[ARM/AArch64][testsuite] Add vmull tests.
[gcc.git] / gcc / tree-ssa-coalesce.c
1 /* Coalesce SSA_NAMES together for the out-of-ssa pass.
2 Copyright (C) 2004-2015 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "hash-set.h"
26 #include "machmode.h"
27 #include "vec.h"
28 #include "double-int.h"
29 #include "input.h"
30 #include "alias.h"
31 #include "symtab.h"
32 #include "wide-int.h"
33 #include "inchash.h"
34 #include "tree.h"
35 #include "fold-const.h"
36 #include "flags.h"
37 #include "tree-pretty-print.h"
38 #include "bitmap.h"
39 #include "dumpfile.h"
40 #include "hash-table.h"
41 #include "predict.h"
42 #include "hard-reg-set.h"
43 #include "input.h"
44 #include "function.h"
45 #include "dominance.h"
46 #include "cfg.h"
47 #include "basic-block.h"
48 #include "tree-ssa-alias.h"
49 #include "internal-fn.h"
50 #include "gimple-expr.h"
51 #include "is-a.h"
52 #include "gimple.h"
53 #include "gimple-iterator.h"
54 #include "gimple-ssa.h"
55 #include "tree-phinodes.h"
56 #include "ssa-iterators.h"
57 #include "stringpool.h"
58 #include "tree-ssanames.h"
59 #include "tree-ssa-live.h"
60 #include "tree-ssa-coalesce.h"
61 #include "diagnostic-core.h"
62
63
64 /* This set of routines implements a coalesce_list. This is an object which
65 is used to track pairs of ssa_names which are desirable to coalesce
66 together to avoid copies. Costs are associated with each pair, and when
67 all desired information has been collected, the object can be used to
68 order the pairs for processing. */
69
70 /* This structure defines a pair entry. */
71
72 typedef struct coalesce_pair
73 {
74 int first_element;
75 int second_element;
76 int cost;
77 } * coalesce_pair_p;
78 typedef const struct coalesce_pair *const_coalesce_pair_p;
79
80 /* Coalesce pair hashtable helpers. */
81
82 struct coalesce_pair_hasher : typed_noop_remove <coalesce_pair>
83 {
84 typedef coalesce_pair value_type;
85 typedef coalesce_pair compare_type;
86 static inline hashval_t hash (const value_type *);
87 static inline bool equal (const value_type *, const compare_type *);
88 };
89
90 /* Hash function for coalesce list. Calculate hash for PAIR. */
91
92 inline hashval_t
93 coalesce_pair_hasher::hash (const value_type *pair)
94 {
95 hashval_t a = (hashval_t)(pair->first_element);
96 hashval_t b = (hashval_t)(pair->second_element);
97
98 return b * (b - 1) / 2 + a;
99 }
100
101 /* Equality function for coalesce list hash table. Compare PAIR1 and PAIR2,
102 returning TRUE if the two pairs are equivalent. */
103
104 inline bool
105 coalesce_pair_hasher::equal (const value_type *p1, const compare_type *p2)
106 {
107 return (p1->first_element == p2->first_element
108 && p1->second_element == p2->second_element);
109 }
110
111 typedef hash_table<coalesce_pair_hasher> coalesce_table_type;
112 typedef coalesce_table_type::iterator coalesce_iterator_type;
113
114
115 typedef struct cost_one_pair_d
116 {
117 int first_element;
118 int second_element;
119 struct cost_one_pair_d *next;
120 } * cost_one_pair_p;
121
122 /* This structure maintains the list of coalesce pairs. */
123
124 typedef struct coalesce_list_d
125 {
126 coalesce_table_type *list; /* Hash table. */
127 coalesce_pair_p *sorted; /* List when sorted. */
128 int num_sorted; /* Number in the sorted list. */
129 cost_one_pair_p cost_one_list;/* Single use coalesces with cost 1. */
130 } *coalesce_list_p;
131
132 #define NO_BEST_COALESCE -1
133 #define MUST_COALESCE_COST INT_MAX
134
135
136 /* Return cost of execution of copy instruction with FREQUENCY. */
137
138 static inline int
139 coalesce_cost (int frequency, bool optimize_for_size)
140 {
141 /* Base costs on BB frequencies bounded by 1. */
142 int cost = frequency;
143
144 if (!cost)
145 cost = 1;
146
147 if (optimize_for_size)
148 cost = 1;
149
150 return cost;
151 }
152
153
154 /* Return the cost of executing a copy instruction in basic block BB. */
155
156 static inline int
157 coalesce_cost_bb (basic_block bb)
158 {
159 return coalesce_cost (bb->frequency, optimize_bb_for_size_p (bb));
160 }
161
162
163 /* Return the cost of executing a copy instruction on edge E. */
164
165 static inline int
166 coalesce_cost_edge (edge e)
167 {
168 int mult = 1;
169
170 /* Inserting copy on critical edge costs more than inserting it elsewhere. */
171 if (EDGE_CRITICAL_P (e))
172 mult = 2;
173 if (e->flags & EDGE_ABNORMAL)
174 return MUST_COALESCE_COST;
175 if (e->flags & EDGE_EH)
176 {
177 edge e2;
178 edge_iterator ei;
179 FOR_EACH_EDGE (e2, ei, e->dest->preds)
180 if (e2 != e)
181 {
182 /* Putting code on EH edge that leads to BB
183 with multiple predecestors imply splitting of
184 edge too. */
185 if (mult < 2)
186 mult = 2;
187 /* If there are multiple EH predecestors, we
188 also copy EH regions and produce separate
189 landing pad. This is expensive. */
190 if (e2->flags & EDGE_EH)
191 {
192 mult = 5;
193 break;
194 }
195 }
196 }
197
198 return coalesce_cost (EDGE_FREQUENCY (e),
199 optimize_edge_for_size_p (e)) * mult;
200 }
201
202
203 /* Retrieve a pair to coalesce from the cost_one_list in CL. Returns the
204 2 elements via P1 and P2. 1 is returned by the function if there is a pair,
205 NO_BEST_COALESCE is returned if there aren't any. */
206
207 static inline int
208 pop_cost_one_pair (coalesce_list_p cl, int *p1, int *p2)
209 {
210 cost_one_pair_p ptr;
211
212 ptr = cl->cost_one_list;
213 if (!ptr)
214 return NO_BEST_COALESCE;
215
216 *p1 = ptr->first_element;
217 *p2 = ptr->second_element;
218 cl->cost_one_list = ptr->next;
219
220 free (ptr);
221
222 return 1;
223 }
224
225 /* Retrieve the most expensive remaining pair to coalesce from CL. Returns the
226 2 elements via P1 and P2. Their calculated cost is returned by the function.
227 NO_BEST_COALESCE is returned if the coalesce list is empty. */
228
229 static inline int
230 pop_best_coalesce (coalesce_list_p cl, int *p1, int *p2)
231 {
232 coalesce_pair_p node;
233 int ret;
234
235 if (cl->sorted == NULL)
236 return pop_cost_one_pair (cl, p1, p2);
237
238 if (cl->num_sorted == 0)
239 return pop_cost_one_pair (cl, p1, p2);
240
241 node = cl->sorted[--(cl->num_sorted)];
242 *p1 = node->first_element;
243 *p2 = node->second_element;
244 ret = node->cost;
245 free (node);
246
247 return ret;
248 }
249
250
251 /* Create a new empty coalesce list object and return it. */
252
253 static inline coalesce_list_p
254 create_coalesce_list (void)
255 {
256 coalesce_list_p list;
257 unsigned size = num_ssa_names * 3;
258
259 if (size < 40)
260 size = 40;
261
262 list = (coalesce_list_p) xmalloc (sizeof (struct coalesce_list_d));
263 list->list = new coalesce_table_type (size);
264 list->sorted = NULL;
265 list->num_sorted = 0;
266 list->cost_one_list = NULL;
267 return list;
268 }
269
270
271 /* Delete coalesce list CL. */
272
273 static inline void
274 delete_coalesce_list (coalesce_list_p cl)
275 {
276 gcc_assert (cl->cost_one_list == NULL);
277 delete cl->list;
278 cl->list = NULL;
279 free (cl->sorted);
280 gcc_assert (cl->num_sorted == 0);
281 free (cl);
282 }
283
284
285 /* Find a matching coalesce pair object in CL for the pair P1 and P2. If
286 one isn't found, return NULL if CREATE is false, otherwise create a new
287 coalesce pair object and return it. */
288
289 static coalesce_pair_p
290 find_coalesce_pair (coalesce_list_p cl, int p1, int p2, bool create)
291 {
292 struct coalesce_pair p;
293 coalesce_pair **slot;
294 unsigned int hash;
295
296 /* Normalize so that p1 is the smaller value. */
297 if (p2 < p1)
298 {
299 p.first_element = p2;
300 p.second_element = p1;
301 }
302 else
303 {
304 p.first_element = p1;
305 p.second_element = p2;
306 }
307
308 hash = coalesce_pair_hasher::hash (&p);
309 slot = cl->list->find_slot_with_hash (&p, hash, create ? INSERT : NO_INSERT);
310 if (!slot)
311 return NULL;
312
313 if (!*slot)
314 {
315 struct coalesce_pair * pair = XNEW (struct coalesce_pair);
316 gcc_assert (cl->sorted == NULL);
317 pair->first_element = p.first_element;
318 pair->second_element = p.second_element;
319 pair->cost = 0;
320 *slot = pair;
321 }
322
323 return (struct coalesce_pair *) *slot;
324 }
325
326 static inline void
327 add_cost_one_coalesce (coalesce_list_p cl, int p1, int p2)
328 {
329 cost_one_pair_p pair;
330
331 pair = XNEW (struct cost_one_pair_d);
332 pair->first_element = p1;
333 pair->second_element = p2;
334 pair->next = cl->cost_one_list;
335 cl->cost_one_list = pair;
336 }
337
338
339 /* Add a coalesce between P1 and P2 in list CL with a cost of VALUE. */
340
341 static inline void
342 add_coalesce (coalesce_list_p cl, int p1, int p2, int value)
343 {
344 coalesce_pair_p node;
345
346 gcc_assert (cl->sorted == NULL);
347 if (p1 == p2)
348 return;
349
350 node = find_coalesce_pair (cl, p1, p2, true);
351
352 /* Once the value is at least MUST_COALESCE_COST - 1, leave it that way. */
353 if (node->cost < MUST_COALESCE_COST - 1)
354 {
355 if (value < MUST_COALESCE_COST - 1)
356 node->cost += value;
357 else
358 node->cost = value;
359 }
360 }
361
362
363 /* Comparison function to allow qsort to sort P1 and P2 in Ascending order. */
364
365 static int
366 compare_pairs (const void *p1, const void *p2)
367 {
368 const_coalesce_pair_p const *const pp1 = (const_coalesce_pair_p const *) p1;
369 const_coalesce_pair_p const *const pp2 = (const_coalesce_pair_p const *) p2;
370 int result;
371
372 result = (* pp1)->cost - (* pp2)->cost;
373 /* Since qsort does not guarantee stability we use the elements
374 as a secondary key. This provides us with independence from
375 the host's implementation of the sorting algorithm. */
376 if (result == 0)
377 {
378 result = (* pp2)->first_element - (* pp1)->first_element;
379 if (result == 0)
380 result = (* pp2)->second_element - (* pp1)->second_element;
381 }
382
383 return result;
384 }
385
386
387 /* Return the number of unique coalesce pairs in CL. */
388
389 static inline int
390 num_coalesce_pairs (coalesce_list_p cl)
391 {
392 return cl->list->elements ();
393 }
394
395
396 /* Iterate over CL using ITER, returning values in PAIR. */
397
398 #define FOR_EACH_PARTITION_PAIR(PAIR, ITER, CL) \
399 FOR_EACH_HASH_TABLE_ELEMENT (*(CL)->list, (PAIR), coalesce_pair_p, (ITER))
400
401
402 /* Prepare CL for removal of preferred pairs. When finished they are sorted
403 in order from most important coalesce to least important. */
404
405 static void
406 sort_coalesce_list (coalesce_list_p cl)
407 {
408 unsigned x, num;
409 coalesce_pair_p p;
410 coalesce_iterator_type ppi;
411
412 gcc_assert (cl->sorted == NULL);
413
414 num = num_coalesce_pairs (cl);
415 cl->num_sorted = num;
416 if (num == 0)
417 return;
418
419 /* Allocate a vector for the pair pointers. */
420 cl->sorted = XNEWVEC (coalesce_pair_p, num);
421
422 /* Populate the vector with pointers to the pairs. */
423 x = 0;
424 FOR_EACH_PARTITION_PAIR (p, ppi, cl)
425 cl->sorted[x++] = p;
426 gcc_assert (x == num);
427
428 /* Already sorted. */
429 if (num == 1)
430 return;
431
432 /* If there are only 2, just pick swap them if the order isn't correct. */
433 if (num == 2)
434 {
435 if (cl->sorted[0]->cost > cl->sorted[1]->cost)
436 {
437 p = cl->sorted[0];
438 cl->sorted[0] = cl->sorted[1];
439 cl->sorted[1] = p;
440 }
441 return;
442 }
443
444 /* Only call qsort if there are more than 2 items. */
445 if (num > 2)
446 qsort (cl->sorted, num, sizeof (coalesce_pair_p), compare_pairs);
447 }
448
449
450 /* Send debug info for coalesce list CL to file F. */
451
452 static void
453 dump_coalesce_list (FILE *f, coalesce_list_p cl)
454 {
455 coalesce_pair_p node;
456 coalesce_iterator_type ppi;
457
458 int x;
459 tree var;
460
461 if (cl->sorted == NULL)
462 {
463 fprintf (f, "Coalesce List:\n");
464 FOR_EACH_PARTITION_PAIR (node, ppi, cl)
465 {
466 tree var1 = ssa_name (node->first_element);
467 tree var2 = ssa_name (node->second_element);
468 print_generic_expr (f, var1, TDF_SLIM);
469 fprintf (f, " <-> ");
470 print_generic_expr (f, var2, TDF_SLIM);
471 fprintf (f, " (%1d), ", node->cost);
472 fprintf (f, "\n");
473 }
474 }
475 else
476 {
477 fprintf (f, "Sorted Coalesce list:\n");
478 for (x = cl->num_sorted - 1 ; x >=0; x--)
479 {
480 node = cl->sorted[x];
481 fprintf (f, "(%d) ", node->cost);
482 var = ssa_name (node->first_element);
483 print_generic_expr (f, var, TDF_SLIM);
484 fprintf (f, " <-> ");
485 var = ssa_name (node->second_element);
486 print_generic_expr (f, var, TDF_SLIM);
487 fprintf (f, "\n");
488 }
489 }
490 }
491
492
493 /* This represents a conflict graph. Implemented as an array of bitmaps.
494 A full matrix is used for conflicts rather than just upper triangular form.
495 this make sit much simpler and faster to perform conflict merges. */
496
497 typedef struct ssa_conflicts_d
498 {
499 bitmap_obstack obstack; /* A place to allocate our bitmaps. */
500 vec<bitmap> conflicts;
501 } * ssa_conflicts_p;
502
503 /* Return an empty new conflict graph for SIZE elements. */
504
505 static inline ssa_conflicts_p
506 ssa_conflicts_new (unsigned size)
507 {
508 ssa_conflicts_p ptr;
509
510 ptr = XNEW (struct ssa_conflicts_d);
511 bitmap_obstack_initialize (&ptr->obstack);
512 ptr->conflicts.create (size);
513 ptr->conflicts.safe_grow_cleared (size);
514 return ptr;
515 }
516
517
518 /* Free storage for conflict graph PTR. */
519
520 static inline void
521 ssa_conflicts_delete (ssa_conflicts_p ptr)
522 {
523 bitmap_obstack_release (&ptr->obstack);
524 ptr->conflicts.release ();
525 free (ptr);
526 }
527
528
529 /* Test if elements X and Y conflict in graph PTR. */
530
531 static inline bool
532 ssa_conflicts_test_p (ssa_conflicts_p ptr, unsigned x, unsigned y)
533 {
534 bitmap bx = ptr->conflicts[x];
535 bitmap by = ptr->conflicts[y];
536
537 gcc_checking_assert (x != y);
538
539 if (bx)
540 /* Avoid the lookup if Y has no conflicts. */
541 return by ? bitmap_bit_p (bx, y) : false;
542 else
543 return false;
544 }
545
546
547 /* Add a conflict with Y to the bitmap for X in graph PTR. */
548
549 static inline void
550 ssa_conflicts_add_one (ssa_conflicts_p ptr, unsigned x, unsigned y)
551 {
552 bitmap bx = ptr->conflicts[x];
553 /* If there are no conflicts yet, allocate the bitmap and set bit. */
554 if (! bx)
555 bx = ptr->conflicts[x] = BITMAP_ALLOC (&ptr->obstack);
556 bitmap_set_bit (bx, y);
557 }
558
559
560 /* Add conflicts between X and Y in graph PTR. */
561
562 static inline void
563 ssa_conflicts_add (ssa_conflicts_p ptr, unsigned x, unsigned y)
564 {
565 gcc_checking_assert (x != y);
566 ssa_conflicts_add_one (ptr, x, y);
567 ssa_conflicts_add_one (ptr, y, x);
568 }
569
570
571 /* Merge all Y's conflict into X in graph PTR. */
572
573 static inline void
574 ssa_conflicts_merge (ssa_conflicts_p ptr, unsigned x, unsigned y)
575 {
576 unsigned z;
577 bitmap_iterator bi;
578 bitmap bx = ptr->conflicts[x];
579 bitmap by = ptr->conflicts[y];
580
581 gcc_checking_assert (x != y);
582 if (! by)
583 return;
584
585 /* Add a conflict between X and every one Y has. If the bitmap doesn't
586 exist, then it has already been coalesced, and we don't need to add a
587 conflict. */
588 EXECUTE_IF_SET_IN_BITMAP (by, 0, z, bi)
589 {
590 bitmap bz = ptr->conflicts[z];
591 if (bz)
592 bitmap_set_bit (bz, x);
593 }
594
595 if (bx)
596 {
597 /* If X has conflicts, add Y's to X. */
598 bitmap_ior_into (bx, by);
599 BITMAP_FREE (by);
600 ptr->conflicts[y] = NULL;
601 }
602 else
603 {
604 /* If X has no conflicts, simply use Y's. */
605 ptr->conflicts[x] = by;
606 ptr->conflicts[y] = NULL;
607 }
608 }
609
610
611 /* Dump a conflicts graph. */
612
613 static void
614 ssa_conflicts_dump (FILE *file, ssa_conflicts_p ptr)
615 {
616 unsigned x;
617 bitmap b;
618
619 fprintf (file, "\nConflict graph:\n");
620
621 FOR_EACH_VEC_ELT (ptr->conflicts, x, b)
622 if (b)
623 {
624 fprintf (file, "%d: ", x);
625 dump_bitmap (file, b);
626 }
627 }
628
629
630 /* This structure is used to efficiently record the current status of live
631 SSA_NAMES when building a conflict graph.
632 LIVE_BASE_VAR has a bit set for each base variable which has at least one
633 ssa version live.
634 LIVE_BASE_PARTITIONS is an array of bitmaps using the basevar table as an
635 index, and is used to track what partitions of each base variable are
636 live. This makes it easy to add conflicts between just live partitions
637 with the same base variable.
638 The values in LIVE_BASE_PARTITIONS are only valid if the base variable is
639 marked as being live. This delays clearing of these bitmaps until
640 they are actually needed again. */
641
642 typedef struct live_track_d
643 {
644 bitmap_obstack obstack; /* A place to allocate our bitmaps. */
645 bitmap live_base_var; /* Indicates if a basevar is live. */
646 bitmap *live_base_partitions; /* Live partitions for each basevar. */
647 var_map map; /* Var_map being used for partition mapping. */
648 } * live_track_p;
649
650
651 /* This routine will create a new live track structure based on the partitions
652 in MAP. */
653
654 static live_track_p
655 new_live_track (var_map map)
656 {
657 live_track_p ptr;
658 int lim, x;
659
660 /* Make sure there is a partition view in place. */
661 gcc_assert (map->partition_to_base_index != NULL);
662
663 ptr = (live_track_p) xmalloc (sizeof (struct live_track_d));
664 ptr->map = map;
665 lim = num_basevars (map);
666 bitmap_obstack_initialize (&ptr->obstack);
667 ptr->live_base_partitions = (bitmap *) xmalloc (sizeof (bitmap *) * lim);
668 ptr->live_base_var = BITMAP_ALLOC (&ptr->obstack);
669 for (x = 0; x < lim; x++)
670 ptr->live_base_partitions[x] = BITMAP_ALLOC (&ptr->obstack);
671 return ptr;
672 }
673
674
675 /* This routine will free the memory associated with PTR. */
676
677 static void
678 delete_live_track (live_track_p ptr)
679 {
680 bitmap_obstack_release (&ptr->obstack);
681 free (ptr->live_base_partitions);
682 free (ptr);
683 }
684
685
686 /* This function will remove PARTITION from the live list in PTR. */
687
688 static inline void
689 live_track_remove_partition (live_track_p ptr, int partition)
690 {
691 int root;
692
693 root = basevar_index (ptr->map, partition);
694 bitmap_clear_bit (ptr->live_base_partitions[root], partition);
695 /* If the element list is empty, make the base variable not live either. */
696 if (bitmap_empty_p (ptr->live_base_partitions[root]))
697 bitmap_clear_bit (ptr->live_base_var, root);
698 }
699
700
701 /* This function will adds PARTITION to the live list in PTR. */
702
703 static inline void
704 live_track_add_partition (live_track_p ptr, int partition)
705 {
706 int root;
707
708 root = basevar_index (ptr->map, partition);
709 /* If this base var wasn't live before, it is now. Clear the element list
710 since it was delayed until needed. */
711 if (bitmap_set_bit (ptr->live_base_var, root))
712 bitmap_clear (ptr->live_base_partitions[root]);
713 bitmap_set_bit (ptr->live_base_partitions[root], partition);
714
715 }
716
717
718 /* Clear the live bit for VAR in PTR. */
719
720 static inline void
721 live_track_clear_var (live_track_p ptr, tree var)
722 {
723 int p;
724
725 p = var_to_partition (ptr->map, var);
726 if (p != NO_PARTITION)
727 live_track_remove_partition (ptr, p);
728 }
729
730
731 /* Return TRUE if VAR is live in PTR. */
732
733 static inline bool
734 live_track_live_p (live_track_p ptr, tree var)
735 {
736 int p, root;
737
738 p = var_to_partition (ptr->map, var);
739 if (p != NO_PARTITION)
740 {
741 root = basevar_index (ptr->map, p);
742 if (bitmap_bit_p (ptr->live_base_var, root))
743 return bitmap_bit_p (ptr->live_base_partitions[root], p);
744 }
745 return false;
746 }
747
748
749 /* This routine will add USE to PTR. USE will be marked as live in both the
750 ssa live map and the live bitmap for the root of USE. */
751
752 static inline void
753 live_track_process_use (live_track_p ptr, tree use)
754 {
755 int p;
756
757 p = var_to_partition (ptr->map, use);
758 if (p == NO_PARTITION)
759 return;
760
761 /* Mark as live in the appropriate live list. */
762 live_track_add_partition (ptr, p);
763 }
764
765
766 /* This routine will process a DEF in PTR. DEF will be removed from the live
767 lists, and if there are any other live partitions with the same base
768 variable, conflicts will be added to GRAPH. */
769
770 static inline void
771 live_track_process_def (live_track_p ptr, tree def, ssa_conflicts_p graph)
772 {
773 int p, root;
774 bitmap b;
775 unsigned x;
776 bitmap_iterator bi;
777
778 p = var_to_partition (ptr->map, def);
779 if (p == NO_PARTITION)
780 return;
781
782 /* Clear the liveness bit. */
783 live_track_remove_partition (ptr, p);
784
785 /* If the bitmap isn't empty now, conflicts need to be added. */
786 root = basevar_index (ptr->map, p);
787 if (bitmap_bit_p (ptr->live_base_var, root))
788 {
789 b = ptr->live_base_partitions[root];
790 EXECUTE_IF_SET_IN_BITMAP (b, 0, x, bi)
791 ssa_conflicts_add (graph, p, x);
792 }
793 }
794
795
796 /* Initialize PTR with the partitions set in INIT. */
797
798 static inline void
799 live_track_init (live_track_p ptr, bitmap init)
800 {
801 unsigned p;
802 bitmap_iterator bi;
803
804 /* Mark all live on exit partitions. */
805 EXECUTE_IF_SET_IN_BITMAP (init, 0, p, bi)
806 live_track_add_partition (ptr, p);
807 }
808
809
810 /* This routine will clear all live partitions in PTR. */
811
812 static inline void
813 live_track_clear_base_vars (live_track_p ptr)
814 {
815 /* Simply clear the live base list. Anything marked as live in the element
816 lists will be cleared later if/when the base variable ever comes alive
817 again. */
818 bitmap_clear (ptr->live_base_var);
819 }
820
821
822 /* Build a conflict graph based on LIVEINFO. Any partitions which are in the
823 partition view of the var_map liveinfo is based on get entries in the
824 conflict graph. Only conflicts between ssa_name partitions with the same
825 base variable are added. */
826
827 static ssa_conflicts_p
828 build_ssa_conflict_graph (tree_live_info_p liveinfo)
829 {
830 ssa_conflicts_p graph;
831 var_map map;
832 basic_block bb;
833 ssa_op_iter iter;
834 live_track_p live;
835
836 map = live_var_map (liveinfo);
837 graph = ssa_conflicts_new (num_var_partitions (map));
838
839 live = new_live_track (map);
840
841 FOR_EACH_BB_FN (bb, cfun)
842 {
843 /* Start with live on exit temporaries. */
844 live_track_init (live, live_on_exit (liveinfo, bb));
845
846 for (gimple_stmt_iterator gsi = gsi_last_bb (bb); !gsi_end_p (gsi);
847 gsi_prev (&gsi))
848 {
849 tree var;
850 gimple stmt = gsi_stmt (gsi);
851
852 /* A copy between 2 partitions does not introduce an interference
853 by itself. If they did, you would never be able to coalesce
854 two things which are copied. If the two variables really do
855 conflict, they will conflict elsewhere in the program.
856
857 This is handled by simply removing the SRC of the copy from the
858 live list, and processing the stmt normally. */
859 if (is_gimple_assign (stmt))
860 {
861 tree lhs = gimple_assign_lhs (stmt);
862 tree rhs1 = gimple_assign_rhs1 (stmt);
863 if (gimple_assign_copy_p (stmt)
864 && TREE_CODE (lhs) == SSA_NAME
865 && TREE_CODE (rhs1) == SSA_NAME)
866 live_track_clear_var (live, rhs1);
867 }
868 else if (is_gimple_debug (stmt))
869 continue;
870
871 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF)
872 live_track_process_def (live, var, graph);
873
874 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
875 live_track_process_use (live, var);
876 }
877
878 /* If result of a PHI is unused, looping over the statements will not
879 record any conflicts since the def was never live. Since the PHI node
880 is going to be translated out of SSA form, it will insert a copy.
881 There must be a conflict recorded between the result of the PHI and
882 any variables that are live. Otherwise the out-of-ssa translation
883 may create incorrect code. */
884 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
885 gsi_next (&gsi))
886 {
887 gphi *phi = gsi.phi ();
888 tree result = PHI_RESULT (phi);
889 if (live_track_live_p (live, result))
890 live_track_process_def (live, result, graph);
891 }
892
893 live_track_clear_base_vars (live);
894 }
895
896 delete_live_track (live);
897 return graph;
898 }
899
900
901 /* Shortcut routine to print messages to file F of the form:
902 "STR1 EXPR1 STR2 EXPR2 STR3." */
903
904 static inline void
905 print_exprs (FILE *f, const char *str1, tree expr1, const char *str2,
906 tree expr2, const char *str3)
907 {
908 fprintf (f, "%s", str1);
909 print_generic_expr (f, expr1, TDF_SLIM);
910 fprintf (f, "%s", str2);
911 print_generic_expr (f, expr2, TDF_SLIM);
912 fprintf (f, "%s", str3);
913 }
914
915
916 /* Print a failure to coalesce a MUST_COALESCE pair X and Y. */
917
918 static inline void
919 fail_abnormal_edge_coalesce (int x, int y)
920 {
921 fprintf (stderr, "\nUnable to coalesce ssa_names %d and %d",x, y);
922 fprintf (stderr, " which are marked as MUST COALESCE.\n");
923 print_generic_expr (stderr, ssa_name (x), TDF_SLIM);
924 fprintf (stderr, " and ");
925 print_generic_stmt (stderr, ssa_name (y), TDF_SLIM);
926
927 internal_error ("SSA corruption");
928 }
929
930
931 /* This function creates a var_map for the current function as well as creating
932 a coalesce list for use later in the out of ssa process. */
933
934 static var_map
935 create_outofssa_var_map (coalesce_list_p cl, bitmap used_in_copy)
936 {
937 gimple_stmt_iterator gsi;
938 basic_block bb;
939 tree var;
940 gimple stmt;
941 tree first;
942 var_map map;
943 ssa_op_iter iter;
944 int v1, v2, cost;
945 unsigned i;
946
947 map = init_var_map (num_ssa_names);
948
949 FOR_EACH_BB_FN (bb, cfun)
950 {
951 tree arg;
952
953 for (gphi_iterator gpi = gsi_start_phis (bb);
954 !gsi_end_p (gpi);
955 gsi_next (&gpi))
956 {
957 gphi *phi = gpi.phi ();
958 size_t i;
959 int ver;
960 tree res;
961 bool saw_copy = false;
962
963 res = gimple_phi_result (phi);
964 ver = SSA_NAME_VERSION (res);
965 register_ssa_partition (map, res);
966
967 /* Register ssa_names and coalesces between the args and the result
968 of all PHI. */
969 for (i = 0; i < gimple_phi_num_args (phi); i++)
970 {
971 edge e = gimple_phi_arg_edge (phi, i);
972 arg = PHI_ARG_DEF (phi, i);
973 if (TREE_CODE (arg) != SSA_NAME)
974 continue;
975
976 register_ssa_partition (map, arg);
977 if (gimple_can_coalesce_p (arg, res)
978 || (e->flags & EDGE_ABNORMAL))
979 {
980 saw_copy = true;
981 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (arg));
982 if ((e->flags & EDGE_ABNORMAL) == 0)
983 {
984 int cost = coalesce_cost_edge (e);
985 if (cost == 1 && has_single_use (arg))
986 add_cost_one_coalesce (cl, ver, SSA_NAME_VERSION (arg));
987 else
988 add_coalesce (cl, ver, SSA_NAME_VERSION (arg), cost);
989 }
990 }
991 }
992 if (saw_copy)
993 bitmap_set_bit (used_in_copy, ver);
994 }
995
996 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
997 {
998 stmt = gsi_stmt (gsi);
999
1000 if (is_gimple_debug (stmt))
1001 continue;
1002
1003 /* Register USE and DEF operands in each statement. */
1004 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, (SSA_OP_DEF|SSA_OP_USE))
1005 register_ssa_partition (map, var);
1006
1007 /* Check for copy coalesces. */
1008 switch (gimple_code (stmt))
1009 {
1010 case GIMPLE_ASSIGN:
1011 {
1012 tree lhs = gimple_assign_lhs (stmt);
1013 tree rhs1 = gimple_assign_rhs1 (stmt);
1014 if (gimple_assign_ssa_name_copy_p (stmt)
1015 && gimple_can_coalesce_p (lhs, rhs1))
1016 {
1017 v1 = SSA_NAME_VERSION (lhs);
1018 v2 = SSA_NAME_VERSION (rhs1);
1019 cost = coalesce_cost_bb (bb);
1020 add_coalesce (cl, v1, v2, cost);
1021 bitmap_set_bit (used_in_copy, v1);
1022 bitmap_set_bit (used_in_copy, v2);
1023 }
1024 }
1025 break;
1026
1027 case GIMPLE_ASM:
1028 {
1029 gasm *asm_stmt = as_a <gasm *> (stmt);
1030 unsigned long noutputs, i;
1031 unsigned long ninputs;
1032 tree *outputs, link;
1033 noutputs = gimple_asm_noutputs (asm_stmt);
1034 ninputs = gimple_asm_ninputs (asm_stmt);
1035 outputs = (tree *) alloca (noutputs * sizeof (tree));
1036 for (i = 0; i < noutputs; ++i)
1037 {
1038 link = gimple_asm_output_op (asm_stmt, i);
1039 outputs[i] = TREE_VALUE (link);
1040 }
1041
1042 for (i = 0; i < ninputs; ++i)
1043 {
1044 const char *constraint;
1045 tree input;
1046 char *end;
1047 unsigned long match;
1048
1049 link = gimple_asm_input_op (asm_stmt, i);
1050 constraint
1051 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1052 input = TREE_VALUE (link);
1053
1054 if (TREE_CODE (input) != SSA_NAME)
1055 continue;
1056
1057 match = strtoul (constraint, &end, 10);
1058 if (match >= noutputs || end == constraint)
1059 continue;
1060
1061 if (TREE_CODE (outputs[match]) != SSA_NAME)
1062 continue;
1063
1064 v1 = SSA_NAME_VERSION (outputs[match]);
1065 v2 = SSA_NAME_VERSION (input);
1066
1067 if (gimple_can_coalesce_p (outputs[match], input))
1068 {
1069 cost = coalesce_cost (REG_BR_PROB_BASE,
1070 optimize_bb_for_size_p (bb));
1071 add_coalesce (cl, v1, v2, cost);
1072 bitmap_set_bit (used_in_copy, v1);
1073 bitmap_set_bit (used_in_copy, v2);
1074 }
1075 }
1076 break;
1077 }
1078
1079 default:
1080 break;
1081 }
1082 }
1083 }
1084
1085 /* Now process result decls and live on entry variables for entry into
1086 the coalesce list. */
1087 first = NULL_TREE;
1088 for (i = 1; i < num_ssa_names; i++)
1089 {
1090 var = ssa_name (i);
1091 if (var != NULL_TREE && !virtual_operand_p (var))
1092 {
1093 /* Add coalesces between all the result decls. */
1094 if (SSA_NAME_VAR (var)
1095 && TREE_CODE (SSA_NAME_VAR (var)) == RESULT_DECL)
1096 {
1097 if (first == NULL_TREE)
1098 first = var;
1099 else
1100 {
1101 gcc_assert (gimple_can_coalesce_p (var, first));
1102 v1 = SSA_NAME_VERSION (first);
1103 v2 = SSA_NAME_VERSION (var);
1104 bitmap_set_bit (used_in_copy, v1);
1105 bitmap_set_bit (used_in_copy, v2);
1106 cost = coalesce_cost_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
1107 add_coalesce (cl, v1, v2, cost);
1108 }
1109 }
1110 /* Mark any default_def variables as being in the coalesce list
1111 since they will have to be coalesced with the base variable. If
1112 not marked as present, they won't be in the coalesce view. */
1113 if (SSA_NAME_IS_DEFAULT_DEF (var)
1114 && !has_zero_uses (var))
1115 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (var));
1116 }
1117 }
1118
1119 return map;
1120 }
1121
1122
1123 /* Attempt to coalesce ssa versions X and Y together using the partition
1124 mapping in MAP and checking conflicts in GRAPH. Output any debug info to
1125 DEBUG, if it is nun-NULL. */
1126
1127 static inline bool
1128 attempt_coalesce (var_map map, ssa_conflicts_p graph, int x, int y,
1129 FILE *debug)
1130 {
1131 int z;
1132 tree var1, var2;
1133 int p1, p2;
1134
1135 p1 = var_to_partition (map, ssa_name (x));
1136 p2 = var_to_partition (map, ssa_name (y));
1137
1138 if (debug)
1139 {
1140 fprintf (debug, "(%d)", x);
1141 print_generic_expr (debug, partition_to_var (map, p1), TDF_SLIM);
1142 fprintf (debug, " & (%d)", y);
1143 print_generic_expr (debug, partition_to_var (map, p2), TDF_SLIM);
1144 }
1145
1146 if (p1 == p2)
1147 {
1148 if (debug)
1149 fprintf (debug, ": Already Coalesced.\n");
1150 return true;
1151 }
1152
1153 if (debug)
1154 fprintf (debug, " [map: %d, %d] ", p1, p2);
1155
1156
1157 if (!ssa_conflicts_test_p (graph, p1, p2))
1158 {
1159 var1 = partition_to_var (map, p1);
1160 var2 = partition_to_var (map, p2);
1161 z = var_union (map, var1, var2);
1162 if (z == NO_PARTITION)
1163 {
1164 if (debug)
1165 fprintf (debug, ": Unable to perform partition union.\n");
1166 return false;
1167 }
1168
1169 /* z is the new combined partition. Remove the other partition from
1170 the list, and merge the conflicts. */
1171 if (z == p1)
1172 ssa_conflicts_merge (graph, p1, p2);
1173 else
1174 ssa_conflicts_merge (graph, p2, p1);
1175
1176 if (debug)
1177 fprintf (debug, ": Success -> %d\n", z);
1178 return true;
1179 }
1180
1181 if (debug)
1182 fprintf (debug, ": Fail due to conflict\n");
1183
1184 return false;
1185 }
1186
1187
1188 /* Attempt to Coalesce partitions in MAP which occur in the list CL using
1189 GRAPH. Debug output is sent to DEBUG if it is non-NULL. */
1190
1191 static void
1192 coalesce_partitions (var_map map, ssa_conflicts_p graph, coalesce_list_p cl,
1193 FILE *debug)
1194 {
1195 int x = 0, y = 0;
1196 tree var1, var2;
1197 int cost;
1198 basic_block bb;
1199 edge e;
1200 edge_iterator ei;
1201
1202 /* First, coalesce all the copies across abnormal edges. These are not placed
1203 in the coalesce list because they do not need to be sorted, and simply
1204 consume extra memory/compilation time in large programs. */
1205
1206 FOR_EACH_BB_FN (bb, cfun)
1207 {
1208 FOR_EACH_EDGE (e, ei, bb->preds)
1209 if (e->flags & EDGE_ABNORMAL)
1210 {
1211 gphi_iterator gsi;
1212 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1213 gsi_next (&gsi))
1214 {
1215 gphi *phi = gsi.phi ();
1216 tree res = PHI_RESULT (phi);
1217 tree arg = PHI_ARG_DEF (phi, e->dest_idx);
1218 int v1 = SSA_NAME_VERSION (res);
1219 int v2 = SSA_NAME_VERSION (arg);
1220
1221 if (debug)
1222 fprintf (debug, "Abnormal coalesce: ");
1223
1224 if (!attempt_coalesce (map, graph, v1, v2, debug))
1225 fail_abnormal_edge_coalesce (v1, v2);
1226 }
1227 }
1228 }
1229
1230 /* Now process the items in the coalesce list. */
1231
1232 while ((cost = pop_best_coalesce (cl, &x, &y)) != NO_BEST_COALESCE)
1233 {
1234 var1 = ssa_name (x);
1235 var2 = ssa_name (y);
1236
1237 /* Assert the coalesces have the same base variable. */
1238 gcc_assert (gimple_can_coalesce_p (var1, var2));
1239
1240 if (debug)
1241 fprintf (debug, "Coalesce list: ");
1242 attempt_coalesce (map, graph, x, y, debug);
1243 }
1244 }
1245
1246
1247 /* Hashtable support for storing SSA names hashed by their SSA_NAME_VAR. */
1248
1249 struct ssa_name_var_hash : typed_noop_remove <tree_node>
1250 {
1251 typedef union tree_node value_type;
1252 typedef union tree_node compare_type;
1253 static inline hashval_t hash (const value_type *);
1254 static inline int equal (const value_type *, const compare_type *);
1255 };
1256
1257 inline hashval_t
1258 ssa_name_var_hash::hash (const_tree n)
1259 {
1260 return DECL_UID (SSA_NAME_VAR (n));
1261 }
1262
1263 inline int
1264 ssa_name_var_hash::equal (const value_type *n1, const compare_type *n2)
1265 {
1266 return SSA_NAME_VAR (n1) == SSA_NAME_VAR (n2);
1267 }
1268
1269
1270 /* Reduce the number of copies by coalescing variables in the function. Return
1271 a partition map with the resulting coalesces. */
1272
1273 extern var_map
1274 coalesce_ssa_name (void)
1275 {
1276 tree_live_info_p liveinfo;
1277 ssa_conflicts_p graph;
1278 coalesce_list_p cl;
1279 bitmap used_in_copies = BITMAP_ALLOC (NULL);
1280 var_map map;
1281 unsigned int i;
1282
1283 cl = create_coalesce_list ();
1284 map = create_outofssa_var_map (cl, used_in_copies);
1285
1286 /* If optimization is disabled, we need to coalesce all the names originating
1287 from the same SSA_NAME_VAR so debug info remains undisturbed. */
1288 if (!optimize)
1289 {
1290 hash_table<ssa_name_var_hash> ssa_name_hash (10);
1291
1292 for (i = 1; i < num_ssa_names; i++)
1293 {
1294 tree a = ssa_name (i);
1295
1296 if (a
1297 && SSA_NAME_VAR (a)
1298 && !DECL_IGNORED_P (SSA_NAME_VAR (a))
1299 && (!has_zero_uses (a) || !SSA_NAME_IS_DEFAULT_DEF (a)))
1300 {
1301 tree *slot = ssa_name_hash.find_slot (a, INSERT);
1302
1303 if (!*slot)
1304 *slot = a;
1305 else
1306 {
1307 /* If the variable is a PARM_DECL or a RESULT_DECL, we
1308 _require_ that all the names originating from it be
1309 coalesced, because there must be a single partition
1310 containing all the names so that it can be assigned
1311 the canonical RTL location of the DECL safely.
1312 If in_lto_p, a function could have been compiled
1313 originally with optimizations and only the link
1314 performed at -O0, so we can't actually require it. */
1315 const int cost
1316 = (TREE_CODE (SSA_NAME_VAR (a)) == VAR_DECL || in_lto_p)
1317 ? MUST_COALESCE_COST - 1 : MUST_COALESCE_COST;
1318 add_coalesce (cl, SSA_NAME_VERSION (a),
1319 SSA_NAME_VERSION (*slot), cost);
1320 bitmap_set_bit (used_in_copies, SSA_NAME_VERSION (a));
1321 bitmap_set_bit (used_in_copies, SSA_NAME_VERSION (*slot));
1322 }
1323 }
1324 }
1325 }
1326 if (dump_file && (dump_flags & TDF_DETAILS))
1327 dump_var_map (dump_file, map);
1328
1329 /* Don't calculate live ranges for variables not in the coalesce list. */
1330 partition_view_bitmap (map, used_in_copies, true);
1331 BITMAP_FREE (used_in_copies);
1332
1333 if (num_var_partitions (map) < 1)
1334 {
1335 delete_coalesce_list (cl);
1336 return map;
1337 }
1338
1339 if (dump_file && (dump_flags & TDF_DETAILS))
1340 dump_var_map (dump_file, map);
1341
1342 liveinfo = calculate_live_ranges (map);
1343
1344 if (dump_file && (dump_flags & TDF_DETAILS))
1345 dump_live_info (dump_file, liveinfo, LIVEDUMP_ENTRY);
1346
1347 /* Build a conflict graph. */
1348 graph = build_ssa_conflict_graph (liveinfo);
1349 delete_tree_live_info (liveinfo);
1350 if (dump_file && (dump_flags & TDF_DETAILS))
1351 ssa_conflicts_dump (dump_file, graph);
1352
1353 sort_coalesce_list (cl);
1354
1355 if (dump_file && (dump_flags & TDF_DETAILS))
1356 {
1357 fprintf (dump_file, "\nAfter sorting:\n");
1358 dump_coalesce_list (dump_file, cl);
1359 }
1360
1361 /* First, coalesce all live on entry variables to their base variable.
1362 This will ensure the first use is coming from the correct location. */
1363
1364 if (dump_file && (dump_flags & TDF_DETAILS))
1365 dump_var_map (dump_file, map);
1366
1367 /* Now coalesce everything in the list. */
1368 coalesce_partitions (map, graph, cl,
1369 ((dump_flags & TDF_DETAILS) ? dump_file
1370 : NULL));
1371
1372 delete_coalesce_list (cl);
1373 ssa_conflicts_delete (graph);
1374
1375 return map;
1376 }