vperm-v4sf-1.c (dg-options): Use -msse.
[gcc.git] / gcc / tree-ssa-coalesce.c
1 /* Coalesce SSA_NAMES together for the out-of-ssa pass.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Andrew MacLeod <amacleod@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "diagnostic.h"
29 #include "bitmap.h"
30 #include "tree-flow.h"
31 #include "hashtab.h"
32 #include "tree-dump.h"
33 #include "tree-ssa-live.h"
34 #include "toplev.h"
35
36
37 /* This set of routines implements a coalesce_list. This is an object which
38 is used to track pairs of ssa_names which are desirable to coalesce
39 together to avoid copies. Costs are associated with each pair, and when
40 all desired information has been collected, the object can be used to
41 order the pairs for processing. */
42
43 /* This structure defines a pair entry. */
44
45 typedef struct coalesce_pair
46 {
47 int first_element;
48 int second_element;
49 int cost;
50 } * coalesce_pair_p;
51 typedef const struct coalesce_pair *const_coalesce_pair_p;
52
53 typedef struct cost_one_pair_d
54 {
55 int first_element;
56 int second_element;
57 struct cost_one_pair_d *next;
58 } * cost_one_pair_p;
59
60 /* This structure maintains the list of coalesce pairs. */
61
62 typedef struct coalesce_list_d
63 {
64 htab_t list; /* Hash table. */
65 coalesce_pair_p *sorted; /* List when sorted. */
66 int num_sorted; /* Number in the sorted list. */
67 cost_one_pair_p cost_one_list;/* Single use coalesces with cost 1. */
68 } *coalesce_list_p;
69
70 #define NO_BEST_COALESCE -1
71 #define MUST_COALESCE_COST INT_MAX
72
73
74 /* Return cost of execution of copy instruction with FREQUENCY. */
75
76 static inline int
77 coalesce_cost (int frequency, bool optimize_for_size)
78 {
79 /* Base costs on BB frequencies bounded by 1. */
80 int cost = frequency;
81
82 if (!cost)
83 cost = 1;
84
85 if (optimize_for_size)
86 cost = 1;
87
88 return cost;
89 }
90
91
92 /* Return the cost of executing a copy instruction in basic block BB. */
93
94 static inline int
95 coalesce_cost_bb (basic_block bb)
96 {
97 return coalesce_cost (bb->frequency, optimize_bb_for_size_p (bb));
98 }
99
100
101 /* Return the cost of executing a copy instruction on edge E. */
102
103 static inline int
104 coalesce_cost_edge (edge e)
105 {
106 int mult = 1;
107
108 /* Inserting copy on critical edge costs more than inserting it elsewhere. */
109 if (EDGE_CRITICAL_P (e))
110 mult = 2;
111 if (e->flags & EDGE_ABNORMAL)
112 return MUST_COALESCE_COST;
113 if (e->flags & EDGE_EH)
114 {
115 edge e2;
116 edge_iterator ei;
117 FOR_EACH_EDGE (e2, ei, e->dest->preds)
118 if (e2 != e)
119 {
120 /* Putting code on EH edge that leads to BB
121 with multiple predecestors imply splitting of
122 edge too. */
123 if (mult < 2)
124 mult = 2;
125 /* If there are multiple EH predecestors, we
126 also copy EH regions and produce separate
127 landing pad. This is expensive. */
128 if (e2->flags & EDGE_EH)
129 {
130 mult = 5;
131 break;
132 }
133 }
134 }
135
136 return coalesce_cost (EDGE_FREQUENCY (e),
137 optimize_edge_for_size_p (e)) * mult;
138 }
139
140
141 /* Retrieve a pair to coalesce from the cost_one_list in CL. Returns the
142 2 elements via P1 and P2. 1 is returned by the function if there is a pair,
143 NO_BEST_COALESCE is returned if there aren't any. */
144
145 static inline int
146 pop_cost_one_pair (coalesce_list_p cl, int *p1, int *p2)
147 {
148 cost_one_pair_p ptr;
149
150 ptr = cl->cost_one_list;
151 if (!ptr)
152 return NO_BEST_COALESCE;
153
154 *p1 = ptr->first_element;
155 *p2 = ptr->second_element;
156 cl->cost_one_list = ptr->next;
157
158 free (ptr);
159
160 return 1;
161 }
162
163 /* Retrieve the most expensive remaining pair to coalesce from CL. Returns the
164 2 elements via P1 and P2. Their calculated cost is returned by the function.
165 NO_BEST_COALESCE is returned if the coalesce list is empty. */
166
167 static inline int
168 pop_best_coalesce (coalesce_list_p cl, int *p1, int *p2)
169 {
170 coalesce_pair_p node;
171 int ret;
172
173 if (cl->sorted == NULL)
174 return pop_cost_one_pair (cl, p1, p2);
175
176 if (cl->num_sorted == 0)
177 return pop_cost_one_pair (cl, p1, p2);
178
179 node = cl->sorted[--(cl->num_sorted)];
180 *p1 = node->first_element;
181 *p2 = node->second_element;
182 ret = node->cost;
183 free (node);
184
185 return ret;
186 }
187
188
189 #define COALESCE_HASH_FN(R1, R2) ((R2) * ((R2) - 1) / 2 + (R1))
190
191 /* Hash function for coalesce list. Calculate hash for PAIR. */
192
193 static unsigned int
194 coalesce_pair_map_hash (const void *pair)
195 {
196 hashval_t a = (hashval_t)(((const_coalesce_pair_p)pair)->first_element);
197 hashval_t b = (hashval_t)(((const_coalesce_pair_p)pair)->second_element);
198
199 return COALESCE_HASH_FN (a,b);
200 }
201
202
203 /* Equality function for coalesce list hash table. Compare PAIR1 and PAIR2,
204 returning TRUE if the two pairs are equivalent. */
205
206 static int
207 coalesce_pair_map_eq (const void *pair1, const void *pair2)
208 {
209 const_coalesce_pair_p const p1 = (const_coalesce_pair_p) pair1;
210 const_coalesce_pair_p const p2 = (const_coalesce_pair_p) pair2;
211
212 return (p1->first_element == p2->first_element
213 && p1->second_element == p2->second_element);
214 }
215
216
217 /* Create a new empty coalesce list object and return it. */
218
219 static inline coalesce_list_p
220 create_coalesce_list (void)
221 {
222 coalesce_list_p list;
223 unsigned size = num_ssa_names * 3;
224
225 if (size < 40)
226 size = 40;
227
228 list = (coalesce_list_p) xmalloc (sizeof (struct coalesce_list_d));
229 list->list = htab_create (size, coalesce_pair_map_hash,
230 coalesce_pair_map_eq, NULL);
231 list->sorted = NULL;
232 list->num_sorted = 0;
233 list->cost_one_list = NULL;
234 return list;
235 }
236
237
238 /* Delete coalesce list CL. */
239
240 static inline void
241 delete_coalesce_list (coalesce_list_p cl)
242 {
243 gcc_assert (cl->cost_one_list == NULL);
244 htab_delete (cl->list);
245 if (cl->sorted)
246 free (cl->sorted);
247 gcc_assert (cl->num_sorted == 0);
248 free (cl);
249 }
250
251
252 /* Find a matching coalesce pair object in CL for the pair P1 and P2. If
253 one isn't found, return NULL if CREATE is false, otherwise create a new
254 coalesce pair object and return it. */
255
256 static coalesce_pair_p
257 find_coalesce_pair (coalesce_list_p cl, int p1, int p2, bool create)
258 {
259 struct coalesce_pair p, *pair;
260 void **slot;
261 unsigned int hash;
262
263 /* Normalize so that p1 is the smaller value. */
264 if (p2 < p1)
265 {
266 p.first_element = p2;
267 p.second_element = p1;
268 }
269 else
270 {
271 p.first_element = p1;
272 p.second_element = p2;
273 }
274
275
276 hash = coalesce_pair_map_hash (&p);
277 pair = (struct coalesce_pair *) htab_find_with_hash (cl->list, &p, hash);
278
279 if (create && !pair)
280 {
281 gcc_assert (cl->sorted == NULL);
282 pair = XNEW (struct coalesce_pair);
283 pair->first_element = p.first_element;
284 pair->second_element = p.second_element;
285 pair->cost = 0;
286 slot = htab_find_slot_with_hash (cl->list, pair, hash, INSERT);
287 *(struct coalesce_pair **)slot = pair;
288 }
289
290 return pair;
291 }
292
293 static inline void
294 add_cost_one_coalesce (coalesce_list_p cl, int p1, int p2)
295 {
296 cost_one_pair_p pair;
297
298 pair = XNEW (struct cost_one_pair_d);
299 pair->first_element = p1;
300 pair->second_element = p2;
301 pair->next = cl->cost_one_list;
302 cl->cost_one_list = pair;
303 }
304
305
306 /* Add a coalesce between P1 and P2 in list CL with a cost of VALUE. */
307
308 static inline void
309 add_coalesce (coalesce_list_p cl, int p1, int p2, int value)
310 {
311 coalesce_pair_p node;
312
313 gcc_assert (cl->sorted == NULL);
314 if (p1 == p2)
315 return;
316
317 node = find_coalesce_pair (cl, p1, p2, true);
318
319 /* Once the value is at least MUST_COALESCE_COST - 1, leave it that way. */
320 if (node->cost < MUST_COALESCE_COST - 1)
321 {
322 if (value < MUST_COALESCE_COST - 1)
323 node->cost += value;
324 else
325 node->cost = value;
326 }
327 }
328
329
330 /* Comparison function to allow qsort to sort P1 and P2 in Ascending order. */
331
332 static int
333 compare_pairs (const void *p1, const void *p2)
334 {
335 const_coalesce_pair_p const *const pp1 = (const_coalesce_pair_p const *) p1;
336 const_coalesce_pair_p const *const pp2 = (const_coalesce_pair_p const *) p2;
337 int result;
338
339 result = (* pp1)->cost - (* pp2)->cost;
340 /* Since qsort does not guarantee stability we use the elements
341 as a secondary key. This provides us with independence from
342 the host's implementation of the sorting algorithm. */
343 if (result == 0)
344 {
345 result = (* pp2)->first_element - (* pp1)->first_element;
346 if (result == 0)
347 result = (* pp2)->second_element - (* pp1)->second_element;
348 }
349
350 return result;
351 }
352
353
354 /* Return the number of unique coalesce pairs in CL. */
355
356 static inline int
357 num_coalesce_pairs (coalesce_list_p cl)
358 {
359 return htab_elements (cl->list);
360 }
361
362
363 /* Iterator over hash table pairs. */
364 typedef struct
365 {
366 htab_iterator hti;
367 } coalesce_pair_iterator;
368
369
370 /* Return first partition pair from list CL, initializing iterator ITER. */
371
372 static inline coalesce_pair_p
373 first_coalesce_pair (coalesce_list_p cl, coalesce_pair_iterator *iter)
374 {
375 coalesce_pair_p pair;
376
377 pair = (coalesce_pair_p) first_htab_element (&(iter->hti), cl->list);
378 return pair;
379 }
380
381
382 /* Return TRUE if there are no more partitions in for ITER to process. */
383
384 static inline bool
385 end_coalesce_pair_p (coalesce_pair_iterator *iter)
386 {
387 return end_htab_p (&(iter->hti));
388 }
389
390
391 /* Return the next partition pair to be visited by ITER. */
392
393 static inline coalesce_pair_p
394 next_coalesce_pair (coalesce_pair_iterator *iter)
395 {
396 coalesce_pair_p pair;
397
398 pair = (coalesce_pair_p) next_htab_element (&(iter->hti));
399 return pair;
400 }
401
402
403 /* Iterate over CL using ITER, returning values in PAIR. */
404
405 #define FOR_EACH_PARTITION_PAIR(PAIR, ITER, CL) \
406 for ((PAIR) = first_coalesce_pair ((CL), &(ITER)); \
407 !end_coalesce_pair_p (&(ITER)); \
408 (PAIR) = next_coalesce_pair (&(ITER)))
409
410
411 /* Prepare CL for removal of preferred pairs. When finished they are sorted
412 in order from most important coalesce to least important. */
413
414 static void
415 sort_coalesce_list (coalesce_list_p cl)
416 {
417 unsigned x, num;
418 coalesce_pair_p p;
419 coalesce_pair_iterator ppi;
420
421 gcc_assert (cl->sorted == NULL);
422
423 num = num_coalesce_pairs (cl);
424 cl->num_sorted = num;
425 if (num == 0)
426 return;
427
428 /* Allocate a vector for the pair pointers. */
429 cl->sorted = XNEWVEC (coalesce_pair_p, num);
430
431 /* Populate the vector with pointers to the pairs. */
432 x = 0;
433 FOR_EACH_PARTITION_PAIR (p, ppi, cl)
434 cl->sorted[x++] = p;
435 gcc_assert (x == num);
436
437 /* Already sorted. */
438 if (num == 1)
439 return;
440
441 /* If there are only 2, just pick swap them if the order isn't correct. */
442 if (num == 2)
443 {
444 if (cl->sorted[0]->cost > cl->sorted[1]->cost)
445 {
446 p = cl->sorted[0];
447 cl->sorted[0] = cl->sorted[1];
448 cl->sorted[1] = p;
449 }
450 return;
451 }
452
453 /* Only call qsort if there are more than 2 items. */
454 if (num > 2)
455 qsort (cl->sorted, num, sizeof (coalesce_pair_p), compare_pairs);
456 }
457
458
459 /* Send debug info for coalesce list CL to file F. */
460
461 static void
462 dump_coalesce_list (FILE *f, coalesce_list_p cl)
463 {
464 coalesce_pair_p node;
465 coalesce_pair_iterator ppi;
466 int x;
467 tree var;
468
469 if (cl->sorted == NULL)
470 {
471 fprintf (f, "Coalesce List:\n");
472 FOR_EACH_PARTITION_PAIR (node, ppi, cl)
473 {
474 tree var1 = ssa_name (node->first_element);
475 tree var2 = ssa_name (node->second_element);
476 print_generic_expr (f, var1, TDF_SLIM);
477 fprintf (f, " <-> ");
478 print_generic_expr (f, var2, TDF_SLIM);
479 fprintf (f, " (%1d), ", node->cost);
480 fprintf (f, "\n");
481 }
482 }
483 else
484 {
485 fprintf (f, "Sorted Coalesce list:\n");
486 for (x = cl->num_sorted - 1 ; x >=0; x--)
487 {
488 node = cl->sorted[x];
489 fprintf (f, "(%d) ", node->cost);
490 var = ssa_name (node->first_element);
491 print_generic_expr (f, var, TDF_SLIM);
492 fprintf (f, " <-> ");
493 var = ssa_name (node->second_element);
494 print_generic_expr (f, var, TDF_SLIM);
495 fprintf (f, "\n");
496 }
497 }
498 }
499
500
501 /* This represents a conflict graph. Implemented as an array of bitmaps.
502 A full matrix is used for conflicts rather than just upper triangular form.
503 this make sit much simpler and faster to perform conflict merges. */
504
505 typedef struct ssa_conflicts_d
506 {
507 unsigned size;
508 bitmap *conflicts;
509 } * ssa_conflicts_p;
510
511
512 /* Return an empty new conflict graph for SIZE elements. */
513
514 static inline ssa_conflicts_p
515 ssa_conflicts_new (unsigned size)
516 {
517 ssa_conflicts_p ptr;
518
519 ptr = XNEW (struct ssa_conflicts_d);
520 ptr->conflicts = XCNEWVEC (bitmap, size);
521 ptr->size = size;
522 return ptr;
523 }
524
525
526 /* Free storage for conflict graph PTR. */
527
528 static inline void
529 ssa_conflicts_delete (ssa_conflicts_p ptr)
530 {
531 unsigned x;
532 for (x = 0; x < ptr->size; x++)
533 if (ptr->conflicts[x])
534 BITMAP_FREE (ptr->conflicts[x]);
535
536 free (ptr->conflicts);
537 free (ptr);
538 }
539
540
541 /* Test if elements X and Y conflict in graph PTR. */
542
543 static inline bool
544 ssa_conflicts_test_p (ssa_conflicts_p ptr, unsigned x, unsigned y)
545 {
546 bitmap b;
547
548 #ifdef ENABLE_CHECKING
549 gcc_assert (x < ptr->size);
550 gcc_assert (y < ptr->size);
551 gcc_assert (x != y);
552 #endif
553
554 b = ptr->conflicts[x];
555 if (b)
556 /* Avoid the lookup if Y has no conflicts. */
557 return ptr->conflicts[y] ? bitmap_bit_p (b, y) : false;
558 else
559 return false;
560 }
561
562
563 /* Add a conflict with Y to the bitmap for X in graph PTR. */
564
565 static inline void
566 ssa_conflicts_add_one (ssa_conflicts_p ptr, unsigned x, unsigned y)
567 {
568 /* If there are no conflicts yet, allocate the bitmap and set bit. */
569 if (!ptr->conflicts[x])
570 ptr->conflicts[x] = BITMAP_ALLOC (NULL);
571 bitmap_set_bit (ptr->conflicts[x], y);
572 }
573
574
575 /* Add conflicts between X and Y in graph PTR. */
576
577 static inline void
578 ssa_conflicts_add (ssa_conflicts_p ptr, unsigned x, unsigned y)
579 {
580 #ifdef ENABLE_CHECKING
581 gcc_assert (x < ptr->size);
582 gcc_assert (y < ptr->size);
583 gcc_assert (x != y);
584 #endif
585 ssa_conflicts_add_one (ptr, x, y);
586 ssa_conflicts_add_one (ptr, y, x);
587 }
588
589
590 /* Merge all Y's conflict into X in graph PTR. */
591
592 static inline void
593 ssa_conflicts_merge (ssa_conflicts_p ptr, unsigned x, unsigned y)
594 {
595 unsigned z;
596 bitmap_iterator bi;
597
598 gcc_assert (x != y);
599 if (!(ptr->conflicts[y]))
600 return;
601
602 /* Add a conflict between X and every one Y has. If the bitmap doesn't
603 exist, then it has already been coalesced, and we don't need to add a
604 conflict. */
605 EXECUTE_IF_SET_IN_BITMAP (ptr->conflicts[y], 0, z, bi)
606 if (ptr->conflicts[z])
607 bitmap_set_bit (ptr->conflicts[z], x);
608
609 if (ptr->conflicts[x])
610 {
611 /* If X has conflicts, add Y's to X. */
612 bitmap_ior_into (ptr->conflicts[x], ptr->conflicts[y]);
613 BITMAP_FREE (ptr->conflicts[y]);
614 }
615 else
616 {
617 /* If X has no conflicts, simply use Y's. */
618 ptr->conflicts[x] = ptr->conflicts[y];
619 ptr->conflicts[y] = NULL;
620 }
621 }
622
623
624 /* Dump a conflicts graph. */
625
626 static void
627 ssa_conflicts_dump (FILE *file, ssa_conflicts_p ptr)
628 {
629 unsigned x;
630
631 fprintf (file, "\nConflict graph:\n");
632
633 for (x = 0; x < ptr->size; x++)
634 if (ptr->conflicts[x])
635 {
636 fprintf (dump_file, "%d: ", x);
637 dump_bitmap (file, ptr->conflicts[x]);
638 }
639 }
640
641
642 /* This structure is used to efficiently record the current status of live
643 SSA_NAMES when building a conflict graph.
644 LIVE_BASE_VAR has a bit set for each base variable which has at least one
645 ssa version live.
646 LIVE_BASE_PARTITIONS is an array of bitmaps using the basevar table as an
647 index, and is used to track what partitions of each base variable are
648 live. This makes it easy to add conflicts between just live partitions
649 with the same base variable.
650 The values in LIVE_BASE_PARTITIONS are only valid if the base variable is
651 marked as being live. This delays clearing of these bitmaps until
652 they are actually needed again. */
653
654 typedef struct live_track_d
655 {
656 bitmap live_base_var; /* Indicates if a basevar is live. */
657 bitmap *live_base_partitions; /* Live partitions for each basevar. */
658 var_map map; /* Var_map being used for partition mapping. */
659 } * live_track_p;
660
661
662 /* This routine will create a new live track structure based on the partitions
663 in MAP. */
664
665 static live_track_p
666 new_live_track (var_map map)
667 {
668 live_track_p ptr;
669 int lim, x;
670
671 /* Make sure there is a partition view in place. */
672 gcc_assert (map->partition_to_base_index != NULL);
673
674 ptr = (live_track_p) xmalloc (sizeof (struct live_track_d));
675 ptr->map = map;
676 lim = num_basevars (map);
677 ptr->live_base_partitions = (bitmap *) xmalloc(sizeof (bitmap *) * lim);
678 ptr->live_base_var = BITMAP_ALLOC (NULL);
679 for (x = 0; x < lim; x++)
680 ptr->live_base_partitions[x] = BITMAP_ALLOC (NULL);
681 return ptr;
682 }
683
684
685 /* This routine will free the memory associated with PTR. */
686
687 static void
688 delete_live_track (live_track_p ptr)
689 {
690 int x, lim;
691
692 lim = num_basevars (ptr->map);
693 for (x = 0; x < lim; x++)
694 BITMAP_FREE (ptr->live_base_partitions[x]);
695 BITMAP_FREE (ptr->live_base_var);
696 free (ptr->live_base_partitions);
697 free (ptr);
698 }
699
700
701 /* This function will remove PARTITION from the live list in PTR. */
702
703 static inline void
704 live_track_remove_partition (live_track_p ptr, int partition)
705 {
706 int root;
707
708 root = basevar_index (ptr->map, partition);
709 bitmap_clear_bit (ptr->live_base_partitions[root], partition);
710 /* If the element list is empty, make the base variable not live either. */
711 if (bitmap_empty_p (ptr->live_base_partitions[root]))
712 bitmap_clear_bit (ptr->live_base_var, root);
713 }
714
715
716 /* This function will adds PARTITION to the live list in PTR. */
717
718 static inline void
719 live_track_add_partition (live_track_p ptr, int partition)
720 {
721 int root;
722
723 root = basevar_index (ptr->map, partition);
724 /* If this base var wasn't live before, it is now. Clear the element list
725 since it was delayed until needed. */
726 if (!bitmap_bit_p (ptr->live_base_var, root))
727 {
728 bitmap_set_bit (ptr->live_base_var, root);
729 bitmap_clear (ptr->live_base_partitions[root]);
730 }
731 bitmap_set_bit (ptr->live_base_partitions[root], partition);
732
733 }
734
735
736 /* Clear the live bit for VAR in PTR. */
737
738 static inline void
739 live_track_clear_var (live_track_p ptr, tree var)
740 {
741 int p;
742
743 p = var_to_partition (ptr->map, var);
744 if (p != NO_PARTITION)
745 live_track_remove_partition (ptr, p);
746 }
747
748
749 /* Return TRUE if VAR is live in PTR. */
750
751 static inline bool
752 live_track_live_p (live_track_p ptr, tree var)
753 {
754 int p, root;
755
756 p = var_to_partition (ptr->map, var);
757 if (p != NO_PARTITION)
758 {
759 root = basevar_index (ptr->map, p);
760 if (bitmap_bit_p (ptr->live_base_var, root))
761 return bitmap_bit_p (ptr->live_base_partitions[root], p);
762 }
763 return false;
764 }
765
766
767 /* This routine will add USE to PTR. USE will be marked as live in both the
768 ssa live map and the live bitmap for the root of USE. */
769
770 static inline void
771 live_track_process_use (live_track_p ptr, tree use)
772 {
773 int p;
774
775 p = var_to_partition (ptr->map, use);
776 if (p == NO_PARTITION)
777 return;
778
779 /* Mark as live in the appropriate live list. */
780 live_track_add_partition (ptr, p);
781 }
782
783
784 /* This routine will process a DEF in PTR. DEF will be removed from the live
785 lists, and if there are any other live partitions with the same base
786 variable, conflicts will be added to GRAPH. */
787
788 static inline void
789 live_track_process_def (live_track_p ptr, tree def, ssa_conflicts_p graph)
790 {
791 int p, root;
792 bitmap b;
793 unsigned x;
794 bitmap_iterator bi;
795
796 p = var_to_partition (ptr->map, def);
797 if (p == NO_PARTITION)
798 return;
799
800 /* Clear the liveness bit. */
801 live_track_remove_partition (ptr, p);
802
803 /* If the bitmap isn't empty now, conflicts need to be added. */
804 root = basevar_index (ptr->map, p);
805 if (bitmap_bit_p (ptr->live_base_var, root))
806 {
807 b = ptr->live_base_partitions[root];
808 EXECUTE_IF_SET_IN_BITMAP (b, 0, x, bi)
809 ssa_conflicts_add (graph, p, x);
810 }
811 }
812
813
814 /* Initialize PTR with the partitions set in INIT. */
815
816 static inline void
817 live_track_init (live_track_p ptr, bitmap init)
818 {
819 unsigned p;
820 bitmap_iterator bi;
821
822 /* Mark all live on exit partitions. */
823 EXECUTE_IF_SET_IN_BITMAP (init, 0, p, bi)
824 live_track_add_partition (ptr, p);
825 }
826
827
828 /* This routine will clear all live partitions in PTR. */
829
830 static inline void
831 live_track_clear_base_vars (live_track_p ptr)
832 {
833 /* Simply clear the live base list. Anything marked as live in the element
834 lists will be cleared later if/when the base variable ever comes alive
835 again. */
836 bitmap_clear (ptr->live_base_var);
837 }
838
839
840 /* Build a conflict graph based on LIVEINFO. Any partitions which are in the
841 partition view of the var_map liveinfo is based on get entries in the
842 conflict graph. Only conflicts between ssa_name partitions with the same
843 base variable are added. */
844
845 static ssa_conflicts_p
846 build_ssa_conflict_graph (tree_live_info_p liveinfo)
847 {
848 ssa_conflicts_p graph;
849 var_map map;
850 basic_block bb;
851 ssa_op_iter iter;
852 live_track_p live;
853
854 map = live_var_map (liveinfo);
855 graph = ssa_conflicts_new (num_var_partitions (map));
856
857 live = new_live_track (map);
858
859 FOR_EACH_BB (bb)
860 {
861 gimple_stmt_iterator gsi;
862
863 /* Start with live on exit temporaries. */
864 live_track_init (live, live_on_exit (liveinfo, bb));
865
866 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
867 {
868 tree var;
869 gimple stmt = gsi_stmt (gsi);
870
871 /* A copy between 2 partitions does not introduce an interference
872 by itself. If they did, you would never be able to coalesce
873 two things which are copied. If the two variables really do
874 conflict, they will conflict elsewhere in the program.
875
876 This is handled by simply removing the SRC of the copy from the
877 live list, and processing the stmt normally. */
878 if (is_gimple_assign (stmt))
879 {
880 tree lhs = gimple_assign_lhs (stmt);
881 tree rhs1 = gimple_assign_rhs1 (stmt);
882 if (gimple_assign_copy_p (stmt)
883 && TREE_CODE (lhs) == SSA_NAME
884 && TREE_CODE (rhs1) == SSA_NAME)
885 live_track_clear_var (live, rhs1);
886 }
887 else if (is_gimple_debug (stmt))
888 continue;
889
890 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF)
891 live_track_process_def (live, var, graph);
892
893 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
894 live_track_process_use (live, var);
895 }
896
897 /* If result of a PHI is unused, looping over the statements will not
898 record any conflicts since the def was never live. Since the PHI node
899 is going to be translated out of SSA form, it will insert a copy.
900 There must be a conflict recorded between the result of the PHI and
901 any variables that are live. Otherwise the out-of-ssa translation
902 may create incorrect code. */
903 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
904 {
905 gimple phi = gsi_stmt (gsi);
906 tree result = PHI_RESULT (phi);
907 if (live_track_live_p (live, result))
908 live_track_process_def (live, result, graph);
909 }
910
911 live_track_clear_base_vars (live);
912 }
913
914 delete_live_track (live);
915 return graph;
916 }
917
918
919 /* Shortcut routine to print messages to file F of the form:
920 "STR1 EXPR1 STR2 EXPR2 STR3." */
921
922 static inline void
923 print_exprs (FILE *f, const char *str1, tree expr1, const char *str2,
924 tree expr2, const char *str3)
925 {
926 fprintf (f, "%s", str1);
927 print_generic_expr (f, expr1, TDF_SLIM);
928 fprintf (f, "%s", str2);
929 print_generic_expr (f, expr2, TDF_SLIM);
930 fprintf (f, "%s", str3);
931 }
932
933
934 /* Called if a coalesce across and abnormal edge cannot be performed. PHI is
935 the phi node at fault, I is the argument index at fault. A message is
936 printed and compilation is then terminated. */
937
938 static inline void
939 abnormal_corrupt (gimple phi, int i)
940 {
941 edge e = gimple_phi_arg_edge (phi, i);
942 tree res = gimple_phi_result (phi);
943 tree arg = gimple_phi_arg_def (phi, i);
944
945 fprintf (stderr, " Corrupt SSA across abnormal edge BB%d->BB%d\n",
946 e->src->index, e->dest->index);
947 fprintf (stderr, "Argument %d (", i);
948 print_generic_expr (stderr, arg, TDF_SLIM);
949 if (TREE_CODE (arg) != SSA_NAME)
950 fprintf (stderr, ") is not an SSA_NAME.\n");
951 else
952 {
953 gcc_assert (SSA_NAME_VAR (res) != SSA_NAME_VAR (arg));
954 fprintf (stderr, ") does not have the same base variable as the result ");
955 print_generic_stmt (stderr, res, TDF_SLIM);
956 }
957
958 internal_error ("SSA corruption");
959 }
960
961
962 /* Print a failure to coalesce a MUST_COALESCE pair X and Y. */
963
964 static inline void
965 fail_abnormal_edge_coalesce (int x, int y)
966 {
967 fprintf (stderr, "\nUnable to coalesce ssa_names %d and %d",x, y);
968 fprintf (stderr, " which are marked as MUST COALESCE.\n");
969 print_generic_expr (stderr, ssa_name (x), TDF_SLIM);
970 fprintf (stderr, " and ");
971 print_generic_stmt (stderr, ssa_name (y), TDF_SLIM);
972
973 internal_error ("SSA corruption");
974 }
975
976
977 /* This function creates a var_map for the current function as well as creating
978 a coalesce list for use later in the out of ssa process. */
979
980 static var_map
981 create_outofssa_var_map (coalesce_list_p cl, bitmap used_in_copy)
982 {
983 gimple_stmt_iterator gsi;
984 basic_block bb;
985 tree var;
986 gimple stmt;
987 tree first;
988 var_map map;
989 ssa_op_iter iter;
990 int v1, v2, cost;
991 unsigned i;
992
993 #ifdef ENABLE_CHECKING
994 bitmap used_in_real_ops;
995 bitmap used_in_virtual_ops;
996
997 used_in_real_ops = BITMAP_ALLOC (NULL);
998 used_in_virtual_ops = BITMAP_ALLOC (NULL);
999 #endif
1000
1001 map = init_var_map (num_ssa_names);
1002
1003 FOR_EACH_BB (bb)
1004 {
1005 tree arg;
1006
1007 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1008 {
1009 gimple phi = gsi_stmt (gsi);
1010 size_t i;
1011 int ver;
1012 tree res;
1013 bool saw_copy = false;
1014
1015 res = gimple_phi_result (phi);
1016 ver = SSA_NAME_VERSION (res);
1017 register_ssa_partition (map, res);
1018
1019 /* Register ssa_names and coalesces between the args and the result
1020 of all PHI. */
1021 for (i = 0; i < gimple_phi_num_args (phi); i++)
1022 {
1023 edge e = gimple_phi_arg_edge (phi, i);
1024 arg = PHI_ARG_DEF (phi, i);
1025 if (TREE_CODE (arg) == SSA_NAME)
1026 register_ssa_partition (map, arg);
1027 if (TREE_CODE (arg) == SSA_NAME
1028 && SSA_NAME_VAR (arg) == SSA_NAME_VAR (res))
1029 {
1030 saw_copy = true;
1031 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (arg));
1032 if ((e->flags & EDGE_ABNORMAL) == 0)
1033 {
1034 int cost = coalesce_cost_edge (e);
1035 if (cost == 1 && has_single_use (arg))
1036 add_cost_one_coalesce (cl, ver, SSA_NAME_VERSION (arg));
1037 else
1038 add_coalesce (cl, ver, SSA_NAME_VERSION (arg), cost);
1039 }
1040 }
1041 else
1042 if (e->flags & EDGE_ABNORMAL)
1043 abnormal_corrupt (phi, i);
1044 }
1045 if (saw_copy)
1046 bitmap_set_bit (used_in_copy, ver);
1047 }
1048
1049 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1050 {
1051 stmt = gsi_stmt (gsi);
1052
1053 if (is_gimple_debug (stmt))
1054 continue;
1055
1056 /* Register USE and DEF operands in each statement. */
1057 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, (SSA_OP_DEF|SSA_OP_USE))
1058 register_ssa_partition (map, var);
1059
1060 /* Check for copy coalesces. */
1061 switch (gimple_code (stmt))
1062 {
1063 case GIMPLE_ASSIGN:
1064 {
1065 tree lhs = gimple_assign_lhs (stmt);
1066 tree rhs1 = gimple_assign_rhs1 (stmt);
1067
1068 if (gimple_assign_copy_p (stmt)
1069 && TREE_CODE (lhs) == SSA_NAME
1070 && TREE_CODE (rhs1) == SSA_NAME
1071 && SSA_NAME_VAR (lhs) == SSA_NAME_VAR (rhs1))
1072 {
1073 v1 = SSA_NAME_VERSION (lhs);
1074 v2 = SSA_NAME_VERSION (rhs1);
1075 cost = coalesce_cost_bb (bb);
1076 add_coalesce (cl, v1, v2, cost);
1077 bitmap_set_bit (used_in_copy, v1);
1078 bitmap_set_bit (used_in_copy, v2);
1079 }
1080 }
1081 break;
1082
1083 case GIMPLE_ASM:
1084 {
1085 unsigned long noutputs, i;
1086 unsigned long ninputs;
1087 tree *outputs, link;
1088 noutputs = gimple_asm_noutputs (stmt);
1089 ninputs = gimple_asm_ninputs (stmt);
1090 outputs = (tree *) alloca (noutputs * sizeof (tree));
1091 for (i = 0; i < noutputs; ++i) {
1092 link = gimple_asm_output_op (stmt, i);
1093 outputs[i] = TREE_VALUE (link);
1094 }
1095
1096 for (i = 0; i < ninputs; ++i)
1097 {
1098 const char *constraint;
1099 tree input;
1100 char *end;
1101 unsigned long match;
1102
1103 link = gimple_asm_input_op (stmt, i);
1104 constraint
1105 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1106 input = TREE_VALUE (link);
1107
1108 if (TREE_CODE (input) != SSA_NAME)
1109 continue;
1110
1111 match = strtoul (constraint, &end, 10);
1112 if (match >= noutputs || end == constraint)
1113 continue;
1114
1115 if (TREE_CODE (outputs[match]) != SSA_NAME)
1116 continue;
1117
1118 v1 = SSA_NAME_VERSION (outputs[match]);
1119 v2 = SSA_NAME_VERSION (input);
1120
1121 if (SSA_NAME_VAR (outputs[match]) == SSA_NAME_VAR (input))
1122 {
1123 cost = coalesce_cost (REG_BR_PROB_BASE,
1124 optimize_bb_for_size_p (bb));
1125 add_coalesce (cl, v1, v2, cost);
1126 bitmap_set_bit (used_in_copy, v1);
1127 bitmap_set_bit (used_in_copy, v2);
1128 }
1129 }
1130 break;
1131 }
1132
1133 default:
1134 break;
1135 }
1136
1137 #ifdef ENABLE_CHECKING
1138 /* Mark real uses and defs. */
1139 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, (SSA_OP_DEF|SSA_OP_USE))
1140 bitmap_set_bit (used_in_real_ops, DECL_UID (SSA_NAME_VAR (var)));
1141
1142 /* Validate that virtual ops don't get used in funny ways. */
1143 if (gimple_vuse (stmt))
1144 bitmap_set_bit (used_in_virtual_ops,
1145 DECL_UID (SSA_NAME_VAR (gimple_vuse (stmt))));
1146 #endif /* ENABLE_CHECKING */
1147 }
1148 }
1149
1150 /* Now process result decls and live on entry variables for entry into
1151 the coalesce list. */
1152 first = NULL_TREE;
1153 for (i = 1; i < num_ssa_names; i++)
1154 {
1155 var = ssa_name (i);
1156 if (var != NULL_TREE && is_gimple_reg (var))
1157 {
1158 /* Add coalesces between all the result decls. */
1159 if (TREE_CODE (SSA_NAME_VAR (var)) == RESULT_DECL)
1160 {
1161 if (first == NULL_TREE)
1162 first = var;
1163 else
1164 {
1165 gcc_assert (SSA_NAME_VAR (var) == SSA_NAME_VAR (first));
1166 v1 = SSA_NAME_VERSION (first);
1167 v2 = SSA_NAME_VERSION (var);
1168 bitmap_set_bit (used_in_copy, v1);
1169 bitmap_set_bit (used_in_copy, v2);
1170 cost = coalesce_cost_bb (EXIT_BLOCK_PTR);
1171 add_coalesce (cl, v1, v2, cost);
1172 }
1173 }
1174 /* Mark any default_def variables as being in the coalesce list
1175 since they will have to be coalesced with the base variable. If
1176 not marked as present, they won't be in the coalesce view. */
1177 if (gimple_default_def (cfun, SSA_NAME_VAR (var)) == var
1178 && !has_zero_uses (var))
1179 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (var));
1180 }
1181 }
1182
1183 #if defined ENABLE_CHECKING
1184 {
1185 unsigned i;
1186 bitmap both = BITMAP_ALLOC (NULL);
1187 bitmap_and (both, used_in_real_ops, used_in_virtual_ops);
1188 if (!bitmap_empty_p (both))
1189 {
1190 bitmap_iterator bi;
1191
1192 EXECUTE_IF_SET_IN_BITMAP (both, 0, i, bi)
1193 fprintf (stderr, "Variable %s used in real and virtual operands\n",
1194 get_name (referenced_var (i)));
1195 internal_error ("SSA corruption");
1196 }
1197
1198 BITMAP_FREE (used_in_real_ops);
1199 BITMAP_FREE (used_in_virtual_ops);
1200 BITMAP_FREE (both);
1201 }
1202 #endif
1203
1204 return map;
1205 }
1206
1207
1208 /* Attempt to coalesce ssa versions X and Y together using the partition
1209 mapping in MAP and checking conflicts in GRAPH. Output any debug info to
1210 DEBUG, if it is nun-NULL. */
1211
1212 static inline bool
1213 attempt_coalesce (var_map map, ssa_conflicts_p graph, int x, int y,
1214 FILE *debug)
1215 {
1216 int z;
1217 tree var1, var2;
1218 int p1, p2;
1219
1220 p1 = var_to_partition (map, ssa_name (x));
1221 p2 = var_to_partition (map, ssa_name (y));
1222
1223 if (debug)
1224 {
1225 fprintf (debug, "(%d)", x);
1226 print_generic_expr (debug, partition_to_var (map, p1), TDF_SLIM);
1227 fprintf (debug, " & (%d)", y);
1228 print_generic_expr (debug, partition_to_var (map, p2), TDF_SLIM);
1229 }
1230
1231 if (p1 == p2)
1232 {
1233 if (debug)
1234 fprintf (debug, ": Already Coalesced.\n");
1235 return true;
1236 }
1237
1238 if (debug)
1239 fprintf (debug, " [map: %d, %d] ", p1, p2);
1240
1241
1242 if (!ssa_conflicts_test_p (graph, p1, p2))
1243 {
1244 var1 = partition_to_var (map, p1);
1245 var2 = partition_to_var (map, p2);
1246 z = var_union (map, var1, var2);
1247 if (z == NO_PARTITION)
1248 {
1249 if (debug)
1250 fprintf (debug, ": Unable to perform partition union.\n");
1251 return false;
1252 }
1253
1254 /* z is the new combined partition. Remove the other partition from
1255 the list, and merge the conflicts. */
1256 if (z == p1)
1257 ssa_conflicts_merge (graph, p1, p2);
1258 else
1259 ssa_conflicts_merge (graph, p2, p1);
1260
1261 if (debug)
1262 fprintf (debug, ": Success -> %d\n", z);
1263 return true;
1264 }
1265
1266 if (debug)
1267 fprintf (debug, ": Fail due to conflict\n");
1268
1269 return false;
1270 }
1271
1272
1273 /* Attempt to Coalesce partitions in MAP which occur in the list CL using
1274 GRAPH. Debug output is sent to DEBUG if it is non-NULL. */
1275
1276 static void
1277 coalesce_partitions (var_map map, ssa_conflicts_p graph, coalesce_list_p cl,
1278 FILE *debug)
1279 {
1280 int x = 0, y = 0;
1281 tree var1, var2;
1282 int cost;
1283 basic_block bb;
1284 edge e;
1285 edge_iterator ei;
1286
1287 /* First, coalesce all the copies across abnormal edges. These are not placed
1288 in the coalesce list because they do not need to be sorted, and simply
1289 consume extra memory/compilation time in large programs. */
1290
1291 FOR_EACH_BB (bb)
1292 {
1293 FOR_EACH_EDGE (e, ei, bb->preds)
1294 if (e->flags & EDGE_ABNORMAL)
1295 {
1296 gimple_stmt_iterator gsi;
1297 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1298 gsi_next (&gsi))
1299 {
1300 gimple phi = gsi_stmt (gsi);
1301 tree res = PHI_RESULT (phi);
1302 tree arg = PHI_ARG_DEF (phi, e->dest_idx);
1303 int v1 = SSA_NAME_VERSION (res);
1304 int v2 = SSA_NAME_VERSION (arg);
1305
1306 if (SSA_NAME_VAR (arg) != SSA_NAME_VAR (res))
1307 abnormal_corrupt (phi, e->dest_idx);
1308
1309 if (debug)
1310 fprintf (debug, "Abnormal coalesce: ");
1311
1312 if (!attempt_coalesce (map, graph, v1, v2, debug))
1313 fail_abnormal_edge_coalesce (v1, v2);
1314 }
1315 }
1316 }
1317
1318 /* Now process the items in the coalesce list. */
1319
1320 while ((cost = pop_best_coalesce (cl, &x, &y)) != NO_BEST_COALESCE)
1321 {
1322 var1 = ssa_name (x);
1323 var2 = ssa_name (y);
1324
1325 /* Assert the coalesces have the same base variable. */
1326 gcc_assert (SSA_NAME_VAR (var1) == SSA_NAME_VAR (var2));
1327
1328 if (debug)
1329 fprintf (debug, "Coalesce list: ");
1330 attempt_coalesce (map, graph, x, y, debug);
1331 }
1332 }
1333
1334 /* Returns a hash code for P. */
1335
1336 static hashval_t
1337 hash_ssa_name_by_var (const void *p)
1338 {
1339 const_tree n = (const_tree) p;
1340 return (hashval_t) htab_hash_pointer (SSA_NAME_VAR (n));
1341 }
1342
1343 /* Returns nonzero if P1 and P2 are equal. */
1344
1345 static int
1346 eq_ssa_name_by_var (const void *p1, const void *p2)
1347 {
1348 const_tree n1 = (const_tree) p1;
1349 const_tree n2 = (const_tree) p2;
1350 return SSA_NAME_VAR (n1) == SSA_NAME_VAR (n2);
1351 }
1352
1353 /* Reduce the number of copies by coalescing variables in the function. Return
1354 a partition map with the resulting coalesces. */
1355
1356 extern var_map
1357 coalesce_ssa_name (void)
1358 {
1359 tree_live_info_p liveinfo;
1360 ssa_conflicts_p graph;
1361 coalesce_list_p cl;
1362 bitmap used_in_copies = BITMAP_ALLOC (NULL);
1363 var_map map;
1364 unsigned int i;
1365 static htab_t ssa_name_hash;
1366
1367 cl = create_coalesce_list ();
1368 map = create_outofssa_var_map (cl, used_in_copies);
1369
1370 /* We need to coalesce all names originating same SSA_NAME_VAR
1371 so debug info remains undisturbed. */
1372 if (!optimize)
1373 {
1374 ssa_name_hash = htab_create (10, hash_ssa_name_by_var,
1375 eq_ssa_name_by_var, NULL);
1376 for (i = 1; i < num_ssa_names; i++)
1377 {
1378 tree a = ssa_name (i);
1379
1380 if (a
1381 && SSA_NAME_VAR (a)
1382 && !DECL_ARTIFICIAL (SSA_NAME_VAR (a))
1383 && (!has_zero_uses (a) || !SSA_NAME_IS_DEFAULT_DEF (a)))
1384 {
1385 tree *slot = (tree *) htab_find_slot (ssa_name_hash, a, INSERT);
1386
1387 if (!*slot)
1388 *slot = a;
1389 else
1390 {
1391 add_coalesce (cl, SSA_NAME_VERSION (a), SSA_NAME_VERSION (*slot),
1392 MUST_COALESCE_COST - 1);
1393 bitmap_set_bit (used_in_copies, SSA_NAME_VERSION (a));
1394 bitmap_set_bit (used_in_copies, SSA_NAME_VERSION (*slot));
1395 }
1396 }
1397 }
1398 htab_delete (ssa_name_hash);
1399 }
1400 if (dump_file && (dump_flags & TDF_DETAILS))
1401 dump_var_map (dump_file, map);
1402
1403 /* Don't calculate live ranges for variables not in the coalesce list. */
1404 partition_view_bitmap (map, used_in_copies, true);
1405 BITMAP_FREE (used_in_copies);
1406
1407 if (num_var_partitions (map) < 1)
1408 {
1409 delete_coalesce_list (cl);
1410 return map;
1411 }
1412
1413 if (dump_file && (dump_flags & TDF_DETAILS))
1414 dump_var_map (dump_file, map);
1415
1416 liveinfo = calculate_live_ranges (map);
1417
1418 if (dump_file && (dump_flags & TDF_DETAILS))
1419 dump_live_info (dump_file, liveinfo, LIVEDUMP_ENTRY);
1420
1421 /* Build a conflict graph. */
1422 graph = build_ssa_conflict_graph (liveinfo);
1423 delete_tree_live_info (liveinfo);
1424 if (dump_file && (dump_flags & TDF_DETAILS))
1425 ssa_conflicts_dump (dump_file, graph);
1426
1427 sort_coalesce_list (cl);
1428
1429 if (dump_file && (dump_flags & TDF_DETAILS))
1430 {
1431 fprintf (dump_file, "\nAfter sorting:\n");
1432 dump_coalesce_list (dump_file, cl);
1433 }
1434
1435 /* First, coalesce all live on entry variables to their base variable.
1436 This will ensure the first use is coming from the correct location. */
1437
1438 if (dump_file && (dump_flags & TDF_DETAILS))
1439 dump_var_map (dump_file, map);
1440
1441 /* Now coalesce everything in the list. */
1442 coalesce_partitions (map, graph, cl,
1443 ((dump_flags & TDF_DETAILS) ? dump_file
1444 : NULL));
1445
1446 delete_coalesce_list (cl);
1447 ssa_conflicts_delete (graph);
1448
1449 return map;
1450 }