re PR preprocessor/36674 (#include location is offset by one row in errors from prepr...
[gcc.git] / gcc / tree-ssa-dce.c
1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Ben Elliston <bje@redhat.com>
5 and Andrew MacLeod <amacleod@redhat.com>
6 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 3, or (at your option) any
13 later version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* Dead code elimination.
25
26 References:
27
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
30
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
33
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
37 impact on the output.
38
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
45
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "ggc.h"
51
52 /* These RTL headers are needed for basic-block.h. */
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "hard-reg-set.h"
56 #include "obstack.h"
57 #include "basic-block.h"
58
59 #include "tree.h"
60 #include "diagnostic.h"
61 #include "tree-flow.h"
62 #include "gimple.h"
63 #include "tree-dump.h"
64 #include "tree-pass.h"
65 #include "timevar.h"
66 #include "flags.h"
67 #include "cfgloop.h"
68 #include "tree-scalar-evolution.h"
69
70 static struct stmt_stats
71 {
72 int total;
73 int total_phis;
74 int removed;
75 int removed_phis;
76 } stats;
77
78 #define STMT_NECESSARY GF_PLF_1
79
80 static VEC(gimple,heap) *worklist;
81
82 /* Vector indicating an SSA name has already been processed and marked
83 as necessary. */
84 static sbitmap processed;
85
86 /* Vector indicating that last_stmt if a basic block has already been
87 marked as necessary. */
88 static sbitmap last_stmt_necessary;
89
90 /* Before we can determine whether a control branch is dead, we need to
91 compute which blocks are control dependent on which edges.
92
93 We expect each block to be control dependent on very few edges so we
94 use a bitmap for each block recording its edges. An array holds the
95 bitmap. The Ith bit in the bitmap is set if that block is dependent
96 on the Ith edge. */
97 static bitmap *control_dependence_map;
98
99 /* Vector indicating that a basic block has already had all the edges
100 processed that it is control dependent on. */
101 static sbitmap visited_control_parents;
102
103 /* TRUE if this pass alters the CFG (by removing control statements).
104 FALSE otherwise.
105
106 If this pass alters the CFG, then it will arrange for the dominators
107 to be recomputed. */
108 static bool cfg_altered;
109
110 /* Execute code that follows the macro for each edge (given number
111 EDGE_NUMBER within the CODE) for which the block with index N is
112 control dependent. */
113 #define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER) \
114 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0, \
115 (EDGE_NUMBER), (BI))
116
117
118 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
119 static inline void
120 set_control_dependence_map_bit (basic_block bb, int edge_index)
121 {
122 if (bb == ENTRY_BLOCK_PTR)
123 return;
124 gcc_assert (bb != EXIT_BLOCK_PTR);
125 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
126 }
127
128 /* Clear all control dependences for block BB. */
129 static inline void
130 clear_control_dependence_bitmap (basic_block bb)
131 {
132 bitmap_clear (control_dependence_map[bb->index]);
133 }
134
135
136 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
137 This function is necessary because some blocks have negative numbers. */
138
139 static inline basic_block
140 find_pdom (basic_block block)
141 {
142 gcc_assert (block != ENTRY_BLOCK_PTR);
143
144 if (block == EXIT_BLOCK_PTR)
145 return EXIT_BLOCK_PTR;
146 else
147 {
148 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
149 if (! bb)
150 return EXIT_BLOCK_PTR;
151 return bb;
152 }
153 }
154
155
156 /* Determine all blocks' control dependences on the given edge with edge_list
157 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
158
159 static void
160 find_control_dependence (struct edge_list *el, int edge_index)
161 {
162 basic_block current_block;
163 basic_block ending_block;
164
165 gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
166
167 if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
168 ending_block = single_succ (ENTRY_BLOCK_PTR);
169 else
170 ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
171
172 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
173 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
174 current_block = find_pdom (current_block))
175 {
176 edge e = INDEX_EDGE (el, edge_index);
177
178 /* For abnormal edges, we don't make current_block control
179 dependent because instructions that throw are always necessary
180 anyway. */
181 if (e->flags & EDGE_ABNORMAL)
182 continue;
183
184 set_control_dependence_map_bit (current_block, edge_index);
185 }
186 }
187
188
189 /* Record all blocks' control dependences on all edges in the edge
190 list EL, ala Morgan, Section 3.6. */
191
192 static void
193 find_all_control_dependences (struct edge_list *el)
194 {
195 int i;
196
197 for (i = 0; i < NUM_EDGES (el); ++i)
198 find_control_dependence (el, i);
199 }
200
201 /* If STMT is not already marked necessary, mark it, and add it to the
202 worklist if ADD_TO_WORKLIST is true. */
203 static inline void
204 mark_stmt_necessary (gimple stmt, bool add_to_worklist)
205 {
206 gcc_assert (stmt);
207
208 if (gimple_plf (stmt, STMT_NECESSARY))
209 return;
210
211 if (dump_file && (dump_flags & TDF_DETAILS))
212 {
213 fprintf (dump_file, "Marking useful stmt: ");
214 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
215 fprintf (dump_file, "\n");
216 }
217
218 gimple_set_plf (stmt, STMT_NECESSARY, true);
219 if (add_to_worklist)
220 VEC_safe_push (gimple, heap, worklist, stmt);
221 }
222
223
224 /* Mark the statement defining operand OP as necessary. */
225
226 static inline void
227 mark_operand_necessary (tree op)
228 {
229 gimple stmt;
230 int ver;
231
232 gcc_assert (op);
233
234 ver = SSA_NAME_VERSION (op);
235 if (TEST_BIT (processed, ver))
236 {
237 stmt = SSA_NAME_DEF_STMT (op);
238 gcc_assert (gimple_nop_p (stmt)
239 || gimple_plf (stmt, STMT_NECESSARY));
240 return;
241 }
242 SET_BIT (processed, ver);
243
244 stmt = SSA_NAME_DEF_STMT (op);
245 gcc_assert (stmt);
246
247 if (gimple_plf (stmt, STMT_NECESSARY) || gimple_nop_p (stmt))
248 return;
249
250 if (dump_file && (dump_flags & TDF_DETAILS))
251 {
252 fprintf (dump_file, "marking necessary through ");
253 print_generic_expr (dump_file, op, 0);
254 fprintf (dump_file, " stmt ");
255 print_gimple_stmt (dump_file, stmt, 0, 0);
256 }
257
258 gimple_set_plf (stmt, STMT_NECESSARY, true);
259 VEC_safe_push (gimple, heap, worklist, stmt);
260 }
261
262
263 /* Mark STMT as necessary if it obviously is. Add it to the worklist if
264 it can make other statements necessary.
265
266 If AGGRESSIVE is false, control statements are conservatively marked as
267 necessary. */
268
269 static void
270 mark_stmt_if_obviously_necessary (gimple stmt, bool aggressive)
271 {
272 tree lhs = NULL_TREE;
273 /* With non-call exceptions, we have to assume that all statements could
274 throw. If a statement may throw, it is inherently necessary. */
275 if (flag_non_call_exceptions
276 && stmt_could_throw_p (stmt))
277 {
278 mark_stmt_necessary (stmt, true);
279 return;
280 }
281
282 /* Statements that are implicitly live. Most function calls, asm
283 and return statements are required. Labels and GIMPLE_BIND nodes
284 are kept because they are control flow, and we have no way of
285 knowing whether they can be removed. DCE can eliminate all the
286 other statements in a block, and CFG can then remove the block
287 and labels. */
288 switch (gimple_code (stmt))
289 {
290 case GIMPLE_PREDICT:
291 case GIMPLE_LABEL:
292 mark_stmt_necessary (stmt, false);
293 return;
294
295 case GIMPLE_ASM:
296 case GIMPLE_RESX:
297 case GIMPLE_RETURN:
298 case GIMPLE_CHANGE_DYNAMIC_TYPE:
299 mark_stmt_necessary (stmt, true);
300 return;
301
302 case GIMPLE_CALL:
303 /* Most, but not all function calls are required. Function calls that
304 produce no result and have no side effects (i.e. const pure
305 functions) are unnecessary. */
306 if (gimple_has_side_effects (stmt))
307 {
308 mark_stmt_necessary (stmt, true);
309 return;
310 }
311 if (!gimple_call_lhs (stmt))
312 return;
313 lhs = gimple_call_lhs (stmt);
314 /* Fall through */
315
316 case GIMPLE_ASSIGN:
317 if (!lhs)
318 lhs = gimple_assign_lhs (stmt);
319 /* These values are mildly magic bits of the EH runtime. We can't
320 see the entire lifetime of these values until landing pads are
321 generated. */
322 if (TREE_CODE (lhs) == EXC_PTR_EXPR
323 || TREE_CODE (lhs) == FILTER_EXPR)
324 {
325 mark_stmt_necessary (stmt, true);
326 return;
327 }
328 break;
329
330 case GIMPLE_GOTO:
331 gcc_assert (!simple_goto_p (stmt));
332 mark_stmt_necessary (stmt, true);
333 return;
334
335 case GIMPLE_COND:
336 gcc_assert (EDGE_COUNT (gimple_bb (stmt)->succs) == 2);
337 /* Fall through. */
338
339 case GIMPLE_SWITCH:
340 if (! aggressive)
341 mark_stmt_necessary (stmt, true);
342 break;
343
344 default:
345 break;
346 }
347
348 /* If the statement has volatile operands, it needs to be preserved.
349 Same for statements that can alter control flow in unpredictable
350 ways. */
351 if (gimple_has_volatile_ops (stmt) || is_ctrl_altering_stmt (stmt))
352 {
353 mark_stmt_necessary (stmt, true);
354 return;
355 }
356
357 if (is_hidden_global_store (stmt))
358 {
359 mark_stmt_necessary (stmt, true);
360 return;
361 }
362
363 return;
364 }
365
366
367 /* Make corresponding control dependent edges necessary. We only
368 have to do this once for each basic block, so we clear the bitmap
369 after we're done. */
370 static void
371 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el)
372 {
373 bitmap_iterator bi;
374 unsigned edge_number;
375
376 gcc_assert (bb != EXIT_BLOCK_PTR);
377
378 if (bb == ENTRY_BLOCK_PTR)
379 return;
380
381 EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
382 {
383 gimple stmt;
384 basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
385
386 if (TEST_BIT (last_stmt_necessary, cd_bb->index))
387 continue;
388 SET_BIT (last_stmt_necessary, cd_bb->index);
389
390 stmt = last_stmt (cd_bb);
391 if (stmt && is_ctrl_stmt (stmt))
392 mark_stmt_necessary (stmt, true);
393 }
394 }
395
396
397 /* Find obviously necessary statements. These are things like most function
398 calls, and stores to file level variables.
399
400 If EL is NULL, control statements are conservatively marked as
401 necessary. Otherwise it contains the list of edges used by control
402 dependence analysis. */
403
404 static void
405 find_obviously_necessary_stmts (struct edge_list *el)
406 {
407 basic_block bb;
408 gimple_stmt_iterator gsi;
409 edge e;
410 gimple phi, stmt;
411
412 FOR_EACH_BB (bb)
413 {
414 /* PHI nodes are never inherently necessary. */
415 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
416 {
417 phi = gsi_stmt (gsi);
418 gimple_set_plf (phi, STMT_NECESSARY, false);
419 }
420
421 /* Check all statements in the block. */
422 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
423 {
424 stmt = gsi_stmt (gsi);
425 gimple_set_plf (stmt, STMT_NECESSARY, false);
426 mark_stmt_if_obviously_necessary (stmt, el != NULL);
427 }
428 }
429
430 if (el)
431 {
432 /* Prevent the loops from being removed. We must keep the infinite loops,
433 and we currently do not have a means to recognize the finite ones. */
434 FOR_EACH_BB (bb)
435 {
436 edge_iterator ei;
437 FOR_EACH_EDGE (e, ei, bb->succs)
438 if (e->flags & EDGE_DFS_BACK)
439 mark_control_dependent_edges_necessary (e->dest, el);
440 }
441 }
442 }
443
444
445 /* Return true if REF is based on an aliased base, otherwise false. */
446
447 static bool
448 ref_may_be_aliased (tree ref)
449 {
450 while (handled_component_p (ref))
451 ref = TREE_OPERAND (ref, 0);
452 return !(DECL_P (ref)
453 && !may_be_aliased (ref));
454 }
455
456 struct ref_data {
457 tree base;
458 HOST_WIDE_INT size;
459 HOST_WIDE_INT offset;
460 HOST_WIDE_INT max_size;
461 };
462
463 static bitmap visited = NULL;
464 static unsigned int longest_chain = 0;
465 static unsigned int total_chain = 0;
466 static bool chain_ovfl = false;
467
468 /* Worker for the walker that marks reaching definitions of REF,
469 which is based on a non-aliased decl, necessary. It returns
470 true whenever the defining statement of the current VDEF is
471 a kill for REF, as no dominating may-defs are necessary for REF
472 anymore. DATA points to cached get_ref_base_and_extent data for REF. */
473
474 static bool
475 mark_aliased_reaching_defs_necessary_1 (tree ref, tree vdef, void *data)
476 {
477 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
478 struct ref_data *refd = (struct ref_data *)data;
479
480 /* All stmts we visit are necessary. */
481 mark_operand_necessary (vdef);
482
483 /* If the stmt lhs kills ref, then we can stop walking. */
484 if (gimple_has_lhs (def_stmt)
485 && TREE_CODE (gimple_get_lhs (def_stmt)) != SSA_NAME)
486 {
487 tree base, lhs = gimple_get_lhs (def_stmt);
488 HOST_WIDE_INT size, offset, max_size;
489 base = get_ref_base_and_extent (lhs, &offset, &size, &max_size);
490 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
491 so base == refd->base does not always hold. */
492 if (base == refd->base)
493 {
494 /* For a must-alias check we need to be able to constrain
495 the accesses properly. */
496 if (size != -1 && size == max_size
497 && refd->max_size != -1)
498 {
499 if (offset <= refd->offset
500 && offset + size >= refd->offset + refd->max_size)
501 return true;
502 }
503 /* Or they need to be exactly the same. */
504 else if (operand_equal_p (ref, lhs, 0))
505 return true;
506 }
507 }
508
509 /* Otherwise keep walking. */
510 return false;
511 }
512
513 static void
514 mark_aliased_reaching_defs_necessary (gimple stmt, tree ref)
515 {
516 struct ref_data refd;
517 unsigned int chain;
518 gcc_assert (!chain_ovfl);
519 refd.base = get_ref_base_and_extent (ref, &refd.offset, &refd.size,
520 &refd.max_size);
521 chain = walk_aliased_vdefs (ref, gimple_vuse (stmt),
522 mark_aliased_reaching_defs_necessary_1,
523 &refd, NULL);
524 if (chain > longest_chain)
525 longest_chain = chain;
526 total_chain += chain;
527 }
528
529 /* Worker for the walker that marks reaching definitions of REF, which
530 is not based on a non-aliased decl. For simplicity we need to end
531 up marking all may-defs necessary that are not based on a non-aliased
532 decl. The only job of this walker is to skip may-defs based on
533 a non-aliased decl. */
534
535 static bool
536 mark_all_reaching_defs_necessary_1 (tree ref ATTRIBUTE_UNUSED,
537 tree vdef, void *data ATTRIBUTE_UNUSED)
538 {
539 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
540
541 /* We have to skip already visited (and thus necessary) statements
542 to make the chaining work after we dropped back to simple mode. */
543 if (chain_ovfl
544 && TEST_BIT (processed, SSA_NAME_VERSION (vdef)))
545 {
546 gcc_assert (gimple_nop_p (def_stmt)
547 || gimple_plf (def_stmt, STMT_NECESSARY));
548 return false;
549 }
550
551 /* We want to skip stores to non-aliased variables. */
552 if (!chain_ovfl
553 && gimple_assign_single_p (def_stmt))
554 {
555 tree lhs = gimple_assign_lhs (def_stmt);
556 if (!ref_may_be_aliased (lhs))
557 return false;
558 }
559
560 /* But can stop after the first necessary statement. */
561 mark_operand_necessary (vdef);
562 return true;
563 }
564
565 static void
566 mark_all_reaching_defs_necessary (gimple stmt)
567 {
568 walk_aliased_vdefs (NULL, gimple_vuse (stmt),
569 mark_all_reaching_defs_necessary_1, NULL, &visited);
570 }
571
572 /* Propagate necessity using the operands of necessary statements.
573 Process the uses on each statement in the worklist, and add all
574 feeding statements which contribute to the calculation of this
575 value to the worklist.
576
577 In conservative mode, EL is NULL. */
578
579 static void
580 propagate_necessity (struct edge_list *el)
581 {
582 gimple stmt;
583 bool aggressive = (el ? true : false);
584
585 if (dump_file && (dump_flags & TDF_DETAILS))
586 fprintf (dump_file, "\nProcessing worklist:\n");
587
588 while (VEC_length (gimple, worklist) > 0)
589 {
590 /* Take STMT from worklist. */
591 stmt = VEC_pop (gimple, worklist);
592
593 if (dump_file && (dump_flags & TDF_DETAILS))
594 {
595 fprintf (dump_file, "processing: ");
596 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
597 fprintf (dump_file, "\n");
598 }
599
600 if (aggressive)
601 {
602 /* Mark the last statements of the basic blocks that the block
603 containing STMT is control dependent on, but only if we haven't
604 already done so. */
605 basic_block bb = gimple_bb (stmt);
606 if (bb != ENTRY_BLOCK_PTR
607 && ! TEST_BIT (visited_control_parents, bb->index))
608 {
609 SET_BIT (visited_control_parents, bb->index);
610 mark_control_dependent_edges_necessary (bb, el);
611 }
612 }
613
614 if (gimple_code (stmt) == GIMPLE_PHI
615 /* We do not process virtual PHI nodes nor do we track their
616 necessity. */
617 && is_gimple_reg (gimple_phi_result (stmt)))
618 {
619 /* PHI nodes are somewhat special in that each PHI alternative has
620 data and control dependencies. All the statements feeding the
621 PHI node's arguments are always necessary. In aggressive mode,
622 we also consider the control dependent edges leading to the
623 predecessor block associated with each PHI alternative as
624 necessary. */
625 size_t k;
626
627 for (k = 0; k < gimple_phi_num_args (stmt); k++)
628 {
629 tree arg = PHI_ARG_DEF (stmt, k);
630 if (TREE_CODE (arg) == SSA_NAME)
631 mark_operand_necessary (arg);
632 }
633
634 if (aggressive)
635 {
636 for (k = 0; k < gimple_phi_num_args (stmt); k++)
637 {
638 basic_block arg_bb = gimple_phi_arg_edge (stmt, k)->src;
639 if (arg_bb != ENTRY_BLOCK_PTR
640 && ! TEST_BIT (visited_control_parents, arg_bb->index))
641 {
642 SET_BIT (visited_control_parents, arg_bb->index);
643 mark_control_dependent_edges_necessary (arg_bb, el);
644 }
645 }
646 }
647 }
648 else
649 {
650 /* Propagate through the operands. Examine all the USE, VUSE and
651 VDEF operands in this statement. Mark all the statements
652 which feed this statement's uses as necessary. */
653 ssa_op_iter iter;
654 tree use;
655
656 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
657 mark_operand_necessary (use);
658
659 use = gimple_vuse (stmt);
660 if (!use)
661 continue;
662
663 /* If we dropped to simple mode make all immediately
664 reachable definitions necessary. */
665 if (chain_ovfl)
666 {
667 mark_all_reaching_defs_necessary (stmt);
668 continue;
669 }
670
671 /* For statements that may load from memory (have a VUSE) we
672 have to mark all reaching (may-)definitions as necessary.
673 We partition this task into two cases:
674 1) explicit loads based on decls that are not aliased
675 2) implicit loads (like calls) and explicit loads not
676 based on decls that are not aliased (like indirect
677 references or loads from globals)
678 For 1) we mark all reaching may-defs as necessary, stopping
679 at dominating kills. For 2) we want to mark all dominating
680 references necessary, but non-aliased ones which we handle
681 in 1). Instead of doing so for each load we rely on the
682 worklist to eventually reach all dominating references and
683 instead just mark the immediately dominating references
684 as necessary (but skipping non-aliased ones). */
685
686 if (is_gimple_call (stmt))
687 {
688 unsigned i;
689
690 /* Calls implicitly load from memory, their arguments
691 in addition may explicitly perform memory loads.
692 This also ensures propagation for case 2 for stores. */
693 mark_all_reaching_defs_necessary (stmt);
694 for (i = 0; i < gimple_call_num_args (stmt); ++i)
695 {
696 tree arg = gimple_call_arg (stmt, i);
697 if (TREE_CODE (arg) == SSA_NAME
698 || is_gimple_min_invariant (arg))
699 continue;
700 if (!ref_may_be_aliased (arg))
701 mark_aliased_reaching_defs_necessary (stmt, arg);
702 }
703 }
704 else if (gimple_assign_single_p (stmt))
705 {
706 tree lhs, rhs;
707 bool rhs_aliased = false;
708 /* If this is a load mark things necessary. */
709 rhs = gimple_assign_rhs1 (stmt);
710 if (TREE_CODE (rhs) != SSA_NAME
711 && !is_gimple_min_invariant (rhs))
712 {
713 if (!ref_may_be_aliased (rhs))
714 mark_aliased_reaching_defs_necessary (stmt, rhs);
715 else
716 rhs_aliased = true;
717 }
718 /* If this is an aliased store, mark things necessary.
719 This is where we make sure to propagate for case 2. */
720 lhs = gimple_assign_lhs (stmt);
721 if (rhs_aliased
722 || (TREE_CODE (lhs) != SSA_NAME
723 && ref_may_be_aliased (lhs)))
724 mark_all_reaching_defs_necessary (stmt);
725 }
726 else if (gimple_code (stmt) == GIMPLE_RETURN)
727 {
728 tree rhs = gimple_return_retval (stmt);
729 /* A return statement may perform a load. */
730 if (TREE_CODE (rhs) != SSA_NAME
731 && !is_gimple_min_invariant (rhs))
732 {
733 if (!ref_may_be_aliased (rhs))
734 mark_aliased_reaching_defs_necessary (stmt, rhs);
735 else
736 mark_all_reaching_defs_necessary (stmt);
737 }
738 }
739 else if (gimple_code (stmt) == GIMPLE_ASM)
740 {
741 unsigned i;
742 mark_all_reaching_defs_necessary (stmt);
743 /* Inputs may perform loads. */
744 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
745 {
746 tree op = TREE_VALUE (gimple_asm_input_op (stmt, i));
747 if (TREE_CODE (op) != SSA_NAME
748 && !is_gimple_min_invariant (op)
749 && !ref_may_be_aliased (op))
750 mark_aliased_reaching_defs_necessary (stmt, op);
751 }
752 }
753 else
754 gcc_unreachable ();
755
756 /* If we over-used our alias oracle budget drop to simple
757 mode. The cost metric allows quadratic behavior up to
758 a constant maximal chain and after that falls back to
759 super-linear complexity. */
760 if (longest_chain > 256
761 && total_chain > 256 * longest_chain)
762 {
763 chain_ovfl = true;
764 if (visited)
765 bitmap_clear (visited);
766 }
767 }
768 }
769 }
770
771
772 /* Remove dead PHI nodes from block BB. */
773
774 static bool
775 remove_dead_phis (basic_block bb)
776 {
777 bool something_changed = false;
778 gimple_seq phis;
779 gimple phi;
780 gimple_stmt_iterator gsi;
781 phis = phi_nodes (bb);
782
783 for (gsi = gsi_start (phis); !gsi_end_p (gsi);)
784 {
785 stats.total_phis++;
786 phi = gsi_stmt (gsi);
787
788 /* We do not track necessity of virtual PHI nodes. Instead do
789 very simple dead PHI removal here. */
790 if (!is_gimple_reg (gimple_phi_result (phi)))
791 {
792 unsigned i;
793 tree vuse;
794
795 /* Virtual PHI nodes with one or identical arguments
796 can be removed. */
797 vuse = gimple_phi_arg_def (phi, 0);
798 for (i = 1; i < gimple_phi_num_args (phi); ++i)
799 {
800 if (gimple_phi_arg_def (phi, i) != vuse)
801 {
802 vuse = NULL_TREE;
803 break;
804 }
805 }
806 if (vuse != NULL_TREE)
807 {
808 tree vdef = gimple_phi_result (phi);
809 use_operand_p use_p;
810 imm_use_iterator iter;
811 gimple use_stmt;
812 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vdef)
813 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
814 SET_USE (use_p, vuse);
815 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vdef))
816 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 1;
817 }
818 else
819 gimple_set_plf (phi, STMT_NECESSARY, true);
820 }
821
822 if (!gimple_plf (phi, STMT_NECESSARY))
823 {
824 something_changed = true;
825 if (dump_file && (dump_flags & TDF_DETAILS))
826 {
827 fprintf (dump_file, "Deleting : ");
828 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
829 fprintf (dump_file, "\n");
830 }
831
832 remove_phi_node (&gsi, true);
833 stats.removed_phis++;
834 continue;
835 }
836
837 gsi_next (&gsi);
838 }
839 return something_changed;
840 }
841
842
843 /* Remove dead statement pointed to by iterator I. Receives the basic block BB
844 containing I so that we don't have to look it up. */
845
846 static void
847 remove_dead_stmt (gimple_stmt_iterator *i, basic_block bb)
848 {
849 gimple stmt = gsi_stmt (*i);
850
851 if (dump_file && (dump_flags & TDF_DETAILS))
852 {
853 fprintf (dump_file, "Deleting : ");
854 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
855 fprintf (dump_file, "\n");
856 }
857
858 stats.removed++;
859
860 /* If we have determined that a conditional branch statement contributes
861 nothing to the program, then we not only remove it, but we also change
862 the flow graph so that the current block will simply fall-thru to its
863 immediate post-dominator. The blocks we are circumventing will be
864 removed by cleanup_tree_cfg if this change in the flow graph makes them
865 unreachable. */
866 if (is_ctrl_stmt (stmt))
867 {
868 basic_block post_dom_bb;
869
870 /* The post dominance info has to be up-to-date. */
871 gcc_assert (dom_info_state (CDI_POST_DOMINATORS) == DOM_OK);
872 /* Get the immediate post dominator of bb. */
873 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
874
875 /* There are three particularly problematical cases.
876
877 1. Blocks that do not have an immediate post dominator. This
878 can happen with infinite loops.
879
880 2. Blocks that are only post dominated by the exit block. These
881 can also happen for infinite loops as we create fake edges
882 in the dominator tree.
883
884 3. If the post dominator has PHI nodes we may be able to compute
885 the right PHI args for them.
886
887 In each of these cases we must remove the control statement
888 as it may reference SSA_NAMEs which are going to be removed and
889 we remove all but one outgoing edge from the block. */
890 if (! post_dom_bb
891 || post_dom_bb == EXIT_BLOCK_PTR
892 || phi_nodes (post_dom_bb))
893 ;
894 else
895 {
896 /* Redirect the first edge out of BB to reach POST_DOM_BB. */
897 redirect_edge_and_branch (EDGE_SUCC (bb, 0), post_dom_bb);
898 PENDING_STMT (EDGE_SUCC (bb, 0)) = NULL;
899
900 /* It is not sufficient to set cfg_altered below during edge
901 removal, in case BB has two successors and one of them
902 is POST_DOM_BB. */
903 cfg_altered = true;
904 }
905 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
906 EDGE_SUCC (bb, 0)->count = bb->count;
907
908 /* The edge is no longer associated with a conditional, so it does
909 not have TRUE/FALSE flags. */
910 EDGE_SUCC (bb, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
911
912 /* The lone outgoing edge from BB will be a fallthru edge. */
913 EDGE_SUCC (bb, 0)->flags |= EDGE_FALLTHRU;
914
915 /* Remove the remaining the outgoing edges. */
916 while (!single_succ_p (bb))
917 {
918 /* FIXME. When we remove the edge, we modify the CFG, which
919 in turn modifies the dominator and post-dominator tree.
920 Is it safe to postpone recomputing the dominator and
921 post-dominator tree until the end of this pass given that
922 the post-dominators are used above? */
923 cfg_altered = true;
924 remove_edge (EDGE_SUCC (bb, 1));
925 }
926 }
927
928 unlink_stmt_vdef (stmt);
929 gsi_remove (i, true);
930 release_defs (stmt);
931 }
932
933
934 /* Eliminate unnecessary statements. Any instruction not marked as necessary
935 contributes nothing to the program, and can be deleted. */
936
937 static bool
938 eliminate_unnecessary_stmts (void)
939 {
940 bool something_changed = false;
941 basic_block bb;
942 gimple_stmt_iterator gsi;
943 gimple stmt;
944 tree call;
945
946 if (dump_file && (dump_flags & TDF_DETAILS))
947 fprintf (dump_file, "\nEliminating unnecessary statements:\n");
948
949 clear_special_calls ();
950
951 FOR_EACH_BB (bb)
952 {
953 /* Remove dead statements. */
954 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
955 {
956 stmt = gsi_stmt (gsi);
957
958 stats.total++;
959
960 /* If GSI is not necessary then remove it. */
961 if (!gimple_plf (stmt, STMT_NECESSARY))
962 {
963 remove_dead_stmt (&gsi, bb);
964 something_changed = true;
965 }
966 else if (is_gimple_call (stmt))
967 {
968 call = gimple_call_fndecl (stmt);
969 if (call)
970 {
971 tree name;
972
973 /* When LHS of var = call (); is dead, simplify it into
974 call (); saving one operand. */
975 name = gimple_call_lhs (stmt);
976 if (name && TREE_CODE (name) == SSA_NAME
977 && !TEST_BIT (processed, SSA_NAME_VERSION (name)))
978 {
979 something_changed = true;
980 if (dump_file && (dump_flags & TDF_DETAILS))
981 {
982 fprintf (dump_file, "Deleting LHS of call: ");
983 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
984 fprintf (dump_file, "\n");
985 }
986
987 push_stmt_changes (gsi_stmt_ptr (&gsi));
988 gimple_call_set_lhs (stmt, NULL_TREE);
989 maybe_clean_or_replace_eh_stmt (stmt, stmt);
990 pop_stmt_changes (gsi_stmt_ptr (&gsi));
991 release_ssa_name (name);
992 }
993 notice_special_calls (stmt);
994 }
995 gsi_next (&gsi);
996 }
997 else
998 {
999 gsi_next (&gsi);
1000 }
1001 }
1002 }
1003
1004 FOR_EACH_BB (bb)
1005 {
1006 /* Remove dead PHI nodes. */
1007 something_changed |= remove_dead_phis (bb);
1008 }
1009
1010 return something_changed;
1011 }
1012
1013
1014 /* Print out removed statement statistics. */
1015
1016 static void
1017 print_stats (void)
1018 {
1019 float percg;
1020
1021 percg = ((float) stats.removed / (float) stats.total) * 100;
1022 fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
1023 stats.removed, stats.total, (int) percg);
1024
1025 if (stats.total_phis == 0)
1026 percg = 0;
1027 else
1028 percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
1029
1030 fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
1031 stats.removed_phis, stats.total_phis, (int) percg);
1032 }
1033
1034 /* Initialization for this pass. Set up the used data structures. */
1035
1036 static void
1037 tree_dce_init (bool aggressive)
1038 {
1039 memset ((void *) &stats, 0, sizeof (stats));
1040
1041 if (aggressive)
1042 {
1043 int i;
1044
1045 control_dependence_map = XNEWVEC (bitmap, last_basic_block);
1046 for (i = 0; i < last_basic_block; ++i)
1047 control_dependence_map[i] = BITMAP_ALLOC (NULL);
1048
1049 last_stmt_necessary = sbitmap_alloc (last_basic_block);
1050 sbitmap_zero (last_stmt_necessary);
1051 }
1052
1053 processed = sbitmap_alloc (num_ssa_names + 1);
1054 sbitmap_zero (processed);
1055
1056 worklist = VEC_alloc (gimple, heap, 64);
1057 cfg_altered = false;
1058 }
1059
1060 /* Cleanup after this pass. */
1061
1062 static void
1063 tree_dce_done (bool aggressive)
1064 {
1065 if (aggressive)
1066 {
1067 int i;
1068
1069 for (i = 0; i < last_basic_block; ++i)
1070 BITMAP_FREE (control_dependence_map[i]);
1071 free (control_dependence_map);
1072
1073 sbitmap_free (visited_control_parents);
1074 sbitmap_free (last_stmt_necessary);
1075 }
1076
1077 sbitmap_free (processed);
1078
1079 VEC_free (gimple, heap, worklist);
1080 }
1081
1082 /* Main routine to eliminate dead code.
1083
1084 AGGRESSIVE controls the aggressiveness of the algorithm.
1085 In conservative mode, we ignore control dependence and simply declare
1086 all but the most trivially dead branches necessary. This mode is fast.
1087 In aggressive mode, control dependences are taken into account, which
1088 results in more dead code elimination, but at the cost of some time.
1089
1090 FIXME: Aggressive mode before PRE doesn't work currently because
1091 the dominance info is not invalidated after DCE1. This is
1092 not an issue right now because we only run aggressive DCE
1093 as the last tree SSA pass, but keep this in mind when you
1094 start experimenting with pass ordering. */
1095
1096 static unsigned int
1097 perform_tree_ssa_dce (bool aggressive)
1098 {
1099 struct edge_list *el = NULL;
1100 bool something_changed = 0;
1101
1102 tree_dce_init (aggressive);
1103
1104 if (aggressive)
1105 {
1106 /* Compute control dependence. */
1107 timevar_push (TV_CONTROL_DEPENDENCES);
1108 calculate_dominance_info (CDI_POST_DOMINATORS);
1109 el = create_edge_list ();
1110 find_all_control_dependences (el);
1111 timevar_pop (TV_CONTROL_DEPENDENCES);
1112
1113 visited_control_parents = sbitmap_alloc (last_basic_block);
1114 sbitmap_zero (visited_control_parents);
1115
1116 mark_dfs_back_edges ();
1117 }
1118
1119 find_obviously_necessary_stmts (el);
1120
1121 longest_chain = 0;
1122 total_chain = 0;
1123 chain_ovfl = false;
1124 propagate_necessity (el);
1125 BITMAP_FREE (visited);
1126
1127 something_changed |= eliminate_unnecessary_stmts ();
1128 something_changed |= cfg_altered;
1129
1130 /* We do not update postdominators, so free them unconditionally. */
1131 free_dominance_info (CDI_POST_DOMINATORS);
1132
1133 /* If we removed paths in the CFG, then we need to update
1134 dominators as well. I haven't investigated the possibility
1135 of incrementally updating dominators. */
1136 if (cfg_altered)
1137 free_dominance_info (CDI_DOMINATORS);
1138
1139 statistics_counter_event (cfun, "Statements deleted", stats.removed);
1140 statistics_counter_event (cfun, "PHI nodes deleted", stats.removed_phis);
1141
1142 /* Debugging dumps. */
1143 if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
1144 print_stats ();
1145
1146 tree_dce_done (aggressive);
1147
1148 free_edge_list (el);
1149
1150 if (something_changed)
1151 return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
1152 | TODO_remove_unused_locals);
1153 else
1154 return 0;
1155 }
1156
1157 /* Pass entry points. */
1158 static unsigned int
1159 tree_ssa_dce (void)
1160 {
1161 return perform_tree_ssa_dce (/*aggressive=*/false);
1162 }
1163
1164 static unsigned int
1165 tree_ssa_dce_loop (void)
1166 {
1167 unsigned int todo;
1168 todo = perform_tree_ssa_dce (/*aggressive=*/false);
1169 if (todo)
1170 {
1171 free_numbers_of_iterations_estimates ();
1172 scev_reset ();
1173 }
1174 return todo;
1175 }
1176
1177 static unsigned int
1178 tree_ssa_cd_dce (void)
1179 {
1180 return perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
1181 }
1182
1183 static bool
1184 gate_dce (void)
1185 {
1186 return flag_tree_dce != 0;
1187 }
1188
1189 struct gimple_opt_pass pass_dce =
1190 {
1191 {
1192 GIMPLE_PASS,
1193 "dce", /* name */
1194 gate_dce, /* gate */
1195 tree_ssa_dce, /* execute */
1196 NULL, /* sub */
1197 NULL, /* next */
1198 0, /* static_pass_number */
1199 TV_TREE_DCE, /* tv_id */
1200 PROP_cfg | PROP_ssa, /* properties_required */
1201 0, /* properties_provided */
1202 0, /* properties_destroyed */
1203 0, /* todo_flags_start */
1204 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1205 }
1206 };
1207
1208 struct gimple_opt_pass pass_dce_loop =
1209 {
1210 {
1211 GIMPLE_PASS,
1212 "dceloop", /* name */
1213 gate_dce, /* gate */
1214 tree_ssa_dce_loop, /* execute */
1215 NULL, /* sub */
1216 NULL, /* next */
1217 0, /* static_pass_number */
1218 TV_TREE_DCE, /* tv_id */
1219 PROP_cfg | PROP_ssa, /* properties_required */
1220 0, /* properties_provided */
1221 0, /* properties_destroyed */
1222 0, /* todo_flags_start */
1223 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1224 }
1225 };
1226
1227 struct gimple_opt_pass pass_cd_dce =
1228 {
1229 {
1230 GIMPLE_PASS,
1231 "cddce", /* name */
1232 gate_dce, /* gate */
1233 tree_ssa_cd_dce, /* execute */
1234 NULL, /* sub */
1235 NULL, /* next */
1236 0, /* static_pass_number */
1237 TV_TREE_CD_DCE, /* tv_id */
1238 PROP_cfg | PROP_ssa, /* properties_required */
1239 0, /* properties_provided */
1240 0, /* properties_destroyed */
1241 0, /* todo_flags_start */
1242 TODO_dump_func | TODO_verify_ssa
1243 | TODO_verify_flow /* todo_flags_finish */
1244 }
1245 };