vect.exp: Add new stanza for aligned-section-anchors-* tests.
[gcc.git] / gcc / tree-ssa-coalesce.c
1 /* Coalesce SSA_NAMES together for the out-of-ssa pass.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Andrew MacLeod <amacleod@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "diagnostic.h"
29 #include "bitmap.h"
30 #include "tree-flow.h"
31 #include "hashtab.h"
32 #include "tree-dump.h"
33 #include "tree-ssa-live.h"
34 #include "toplev.h"
35
36
37 /* This set of routines implements a coalesce_list. This is an object which
38 is used to track pairs of ssa_names which are desirable to coalesce
39 together to avoid copies. Costs are associated with each pair, and when
40 all desired information has been collected, the object can be used to
41 order the pairs for processing. */
42
43 /* This structure defines a pair entry. */
44
45 typedef struct coalesce_pair
46 {
47 int first_element;
48 int second_element;
49 int cost;
50 } * coalesce_pair_p;
51 typedef const struct coalesce_pair *const_coalesce_pair_p;
52
53 typedef struct cost_one_pair_d
54 {
55 int first_element;
56 int second_element;
57 struct cost_one_pair_d *next;
58 } * cost_one_pair_p;
59
60 /* This structure maintains the list of coalesce pairs. */
61
62 typedef struct coalesce_list_d
63 {
64 htab_t list; /* Hash table. */
65 coalesce_pair_p *sorted; /* List when sorted. */
66 int num_sorted; /* Number in the sorted list. */
67 cost_one_pair_p cost_one_list;/* Single use coalesces with cost 1. */
68 } *coalesce_list_p;
69
70 #define NO_BEST_COALESCE -1
71 #define MUST_COALESCE_COST INT_MAX
72
73
74 /* Return cost of execution of copy instruction with FREQUENCY. */
75
76 static inline int
77 coalesce_cost (int frequency, bool optimize_for_size)
78 {
79 /* Base costs on BB frequencies bounded by 1. */
80 int cost = frequency;
81
82 if (!cost)
83 cost = 1;
84
85 if (optimize_for_size)
86 cost = 1;
87
88 return cost;
89 }
90
91
92 /* Return the cost of executing a copy instruction in basic block BB. */
93
94 static inline int
95 coalesce_cost_bb (basic_block bb)
96 {
97 return coalesce_cost (bb->frequency, optimize_bb_for_size_p (bb));
98 }
99
100
101 /* Return the cost of executing a copy instruction on edge E. */
102
103 static inline int
104 coalesce_cost_edge (edge e)
105 {
106 int mult = 1;
107
108 /* Inserting copy on critical edge costs more than inserting it elsewhere. */
109 if (EDGE_CRITICAL_P (e))
110 mult = 2;
111 if (e->flags & EDGE_ABNORMAL)
112 return MUST_COALESCE_COST;
113 if (e->flags & EDGE_EH)
114 {
115 edge e2;
116 edge_iterator ei;
117 FOR_EACH_EDGE (e2, ei, e->dest->preds)
118 if (e2 != e)
119 {
120 /* Putting code on EH edge that leads to BB
121 with multiple predecestors imply splitting of
122 edge too. */
123 if (mult < 2)
124 mult = 2;
125 /* If there are multiple EH predecestors, we
126 also copy EH regions and produce separate
127 landing pad. This is expensive. */
128 if (e2->flags & EDGE_EH)
129 {
130 mult = 5;
131 break;
132 }
133 }
134 }
135
136 return coalesce_cost (EDGE_FREQUENCY (e),
137 optimize_edge_for_size_p (e)) * mult;
138 }
139
140
141 /* Retrieve a pair to coalesce from the cost_one_list in CL. Returns the
142 2 elements via P1 and P2. 1 is returned by the function if there is a pair,
143 NO_BEST_COALESCE is returned if there aren't any. */
144
145 static inline int
146 pop_cost_one_pair (coalesce_list_p cl, int *p1, int *p2)
147 {
148 cost_one_pair_p ptr;
149
150 ptr = cl->cost_one_list;
151 if (!ptr)
152 return NO_BEST_COALESCE;
153
154 *p1 = ptr->first_element;
155 *p2 = ptr->second_element;
156 cl->cost_one_list = ptr->next;
157
158 free (ptr);
159
160 return 1;
161 }
162
163 /* Retrieve the most expensive remaining pair to coalesce from CL. Returns the
164 2 elements via P1 and P2. Their calculated cost is returned by the function.
165 NO_BEST_COALESCE is returned if the coalesce list is empty. */
166
167 static inline int
168 pop_best_coalesce (coalesce_list_p cl, int *p1, int *p2)
169 {
170 coalesce_pair_p node;
171 int ret;
172
173 if (cl->sorted == NULL)
174 return pop_cost_one_pair (cl, p1, p2);
175
176 if (cl->num_sorted == 0)
177 return pop_cost_one_pair (cl, p1, p2);
178
179 node = cl->sorted[--(cl->num_sorted)];
180 *p1 = node->first_element;
181 *p2 = node->second_element;
182 ret = node->cost;
183 free (node);
184
185 return ret;
186 }
187
188
189 #define COALESCE_HASH_FN(R1, R2) ((R2) * ((R2) - 1) / 2 + (R1))
190
191 /* Hash function for coalesce list. Calculate hash for PAIR. */
192
193 static unsigned int
194 coalesce_pair_map_hash (const void *pair)
195 {
196 hashval_t a = (hashval_t)(((const_coalesce_pair_p)pair)->first_element);
197 hashval_t b = (hashval_t)(((const_coalesce_pair_p)pair)->second_element);
198
199 return COALESCE_HASH_FN (a,b);
200 }
201
202
203 /* Equality function for coalesce list hash table. Compare PAIR1 and PAIR2,
204 returning TRUE if the two pairs are equivalent. */
205
206 static int
207 coalesce_pair_map_eq (const void *pair1, const void *pair2)
208 {
209 const_coalesce_pair_p const p1 = (const_coalesce_pair_p) pair1;
210 const_coalesce_pair_p const p2 = (const_coalesce_pair_p) pair2;
211
212 return (p1->first_element == p2->first_element
213 && p1->second_element == p2->second_element);
214 }
215
216
217 /* Create a new empty coalesce list object and return it. */
218
219 static inline coalesce_list_p
220 create_coalesce_list (void)
221 {
222 coalesce_list_p list;
223 unsigned size = num_ssa_names * 3;
224
225 if (size < 40)
226 size = 40;
227
228 list = (coalesce_list_p) xmalloc (sizeof (struct coalesce_list_d));
229 list->list = htab_create (size, coalesce_pair_map_hash,
230 coalesce_pair_map_eq, NULL);
231 list->sorted = NULL;
232 list->num_sorted = 0;
233 list->cost_one_list = NULL;
234 return list;
235 }
236
237
238 /* Delete coalesce list CL. */
239
240 static inline void
241 delete_coalesce_list (coalesce_list_p cl)
242 {
243 gcc_assert (cl->cost_one_list == NULL);
244 htab_delete (cl->list);
245 if (cl->sorted)
246 free (cl->sorted);
247 gcc_assert (cl->num_sorted == 0);
248 free (cl);
249 }
250
251
252 /* Find a matching coalesce pair object in CL for the pair P1 and P2. If
253 one isn't found, return NULL if CREATE is false, otherwise create a new
254 coalesce pair object and return it. */
255
256 static coalesce_pair_p
257 find_coalesce_pair (coalesce_list_p cl, int p1, int p2, bool create)
258 {
259 struct coalesce_pair p, *pair;
260 void **slot;
261 unsigned int hash;
262
263 /* Normalize so that p1 is the smaller value. */
264 if (p2 < p1)
265 {
266 p.first_element = p2;
267 p.second_element = p1;
268 }
269 else
270 {
271 p.first_element = p1;
272 p.second_element = p2;
273 }
274
275
276 hash = coalesce_pair_map_hash (&p);
277 pair = (struct coalesce_pair *) htab_find_with_hash (cl->list, &p, hash);
278
279 if (create && !pair)
280 {
281 gcc_assert (cl->sorted == NULL);
282 pair = XNEW (struct coalesce_pair);
283 pair->first_element = p.first_element;
284 pair->second_element = p.second_element;
285 pair->cost = 0;
286 slot = htab_find_slot_with_hash (cl->list, pair, hash, INSERT);
287 *(struct coalesce_pair **)slot = pair;
288 }
289
290 return pair;
291 }
292
293 static inline void
294 add_cost_one_coalesce (coalesce_list_p cl, int p1, int p2)
295 {
296 cost_one_pair_p pair;
297
298 pair = XNEW (struct cost_one_pair_d);
299 pair->first_element = p1;
300 pair->second_element = p2;
301 pair->next = cl->cost_one_list;
302 cl->cost_one_list = pair;
303 }
304
305
306 /* Add a coalesce between P1 and P2 in list CL with a cost of VALUE. */
307
308 static inline void
309 add_coalesce (coalesce_list_p cl, int p1, int p2, int value)
310 {
311 coalesce_pair_p node;
312
313 gcc_assert (cl->sorted == NULL);
314 if (p1 == p2)
315 return;
316
317 node = find_coalesce_pair (cl, p1, p2, true);
318
319 /* Once the value is at least MUST_COALESCE_COST - 1, leave it that way. */
320 if (node->cost < MUST_COALESCE_COST - 1)
321 {
322 if (value < MUST_COALESCE_COST - 1)
323 node->cost += value;
324 else
325 node->cost = value;
326 }
327 }
328
329
330 /* Comparison function to allow qsort to sort P1 and P2 in Ascending order. */
331
332 static int
333 compare_pairs (const void *p1, const void *p2)
334 {
335 const_coalesce_pair_p const *const pp1 = (const_coalesce_pair_p const *) p1;
336 const_coalesce_pair_p const *const pp2 = (const_coalesce_pair_p const *) p2;
337 int result;
338
339 result = (* pp1)->cost - (* pp2)->cost;
340 /* Since qsort does not guarantee stability we use the elements
341 as a secondary key. This provides us with independence from
342 the host's implementation of the sorting algorithm. */
343 if (result == 0)
344 {
345 result = (* pp2)->first_element - (* pp1)->first_element;
346 if (result == 0)
347 result = (* pp2)->second_element - (* pp1)->second_element;
348 }
349
350 return result;
351 }
352
353
354 /* Return the number of unique coalesce pairs in CL. */
355
356 static inline int
357 num_coalesce_pairs (coalesce_list_p cl)
358 {
359 return htab_elements (cl->list);
360 }
361
362
363 /* Iterator over hash table pairs. */
364 typedef struct
365 {
366 htab_iterator hti;
367 } coalesce_pair_iterator;
368
369
370 /* Return first partition pair from list CL, initializing iterator ITER. */
371
372 static inline coalesce_pair_p
373 first_coalesce_pair (coalesce_list_p cl, coalesce_pair_iterator *iter)
374 {
375 coalesce_pair_p pair;
376
377 pair = (coalesce_pair_p) first_htab_element (&(iter->hti), cl->list);
378 return pair;
379 }
380
381
382 /* Return TRUE if there are no more partitions in for ITER to process. */
383
384 static inline bool
385 end_coalesce_pair_p (coalesce_pair_iterator *iter)
386 {
387 return end_htab_p (&(iter->hti));
388 }
389
390
391 /* Return the next partition pair to be visited by ITER. */
392
393 static inline coalesce_pair_p
394 next_coalesce_pair (coalesce_pair_iterator *iter)
395 {
396 coalesce_pair_p pair;
397
398 pair = (coalesce_pair_p) next_htab_element (&(iter->hti));
399 return pair;
400 }
401
402
403 /* Iterate over CL using ITER, returning values in PAIR. */
404
405 #define FOR_EACH_PARTITION_PAIR(PAIR, ITER, CL) \
406 for ((PAIR) = first_coalesce_pair ((CL), &(ITER)); \
407 !end_coalesce_pair_p (&(ITER)); \
408 (PAIR) = next_coalesce_pair (&(ITER)))
409
410
411 /* Prepare CL for removal of preferred pairs. When finished they are sorted
412 in order from most important coalesce to least important. */
413
414 static void
415 sort_coalesce_list (coalesce_list_p cl)
416 {
417 unsigned x, num;
418 coalesce_pair_p p;
419 coalesce_pair_iterator ppi;
420
421 gcc_assert (cl->sorted == NULL);
422
423 num = num_coalesce_pairs (cl);
424 cl->num_sorted = num;
425 if (num == 0)
426 return;
427
428 /* Allocate a vector for the pair pointers. */
429 cl->sorted = XNEWVEC (coalesce_pair_p, num);
430
431 /* Populate the vector with pointers to the pairs. */
432 x = 0;
433 FOR_EACH_PARTITION_PAIR (p, ppi, cl)
434 cl->sorted[x++] = p;
435 gcc_assert (x == num);
436
437 /* Already sorted. */
438 if (num == 1)
439 return;
440
441 /* If there are only 2, just pick swap them if the order isn't correct. */
442 if (num == 2)
443 {
444 if (cl->sorted[0]->cost > cl->sorted[1]->cost)
445 {
446 p = cl->sorted[0];
447 cl->sorted[0] = cl->sorted[1];
448 cl->sorted[1] = p;
449 }
450 return;
451 }
452
453 /* Only call qsort if there are more than 2 items. */
454 if (num > 2)
455 qsort (cl->sorted, num, sizeof (coalesce_pair_p), compare_pairs);
456 }
457
458
459 /* Send debug info for coalesce list CL to file F. */
460
461 static void
462 dump_coalesce_list (FILE *f, coalesce_list_p cl)
463 {
464 coalesce_pair_p node;
465 coalesce_pair_iterator ppi;
466 int x;
467 tree var;
468
469 if (cl->sorted == NULL)
470 {
471 fprintf (f, "Coalesce List:\n");
472 FOR_EACH_PARTITION_PAIR (node, ppi, cl)
473 {
474 tree var1 = ssa_name (node->first_element);
475 tree var2 = ssa_name (node->second_element);
476 print_generic_expr (f, var1, TDF_SLIM);
477 fprintf (f, " <-> ");
478 print_generic_expr (f, var2, TDF_SLIM);
479 fprintf (f, " (%1d), ", node->cost);
480 fprintf (f, "\n");
481 }
482 }
483 else
484 {
485 fprintf (f, "Sorted Coalesce list:\n");
486 for (x = cl->num_sorted - 1 ; x >=0; x--)
487 {
488 node = cl->sorted[x];
489 fprintf (f, "(%d) ", node->cost);
490 var = ssa_name (node->first_element);
491 print_generic_expr (f, var, TDF_SLIM);
492 fprintf (f, " <-> ");
493 var = ssa_name (node->second_element);
494 print_generic_expr (f, var, TDF_SLIM);
495 fprintf (f, "\n");
496 }
497 }
498 }
499
500
501 /* This represents a conflict graph. Implemented as an array of bitmaps.
502 A full matrix is used for conflicts rather than just upper triangular form.
503 this make sit much simpler and faster to perform conflict merges. */
504
505 typedef struct ssa_conflicts_d
506 {
507 unsigned size;
508 bitmap *conflicts;
509 } * ssa_conflicts_p;
510
511
512 /* Return an empty new conflict graph for SIZE elements. */
513
514 static inline ssa_conflicts_p
515 ssa_conflicts_new (unsigned size)
516 {
517 ssa_conflicts_p ptr;
518
519 ptr = XNEW (struct ssa_conflicts_d);
520 ptr->conflicts = XCNEWVEC (bitmap, size);
521 ptr->size = size;
522 return ptr;
523 }
524
525
526 /* Free storage for conflict graph PTR. */
527
528 static inline void
529 ssa_conflicts_delete (ssa_conflicts_p ptr)
530 {
531 unsigned x;
532 for (x = 0; x < ptr->size; x++)
533 if (ptr->conflicts[x])
534 BITMAP_FREE (ptr->conflicts[x]);
535
536 free (ptr->conflicts);
537 free (ptr);
538 }
539
540
541 /* Test if elements X and Y conflict in graph PTR. */
542
543 static inline bool
544 ssa_conflicts_test_p (ssa_conflicts_p ptr, unsigned x, unsigned y)
545 {
546 bitmap b;
547
548 #ifdef ENABLE_CHECKING
549 gcc_assert (x < ptr->size);
550 gcc_assert (y < ptr->size);
551 gcc_assert (x != y);
552 #endif
553
554 b = ptr->conflicts[x];
555 if (b)
556 /* Avoid the lookup if Y has no conflicts. */
557 return ptr->conflicts[y] ? bitmap_bit_p (b, y) : false;
558 else
559 return false;
560 }
561
562
563 /* Add a conflict with Y to the bitmap for X in graph PTR. */
564
565 static inline void
566 ssa_conflicts_add_one (ssa_conflicts_p ptr, unsigned x, unsigned y)
567 {
568 /* If there are no conflicts yet, allocate the bitmap and set bit. */
569 if (!ptr->conflicts[x])
570 ptr->conflicts[x] = BITMAP_ALLOC (NULL);
571 bitmap_set_bit (ptr->conflicts[x], y);
572 }
573
574
575 /* Add conflicts between X and Y in graph PTR. */
576
577 static inline void
578 ssa_conflicts_add (ssa_conflicts_p ptr, unsigned x, unsigned y)
579 {
580 #ifdef ENABLE_CHECKING
581 gcc_assert (x < ptr->size);
582 gcc_assert (y < ptr->size);
583 gcc_assert (x != y);
584 #endif
585 ssa_conflicts_add_one (ptr, x, y);
586 ssa_conflicts_add_one (ptr, y, x);
587 }
588
589
590 /* Merge all Y's conflict into X in graph PTR. */
591
592 static inline void
593 ssa_conflicts_merge (ssa_conflicts_p ptr, unsigned x, unsigned y)
594 {
595 unsigned z;
596 bitmap_iterator bi;
597
598 gcc_assert (x != y);
599 if (!(ptr->conflicts[y]))
600 return;
601
602 /* Add a conflict between X and every one Y has. If the bitmap doesn't
603 exist, then it has already been coalesced, and we don't need to add a
604 conflict. */
605 EXECUTE_IF_SET_IN_BITMAP (ptr->conflicts[y], 0, z, bi)
606 if (ptr->conflicts[z])
607 bitmap_set_bit (ptr->conflicts[z], x);
608
609 if (ptr->conflicts[x])
610 {
611 /* If X has conflicts, add Y's to X. */
612 bitmap_ior_into (ptr->conflicts[x], ptr->conflicts[y]);
613 BITMAP_FREE (ptr->conflicts[y]);
614 }
615 else
616 {
617 /* If X has no conflicts, simply use Y's. */
618 ptr->conflicts[x] = ptr->conflicts[y];
619 ptr->conflicts[y] = NULL;
620 }
621 }
622
623
624 /* Dump a conflicts graph. */
625
626 static void
627 ssa_conflicts_dump (FILE *file, ssa_conflicts_p ptr)
628 {
629 unsigned x;
630
631 fprintf (file, "\nConflict graph:\n");
632
633 for (x = 0; x < ptr->size; x++)
634 if (ptr->conflicts[x])
635 {
636 fprintf (dump_file, "%d: ", x);
637 dump_bitmap (file, ptr->conflicts[x]);
638 }
639 }
640
641
642 /* This structure is used to efficiently record the current status of live
643 SSA_NAMES when building a conflict graph.
644 LIVE_BASE_VAR has a bit set for each base variable which has at least one
645 ssa version live.
646 LIVE_BASE_PARTITIONS is an array of bitmaps using the basevar table as an
647 index, and is used to track what partitions of each base variable are
648 live. This makes it easy to add conflicts between just live partitions
649 with the same base variable.
650 The values in LIVE_BASE_PARTITIONS are only valid if the base variable is
651 marked as being live. This delays clearing of these bitmaps until
652 they are actually needed again. */
653
654 typedef struct live_track_d
655 {
656 bitmap live_base_var; /* Indicates if a basevar is live. */
657 bitmap *live_base_partitions; /* Live partitions for each basevar. */
658 var_map map; /* Var_map being used for partition mapping. */
659 } * live_track_p;
660
661
662 /* This routine will create a new live track structure based on the partitions
663 in MAP. */
664
665 static live_track_p
666 new_live_track (var_map map)
667 {
668 live_track_p ptr;
669 int lim, x;
670
671 /* Make sure there is a partition view in place. */
672 gcc_assert (map->partition_to_base_index != NULL);
673
674 ptr = (live_track_p) xmalloc (sizeof (struct live_track_d));
675 ptr->map = map;
676 lim = num_basevars (map);
677 ptr->live_base_partitions = (bitmap *) xmalloc(sizeof (bitmap *) * lim);
678 ptr->live_base_var = BITMAP_ALLOC (NULL);
679 for (x = 0; x < lim; x++)
680 ptr->live_base_partitions[x] = BITMAP_ALLOC (NULL);
681 return ptr;
682 }
683
684
685 /* This routine will free the memory associated with PTR. */
686
687 static void
688 delete_live_track (live_track_p ptr)
689 {
690 int x, lim;
691
692 lim = num_basevars (ptr->map);
693 for (x = 0; x < lim; x++)
694 BITMAP_FREE (ptr->live_base_partitions[x]);
695 BITMAP_FREE (ptr->live_base_var);
696 free (ptr->live_base_partitions);
697 free (ptr);
698 }
699
700
701 /* This function will remove PARTITION from the live list in PTR. */
702
703 static inline void
704 live_track_remove_partition (live_track_p ptr, int partition)
705 {
706 int root;
707
708 root = basevar_index (ptr->map, partition);
709 bitmap_clear_bit (ptr->live_base_partitions[root], partition);
710 /* If the element list is empty, make the base variable not live either. */
711 if (bitmap_empty_p (ptr->live_base_partitions[root]))
712 bitmap_clear_bit (ptr->live_base_var, root);
713 }
714
715
716 /* This function will adds PARTITION to the live list in PTR. */
717
718 static inline void
719 live_track_add_partition (live_track_p ptr, int partition)
720 {
721 int root;
722
723 root = basevar_index (ptr->map, partition);
724 /* If this base var wasn't live before, it is now. Clear the element list
725 since it was delayed until needed. */
726 if (!bitmap_bit_p (ptr->live_base_var, root))
727 {
728 bitmap_set_bit (ptr->live_base_var, root);
729 bitmap_clear (ptr->live_base_partitions[root]);
730 }
731 bitmap_set_bit (ptr->live_base_partitions[root], partition);
732
733 }
734
735
736 /* Clear the live bit for VAR in PTR. */
737
738 static inline void
739 live_track_clear_var (live_track_p ptr, tree var)
740 {
741 int p;
742
743 p = var_to_partition (ptr->map, var);
744 if (p != NO_PARTITION)
745 live_track_remove_partition (ptr, p);
746 }
747
748
749 /* Return TRUE if VAR is live in PTR. */
750
751 static inline bool
752 live_track_live_p (live_track_p ptr, tree var)
753 {
754 int p, root;
755
756 p = var_to_partition (ptr->map, var);
757 if (p != NO_PARTITION)
758 {
759 root = basevar_index (ptr->map, p);
760 if (bitmap_bit_p (ptr->live_base_var, root))
761 return bitmap_bit_p (ptr->live_base_partitions[root], p);
762 }
763 return false;
764 }
765
766
767 /* This routine will add USE to PTR. USE will be marked as live in both the
768 ssa live map and the live bitmap for the root of USE. */
769
770 static inline void
771 live_track_process_use (live_track_p ptr, tree use)
772 {
773 int p;
774
775 p = var_to_partition (ptr->map, use);
776 if (p == NO_PARTITION)
777 return;
778
779 /* Mark as live in the appropriate live list. */
780 live_track_add_partition (ptr, p);
781 }
782
783
784 /* This routine will process a DEF in PTR. DEF will be removed from the live
785 lists, and if there are any other live partitions with the same base
786 variable, conflicts will be added to GRAPH. */
787
788 static inline void
789 live_track_process_def (live_track_p ptr, tree def, ssa_conflicts_p graph)
790 {
791 int p, root;
792 bitmap b;
793 unsigned x;
794 bitmap_iterator bi;
795
796 p = var_to_partition (ptr->map, def);
797 if (p == NO_PARTITION)
798 return;
799
800 /* Clear the liveness bit. */
801 live_track_remove_partition (ptr, p);
802
803 /* If the bitmap isn't empty now, conflicts need to be added. */
804 root = basevar_index (ptr->map, p);
805 if (bitmap_bit_p (ptr->live_base_var, root))
806 {
807 b = ptr->live_base_partitions[root];
808 EXECUTE_IF_SET_IN_BITMAP (b, 0, x, bi)
809 ssa_conflicts_add (graph, p, x);
810 }
811 }
812
813
814 /* Initialize PTR with the partitions set in INIT. */
815
816 static inline void
817 live_track_init (live_track_p ptr, bitmap init)
818 {
819 unsigned p;
820 bitmap_iterator bi;
821
822 /* Mark all live on exit partitions. */
823 EXECUTE_IF_SET_IN_BITMAP (init, 0, p, bi)
824 live_track_add_partition (ptr, p);
825 }
826
827
828 /* This routine will clear all live partitions in PTR. */
829
830 static inline void
831 live_track_clear_base_vars (live_track_p ptr)
832 {
833 /* Simply clear the live base list. Anything marked as live in the element
834 lists will be cleared later if/when the base variable ever comes alive
835 again. */
836 bitmap_clear (ptr->live_base_var);
837 }
838
839
840 /* Build a conflict graph based on LIVEINFO. Any partitions which are in the
841 partition view of the var_map liveinfo is based on get entries in the
842 conflict graph. Only conflicts between ssa_name partitions with the same
843 base variable are added. */
844
845 static ssa_conflicts_p
846 build_ssa_conflict_graph (tree_live_info_p liveinfo)
847 {
848 ssa_conflicts_p graph;
849 var_map map;
850 basic_block bb;
851 ssa_op_iter iter;
852 live_track_p live;
853
854 map = live_var_map (liveinfo);
855 graph = ssa_conflicts_new (num_var_partitions (map));
856
857 live = new_live_track (map);
858
859 FOR_EACH_BB (bb)
860 {
861 gimple_stmt_iterator gsi;
862
863 /* Start with live on exit temporaries. */
864 live_track_init (live, live_on_exit (liveinfo, bb));
865
866 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
867 {
868 tree var;
869 gimple stmt = gsi_stmt (gsi);
870
871 /* A copy between 2 partitions does not introduce an interference
872 by itself. If they did, you would never be able to coalesce
873 two things which are copied. If the two variables really do
874 conflict, they will conflict elsewhere in the program.
875
876 This is handled by simply removing the SRC of the copy from the
877 live list, and processing the stmt normally. */
878 if (is_gimple_assign (stmt))
879 {
880 tree lhs = gimple_assign_lhs (stmt);
881 tree rhs1 = gimple_assign_rhs1 (stmt);
882 if (gimple_assign_copy_p (stmt)
883 && TREE_CODE (lhs) == SSA_NAME
884 && TREE_CODE (rhs1) == SSA_NAME)
885 live_track_clear_var (live, rhs1);
886 }
887
888 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF)
889 live_track_process_def (live, var, graph);
890
891 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
892 live_track_process_use (live, var);
893 }
894
895 /* If result of a PHI is unused, looping over the statements will not
896 record any conflicts since the def was never live. Since the PHI node
897 is going to be translated out of SSA form, it will insert a copy.
898 There must be a conflict recorded between the result of the PHI and
899 any variables that are live. Otherwise the out-of-ssa translation
900 may create incorrect code. */
901 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
902 {
903 gimple phi = gsi_stmt (gsi);
904 tree result = PHI_RESULT (phi);
905 if (live_track_live_p (live, result))
906 live_track_process_def (live, result, graph);
907 }
908
909 live_track_clear_base_vars (live);
910 }
911
912 delete_live_track (live);
913 return graph;
914 }
915
916
917 /* Shortcut routine to print messages to file F of the form:
918 "STR1 EXPR1 STR2 EXPR2 STR3." */
919
920 static inline void
921 print_exprs (FILE *f, const char *str1, tree expr1, const char *str2,
922 tree expr2, const char *str3)
923 {
924 fprintf (f, "%s", str1);
925 print_generic_expr (f, expr1, TDF_SLIM);
926 fprintf (f, "%s", str2);
927 print_generic_expr (f, expr2, TDF_SLIM);
928 fprintf (f, "%s", str3);
929 }
930
931
932 /* Called if a coalesce across and abnormal edge cannot be performed. PHI is
933 the phi node at fault, I is the argument index at fault. A message is
934 printed and compilation is then terminated. */
935
936 static inline void
937 abnormal_corrupt (gimple phi, int i)
938 {
939 edge e = gimple_phi_arg_edge (phi, i);
940 tree res = gimple_phi_result (phi);
941 tree arg = gimple_phi_arg_def (phi, i);
942
943 fprintf (stderr, " Corrupt SSA across abnormal edge BB%d->BB%d\n",
944 e->src->index, e->dest->index);
945 fprintf (stderr, "Argument %d (", i);
946 print_generic_expr (stderr, arg, TDF_SLIM);
947 if (TREE_CODE (arg) != SSA_NAME)
948 fprintf (stderr, ") is not an SSA_NAME.\n");
949 else
950 {
951 gcc_assert (SSA_NAME_VAR (res) != SSA_NAME_VAR (arg));
952 fprintf (stderr, ") does not have the same base variable as the result ");
953 print_generic_stmt (stderr, res, TDF_SLIM);
954 }
955
956 internal_error ("SSA corruption");
957 }
958
959
960 /* Print a failure to coalesce a MUST_COALESCE pair X and Y. */
961
962 static inline void
963 fail_abnormal_edge_coalesce (int x, int y)
964 {
965 fprintf (stderr, "\nUnable to coalesce ssa_names %d and %d",x, y);
966 fprintf (stderr, " which are marked as MUST COALESCE.\n");
967 print_generic_expr (stderr, ssa_name (x), TDF_SLIM);
968 fprintf (stderr, " and ");
969 print_generic_stmt (stderr, ssa_name (y), TDF_SLIM);
970
971 internal_error ("SSA corruption");
972 }
973
974
975 /* This function creates a var_map for the current function as well as creating
976 a coalesce list for use later in the out of ssa process. */
977
978 static var_map
979 create_outofssa_var_map (coalesce_list_p cl, bitmap used_in_copy)
980 {
981 gimple_stmt_iterator gsi;
982 basic_block bb;
983 tree var;
984 gimple stmt;
985 tree first;
986 var_map map;
987 ssa_op_iter iter;
988 int v1, v2, cost;
989 unsigned i;
990
991 #ifdef ENABLE_CHECKING
992 bitmap used_in_real_ops;
993 bitmap used_in_virtual_ops;
994
995 used_in_real_ops = BITMAP_ALLOC (NULL);
996 used_in_virtual_ops = BITMAP_ALLOC (NULL);
997 #endif
998
999 map = init_var_map (num_ssa_names);
1000
1001 FOR_EACH_BB (bb)
1002 {
1003 tree arg;
1004
1005 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1006 {
1007 gimple phi = gsi_stmt (gsi);
1008 size_t i;
1009 int ver;
1010 tree res;
1011 bool saw_copy = false;
1012
1013 res = gimple_phi_result (phi);
1014 ver = SSA_NAME_VERSION (res);
1015 register_ssa_partition (map, res);
1016
1017 /* Register ssa_names and coalesces between the args and the result
1018 of all PHI. */
1019 for (i = 0; i < gimple_phi_num_args (phi); i++)
1020 {
1021 edge e = gimple_phi_arg_edge (phi, i);
1022 arg = PHI_ARG_DEF (phi, i);
1023 if (TREE_CODE (arg) == SSA_NAME)
1024 register_ssa_partition (map, arg);
1025 if (TREE_CODE (arg) == SSA_NAME
1026 && SSA_NAME_VAR (arg) == SSA_NAME_VAR (res))
1027 {
1028 saw_copy = true;
1029 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (arg));
1030 if ((e->flags & EDGE_ABNORMAL) == 0)
1031 {
1032 int cost = coalesce_cost_edge (e);
1033 if (cost == 1 && has_single_use (arg))
1034 add_cost_one_coalesce (cl, ver, SSA_NAME_VERSION (arg));
1035 else
1036 add_coalesce (cl, ver, SSA_NAME_VERSION (arg), cost);
1037 }
1038 }
1039 else
1040 if (e->flags & EDGE_ABNORMAL)
1041 abnormal_corrupt (phi, i);
1042 }
1043 if (saw_copy)
1044 bitmap_set_bit (used_in_copy, ver);
1045 }
1046
1047 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1048 {
1049 stmt = gsi_stmt (gsi);
1050
1051 /* Register USE and DEF operands in each statement. */
1052 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, (SSA_OP_DEF|SSA_OP_USE))
1053 register_ssa_partition (map, var);
1054
1055 /* Check for copy coalesces. */
1056 switch (gimple_code (stmt))
1057 {
1058 case GIMPLE_ASSIGN:
1059 {
1060 tree lhs = gimple_assign_lhs (stmt);
1061 tree rhs1 = gimple_assign_rhs1 (stmt);
1062
1063 if (gimple_assign_copy_p (stmt)
1064 && TREE_CODE (lhs) == SSA_NAME
1065 && TREE_CODE (rhs1) == SSA_NAME
1066 && SSA_NAME_VAR (lhs) == SSA_NAME_VAR (rhs1))
1067 {
1068 v1 = SSA_NAME_VERSION (lhs);
1069 v2 = SSA_NAME_VERSION (rhs1);
1070 cost = coalesce_cost_bb (bb);
1071 add_coalesce (cl, v1, v2, cost);
1072 bitmap_set_bit (used_in_copy, v1);
1073 bitmap_set_bit (used_in_copy, v2);
1074 }
1075 }
1076 break;
1077
1078 case GIMPLE_ASM:
1079 {
1080 unsigned long noutputs, i;
1081 unsigned long ninputs;
1082 tree *outputs, link;
1083 noutputs = gimple_asm_noutputs (stmt);
1084 ninputs = gimple_asm_ninputs (stmt);
1085 outputs = (tree *) alloca (noutputs * sizeof (tree));
1086 for (i = 0; i < noutputs; ++i) {
1087 link = gimple_asm_output_op (stmt, i);
1088 outputs[i] = TREE_VALUE (link);
1089 }
1090
1091 for (i = 0; i < ninputs; ++i)
1092 {
1093 const char *constraint;
1094 tree input;
1095 char *end;
1096 unsigned long match;
1097
1098 link = gimple_asm_input_op (stmt, i);
1099 constraint
1100 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1101 input = TREE_VALUE (link);
1102
1103 if (TREE_CODE (input) != SSA_NAME)
1104 continue;
1105
1106 match = strtoul (constraint, &end, 10);
1107 if (match >= noutputs || end == constraint)
1108 continue;
1109
1110 if (TREE_CODE (outputs[match]) != SSA_NAME)
1111 continue;
1112
1113 v1 = SSA_NAME_VERSION (outputs[match]);
1114 v2 = SSA_NAME_VERSION (input);
1115
1116 if (SSA_NAME_VAR (outputs[match]) == SSA_NAME_VAR (input))
1117 {
1118 cost = coalesce_cost (REG_BR_PROB_BASE,
1119 optimize_bb_for_size_p (bb));
1120 add_coalesce (cl, v1, v2, cost);
1121 bitmap_set_bit (used_in_copy, v1);
1122 bitmap_set_bit (used_in_copy, v2);
1123 }
1124 }
1125 break;
1126 }
1127
1128 default:
1129 break;
1130 }
1131
1132 #ifdef ENABLE_CHECKING
1133 /* Mark real uses and defs. */
1134 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, (SSA_OP_DEF|SSA_OP_USE))
1135 bitmap_set_bit (used_in_real_ops, DECL_UID (SSA_NAME_VAR (var)));
1136
1137 /* Validate that virtual ops don't get used in funny ways. */
1138 if (gimple_vuse (stmt))
1139 bitmap_set_bit (used_in_virtual_ops,
1140 DECL_UID (SSA_NAME_VAR (gimple_vuse (stmt))));
1141 #endif /* ENABLE_CHECKING */
1142 }
1143 }
1144
1145 /* Now process result decls and live on entry variables for entry into
1146 the coalesce list. */
1147 first = NULL_TREE;
1148 for (i = 1; i < num_ssa_names; i++)
1149 {
1150 var = ssa_name (i);
1151 if (var != NULL_TREE && is_gimple_reg (var))
1152 {
1153 /* Add coalesces between all the result decls. */
1154 if (TREE_CODE (SSA_NAME_VAR (var)) == RESULT_DECL)
1155 {
1156 if (first == NULL_TREE)
1157 first = var;
1158 else
1159 {
1160 gcc_assert (SSA_NAME_VAR (var) == SSA_NAME_VAR (first));
1161 v1 = SSA_NAME_VERSION (first);
1162 v2 = SSA_NAME_VERSION (var);
1163 bitmap_set_bit (used_in_copy, v1);
1164 bitmap_set_bit (used_in_copy, v2);
1165 cost = coalesce_cost_bb (EXIT_BLOCK_PTR);
1166 add_coalesce (cl, v1, v2, cost);
1167 }
1168 }
1169 /* Mark any default_def variables as being in the coalesce list
1170 since they will have to be coalesced with the base variable. If
1171 not marked as present, they won't be in the coalesce view. */
1172 if (gimple_default_def (cfun, SSA_NAME_VAR (var)) == var
1173 && !has_zero_uses (var))
1174 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (var));
1175 }
1176 }
1177
1178 #if defined ENABLE_CHECKING
1179 {
1180 unsigned i;
1181 bitmap both = BITMAP_ALLOC (NULL);
1182 bitmap_and (both, used_in_real_ops, used_in_virtual_ops);
1183 if (!bitmap_empty_p (both))
1184 {
1185 bitmap_iterator bi;
1186
1187 EXECUTE_IF_SET_IN_BITMAP (both, 0, i, bi)
1188 fprintf (stderr, "Variable %s used in real and virtual operands\n",
1189 get_name (referenced_var (i)));
1190 internal_error ("SSA corruption");
1191 }
1192
1193 BITMAP_FREE (used_in_real_ops);
1194 BITMAP_FREE (used_in_virtual_ops);
1195 BITMAP_FREE (both);
1196 }
1197 #endif
1198
1199 return map;
1200 }
1201
1202
1203 /* Attempt to coalesce ssa versions X and Y together using the partition
1204 mapping in MAP and checking conflicts in GRAPH. Output any debug info to
1205 DEBUG, if it is nun-NULL. */
1206
1207 static inline bool
1208 attempt_coalesce (var_map map, ssa_conflicts_p graph, int x, int y,
1209 FILE *debug)
1210 {
1211 int z;
1212 tree var1, var2;
1213 int p1, p2;
1214
1215 p1 = var_to_partition (map, ssa_name (x));
1216 p2 = var_to_partition (map, ssa_name (y));
1217
1218 if (debug)
1219 {
1220 fprintf (debug, "(%d)", x);
1221 print_generic_expr (debug, partition_to_var (map, p1), TDF_SLIM);
1222 fprintf (debug, " & (%d)", y);
1223 print_generic_expr (debug, partition_to_var (map, p2), TDF_SLIM);
1224 }
1225
1226 if (p1 == p2)
1227 {
1228 if (debug)
1229 fprintf (debug, ": Already Coalesced.\n");
1230 return true;
1231 }
1232
1233 if (debug)
1234 fprintf (debug, " [map: %d, %d] ", p1, p2);
1235
1236
1237 if (!ssa_conflicts_test_p (graph, p1, p2))
1238 {
1239 var1 = partition_to_var (map, p1);
1240 var2 = partition_to_var (map, p2);
1241 z = var_union (map, var1, var2);
1242 if (z == NO_PARTITION)
1243 {
1244 if (debug)
1245 fprintf (debug, ": Unable to perform partition union.\n");
1246 return false;
1247 }
1248
1249 /* z is the new combined partition. Remove the other partition from
1250 the list, and merge the conflicts. */
1251 if (z == p1)
1252 ssa_conflicts_merge (graph, p1, p2);
1253 else
1254 ssa_conflicts_merge (graph, p2, p1);
1255
1256 if (debug)
1257 fprintf (debug, ": Success -> %d\n", z);
1258 return true;
1259 }
1260
1261 if (debug)
1262 fprintf (debug, ": Fail due to conflict\n");
1263
1264 return false;
1265 }
1266
1267
1268 /* Attempt to Coalesce partitions in MAP which occur in the list CL using
1269 GRAPH. Debug output is sent to DEBUG if it is non-NULL. */
1270
1271 static void
1272 coalesce_partitions (var_map map, ssa_conflicts_p graph, coalesce_list_p cl,
1273 FILE *debug)
1274 {
1275 int x = 0, y = 0;
1276 tree var1, var2;
1277 int cost;
1278 basic_block bb;
1279 edge e;
1280 edge_iterator ei;
1281
1282 /* First, coalesce all the copies across abnormal edges. These are not placed
1283 in the coalesce list because they do not need to be sorted, and simply
1284 consume extra memory/compilation time in large programs. */
1285
1286 FOR_EACH_BB (bb)
1287 {
1288 FOR_EACH_EDGE (e, ei, bb->preds)
1289 if (e->flags & EDGE_ABNORMAL)
1290 {
1291 gimple_stmt_iterator gsi;
1292 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1293 gsi_next (&gsi))
1294 {
1295 gimple phi = gsi_stmt (gsi);
1296 tree res = PHI_RESULT (phi);
1297 tree arg = PHI_ARG_DEF (phi, e->dest_idx);
1298 int v1 = SSA_NAME_VERSION (res);
1299 int v2 = SSA_NAME_VERSION (arg);
1300
1301 if (SSA_NAME_VAR (arg) != SSA_NAME_VAR (res))
1302 abnormal_corrupt (phi, e->dest_idx);
1303
1304 if (debug)
1305 fprintf (debug, "Abnormal coalesce: ");
1306
1307 if (!attempt_coalesce (map, graph, v1, v2, debug))
1308 fail_abnormal_edge_coalesce (v1, v2);
1309 }
1310 }
1311 }
1312
1313 /* Now process the items in the coalesce list. */
1314
1315 while ((cost = pop_best_coalesce (cl, &x, &y)) != NO_BEST_COALESCE)
1316 {
1317 var1 = ssa_name (x);
1318 var2 = ssa_name (y);
1319
1320 /* Assert the coalesces have the same base variable. */
1321 gcc_assert (SSA_NAME_VAR (var1) == SSA_NAME_VAR (var2));
1322
1323 if (debug)
1324 fprintf (debug, "Coalesce list: ");
1325 attempt_coalesce (map, graph, x, y, debug);
1326 }
1327 }
1328
1329 /* Returns a hash code for P. */
1330
1331 static hashval_t
1332 hash_ssa_name_by_var (const void *p)
1333 {
1334 const_tree n = (const_tree) p;
1335 return (hashval_t) htab_hash_pointer (SSA_NAME_VAR (n));
1336 }
1337
1338 /* Returns nonzero if P1 and P2 are equal. */
1339
1340 static int
1341 eq_ssa_name_by_var (const void *p1, const void *p2)
1342 {
1343 const_tree n1 = (const_tree) p1;
1344 const_tree n2 = (const_tree) p2;
1345 return SSA_NAME_VAR (n1) == SSA_NAME_VAR (n2);
1346 }
1347
1348 /* Reduce the number of copies by coalescing variables in the function. Return
1349 a partition map with the resulting coalesces. */
1350
1351 extern var_map
1352 coalesce_ssa_name (void)
1353 {
1354 tree_live_info_p liveinfo;
1355 ssa_conflicts_p graph;
1356 coalesce_list_p cl;
1357 bitmap used_in_copies = BITMAP_ALLOC (NULL);
1358 var_map map;
1359 unsigned int i;
1360 static htab_t ssa_name_hash;
1361
1362 cl = create_coalesce_list ();
1363 map = create_outofssa_var_map (cl, used_in_copies);
1364
1365 /* We need to coalesce all names originating same SSA_NAME_VAR
1366 so debug info remains undisturbed. */
1367 if (!optimize)
1368 {
1369 ssa_name_hash = htab_create (10, hash_ssa_name_by_var,
1370 eq_ssa_name_by_var, NULL);
1371 for (i = 1; i < num_ssa_names; i++)
1372 {
1373 tree a = ssa_name (i);
1374
1375 if (a && SSA_NAME_VAR (a) && !DECL_ARTIFICIAL (SSA_NAME_VAR (a)))
1376 {
1377 tree *slot = (tree *) htab_find_slot (ssa_name_hash, a, INSERT);
1378
1379 if (!*slot)
1380 *slot = a;
1381 else
1382 {
1383 add_coalesce (cl, SSA_NAME_VERSION (a), SSA_NAME_VERSION (*slot),
1384 MUST_COALESCE_COST - 1);
1385 bitmap_set_bit (used_in_copies, SSA_NAME_VERSION (a));
1386 bitmap_set_bit (used_in_copies, SSA_NAME_VERSION (*slot));
1387 }
1388 }
1389 }
1390 htab_delete (ssa_name_hash);
1391 }
1392 if (dump_file && (dump_flags & TDF_DETAILS))
1393 dump_var_map (dump_file, map);
1394
1395 /* Don't calculate live ranges for variables not in the coalesce list. */
1396 partition_view_bitmap (map, used_in_copies, true);
1397 BITMAP_FREE (used_in_copies);
1398
1399 if (num_var_partitions (map) < 1)
1400 {
1401 delete_coalesce_list (cl);
1402 return map;
1403 }
1404
1405 if (dump_file && (dump_flags & TDF_DETAILS))
1406 dump_var_map (dump_file, map);
1407
1408 liveinfo = calculate_live_ranges (map);
1409
1410 if (dump_file && (dump_flags & TDF_DETAILS))
1411 dump_live_info (dump_file, liveinfo, LIVEDUMP_ENTRY);
1412
1413 /* Build a conflict graph. */
1414 graph = build_ssa_conflict_graph (liveinfo);
1415 delete_tree_live_info (liveinfo);
1416 if (dump_file && (dump_flags & TDF_DETAILS))
1417 ssa_conflicts_dump (dump_file, graph);
1418
1419 sort_coalesce_list (cl);
1420
1421 if (dump_file && (dump_flags & TDF_DETAILS))
1422 {
1423 fprintf (dump_file, "\nAfter sorting:\n");
1424 dump_coalesce_list (dump_file, cl);
1425 }
1426
1427 /* First, coalesce all live on entry variables to their base variable.
1428 This will ensure the first use is coming from the correct location. */
1429
1430 if (dump_file && (dump_flags & TDF_DETAILS))
1431 dump_var_map (dump_file, map);
1432
1433 /* Now coalesce everything in the list. */
1434 coalesce_partitions (map, graph, cl,
1435 ((dump_flags & TDF_DETAILS) ? dump_file
1436 : NULL));
1437
1438 delete_coalesce_list (cl);
1439 ssa_conflicts_delete (graph);
1440
1441 return map;
1442 }