re PR c++/24780 (ICE set_mem_attributes_minus_bitpos)
[gcc.git] / gcc / tree-ssa-dce.c
1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Ben Elliston <bje@redhat.com>
4 and Andrew MacLeod <amacleod@redhat.com>
5 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 2, or (at your option) any
12 later version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
22 02110-1301, USA. */
23
24 /* Dead code elimination.
25
26 References:
27
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
30
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
33
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
37 impact on the output.
38
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
45
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "ggc.h"
51
52 /* These RTL headers are needed for basic-block.h. */
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "hard-reg-set.h"
56 #include "obstack.h"
57 #include "basic-block.h"
58
59 #include "tree.h"
60 #include "diagnostic.h"
61 #include "tree-flow.h"
62 #include "tree-gimple.h"
63 #include "tree-dump.h"
64 #include "tree-pass.h"
65 #include "timevar.h"
66 #include "flags.h"
67 #include "cfgloop.h"
68 #include "tree-scalar-evolution.h"
69 \f
70 static struct stmt_stats
71 {
72 int total;
73 int total_phis;
74 int removed;
75 int removed_phis;
76 } stats;
77
78 static VEC(tree,heap) *worklist;
79
80 /* Vector indicating an SSA name has already been processed and marked
81 as necessary. */
82 static sbitmap processed;
83
84 /* Vector indicating that last_stmt if a basic block has already been
85 marked as necessary. */
86 static sbitmap last_stmt_necessary;
87
88 /* Before we can determine whether a control branch is dead, we need to
89 compute which blocks are control dependent on which edges.
90
91 We expect each block to be control dependent on very few edges so we
92 use a bitmap for each block recording its edges. An array holds the
93 bitmap. The Ith bit in the bitmap is set if that block is dependent
94 on the Ith edge. */
95 static bitmap *control_dependence_map;
96
97 /* Vector indicating that a basic block has already had all the edges
98 processed that it is control dependent on. */
99 static sbitmap visited_control_parents;
100
101 /* TRUE if this pass alters the CFG (by removing control statements).
102 FALSE otherwise.
103
104 If this pass alters the CFG, then it will arrange for the dominators
105 to be recomputed. */
106 static bool cfg_altered;
107
108 /* Execute CODE for each edge (given number EDGE_NUMBER within the CODE)
109 for which the block with index N is control dependent. */
110 #define EXECUTE_IF_CONTROL_DEPENDENT(N, EDGE_NUMBER, CODE) \
111 { \
112 bitmap_iterator bi; \
113 \
114 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[N], 0, EDGE_NUMBER, bi) \
115 { \
116 CODE; \
117 } \
118 }
119
120 /* Local function prototypes. */
121 static inline void set_control_dependence_map_bit (basic_block, int);
122 static inline void clear_control_dependence_bitmap (basic_block);
123 static void find_all_control_dependences (struct edge_list *);
124 static void find_control_dependence (struct edge_list *, int);
125 static inline basic_block find_pdom (basic_block);
126
127 static inline void mark_stmt_necessary (tree, bool);
128 static inline void mark_operand_necessary (tree, bool);
129
130 static void mark_stmt_if_obviously_necessary (tree, bool);
131 static void find_obviously_necessary_stmts (struct edge_list *);
132
133 static void mark_control_dependent_edges_necessary (basic_block, struct edge_list *);
134 static void propagate_necessity (struct edge_list *);
135
136 static void eliminate_unnecessary_stmts (void);
137 static void remove_dead_phis (basic_block);
138 static void remove_dead_stmt (block_stmt_iterator *, basic_block);
139
140 static void print_stats (void);
141 static void tree_dce_init (bool);
142 static void tree_dce_done (bool);
143 \f
144 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
145 static inline void
146 set_control_dependence_map_bit (basic_block bb, int edge_index)
147 {
148 if (bb == ENTRY_BLOCK_PTR)
149 return;
150 gcc_assert (bb != EXIT_BLOCK_PTR);
151 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
152 }
153
154 /* Clear all control dependences for block BB. */
155 static inline
156 void clear_control_dependence_bitmap (basic_block bb)
157 {
158 bitmap_clear (control_dependence_map[bb->index]);
159 }
160
161 /* Record all blocks' control dependences on all edges in the edge
162 list EL, ala Morgan, Section 3.6. */
163
164 static void
165 find_all_control_dependences (struct edge_list *el)
166 {
167 int i;
168
169 for (i = 0; i < NUM_EDGES (el); ++i)
170 find_control_dependence (el, i);
171 }
172
173 /* Determine all blocks' control dependences on the given edge with edge_list
174 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
175
176 static void
177 find_control_dependence (struct edge_list *el, int edge_index)
178 {
179 basic_block current_block;
180 basic_block ending_block;
181
182 gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
183
184 if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
185 ending_block = ENTRY_BLOCK_PTR->next_bb;
186 else
187 ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
188
189 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
190 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
191 current_block = find_pdom (current_block))
192 {
193 edge e = INDEX_EDGE (el, edge_index);
194
195 /* For abnormal edges, we don't make current_block control
196 dependent because instructions that throw are always necessary
197 anyway. */
198 if (e->flags & EDGE_ABNORMAL)
199 continue;
200
201 set_control_dependence_map_bit (current_block, edge_index);
202 }
203 }
204
205 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
206 This function is necessary because some blocks have negative numbers. */
207
208 static inline basic_block
209 find_pdom (basic_block block)
210 {
211 gcc_assert (block != ENTRY_BLOCK_PTR);
212
213 if (block == EXIT_BLOCK_PTR)
214 return EXIT_BLOCK_PTR;
215 else
216 {
217 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
218 if (! bb)
219 return EXIT_BLOCK_PTR;
220 return bb;
221 }
222 }
223 \f
224 #define NECESSARY(stmt) stmt->common.asm_written_flag
225
226 /* If STMT is not already marked necessary, mark it, and add it to the
227 worklist if ADD_TO_WORKLIST is true. */
228 static inline void
229 mark_stmt_necessary (tree stmt, bool add_to_worklist)
230 {
231 gcc_assert (stmt);
232 gcc_assert (!DECL_P (stmt));
233
234 if (NECESSARY (stmt))
235 return;
236
237 if (dump_file && (dump_flags & TDF_DETAILS))
238 {
239 fprintf (dump_file, "Marking useful stmt: ");
240 print_generic_stmt (dump_file, stmt, TDF_SLIM);
241 fprintf (dump_file, "\n");
242 }
243
244 NECESSARY (stmt) = 1;
245 if (add_to_worklist)
246 VEC_safe_push (tree, heap, worklist, stmt);
247 }
248
249 /* Mark the statement defining operand OP as necessary. PHIONLY is true
250 if we should only mark it necessary if it is a phi node. */
251
252 static inline void
253 mark_operand_necessary (tree op, bool phionly)
254 {
255 tree stmt;
256 int ver;
257
258 gcc_assert (op);
259
260 ver = SSA_NAME_VERSION (op);
261 if (TEST_BIT (processed, ver))
262 return;
263 SET_BIT (processed, ver);
264
265 stmt = SSA_NAME_DEF_STMT (op);
266 gcc_assert (stmt);
267
268 if (NECESSARY (stmt)
269 || IS_EMPTY_STMT (stmt)
270 || (phionly && TREE_CODE (stmt) != PHI_NODE))
271 return;
272
273 NECESSARY (stmt) = 1;
274 VEC_safe_push (tree, heap, worklist, stmt);
275 }
276 \f
277
278 /* Mark STMT as necessary if it obviously is. Add it to the worklist if
279 it can make other statements necessary.
280
281 If AGGRESSIVE is false, control statements are conservatively marked as
282 necessary. */
283
284 static void
285 mark_stmt_if_obviously_necessary (tree stmt, bool aggressive)
286 {
287 stmt_ann_t ann;
288 tree op, def;
289 ssa_op_iter iter;
290
291 /* With non-call exceptions, we have to assume that all statements could
292 throw. If a statement may throw, it is inherently necessary. */
293 if (flag_non_call_exceptions
294 && tree_could_throw_p (stmt))
295 {
296 mark_stmt_necessary (stmt, true);
297 return;
298 }
299
300 /* Statements that are implicitly live. Most function calls, asm and return
301 statements are required. Labels and BIND_EXPR nodes are kept because
302 they are control flow, and we have no way of knowing whether they can be
303 removed. DCE can eliminate all the other statements in a block, and CFG
304 can then remove the block and labels. */
305 switch (TREE_CODE (stmt))
306 {
307 case BIND_EXPR:
308 case LABEL_EXPR:
309 case CASE_LABEL_EXPR:
310 mark_stmt_necessary (stmt, false);
311 return;
312
313 case ASM_EXPR:
314 case RESX_EXPR:
315 case RETURN_EXPR:
316 mark_stmt_necessary (stmt, true);
317 return;
318
319 case CALL_EXPR:
320 /* Most, but not all function calls are required. Function calls that
321 produce no result and have no side effects (i.e. const pure
322 functions) are unnecessary. */
323 if (TREE_SIDE_EFFECTS (stmt))
324 mark_stmt_necessary (stmt, true);
325 return;
326
327 case MODIFY_EXPR:
328 op = get_call_expr_in (stmt);
329 if (op && TREE_SIDE_EFFECTS (op))
330 {
331 mark_stmt_necessary (stmt, true);
332 return;
333 }
334
335 /* These values are mildly magic bits of the EH runtime. We can't
336 see the entire lifetime of these values until landing pads are
337 generated. */
338 if (TREE_CODE (TREE_OPERAND (stmt, 0)) == EXC_PTR_EXPR
339 || TREE_CODE (TREE_OPERAND (stmt, 0)) == FILTER_EXPR)
340 {
341 mark_stmt_necessary (stmt, true);
342 return;
343 }
344 break;
345
346 case GOTO_EXPR:
347 gcc_assert (!simple_goto_p (stmt));
348 mark_stmt_necessary (stmt, true);
349 return;
350
351 case COND_EXPR:
352 gcc_assert (EDGE_COUNT (bb_for_stmt (stmt)->succs) == 2);
353 /* Fall through. */
354
355 case SWITCH_EXPR:
356 if (! aggressive)
357 mark_stmt_necessary (stmt, true);
358 break;
359
360 default:
361 break;
362 }
363
364 ann = stmt_ann (stmt);
365
366 /* If the statement has volatile operands, it needs to be preserved.
367 Same for statements that can alter control flow in unpredictable
368 ways. */
369 if (ann->has_volatile_ops || is_ctrl_altering_stmt (stmt))
370 {
371 mark_stmt_necessary (stmt, true);
372 return;
373 }
374
375 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
376 {
377 if (is_global_var (SSA_NAME_VAR (def)))
378 {
379 mark_stmt_necessary (stmt, true);
380 return;
381 }
382 }
383 if (is_hidden_global_store (stmt))
384 {
385 mark_stmt_necessary (stmt, true);
386 return;
387 }
388
389 return;
390 }
391 \f
392 /* Find obviously necessary statements. These are things like most function
393 calls, and stores to file level variables.
394
395 If EL is NULL, control statements are conservatively marked as
396 necessary. Otherwise it contains the list of edges used by control
397 dependence analysis. */
398
399 static void
400 find_obviously_necessary_stmts (struct edge_list *el)
401 {
402 basic_block bb;
403 block_stmt_iterator i;
404 edge e;
405
406 FOR_EACH_BB (bb)
407 {
408 tree phi;
409
410 /* Check any PHI nodes in the block. */
411 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
412 {
413 NECESSARY (phi) = 0;
414
415 /* PHIs for virtual variables do not directly affect code
416 generation and need not be considered inherently necessary
417 regardless of the bits set in their decl.
418
419 Thus, we only need to mark PHIs for real variables which
420 need their result preserved as being inherently necessary. */
421 if (is_gimple_reg (PHI_RESULT (phi))
422 && is_global_var (SSA_NAME_VAR (PHI_RESULT (phi))))
423 mark_stmt_necessary (phi, true);
424 }
425
426 /* Check all statements in the block. */
427 for (i = bsi_start (bb); ! bsi_end_p (i); bsi_next (&i))
428 {
429 tree stmt = bsi_stmt (i);
430 NECESSARY (stmt) = 0;
431 mark_stmt_if_obviously_necessary (stmt, el != NULL);
432 }
433 }
434
435 if (el)
436 {
437 /* Prevent the loops from being removed. We must keep the infinite loops,
438 and we currently do not have a means to recognize the finite ones. */
439 FOR_EACH_BB (bb)
440 {
441 edge_iterator ei;
442 FOR_EACH_EDGE (e, ei, bb->succs)
443 if (e->flags & EDGE_DFS_BACK)
444 mark_control_dependent_edges_necessary (e->dest, el);
445 }
446 }
447 }
448 \f
449 /* Make corresponding control dependent edges necessary. We only
450 have to do this once for each basic block, so we clear the bitmap
451 after we're done. */
452 static void
453 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el)
454 {
455 unsigned edge_number;
456
457 gcc_assert (bb != EXIT_BLOCK_PTR);
458
459 if (bb == ENTRY_BLOCK_PTR)
460 return;
461
462 EXECUTE_IF_CONTROL_DEPENDENT (bb->index, edge_number,
463 {
464 tree t;
465 basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
466
467 if (TEST_BIT (last_stmt_necessary, cd_bb->index))
468 continue;
469 SET_BIT (last_stmt_necessary, cd_bb->index);
470
471 t = last_stmt (cd_bb);
472 if (t && is_ctrl_stmt (t))
473 mark_stmt_necessary (t, true);
474 });
475 }
476 \f
477 /* Propagate necessity using the operands of necessary statements. Process
478 the uses on each statement in the worklist, and add all feeding statements
479 which contribute to the calculation of this value to the worklist.
480
481 In conservative mode, EL is NULL. */
482
483 static void
484 propagate_necessity (struct edge_list *el)
485 {
486 tree i;
487 bool aggressive = (el ? true : false);
488
489 if (dump_file && (dump_flags & TDF_DETAILS))
490 fprintf (dump_file, "\nProcessing worklist:\n");
491
492 while (VEC_length (tree, worklist) > 0)
493 {
494 /* Take `i' from worklist. */
495 i = VEC_pop (tree, worklist);
496
497 if (dump_file && (dump_flags & TDF_DETAILS))
498 {
499 fprintf (dump_file, "processing: ");
500 print_generic_stmt (dump_file, i, TDF_SLIM);
501 fprintf (dump_file, "\n");
502 }
503
504 if (aggressive)
505 {
506 /* Mark the last statements of the basic blocks that the block
507 containing `i' is control dependent on, but only if we haven't
508 already done so. */
509 basic_block bb = bb_for_stmt (i);
510 if (bb != ENTRY_BLOCK_PTR
511 && ! TEST_BIT (visited_control_parents, bb->index))
512 {
513 SET_BIT (visited_control_parents, bb->index);
514 mark_control_dependent_edges_necessary (bb, el);
515 }
516 }
517
518 if (TREE_CODE (i) == PHI_NODE)
519 {
520 /* PHI nodes are somewhat special in that each PHI alternative has
521 data and control dependencies. All the statements feeding the
522 PHI node's arguments are always necessary. In aggressive mode,
523 we also consider the control dependent edges leading to the
524 predecessor block associated with each PHI alternative as
525 necessary. */
526 int k;
527 for (k = 0; k < PHI_NUM_ARGS (i); k++)
528 {
529 tree arg = PHI_ARG_DEF (i, k);
530 if (TREE_CODE (arg) == SSA_NAME)
531 mark_operand_necessary (arg, false);
532 }
533
534 if (aggressive)
535 {
536 for (k = 0; k < PHI_NUM_ARGS (i); k++)
537 {
538 basic_block arg_bb = PHI_ARG_EDGE (i, k)->src;
539 if (arg_bb != ENTRY_BLOCK_PTR
540 && ! TEST_BIT (visited_control_parents, arg_bb->index))
541 {
542 SET_BIT (visited_control_parents, arg_bb->index);
543 mark_control_dependent_edges_necessary (arg_bb, el);
544 }
545 }
546 }
547 }
548 else
549 {
550 /* Propagate through the operands. Examine all the USE, VUSE and
551 V_MAY_DEF operands in this statement. Mark all the statements
552 which feed this statement's uses as necessary. */
553 ssa_op_iter iter;
554 tree use;
555
556 /* The operands of V_MAY_DEF expressions are also needed as they
557 represent potential definitions that may reach this
558 statement (V_MAY_DEF operands allow us to follow def-def
559 links). */
560
561 FOR_EACH_SSA_TREE_OPERAND (use, i, iter, SSA_OP_ALL_USES)
562 mark_operand_necessary (use, false);
563 }
564 }
565 }
566
567
568 /* Propagate necessity around virtual phi nodes used in kill operands.
569 The reason this isn't done during propagate_necessity is because we don't
570 want to keep phis around that are just there for must-defs, unless we
571 absolutely have to. After we've rewritten the reaching definitions to be
572 correct in the previous part of the fixup routine, we can simply propagate
573 around the information about which of these virtual phi nodes are really
574 used, and set the NECESSARY flag accordingly.
575 Note that we do the minimum here to ensure that we keep alive the phis that
576 are actually used in the corrected SSA form. In particular, some of these
577 phis may now have all of the same operand, and will be deleted by some
578 other pass. */
579
580 static void
581 mark_really_necessary_kill_operand_phis (void)
582 {
583 basic_block bb;
584 int i;
585
586 /* Seed the worklist with the new virtual phi arguments and virtual
587 uses */
588 FOR_EACH_BB (bb)
589 {
590 block_stmt_iterator bsi;
591 tree phi;
592
593 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
594 {
595 if (!is_gimple_reg (PHI_RESULT (phi)) && NECESSARY (phi))
596 {
597 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
598 mark_operand_necessary (PHI_ARG_DEF (phi, i), true);
599 }
600 }
601
602 for (bsi = bsi_last (bb); !bsi_end_p (bsi); bsi_prev (&bsi))
603 {
604 tree stmt = bsi_stmt (bsi);
605
606 if (NECESSARY (stmt))
607 {
608 use_operand_p use_p;
609 ssa_op_iter iter;
610 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
611 SSA_OP_VIRTUAL_USES | SSA_OP_VIRTUAL_KILLS)
612 {
613 tree use = USE_FROM_PTR (use_p);
614 mark_operand_necessary (use, true);
615 }
616 }
617 }
618 }
619
620 /* Mark all virtual phis still in use as necessary, and all of their
621 arguments that are phis as necessary. */
622 while (VEC_length (tree, worklist) > 0)
623 {
624 tree use = VEC_pop (tree, worklist);
625
626 for (i = 0; i < PHI_NUM_ARGS (use); i++)
627 mark_operand_necessary (PHI_ARG_DEF (use, i), true);
628 }
629 }
630
631
632 \f
633
634 /* Eliminate unnecessary statements. Any instruction not marked as necessary
635 contributes nothing to the program, and can be deleted. */
636
637 static void
638 eliminate_unnecessary_stmts (void)
639 {
640 basic_block bb;
641 block_stmt_iterator i;
642
643 if (dump_file && (dump_flags & TDF_DETAILS))
644 fprintf (dump_file, "\nEliminating unnecessary statements:\n");
645
646 clear_special_calls ();
647 FOR_EACH_BB (bb)
648 {
649 /* Remove dead PHI nodes. */
650 remove_dead_phis (bb);
651 }
652
653 FOR_EACH_BB (bb)
654 {
655 /* Remove dead statements. */
656 for (i = bsi_start (bb); ! bsi_end_p (i) ; )
657 {
658 tree t = bsi_stmt (i);
659
660 stats.total++;
661
662 /* If `i' is not necessary then remove it. */
663 if (! NECESSARY (t))
664 remove_dead_stmt (&i, bb);
665 else
666 {
667 tree call = get_call_expr_in (t);
668 if (call)
669 notice_special_calls (call);
670 bsi_next (&i);
671 }
672 }
673 }
674 }
675 \f
676 /* Remove dead PHI nodes from block BB. */
677
678 static void
679 remove_dead_phis (basic_block bb)
680 {
681 tree prev, phi;
682
683 prev = NULL_TREE;
684 phi = phi_nodes (bb);
685 while (phi)
686 {
687 stats.total_phis++;
688
689 if (! NECESSARY (phi))
690 {
691 tree next = PHI_CHAIN (phi);
692
693 if (dump_file && (dump_flags & TDF_DETAILS))
694 {
695 fprintf (dump_file, "Deleting : ");
696 print_generic_stmt (dump_file, phi, TDF_SLIM);
697 fprintf (dump_file, "\n");
698 }
699
700 remove_phi_node (phi, prev);
701 stats.removed_phis++;
702 phi = next;
703 }
704 else
705 {
706 prev = phi;
707 phi = PHI_CHAIN (phi);
708 }
709 }
710 }
711 \f
712 /* Remove dead statement pointed to by iterator I. Receives the basic block BB
713 containing I so that we don't have to look it up. */
714
715 static void
716 remove_dead_stmt (block_stmt_iterator *i, basic_block bb)
717 {
718 tree t = bsi_stmt (*i);
719 def_operand_p def_p;
720
721 ssa_op_iter iter;
722
723 if (dump_file && (dump_flags & TDF_DETAILS))
724 {
725 fprintf (dump_file, "Deleting : ");
726 print_generic_stmt (dump_file, t, TDF_SLIM);
727 fprintf (dump_file, "\n");
728 }
729
730 stats.removed++;
731
732 /* If we have determined that a conditional branch statement contributes
733 nothing to the program, then we not only remove it, but we also change
734 the flow graph so that the current block will simply fall-thru to its
735 immediate post-dominator. The blocks we are circumventing will be
736 removed by cleaup_tree_cfg if this change in the flow graph makes them
737 unreachable. */
738 if (is_ctrl_stmt (t))
739 {
740 basic_block post_dom_bb;
741
742 /* The post dominance info has to be up-to-date. */
743 gcc_assert (dom_computed[CDI_POST_DOMINATORS] == DOM_OK);
744 /* Get the immediate post dominator of bb. */
745 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
746 /* Some blocks don't have an immediate post dominator. This can happen
747 for example with infinite loops. Removing an infinite loop is an
748 inappropriate transformation anyway... */
749 if (! post_dom_bb)
750 {
751 bsi_next (i);
752 return;
753 }
754
755 /* If the post dominator block has PHI nodes, we might be unable
756 to compute the right PHI args for them. Since the control
757 statement is unnecessary, all edges can be regarded as
758 equivalent, but we have to get rid of the condition, since it
759 might reference a variable that was determined to be
760 unnecessary and thus removed. */
761 if (phi_nodes (post_dom_bb))
762 post_dom_bb = EDGE_SUCC (bb, 0)->dest;
763 else
764 {
765 /* Redirect the first edge out of BB to reach POST_DOM_BB. */
766 redirect_edge_and_branch (EDGE_SUCC (bb, 0), post_dom_bb);
767 PENDING_STMT (EDGE_SUCC (bb, 0)) = NULL;
768 }
769 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
770 EDGE_SUCC (bb, 0)->count = bb->count;
771
772 /* The edge is no longer associated with a conditional, so it does
773 not have TRUE/FALSE flags. */
774 EDGE_SUCC (bb, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
775
776 /* If the edge reaches any block other than the exit, then it is a
777 fallthru edge; if it reaches the exit, then it is not a fallthru
778 edge. */
779 if (post_dom_bb != EXIT_BLOCK_PTR)
780 EDGE_SUCC (bb, 0)->flags |= EDGE_FALLTHRU;
781 else
782 EDGE_SUCC (bb, 0)->flags &= ~EDGE_FALLTHRU;
783
784 /* Remove the remaining the outgoing edges. */
785 while (!single_succ_p (bb))
786 {
787 /* FIXME. When we remove the edge, we modify the CFG, which
788 in turn modifies the dominator and post-dominator tree.
789 Is it safe to postpone recomputing the dominator and
790 post-dominator tree until the end of this pass given that
791 the post-dominators are used above? */
792 cfg_altered = true;
793 remove_edge (EDGE_SUCC (bb, 1));
794 }
795 }
796
797 FOR_EACH_SSA_DEF_OPERAND (def_p, t, iter, SSA_OP_VIRTUAL_DEFS)
798 {
799 tree def = DEF_FROM_PTR (def_p);
800 mark_sym_for_renaming (SSA_NAME_VAR (def));
801 }
802 bsi_remove (i);
803 release_defs (t);
804 }
805 \f
806 /* Print out removed statement statistics. */
807
808 static void
809 print_stats (void)
810 {
811 if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
812 {
813 float percg;
814
815 percg = ((float) stats.removed / (float) stats.total) * 100;
816 fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
817 stats.removed, stats.total, (int) percg);
818
819 if (stats.total_phis == 0)
820 percg = 0;
821 else
822 percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
823
824 fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
825 stats.removed_phis, stats.total_phis, (int) percg);
826 }
827 }
828 \f
829 /* Initialization for this pass. Set up the used data structures. */
830
831 static void
832 tree_dce_init (bool aggressive)
833 {
834 memset ((void *) &stats, 0, sizeof (stats));
835
836 if (aggressive)
837 {
838 int i;
839
840 control_dependence_map
841 = xmalloc (last_basic_block * sizeof (bitmap));
842 for (i = 0; i < last_basic_block; ++i)
843 control_dependence_map[i] = BITMAP_ALLOC (NULL);
844
845 last_stmt_necessary = sbitmap_alloc (last_basic_block);
846 sbitmap_zero (last_stmt_necessary);
847 }
848
849 processed = sbitmap_alloc (num_ssa_names + 1);
850 sbitmap_zero (processed);
851
852 worklist = VEC_alloc (tree, heap, 64);
853 cfg_altered = false;
854 }
855
856 /* Cleanup after this pass. */
857
858 static void
859 tree_dce_done (bool aggressive)
860 {
861 if (aggressive)
862 {
863 int i;
864
865 for (i = 0; i < last_basic_block; ++i)
866 BITMAP_FREE (control_dependence_map[i]);
867 free (control_dependence_map);
868
869 sbitmap_free (visited_control_parents);
870 sbitmap_free (last_stmt_necessary);
871 }
872
873 sbitmap_free (processed);
874
875 VEC_free (tree, heap, worklist);
876 }
877 \f
878 /* Main routine to eliminate dead code.
879
880 AGGRESSIVE controls the aggressiveness of the algorithm.
881 In conservative mode, we ignore control dependence and simply declare
882 all but the most trivially dead branches necessary. This mode is fast.
883 In aggressive mode, control dependences are taken into account, which
884 results in more dead code elimination, but at the cost of some time.
885
886 FIXME: Aggressive mode before PRE doesn't work currently because
887 the dominance info is not invalidated after DCE1. This is
888 not an issue right now because we only run aggressive DCE
889 as the last tree SSA pass, but keep this in mind when you
890 start experimenting with pass ordering. */
891
892 static void
893 perform_tree_ssa_dce (bool aggressive)
894 {
895 struct edge_list *el = NULL;
896
897 tree_dce_init (aggressive);
898
899 if (aggressive)
900 {
901 /* Compute control dependence. */
902 timevar_push (TV_CONTROL_DEPENDENCES);
903 calculate_dominance_info (CDI_POST_DOMINATORS);
904 el = create_edge_list ();
905 find_all_control_dependences (el);
906 timevar_pop (TV_CONTROL_DEPENDENCES);
907
908 visited_control_parents = sbitmap_alloc (last_basic_block);
909 sbitmap_zero (visited_control_parents);
910
911 mark_dfs_back_edges ();
912 }
913
914 find_obviously_necessary_stmts (el);
915
916 propagate_necessity (el);
917
918 mark_really_necessary_kill_operand_phis ();
919 eliminate_unnecessary_stmts ();
920
921 if (aggressive)
922 free_dominance_info (CDI_POST_DOMINATORS);
923
924 /* If we removed paths in the CFG, then we need to update
925 dominators as well. I haven't investigated the possibility
926 of incrementally updating dominators. */
927 if (cfg_altered)
928 free_dominance_info (CDI_DOMINATORS);
929
930 /* Debugging dumps. */
931 if (dump_file)
932 print_stats ();
933
934 tree_dce_done (aggressive);
935
936 free_edge_list (el);
937 }
938
939 /* Pass entry points. */
940 static void
941 tree_ssa_dce (void)
942 {
943 perform_tree_ssa_dce (/*aggressive=*/false);
944 }
945
946 static void
947 tree_ssa_dce_loop (void)
948 {
949 perform_tree_ssa_dce (/*aggressive=*/false);
950 free_numbers_of_iterations_estimates (current_loops);
951 scev_reset ();
952 }
953
954 static void
955 tree_ssa_cd_dce (void)
956 {
957 perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
958 }
959
960 static bool
961 gate_dce (void)
962 {
963 return flag_tree_dce != 0;
964 }
965
966 struct tree_opt_pass pass_dce =
967 {
968 "dce", /* name */
969 gate_dce, /* gate */
970 tree_ssa_dce, /* execute */
971 NULL, /* sub */
972 NULL, /* next */
973 0, /* static_pass_number */
974 TV_TREE_DCE, /* tv_id */
975 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
976 0, /* properties_provided */
977 0, /* properties_destroyed */
978 0, /* todo_flags_start */
979 TODO_dump_func
980 | TODO_update_ssa
981 | TODO_cleanup_cfg
982 | TODO_ggc_collect
983 | TODO_verify_ssa, /* todo_flags_finish */
984 0 /* letter */
985 };
986
987 struct tree_opt_pass pass_dce_loop =
988 {
989 "dceloop", /* name */
990 gate_dce, /* gate */
991 tree_ssa_dce_loop, /* execute */
992 NULL, /* sub */
993 NULL, /* next */
994 0, /* static_pass_number */
995 TV_TREE_DCE, /* tv_id */
996 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
997 0, /* properties_provided */
998 0, /* properties_destroyed */
999 0, /* todo_flags_start */
1000 TODO_dump_func
1001 | TODO_update_ssa
1002 | TODO_cleanup_cfg
1003 | TODO_verify_ssa, /* todo_flags_finish */
1004 0 /* letter */
1005 };
1006
1007 struct tree_opt_pass pass_cd_dce =
1008 {
1009 "cddce", /* name */
1010 gate_dce, /* gate */
1011 tree_ssa_cd_dce, /* execute */
1012 NULL, /* sub */
1013 NULL, /* next */
1014 0, /* static_pass_number */
1015 TV_TREE_CD_DCE, /* tv_id */
1016 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
1017 0, /* properties_provided */
1018 0, /* properties_destroyed */
1019 0, /* todo_flags_start */
1020 TODO_dump_func
1021 | TODO_update_ssa
1022 | TODO_cleanup_cfg
1023 | TODO_ggc_collect
1024 | TODO_verify_ssa
1025 | TODO_verify_flow, /* todo_flags_finish */
1026 0 /* letter */
1027 };