re PR tree-optimization/43833 (false warning: array subscript is above array bounds...
[gcc.git] / gcc / tree-ssa-dce.c
1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Ben Elliston <bje@redhat.com>
5 and Andrew MacLeod <amacleod@redhat.com>
6 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 3, or (at your option) any
13 later version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* Dead code elimination.
25
26 References:
27
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
30
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
33
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
37 impact on the output.
38
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
45
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "ggc.h"
51
52 /* These RTL headers are needed for basic-block.h. */
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "hard-reg-set.h"
56 #include "obstack.h"
57 #include "basic-block.h"
58
59 #include "tree.h"
60 #include "diagnostic.h"
61 #include "tree-flow.h"
62 #include "gimple.h"
63 #include "tree-dump.h"
64 #include "tree-pass.h"
65 #include "timevar.h"
66 #include "flags.h"
67 #include "cfgloop.h"
68 #include "tree-scalar-evolution.h"
69
70 static struct stmt_stats
71 {
72 int total;
73 int total_phis;
74 int removed;
75 int removed_phis;
76 } stats;
77
78 #define STMT_NECESSARY GF_PLF_1
79
80 static VEC(gimple,heap) *worklist;
81
82 /* Vector indicating an SSA name has already been processed and marked
83 as necessary. */
84 static sbitmap processed;
85
86 /* Vector indicating that last_stmt if a basic block has already been
87 marked as necessary. */
88 static sbitmap last_stmt_necessary;
89
90 /* Vector indicating that BB contains statements that are live. */
91 static sbitmap bb_contains_live_stmts;
92
93 /* Before we can determine whether a control branch is dead, we need to
94 compute which blocks are control dependent on which edges.
95
96 We expect each block to be control dependent on very few edges so we
97 use a bitmap for each block recording its edges. An array holds the
98 bitmap. The Ith bit in the bitmap is set if that block is dependent
99 on the Ith edge. */
100 static bitmap *control_dependence_map;
101
102 /* Vector indicating that a basic block has already had all the edges
103 processed that it is control dependent on. */
104 static sbitmap visited_control_parents;
105
106 /* TRUE if this pass alters the CFG (by removing control statements).
107 FALSE otherwise.
108
109 If this pass alters the CFG, then it will arrange for the dominators
110 to be recomputed. */
111 static bool cfg_altered;
112
113 /* Execute code that follows the macro for each edge (given number
114 EDGE_NUMBER within the CODE) for which the block with index N is
115 control dependent. */
116 #define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER) \
117 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0, \
118 (EDGE_NUMBER), (BI))
119
120
121 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
122 static inline void
123 set_control_dependence_map_bit (basic_block bb, int edge_index)
124 {
125 if (bb == ENTRY_BLOCK_PTR)
126 return;
127 gcc_assert (bb != EXIT_BLOCK_PTR);
128 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
129 }
130
131 /* Clear all control dependences for block BB. */
132 static inline void
133 clear_control_dependence_bitmap (basic_block bb)
134 {
135 bitmap_clear (control_dependence_map[bb->index]);
136 }
137
138
139 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
140 This function is necessary because some blocks have negative numbers. */
141
142 static inline basic_block
143 find_pdom (basic_block block)
144 {
145 gcc_assert (block != ENTRY_BLOCK_PTR);
146
147 if (block == EXIT_BLOCK_PTR)
148 return EXIT_BLOCK_PTR;
149 else
150 {
151 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
152 if (! bb)
153 return EXIT_BLOCK_PTR;
154 return bb;
155 }
156 }
157
158
159 /* Determine all blocks' control dependences on the given edge with edge_list
160 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
161
162 static void
163 find_control_dependence (struct edge_list *el, int edge_index)
164 {
165 basic_block current_block;
166 basic_block ending_block;
167
168 gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
169
170 if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
171 ending_block = single_succ (ENTRY_BLOCK_PTR);
172 else
173 ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
174
175 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
176 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
177 current_block = find_pdom (current_block))
178 {
179 edge e = INDEX_EDGE (el, edge_index);
180
181 /* For abnormal edges, we don't make current_block control
182 dependent because instructions that throw are always necessary
183 anyway. */
184 if (e->flags & EDGE_ABNORMAL)
185 continue;
186
187 set_control_dependence_map_bit (current_block, edge_index);
188 }
189 }
190
191
192 /* Record all blocks' control dependences on all edges in the edge
193 list EL, ala Morgan, Section 3.6. */
194
195 static void
196 find_all_control_dependences (struct edge_list *el)
197 {
198 int i;
199
200 for (i = 0; i < NUM_EDGES (el); ++i)
201 find_control_dependence (el, i);
202 }
203
204 /* If STMT is not already marked necessary, mark it, and add it to the
205 worklist if ADD_TO_WORKLIST is true. */
206 static inline void
207 mark_stmt_necessary (gimple stmt, bool add_to_worklist)
208 {
209 gcc_assert (stmt);
210
211 if (gimple_plf (stmt, STMT_NECESSARY))
212 return;
213
214 if (dump_file && (dump_flags & TDF_DETAILS))
215 {
216 fprintf (dump_file, "Marking useful stmt: ");
217 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
218 fprintf (dump_file, "\n");
219 }
220
221 gimple_set_plf (stmt, STMT_NECESSARY, true);
222 if (add_to_worklist)
223 VEC_safe_push (gimple, heap, worklist, stmt);
224 if (bb_contains_live_stmts && !is_gimple_debug (stmt))
225 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
226 }
227
228
229 /* Mark the statement defining operand OP as necessary. */
230
231 static inline void
232 mark_operand_necessary (tree op)
233 {
234 gimple stmt;
235 int ver;
236
237 gcc_assert (op);
238
239 ver = SSA_NAME_VERSION (op);
240 if (TEST_BIT (processed, ver))
241 {
242 stmt = SSA_NAME_DEF_STMT (op);
243 gcc_assert (gimple_nop_p (stmt)
244 || gimple_plf (stmt, STMT_NECESSARY));
245 return;
246 }
247 SET_BIT (processed, ver);
248
249 stmt = SSA_NAME_DEF_STMT (op);
250 gcc_assert (stmt);
251
252 if (gimple_plf (stmt, STMT_NECESSARY) || gimple_nop_p (stmt))
253 return;
254
255 if (dump_file && (dump_flags & TDF_DETAILS))
256 {
257 fprintf (dump_file, "marking necessary through ");
258 print_generic_expr (dump_file, op, 0);
259 fprintf (dump_file, " stmt ");
260 print_gimple_stmt (dump_file, stmt, 0, 0);
261 }
262
263 gimple_set_plf (stmt, STMT_NECESSARY, true);
264 if (bb_contains_live_stmts)
265 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
266 VEC_safe_push (gimple, heap, worklist, stmt);
267 }
268
269
270 /* Mark STMT as necessary if it obviously is. Add it to the worklist if
271 it can make other statements necessary.
272
273 If AGGRESSIVE is false, control statements are conservatively marked as
274 necessary. */
275
276 static void
277 mark_stmt_if_obviously_necessary (gimple stmt, bool aggressive)
278 {
279 tree lhs = NULL_TREE;
280 /* With non-call exceptions, we have to assume that all statements could
281 throw. If a statement may throw, it is inherently necessary. */
282 if (flag_non_call_exceptions
283 && stmt_could_throw_p (stmt))
284 {
285 mark_stmt_necessary (stmt, true);
286 return;
287 }
288
289 /* Statements that are implicitly live. Most function calls, asm
290 and return statements are required. Labels and GIMPLE_BIND nodes
291 are kept because they are control flow, and we have no way of
292 knowing whether they can be removed. DCE can eliminate all the
293 other statements in a block, and CFG can then remove the block
294 and labels. */
295 switch (gimple_code (stmt))
296 {
297 case GIMPLE_PREDICT:
298 case GIMPLE_LABEL:
299 mark_stmt_necessary (stmt, false);
300 return;
301
302 case GIMPLE_ASM:
303 case GIMPLE_RESX:
304 case GIMPLE_RETURN:
305 mark_stmt_necessary (stmt, true);
306 return;
307
308 case GIMPLE_CALL:
309 /* Most, but not all function calls are required. Function calls that
310 produce no result and have no side effects (i.e. const pure
311 functions) are unnecessary. */
312 if (gimple_has_side_effects (stmt))
313 {
314 mark_stmt_necessary (stmt, true);
315 return;
316 }
317 if (!gimple_call_lhs (stmt))
318 return;
319 lhs = gimple_call_lhs (stmt);
320 /* Fall through */
321
322 case GIMPLE_ASSIGN:
323 if (!lhs)
324 lhs = gimple_assign_lhs (stmt);
325 break;
326
327 case GIMPLE_DEBUG:
328 /* Debug temps without a value are not useful. ??? If we could
329 easily locate the debug temp bind stmt for a use thereof,
330 would could refrain from marking all debug temps here, and
331 mark them only if they're used. */
332 if (gimple_debug_bind_has_value_p (stmt)
333 || TREE_CODE (gimple_debug_bind_get_var (stmt)) != DEBUG_EXPR_DECL)
334 mark_stmt_necessary (stmt, false);
335 return;
336
337 case GIMPLE_GOTO:
338 gcc_assert (!simple_goto_p (stmt));
339 mark_stmt_necessary (stmt, true);
340 return;
341
342 case GIMPLE_COND:
343 gcc_assert (EDGE_COUNT (gimple_bb (stmt)->succs) == 2);
344 /* Fall through. */
345
346 case GIMPLE_SWITCH:
347 if (! aggressive)
348 mark_stmt_necessary (stmt, true);
349 break;
350
351 default:
352 break;
353 }
354
355 /* If the statement has volatile operands, it needs to be preserved.
356 Same for statements that can alter control flow in unpredictable
357 ways. */
358 if (gimple_has_volatile_ops (stmt) || is_ctrl_altering_stmt (stmt))
359 {
360 mark_stmt_necessary (stmt, true);
361 return;
362 }
363
364 if (is_hidden_global_store (stmt))
365 {
366 mark_stmt_necessary (stmt, true);
367 return;
368 }
369
370 return;
371 }
372
373
374 /* Make corresponding control dependent edges necessary. We only
375 have to do this once for each basic block, so we clear the bitmap
376 after we're done.
377
378 When IGNORE_SELF it true, ignore BB from the list of control dependences. */
379 static void
380 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el, bool ignore_self)
381 {
382 bitmap_iterator bi;
383 unsigned edge_number;
384 bool skipped = false;
385
386 gcc_assert (bb != EXIT_BLOCK_PTR);
387
388 if (bb == ENTRY_BLOCK_PTR)
389 return;
390
391 EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
392 {
393 gimple stmt;
394 basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
395
396 if (ignore_self && cd_bb == bb)
397 {
398 skipped = true;
399 continue;
400 }
401
402 if (TEST_BIT (last_stmt_necessary, cd_bb->index))
403 continue;
404 SET_BIT (last_stmt_necessary, cd_bb->index);
405 SET_BIT (bb_contains_live_stmts, cd_bb->index);
406
407 stmt = last_stmt (cd_bb);
408 if (stmt && is_ctrl_stmt (stmt))
409 mark_stmt_necessary (stmt, true);
410 }
411 if (!skipped)
412 SET_BIT (visited_control_parents, bb->index);
413 }
414
415
416 /* Find obviously necessary statements. These are things like most function
417 calls, and stores to file level variables.
418
419 If EL is NULL, control statements are conservatively marked as
420 necessary. Otherwise it contains the list of edges used by control
421 dependence analysis. */
422
423 static void
424 find_obviously_necessary_stmts (struct edge_list *el)
425 {
426 basic_block bb;
427 gimple_stmt_iterator gsi;
428 edge e;
429 gimple phi, stmt;
430
431 FOR_EACH_BB (bb)
432 {
433 /* PHI nodes are never inherently necessary. */
434 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
435 {
436 phi = gsi_stmt (gsi);
437 gimple_set_plf (phi, STMT_NECESSARY, false);
438 }
439
440 /* Check all statements in the block. */
441 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
442 {
443 stmt = gsi_stmt (gsi);
444 gimple_set_plf (stmt, STMT_NECESSARY, false);
445 mark_stmt_if_obviously_necessary (stmt, el != NULL);
446 }
447 }
448
449 /* Pure and const functions are finite and thus have no infinite loops in
450 them. */
451 if ((TREE_READONLY (current_function_decl)
452 || DECL_PURE_P (current_function_decl))
453 && !DECL_LOOPING_CONST_OR_PURE_P (current_function_decl))
454 return;
455
456 /* Prevent the empty possibly infinite loops from being removed. */
457 if (el)
458 {
459 loop_iterator li;
460 struct loop *loop;
461 scev_initialize ();
462 if (mark_irreducible_loops ())
463 FOR_EACH_BB (bb)
464 {
465 edge_iterator ei;
466 FOR_EACH_EDGE (e, ei, bb->succs)
467 if ((e->flags & EDGE_DFS_BACK)
468 && (e->flags & EDGE_IRREDUCIBLE_LOOP))
469 {
470 if (dump_file)
471 fprintf (dump_file, "Marking back edge of irreducible loop %i->%i\n",
472 e->src->index, e->dest->index);
473 mark_control_dependent_edges_necessary (e->dest, el, false);
474 }
475 }
476
477 FOR_EACH_LOOP (li, loop, 0)
478 if (!finite_loop_p (loop))
479 {
480 if (dump_file)
481 fprintf (dump_file, "can not prove finiteness of loop %i\n", loop->num);
482 mark_control_dependent_edges_necessary (loop->latch, el, false);
483 }
484 scev_finalize ();
485 }
486 }
487
488
489 /* Return true if REF is based on an aliased base, otherwise false. */
490
491 static bool
492 ref_may_be_aliased (tree ref)
493 {
494 while (handled_component_p (ref))
495 ref = TREE_OPERAND (ref, 0);
496 return !(DECL_P (ref)
497 && !may_be_aliased (ref));
498 }
499
500 static bitmap visited = NULL;
501 static unsigned int longest_chain = 0;
502 static unsigned int total_chain = 0;
503 static unsigned int nr_walks = 0;
504 static bool chain_ovfl = false;
505
506 /* Worker for the walker that marks reaching definitions of REF,
507 which is based on a non-aliased decl, necessary. It returns
508 true whenever the defining statement of the current VDEF is
509 a kill for REF, as no dominating may-defs are necessary for REF
510 anymore. DATA points to the basic-block that contains the
511 stmt that refers to REF. */
512
513 static bool
514 mark_aliased_reaching_defs_necessary_1 (ao_ref *ref, tree vdef, void *data)
515 {
516 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
517
518 /* All stmts we visit are necessary. */
519 mark_operand_necessary (vdef);
520
521 /* If the stmt lhs kills ref, then we can stop walking. */
522 if (gimple_has_lhs (def_stmt)
523 && TREE_CODE (gimple_get_lhs (def_stmt)) != SSA_NAME)
524 {
525 tree base, lhs = gimple_get_lhs (def_stmt);
526 HOST_WIDE_INT size, offset, max_size;
527 ao_ref_base (ref);
528 base = get_ref_base_and_extent (lhs, &offset, &size, &max_size);
529 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
530 so base == refd->base does not always hold. */
531 if (base == ref->base)
532 {
533 /* For a must-alias check we need to be able to constrain
534 the accesses properly. */
535 if (size != -1 && size == max_size
536 && ref->max_size != -1)
537 {
538 if (offset <= ref->offset
539 && offset + size >= ref->offset + ref->max_size)
540 return true;
541 }
542 /* Or they need to be exactly the same. */
543 else if (ref->ref
544 /* Make sure there is no induction variable involved
545 in the references (gcc.c-torture/execute/pr42142.c).
546 The simplest way is to check if the kill dominates
547 the use. */
548 && dominated_by_p (CDI_DOMINATORS, (basic_block) data,
549 gimple_bb (def_stmt))
550 && operand_equal_p (ref->ref, lhs, 0))
551 return true;
552 }
553 }
554
555 /* Otherwise keep walking. */
556 return false;
557 }
558
559 static void
560 mark_aliased_reaching_defs_necessary (gimple stmt, tree ref)
561 {
562 unsigned int chain;
563 ao_ref refd;
564 gcc_assert (!chain_ovfl);
565 ao_ref_init (&refd, ref);
566 chain = walk_aliased_vdefs (&refd, gimple_vuse (stmt),
567 mark_aliased_reaching_defs_necessary_1,
568 gimple_bb (stmt), NULL);
569 if (chain > longest_chain)
570 longest_chain = chain;
571 total_chain += chain;
572 nr_walks++;
573 }
574
575 /* Worker for the walker that marks reaching definitions of REF, which
576 is not based on a non-aliased decl. For simplicity we need to end
577 up marking all may-defs necessary that are not based on a non-aliased
578 decl. The only job of this walker is to skip may-defs based on
579 a non-aliased decl. */
580
581 static bool
582 mark_all_reaching_defs_necessary_1 (ao_ref *ref ATTRIBUTE_UNUSED,
583 tree vdef, void *data ATTRIBUTE_UNUSED)
584 {
585 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
586
587 /* We have to skip already visited (and thus necessary) statements
588 to make the chaining work after we dropped back to simple mode. */
589 if (chain_ovfl
590 && TEST_BIT (processed, SSA_NAME_VERSION (vdef)))
591 {
592 gcc_assert (gimple_nop_p (def_stmt)
593 || gimple_plf (def_stmt, STMT_NECESSARY));
594 return false;
595 }
596
597 /* We want to skip stores to non-aliased variables. */
598 if (!chain_ovfl
599 && gimple_assign_single_p (def_stmt))
600 {
601 tree lhs = gimple_assign_lhs (def_stmt);
602 if (!ref_may_be_aliased (lhs))
603 return false;
604 }
605
606 mark_operand_necessary (vdef);
607
608 return false;
609 }
610
611 static void
612 mark_all_reaching_defs_necessary (gimple stmt)
613 {
614 walk_aliased_vdefs (NULL, gimple_vuse (stmt),
615 mark_all_reaching_defs_necessary_1, NULL, &visited);
616 }
617
618 /* Return true for PHI nodes with one or identical arguments
619 can be removed. */
620 static bool
621 degenerate_phi_p (gimple phi)
622 {
623 unsigned int i;
624 tree op = gimple_phi_arg_def (phi, 0);
625 for (i = 1; i < gimple_phi_num_args (phi); i++)
626 if (gimple_phi_arg_def (phi, i) != op)
627 return false;
628 return true;
629 }
630
631 /* Propagate necessity using the operands of necessary statements.
632 Process the uses on each statement in the worklist, and add all
633 feeding statements which contribute to the calculation of this
634 value to the worklist.
635
636 In conservative mode, EL is NULL. */
637
638 static void
639 propagate_necessity (struct edge_list *el)
640 {
641 gimple stmt;
642 bool aggressive = (el ? true : false);
643
644 if (dump_file && (dump_flags & TDF_DETAILS))
645 fprintf (dump_file, "\nProcessing worklist:\n");
646
647 while (VEC_length (gimple, worklist) > 0)
648 {
649 /* Take STMT from worklist. */
650 stmt = VEC_pop (gimple, worklist);
651
652 if (dump_file && (dump_flags & TDF_DETAILS))
653 {
654 fprintf (dump_file, "processing: ");
655 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
656 fprintf (dump_file, "\n");
657 }
658
659 if (aggressive)
660 {
661 /* Mark the last statements of the basic blocks that the block
662 containing STMT is control dependent on, but only if we haven't
663 already done so. */
664 basic_block bb = gimple_bb (stmt);
665 if (bb != ENTRY_BLOCK_PTR
666 && ! TEST_BIT (visited_control_parents, bb->index))
667 mark_control_dependent_edges_necessary (bb, el, false);
668 }
669
670 if (gimple_code (stmt) == GIMPLE_PHI
671 /* We do not process virtual PHI nodes nor do we track their
672 necessity. */
673 && is_gimple_reg (gimple_phi_result (stmt)))
674 {
675 /* PHI nodes are somewhat special in that each PHI alternative has
676 data and control dependencies. All the statements feeding the
677 PHI node's arguments are always necessary. In aggressive mode,
678 we also consider the control dependent edges leading to the
679 predecessor block associated with each PHI alternative as
680 necessary. */
681 size_t k;
682
683 for (k = 0; k < gimple_phi_num_args (stmt); k++)
684 {
685 tree arg = PHI_ARG_DEF (stmt, k);
686 if (TREE_CODE (arg) == SSA_NAME)
687 mark_operand_necessary (arg);
688 }
689
690 /* For PHI operands it matters from where the control flow arrives
691 to the BB. Consider the following example:
692
693 a=exp1;
694 b=exp2;
695 if (test)
696 ;
697 else
698 ;
699 c=PHI(a,b)
700
701 We need to mark control dependence of the empty basic blocks, since they
702 contains computation of PHI operands.
703
704 Doing so is too restrictive in the case the predecestor block is in
705 the loop. Consider:
706
707 if (b)
708 {
709 int i;
710 for (i = 0; i<1000; ++i)
711 ;
712 j = 0;
713 }
714 return j;
715
716 There is PHI for J in the BB containing return statement.
717 In this case the control dependence of predecestor block (that is
718 within the empty loop) also contains the block determining number
719 of iterations of the block that would prevent removing of empty
720 loop in this case.
721
722 This scenario can be avoided by splitting critical edges.
723 To save the critical edge splitting pass we identify how the control
724 dependence would look like if the edge was split.
725
726 Consider the modified CFG created from current CFG by splitting
727 edge B->C. In the postdominance tree of modified CFG, C' is
728 always child of C. There are two cases how chlids of C' can look
729 like:
730
731 1) C' is leaf
732
733 In this case the only basic block C' is control dependent on is B.
734
735 2) C' has single child that is B
736
737 In this case control dependence of C' is same as control
738 dependence of B in original CFG except for block B itself.
739 (since C' postdominate B in modified CFG)
740
741 Now how to decide what case happens? There are two basic options:
742
743 a) C postdominate B. Then C immediately postdominate B and
744 case 2 happens iff there is no other way from B to C except
745 the edge B->C.
746
747 There is other way from B to C iff there is succesor of B that
748 is not postdominated by B. Testing this condition is somewhat
749 expensive, because we need to iterate all succesors of B.
750 We are safe to assume that this does not happen: we will mark B
751 as needed when processing the other path from B to C that is
752 conrol dependent on B and marking control dependencies of B
753 itself is harmless because they will be processed anyway after
754 processing control statement in B.
755
756 b) C does not postdominate B. Always case 1 happens since there is
757 path from C to exit that does not go through B and thus also C'. */
758
759 if (aggressive && !degenerate_phi_p (stmt))
760 {
761 for (k = 0; k < gimple_phi_num_args (stmt); k++)
762 {
763 basic_block arg_bb = gimple_phi_arg_edge (stmt, k)->src;
764
765 if (gimple_bb (stmt)
766 != get_immediate_dominator (CDI_POST_DOMINATORS, arg_bb))
767 {
768 if (!TEST_BIT (last_stmt_necessary, arg_bb->index))
769 {
770 gimple stmt2;
771 SET_BIT (last_stmt_necessary, arg_bb->index);
772 SET_BIT (bb_contains_live_stmts, arg_bb->index);
773
774 stmt2 = last_stmt (arg_bb);
775 if (stmt2 && is_ctrl_stmt (stmt2))
776 mark_stmt_necessary (stmt2, true);
777 }
778 }
779 else if (arg_bb != ENTRY_BLOCK_PTR
780 && ! TEST_BIT (visited_control_parents, arg_bb->index))
781 mark_control_dependent_edges_necessary (arg_bb, el, true);
782 }
783 }
784 }
785 else
786 {
787 /* Propagate through the operands. Examine all the USE, VUSE and
788 VDEF operands in this statement. Mark all the statements
789 which feed this statement's uses as necessary. */
790 ssa_op_iter iter;
791 tree use;
792
793 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
794 mark_operand_necessary (use);
795
796 use = gimple_vuse (stmt);
797 if (!use)
798 continue;
799
800 /* If we dropped to simple mode make all immediately
801 reachable definitions necessary. */
802 if (chain_ovfl)
803 {
804 mark_all_reaching_defs_necessary (stmt);
805 continue;
806 }
807
808 /* For statements that may load from memory (have a VUSE) we
809 have to mark all reaching (may-)definitions as necessary.
810 We partition this task into two cases:
811 1) explicit loads based on decls that are not aliased
812 2) implicit loads (like calls) and explicit loads not
813 based on decls that are not aliased (like indirect
814 references or loads from globals)
815 For 1) we mark all reaching may-defs as necessary, stopping
816 at dominating kills. For 2) we want to mark all dominating
817 references necessary, but non-aliased ones which we handle
818 in 1). By keeping a global visited bitmap for references
819 we walk for 2) we avoid quadratic behavior for those. */
820
821 if (is_gimple_call (stmt))
822 {
823 tree callee = gimple_call_fndecl (stmt);
824 unsigned i;
825
826 /* Calls to functions that are merely acting as barriers
827 or that only store to memory do not make any previous
828 stores necessary. */
829 if (callee != NULL_TREE
830 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
831 && (DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET
832 || DECL_FUNCTION_CODE (callee) == BUILT_IN_MALLOC
833 || DECL_FUNCTION_CODE (callee) == BUILT_IN_FREE))
834 continue;
835
836 /* Calls implicitly load from memory, their arguments
837 in addition may explicitly perform memory loads. */
838 mark_all_reaching_defs_necessary (stmt);
839 for (i = 0; i < gimple_call_num_args (stmt); ++i)
840 {
841 tree arg = gimple_call_arg (stmt, i);
842 if (TREE_CODE (arg) == SSA_NAME
843 || is_gimple_min_invariant (arg))
844 continue;
845 if (!ref_may_be_aliased (arg))
846 mark_aliased_reaching_defs_necessary (stmt, arg);
847 }
848 }
849 else if (gimple_assign_single_p (stmt))
850 {
851 tree rhs;
852 bool rhs_aliased = false;
853 /* If this is a load mark things necessary. */
854 rhs = gimple_assign_rhs1 (stmt);
855 if (TREE_CODE (rhs) != SSA_NAME
856 && !is_gimple_min_invariant (rhs))
857 {
858 if (!ref_may_be_aliased (rhs))
859 mark_aliased_reaching_defs_necessary (stmt, rhs);
860 else
861 rhs_aliased = true;
862 }
863 if (rhs_aliased)
864 mark_all_reaching_defs_necessary (stmt);
865 }
866 else if (gimple_code (stmt) == GIMPLE_RETURN)
867 {
868 tree rhs = gimple_return_retval (stmt);
869 /* A return statement may perform a load. */
870 if (TREE_CODE (rhs) != SSA_NAME
871 && !is_gimple_min_invariant (rhs))
872 {
873 if (!ref_may_be_aliased (rhs))
874 mark_aliased_reaching_defs_necessary (stmt, rhs);
875 else
876 mark_all_reaching_defs_necessary (stmt);
877 }
878 }
879 else if (gimple_code (stmt) == GIMPLE_ASM)
880 {
881 unsigned i;
882 mark_all_reaching_defs_necessary (stmt);
883 /* Inputs may perform loads. */
884 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
885 {
886 tree op = TREE_VALUE (gimple_asm_input_op (stmt, i));
887 if (TREE_CODE (op) != SSA_NAME
888 && !is_gimple_min_invariant (op)
889 && !ref_may_be_aliased (op))
890 mark_aliased_reaching_defs_necessary (stmt, op);
891 }
892 }
893 else
894 gcc_unreachable ();
895
896 /* If we over-used our alias oracle budget drop to simple
897 mode. The cost metric allows quadratic behavior
898 (number of uses times number of may-defs queries) up to
899 a constant maximal number of queries and after that falls back to
900 super-linear complexity. */
901 if (/* Constant but quadratic for small functions. */
902 total_chain > 128 * 128
903 /* Linear in the number of may-defs. */
904 && total_chain > 32 * longest_chain
905 /* Linear in the number of uses. */
906 && total_chain > nr_walks * 32)
907 {
908 chain_ovfl = true;
909 if (visited)
910 bitmap_clear (visited);
911 }
912 }
913 }
914 }
915
916 /* Replace all uses of result of PHI by underlying variable and mark it
917 for renaming. */
918
919 void
920 mark_virtual_phi_result_for_renaming (gimple phi)
921 {
922 bool used = false;
923 imm_use_iterator iter;
924 use_operand_p use_p;
925 gimple stmt;
926 tree result_ssa, result_var;
927
928 if (dump_file && (dump_flags & TDF_DETAILS))
929 {
930 fprintf (dump_file, "Marking result for renaming : ");
931 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
932 fprintf (dump_file, "\n");
933 }
934
935 result_ssa = gimple_phi_result (phi);
936 result_var = SSA_NAME_VAR (result_ssa);
937 FOR_EACH_IMM_USE_STMT (stmt, iter, result_ssa)
938 {
939 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
940 SET_USE (use_p, result_var);
941 update_stmt (stmt);
942 used = true;
943 }
944 if (used)
945 mark_sym_for_renaming (result_var);
946 }
947
948 /* Remove dead PHI nodes from block BB. */
949
950 static bool
951 remove_dead_phis (basic_block bb)
952 {
953 bool something_changed = false;
954 gimple_seq phis;
955 gimple phi;
956 gimple_stmt_iterator gsi;
957 phis = phi_nodes (bb);
958
959 for (gsi = gsi_start (phis); !gsi_end_p (gsi);)
960 {
961 stats.total_phis++;
962 phi = gsi_stmt (gsi);
963
964 /* We do not track necessity of virtual PHI nodes. Instead do
965 very simple dead PHI removal here. */
966 if (!is_gimple_reg (gimple_phi_result (phi)))
967 {
968 /* Virtual PHI nodes with one or identical arguments
969 can be removed. */
970 if (degenerate_phi_p (phi))
971 {
972 tree vdef = gimple_phi_result (phi);
973 tree vuse = gimple_phi_arg_def (phi, 0);
974
975 use_operand_p use_p;
976 imm_use_iterator iter;
977 gimple use_stmt;
978 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vdef)
979 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
980 SET_USE (use_p, vuse);
981 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vdef)
982 && TREE_CODE (vuse) == SSA_NAME)
983 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 1;
984 }
985 else
986 gimple_set_plf (phi, STMT_NECESSARY, true);
987 }
988
989 if (!gimple_plf (phi, STMT_NECESSARY))
990 {
991 something_changed = true;
992 if (dump_file && (dump_flags & TDF_DETAILS))
993 {
994 fprintf (dump_file, "Deleting : ");
995 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
996 fprintf (dump_file, "\n");
997 }
998
999 remove_phi_node (&gsi, true);
1000 stats.removed_phis++;
1001 continue;
1002 }
1003
1004 gsi_next (&gsi);
1005 }
1006 return something_changed;
1007 }
1008
1009 /* Forward edge E to respective POST_DOM_BB and update PHIs. */
1010
1011 static edge
1012 forward_edge_to_pdom (edge e, basic_block post_dom_bb)
1013 {
1014 gimple_stmt_iterator gsi;
1015 edge e2 = NULL;
1016 edge_iterator ei;
1017
1018 if (dump_file && (dump_flags & TDF_DETAILS))
1019 fprintf (dump_file, "Redirecting edge %i->%i to %i\n", e->src->index,
1020 e->dest->index, post_dom_bb->index);
1021
1022 e2 = redirect_edge_and_branch (e, post_dom_bb);
1023 cfg_altered = true;
1024
1025 /* If edge was already around, no updating is neccesary. */
1026 if (e2 != e)
1027 return e2;
1028
1029 if (!gimple_seq_empty_p (phi_nodes (post_dom_bb)))
1030 {
1031 /* We are sure that for every live PHI we are seeing control dependent BB.
1032 This means that we can pick any edge to duplicate PHI args from. */
1033 FOR_EACH_EDGE (e2, ei, post_dom_bb->preds)
1034 if (e2 != e)
1035 break;
1036 for (gsi = gsi_start_phis (post_dom_bb); !gsi_end_p (gsi);)
1037 {
1038 gimple phi = gsi_stmt (gsi);
1039 tree op;
1040 source_location locus;
1041
1042 /* PHIs for virtuals have no control dependency relation on them.
1043 We are lost here and must force renaming of the symbol. */
1044 if (!is_gimple_reg (gimple_phi_result (phi)))
1045 {
1046 mark_virtual_phi_result_for_renaming (phi);
1047 remove_phi_node (&gsi, true);
1048 continue;
1049 }
1050
1051 /* Dead PHI do not imply control dependency. */
1052 if (!gimple_plf (phi, STMT_NECESSARY))
1053 {
1054 gsi_next (&gsi);
1055 continue;
1056 }
1057
1058 op = gimple_phi_arg_def (phi, e2->dest_idx);
1059 locus = gimple_phi_arg_location (phi, e2->dest_idx);
1060 add_phi_arg (phi, op, e, locus);
1061 /* The resulting PHI if not dead can only be degenerate. */
1062 gcc_assert (degenerate_phi_p (phi));
1063 gsi_next (&gsi);
1064 }
1065 }
1066 return e;
1067 }
1068
1069 /* Remove dead statement pointed to by iterator I. Receives the basic block BB
1070 containing I so that we don't have to look it up. */
1071
1072 static void
1073 remove_dead_stmt (gimple_stmt_iterator *i, basic_block bb)
1074 {
1075 gimple stmt = gsi_stmt (*i);
1076
1077 if (dump_file && (dump_flags & TDF_DETAILS))
1078 {
1079 fprintf (dump_file, "Deleting : ");
1080 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1081 fprintf (dump_file, "\n");
1082 }
1083
1084 stats.removed++;
1085
1086 /* If we have determined that a conditional branch statement contributes
1087 nothing to the program, then we not only remove it, but we also change
1088 the flow graph so that the current block will simply fall-thru to its
1089 immediate post-dominator. The blocks we are circumventing will be
1090 removed by cleanup_tree_cfg if this change in the flow graph makes them
1091 unreachable. */
1092 if (is_ctrl_stmt (stmt))
1093 {
1094 basic_block post_dom_bb;
1095 edge e, e2;
1096 edge_iterator ei;
1097
1098 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
1099
1100 e = find_edge (bb, post_dom_bb);
1101
1102 /* If edge is already there, try to use it. This avoids need to update
1103 PHI nodes. Also watch for cases where post dominator does not exists
1104 or is exit block. These can happen for infinite loops as we create
1105 fake edges in the dominator tree. */
1106 if (e)
1107 ;
1108 else if (! post_dom_bb || post_dom_bb == EXIT_BLOCK_PTR)
1109 e = EDGE_SUCC (bb, 0);
1110 else
1111 e = forward_edge_to_pdom (EDGE_SUCC (bb, 0), post_dom_bb);
1112 gcc_assert (e);
1113 e->probability = REG_BR_PROB_BASE;
1114 e->count = bb->count;
1115
1116 /* The edge is no longer associated with a conditional, so it does
1117 not have TRUE/FALSE flags. */
1118 e->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
1119
1120 /* The lone outgoing edge from BB will be a fallthru edge. */
1121 e->flags |= EDGE_FALLTHRU;
1122
1123 /* Remove the remaining outgoing edges. */
1124 for (ei = ei_start (bb->succs); (e2 = ei_safe_edge (ei)); )
1125 if (e != e2)
1126 {
1127 cfg_altered = true;
1128 remove_edge (e2);
1129 }
1130 else
1131 ei_next (&ei);
1132 }
1133
1134 unlink_stmt_vdef (stmt);
1135 gsi_remove (i, true);
1136 release_defs (stmt);
1137 }
1138
1139 /* Eliminate unnecessary statements. Any instruction not marked as necessary
1140 contributes nothing to the program, and can be deleted. */
1141
1142 static bool
1143 eliminate_unnecessary_stmts (void)
1144 {
1145 bool something_changed = false;
1146 basic_block bb;
1147 gimple_stmt_iterator gsi, psi;
1148 gimple stmt;
1149 tree call;
1150 VEC (basic_block, heap) *h;
1151
1152 if (dump_file && (dump_flags & TDF_DETAILS))
1153 fprintf (dump_file, "\nEliminating unnecessary statements:\n");
1154
1155 clear_special_calls ();
1156
1157 /* Walking basic blocks and statements in reverse order avoids
1158 releasing SSA names before any other DEFs that refer to them are
1159 released. This helps avoid loss of debug information, as we get
1160 a chance to propagate all RHSs of removed SSAs into debug uses,
1161 rather than only the latest ones. E.g., consider:
1162
1163 x_3 = y_1 + z_2;
1164 a_5 = x_3 - b_4;
1165 # DEBUG a => a_5
1166
1167 If we were to release x_3 before a_5, when we reached a_5 and
1168 tried to substitute it into the debug stmt, we'd see x_3 there,
1169 but x_3's DEF, type, etc would have already been disconnected.
1170 By going backwards, the debug stmt first changes to:
1171
1172 # DEBUG a => x_3 - b_4
1173
1174 and then to:
1175
1176 # DEBUG a => y_1 + z_2 - b_4
1177
1178 as desired. */
1179 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
1180 h = get_all_dominated_blocks (CDI_DOMINATORS, single_succ (ENTRY_BLOCK_PTR));
1181
1182 while (VEC_length (basic_block, h))
1183 {
1184 bb = VEC_pop (basic_block, h);
1185
1186 /* Remove dead statements. */
1187 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi = psi)
1188 {
1189 stmt = gsi_stmt (gsi);
1190
1191 psi = gsi;
1192 gsi_prev (&psi);
1193
1194 stats.total++;
1195
1196 /* If GSI is not necessary then remove it. */
1197 if (!gimple_plf (stmt, STMT_NECESSARY))
1198 {
1199 if (!is_gimple_debug (stmt))
1200 something_changed = true;
1201 remove_dead_stmt (&gsi, bb);
1202 }
1203 else if (is_gimple_call (stmt))
1204 {
1205 call = gimple_call_fndecl (stmt);
1206 if (call)
1207 {
1208 tree name;
1209
1210 /* When LHS of var = call (); is dead, simplify it into
1211 call (); saving one operand. */
1212 name = gimple_call_lhs (stmt);
1213 if (name && TREE_CODE (name) == SSA_NAME
1214 && !TEST_BIT (processed, SSA_NAME_VERSION (name)))
1215 {
1216 something_changed = true;
1217 if (dump_file && (dump_flags & TDF_DETAILS))
1218 {
1219 fprintf (dump_file, "Deleting LHS of call: ");
1220 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1221 fprintf (dump_file, "\n");
1222 }
1223
1224 gimple_call_set_lhs (stmt, NULL_TREE);
1225 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1226 update_stmt (stmt);
1227 release_ssa_name (name);
1228 }
1229 notice_special_calls (stmt);
1230 }
1231 }
1232 }
1233 }
1234
1235 VEC_free (basic_block, heap, h);
1236
1237 /* Since we don't track liveness of virtual PHI nodes, it is possible that we
1238 rendered some PHI nodes unreachable while they are still in use.
1239 Mark them for renaming. */
1240 if (cfg_altered)
1241 {
1242 basic_block prev_bb;
1243
1244 find_unreachable_blocks ();
1245
1246 /* Delete all unreachable basic blocks in reverse dominator order. */
1247 for (bb = EXIT_BLOCK_PTR->prev_bb; bb != ENTRY_BLOCK_PTR; bb = prev_bb)
1248 {
1249 prev_bb = bb->prev_bb;
1250
1251 if (!TEST_BIT (bb_contains_live_stmts, bb->index)
1252 || !(bb->flags & BB_REACHABLE))
1253 {
1254 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1255 if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
1256 {
1257 bool found = false;
1258 imm_use_iterator iter;
1259
1260 FOR_EACH_IMM_USE_STMT (stmt, iter, gimple_phi_result (gsi_stmt (gsi)))
1261 {
1262 if (!(gimple_bb (stmt)->flags & BB_REACHABLE))
1263 continue;
1264 if (gimple_code (stmt) == GIMPLE_PHI
1265 || gimple_plf (stmt, STMT_NECESSARY))
1266 {
1267 found = true;
1268 BREAK_FROM_IMM_USE_STMT (iter);
1269 }
1270 }
1271 if (found)
1272 mark_virtual_phi_result_for_renaming (gsi_stmt (gsi));
1273 }
1274
1275 if (!(bb->flags & BB_REACHABLE))
1276 {
1277 /* Speed up the removal of blocks that don't
1278 dominate others. Walking backwards, this should
1279 be the common case. ??? Do we need to recompute
1280 dominators because of cfg_altered? */
1281 if (!MAY_HAVE_DEBUG_STMTS
1282 || !first_dom_son (CDI_DOMINATORS, bb))
1283 delete_basic_block (bb);
1284 else
1285 {
1286 h = get_all_dominated_blocks (CDI_DOMINATORS, bb);
1287
1288 while (VEC_length (basic_block, h))
1289 {
1290 bb = VEC_pop (basic_block, h);
1291 prev_bb = bb->prev_bb;
1292 /* Rearrangements to the CFG may have failed
1293 to update the dominators tree, so that
1294 formerly-dominated blocks are now
1295 otherwise reachable. */
1296 if (!!(bb->flags & BB_REACHABLE))
1297 continue;
1298 delete_basic_block (bb);
1299 }
1300
1301 VEC_free (basic_block, heap, h);
1302 }
1303 }
1304 }
1305 }
1306 }
1307 FOR_EACH_BB (bb)
1308 {
1309 /* Remove dead PHI nodes. */
1310 something_changed |= remove_dead_phis (bb);
1311 }
1312
1313 return something_changed;
1314 }
1315
1316
1317 /* Print out removed statement statistics. */
1318
1319 static void
1320 print_stats (void)
1321 {
1322 float percg;
1323
1324 percg = ((float) stats.removed / (float) stats.total) * 100;
1325 fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
1326 stats.removed, stats.total, (int) percg);
1327
1328 if (stats.total_phis == 0)
1329 percg = 0;
1330 else
1331 percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
1332
1333 fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
1334 stats.removed_phis, stats.total_phis, (int) percg);
1335 }
1336
1337 /* Initialization for this pass. Set up the used data structures. */
1338
1339 static void
1340 tree_dce_init (bool aggressive)
1341 {
1342 memset ((void *) &stats, 0, sizeof (stats));
1343
1344 if (aggressive)
1345 {
1346 int i;
1347
1348 control_dependence_map = XNEWVEC (bitmap, last_basic_block);
1349 for (i = 0; i < last_basic_block; ++i)
1350 control_dependence_map[i] = BITMAP_ALLOC (NULL);
1351
1352 last_stmt_necessary = sbitmap_alloc (last_basic_block);
1353 sbitmap_zero (last_stmt_necessary);
1354 bb_contains_live_stmts = sbitmap_alloc (last_basic_block);
1355 sbitmap_zero (bb_contains_live_stmts);
1356 }
1357
1358 processed = sbitmap_alloc (num_ssa_names + 1);
1359 sbitmap_zero (processed);
1360
1361 worklist = VEC_alloc (gimple, heap, 64);
1362 cfg_altered = false;
1363 }
1364
1365 /* Cleanup after this pass. */
1366
1367 static void
1368 tree_dce_done (bool aggressive)
1369 {
1370 if (aggressive)
1371 {
1372 int i;
1373
1374 for (i = 0; i < last_basic_block; ++i)
1375 BITMAP_FREE (control_dependence_map[i]);
1376 free (control_dependence_map);
1377
1378 sbitmap_free (visited_control_parents);
1379 sbitmap_free (last_stmt_necessary);
1380 sbitmap_free (bb_contains_live_stmts);
1381 bb_contains_live_stmts = NULL;
1382 }
1383
1384 sbitmap_free (processed);
1385
1386 VEC_free (gimple, heap, worklist);
1387 }
1388
1389 /* Main routine to eliminate dead code.
1390
1391 AGGRESSIVE controls the aggressiveness of the algorithm.
1392 In conservative mode, we ignore control dependence and simply declare
1393 all but the most trivially dead branches necessary. This mode is fast.
1394 In aggressive mode, control dependences are taken into account, which
1395 results in more dead code elimination, but at the cost of some time.
1396
1397 FIXME: Aggressive mode before PRE doesn't work currently because
1398 the dominance info is not invalidated after DCE1. This is
1399 not an issue right now because we only run aggressive DCE
1400 as the last tree SSA pass, but keep this in mind when you
1401 start experimenting with pass ordering. */
1402
1403 static unsigned int
1404 perform_tree_ssa_dce (bool aggressive)
1405 {
1406 struct edge_list *el = NULL;
1407 bool something_changed = 0;
1408
1409 /* Preheaders are needed for SCEV to work.
1410 Simple lateches and recorded exits improve chances that loop will
1411 proved to be finite in testcases such as in loop-15.c and loop-24.c */
1412 if (aggressive)
1413 loop_optimizer_init (LOOPS_NORMAL
1414 | LOOPS_HAVE_RECORDED_EXITS);
1415
1416 tree_dce_init (aggressive);
1417
1418 if (aggressive)
1419 {
1420 /* Compute control dependence. */
1421 timevar_push (TV_CONTROL_DEPENDENCES);
1422 calculate_dominance_info (CDI_POST_DOMINATORS);
1423 el = create_edge_list ();
1424 find_all_control_dependences (el);
1425 timevar_pop (TV_CONTROL_DEPENDENCES);
1426
1427 visited_control_parents = sbitmap_alloc (last_basic_block);
1428 sbitmap_zero (visited_control_parents);
1429
1430 mark_dfs_back_edges ();
1431 }
1432
1433 find_obviously_necessary_stmts (el);
1434
1435 if (aggressive)
1436 loop_optimizer_finalize ();
1437
1438 longest_chain = 0;
1439 total_chain = 0;
1440 nr_walks = 0;
1441 chain_ovfl = false;
1442 visited = BITMAP_ALLOC (NULL);
1443 propagate_necessity (el);
1444 BITMAP_FREE (visited);
1445
1446 something_changed |= eliminate_unnecessary_stmts ();
1447 something_changed |= cfg_altered;
1448
1449 /* We do not update postdominators, so free them unconditionally. */
1450 free_dominance_info (CDI_POST_DOMINATORS);
1451
1452 /* If we removed paths in the CFG, then we need to update
1453 dominators as well. I haven't investigated the possibility
1454 of incrementally updating dominators. */
1455 if (cfg_altered)
1456 free_dominance_info (CDI_DOMINATORS);
1457
1458 statistics_counter_event (cfun, "Statements deleted", stats.removed);
1459 statistics_counter_event (cfun, "PHI nodes deleted", stats.removed_phis);
1460
1461 /* Debugging dumps. */
1462 if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
1463 print_stats ();
1464
1465 tree_dce_done (aggressive);
1466
1467 free_edge_list (el);
1468
1469 if (something_changed)
1470 return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
1471 | TODO_remove_unused_locals);
1472 else
1473 return 0;
1474 }
1475
1476 /* Pass entry points. */
1477 static unsigned int
1478 tree_ssa_dce (void)
1479 {
1480 return perform_tree_ssa_dce (/*aggressive=*/false);
1481 }
1482
1483 static unsigned int
1484 tree_ssa_dce_loop (void)
1485 {
1486 unsigned int todo;
1487 todo = perform_tree_ssa_dce (/*aggressive=*/false);
1488 if (todo)
1489 {
1490 free_numbers_of_iterations_estimates ();
1491 scev_reset ();
1492 }
1493 return todo;
1494 }
1495
1496 static unsigned int
1497 tree_ssa_cd_dce (void)
1498 {
1499 return perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
1500 }
1501
1502 static bool
1503 gate_dce (void)
1504 {
1505 return flag_tree_dce != 0;
1506 }
1507
1508 struct gimple_opt_pass pass_dce =
1509 {
1510 {
1511 GIMPLE_PASS,
1512 "dce", /* name */
1513 gate_dce, /* gate */
1514 tree_ssa_dce, /* execute */
1515 NULL, /* sub */
1516 NULL, /* next */
1517 0, /* static_pass_number */
1518 TV_TREE_DCE, /* tv_id */
1519 PROP_cfg | PROP_ssa, /* properties_required */
1520 0, /* properties_provided */
1521 0, /* properties_destroyed */
1522 0, /* todo_flags_start */
1523 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1524 }
1525 };
1526
1527 struct gimple_opt_pass pass_dce_loop =
1528 {
1529 {
1530 GIMPLE_PASS,
1531 "dceloop", /* name */
1532 gate_dce, /* gate */
1533 tree_ssa_dce_loop, /* execute */
1534 NULL, /* sub */
1535 NULL, /* next */
1536 0, /* static_pass_number */
1537 TV_TREE_DCE, /* tv_id */
1538 PROP_cfg | PROP_ssa, /* properties_required */
1539 0, /* properties_provided */
1540 0, /* properties_destroyed */
1541 0, /* todo_flags_start */
1542 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1543 }
1544 };
1545
1546 struct gimple_opt_pass pass_cd_dce =
1547 {
1548 {
1549 GIMPLE_PASS,
1550 "cddce", /* name */
1551 gate_dce, /* gate */
1552 tree_ssa_cd_dce, /* execute */
1553 NULL, /* sub */
1554 NULL, /* next */
1555 0, /* static_pass_number */
1556 TV_TREE_CD_DCE, /* tv_id */
1557 PROP_cfg | PROP_ssa, /* properties_required */
1558 0, /* properties_provided */
1559 0, /* properties_destroyed */
1560 0, /* todo_flags_start */
1561 TODO_dump_func | TODO_verify_ssa
1562 | TODO_verify_flow /* todo_flags_finish */
1563 }
1564 };