427 cl->sorted[1] = p;
428 }
429 return;
430 }
431
432 /* Only call qsort if there are more than 2 items. */
433 if (num > 2)
434 qsort (cl->sorted, num, sizeof (coalesce_pair_p), compare_pairs);
435 }
436
437
438 /* Send debug info for coalesce list CL to file F. */
439
440 static void
441 dump_coalesce_list (FILE *f, coalesce_list_p cl)
442 {
443 coalesce_pair_p node;
444 coalesce_pair_iterator ppi;
445 int x;
446 tree var;
447
448 if (cl->sorted == NULL)
449 {
450 fprintf (f, "Coalesce List:\n");
451 FOR_EACH_PARTITION_PAIR (node, ppi, cl)
452 {
453 tree var1 = ssa_name (node->first_element);
454 tree var2 = ssa_name (node->second_element);
455 print_generic_expr (f, var1, TDF_SLIM);
456 fprintf (f, " <-> ");
457 print_generic_expr (f, var2, TDF_SLIM);
458 fprintf (f, " (%1d), ", node->cost);
459 fprintf (f, "\n");
460 }
461 }
462 else
463 {
464 fprintf (f, "Sorted Coalesce list:\n");
465 for (x = cl->num_sorted - 1 ; x >=0; x--)
466 {
467 node = cl->sorted[x];
468 fprintf (f, "(%d) ", node->cost);
469 var = ssa_name (node->first_element);
470 print_generic_expr (f, var, TDF_SLIM);
471 fprintf (f, " <-> ");
472 var = ssa_name (node->second_element);
473 print_generic_expr (f, var, TDF_SLIM);
474 fprintf (f, "\n");
475 }
476 }
477 }
478
479
480 /* This represents a conflict graph. Implemented as an array of bitmaps.
481 A full matrix is used for conflicts rather than just upper triangular form.
482 this make sit much simpler and faster to perform conflict merges. */
483
484 typedef struct ssa_conflicts_d
485 {
486 unsigned size;
487 bitmap *conflicts;
488 } * ssa_conflicts_p;
489
490
491 /* Return an empty new conflict graph for SIZE elements. */
492
493 static inline ssa_conflicts_p
494 ssa_conflicts_new (unsigned size)
495 {
496 ssa_conflicts_p ptr;
497
498 ptr = XNEW (struct ssa_conflicts_d);
499 ptr->conflicts = XCNEWVEC (bitmap, size);
500 ptr->size = size;
501 return ptr;
502 }
503
504
505 /* Free storage for conflict graph PTR. */
506
507 static inline void
508 ssa_conflicts_delete (ssa_conflicts_p ptr)
509 {
510 unsigned x;
511 for (x = 0; x < ptr->size; x++)
512 if (ptr->conflicts[x])
513 BITMAP_FREE (ptr->conflicts[x]);
514
515 free (ptr->conflicts);
516 free (ptr);
517 }
518
519
520 /* Test if elements X and Y conflict in graph PTR. */
521
522 static inline bool
523 ssa_conflicts_test_p (ssa_conflicts_p ptr, unsigned x, unsigned y)
524 {
525 bitmap b;
526
527 #ifdef ENABLE_CHECKING
528 gcc_assert (x < ptr->size);
529 gcc_assert (y < ptr->size);
530 gcc_assert (x != y);
531 #endif
532
533 b = ptr->conflicts[x];
534 if (b)
535 /* Avoid the lookup if Y has no conflicts. */
536 return ptr->conflicts[y] ? bitmap_bit_p (b, y) : false;
537 else
538 return false;
539 }
540
541
542 /* Add a conflict with Y to the bitmap for X in graph PTR. */
543
544 static inline void
545 ssa_conflicts_add_one (ssa_conflicts_p ptr, unsigned x, unsigned y)
546 {
547 /* If there are no conflicts yet, allocate the bitmap and set bit. */
548 if (!ptr->conflicts[x])
549 ptr->conflicts[x] = BITMAP_ALLOC (NULL);
550 bitmap_set_bit (ptr->conflicts[x], y);
551 }
552
553
554 /* Add conflicts between X and Y in graph PTR. */
555
556 static inline void
557 ssa_conflicts_add (ssa_conflicts_p ptr, unsigned x, unsigned y)
558 {
559 #ifdef ENABLE_CHECKING
560 gcc_assert (x < ptr->size);
561 gcc_assert (y < ptr->size);
562 gcc_assert (x != y);
563 #endif
564 ssa_conflicts_add_one (ptr, x, y);
565 ssa_conflicts_add_one (ptr, y, x);
566 }
567
568
569 /* Merge all Y's conflict into X in graph PTR. */
570
571 static inline void
572 ssa_conflicts_merge (ssa_conflicts_p ptr, unsigned x, unsigned y)
573 {
574 unsigned z;
575 bitmap_iterator bi;
576
577 gcc_assert (x != y);
578 if (!(ptr->conflicts[y]))
579 return;
580
581 /* Add a conflict between X and every one Y has. If the bitmap doesn't
582 exist, then it has already been coalesced, and we don't need to add a
583 conflict. */
584 EXECUTE_IF_SET_IN_BITMAP (ptr->conflicts[y], 0, z, bi)
585 if (ptr->conflicts[z])
586 bitmap_set_bit (ptr->conflicts[z], x);
587
588 if (ptr->conflicts[x])
589 {
590 /* If X has conflicts, add Y's to X. */
591 bitmap_ior_into (ptr->conflicts[x], ptr->conflicts[y]);
592 BITMAP_FREE (ptr->conflicts[y]);
593 }
594 else
595 {
596 /* If X has no conflicts, simply use Y's. */
597 ptr->conflicts[x] = ptr->conflicts[y];
598 ptr->conflicts[y] = NULL;
599 }
600 }
601
602
603 /* Dump a conflicts graph. */
604
605 static void
606 ssa_conflicts_dump (FILE *file, ssa_conflicts_p ptr)
607 {
608 unsigned x;
609
610 fprintf (file, "\nConflict graph:\n");
611
612 for (x = 0; x < ptr->size; x++)
613 if (ptr->conflicts[x])
614 {
615 fprintf (dump_file, "%d: ", x);
616 dump_bitmap (file, ptr->conflicts[x]);
617 }
618 }
619
620
621 /* This structure is used to efficiently record the current status of live
622 SSA_NAMES when building a conflict graph.
623 LIVE_BASE_VAR has a bit set for each base variable which has at least one
624 ssa version live.
625 LIVE_BASE_PARTITIONS is an array of bitmaps using the basevar table as an
626 index, and is used to track what partitions of each base variable are
627 live. This makes it easy to add conflicts between just live partitions
628 with the same base variable.
629 The values in LIVE_BASE_PARTITIONS are only valid if the base variable is
630 marked as being live. This delays clearing of these bitmaps until
631 they are actually needed again. */
632
633 typedef struct live_track_d
634 {
635 bitmap live_base_var; /* Indicates if a basevar is live. */
636 bitmap *live_base_partitions; /* Live partitions for each basevar. */
637 var_map map; /* Var_map being used for partition mapping. */
638 } * live_track_p;
639
640
641 /* This routine will create a new live track structure based on the partitions
642 in MAP. */
643
644 static live_track_p
645 new_live_track (var_map map)
646 {
647 live_track_p ptr;
648 int lim, x;
649
650 /* Make sure there is a partition view in place. */
651 gcc_assert (map->partition_to_base_index != NULL);
652
653 ptr = (live_track_p) xmalloc (sizeof (struct live_track_d));
654 ptr->map = map;
655 lim = num_basevars (map);
656 ptr->live_base_partitions = (bitmap *) xmalloc(sizeof (bitmap *) * lim);
657 ptr->live_base_var = BITMAP_ALLOC (NULL);
658 for (x = 0; x < lim; x++)
659 ptr->live_base_partitions[x] = BITMAP_ALLOC (NULL);
660 return ptr;
661 }
662
663
664 /* This routine will free the memory associated with PTR. */
665
666 static void
667 delete_live_track (live_track_p ptr)
668 {
669 int x, lim;
670
671 lim = num_basevars (ptr->map);
672 for (x = 0; x < lim; x++)
673 BITMAP_FREE (ptr->live_base_partitions[x]);
674 BITMAP_FREE (ptr->live_base_var);
675 free (ptr->live_base_partitions);
676 free (ptr);
677 }
678
679
680 /* This function will remove PARTITION from the live list in PTR. */
681
682 static inline void
683 live_track_remove_partition (live_track_p ptr, int partition)
684 {
685 int root;
686
687 root = basevar_index (ptr->map, partition);
688 bitmap_clear_bit (ptr->live_base_partitions[root], partition);
689 /* If the element list is empty, make the base variable not live either. */
690 if (bitmap_empty_p (ptr->live_base_partitions[root]))
691 bitmap_clear_bit (ptr->live_base_var, root);
692 }
693
694
695 /* This function will adds PARTITION to the live list in PTR. */
696
697 static inline void
698 live_track_add_partition (live_track_p ptr, int partition)
699 {
700 int root;
701
702 root = basevar_index (ptr->map, partition);
703 /* If this base var wasn't live before, it is now. Clear the element list
704 since it was delayed until needed. */
705 if (!bitmap_bit_p (ptr->live_base_var, root))
706 {
707 bitmap_set_bit (ptr->live_base_var, root);
708 bitmap_clear (ptr->live_base_partitions[root]);
709 }
710 bitmap_set_bit (ptr->live_base_partitions[root], partition);
711
712 }
713
714
715 /* Clear the live bit for VAR in PTR. */
716
717 static inline void
718 live_track_clear_var (live_track_p ptr, tree var)
719 {
720 int p;
721
722 p = var_to_partition (ptr->map, var);
723 if (p != NO_PARTITION)
724 live_track_remove_partition (ptr, p);
725 }
726
727
728 /* Return TRUE if VAR is live in PTR. */
729
730 static inline bool
731 live_track_live_p (live_track_p ptr, tree var)
732 {
733 int p, root;
734
735 p = var_to_partition (ptr->map, var);
736 if (p != NO_PARTITION)
737 {
738 root = basevar_index (ptr->map, p);
739 if (bitmap_bit_p (ptr->live_base_var, root))
740 return bitmap_bit_p (ptr->live_base_partitions[root], p);
741 }
742 return false;
743 }
744
745
746 /* This routine will add USE to PTR. USE will be marked as live in both the
747 ssa live map and the live bitmap for the root of USE. */
748
749 static inline void
750 live_track_process_use (live_track_p ptr, tree use)
751 {
752 int p;
753
754 p = var_to_partition (ptr->map, use);
755 if (p == NO_PARTITION)
756 return;
757
758 /* Mark as live in the appropriate live list. */
759 live_track_add_partition (ptr, p);
760 }
761
762
763 /* This routine will process a DEF in PTR. DEF will be removed from the live
764 lists, and if there are any other live partitions with the same base
765 variable, conflicts will be added to GRAPH. */
766
767 static inline void
768 live_track_process_def (live_track_p ptr, tree def, ssa_conflicts_p graph)
769 {
770 int p, root;
771 bitmap b;
772 unsigned x;
773 bitmap_iterator bi;
774
775 p = var_to_partition (ptr->map, def);
776 if (p == NO_PARTITION)
777 return;
778
779 /* Clear the liveness bit. */
780 live_track_remove_partition (ptr, p);
781
782 /* If the bitmap isn't empty now, conflicts need to be added. */
783 root = basevar_index (ptr->map, p);
784 if (bitmap_bit_p (ptr->live_base_var, root))
785 {
786 b = ptr->live_base_partitions[root];
787 EXECUTE_IF_SET_IN_BITMAP (b, 0, x, bi)
788 ssa_conflicts_add (graph, p, x);
789 }
790 }
791
792
793 /* Initialize PTR with the partitions set in INIT. */
794
795 static inline void
796 live_track_init (live_track_p ptr, bitmap init)
797 {
798 unsigned p;
799 bitmap_iterator bi;
800
801 /* Mark all live on exit partitions. */
802 EXECUTE_IF_SET_IN_BITMAP (init, 0, p, bi)
803 live_track_add_partition (ptr, p);
804 }
805
806
807 /* This routine will clear all live partitions in PTR. */
808
809 static inline void
810 live_track_clear_base_vars (live_track_p ptr)
811 {
812 /* Simply clear the live base list. Anything marked as live in the element
813 lists will be cleared later if/when the base variable ever comes alive
814 again. */
815 bitmap_clear (ptr->live_base_var);
816 }
817
818
819 /* Build a conflict graph based on LIVEINFO. Any partitions which are in the
820 partition view of the var_map liveinfo is based on get entries in the
821 conflict graph. Only conflicts between ssa_name partitions with the same
822 base variable are added. */
823
824 static ssa_conflicts_p
825 build_ssa_conflict_graph (tree_live_info_p liveinfo)
826 {
827 ssa_conflicts_p graph;
828 var_map map;
829 basic_block bb;
830 ssa_op_iter iter;
831 live_track_p live;
832
833 map = live_var_map (liveinfo);
834 graph = ssa_conflicts_new (num_var_partitions (map));
835
836 live = new_live_track (map);
837
838 FOR_EACH_BB (bb)
839 {
840 gimple_stmt_iterator gsi;
841
842 /* Start with live on exit temporaries. */
843 live_track_init (live, live_on_exit (liveinfo, bb));
844
845 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
846 {
847 tree var;
848 gimple stmt = gsi_stmt (gsi);
849
850 /* A copy between 2 partitions does not introduce an interference
851 by itself. If they did, you would never be able to coalesce
852 two things which are copied. If the two variables really do
853 conflict, they will conflict elsewhere in the program.
854
855 This is handled by simply removing the SRC of the copy from the
856 live list, and processing the stmt normally. */
857 if (is_gimple_assign (stmt))
858 {
859 tree lhs = gimple_assign_lhs (stmt);
860 tree rhs1 = gimple_assign_rhs1 (stmt);
861 if (gimple_assign_copy_p (stmt)
862 && TREE_CODE (lhs) == SSA_NAME
863 && TREE_CODE (rhs1) == SSA_NAME)
864 live_track_clear_var (live, rhs1);
865 }
866
867 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF)
868 live_track_process_def (live, var, graph);
869
870 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
871 live_track_process_use (live, var);
872 }
873
874 /* If result of a PHI is unused, looping over the statements will not
875 record any conflicts since the def was never live. Since the PHI node
876 is going to be translated out of SSA form, it will insert a copy.
877 There must be a conflict recorded between the result of the PHI and
878 any variables that are live. Otherwise the out-of-ssa translation
879 may create incorrect code. */
880 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
881 {
882 gimple phi = gsi_stmt (gsi);
883 tree result = PHI_RESULT (phi);
884 if (live_track_live_p (live, result))
885 live_track_process_def (live, result, graph);
886 }
887
888 live_track_clear_base_vars (live);
889 }
890
891 delete_live_track (live);
892 return graph;
893 }
894
895
896 /* Shortcut routine to print messages to file F of the form:
897 "STR1 EXPR1 STR2 EXPR2 STR3." */
898
899 static inline void
900 print_exprs (FILE *f, const char *str1, tree expr1, const char *str2,
901 tree expr2, const char *str3)
902 {
903 fprintf (f, "%s", str1);
904 print_generic_expr (f, expr1, TDF_SLIM);
905 fprintf (f, "%s", str2);
906 print_generic_expr (f, expr2, TDF_SLIM);
907 fprintf (f, "%s", str3);
908 }
909
910
911 /* Called if a coalesce across and abnormal edge cannot be performed. PHI is
912 the phi node at fault, I is the argument index at fault. A message is
913 printed and compilation is then terminated. */
914
915 static inline void
916 abnormal_corrupt (gimple phi, int i)
917 {
918 edge e = gimple_phi_arg_edge (phi, i);
919 tree res = gimple_phi_result (phi);
920 tree arg = gimple_phi_arg_def (phi, i);
921
922 fprintf (stderr, " Corrupt SSA across abnormal edge BB%d->BB%d\n",
923 e->src->index, e->dest->index);
924 fprintf (stderr, "Argument %d (", i);
925 print_generic_expr (stderr, arg, TDF_SLIM);
926 if (TREE_CODE (arg) != SSA_NAME)
927 fprintf (stderr, ") is not an SSA_NAME.\n");
928 else
929 {
930 gcc_assert (SSA_NAME_VAR (res) != SSA_NAME_VAR (arg));
931 fprintf (stderr, ") does not have the same base variable as the result ");
932 print_generic_stmt (stderr, res, TDF_SLIM);
933 }
934
935 internal_error ("SSA corruption");
936 }
937
938
939 /* Print a failure to coalesce a MUST_COALESCE pair X and Y. */
940
941 static inline void
942 fail_abnormal_edge_coalesce (int x, int y)
943 {
944 fprintf (stderr, "\nUnable to coalesce ssa_names %d and %d",x, y);
945 fprintf (stderr, " which are marked as MUST COALESCE.\n");
946 print_generic_expr (stderr, ssa_name (x), TDF_SLIM);
947 fprintf (stderr, " and ");
948 print_generic_stmt (stderr, ssa_name (y), TDF_SLIM);
949
950 internal_error ("SSA corruption");
951 }
952
953
954 /* This function creates a var_map for the current function as well as creating
955 a coalesce list for use later in the out of ssa process. */
956
957 static var_map
958 create_outofssa_var_map (coalesce_list_p cl, bitmap used_in_copy)
959 {
960 gimple_stmt_iterator gsi;
961 basic_block bb;
962 tree var;
963 gimple stmt;
964 tree first;
965 var_map map;
966 ssa_op_iter iter;
967 int v1, v2, cost;
968 unsigned i;
969
970 #ifdef ENABLE_CHECKING
971 bitmap used_in_real_ops;
972 bitmap used_in_virtual_ops;
973
974 used_in_real_ops = BITMAP_ALLOC (NULL);
975 used_in_virtual_ops = BITMAP_ALLOC (NULL);
976 #endif
977
978 map = init_var_map (num_ssa_names + 1);
979
980 FOR_EACH_BB (bb)
981 {
982 tree arg;
983
984 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
985 {
986 gimple phi = gsi_stmt (gsi);
987 size_t i;
988 int ver;
989 tree res;
990 bool saw_copy = false;
991
992 res = gimple_phi_result (phi);
993 ver = SSA_NAME_VERSION (res);
994 register_ssa_partition (map, res);
995
996 /* Register ssa_names and coalesces between the args and the result
997 of all PHI. */
998 for (i = 0; i < gimple_phi_num_args (phi); i++)
999 {
1000 edge e = gimple_phi_arg_edge (phi, i);
1001 arg = PHI_ARG_DEF (phi, i);
1002 if (TREE_CODE (arg) == SSA_NAME)
1003 register_ssa_partition (map, arg);
1004 if (TREE_CODE (arg) == SSA_NAME
1005 && SSA_NAME_VAR (arg) == SSA_NAME_VAR (res))
1006 {
1007 saw_copy = true;
1008 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (arg));
1009 if ((e->flags & EDGE_ABNORMAL) == 0)
1010 {
1011 int cost = coalesce_cost_edge (e);
1012 if (cost == 1 && has_single_use (arg))
1013 add_cost_one_coalesce (cl, ver, SSA_NAME_VERSION (arg));
1014 else
1015 add_coalesce (cl, ver, SSA_NAME_VERSION (arg), cost);
1016 }
1017 }
1018 else
1019 if (e->flags & EDGE_ABNORMAL)
1020 abnormal_corrupt (phi, i);
1021 }
1022 if (saw_copy)
1023 bitmap_set_bit (used_in_copy, ver);
1024 }
1025
1026 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1027 {
1028 stmt = gsi_stmt (gsi);
1029
1030 /* Register USE and DEF operands in each statement. */
1031 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, (SSA_OP_DEF|SSA_OP_USE))
1032 register_ssa_partition (map, var);
1033
1034 /* Check for copy coalesces. */
1035 switch (gimple_code (stmt))
1036 {
1037 case GIMPLE_ASSIGN:
1038 {
1039 tree lhs = gimple_assign_lhs (stmt);
1040 tree rhs1 = gimple_assign_rhs1 (stmt);
1041
1042 if (gimple_assign_copy_p (stmt)
1043 && TREE_CODE (lhs) == SSA_NAME
1044 && TREE_CODE (rhs1) == SSA_NAME
1045 && SSA_NAME_VAR (lhs) == SSA_NAME_VAR (rhs1))
1046 {
1047 v1 = SSA_NAME_VERSION (lhs);
1048 v2 = SSA_NAME_VERSION (rhs1);
1049 cost = coalesce_cost_bb (bb);
1050 add_coalesce (cl, v1, v2, cost);
1051 bitmap_set_bit (used_in_copy, v1);
1052 bitmap_set_bit (used_in_copy, v2);
1053 }
1054 }
1055 break;
1056
1057 case GIMPLE_ASM:
1058 {
1059 unsigned long noutputs, i;
1060 unsigned long ninputs;
1061 tree *outputs, link;
1062 noutputs = gimple_asm_noutputs (stmt);
1063 ninputs = gimple_asm_ninputs (stmt);
1064 outputs = (tree *) alloca (noutputs * sizeof (tree));
1065 for (i = 0; i < noutputs; ++i) {
1066 link = gimple_asm_output_op (stmt, i);
1067 outputs[i] = TREE_VALUE (link);
1068 }
1069
1070 for (i = 0; i < ninputs; ++i)
1071 {
1072 const char *constraint;
1073 tree input;
1074 char *end;
1075 unsigned long match;
1076
1077 link = gimple_asm_input_op (stmt, i);
1078 constraint
1079 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1080 input = TREE_VALUE (link);
1081
1082 if (TREE_CODE (input) != SSA_NAME)
1083 continue;
1084
1085 match = strtoul (constraint, &end, 10);
1086 if (match >= noutputs || end == constraint)
1087 continue;
1088
1089 if (TREE_CODE (outputs[match]) != SSA_NAME)
1090 continue;
1091
1092 v1 = SSA_NAME_VERSION (outputs[match]);
1093 v2 = SSA_NAME_VERSION (input);
1094
1095 if (SSA_NAME_VAR (outputs[match]) == SSA_NAME_VAR (input))
1096 {
1097 cost = coalesce_cost (REG_BR_PROB_BASE,
1098 optimize_bb_for_size_p (bb),
1099 false);
1100 add_coalesce (cl, v1, v2, cost);
1101 bitmap_set_bit (used_in_copy, v1);
1102 bitmap_set_bit (used_in_copy, v2);
1103 }
1104 }
1105 break;
1106 }
1107
1108 default:
1109 break;
1110 }
1111
1112 #ifdef ENABLE_CHECKING
1113 /* Mark real uses and defs. */
1114 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, (SSA_OP_DEF|SSA_OP_USE))
1115 bitmap_set_bit (used_in_real_ops, DECL_UID (SSA_NAME_VAR (var)));
1116
1117 /* Validate that virtual ops don't get used in funny ways. */
1118 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_VIRTUALS)
1119 {
1120 bitmap_set_bit (used_in_virtual_ops,
1121 DECL_UID (SSA_NAME_VAR (var)));
1122 }
1123
1124 #endif /* ENABLE_CHECKING */
1125 }
1126 }
1127
1128 /* Now process result decls and live on entry variables for entry into
1129 the coalesce list. */
1130 first = NULL_TREE;
1131 for (i = 1; i < num_ssa_names; i++)
1132 {
1133 var = map->partition_to_var[i];
1134 if (var != NULL_TREE)
1135 {
1136 /* Add coalesces between all the result decls. */
1137 if (TREE_CODE (SSA_NAME_VAR (var)) == RESULT_DECL)
1138 {
1139 if (first == NULL_TREE)
1140 first = var;
1141 else
1142 {
1143 gcc_assert (SSA_NAME_VAR (var) == SSA_NAME_VAR (first));
1144 v1 = SSA_NAME_VERSION (first);
1145 v2 = SSA_NAME_VERSION (var);
1146 bitmap_set_bit (used_in_copy, v1);
1147 bitmap_set_bit (used_in_copy, v2);
1148 cost = coalesce_cost_bb (EXIT_BLOCK_PTR);
1149 add_coalesce (cl, v1, v2, cost);
1150 }
1151 }
1152 /* Mark any default_def variables as being in the coalesce list
1153 since they will have to be coalesced with the base variable. If
1154 not marked as present, they won't be in the coalesce view. */
1155 if (gimple_default_def (cfun, SSA_NAME_VAR (var)) == var)
1156 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (var));
1157 }
1158 }
1159
1160 #if defined ENABLE_CHECKING
1161 {
1162 unsigned i;
1163 bitmap both = BITMAP_ALLOC (NULL);
1164 bitmap_and (both, used_in_real_ops, used_in_virtual_ops);
1165 if (!bitmap_empty_p (both))
1166 {
1167 bitmap_iterator bi;
1168
1169 EXECUTE_IF_SET_IN_BITMAP (both, 0, i, bi)
1170 fprintf (stderr, "Variable %s used in real and virtual operands\n",
1171 get_name (referenced_var (i)));
1172 internal_error ("SSA corruption");
1173 }
1174
1175 BITMAP_FREE (used_in_real_ops);
1176 BITMAP_FREE (used_in_virtual_ops);
1177 BITMAP_FREE (both);
1178 }
1179 #endif
1180
1181 return map;
1182 }
1183
1184
1185 /* Attempt to coalesce ssa versions X and Y together using the partition
1186 mapping in MAP and checking conflicts in GRAPH. Output any debug info to
1187 DEBUG, if it is nun-NULL. */
1188
1189 static inline bool
1190 attempt_coalesce (var_map map, ssa_conflicts_p graph, int x, int y,
1191 FILE *debug)
1192 {
1193 int z;
1194 tree var1, var2;
1195 int p1, p2;
1196
1197 p1 = var_to_partition (map, ssa_name (x));
1198 p2 = var_to_partition (map, ssa_name (y));
1199
1200 if (debug)
1201 {
1202 fprintf (debug, "(%d)", x);
1203 print_generic_expr (debug, partition_to_var (map, p1), TDF_SLIM);
1204 fprintf (debug, " & (%d)", y);
1205 print_generic_expr (debug, partition_to_var (map, p2), TDF_SLIM);
1206 }
1207
1208 if (p1 == p2)
1209 {
1210 if (debug)
1211 fprintf (debug, ": Already Coalesced.\n");
1212 return true;
1213 }
1214
1215 if (debug)
1216 fprintf (debug, " [map: %d, %d] ", p1, p2);
1217
1218
1219 if (!ssa_conflicts_test_p (graph, p1, p2))
1220 {
1221 var1 = partition_to_var (map, p1);
1222 var2 = partition_to_var (map, p2);
1223 z = var_union (map, var1, var2);
1224 if (z == NO_PARTITION)
1225 {
1226 if (debug)
1227 fprintf (debug, ": Unable to perform partition union.\n");
1228 return false;
1229 }
1230
1231 /* z is the new combined partition. Remove the other partition from
1232 the list, and merge the conflicts. */
1233 if (z == p1)
1234 ssa_conflicts_merge (graph, p1, p2);
1235 else
1236 ssa_conflicts_merge (graph, p2, p1);
1237
1238 if (debug)
1239 fprintf (debug, ": Success -> %d\n", z);
1240 return true;
1241 }
1242
1243 if (debug)
1244 fprintf (debug, ": Fail due to conflict\n");
1245
1246 return false;
1247 }
1248
1249
1250 /* Attempt to Coalesce partitions in MAP which occur in the list CL using
1251 GRAPH. Debug output is sent to DEBUG if it is non-NULL. */
1252
1253 static void
1254 coalesce_partitions (var_map map, ssa_conflicts_p graph, coalesce_list_p cl,
1255 FILE *debug)
1256 {
1257 int x = 0, y = 0;
1258 tree var1, var2;
1259 int cost;
1260 basic_block bb;
1261 edge e;
1262 edge_iterator ei;
1263
1264 /* First, coalesce all the copies across abnormal edges. These are not placed
1265 in the coalesce list because they do not need to be sorted, and simply
1266 consume extra memory/compilation time in large programs. */
1267
1268 FOR_EACH_BB (bb)
1269 {
1270 FOR_EACH_EDGE (e, ei, bb->preds)
1271 if (e->flags & EDGE_ABNORMAL)
1272 {
1273 gimple_stmt_iterator gsi;
1274 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1275 gsi_next (&gsi))
1276 {
1277 gimple phi = gsi_stmt (gsi);
1278 tree res = PHI_RESULT (phi);
1279 tree arg = PHI_ARG_DEF (phi, e->dest_idx);
1280 int v1 = SSA_NAME_VERSION (res);
1281 int v2 = SSA_NAME_VERSION (arg);
1282
1283 if (SSA_NAME_VAR (arg) != SSA_NAME_VAR (res))
1284 abnormal_corrupt (phi, e->dest_idx);
1285
1286 if (debug)
1287 fprintf (debug, "Abnormal coalesce: ");
1288
1289 if (!attempt_coalesce (map, graph, v1, v2, debug))
1290 fail_abnormal_edge_coalesce (v1, v2);
1291 }
1292 }
1293 }
1294
1295 /* Now process the items in the coalesce list. */
1296
1297 while ((cost = pop_best_coalesce (cl, &x, &y)) != NO_BEST_COALESCE)
1298 {
1299 var1 = ssa_name (x);
1300 var2 = ssa_name (y);
1301
1302 /* Assert the coalesces have the same base variable. */
1303 gcc_assert (SSA_NAME_VAR (var1) == SSA_NAME_VAR (var2));
1304
1305 if (debug)
1306 fprintf (debug, "Coalesce list: ");
1307 attempt_coalesce (map, graph, x, y, debug);
1308 }
1309 }
1310
1311 /* Returns a hash code for P. */
1312
1313 static hashval_t
1314 hash_ssa_name_by_var (const void *p)
1315 {
1316 const_tree n = (const_tree) p;
1317 return (hashval_t) htab_hash_pointer (SSA_NAME_VAR (n));
1318 }
1319
1320 /* Returns nonzero if P1 and P2 are equal. */
1321
1322 static int
1323 eq_ssa_name_by_var (const void *p1, const void *p2)
1324 {
1325 const_tree n1 = (const_tree) p1;
1326 const_tree n2 = (const_tree) p2;
1327 return SSA_NAME_VAR (n1) == SSA_NAME_VAR (n2);
1328 }
1329
1330 /* Reduce the number of copies by coalescing variables in the function. Return
1331 a partition map with the resulting coalesces. */
1332
1333 extern var_map
1334 coalesce_ssa_name (void)
1335 {
1336 unsigned num, x;
1337 tree_live_info_p liveinfo;
1338 ssa_conflicts_p graph;
1339 coalesce_list_p cl;
1340 bitmap used_in_copies = BITMAP_ALLOC (NULL);
1341 var_map map;
1342 unsigned int i;
1343 static htab_t ssa_name_hash;
1344
1345 cl = create_coalesce_list ();
1346 map = create_outofssa_var_map (cl, used_in_copies);
1347
1348 /* We need to coalesce all names originating same SSA_NAME_VAR
1349 so debug info remains undisturbed. */
1350 if (!optimize)
1351 {
1352 ssa_name_hash = htab_create (10, hash_ssa_name_by_var,
1353 eq_ssa_name_by_var, NULL);
1354 for (i = 1; i < num_ssa_names; i++)
1355 {
1356 tree a = ssa_name (i);
1357
1358 if (a && SSA_NAME_VAR (a) && !DECL_ARTIFICIAL (SSA_NAME_VAR (a)))
1359 {
1360 tree *slot = (tree *) htab_find_slot (ssa_name_hash, a, INSERT);
1361
1362 if (!*slot)
1363 *slot = a;
1364 else
1365 {
1366 add_coalesce (cl, SSA_NAME_VERSION (a), SSA_NAME_VERSION (*slot),
1367 MUST_COALESCE_COST - 1);
1368 bitmap_set_bit (used_in_copies, SSA_NAME_VERSION (a));
1369 bitmap_set_bit (used_in_copies, SSA_NAME_VERSION (*slot));
1370 }
1371 }
1372 }
1373 htab_delete (ssa_name_hash);
1374 }
1375 if (dump_file && (dump_flags & TDF_DETAILS))
1376 dump_var_map (dump_file, map);
1377
1378 /* Don't calculate live ranges for variables not in the coalesce list. */
1379 partition_view_bitmap (map, used_in_copies, true);
1380 BITMAP_FREE (used_in_copies);
1381
1382 if (num_var_partitions (map) < 1)
1383 {
1384 delete_coalesce_list (cl);
1385 return map;
1386 }
1387
1388 if (dump_file && (dump_flags & TDF_DETAILS))
1389 dump_var_map (dump_file, map);
1390
1391 liveinfo = calculate_live_ranges (map);
1392
1393 if (dump_file && (dump_flags & TDF_DETAILS))
1394 dump_live_info (dump_file, liveinfo, LIVEDUMP_ENTRY);
1395
1396 /* Build a conflict graph. */
1397 graph = build_ssa_conflict_graph (liveinfo);
1398 delete_tree_live_info (liveinfo);
1399 if (dump_file && (dump_flags & TDF_DETAILS))
1400 ssa_conflicts_dump (dump_file, graph);
1401
1402 sort_coalesce_list (cl);
1403
1404 if (dump_file && (dump_flags & TDF_DETAILS))
1405 {
1406 fprintf (dump_file, "\nAfter sorting:\n");
1407 dump_coalesce_list (dump_file, cl);
1408 }
1409
1410 /* First, coalesce all live on entry variables to their base variable.
1411 This will ensure the first use is coming from the correct location. */
1412
1413 num = num_var_partitions (map);
1414 for (x = 0 ; x < num; x++)
1415 {
1416 tree var = partition_to_var (map, x);
1417 tree root;
1418
1419 if (TREE_CODE (var) != SSA_NAME)
1420 continue;
1421
1422 root = SSA_NAME_VAR (var);
1423 if (gimple_default_def (cfun, root) == var)
1424 {
1425 /* This root variable should have not already been assigned
1426 to another partition which is not coalesced with this one. */
1427 gcc_assert (!var_ann (root)->out_of_ssa_tag);
1428
1429 if (dump_file && (dump_flags & TDF_DETAILS))
1430 {
1431 print_exprs (dump_file, "Must coalesce ", var,
1432 " with the root variable ", root, ".\n");
1433 }
1434 change_partition_var (map, root, x);
1435 }
1436 }
1437
1438 if (dump_file && (dump_flags & TDF_DETAILS))
1439 dump_var_map (dump_file, map);
1440
1441 /* Now coalesce everything in the list. */
1442 coalesce_partitions (map, graph, cl,
1443 ((dump_flags & TDF_DETAILS) ? dump_file
1444 : NULL));
1445
1446 delete_coalesce_list (cl);
1447 ssa_conflicts_delete (graph);
1448
1449 return map;
1450 }