errors.h (warning, [...]): Mark as cold.
[gcc.git] / gcc / tree-ssa-dce.c
1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Ben Elliston <bje@redhat.com>
4 and Andrew MacLeod <amacleod@redhat.com>
5 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 2, or (at your option) any
12 later version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
22 02110-1301, USA. */
23
24 /* Dead code elimination.
25
26 References:
27
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
30
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
33
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
37 impact on the output.
38
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
45
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "ggc.h"
51
52 /* These RTL headers are needed for basic-block.h. */
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "hard-reg-set.h"
56 #include "obstack.h"
57 #include "basic-block.h"
58
59 #include "tree.h"
60 #include "diagnostic.h"
61 #include "tree-flow.h"
62 #include "tree-gimple.h"
63 #include "tree-dump.h"
64 #include "tree-pass.h"
65 #include "timevar.h"
66 #include "flags.h"
67 #include "cfgloop.h"
68 #include "tree-scalar-evolution.h"
69 \f
70 static struct stmt_stats
71 {
72 int total;
73 int total_phis;
74 int removed;
75 int removed_phis;
76 } stats;
77
78 static VEC(tree,heap) *worklist;
79
80 /* Vector indicating an SSA name has already been processed and marked
81 as necessary. */
82 static sbitmap processed;
83
84 /* Vector indicating that last_stmt if a basic block has already been
85 marked as necessary. */
86 static sbitmap last_stmt_necessary;
87
88 /* Before we can determine whether a control branch is dead, we need to
89 compute which blocks are control dependent on which edges.
90
91 We expect each block to be control dependent on very few edges so we
92 use a bitmap for each block recording its edges. An array holds the
93 bitmap. The Ith bit in the bitmap is set if that block is dependent
94 on the Ith edge. */
95 static bitmap *control_dependence_map;
96
97 /* Vector indicating that a basic block has already had all the edges
98 processed that it is control dependent on. */
99 static sbitmap visited_control_parents;
100
101 /* TRUE if this pass alters the CFG (by removing control statements).
102 FALSE otherwise.
103
104 If this pass alters the CFG, then it will arrange for the dominators
105 to be recomputed. */
106 static bool cfg_altered;
107
108 /* Execute code that follows the macro for each edge (given number
109 EDGE_NUMBER within the CODE) for which the block with index N is
110 control dependent. */
111 #define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER) \
112 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0, \
113 (EDGE_NUMBER), (BI))
114
115
116 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
117 static inline void
118 set_control_dependence_map_bit (basic_block bb, int edge_index)
119 {
120 if (bb == ENTRY_BLOCK_PTR)
121 return;
122 gcc_assert (bb != EXIT_BLOCK_PTR);
123 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
124 }
125
126 /* Clear all control dependences for block BB. */
127 static inline void
128 clear_control_dependence_bitmap (basic_block bb)
129 {
130 bitmap_clear (control_dependence_map[bb->index]);
131 }
132
133
134 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
135 This function is necessary because some blocks have negative numbers. */
136
137 static inline basic_block
138 find_pdom (basic_block block)
139 {
140 gcc_assert (block != ENTRY_BLOCK_PTR);
141
142 if (block == EXIT_BLOCK_PTR)
143 return EXIT_BLOCK_PTR;
144 else
145 {
146 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
147 if (! bb)
148 return EXIT_BLOCK_PTR;
149 return bb;
150 }
151 }
152
153
154 /* Determine all blocks' control dependences on the given edge with edge_list
155 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
156
157 static void
158 find_control_dependence (struct edge_list *el, int edge_index)
159 {
160 basic_block current_block;
161 basic_block ending_block;
162
163 gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
164
165 if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
166 ending_block = single_succ (ENTRY_BLOCK_PTR);
167 else
168 ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
169
170 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
171 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
172 current_block = find_pdom (current_block))
173 {
174 edge e = INDEX_EDGE (el, edge_index);
175
176 /* For abnormal edges, we don't make current_block control
177 dependent because instructions that throw are always necessary
178 anyway. */
179 if (e->flags & EDGE_ABNORMAL)
180 continue;
181
182 set_control_dependence_map_bit (current_block, edge_index);
183 }
184 }
185
186
187 /* Record all blocks' control dependences on all edges in the edge
188 list EL, ala Morgan, Section 3.6. */
189
190 static void
191 find_all_control_dependences (struct edge_list *el)
192 {
193 int i;
194
195 for (i = 0; i < NUM_EDGES (el); ++i)
196 find_control_dependence (el, i);
197 }
198
199
200 #define NECESSARY(stmt) stmt->base.asm_written_flag
201
202 /* If STMT is not already marked necessary, mark it, and add it to the
203 worklist if ADD_TO_WORKLIST is true. */
204 static inline void
205 mark_stmt_necessary (tree stmt, bool add_to_worklist)
206 {
207 gcc_assert (stmt);
208 gcc_assert (!DECL_P (stmt));
209
210 if (NECESSARY (stmt))
211 return;
212
213 if (dump_file && (dump_flags & TDF_DETAILS))
214 {
215 fprintf (dump_file, "Marking useful stmt: ");
216 print_generic_stmt (dump_file, stmt, TDF_SLIM);
217 fprintf (dump_file, "\n");
218 }
219
220 NECESSARY (stmt) = 1;
221 if (add_to_worklist)
222 VEC_safe_push (tree, heap, worklist, stmt);
223 }
224
225
226 /* Mark the statement defining operand OP as necessary. */
227
228 static inline void
229 mark_operand_necessary (tree op)
230 {
231 tree stmt;
232 int ver;
233
234 gcc_assert (op);
235
236 ver = SSA_NAME_VERSION (op);
237 if (TEST_BIT (processed, ver))
238 return;
239 SET_BIT (processed, ver);
240
241 stmt = SSA_NAME_DEF_STMT (op);
242 gcc_assert (stmt);
243
244 if (NECESSARY (stmt) || IS_EMPTY_STMT (stmt))
245 return;
246
247 NECESSARY (stmt) = 1;
248 VEC_safe_push (tree, heap, worklist, stmt);
249 }
250
251
252 /* Mark STMT as necessary if it obviously is. Add it to the worklist if
253 it can make other statements necessary.
254
255 If AGGRESSIVE is false, control statements are conservatively marked as
256 necessary. */
257
258 static void
259 mark_stmt_if_obviously_necessary (tree stmt, bool aggressive)
260 {
261 stmt_ann_t ann;
262 tree op;
263
264 /* With non-call exceptions, we have to assume that all statements could
265 throw. If a statement may throw, it is inherently necessary. */
266 if (flag_non_call_exceptions
267 && tree_could_throw_p (stmt))
268 {
269 mark_stmt_necessary (stmt, true);
270 return;
271 }
272
273 /* Statements that are implicitly live. Most function calls, asm and return
274 statements are required. Labels and BIND_EXPR nodes are kept because
275 they are control flow, and we have no way of knowing whether they can be
276 removed. DCE can eliminate all the other statements in a block, and CFG
277 can then remove the block and labels. */
278 switch (TREE_CODE (stmt))
279 {
280 case BIND_EXPR:
281 case LABEL_EXPR:
282 case CASE_LABEL_EXPR:
283 mark_stmt_necessary (stmt, false);
284 return;
285
286 case ASM_EXPR:
287 case RESX_EXPR:
288 case RETURN_EXPR:
289 mark_stmt_necessary (stmt, true);
290 return;
291
292 case CALL_EXPR:
293 /* Most, but not all function calls are required. Function calls that
294 produce no result and have no side effects (i.e. const pure
295 functions) are unnecessary. */
296 if (TREE_SIDE_EFFECTS (stmt))
297 mark_stmt_necessary (stmt, true);
298 return;
299
300 case GIMPLE_MODIFY_STMT:
301 op = get_call_expr_in (stmt);
302 if (op && TREE_SIDE_EFFECTS (op))
303 {
304 mark_stmt_necessary (stmt, true);
305 return;
306 }
307
308 /* These values are mildly magic bits of the EH runtime. We can't
309 see the entire lifetime of these values until landing pads are
310 generated. */
311 if (TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 0)) == EXC_PTR_EXPR
312 || TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 0)) == FILTER_EXPR)
313 {
314 mark_stmt_necessary (stmt, true);
315 return;
316 }
317 break;
318
319 case GOTO_EXPR:
320 gcc_assert (!simple_goto_p (stmt));
321 mark_stmt_necessary (stmt, true);
322 return;
323
324 case COND_EXPR:
325 gcc_assert (EDGE_COUNT (bb_for_stmt (stmt)->succs) == 2);
326 /* Fall through. */
327
328 case SWITCH_EXPR:
329 if (! aggressive)
330 mark_stmt_necessary (stmt, true);
331 break;
332
333 default:
334 break;
335 }
336
337 ann = stmt_ann (stmt);
338
339 /* If the statement has volatile operands, it needs to be preserved.
340 Same for statements that can alter control flow in unpredictable
341 ways. */
342 if (ann->has_volatile_ops || is_ctrl_altering_stmt (stmt))
343 {
344 mark_stmt_necessary (stmt, true);
345 return;
346 }
347
348 if (is_hidden_global_store (stmt))
349 {
350 mark_stmt_necessary (stmt, true);
351 return;
352 }
353
354 return;
355 }
356
357
358 /* Make corresponding control dependent edges necessary. We only
359 have to do this once for each basic block, so we clear the bitmap
360 after we're done. */
361 static void
362 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el)
363 {
364 bitmap_iterator bi;
365 unsigned edge_number;
366
367 gcc_assert (bb != EXIT_BLOCK_PTR);
368
369 if (bb == ENTRY_BLOCK_PTR)
370 return;
371
372 EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
373 {
374 tree t;
375 basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
376
377 if (TEST_BIT (last_stmt_necessary, cd_bb->index))
378 continue;
379 SET_BIT (last_stmt_necessary, cd_bb->index);
380
381 t = last_stmt (cd_bb);
382 if (t && is_ctrl_stmt (t))
383 mark_stmt_necessary (t, true);
384 }
385 }
386
387
388 /* Find obviously necessary statements. These are things like most function
389 calls, and stores to file level variables.
390
391 If EL is NULL, control statements are conservatively marked as
392 necessary. Otherwise it contains the list of edges used by control
393 dependence analysis. */
394
395 static void
396 find_obviously_necessary_stmts (struct edge_list *el)
397 {
398 basic_block bb;
399 block_stmt_iterator i;
400 edge e;
401
402 FOR_EACH_BB (bb)
403 {
404 tree phi;
405
406 /* PHI nodes are never inherently necessary. */
407 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
408 NECESSARY (phi) = 0;
409
410 /* Check all statements in the block. */
411 for (i = bsi_start (bb); ! bsi_end_p (i); bsi_next (&i))
412 {
413 tree stmt = bsi_stmt (i);
414 NECESSARY (stmt) = 0;
415 mark_stmt_if_obviously_necessary (stmt, el != NULL);
416 }
417 }
418
419 if (el)
420 {
421 /* Prevent the loops from being removed. We must keep the infinite loops,
422 and we currently do not have a means to recognize the finite ones. */
423 FOR_EACH_BB (bb)
424 {
425 edge_iterator ei;
426 FOR_EACH_EDGE (e, ei, bb->succs)
427 if (e->flags & EDGE_DFS_BACK)
428 mark_control_dependent_edges_necessary (e->dest, el);
429 }
430 }
431 }
432
433
434 /* Propagate necessity using the operands of necessary statements.
435 Process the uses on each statement in the worklist, and add all
436 feeding statements which contribute to the calculation of this
437 value to the worklist.
438
439 In conservative mode, EL is NULL. */
440
441 static void
442 propagate_necessity (struct edge_list *el)
443 {
444 tree stmt;
445 bool aggressive = (el ? true : false);
446
447 if (dump_file && (dump_flags & TDF_DETAILS))
448 fprintf (dump_file, "\nProcessing worklist:\n");
449
450 while (VEC_length (tree, worklist) > 0)
451 {
452 /* Take STMT from worklist. */
453 stmt = VEC_pop (tree, worklist);
454
455 if (dump_file && (dump_flags & TDF_DETAILS))
456 {
457 fprintf (dump_file, "processing: ");
458 print_generic_stmt (dump_file, stmt, TDF_SLIM);
459 fprintf (dump_file, "\n");
460 }
461
462 if (aggressive)
463 {
464 /* Mark the last statements of the basic blocks that the block
465 containing STMT is control dependent on, but only if we haven't
466 already done so. */
467 basic_block bb = bb_for_stmt (stmt);
468 if (bb != ENTRY_BLOCK_PTR
469 && ! TEST_BIT (visited_control_parents, bb->index))
470 {
471 SET_BIT (visited_control_parents, bb->index);
472 mark_control_dependent_edges_necessary (bb, el);
473 }
474 }
475
476 if (TREE_CODE (stmt) == PHI_NODE)
477 {
478 /* PHI nodes are somewhat special in that each PHI alternative has
479 data and control dependencies. All the statements feeding the
480 PHI node's arguments are always necessary. In aggressive mode,
481 we also consider the control dependent edges leading to the
482 predecessor block associated with each PHI alternative as
483 necessary. */
484 int k;
485
486 for (k = 0; k < PHI_NUM_ARGS (stmt); k++)
487 {
488 tree arg = PHI_ARG_DEF (stmt, k);
489 if (TREE_CODE (arg) == SSA_NAME)
490 mark_operand_necessary (arg);
491 }
492
493 if (aggressive)
494 {
495 for (k = 0; k < PHI_NUM_ARGS (stmt); k++)
496 {
497 basic_block arg_bb = PHI_ARG_EDGE (stmt, k)->src;
498 if (arg_bb != ENTRY_BLOCK_PTR
499 && ! TEST_BIT (visited_control_parents, arg_bb->index))
500 {
501 SET_BIT (visited_control_parents, arg_bb->index);
502 mark_control_dependent_edges_necessary (arg_bb, el);
503 }
504 }
505 }
506 }
507 else
508 {
509 /* Propagate through the operands. Examine all the USE, VUSE and
510 VDEF operands in this statement. Mark all the statements
511 which feed this statement's uses as necessary. The
512 operands of VDEF expressions are also needed as they
513 represent potential definitions that may reach this
514 statement (VDEF operands allow us to follow def-def
515 links). */
516 ssa_op_iter iter;
517 tree use;
518
519 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_ALL_USES)
520 mark_operand_necessary (use);
521 }
522 }
523 }
524
525
526 /* Remove dead PHI nodes from block BB. */
527
528 static bool
529 remove_dead_phis (basic_block bb)
530 {
531 tree prev, phi;
532 bool something_changed = false;
533
534 prev = NULL_TREE;
535 phi = phi_nodes (bb);
536 while (phi)
537 {
538 stats.total_phis++;
539
540 if (! NECESSARY (phi))
541 {
542 tree next = PHI_CHAIN (phi);
543
544 something_changed = true;
545 if (dump_file && (dump_flags & TDF_DETAILS))
546 {
547 fprintf (dump_file, "Deleting : ");
548 print_generic_stmt (dump_file, phi, TDF_SLIM);
549 fprintf (dump_file, "\n");
550 }
551
552 remove_phi_node (phi, prev, true);
553 stats.removed_phis++;
554 phi = next;
555 }
556 else
557 {
558 prev = phi;
559 phi = PHI_CHAIN (phi);
560 }
561 }
562 return something_changed;
563 }
564
565
566 /* Remove dead statement pointed to by iterator I. Receives the basic block BB
567 containing I so that we don't have to look it up. */
568
569 static void
570 remove_dead_stmt (block_stmt_iterator *i, basic_block bb)
571 {
572 tree t = bsi_stmt (*i);
573
574 if (dump_file && (dump_flags & TDF_DETAILS))
575 {
576 fprintf (dump_file, "Deleting : ");
577 print_generic_stmt (dump_file, t, TDF_SLIM);
578 fprintf (dump_file, "\n");
579 }
580
581 stats.removed++;
582
583 /* If we have determined that a conditional branch statement contributes
584 nothing to the program, then we not only remove it, but we also change
585 the flow graph so that the current block will simply fall-thru to its
586 immediate post-dominator. The blocks we are circumventing will be
587 removed by cleanup_tree_cfg if this change in the flow graph makes them
588 unreachable. */
589 if (is_ctrl_stmt (t))
590 {
591 basic_block post_dom_bb;
592
593 /* The post dominance info has to be up-to-date. */
594 gcc_assert (dom_computed[CDI_POST_DOMINATORS] == DOM_OK);
595 /* Get the immediate post dominator of bb. */
596 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
597
598 /* There are three particularly problematical cases.
599
600 1. Blocks that do not have an immediate post dominator. This
601 can happen with infinite loops.
602
603 2. Blocks that are only post dominated by the exit block. These
604 can also happen for infinite loops as we create fake edges
605 in the dominator tree.
606
607 3. If the post dominator has PHI nodes we may be able to compute
608 the right PHI args for them.
609
610
611 In each of these cases we must remove the control statement
612 as it may reference SSA_NAMEs which are going to be removed and
613 we remove all but one outgoing edge from the block. */
614 if (! post_dom_bb
615 || post_dom_bb == EXIT_BLOCK_PTR
616 || phi_nodes (post_dom_bb))
617 ;
618 else
619 {
620 /* Redirect the first edge out of BB to reach POST_DOM_BB. */
621 redirect_edge_and_branch (EDGE_SUCC (bb, 0), post_dom_bb);
622 PENDING_STMT (EDGE_SUCC (bb, 0)) = NULL;
623 }
624 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
625 EDGE_SUCC (bb, 0)->count = bb->count;
626
627 /* The edge is no longer associated with a conditional, so it does
628 not have TRUE/FALSE flags. */
629 EDGE_SUCC (bb, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
630
631 /* The lone outgoing edge from BB will be a fallthru edge. */
632 EDGE_SUCC (bb, 0)->flags |= EDGE_FALLTHRU;
633
634 /* Remove the remaining the outgoing edges. */
635 while (!single_succ_p (bb))
636 {
637 /* FIXME. When we remove the edge, we modify the CFG, which
638 in turn modifies the dominator and post-dominator tree.
639 Is it safe to postpone recomputing the dominator and
640 post-dominator tree until the end of this pass given that
641 the post-dominators are used above? */
642 cfg_altered = true;
643 remove_edge (EDGE_SUCC (bb, 1));
644 }
645 }
646
647 bsi_remove (i, true);
648 release_defs (t);
649 }
650
651
652 /* Eliminate unnecessary statements. Any instruction not marked as necessary
653 contributes nothing to the program, and can be deleted. */
654
655 static bool
656 eliminate_unnecessary_stmts (void)
657 {
658 bool something_changed = false;
659 basic_block bb;
660 block_stmt_iterator i;
661
662 if (dump_file && (dump_flags & TDF_DETAILS))
663 fprintf (dump_file, "\nEliminating unnecessary statements:\n");
664
665 clear_special_calls ();
666 FOR_EACH_BB (bb)
667 {
668 /* Remove dead PHI nodes. */
669 something_changed |= remove_dead_phis (bb);
670 }
671
672 FOR_EACH_BB (bb)
673 {
674 /* Remove dead statements. */
675 for (i = bsi_start (bb); ! bsi_end_p (i) ; )
676 {
677 tree t = bsi_stmt (i);
678
679 stats.total++;
680
681 /* If `i' is not necessary then remove it. */
682 if (! NECESSARY (t))
683 {
684 remove_dead_stmt (&i, bb);
685 something_changed = true;
686 }
687 else
688 {
689 tree call = get_call_expr_in (t);
690 if (call)
691 {
692 tree name;
693
694 /* When LHS of var = call (); is dead, simplify it into
695 call (); saving one operand. */
696 if (TREE_CODE (t) == GIMPLE_MODIFY_STMT
697 && (TREE_CODE ((name = GIMPLE_STMT_OPERAND (t, 0)))
698 == SSA_NAME)
699 && !TEST_BIT (processed, SSA_NAME_VERSION (name)))
700 {
701 something_changed = true;
702 if (dump_file && (dump_flags & TDF_DETAILS))
703 {
704 fprintf (dump_file, "Deleting LHS of call: ");
705 print_generic_stmt (dump_file, t, TDF_SLIM);
706 fprintf (dump_file, "\n");
707 }
708 push_stmt_changes (bsi_stmt_ptr (i));
709 TREE_BLOCK (call) = TREE_BLOCK (t);
710 bsi_replace (&i, call, false);
711 maybe_clean_or_replace_eh_stmt (t, call);
712 mark_symbols_for_renaming (call);
713 pop_stmt_changes (bsi_stmt_ptr (i));
714 }
715 notice_special_calls (call);
716 }
717 bsi_next (&i);
718 }
719 }
720 }
721 return something_changed;
722 }
723
724
725 /* Print out removed statement statistics. */
726
727 static void
728 print_stats (void)
729 {
730 if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
731 {
732 float percg;
733
734 percg = ((float) stats.removed / (float) stats.total) * 100;
735 fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
736 stats.removed, stats.total, (int) percg);
737
738 if (stats.total_phis == 0)
739 percg = 0;
740 else
741 percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
742
743 fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
744 stats.removed_phis, stats.total_phis, (int) percg);
745 }
746 }
747 \f
748 /* Initialization for this pass. Set up the used data structures. */
749
750 static void
751 tree_dce_init (bool aggressive)
752 {
753 memset ((void *) &stats, 0, sizeof (stats));
754
755 if (aggressive)
756 {
757 int i;
758
759 control_dependence_map = XNEWVEC (bitmap, last_basic_block);
760 for (i = 0; i < last_basic_block; ++i)
761 control_dependence_map[i] = BITMAP_ALLOC (NULL);
762
763 last_stmt_necessary = sbitmap_alloc (last_basic_block);
764 sbitmap_zero (last_stmt_necessary);
765 }
766
767 processed = sbitmap_alloc (num_ssa_names + 1);
768 sbitmap_zero (processed);
769
770 worklist = VEC_alloc (tree, heap, 64);
771 cfg_altered = false;
772 }
773
774 /* Cleanup after this pass. */
775
776 static void
777 tree_dce_done (bool aggressive)
778 {
779 if (aggressive)
780 {
781 int i;
782
783 for (i = 0; i < last_basic_block; ++i)
784 BITMAP_FREE (control_dependence_map[i]);
785 free (control_dependence_map);
786
787 sbitmap_free (visited_control_parents);
788 sbitmap_free (last_stmt_necessary);
789 }
790
791 sbitmap_free (processed);
792
793 VEC_free (tree, heap, worklist);
794 }
795 \f
796 /* Main routine to eliminate dead code.
797
798 AGGRESSIVE controls the aggressiveness of the algorithm.
799 In conservative mode, we ignore control dependence and simply declare
800 all but the most trivially dead branches necessary. This mode is fast.
801 In aggressive mode, control dependences are taken into account, which
802 results in more dead code elimination, but at the cost of some time.
803
804 FIXME: Aggressive mode before PRE doesn't work currently because
805 the dominance info is not invalidated after DCE1. This is
806 not an issue right now because we only run aggressive DCE
807 as the last tree SSA pass, but keep this in mind when you
808 start experimenting with pass ordering. */
809
810 static unsigned int
811 perform_tree_ssa_dce (bool aggressive)
812 {
813 struct edge_list *el = NULL;
814 bool something_changed = 0;
815
816 tree_dce_init (aggressive);
817
818 if (aggressive)
819 {
820 /* Compute control dependence. */
821 timevar_push (TV_CONTROL_DEPENDENCES);
822 calculate_dominance_info (CDI_POST_DOMINATORS);
823 el = create_edge_list ();
824 find_all_control_dependences (el);
825 timevar_pop (TV_CONTROL_DEPENDENCES);
826
827 visited_control_parents = sbitmap_alloc (last_basic_block);
828 sbitmap_zero (visited_control_parents);
829
830 mark_dfs_back_edges ();
831 }
832
833 find_obviously_necessary_stmts (el);
834
835 propagate_necessity (el);
836
837 something_changed |= eliminate_unnecessary_stmts ();
838 something_changed |= cfg_altered;
839
840 if (aggressive && something_changed)
841 free_dominance_info (CDI_POST_DOMINATORS);
842
843 /* If we removed paths in the CFG, then we need to update
844 dominators as well. I haven't investigated the possibility
845 of incrementally updating dominators. */
846 if (cfg_altered)
847 free_dominance_info (CDI_DOMINATORS);
848
849 /* Debugging dumps. */
850 if (dump_file)
851 print_stats ();
852
853 tree_dce_done (aggressive);
854
855 free_edge_list (el);
856
857 if (something_changed)
858 return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
859 | TODO_remove_unused_locals);
860 else
861 return 0;
862 }
863
864 /* Pass entry points. */
865 static unsigned int
866 tree_ssa_dce (void)
867 {
868 return perform_tree_ssa_dce (/*aggressive=*/false);
869 }
870
871 static unsigned int
872 tree_ssa_dce_loop (void)
873 {
874 unsigned int todo;
875 todo = perform_tree_ssa_dce (/*aggressive=*/false);
876 if (todo)
877 {
878 free_numbers_of_iterations_estimates ();
879 scev_reset ();
880 }
881 return todo;
882 }
883
884 static unsigned int
885 tree_ssa_cd_dce (void)
886 {
887 return perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
888 }
889
890 static bool
891 gate_dce (void)
892 {
893 return flag_tree_dce != 0;
894 }
895
896 struct tree_opt_pass pass_dce =
897 {
898 "dce", /* name */
899 gate_dce, /* gate */
900 tree_ssa_dce, /* execute */
901 NULL, /* sub */
902 NULL, /* next */
903 0, /* static_pass_number */
904 TV_TREE_DCE, /* tv_id */
905 PROP_cfg | PROP_ssa, /* properties_required */
906 0, /* properties_provided */
907 0, /* properties_destroyed */
908 0, /* todo_flags_start */
909 TODO_dump_func | TODO_verify_ssa, /* todo_flags_finish */
910 0 /* letter */
911 };
912
913 struct tree_opt_pass pass_dce_loop =
914 {
915 "dceloop", /* name */
916 gate_dce, /* gate */
917 tree_ssa_dce_loop, /* execute */
918 NULL, /* sub */
919 NULL, /* next */
920 0, /* static_pass_number */
921 TV_TREE_DCE, /* tv_id */
922 PROP_cfg | PROP_ssa, /* properties_required */
923 0, /* properties_provided */
924 0, /* properties_destroyed */
925 0, /* todo_flags_start */
926 TODO_dump_func | TODO_verify_ssa, /* todo_flags_finish */
927 0 /* letter */
928 };
929
930 struct tree_opt_pass pass_cd_dce =
931 {
932 "cddce", /* name */
933 gate_dce, /* gate */
934 tree_ssa_cd_dce, /* execute */
935 NULL, /* sub */
936 NULL, /* next */
937 0, /* static_pass_number */
938 TV_TREE_CD_DCE, /* tv_id */
939 PROP_cfg | PROP_ssa, /* properties_required */
940 0, /* properties_provided */
941 0, /* properties_destroyed */
942 0, /* todo_flags_start */
943 TODO_dump_func | TODO_verify_ssa
944 | TODO_verify_flow, /* todo_flags_finish */
945 0 /* letter */
946 };