36007a43c84cd2116135142f5345996db14d4883
[gcc.git] / gcc / tree-ssa-dce.c
1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
3 Contributed by Ben Elliston <bje@redhat.com>
4 and Andrew MacLeod <amacleod@redhat.com>
5 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 2, or (at your option) any
12 later version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA. */
23
24 /* Dead code elimination.
25
26 References:
27
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
30
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
33
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
37 impact on the output.
38
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
45
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "errors.h"
51 #include "ggc.h"
52
53 /* These RTL headers are needed for basic-block.h. */
54 #include "rtl.h"
55 #include "tm_p.h"
56 #include "hard-reg-set.h"
57 #include "basic-block.h"
58
59 #include "tree.h"
60 #include "diagnostic.h"
61 #include "tree-flow.h"
62 #include "tree-gimple.h"
63 #include "tree-dump.h"
64 #include "tree-pass.h"
65 #include "timevar.h"
66 #include "flags.h"
67 \f
68 static struct stmt_stats
69 {
70 int total;
71 int total_phis;
72 int removed;
73 int removed_phis;
74 } stats;
75
76 static varray_type worklist;
77
78 /* Vector indicating an SSA name has already been processed and marked
79 as necessary. */
80 static sbitmap processed;
81
82 /* Vector indicating that last_stmt if a basic block has already been
83 marked as necessary. */
84 static sbitmap last_stmt_necessary;
85
86 /* Before we can determine whether a control branch is dead, we need to
87 compute which blocks are control dependent on which edges.
88
89 We expect each block to be control dependent on very few edges so we
90 use a bitmap for each block recording its edges. An array holds the
91 bitmap. The Ith bit in the bitmap is set if that block is dependent
92 on the Ith edge. */
93 bitmap *control_dependence_map;
94
95 /* Execute CODE for each edge (given number EDGE_NUMBER within the CODE)
96 for which the block with index N is control dependent. */
97 #define EXECUTE_IF_CONTROL_DEPENDENT(N, EDGE_NUMBER, CODE) \
98 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[N], 0, EDGE_NUMBER, CODE)
99
100 /* Local function prototypes. */
101 static inline void set_control_dependence_map_bit (basic_block, int);
102 static inline void clear_control_dependence_bitmap (basic_block);
103 static void find_all_control_dependences (struct edge_list *);
104 static void find_control_dependence (struct edge_list *, int);
105 static inline basic_block find_pdom (basic_block);
106
107 static inline void mark_stmt_necessary (tree, bool);
108 static inline void mark_operand_necessary (tree);
109
110 static bool need_to_preserve_store (tree);
111 static void mark_stmt_if_obviously_necessary (tree, bool);
112 static void find_obviously_necessary_stmts (struct edge_list *);
113
114 static void mark_control_dependent_edges_necessary (basic_block, struct edge_list *);
115 static void propagate_necessity (struct edge_list *);
116
117 static void eliminate_unnecessary_stmts (void);
118 static void remove_dead_phis (basic_block);
119 static void remove_dead_stmt (block_stmt_iterator *, basic_block);
120
121 static void print_stats (void);
122 static void tree_dce_init (bool);
123 static void tree_dce_done (bool);
124 \f
125 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
126 static inline void
127 set_control_dependence_map_bit (basic_block bb, int edge_index)
128 {
129 if (bb == ENTRY_BLOCK_PTR)
130 return;
131 if (bb == EXIT_BLOCK_PTR)
132 abort ();
133 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
134 }
135
136 /* Clear all control dependences for block BB. */
137 static inline
138 void clear_control_dependence_bitmap (basic_block bb)
139 {
140 bitmap_clear (control_dependence_map[bb->index]);
141 }
142
143 /* Record all blocks' control dependences on all edges in the edge
144 list EL, ala Morgan, Section 3.6. */
145
146 static void
147 find_all_control_dependences (struct edge_list *el)
148 {
149 int i;
150
151 for (i = 0; i < NUM_EDGES (el); ++i)
152 find_control_dependence (el, i);
153 }
154
155 /* Determine all blocks' control dependences on the given edge with edge_list
156 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
157
158 static void
159 find_control_dependence (struct edge_list *el, int edge_index)
160 {
161 basic_block current_block;
162 basic_block ending_block;
163
164 #ifdef ENABLE_CHECKING
165 if (INDEX_EDGE_PRED_BB (el, edge_index) == EXIT_BLOCK_PTR)
166 abort ();
167 #endif
168
169 if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
170 ending_block = ENTRY_BLOCK_PTR->next_bb;
171 else
172 ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
173
174 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
175 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
176 current_block = find_pdom (current_block))
177 {
178 edge e = INDEX_EDGE (el, edge_index);
179
180 /* For abnormal edges, we don't make current_block control
181 dependent because instructions that throw are always necessary
182 anyway. */
183 if (e->flags & EDGE_ABNORMAL)
184 continue;
185
186 set_control_dependence_map_bit (current_block, edge_index);
187 }
188 }
189
190 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
191 This function is necessary because some blocks have negative numbers. */
192
193 static inline basic_block
194 find_pdom (basic_block block)
195 {
196 if (block == ENTRY_BLOCK_PTR)
197 abort ();
198 else if (block == EXIT_BLOCK_PTR)
199 return EXIT_BLOCK_PTR;
200 else
201 {
202 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
203 if (! bb)
204 return EXIT_BLOCK_PTR;
205 return bb;
206 }
207 }
208 \f
209 #define NECESSARY(stmt) stmt->common.asm_written_flag
210
211 /* If STMT is not already marked necessary, mark it, and add it to the
212 worklist if ADD_TO_WORKLIST is true. */
213 static inline void
214 mark_stmt_necessary (tree stmt, bool add_to_worklist)
215 {
216 #ifdef ENABLE_CHECKING
217 if (stmt == NULL
218 || stmt == error_mark_node
219 || (stmt && DECL_P (stmt)))
220 abort ();
221 #endif
222
223 if (NECESSARY (stmt))
224 return;
225
226 if (dump_file && (dump_flags & TDF_DETAILS))
227 {
228 fprintf (dump_file, "Marking useful stmt: ");
229 print_generic_stmt (dump_file, stmt, TDF_SLIM);
230 fprintf (dump_file, "\n");
231 }
232
233 NECESSARY (stmt) = 1;
234 if (add_to_worklist)
235 VARRAY_PUSH_TREE (worklist, stmt);
236 }
237
238 /* Mark the statement defining operand OP as necessary. */
239
240 static inline void
241 mark_operand_necessary (tree op)
242 {
243 tree stmt;
244 int ver;
245
246 #ifdef ENABLE_CHECKING
247 if (op == NULL)
248 abort ();
249 #endif
250
251 ver = SSA_NAME_VERSION (op);
252 if (TEST_BIT (processed, ver))
253 return;
254 SET_BIT (processed, ver);
255
256 stmt = SSA_NAME_DEF_STMT (op);
257 #ifdef ENABLE_CHECKING
258 if (stmt == NULL)
259 abort ();
260 #endif
261
262 if (NECESSARY (stmt)
263 || IS_EMPTY_STMT (stmt))
264 return;
265
266 NECESSARY (stmt) = 1;
267 VARRAY_PUSH_TREE (worklist, stmt);
268 }
269 \f
270 /* Return true if a store to a variable needs to be preserved. */
271
272 static inline bool
273 need_to_preserve_store (tree ssa_name)
274 {
275 return (needs_to_live_in_memory (SSA_NAME_VAR (ssa_name)));
276 }
277 \f
278
279 /* Mark STMT as necessary if it is obviously is. Add it to the worklist if
280 it can make other statements necessary.
281
282 If AGGRESSIVE is false, control statements are conservatively marked as
283 necessary. */
284
285 static void
286 mark_stmt_if_obviously_necessary (tree stmt, bool aggressive)
287 {
288 def_optype defs;
289 v_may_def_optype v_may_defs;
290 v_must_def_optype v_must_defs;
291 stmt_ann_t ann;
292 size_t i;
293
294 /* Statements that are implicitly live. Most function calls, asm and return
295 statements are required. Labels and BIND_EXPR nodes are kept because
296 they are control flow, and we have no way of knowing whether they can be
297 removed. DCE can eliminate all the other statements in a block, and CFG
298 can then remove the block and labels. */
299 switch (TREE_CODE (stmt))
300 {
301 case BIND_EXPR:
302 case LABEL_EXPR:
303 case CASE_LABEL_EXPR:
304 mark_stmt_necessary (stmt, false);
305 return;
306
307 case ASM_EXPR:
308 case RESX_EXPR:
309 case RETURN_EXPR:
310 mark_stmt_necessary (stmt, true);
311 return;
312
313 case CALL_EXPR:
314 /* Most, but not all function calls are required. Function calls that
315 produce no result and have no side effects (i.e. const pure
316 functions) are unnecessary. */
317 if (TREE_SIDE_EFFECTS (stmt))
318 mark_stmt_necessary (stmt, true);
319 return;
320
321 case MODIFY_EXPR:
322 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR
323 && TREE_SIDE_EFFECTS (TREE_OPERAND (stmt, 1)))
324 {
325 mark_stmt_necessary (stmt, true);
326 return;
327 }
328
329 /* These values are mildly magic bits of the EH runtime. We can't
330 see the entire lifetime of these values until landing pads are
331 generated. */
332 if (TREE_CODE (TREE_OPERAND (stmt, 0)) == EXC_PTR_EXPR
333 || TREE_CODE (TREE_OPERAND (stmt, 0)) == FILTER_EXPR)
334 {
335 mark_stmt_necessary (stmt, true);
336 return;
337 }
338 break;
339
340 case GOTO_EXPR:
341 if (! simple_goto_p (stmt))
342 mark_stmt_necessary (stmt, true);
343 return;
344
345 case COND_EXPR:
346 if (GOTO_DESTINATION (COND_EXPR_THEN (stmt))
347 == GOTO_DESTINATION (COND_EXPR_ELSE (stmt)))
348 {
349 /* A COND_EXPR is obviously dead if the target labels are the same.
350 We cannot kill the statement at this point, so to prevent the
351 statement from being marked necessary, we replace the condition
352 with a constant. The stmt is killed later on in cfg_cleanup. */
353 COND_EXPR_COND (stmt) = integer_zero_node;
354 modify_stmt (stmt);
355 return;
356 }
357 /* Fall through. */
358
359 case SWITCH_EXPR:
360 if (! aggressive)
361 mark_stmt_necessary (stmt, true);
362 break;
363
364 default:
365 break;
366 }
367
368 ann = stmt_ann (stmt);
369 /* If the statement has volatile operands, it needs to be preserved. Same
370 for statements that can alter control flow in unpredictable ways. */
371 if (ann->has_volatile_ops
372 || is_ctrl_altering_stmt (stmt))
373 {
374 mark_stmt_necessary (stmt, true);
375 return;
376 }
377
378 get_stmt_operands (stmt);
379
380 defs = DEF_OPS (ann);
381 for (i = 0; i < NUM_DEFS (defs); i++)
382 {
383 tree def = DEF_OP (defs, i);
384 if (need_to_preserve_store (def))
385 {
386 mark_stmt_necessary (stmt, true);
387 return;
388 }
389 }
390
391 v_may_defs = V_MAY_DEF_OPS (ann);
392 for (i = 0; i < NUM_V_MAY_DEFS (v_may_defs); i++)
393 {
394 tree v_may_def = V_MAY_DEF_RESULT (v_may_defs, i);
395 if (need_to_preserve_store (v_may_def))
396 {
397 mark_stmt_necessary (stmt, true);
398 return;
399 }
400 }
401
402 v_must_defs = V_MUST_DEF_OPS (ann);
403 for (i = 0; i < NUM_V_MUST_DEFS (v_must_defs); i++)
404 {
405 tree v_must_def = V_MUST_DEF_OP (v_must_defs, i);
406 if (need_to_preserve_store (v_must_def))
407 {
408 mark_stmt_necessary (stmt, true);
409 return;
410 }
411 }
412
413 return;
414 }
415 \f
416 /* Find obviously necessary statements. These are things like most function
417 calls, and stores to file level variables.
418
419 If EL is NULL, control statements are conservatively marked as
420 necessary. Otherwise it contains the list of edges used by control
421 dependence analysis. */
422
423 static void
424 find_obviously_necessary_stmts (struct edge_list *el)
425 {
426 basic_block bb;
427 block_stmt_iterator i;
428 edge e;
429
430 FOR_EACH_BB (bb)
431 {
432 tree phi;
433
434 /* Check any PHI nodes in the block. */
435 for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
436 {
437 NECESSARY (phi) = 0;
438
439 /* PHIs for virtual variables do not directly affect code
440 generation and need not be considered inherently necessary
441 regardless of the bits set in their decl.
442
443 Thus, we only need to mark PHIs for real variables which
444 need their result preserved as being inherently necessary. */
445 if (is_gimple_reg (PHI_RESULT (phi))
446 && need_to_preserve_store (PHI_RESULT (phi)))
447 mark_stmt_necessary (phi, true);
448 }
449
450 /* Check all statements in the block. */
451 for (i = bsi_start (bb); ! bsi_end_p (i); bsi_next (&i))
452 {
453 tree stmt = bsi_stmt (i);
454 NECESSARY (stmt) = 0;
455 mark_stmt_if_obviously_necessary (stmt, el != NULL);
456 }
457
458 /* Mark this basic block as `not visited'. A block will be marked
459 visited when the edges that it is control dependent on have been
460 marked. */
461 bb->flags &= ~BB_VISITED;
462 }
463
464 if (el)
465 {
466 /* Prevent the loops from being removed. We must keep the infinite loops,
467 and we currently do not have a means to recognize the finite ones. */
468 FOR_EACH_BB (bb)
469 {
470 for (e = bb->succ; e; e = e->succ_next)
471 if (e->flags & EDGE_DFS_BACK)
472 mark_control_dependent_edges_necessary (e->dest, el);
473 }
474 }
475 }
476 \f
477 /* Make corresponding control dependent edges necessary. We only
478 have to do this once for each basic block, so we clear the bitmap
479 after we're done. */
480 static void
481 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el)
482 {
483 int edge_number;
484
485 #ifdef ENABLE_CHECKING
486 if (bb == EXIT_BLOCK_PTR)
487 abort ();
488 #endif
489
490 if (bb == ENTRY_BLOCK_PTR)
491 return;
492
493 EXECUTE_IF_CONTROL_DEPENDENT (bb->index, edge_number,
494 {
495 tree t;
496 basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
497
498 if (TEST_BIT (last_stmt_necessary, cd_bb->index))
499 continue;
500 SET_BIT (last_stmt_necessary, cd_bb->index);
501
502 t = last_stmt (cd_bb);
503 if (is_ctrl_stmt (t))
504 mark_stmt_necessary (t, true);
505 });
506 }
507 \f
508 /* Propagate necessity using the operands of necessary statements. Process
509 the uses on each statement in the worklist, and add all feeding statements
510 which contribute to the calculation of this value to the worklist.
511
512 In conservative mode, EL is NULL. */
513
514 static void
515 propagate_necessity (struct edge_list *el)
516 {
517 tree i;
518 bool aggressive = (el ? true : false);
519
520 if (dump_file && (dump_flags & TDF_DETAILS))
521 fprintf (dump_file, "\nProcessing worklist:\n");
522
523 while (VARRAY_ACTIVE_SIZE (worklist) > 0)
524 {
525 /* Take `i' from worklist. */
526 i = VARRAY_TOP_TREE (worklist);
527 VARRAY_POP (worklist);
528
529 if (dump_file && (dump_flags & TDF_DETAILS))
530 {
531 fprintf (dump_file, "processing: ");
532 print_generic_stmt (dump_file, i, TDF_SLIM);
533 fprintf (dump_file, "\n");
534 }
535
536 if (aggressive)
537 {
538 /* Mark the last statements of the basic blocks that the block
539 containing `i' is control dependent on, but only if we haven't
540 already done so. */
541 basic_block bb = bb_for_stmt (i);
542 if (! (bb->flags & BB_VISITED))
543 {
544 bb->flags |= BB_VISITED;
545 mark_control_dependent_edges_necessary (bb, el);
546 }
547 }
548
549 if (TREE_CODE (i) == PHI_NODE)
550 {
551 /* PHI nodes are somewhat special in that each PHI alternative has
552 data and control dependencies. All the statements feeding the
553 PHI node's arguments are always necessary. In aggressive mode,
554 we also consider the control dependent edges leading to the
555 predecessor block associated with each PHI alternative as
556 necessary. */
557 int k;
558 for (k = 0; k < PHI_NUM_ARGS (i); k++)
559 {
560 tree arg = PHI_ARG_DEF (i, k);
561 if (TREE_CODE (arg) == SSA_NAME)
562 mark_operand_necessary (arg);
563 }
564
565 if (aggressive)
566 {
567 for (k = 0; k < PHI_NUM_ARGS (i); k++)
568 {
569 basic_block arg_bb = PHI_ARG_EDGE (i, k)->src;
570 if (! (arg_bb->flags & BB_VISITED))
571 {
572 arg_bb->flags |= BB_VISITED;
573 mark_control_dependent_edges_necessary (arg_bb, el);
574 }
575 }
576 }
577 }
578 else
579 {
580 /* Propagate through the operands. Examine all the USE, VUSE and
581 V_MAY_DEF operands in this statement. Mark all the statements
582 which feed this statement's uses as necessary. */
583 vuse_optype vuses;
584 v_may_def_optype v_may_defs;
585 use_optype uses;
586 stmt_ann_t ann;
587 size_t k;
588
589 get_stmt_operands (i);
590 ann = stmt_ann (i);
591
592 uses = USE_OPS (ann);
593 for (k = 0; k < NUM_USES (uses); k++)
594 mark_operand_necessary (USE_OP (uses, k));
595
596 vuses = VUSE_OPS (ann);
597 for (k = 0; k < NUM_VUSES (vuses); k++)
598 mark_operand_necessary (VUSE_OP (vuses, k));
599
600 /* The operands of V_MAY_DEF expressions are also needed as they
601 represent potential definitions that may reach this
602 statement (V_MAY_DEF operands allow us to follow def-def
603 links). */
604 v_may_defs = V_MAY_DEF_OPS (ann);
605 for (k = 0; k < NUM_V_MAY_DEFS (v_may_defs); k++)
606 mark_operand_necessary (V_MAY_DEF_OP (v_may_defs, k));
607 }
608 }
609 }
610 \f
611 /* Eliminate unnecessary statements. Any instruction not marked as necessary
612 contributes nothing to the program, and can be deleted. */
613
614 static void
615 eliminate_unnecessary_stmts (void)
616 {
617 basic_block bb;
618 block_stmt_iterator i;
619
620 if (dump_file && (dump_flags & TDF_DETAILS))
621 fprintf (dump_file, "\nEliminating unnecessary statements:\n");
622
623 clear_special_calls ();
624 FOR_EACH_BB (bb)
625 {
626 /* Remove dead PHI nodes. */
627 remove_dead_phis (bb);
628
629 /* Remove dead statements. */
630 for (i = bsi_start (bb); ! bsi_end_p (i) ; )
631 {
632 tree t = bsi_stmt (i);
633
634 stats.total++;
635
636 /* If `i' is not necessary then remove it. */
637 if (! NECESSARY (t))
638 remove_dead_stmt (&i, bb);
639 else
640 {
641 if (TREE_CODE (t) == CALL_EXPR)
642 notice_special_calls (t);
643 else if (TREE_CODE (t) == MODIFY_EXPR
644 && TREE_CODE (TREE_OPERAND (t, 1)) == CALL_EXPR)
645 notice_special_calls (TREE_OPERAND (t, 1));
646 bsi_next (&i);
647 }
648 }
649 }
650 }
651 \f
652 /* Remove dead PHI nodes from block BB. */
653
654 static void
655 remove_dead_phis (basic_block bb)
656 {
657 tree prev, phi;
658
659 prev = NULL_TREE;
660 phi = phi_nodes (bb);
661 while (phi)
662 {
663 stats.total_phis++;
664
665 if (! NECESSARY (phi))
666 {
667 tree next = TREE_CHAIN (phi);
668
669 if (dump_file && (dump_flags & TDF_DETAILS))
670 {
671 fprintf (dump_file, "Deleting : ");
672 print_generic_stmt (dump_file, phi, TDF_SLIM);
673 fprintf (dump_file, "\n");
674 }
675
676 remove_phi_node (phi, prev, bb);
677 stats.removed_phis++;
678 phi = next;
679 }
680 else
681 {
682 prev = phi;
683 phi = TREE_CHAIN (phi);
684 }
685 }
686 }
687 \f
688 /* Remove dead statement pointed by iterator I. Receives the basic block BB
689 containing I so that we don't have to look it up. */
690
691 static void
692 remove_dead_stmt (block_stmt_iterator *i, basic_block bb)
693 {
694 tree t = bsi_stmt (*i);
695
696 if (dump_file && (dump_flags & TDF_DETAILS))
697 {
698 fprintf (dump_file, "Deleting : ");
699 print_generic_stmt (dump_file, t, TDF_SLIM);
700 fprintf (dump_file, "\n");
701 }
702
703 stats.removed++;
704
705 /* If we have determined that a conditional branch statement contributes
706 nothing to the program, then we not only remove it, but we also change
707 the flow graph so that the current block will simply fall-thru to its
708 immediate post-dominator. The blocks we are circumventing will be
709 removed by cleaup_cfg if this change in the flow graph makes them
710 unreachable. */
711 if (is_ctrl_stmt (t))
712 {
713 basic_block post_dom_bb;
714 edge e;
715 #ifdef ENABLE_CHECKING
716 /* The post dominance info has to be up-to-date. */
717 if (dom_computed[CDI_POST_DOMINATORS] != DOM_OK)
718 abort ();
719 #endif
720 /* Get the immediate post dominator of bb. */
721 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
722 /* Some blocks don't have an immediate post dominator. This can happen
723 for example with infinite loops. Removing an infinite loop is an
724 inappropriate transformation anyway... */
725 if (! post_dom_bb)
726 {
727 bsi_next (i);
728 return;
729 }
730
731 /* Redirect the first edge out of BB to reach POST_DOM_BB. */
732 redirect_edge_and_branch (bb->succ, post_dom_bb);
733 PENDING_STMT (bb->succ) = NULL;
734
735 /* The edge is no longer associated with a conditional, so it does
736 not have TRUE/FALSE flags. */
737 bb->succ->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
738
739 /* If the edge reaches any block other than the exit, then it is a
740 fallthru edge; if it reaches the exit, then it is not a fallthru
741 edge. */
742 if (post_dom_bb != EXIT_BLOCK_PTR)
743 bb->succ->flags |= EDGE_FALLTHRU;
744 else
745 bb->succ->flags &= ~EDGE_FALLTHRU;
746
747 /* Remove the remaining the outgoing edges. */
748 for (e = bb->succ->succ_next; e != NULL;)
749 {
750 edge tmp = e;
751 e = e->succ_next;
752 remove_edge (tmp);
753 }
754 }
755
756 bsi_remove (i);
757 }
758 \f
759 /* Print out removed statement statistics. */
760
761 static void
762 print_stats (void)
763 {
764 if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
765 {
766 float percg;
767
768 percg = ((float) stats.removed / (float) stats.total) * 100;
769 fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
770 stats.removed, stats.total, (int) percg);
771
772 if (stats.total_phis == 0)
773 percg = 0;
774 else
775 percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
776
777 fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
778 stats.removed_phis, stats.total_phis, (int) percg);
779 }
780 }
781 \f
782 /* Initialization for this pass. Set up the used data structures. */
783
784 static void
785 tree_dce_init (bool aggressive)
786 {
787 memset ((void *) &stats, 0, sizeof (stats));
788
789 if (aggressive)
790 {
791 int i;
792
793 control_dependence_map
794 = xmalloc (last_basic_block * sizeof (bitmap));
795 for (i = 0; i < last_basic_block; ++i)
796 control_dependence_map[i] = BITMAP_XMALLOC ();
797
798 last_stmt_necessary = sbitmap_alloc (last_basic_block);
799 sbitmap_zero (last_stmt_necessary);
800 }
801
802 processed = sbitmap_alloc (num_ssa_names + 1);
803 sbitmap_zero (processed);
804
805 VARRAY_TREE_INIT (worklist, 64, "work list");
806 }
807
808 /* Cleanup after this pass. */
809
810 static void
811 tree_dce_done (bool aggressive)
812 {
813 if (aggressive)
814 {
815 int i;
816
817 for (i = 0; i < last_basic_block; ++i)
818 BITMAP_XFREE (control_dependence_map[i]);
819 free (control_dependence_map);
820
821 sbitmap_free (last_stmt_necessary);
822 }
823
824 sbitmap_free (processed);
825 }
826 \f
827 /* Main routine to eliminate dead code.
828
829 AGGRESSIVE controls the aggressiveness of the algorithm.
830 In conservative mode, we ignore control dependence and simply declare
831 all but the most trivially dead branches necessary. This mode is fast.
832 In aggressive mode, control dependences are taken into account, which
833 results in more dead code elimination, but at the cost of some time.
834
835 FIXME: Aggressive mode before PRE doesn't work currently because
836 the dominance info is not invalidated after DCE1. This is
837 not an issue right now because we only run aggressive DCE
838 as the last tree SSA pass, but keep this in mind when you
839 start experimenting with pass ordering. */
840
841 static void
842 perform_tree_ssa_dce (bool aggressive)
843 {
844 struct edge_list *el = NULL;
845
846 tree_dce_init (aggressive);
847
848 if (aggressive)
849 {
850 /* Compute control dependence. */
851 timevar_push (TV_CONTROL_DEPENDENCES);
852 calculate_dominance_info (CDI_POST_DOMINATORS);
853 el = create_edge_list ();
854 find_all_control_dependences (el);
855 timevar_pop (TV_CONTROL_DEPENDENCES);
856
857 mark_dfs_back_edges ();
858 }
859
860 find_obviously_necessary_stmts (el);
861
862 propagate_necessity (el);
863
864 eliminate_unnecessary_stmts ();
865
866 if (aggressive)
867 free_dominance_info (CDI_POST_DOMINATORS);
868
869 cleanup_tree_cfg ();
870
871 /* Debugging dumps. */
872 if (dump_file)
873 {
874 dump_function_to_file (current_function_decl, dump_file, dump_flags);
875 print_stats ();
876 }
877
878 tree_dce_done (aggressive);
879
880 free_edge_list (el);
881 }
882
883 /* Pass entry points. */
884 static void
885 tree_ssa_dce (void)
886 {
887 perform_tree_ssa_dce (/*aggressive=*/false);
888 }
889
890 static void
891 tree_ssa_cd_dce (void)
892 {
893 perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
894 }
895
896 static bool
897 gate_dce (void)
898 {
899 return flag_tree_dce != 0;
900 }
901
902 struct tree_opt_pass pass_dce =
903 {
904 "dce", /* name */
905 gate_dce, /* gate */
906 tree_ssa_dce, /* execute */
907 NULL, /* sub */
908 NULL, /* next */
909 0, /* static_pass_number */
910 TV_TREE_DCE, /* tv_id */
911 PROP_cfg | PROP_ssa, /* properties_required */
912 0, /* properties_provided */
913 0, /* properties_destroyed */
914 0, /* todo_flags_start */
915 TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
916 };
917
918 struct tree_opt_pass pass_cd_dce =
919 {
920 "cddce", /* name */
921 gate_dce, /* gate */
922 tree_ssa_cd_dce, /* execute */
923 NULL, /* sub */
924 NULL, /* next */
925 0, /* static_pass_number */
926 TV_TREE_CD_DCE, /* tv_id */
927 PROP_cfg | PROP_ssa, /* properties_required */
928 0, /* properties_provided */
929 0, /* properties_destroyed */
930 0, /* todo_flags_start */
931 TODO_ggc_collect | TODO_verify_ssa | TODO_verify_flow
932 /* todo_flags_finish */
933 };
934