i386.c (enum pta_flags): Move out of struct scope...
[gcc.git] / gcc / tree-ssa-dce.c
1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Ben Elliston <bje@redhat.com>
4 and Andrew MacLeod <amacleod@redhat.com>
5 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 2, or (at your option) any
12 later version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
22 02110-1301, USA. */
23
24 /* Dead code elimination.
25
26 References:
27
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
30
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
33
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
37 impact on the output.
38
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
45
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "ggc.h"
51
52 /* These RTL headers are needed for basic-block.h. */
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "hard-reg-set.h"
56 #include "obstack.h"
57 #include "basic-block.h"
58
59 #include "tree.h"
60 #include "diagnostic.h"
61 #include "tree-flow.h"
62 #include "tree-gimple.h"
63 #include "tree-dump.h"
64 #include "tree-pass.h"
65 #include "timevar.h"
66 #include "flags.h"
67 #include "cfgloop.h"
68 #include "tree-scalar-evolution.h"
69 \f
70 static struct stmt_stats
71 {
72 int total;
73 int total_phis;
74 int removed;
75 int removed_phis;
76 } stats;
77
78 static VEC(tree,heap) *worklist;
79
80 /* Vector indicating an SSA name has already been processed and marked
81 as necessary. */
82 static sbitmap processed;
83
84 /* Vector indicating that last_stmt if a basic block has already been
85 marked as necessary. */
86 static sbitmap last_stmt_necessary;
87
88 /* Before we can determine whether a control branch is dead, we need to
89 compute which blocks are control dependent on which edges.
90
91 We expect each block to be control dependent on very few edges so we
92 use a bitmap for each block recording its edges. An array holds the
93 bitmap. The Ith bit in the bitmap is set if that block is dependent
94 on the Ith edge. */
95 static bitmap *control_dependence_map;
96
97 /* Vector indicating that a basic block has already had all the edges
98 processed that it is control dependent on. */
99 static sbitmap visited_control_parents;
100
101 /* TRUE if this pass alters the CFG (by removing control statements).
102 FALSE otherwise.
103
104 If this pass alters the CFG, then it will arrange for the dominators
105 to be recomputed. */
106 static bool cfg_altered;
107
108 /* Execute code that follows the macro for each edge (given number
109 EDGE_NUMBER within the CODE) for which the block with index N is
110 control dependent. */
111 #define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER) \
112 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0, \
113 (EDGE_NUMBER), (BI))
114
115
116 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
117 static inline void
118 set_control_dependence_map_bit (basic_block bb, int edge_index)
119 {
120 if (bb == ENTRY_BLOCK_PTR)
121 return;
122 gcc_assert (bb != EXIT_BLOCK_PTR);
123 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
124 }
125
126 /* Clear all control dependences for block BB. */
127 static inline void
128 clear_control_dependence_bitmap (basic_block bb)
129 {
130 bitmap_clear (control_dependence_map[bb->index]);
131 }
132
133
134 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
135 This function is necessary because some blocks have negative numbers. */
136
137 static inline basic_block
138 find_pdom (basic_block block)
139 {
140 gcc_assert (block != ENTRY_BLOCK_PTR);
141
142 if (block == EXIT_BLOCK_PTR)
143 return EXIT_BLOCK_PTR;
144 else
145 {
146 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
147 if (! bb)
148 return EXIT_BLOCK_PTR;
149 return bb;
150 }
151 }
152
153
154 /* Determine all blocks' control dependences on the given edge with edge_list
155 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
156
157 static void
158 find_control_dependence (struct edge_list *el, int edge_index)
159 {
160 basic_block current_block;
161 basic_block ending_block;
162
163 gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
164
165 if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
166 ending_block = single_succ (ENTRY_BLOCK_PTR);
167 else
168 ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
169
170 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
171 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
172 current_block = find_pdom (current_block))
173 {
174 edge e = INDEX_EDGE (el, edge_index);
175
176 /* For abnormal edges, we don't make current_block control
177 dependent because instructions that throw are always necessary
178 anyway. */
179 if (e->flags & EDGE_ABNORMAL)
180 continue;
181
182 set_control_dependence_map_bit (current_block, edge_index);
183 }
184 }
185
186
187 /* Record all blocks' control dependences on all edges in the edge
188 list EL, ala Morgan, Section 3.6. */
189
190 static void
191 find_all_control_dependences (struct edge_list *el)
192 {
193 int i;
194
195 for (i = 0; i < NUM_EDGES (el); ++i)
196 find_control_dependence (el, i);
197 }
198
199
200 #define NECESSARY(stmt) stmt->base.asm_written_flag
201
202 /* If STMT is not already marked necessary, mark it, and add it to the
203 worklist if ADD_TO_WORKLIST is true. */
204 static inline void
205 mark_stmt_necessary (tree stmt, bool add_to_worklist)
206 {
207 gcc_assert (stmt);
208 gcc_assert (!DECL_P (stmt));
209
210 if (NECESSARY (stmt))
211 return;
212
213 if (dump_file && (dump_flags & TDF_DETAILS))
214 {
215 fprintf (dump_file, "Marking useful stmt: ");
216 print_generic_stmt (dump_file, stmt, TDF_SLIM);
217 fprintf (dump_file, "\n");
218 }
219
220 NECESSARY (stmt) = 1;
221 if (add_to_worklist)
222 VEC_safe_push (tree, heap, worklist, stmt);
223 }
224
225
226 /* Mark the statement defining operand OP as necessary. */
227
228 static inline void
229 mark_operand_necessary (tree op)
230 {
231 tree stmt;
232 int ver;
233
234 gcc_assert (op);
235
236 ver = SSA_NAME_VERSION (op);
237 if (TEST_BIT (processed, ver))
238 return;
239 SET_BIT (processed, ver);
240
241 stmt = SSA_NAME_DEF_STMT (op);
242 gcc_assert (stmt);
243
244 if (NECESSARY (stmt) || IS_EMPTY_STMT (stmt))
245 return;
246
247 NECESSARY (stmt) = 1;
248 VEC_safe_push (tree, heap, worklist, stmt);
249 }
250
251
252 /* Mark STMT as necessary if it obviously is. Add it to the worklist if
253 it can make other statements necessary.
254
255 If AGGRESSIVE is false, control statements are conservatively marked as
256 necessary. */
257
258 static void
259 mark_stmt_if_obviously_necessary (tree stmt, bool aggressive)
260 {
261 stmt_ann_t ann;
262 tree op;
263
264 /* With non-call exceptions, we have to assume that all statements could
265 throw. If a statement may throw, it is inherently necessary. */
266 if (flag_non_call_exceptions
267 && tree_could_throw_p (stmt))
268 {
269 mark_stmt_necessary (stmt, true);
270 return;
271 }
272
273 /* Statements that are implicitly live. Most function calls, asm and return
274 statements are required. Labels and BIND_EXPR nodes are kept because
275 they are control flow, and we have no way of knowing whether they can be
276 removed. DCE can eliminate all the other statements in a block, and CFG
277 can then remove the block and labels. */
278 switch (TREE_CODE (stmt))
279 {
280 case BIND_EXPR:
281 case LABEL_EXPR:
282 case CASE_LABEL_EXPR:
283 mark_stmt_necessary (stmt, false);
284 return;
285
286 case ASM_EXPR:
287 case RESX_EXPR:
288 case RETURN_EXPR:
289 mark_stmt_necessary (stmt, true);
290 return;
291
292 case CALL_EXPR:
293 /* Most, but not all function calls are required. Function calls that
294 produce no result and have no side effects (i.e. const pure
295 functions) are unnecessary. */
296 if (TREE_SIDE_EFFECTS (stmt))
297 mark_stmt_necessary (stmt, true);
298 return;
299
300 case GIMPLE_MODIFY_STMT:
301 op = get_call_expr_in (stmt);
302 if (op && TREE_SIDE_EFFECTS (op))
303 {
304 mark_stmt_necessary (stmt, true);
305 return;
306 }
307
308 /* These values are mildly magic bits of the EH runtime. We can't
309 see the entire lifetime of these values until landing pads are
310 generated. */
311 if (TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 0)) == EXC_PTR_EXPR
312 || TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 0)) == FILTER_EXPR)
313 {
314 mark_stmt_necessary (stmt, true);
315 return;
316 }
317 break;
318
319 case GOTO_EXPR:
320 gcc_assert (!simple_goto_p (stmt));
321 mark_stmt_necessary (stmt, true);
322 return;
323
324 case COND_EXPR:
325 gcc_assert (EDGE_COUNT (bb_for_stmt (stmt)->succs) == 2);
326 /* Fall through. */
327
328 case SWITCH_EXPR:
329 if (! aggressive)
330 mark_stmt_necessary (stmt, true);
331 break;
332
333 default:
334 break;
335 }
336
337 ann = stmt_ann (stmt);
338
339 /* If the statement has volatile operands, it needs to be preserved.
340 Same for statements that can alter control flow in unpredictable
341 ways. */
342 if (ann->has_volatile_ops || is_ctrl_altering_stmt (stmt))
343 {
344 mark_stmt_necessary (stmt, true);
345 return;
346 }
347
348 if (is_hidden_global_store (stmt))
349 {
350 mark_stmt_necessary (stmt, true);
351 return;
352 }
353
354 return;
355 }
356
357
358 /* Make corresponding control dependent edges necessary. We only
359 have to do this once for each basic block, so we clear the bitmap
360 after we're done. */
361 static void
362 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el)
363 {
364 bitmap_iterator bi;
365 unsigned edge_number;
366
367 gcc_assert (bb != EXIT_BLOCK_PTR);
368
369 if (bb == ENTRY_BLOCK_PTR)
370 return;
371
372 EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
373 {
374 tree t;
375 basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
376
377 if (TEST_BIT (last_stmt_necessary, cd_bb->index))
378 continue;
379 SET_BIT (last_stmt_necessary, cd_bb->index);
380
381 t = last_stmt (cd_bb);
382 if (t && is_ctrl_stmt (t))
383 mark_stmt_necessary (t, true);
384 }
385 }
386
387
388 /* Find obviously necessary statements. These are things like most function
389 calls, and stores to file level variables.
390
391 If EL is NULL, control statements are conservatively marked as
392 necessary. Otherwise it contains the list of edges used by control
393 dependence analysis. */
394
395 static void
396 find_obviously_necessary_stmts (struct edge_list *el)
397 {
398 basic_block bb;
399 block_stmt_iterator i;
400 edge e;
401
402 FOR_EACH_BB (bb)
403 {
404 tree phi;
405
406 /* PHI nodes are never inherently necessary. */
407 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
408 NECESSARY (phi) = 0;
409
410 /* Check all statements in the block. */
411 for (i = bsi_start (bb); ! bsi_end_p (i); bsi_next (&i))
412 {
413 tree stmt = bsi_stmt (i);
414 NECESSARY (stmt) = 0;
415 mark_stmt_if_obviously_necessary (stmt, el != NULL);
416 }
417 }
418
419 if (el)
420 {
421 /* Prevent the loops from being removed. We must keep the infinite loops,
422 and we currently do not have a means to recognize the finite ones. */
423 FOR_EACH_BB (bb)
424 {
425 edge_iterator ei;
426 FOR_EACH_EDGE (e, ei, bb->succs)
427 if (e->flags & EDGE_DFS_BACK)
428 mark_control_dependent_edges_necessary (e->dest, el);
429 }
430 }
431 }
432
433
434 /* Propagate necessity using the operands of necessary statements.
435 Process the uses on each statement in the worklist, and add all
436 feeding statements which contribute to the calculation of this
437 value to the worklist.
438
439 In conservative mode, EL is NULL. */
440
441 static void
442 propagate_necessity (struct edge_list *el)
443 {
444 tree stmt;
445 bool aggressive = (el ? true : false);
446
447 if (dump_file && (dump_flags & TDF_DETAILS))
448 fprintf (dump_file, "\nProcessing worklist:\n");
449
450 while (VEC_length (tree, worklist) > 0)
451 {
452 /* Take STMT from worklist. */
453 stmt = VEC_pop (tree, worklist);
454
455 if (dump_file && (dump_flags & TDF_DETAILS))
456 {
457 fprintf (dump_file, "processing: ");
458 print_generic_stmt (dump_file, stmt, TDF_SLIM);
459 fprintf (dump_file, "\n");
460 }
461
462 if (aggressive)
463 {
464 /* Mark the last statements of the basic blocks that the block
465 containing STMT is control dependent on, but only if we haven't
466 already done so. */
467 basic_block bb = bb_for_stmt (stmt);
468 if (bb != ENTRY_BLOCK_PTR
469 && ! TEST_BIT (visited_control_parents, bb->index))
470 {
471 SET_BIT (visited_control_parents, bb->index);
472 mark_control_dependent_edges_necessary (bb, el);
473 }
474 }
475
476 if (TREE_CODE (stmt) == PHI_NODE)
477 {
478 /* PHI nodes are somewhat special in that each PHI alternative has
479 data and control dependencies. All the statements feeding the
480 PHI node's arguments are always necessary. In aggressive mode,
481 we also consider the control dependent edges leading to the
482 predecessor block associated with each PHI alternative as
483 necessary. */
484 int k;
485
486 for (k = 0; k < PHI_NUM_ARGS (stmt); k++)
487 {
488 tree arg = PHI_ARG_DEF (stmt, k);
489 if (TREE_CODE (arg) == SSA_NAME)
490 mark_operand_necessary (arg);
491 }
492
493 if (aggressive)
494 {
495 for (k = 0; k < PHI_NUM_ARGS (stmt); k++)
496 {
497 basic_block arg_bb = PHI_ARG_EDGE (stmt, k)->src;
498 if (arg_bb != ENTRY_BLOCK_PTR
499 && ! TEST_BIT (visited_control_parents, arg_bb->index))
500 {
501 SET_BIT (visited_control_parents, arg_bb->index);
502 mark_control_dependent_edges_necessary (arg_bb, el);
503 }
504 }
505 }
506 }
507 else
508 {
509 /* Propagate through the operands. Examine all the USE, VUSE and
510 VDEF operands in this statement. Mark all the statements
511 which feed this statement's uses as necessary. The
512 operands of VDEF expressions are also needed as they
513 represent potential definitions that may reach this
514 statement (VDEF operands allow us to follow def-def
515 links). */
516 ssa_op_iter iter;
517 tree use;
518
519 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_ALL_USES)
520 mark_operand_necessary (use);
521 }
522 }
523 }
524
525
526 /* Remove dead PHI nodes from block BB. */
527
528 static bool
529 remove_dead_phis (basic_block bb)
530 {
531 tree prev, phi;
532 bool something_changed = false;
533
534 prev = NULL_TREE;
535 phi = phi_nodes (bb);
536 while (phi)
537 {
538 stats.total_phis++;
539
540 if (! NECESSARY (phi))
541 {
542 tree next = PHI_CHAIN (phi);
543
544 something_changed = true;
545 if (dump_file && (dump_flags & TDF_DETAILS))
546 {
547 fprintf (dump_file, "Deleting : ");
548 print_generic_stmt (dump_file, phi, TDF_SLIM);
549 fprintf (dump_file, "\n");
550 }
551
552 remove_phi_node (phi, prev, true);
553 stats.removed_phis++;
554 phi = next;
555 }
556 else
557 {
558 prev = phi;
559 phi = PHI_CHAIN (phi);
560 }
561 }
562 return something_changed;
563 }
564
565
566 /* Remove dead statement pointed to by iterator I. Receives the basic block BB
567 containing I so that we don't have to look it up. */
568
569 static void
570 remove_dead_stmt (block_stmt_iterator *i, basic_block bb)
571 {
572 tree t = bsi_stmt (*i);
573
574 if (dump_file && (dump_flags & TDF_DETAILS))
575 {
576 fprintf (dump_file, "Deleting : ");
577 print_generic_stmt (dump_file, t, TDF_SLIM);
578 fprintf (dump_file, "\n");
579 }
580
581 stats.removed++;
582
583 /* If we have determined that a conditional branch statement contributes
584 nothing to the program, then we not only remove it, but we also change
585 the flow graph so that the current block will simply fall-thru to its
586 immediate post-dominator. The blocks we are circumventing will be
587 removed by cleanup_tree_cfg if this change in the flow graph makes them
588 unreachable. */
589 if (is_ctrl_stmt (t))
590 {
591 basic_block post_dom_bb;
592
593 /* The post dominance info has to be up-to-date. */
594 gcc_assert (dom_info_state (CDI_POST_DOMINATORS) == DOM_OK);
595 /* Get the immediate post dominator of bb. */
596 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
597
598 /* There are three particularly problematical cases.
599
600 1. Blocks that do not have an immediate post dominator. This
601 can happen with infinite loops.
602
603 2. Blocks that are only post dominated by the exit block. These
604 can also happen for infinite loops as we create fake edges
605 in the dominator tree.
606
607 3. If the post dominator has PHI nodes we may be able to compute
608 the right PHI args for them.
609
610 In each of these cases we must remove the control statement
611 as it may reference SSA_NAMEs which are going to be removed and
612 we remove all but one outgoing edge from the block. */
613 if (! post_dom_bb
614 || post_dom_bb == EXIT_BLOCK_PTR
615 || phi_nodes (post_dom_bb))
616 ;
617 else
618 {
619 /* Redirect the first edge out of BB to reach POST_DOM_BB. */
620 redirect_edge_and_branch (EDGE_SUCC (bb, 0), post_dom_bb);
621 PENDING_STMT (EDGE_SUCC (bb, 0)) = NULL;
622
623 /* It is not sufficient to set cfg_altered below during edge
624 removal, in case BB has two successors and one of them
625 is POST_DOM_BB. */
626 cfg_altered = true;
627 }
628 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
629 EDGE_SUCC (bb, 0)->count = bb->count;
630
631 /* The edge is no longer associated with a conditional, so it does
632 not have TRUE/FALSE flags. */
633 EDGE_SUCC (bb, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
634
635 /* The lone outgoing edge from BB will be a fallthru edge. */
636 EDGE_SUCC (bb, 0)->flags |= EDGE_FALLTHRU;
637
638 /* Remove the remaining the outgoing edges. */
639 while (!single_succ_p (bb))
640 {
641 /* FIXME. When we remove the edge, we modify the CFG, which
642 in turn modifies the dominator and post-dominator tree.
643 Is it safe to postpone recomputing the dominator and
644 post-dominator tree until the end of this pass given that
645 the post-dominators are used above? */
646 cfg_altered = true;
647 remove_edge (EDGE_SUCC (bb, 1));
648 }
649 }
650
651 bsi_remove (i, true);
652 release_defs (t);
653 }
654
655
656 /* Eliminate unnecessary statements. Any instruction not marked as necessary
657 contributes nothing to the program, and can be deleted. */
658
659 static bool
660 eliminate_unnecessary_stmts (void)
661 {
662 bool something_changed = false;
663 basic_block bb;
664 block_stmt_iterator i;
665
666 if (dump_file && (dump_flags & TDF_DETAILS))
667 fprintf (dump_file, "\nEliminating unnecessary statements:\n");
668
669 clear_special_calls ();
670 FOR_EACH_BB (bb)
671 {
672 /* Remove dead PHI nodes. */
673 something_changed |= remove_dead_phis (bb);
674 }
675
676 FOR_EACH_BB (bb)
677 {
678 /* Remove dead statements. */
679 for (i = bsi_start (bb); ! bsi_end_p (i) ; )
680 {
681 tree t = bsi_stmt (i);
682
683 stats.total++;
684
685 /* If `i' is not necessary then remove it. */
686 if (! NECESSARY (t))
687 {
688 remove_dead_stmt (&i, bb);
689 something_changed = true;
690 }
691 else
692 {
693 tree call = get_call_expr_in (t);
694 if (call)
695 {
696 tree name;
697
698 /* When LHS of var = call (); is dead, simplify it into
699 call (); saving one operand. */
700 if (TREE_CODE (t) == GIMPLE_MODIFY_STMT
701 && (TREE_CODE ((name = GIMPLE_STMT_OPERAND (t, 0)))
702 == SSA_NAME)
703 && !TEST_BIT (processed, SSA_NAME_VERSION (name)))
704 {
705 tree oldlhs = GIMPLE_STMT_OPERAND (t, 0);
706 something_changed = true;
707 if (dump_file && (dump_flags & TDF_DETAILS))
708 {
709 fprintf (dump_file, "Deleting LHS of call: ");
710 print_generic_stmt (dump_file, t, TDF_SLIM);
711 fprintf (dump_file, "\n");
712 }
713 push_stmt_changes (bsi_stmt_ptr (i));
714 TREE_BLOCK (call) = TREE_BLOCK (t);
715 bsi_replace (&i, call, false);
716 maybe_clean_or_replace_eh_stmt (t, call);
717 mark_symbols_for_renaming (call);
718 pop_stmt_changes (bsi_stmt_ptr (i));
719 release_ssa_name (oldlhs);
720 }
721 notice_special_calls (call);
722 }
723 bsi_next (&i);
724 }
725 }
726 }
727
728 return something_changed;
729 }
730
731
732 /* Print out removed statement statistics. */
733
734 static void
735 print_stats (void)
736 {
737 if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
738 {
739 float percg;
740
741 percg = ((float) stats.removed / (float) stats.total) * 100;
742 fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
743 stats.removed, stats.total, (int) percg);
744
745 if (stats.total_phis == 0)
746 percg = 0;
747 else
748 percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
749
750 fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
751 stats.removed_phis, stats.total_phis, (int) percg);
752 }
753 }
754 \f
755 /* Initialization for this pass. Set up the used data structures. */
756
757 static void
758 tree_dce_init (bool aggressive)
759 {
760 memset ((void *) &stats, 0, sizeof (stats));
761
762 if (aggressive)
763 {
764 int i;
765
766 control_dependence_map = XNEWVEC (bitmap, last_basic_block);
767 for (i = 0; i < last_basic_block; ++i)
768 control_dependence_map[i] = BITMAP_ALLOC (NULL);
769
770 last_stmt_necessary = sbitmap_alloc (last_basic_block);
771 sbitmap_zero (last_stmt_necessary);
772 }
773
774 processed = sbitmap_alloc (num_ssa_names + 1);
775 sbitmap_zero (processed);
776
777 worklist = VEC_alloc (tree, heap, 64);
778 cfg_altered = false;
779 }
780
781 /* Cleanup after this pass. */
782
783 static void
784 tree_dce_done (bool aggressive)
785 {
786 if (aggressive)
787 {
788 int i;
789
790 for (i = 0; i < last_basic_block; ++i)
791 BITMAP_FREE (control_dependence_map[i]);
792 free (control_dependence_map);
793
794 sbitmap_free (visited_control_parents);
795 sbitmap_free (last_stmt_necessary);
796 }
797
798 sbitmap_free (processed);
799
800 VEC_free (tree, heap, worklist);
801 }
802 \f
803 /* Main routine to eliminate dead code.
804
805 AGGRESSIVE controls the aggressiveness of the algorithm.
806 In conservative mode, we ignore control dependence and simply declare
807 all but the most trivially dead branches necessary. This mode is fast.
808 In aggressive mode, control dependences are taken into account, which
809 results in more dead code elimination, but at the cost of some time.
810
811 FIXME: Aggressive mode before PRE doesn't work currently because
812 the dominance info is not invalidated after DCE1. This is
813 not an issue right now because we only run aggressive DCE
814 as the last tree SSA pass, but keep this in mind when you
815 start experimenting with pass ordering. */
816
817 static unsigned int
818 perform_tree_ssa_dce (bool aggressive)
819 {
820 struct edge_list *el = NULL;
821 bool something_changed = 0;
822
823 tree_dce_init (aggressive);
824
825 if (aggressive)
826 {
827 /* Compute control dependence. */
828 timevar_push (TV_CONTROL_DEPENDENCES);
829 calculate_dominance_info (CDI_POST_DOMINATORS);
830 el = create_edge_list ();
831 find_all_control_dependences (el);
832 timevar_pop (TV_CONTROL_DEPENDENCES);
833
834 visited_control_parents = sbitmap_alloc (last_basic_block);
835 sbitmap_zero (visited_control_parents);
836
837 mark_dfs_back_edges ();
838 }
839
840 find_obviously_necessary_stmts (el);
841
842 propagate_necessity (el);
843
844 something_changed |= eliminate_unnecessary_stmts ();
845 something_changed |= cfg_altered;
846
847 /* We do not update postdominators, so free them unconditionally. */
848 free_dominance_info (CDI_POST_DOMINATORS);
849
850 /* If we removed paths in the CFG, then we need to update
851 dominators as well. I haven't investigated the possibility
852 of incrementally updating dominators. */
853 if (cfg_altered)
854 free_dominance_info (CDI_DOMINATORS);
855
856 /* Debugging dumps. */
857 if (dump_file)
858 print_stats ();
859
860 tree_dce_done (aggressive);
861
862 free_edge_list (el);
863
864 if (something_changed)
865 return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
866 | TODO_remove_unused_locals);
867 else
868 return 0;
869 }
870
871 /* Pass entry points. */
872 static unsigned int
873 tree_ssa_dce (void)
874 {
875 return perform_tree_ssa_dce (/*aggressive=*/false);
876 }
877
878 static unsigned int
879 tree_ssa_dce_loop (void)
880 {
881 unsigned int todo;
882 todo = perform_tree_ssa_dce (/*aggressive=*/false);
883 if (todo)
884 {
885 free_numbers_of_iterations_estimates ();
886 scev_reset ();
887 }
888 return todo;
889 }
890
891 static unsigned int
892 tree_ssa_cd_dce (void)
893 {
894 return perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
895 }
896
897 static bool
898 gate_dce (void)
899 {
900 return flag_tree_dce != 0;
901 }
902
903 struct tree_opt_pass pass_dce =
904 {
905 "dce", /* name */
906 gate_dce, /* gate */
907 tree_ssa_dce, /* execute */
908 NULL, /* sub */
909 NULL, /* next */
910 0, /* static_pass_number */
911 TV_TREE_DCE, /* tv_id */
912 PROP_cfg | PROP_ssa, /* properties_required */
913 0, /* properties_provided */
914 0, /* properties_destroyed */
915 0, /* todo_flags_start */
916 TODO_dump_func | TODO_verify_ssa, /* todo_flags_finish */
917 0 /* letter */
918 };
919
920 struct tree_opt_pass pass_dce_loop =
921 {
922 "dceloop", /* name */
923 gate_dce, /* gate */
924 tree_ssa_dce_loop, /* execute */
925 NULL, /* sub */
926 NULL, /* next */
927 0, /* static_pass_number */
928 TV_TREE_DCE, /* tv_id */
929 PROP_cfg | PROP_ssa, /* properties_required */
930 0, /* properties_provided */
931 0, /* properties_destroyed */
932 0, /* todo_flags_start */
933 TODO_dump_func | TODO_verify_ssa, /* todo_flags_finish */
934 0 /* letter */
935 };
936
937 struct tree_opt_pass pass_cd_dce =
938 {
939 "cddce", /* name */
940 gate_dce, /* gate */
941 tree_ssa_cd_dce, /* execute */
942 NULL, /* sub */
943 NULL, /* next */
944 0, /* static_pass_number */
945 TV_TREE_CD_DCE, /* tv_id */
946 PROP_cfg | PROP_ssa, /* properties_required */
947 0, /* properties_provided */
948 0, /* properties_destroyed */
949 0, /* todo_flags_start */
950 TODO_dump_func | TODO_verify_ssa
951 | TODO_verify_flow, /* todo_flags_finish */
952 0 /* letter */
953 };