avr.c: Move definition of TARGET macros to end of file.
[gcc.git] / gcc / tree-ssa-dce.c
1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Ben Elliston <bje@redhat.com>
5 and Andrew MacLeod <amacleod@redhat.com>
6 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 3, or (at your option) any
13 later version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* Dead code elimination.
25
26 References:
27
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
30
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
33
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
37 impact on the output.
38
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
45
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50
51 #include "tree.h"
52 #include "tree-pretty-print.h"
53 #include "gimple-pretty-print.h"
54 #include "basic-block.h"
55 #include "tree-flow.h"
56 #include "gimple.h"
57 #include "tree-dump.h"
58 #include "tree-pass.h"
59 #include "timevar.h"
60 #include "flags.h"
61 #include "cfgloop.h"
62 #include "tree-scalar-evolution.h"
63
64 static struct stmt_stats
65 {
66 int total;
67 int total_phis;
68 int removed;
69 int removed_phis;
70 } stats;
71
72 #define STMT_NECESSARY GF_PLF_1
73
74 static VEC(gimple,heap) *worklist;
75
76 /* Vector indicating an SSA name has already been processed and marked
77 as necessary. */
78 static sbitmap processed;
79
80 /* Vector indicating that the last statement of a basic block has already
81 been marked as necessary. */
82 static sbitmap last_stmt_necessary;
83
84 /* Vector indicating that BB contains statements that are live. */
85 static sbitmap bb_contains_live_stmts;
86
87 /* Before we can determine whether a control branch is dead, we need to
88 compute which blocks are control dependent on which edges.
89
90 We expect each block to be control dependent on very few edges so we
91 use a bitmap for each block recording its edges. An array holds the
92 bitmap. The Ith bit in the bitmap is set if that block is dependent
93 on the Ith edge. */
94 static bitmap *control_dependence_map;
95
96 /* Vector indicating that a basic block has already had all the edges
97 processed that it is control dependent on. */
98 static sbitmap visited_control_parents;
99
100 /* TRUE if this pass alters the CFG (by removing control statements).
101 FALSE otherwise.
102
103 If this pass alters the CFG, then it will arrange for the dominators
104 to be recomputed. */
105 static bool cfg_altered;
106
107 /* Execute code that follows the macro for each edge (given number
108 EDGE_NUMBER within the CODE) for which the block with index N is
109 control dependent. */
110 #define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER) \
111 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0, \
112 (EDGE_NUMBER), (BI))
113
114
115 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
116 static inline void
117 set_control_dependence_map_bit (basic_block bb, int edge_index)
118 {
119 if (bb == ENTRY_BLOCK_PTR)
120 return;
121 gcc_assert (bb != EXIT_BLOCK_PTR);
122 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
123 }
124
125 /* Clear all control dependences for block BB. */
126 static inline void
127 clear_control_dependence_bitmap (basic_block bb)
128 {
129 bitmap_clear (control_dependence_map[bb->index]);
130 }
131
132
133 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
134 This function is necessary because some blocks have negative numbers. */
135
136 static inline basic_block
137 find_pdom (basic_block block)
138 {
139 gcc_assert (block != ENTRY_BLOCK_PTR);
140
141 if (block == EXIT_BLOCK_PTR)
142 return EXIT_BLOCK_PTR;
143 else
144 {
145 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
146 if (! bb)
147 return EXIT_BLOCK_PTR;
148 return bb;
149 }
150 }
151
152
153 /* Determine all blocks' control dependences on the given edge with edge_list
154 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
155
156 static void
157 find_control_dependence (struct edge_list *el, int edge_index)
158 {
159 basic_block current_block;
160 basic_block ending_block;
161
162 gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
163
164 if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
165 ending_block = single_succ (ENTRY_BLOCK_PTR);
166 else
167 ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
168
169 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
170 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
171 current_block = find_pdom (current_block))
172 {
173 edge e = INDEX_EDGE (el, edge_index);
174
175 /* For abnormal edges, we don't make current_block control
176 dependent because instructions that throw are always necessary
177 anyway. */
178 if (e->flags & EDGE_ABNORMAL)
179 continue;
180
181 set_control_dependence_map_bit (current_block, edge_index);
182 }
183 }
184
185
186 /* Record all blocks' control dependences on all edges in the edge
187 list EL, ala Morgan, Section 3.6. */
188
189 static void
190 find_all_control_dependences (struct edge_list *el)
191 {
192 int i;
193
194 for (i = 0; i < NUM_EDGES (el); ++i)
195 find_control_dependence (el, i);
196 }
197
198 /* If STMT is not already marked necessary, mark it, and add it to the
199 worklist if ADD_TO_WORKLIST is true. */
200
201 static inline void
202 mark_stmt_necessary (gimple stmt, bool add_to_worklist)
203 {
204 gcc_assert (stmt);
205
206 if (gimple_plf (stmt, STMT_NECESSARY))
207 return;
208
209 if (dump_file && (dump_flags & TDF_DETAILS))
210 {
211 fprintf (dump_file, "Marking useful stmt: ");
212 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
213 fprintf (dump_file, "\n");
214 }
215
216 gimple_set_plf (stmt, STMT_NECESSARY, true);
217 if (add_to_worklist)
218 VEC_safe_push (gimple, heap, worklist, stmt);
219 if (bb_contains_live_stmts && !is_gimple_debug (stmt))
220 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
221 }
222
223
224 /* Mark the statement defining operand OP as necessary. */
225
226 static inline void
227 mark_operand_necessary (tree op)
228 {
229 gimple stmt;
230 int ver;
231
232 gcc_assert (op);
233
234 ver = SSA_NAME_VERSION (op);
235 if (TEST_BIT (processed, ver))
236 {
237 stmt = SSA_NAME_DEF_STMT (op);
238 gcc_assert (gimple_nop_p (stmt)
239 || gimple_plf (stmt, STMT_NECESSARY));
240 return;
241 }
242 SET_BIT (processed, ver);
243
244 stmt = SSA_NAME_DEF_STMT (op);
245 gcc_assert (stmt);
246
247 if (gimple_plf (stmt, STMT_NECESSARY) || gimple_nop_p (stmt))
248 return;
249
250 if (dump_file && (dump_flags & TDF_DETAILS))
251 {
252 fprintf (dump_file, "marking necessary through ");
253 print_generic_expr (dump_file, op, 0);
254 fprintf (dump_file, " stmt ");
255 print_gimple_stmt (dump_file, stmt, 0, 0);
256 }
257
258 gimple_set_plf (stmt, STMT_NECESSARY, true);
259 if (bb_contains_live_stmts)
260 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
261 VEC_safe_push (gimple, heap, worklist, stmt);
262 }
263
264
265 /* Mark STMT as necessary if it obviously is. Add it to the worklist if
266 it can make other statements necessary.
267
268 If AGGRESSIVE is false, control statements are conservatively marked as
269 necessary. */
270
271 static void
272 mark_stmt_if_obviously_necessary (gimple stmt, bool aggressive)
273 {
274 /* With non-call exceptions, we have to assume that all statements could
275 throw. If a statement may throw, it is inherently necessary. */
276 if (cfun->can_throw_non_call_exceptions && stmt_could_throw_p (stmt))
277 {
278 mark_stmt_necessary (stmt, true);
279 return;
280 }
281
282 /* Statements that are implicitly live. Most function calls, asm
283 and return statements are required. Labels and GIMPLE_BIND nodes
284 are kept because they are control flow, and we have no way of
285 knowing whether they can be removed. DCE can eliminate all the
286 other statements in a block, and CFG can then remove the block
287 and labels. */
288 switch (gimple_code (stmt))
289 {
290 case GIMPLE_PREDICT:
291 case GIMPLE_LABEL:
292 mark_stmt_necessary (stmt, false);
293 return;
294
295 case GIMPLE_ASM:
296 case GIMPLE_RESX:
297 case GIMPLE_RETURN:
298 mark_stmt_necessary (stmt, true);
299 return;
300
301 case GIMPLE_CALL:
302 {
303 tree callee = gimple_call_fndecl (stmt);
304 if (callee != NULL_TREE
305 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL)
306 switch (DECL_FUNCTION_CODE (callee))
307 {
308 case BUILT_IN_MALLOC:
309 case BUILT_IN_CALLOC:
310 case BUILT_IN_ALLOCA:
311 case BUILT_IN_ALLOCA_WITH_ALIGN:
312 return;
313
314 default:;
315 }
316 /* Most, but not all function calls are required. Function calls that
317 produce no result and have no side effects (i.e. const pure
318 functions) are unnecessary. */
319 if (gimple_has_side_effects (stmt))
320 {
321 mark_stmt_necessary (stmt, true);
322 return;
323 }
324 if (!gimple_call_lhs (stmt))
325 return;
326 break;
327 }
328
329 case GIMPLE_DEBUG:
330 /* Debug temps without a value are not useful. ??? If we could
331 easily locate the debug temp bind stmt for a use thereof,
332 would could refrain from marking all debug temps here, and
333 mark them only if they're used. */
334 if (!gimple_debug_bind_p (stmt)
335 || gimple_debug_bind_has_value_p (stmt)
336 || TREE_CODE (gimple_debug_bind_get_var (stmt)) != DEBUG_EXPR_DECL)
337 mark_stmt_necessary (stmt, false);
338 return;
339
340 case GIMPLE_GOTO:
341 gcc_assert (!simple_goto_p (stmt));
342 mark_stmt_necessary (stmt, true);
343 return;
344
345 case GIMPLE_COND:
346 gcc_assert (EDGE_COUNT (gimple_bb (stmt)->succs) == 2);
347 /* Fall through. */
348
349 case GIMPLE_SWITCH:
350 if (! aggressive)
351 mark_stmt_necessary (stmt, true);
352 break;
353
354 case GIMPLE_ASSIGN:
355 if (TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME
356 && TREE_CLOBBER_P (gimple_assign_rhs1 (stmt)))
357 return;
358 break;
359
360 default:
361 break;
362 }
363
364 /* If the statement has volatile operands, it needs to be preserved.
365 Same for statements that can alter control flow in unpredictable
366 ways. */
367 if (gimple_has_volatile_ops (stmt) || is_ctrl_altering_stmt (stmt))
368 {
369 mark_stmt_necessary (stmt, true);
370 return;
371 }
372
373 if (is_hidden_global_store (stmt))
374 {
375 mark_stmt_necessary (stmt, true);
376 return;
377 }
378
379 return;
380 }
381
382
383 /* Mark the last statement of BB as necessary. */
384
385 static void
386 mark_last_stmt_necessary (basic_block bb)
387 {
388 gimple stmt = last_stmt (bb);
389
390 SET_BIT (last_stmt_necessary, bb->index);
391 SET_BIT (bb_contains_live_stmts, bb->index);
392
393 /* We actually mark the statement only if it is a control statement. */
394 if (stmt && is_ctrl_stmt (stmt))
395 mark_stmt_necessary (stmt, true);
396 }
397
398
399 /* Mark control dependent edges of BB as necessary. We have to do this only
400 once for each basic block so we set the appropriate bit after we're done.
401
402 When IGNORE_SELF is true, ignore BB in the list of control dependences. */
403
404 static void
405 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el,
406 bool ignore_self)
407 {
408 bitmap_iterator bi;
409 unsigned edge_number;
410 bool skipped = false;
411
412 gcc_assert (bb != EXIT_BLOCK_PTR);
413
414 if (bb == ENTRY_BLOCK_PTR)
415 return;
416
417 EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
418 {
419 basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
420
421 if (ignore_self && cd_bb == bb)
422 {
423 skipped = true;
424 continue;
425 }
426
427 if (!TEST_BIT (last_stmt_necessary, cd_bb->index))
428 mark_last_stmt_necessary (cd_bb);
429 }
430
431 if (!skipped)
432 SET_BIT (visited_control_parents, bb->index);
433 }
434
435
436 /* Find obviously necessary statements. These are things like most function
437 calls, and stores to file level variables.
438
439 If EL is NULL, control statements are conservatively marked as
440 necessary. Otherwise it contains the list of edges used by control
441 dependence analysis. */
442
443 static void
444 find_obviously_necessary_stmts (struct edge_list *el)
445 {
446 basic_block bb;
447 gimple_stmt_iterator gsi;
448 edge e;
449 gimple phi, stmt;
450 int flags;
451
452 FOR_EACH_BB (bb)
453 {
454 /* PHI nodes are never inherently necessary. */
455 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
456 {
457 phi = gsi_stmt (gsi);
458 gimple_set_plf (phi, STMT_NECESSARY, false);
459 }
460
461 /* Check all statements in the block. */
462 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
463 {
464 stmt = gsi_stmt (gsi);
465 gimple_set_plf (stmt, STMT_NECESSARY, false);
466 mark_stmt_if_obviously_necessary (stmt, el != NULL);
467 }
468 }
469
470 /* Pure and const functions are finite and thus have no infinite loops in
471 them. */
472 flags = flags_from_decl_or_type (current_function_decl);
473 if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
474 return;
475
476 /* Prevent the empty possibly infinite loops from being removed. */
477 if (el)
478 {
479 loop_iterator li;
480 struct loop *loop;
481 scev_initialize ();
482 if (mark_irreducible_loops ())
483 FOR_EACH_BB (bb)
484 {
485 edge_iterator ei;
486 FOR_EACH_EDGE (e, ei, bb->succs)
487 if ((e->flags & EDGE_DFS_BACK)
488 && (e->flags & EDGE_IRREDUCIBLE_LOOP))
489 {
490 if (dump_file)
491 fprintf (dump_file, "Marking back edge of irreducible loop %i->%i\n",
492 e->src->index, e->dest->index);
493 mark_control_dependent_edges_necessary (e->dest, el, false);
494 }
495 }
496
497 FOR_EACH_LOOP (li, loop, 0)
498 if (!finite_loop_p (loop))
499 {
500 if (dump_file)
501 fprintf (dump_file, "can not prove finiteness of loop %i\n", loop->num);
502 mark_control_dependent_edges_necessary (loop->latch, el, false);
503 }
504 scev_finalize ();
505 }
506 }
507
508
509 /* Return true if REF is based on an aliased base, otherwise false. */
510
511 static bool
512 ref_may_be_aliased (tree ref)
513 {
514 gcc_assert (TREE_CODE (ref) != WITH_SIZE_EXPR);
515 while (handled_component_p (ref))
516 ref = TREE_OPERAND (ref, 0);
517 if (TREE_CODE (ref) == MEM_REF
518 && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
519 ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
520 return !(DECL_P (ref)
521 && !may_be_aliased (ref));
522 }
523
524 static bitmap visited = NULL;
525 static unsigned int longest_chain = 0;
526 static unsigned int total_chain = 0;
527 static unsigned int nr_walks = 0;
528 static bool chain_ovfl = false;
529
530 /* Worker for the walker that marks reaching definitions of REF,
531 which is based on a non-aliased decl, necessary. It returns
532 true whenever the defining statement of the current VDEF is
533 a kill for REF, as no dominating may-defs are necessary for REF
534 anymore. DATA points to the basic-block that contains the
535 stmt that refers to REF. */
536
537 static bool
538 mark_aliased_reaching_defs_necessary_1 (ao_ref *ref, tree vdef, void *data)
539 {
540 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
541
542 /* All stmts we visit are necessary. */
543 mark_operand_necessary (vdef);
544
545 /* If the stmt lhs kills ref, then we can stop walking. */
546 if (gimple_has_lhs (def_stmt)
547 && TREE_CODE (gimple_get_lhs (def_stmt)) != SSA_NAME
548 /* The assignment is not necessarily carried out if it can throw
549 and we can catch it in the current function where we could inspect
550 the previous value.
551 ??? We only need to care about the RHS throwing. For aggregate
552 assignments or similar calls and non-call exceptions the LHS
553 might throw as well. */
554 && !stmt_can_throw_internal (def_stmt))
555 {
556 tree base, lhs = gimple_get_lhs (def_stmt);
557 HOST_WIDE_INT size, offset, max_size;
558 ao_ref_base (ref);
559 base = get_ref_base_and_extent (lhs, &offset, &size, &max_size);
560 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
561 so base == refd->base does not always hold. */
562 if (base == ref->base)
563 {
564 /* For a must-alias check we need to be able to constrain
565 the accesses properly. */
566 if (size != -1 && size == max_size
567 && ref->max_size != -1)
568 {
569 if (offset <= ref->offset
570 && offset + size >= ref->offset + ref->max_size)
571 return true;
572 }
573 /* Or they need to be exactly the same. */
574 else if (ref->ref
575 /* Make sure there is no induction variable involved
576 in the references (gcc.c-torture/execute/pr42142.c).
577 The simplest way is to check if the kill dominates
578 the use. */
579 && dominated_by_p (CDI_DOMINATORS, (basic_block) data,
580 gimple_bb (def_stmt))
581 && operand_equal_p (ref->ref, lhs, 0))
582 return true;
583 }
584 }
585
586 /* Otherwise keep walking. */
587 return false;
588 }
589
590 static void
591 mark_aliased_reaching_defs_necessary (gimple stmt, tree ref)
592 {
593 unsigned int chain;
594 ao_ref refd;
595 gcc_assert (!chain_ovfl);
596 ao_ref_init (&refd, ref);
597 chain = walk_aliased_vdefs (&refd, gimple_vuse (stmt),
598 mark_aliased_reaching_defs_necessary_1,
599 gimple_bb (stmt), NULL);
600 if (chain > longest_chain)
601 longest_chain = chain;
602 total_chain += chain;
603 nr_walks++;
604 }
605
606 /* Worker for the walker that marks reaching definitions of REF, which
607 is not based on a non-aliased decl. For simplicity we need to end
608 up marking all may-defs necessary that are not based on a non-aliased
609 decl. The only job of this walker is to skip may-defs based on
610 a non-aliased decl. */
611
612 static bool
613 mark_all_reaching_defs_necessary_1 (ao_ref *ref ATTRIBUTE_UNUSED,
614 tree vdef, void *data ATTRIBUTE_UNUSED)
615 {
616 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
617
618 /* We have to skip already visited (and thus necessary) statements
619 to make the chaining work after we dropped back to simple mode. */
620 if (chain_ovfl
621 && TEST_BIT (processed, SSA_NAME_VERSION (vdef)))
622 {
623 gcc_assert (gimple_nop_p (def_stmt)
624 || gimple_plf (def_stmt, STMT_NECESSARY));
625 return false;
626 }
627
628 /* We want to skip stores to non-aliased variables. */
629 if (!chain_ovfl
630 && gimple_assign_single_p (def_stmt))
631 {
632 tree lhs = gimple_assign_lhs (def_stmt);
633 if (!ref_may_be_aliased (lhs))
634 return false;
635 }
636
637 /* We want to skip statments that do not constitute stores but have
638 a virtual definition. */
639 if (is_gimple_call (def_stmt))
640 {
641 tree callee = gimple_call_fndecl (def_stmt);
642 if (callee != NULL_TREE
643 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL)
644 switch (DECL_FUNCTION_CODE (callee))
645 {
646 case BUILT_IN_MALLOC:
647 case BUILT_IN_CALLOC:
648 case BUILT_IN_ALLOCA:
649 case BUILT_IN_ALLOCA_WITH_ALIGN:
650 case BUILT_IN_FREE:
651 return false;
652
653 default:;
654 }
655 }
656
657 mark_operand_necessary (vdef);
658
659 return false;
660 }
661
662 static void
663 mark_all_reaching_defs_necessary (gimple stmt)
664 {
665 walk_aliased_vdefs (NULL, gimple_vuse (stmt),
666 mark_all_reaching_defs_necessary_1, NULL, &visited);
667 }
668
669 /* Return true for PHI nodes with one or identical arguments
670 can be removed. */
671 static bool
672 degenerate_phi_p (gimple phi)
673 {
674 unsigned int i;
675 tree op = gimple_phi_arg_def (phi, 0);
676 for (i = 1; i < gimple_phi_num_args (phi); i++)
677 if (gimple_phi_arg_def (phi, i) != op)
678 return false;
679 return true;
680 }
681
682 /* Propagate necessity using the operands of necessary statements.
683 Process the uses on each statement in the worklist, and add all
684 feeding statements which contribute to the calculation of this
685 value to the worklist.
686
687 In conservative mode, EL is NULL. */
688
689 static void
690 propagate_necessity (struct edge_list *el)
691 {
692 gimple stmt;
693 bool aggressive = (el ? true : false);
694
695 if (dump_file && (dump_flags & TDF_DETAILS))
696 fprintf (dump_file, "\nProcessing worklist:\n");
697
698 while (VEC_length (gimple, worklist) > 0)
699 {
700 /* Take STMT from worklist. */
701 stmt = VEC_pop (gimple, worklist);
702
703 if (dump_file && (dump_flags & TDF_DETAILS))
704 {
705 fprintf (dump_file, "processing: ");
706 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
707 fprintf (dump_file, "\n");
708 }
709
710 if (aggressive)
711 {
712 /* Mark the last statement of the basic blocks on which the block
713 containing STMT is control dependent, but only if we haven't
714 already done so. */
715 basic_block bb = gimple_bb (stmt);
716 if (bb != ENTRY_BLOCK_PTR
717 && !TEST_BIT (visited_control_parents, bb->index))
718 mark_control_dependent_edges_necessary (bb, el, false);
719 }
720
721 if (gimple_code (stmt) == GIMPLE_PHI
722 /* We do not process virtual PHI nodes nor do we track their
723 necessity. */
724 && is_gimple_reg (gimple_phi_result (stmt)))
725 {
726 /* PHI nodes are somewhat special in that each PHI alternative has
727 data and control dependencies. All the statements feeding the
728 PHI node's arguments are always necessary. In aggressive mode,
729 we also consider the control dependent edges leading to the
730 predecessor block associated with each PHI alternative as
731 necessary. */
732 size_t k;
733
734 for (k = 0; k < gimple_phi_num_args (stmt); k++)
735 {
736 tree arg = PHI_ARG_DEF (stmt, k);
737 if (TREE_CODE (arg) == SSA_NAME)
738 mark_operand_necessary (arg);
739 }
740
741 /* For PHI operands it matters from where the control flow arrives
742 to the BB. Consider the following example:
743
744 a=exp1;
745 b=exp2;
746 if (test)
747 ;
748 else
749 ;
750 c=PHI(a,b)
751
752 We need to mark control dependence of the empty basic blocks, since they
753 contains computation of PHI operands.
754
755 Doing so is too restrictive in the case the predecestor block is in
756 the loop. Consider:
757
758 if (b)
759 {
760 int i;
761 for (i = 0; i<1000; ++i)
762 ;
763 j = 0;
764 }
765 return j;
766
767 There is PHI for J in the BB containing return statement.
768 In this case the control dependence of predecestor block (that is
769 within the empty loop) also contains the block determining number
770 of iterations of the block that would prevent removing of empty
771 loop in this case.
772
773 This scenario can be avoided by splitting critical edges.
774 To save the critical edge splitting pass we identify how the control
775 dependence would look like if the edge was split.
776
777 Consider the modified CFG created from current CFG by splitting
778 edge B->C. In the postdominance tree of modified CFG, C' is
779 always child of C. There are two cases how chlids of C' can look
780 like:
781
782 1) C' is leaf
783
784 In this case the only basic block C' is control dependent on is B.
785
786 2) C' has single child that is B
787
788 In this case control dependence of C' is same as control
789 dependence of B in original CFG except for block B itself.
790 (since C' postdominate B in modified CFG)
791
792 Now how to decide what case happens? There are two basic options:
793
794 a) C postdominate B. Then C immediately postdominate B and
795 case 2 happens iff there is no other way from B to C except
796 the edge B->C.
797
798 There is other way from B to C iff there is succesor of B that
799 is not postdominated by B. Testing this condition is somewhat
800 expensive, because we need to iterate all succesors of B.
801 We are safe to assume that this does not happen: we will mark B
802 as needed when processing the other path from B to C that is
803 conrol dependent on B and marking control dependencies of B
804 itself is harmless because they will be processed anyway after
805 processing control statement in B.
806
807 b) C does not postdominate B. Always case 1 happens since there is
808 path from C to exit that does not go through B and thus also C'. */
809
810 if (aggressive && !degenerate_phi_p (stmt))
811 {
812 for (k = 0; k < gimple_phi_num_args (stmt); k++)
813 {
814 basic_block arg_bb = gimple_phi_arg_edge (stmt, k)->src;
815
816 if (gimple_bb (stmt)
817 != get_immediate_dominator (CDI_POST_DOMINATORS, arg_bb))
818 {
819 if (!TEST_BIT (last_stmt_necessary, arg_bb->index))
820 mark_last_stmt_necessary (arg_bb);
821 }
822 else if (arg_bb != ENTRY_BLOCK_PTR
823 && !TEST_BIT (visited_control_parents,
824 arg_bb->index))
825 mark_control_dependent_edges_necessary (arg_bb, el, true);
826 }
827 }
828 }
829 else
830 {
831 /* Propagate through the operands. Examine all the USE, VUSE and
832 VDEF operands in this statement. Mark all the statements
833 which feed this statement's uses as necessary. */
834 ssa_op_iter iter;
835 tree use;
836
837 /* If this is a call to free which is directly fed by an
838 allocation function do not mark that necessary through
839 processing the argument. */
840 if (gimple_call_builtin_p (stmt, BUILT_IN_FREE))
841 {
842 tree ptr = gimple_call_arg (stmt, 0);
843 gimple def_stmt;
844 tree def_callee;
845 /* If the pointer we free is defined by an allocation
846 function do not add the call to the worklist. */
847 if (TREE_CODE (ptr) == SSA_NAME
848 && is_gimple_call (def_stmt = SSA_NAME_DEF_STMT (ptr))
849 && (def_callee = gimple_call_fndecl (def_stmt))
850 && DECL_BUILT_IN_CLASS (def_callee) == BUILT_IN_NORMAL
851 && (DECL_FUNCTION_CODE (def_callee) == BUILT_IN_MALLOC
852 || DECL_FUNCTION_CODE (def_callee) == BUILT_IN_CALLOC))
853 continue;
854 }
855
856 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
857 mark_operand_necessary (use);
858
859 use = gimple_vuse (stmt);
860 if (!use)
861 continue;
862
863 /* If we dropped to simple mode make all immediately
864 reachable definitions necessary. */
865 if (chain_ovfl)
866 {
867 mark_all_reaching_defs_necessary (stmt);
868 continue;
869 }
870
871 /* For statements that may load from memory (have a VUSE) we
872 have to mark all reaching (may-)definitions as necessary.
873 We partition this task into two cases:
874 1) explicit loads based on decls that are not aliased
875 2) implicit loads (like calls) and explicit loads not
876 based on decls that are not aliased (like indirect
877 references or loads from globals)
878 For 1) we mark all reaching may-defs as necessary, stopping
879 at dominating kills. For 2) we want to mark all dominating
880 references necessary, but non-aliased ones which we handle
881 in 1). By keeping a global visited bitmap for references
882 we walk for 2) we avoid quadratic behavior for those. */
883
884 if (is_gimple_call (stmt))
885 {
886 tree callee = gimple_call_fndecl (stmt);
887 unsigned i;
888
889 /* Calls to functions that are merely acting as barriers
890 or that only store to memory do not make any previous
891 stores necessary. */
892 if (callee != NULL_TREE
893 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
894 && (DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET
895 || DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET_CHK
896 || DECL_FUNCTION_CODE (callee) == BUILT_IN_MALLOC
897 || DECL_FUNCTION_CODE (callee) == BUILT_IN_CALLOC
898 || DECL_FUNCTION_CODE (callee) == BUILT_IN_FREE
899 || DECL_FUNCTION_CODE (callee) == BUILT_IN_VA_END
900 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
901 || (DECL_FUNCTION_CODE (callee)
902 == BUILT_IN_ALLOCA_WITH_ALIGN)
903 || DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE
904 || DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE
905 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ASSUME_ALIGNED))
906 continue;
907
908 /* Calls implicitly load from memory, their arguments
909 in addition may explicitly perform memory loads. */
910 mark_all_reaching_defs_necessary (stmt);
911 for (i = 0; i < gimple_call_num_args (stmt); ++i)
912 {
913 tree arg = gimple_call_arg (stmt, i);
914 if (TREE_CODE (arg) == SSA_NAME
915 || is_gimple_min_invariant (arg))
916 continue;
917 if (TREE_CODE (arg) == WITH_SIZE_EXPR)
918 arg = TREE_OPERAND (arg, 0);
919 if (!ref_may_be_aliased (arg))
920 mark_aliased_reaching_defs_necessary (stmt, arg);
921 }
922 }
923 else if (gimple_assign_single_p (stmt))
924 {
925 tree rhs;
926 /* If this is a load mark things necessary. */
927 rhs = gimple_assign_rhs1 (stmt);
928 if (TREE_CODE (rhs) != SSA_NAME
929 && !is_gimple_min_invariant (rhs)
930 && TREE_CODE (rhs) != CONSTRUCTOR)
931 {
932 if (!ref_may_be_aliased (rhs))
933 mark_aliased_reaching_defs_necessary (stmt, rhs);
934 else
935 mark_all_reaching_defs_necessary (stmt);
936 }
937 }
938 else if (gimple_code (stmt) == GIMPLE_RETURN)
939 {
940 tree rhs = gimple_return_retval (stmt);
941 /* A return statement may perform a load. */
942 if (rhs
943 && TREE_CODE (rhs) != SSA_NAME
944 && !is_gimple_min_invariant (rhs)
945 && TREE_CODE (rhs) != CONSTRUCTOR)
946 {
947 if (!ref_may_be_aliased (rhs))
948 mark_aliased_reaching_defs_necessary (stmt, rhs);
949 else
950 mark_all_reaching_defs_necessary (stmt);
951 }
952 }
953 else if (gimple_code (stmt) == GIMPLE_ASM)
954 {
955 unsigned i;
956 mark_all_reaching_defs_necessary (stmt);
957 /* Inputs may perform loads. */
958 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
959 {
960 tree op = TREE_VALUE (gimple_asm_input_op (stmt, i));
961 if (TREE_CODE (op) != SSA_NAME
962 && !is_gimple_min_invariant (op)
963 && TREE_CODE (op) != CONSTRUCTOR
964 && !ref_may_be_aliased (op))
965 mark_aliased_reaching_defs_necessary (stmt, op);
966 }
967 }
968 else if (gimple_code (stmt) == GIMPLE_TRANSACTION)
969 {
970 /* The beginning of a transaction is a memory barrier. */
971 /* ??? If we were really cool, we'd only be a barrier
972 for the memories touched within the transaction. */
973 mark_all_reaching_defs_necessary (stmt);
974 }
975 else
976 gcc_unreachable ();
977
978 /* If we over-used our alias oracle budget drop to simple
979 mode. The cost metric allows quadratic behavior
980 (number of uses times number of may-defs queries) up to
981 a constant maximal number of queries and after that falls back to
982 super-linear complexity. */
983 if (/* Constant but quadratic for small functions. */
984 total_chain > 128 * 128
985 /* Linear in the number of may-defs. */
986 && total_chain > 32 * longest_chain
987 /* Linear in the number of uses. */
988 && total_chain > nr_walks * 32)
989 {
990 chain_ovfl = true;
991 if (visited)
992 bitmap_clear (visited);
993 }
994 }
995 }
996 }
997
998 /* Replace all uses of NAME by underlying variable and mark it
999 for renaming. */
1000
1001 void
1002 mark_virtual_operand_for_renaming (tree name)
1003 {
1004 bool used = false;
1005 imm_use_iterator iter;
1006 use_operand_p use_p;
1007 gimple stmt;
1008 tree name_var;
1009
1010 name_var = SSA_NAME_VAR (name);
1011 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
1012 {
1013 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1014 SET_USE (use_p, name_var);
1015 update_stmt (stmt);
1016 used = true;
1017 }
1018 if (used)
1019 mark_sym_for_renaming (name_var);
1020 }
1021
1022 /* Replace all uses of result of PHI by underlying variable and mark it
1023 for renaming. */
1024
1025 void
1026 mark_virtual_phi_result_for_renaming (gimple phi)
1027 {
1028 if (dump_file && (dump_flags & TDF_DETAILS))
1029 {
1030 fprintf (dump_file, "Marking result for renaming : ");
1031 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
1032 fprintf (dump_file, "\n");
1033 }
1034
1035 mark_virtual_operand_for_renaming (gimple_phi_result (phi));
1036 }
1037
1038
1039 /* Remove dead PHI nodes from block BB. */
1040
1041 static bool
1042 remove_dead_phis (basic_block bb)
1043 {
1044 bool something_changed = false;
1045 gimple_seq phis;
1046 gimple phi;
1047 gimple_stmt_iterator gsi;
1048 phis = phi_nodes (bb);
1049
1050 for (gsi = gsi_start (phis); !gsi_end_p (gsi);)
1051 {
1052 stats.total_phis++;
1053 phi = gsi_stmt (gsi);
1054
1055 /* We do not track necessity of virtual PHI nodes. Instead do
1056 very simple dead PHI removal here. */
1057 if (!is_gimple_reg (gimple_phi_result (phi)))
1058 {
1059 /* Virtual PHI nodes with one or identical arguments
1060 can be removed. */
1061 if (degenerate_phi_p (phi))
1062 {
1063 tree vdef = gimple_phi_result (phi);
1064 tree vuse = gimple_phi_arg_def (phi, 0);
1065
1066 use_operand_p use_p;
1067 imm_use_iterator iter;
1068 gimple use_stmt;
1069 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vdef)
1070 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1071 SET_USE (use_p, vuse);
1072 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vdef)
1073 && TREE_CODE (vuse) == SSA_NAME)
1074 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 1;
1075 }
1076 else
1077 gimple_set_plf (phi, STMT_NECESSARY, true);
1078 }
1079
1080 if (!gimple_plf (phi, STMT_NECESSARY))
1081 {
1082 something_changed = true;
1083 if (dump_file && (dump_flags & TDF_DETAILS))
1084 {
1085 fprintf (dump_file, "Deleting : ");
1086 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
1087 fprintf (dump_file, "\n");
1088 }
1089
1090 remove_phi_node (&gsi, true);
1091 stats.removed_phis++;
1092 continue;
1093 }
1094
1095 gsi_next (&gsi);
1096 }
1097 return something_changed;
1098 }
1099
1100 /* Forward edge E to respective POST_DOM_BB and update PHIs. */
1101
1102 static edge
1103 forward_edge_to_pdom (edge e, basic_block post_dom_bb)
1104 {
1105 gimple_stmt_iterator gsi;
1106 edge e2 = NULL;
1107 edge_iterator ei;
1108
1109 if (dump_file && (dump_flags & TDF_DETAILS))
1110 fprintf (dump_file, "Redirecting edge %i->%i to %i\n", e->src->index,
1111 e->dest->index, post_dom_bb->index);
1112
1113 e2 = redirect_edge_and_branch (e, post_dom_bb);
1114 cfg_altered = true;
1115
1116 /* If edge was already around, no updating is neccesary. */
1117 if (e2 != e)
1118 return e2;
1119
1120 if (!gimple_seq_empty_p (phi_nodes (post_dom_bb)))
1121 {
1122 /* We are sure that for every live PHI we are seeing control dependent BB.
1123 This means that we can pick any edge to duplicate PHI args from. */
1124 FOR_EACH_EDGE (e2, ei, post_dom_bb->preds)
1125 if (e2 != e)
1126 break;
1127 for (gsi = gsi_start_phis (post_dom_bb); !gsi_end_p (gsi);)
1128 {
1129 gimple phi = gsi_stmt (gsi);
1130 tree op;
1131 source_location locus;
1132
1133 /* PHIs for virtuals have no control dependency relation on them.
1134 We are lost here and must force renaming of the symbol. */
1135 if (!is_gimple_reg (gimple_phi_result (phi)))
1136 {
1137 mark_virtual_phi_result_for_renaming (phi);
1138 remove_phi_node (&gsi, true);
1139 continue;
1140 }
1141
1142 /* Dead PHI do not imply control dependency. */
1143 if (!gimple_plf (phi, STMT_NECESSARY))
1144 {
1145 gsi_next (&gsi);
1146 continue;
1147 }
1148
1149 op = gimple_phi_arg_def (phi, e2->dest_idx);
1150 locus = gimple_phi_arg_location (phi, e2->dest_idx);
1151 add_phi_arg (phi, op, e, locus);
1152 /* The resulting PHI if not dead can only be degenerate. */
1153 gcc_assert (degenerate_phi_p (phi));
1154 gsi_next (&gsi);
1155 }
1156 }
1157 return e;
1158 }
1159
1160 /* Remove dead statement pointed to by iterator I. Receives the basic block BB
1161 containing I so that we don't have to look it up. */
1162
1163 static void
1164 remove_dead_stmt (gimple_stmt_iterator *i, basic_block bb)
1165 {
1166 gimple stmt = gsi_stmt (*i);
1167
1168 if (dump_file && (dump_flags & TDF_DETAILS))
1169 {
1170 fprintf (dump_file, "Deleting : ");
1171 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1172 fprintf (dump_file, "\n");
1173 }
1174
1175 stats.removed++;
1176
1177 /* If we have determined that a conditional branch statement contributes
1178 nothing to the program, then we not only remove it, but we also change
1179 the flow graph so that the current block will simply fall-thru to its
1180 immediate post-dominator. The blocks we are circumventing will be
1181 removed by cleanup_tree_cfg if this change in the flow graph makes them
1182 unreachable. */
1183 if (is_ctrl_stmt (stmt))
1184 {
1185 basic_block post_dom_bb;
1186 edge e, e2;
1187 edge_iterator ei;
1188
1189 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
1190
1191 e = find_edge (bb, post_dom_bb);
1192
1193 /* If edge is already there, try to use it. This avoids need to update
1194 PHI nodes. Also watch for cases where post dominator does not exists
1195 or is exit block. These can happen for infinite loops as we create
1196 fake edges in the dominator tree. */
1197 if (e)
1198 ;
1199 else if (! post_dom_bb || post_dom_bb == EXIT_BLOCK_PTR)
1200 e = EDGE_SUCC (bb, 0);
1201 else
1202 e = forward_edge_to_pdom (EDGE_SUCC (bb, 0), post_dom_bb);
1203 gcc_assert (e);
1204 e->probability = REG_BR_PROB_BASE;
1205 e->count = bb->count;
1206
1207 /* The edge is no longer associated with a conditional, so it does
1208 not have TRUE/FALSE flags. */
1209 e->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
1210
1211 /* The lone outgoing edge from BB will be a fallthru edge. */
1212 e->flags |= EDGE_FALLTHRU;
1213
1214 /* Remove the remaining outgoing edges. */
1215 for (ei = ei_start (bb->succs); (e2 = ei_safe_edge (ei)); )
1216 if (e != e2)
1217 {
1218 cfg_altered = true;
1219 remove_edge (e2);
1220 }
1221 else
1222 ei_next (&ei);
1223 }
1224
1225 /* If this is a store into a variable that is being optimized away,
1226 add a debug bind stmt if possible. */
1227 if (MAY_HAVE_DEBUG_STMTS
1228 && gimple_assign_single_p (stmt)
1229 && is_gimple_val (gimple_assign_rhs1 (stmt)))
1230 {
1231 tree lhs = gimple_assign_lhs (stmt);
1232 if ((TREE_CODE (lhs) == VAR_DECL || TREE_CODE (lhs) == PARM_DECL)
1233 && !DECL_IGNORED_P (lhs)
1234 && is_gimple_reg_type (TREE_TYPE (lhs))
1235 && !is_global_var (lhs)
1236 && !DECL_HAS_VALUE_EXPR_P (lhs))
1237 {
1238 tree rhs = gimple_assign_rhs1 (stmt);
1239 gimple note
1240 = gimple_build_debug_bind (lhs, unshare_expr (rhs), stmt);
1241 gsi_insert_after (i, note, GSI_SAME_STMT);
1242 }
1243 }
1244
1245 unlink_stmt_vdef (stmt);
1246 gsi_remove (i, true);
1247 release_defs (stmt);
1248 }
1249
1250 /* Eliminate unnecessary statements. Any instruction not marked as necessary
1251 contributes nothing to the program, and can be deleted. */
1252
1253 static bool
1254 eliminate_unnecessary_stmts (void)
1255 {
1256 bool something_changed = false;
1257 basic_block bb;
1258 gimple_stmt_iterator gsi, psi;
1259 gimple stmt;
1260 tree call;
1261 VEC (basic_block, heap) *h;
1262
1263 if (dump_file && (dump_flags & TDF_DETAILS))
1264 fprintf (dump_file, "\nEliminating unnecessary statements:\n");
1265
1266 clear_special_calls ();
1267
1268 /* Walking basic blocks and statements in reverse order avoids
1269 releasing SSA names before any other DEFs that refer to them are
1270 released. This helps avoid loss of debug information, as we get
1271 a chance to propagate all RHSs of removed SSAs into debug uses,
1272 rather than only the latest ones. E.g., consider:
1273
1274 x_3 = y_1 + z_2;
1275 a_5 = x_3 - b_4;
1276 # DEBUG a => a_5
1277
1278 If we were to release x_3 before a_5, when we reached a_5 and
1279 tried to substitute it into the debug stmt, we'd see x_3 there,
1280 but x_3's DEF, type, etc would have already been disconnected.
1281 By going backwards, the debug stmt first changes to:
1282
1283 # DEBUG a => x_3 - b_4
1284
1285 and then to:
1286
1287 # DEBUG a => y_1 + z_2 - b_4
1288
1289 as desired. */
1290 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
1291 h = get_all_dominated_blocks (CDI_DOMINATORS, single_succ (ENTRY_BLOCK_PTR));
1292
1293 while (VEC_length (basic_block, h))
1294 {
1295 bb = VEC_pop (basic_block, h);
1296
1297 /* Remove dead statements. */
1298 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi = psi)
1299 {
1300 stmt = gsi_stmt (gsi);
1301
1302 psi = gsi;
1303 gsi_prev (&psi);
1304
1305 stats.total++;
1306
1307 /* We can mark a call to free as not necessary if the
1308 defining statement of its argument is an allocation
1309 function and that is not necessary itself. */
1310 if (gimple_call_builtin_p (stmt, BUILT_IN_FREE))
1311 {
1312 tree ptr = gimple_call_arg (stmt, 0);
1313 tree callee2;
1314 gimple def_stmt;
1315 if (TREE_CODE (ptr) != SSA_NAME)
1316 continue;
1317 def_stmt = SSA_NAME_DEF_STMT (ptr);
1318 if (!is_gimple_call (def_stmt)
1319 || gimple_plf (def_stmt, STMT_NECESSARY))
1320 continue;
1321 callee2 = gimple_call_fndecl (def_stmt);
1322 if (callee2 == NULL_TREE
1323 || DECL_BUILT_IN_CLASS (callee2) != BUILT_IN_NORMAL
1324 || (DECL_FUNCTION_CODE (callee2) != BUILT_IN_MALLOC
1325 && DECL_FUNCTION_CODE (callee2) != BUILT_IN_CALLOC))
1326 continue;
1327 gimple_set_plf (stmt, STMT_NECESSARY, false);
1328 }
1329
1330 /* If GSI is not necessary then remove it. */
1331 if (!gimple_plf (stmt, STMT_NECESSARY))
1332 {
1333 if (!is_gimple_debug (stmt))
1334 something_changed = true;
1335 remove_dead_stmt (&gsi, bb);
1336 }
1337 else if (is_gimple_call (stmt))
1338 {
1339 tree name = gimple_call_lhs (stmt);
1340
1341 notice_special_calls (stmt);
1342
1343 /* When LHS of var = call (); is dead, simplify it into
1344 call (); saving one operand. */
1345 if (name
1346 && TREE_CODE (name) == SSA_NAME
1347 && !TEST_BIT (processed, SSA_NAME_VERSION (name))
1348 /* Avoid doing so for allocation calls which we
1349 did not mark as necessary, it will confuse the
1350 special logic we apply to malloc/free pair removal. */
1351 && (!(call = gimple_call_fndecl (stmt))
1352 || DECL_BUILT_IN_CLASS (call) != BUILT_IN_NORMAL
1353 || (DECL_FUNCTION_CODE (call) != BUILT_IN_MALLOC
1354 && DECL_FUNCTION_CODE (call) != BUILT_IN_CALLOC
1355 && DECL_FUNCTION_CODE (call) != BUILT_IN_ALLOCA
1356 && (DECL_FUNCTION_CODE (call)
1357 != BUILT_IN_ALLOCA_WITH_ALIGN))))
1358 {
1359 something_changed = true;
1360 if (dump_file && (dump_flags & TDF_DETAILS))
1361 {
1362 fprintf (dump_file, "Deleting LHS of call: ");
1363 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1364 fprintf (dump_file, "\n");
1365 }
1366
1367 gimple_call_set_lhs (stmt, NULL_TREE);
1368 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1369 update_stmt (stmt);
1370 release_ssa_name (name);
1371 }
1372 }
1373 }
1374 }
1375
1376 VEC_free (basic_block, heap, h);
1377
1378 /* Since we don't track liveness of virtual PHI nodes, it is possible that we
1379 rendered some PHI nodes unreachable while they are still in use.
1380 Mark them for renaming. */
1381 if (cfg_altered)
1382 {
1383 basic_block prev_bb;
1384
1385 find_unreachable_blocks ();
1386
1387 /* Delete all unreachable basic blocks in reverse dominator order. */
1388 for (bb = EXIT_BLOCK_PTR->prev_bb; bb != ENTRY_BLOCK_PTR; bb = prev_bb)
1389 {
1390 prev_bb = bb->prev_bb;
1391
1392 if (!TEST_BIT (bb_contains_live_stmts, bb->index)
1393 || !(bb->flags & BB_REACHABLE))
1394 {
1395 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1396 if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
1397 {
1398 bool found = false;
1399 imm_use_iterator iter;
1400
1401 FOR_EACH_IMM_USE_STMT (stmt, iter, gimple_phi_result (gsi_stmt (gsi)))
1402 {
1403 if (!(gimple_bb (stmt)->flags & BB_REACHABLE))
1404 continue;
1405 if (gimple_code (stmt) == GIMPLE_PHI
1406 || gimple_plf (stmt, STMT_NECESSARY))
1407 {
1408 found = true;
1409 BREAK_FROM_IMM_USE_STMT (iter);
1410 }
1411 }
1412 if (found)
1413 mark_virtual_phi_result_for_renaming (gsi_stmt (gsi));
1414 }
1415
1416 if (!(bb->flags & BB_REACHABLE))
1417 {
1418 /* Speed up the removal of blocks that don't
1419 dominate others. Walking backwards, this should
1420 be the common case. ??? Do we need to recompute
1421 dominators because of cfg_altered? */
1422 if (!MAY_HAVE_DEBUG_STMTS
1423 || !first_dom_son (CDI_DOMINATORS, bb))
1424 delete_basic_block (bb);
1425 else
1426 {
1427 h = get_all_dominated_blocks (CDI_DOMINATORS, bb);
1428
1429 while (VEC_length (basic_block, h))
1430 {
1431 bb = VEC_pop (basic_block, h);
1432 prev_bb = bb->prev_bb;
1433 /* Rearrangements to the CFG may have failed
1434 to update the dominators tree, so that
1435 formerly-dominated blocks are now
1436 otherwise reachable. */
1437 if (!!(bb->flags & BB_REACHABLE))
1438 continue;
1439 delete_basic_block (bb);
1440 }
1441
1442 VEC_free (basic_block, heap, h);
1443 }
1444 }
1445 }
1446 }
1447 }
1448 FOR_EACH_BB (bb)
1449 {
1450 /* Remove dead PHI nodes. */
1451 something_changed |= remove_dead_phis (bb);
1452 }
1453
1454 return something_changed;
1455 }
1456
1457
1458 /* Print out removed statement statistics. */
1459
1460 static void
1461 print_stats (void)
1462 {
1463 float percg;
1464
1465 percg = ((float) stats.removed / (float) stats.total) * 100;
1466 fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
1467 stats.removed, stats.total, (int) percg);
1468
1469 if (stats.total_phis == 0)
1470 percg = 0;
1471 else
1472 percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
1473
1474 fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
1475 stats.removed_phis, stats.total_phis, (int) percg);
1476 }
1477
1478 /* Initialization for this pass. Set up the used data structures. */
1479
1480 static void
1481 tree_dce_init (bool aggressive)
1482 {
1483 memset ((void *) &stats, 0, sizeof (stats));
1484
1485 if (aggressive)
1486 {
1487 int i;
1488
1489 control_dependence_map = XNEWVEC (bitmap, last_basic_block);
1490 for (i = 0; i < last_basic_block; ++i)
1491 control_dependence_map[i] = BITMAP_ALLOC (NULL);
1492
1493 last_stmt_necessary = sbitmap_alloc (last_basic_block);
1494 sbitmap_zero (last_stmt_necessary);
1495 bb_contains_live_stmts = sbitmap_alloc (last_basic_block);
1496 sbitmap_zero (bb_contains_live_stmts);
1497 }
1498
1499 processed = sbitmap_alloc (num_ssa_names + 1);
1500 sbitmap_zero (processed);
1501
1502 worklist = VEC_alloc (gimple, heap, 64);
1503 cfg_altered = false;
1504 }
1505
1506 /* Cleanup after this pass. */
1507
1508 static void
1509 tree_dce_done (bool aggressive)
1510 {
1511 if (aggressive)
1512 {
1513 int i;
1514
1515 for (i = 0; i < last_basic_block; ++i)
1516 BITMAP_FREE (control_dependence_map[i]);
1517 free (control_dependence_map);
1518
1519 sbitmap_free (visited_control_parents);
1520 sbitmap_free (last_stmt_necessary);
1521 sbitmap_free (bb_contains_live_stmts);
1522 bb_contains_live_stmts = NULL;
1523 }
1524
1525 sbitmap_free (processed);
1526
1527 VEC_free (gimple, heap, worklist);
1528 }
1529
1530 /* Main routine to eliminate dead code.
1531
1532 AGGRESSIVE controls the aggressiveness of the algorithm.
1533 In conservative mode, we ignore control dependence and simply declare
1534 all but the most trivially dead branches necessary. This mode is fast.
1535 In aggressive mode, control dependences are taken into account, which
1536 results in more dead code elimination, but at the cost of some time.
1537
1538 FIXME: Aggressive mode before PRE doesn't work currently because
1539 the dominance info is not invalidated after DCE1. This is
1540 not an issue right now because we only run aggressive DCE
1541 as the last tree SSA pass, but keep this in mind when you
1542 start experimenting with pass ordering. */
1543
1544 static unsigned int
1545 perform_tree_ssa_dce (bool aggressive)
1546 {
1547 struct edge_list *el = NULL;
1548 bool something_changed = 0;
1549
1550 calculate_dominance_info (CDI_DOMINATORS);
1551
1552 /* Preheaders are needed for SCEV to work.
1553 Simple lateches and recorded exits improve chances that loop will
1554 proved to be finite in testcases such as in loop-15.c and loop-24.c */
1555 if (aggressive)
1556 loop_optimizer_init (LOOPS_NORMAL
1557 | LOOPS_HAVE_RECORDED_EXITS);
1558
1559 tree_dce_init (aggressive);
1560
1561 if (aggressive)
1562 {
1563 /* Compute control dependence. */
1564 timevar_push (TV_CONTROL_DEPENDENCES);
1565 calculate_dominance_info (CDI_POST_DOMINATORS);
1566 el = create_edge_list ();
1567 find_all_control_dependences (el);
1568 timevar_pop (TV_CONTROL_DEPENDENCES);
1569
1570 visited_control_parents = sbitmap_alloc (last_basic_block);
1571 sbitmap_zero (visited_control_parents);
1572
1573 mark_dfs_back_edges ();
1574 }
1575
1576 find_obviously_necessary_stmts (el);
1577
1578 if (aggressive)
1579 loop_optimizer_finalize ();
1580
1581 longest_chain = 0;
1582 total_chain = 0;
1583 nr_walks = 0;
1584 chain_ovfl = false;
1585 visited = BITMAP_ALLOC (NULL);
1586 propagate_necessity (el);
1587 BITMAP_FREE (visited);
1588
1589 something_changed |= eliminate_unnecessary_stmts ();
1590 something_changed |= cfg_altered;
1591
1592 /* We do not update postdominators, so free them unconditionally. */
1593 free_dominance_info (CDI_POST_DOMINATORS);
1594
1595 /* If we removed paths in the CFG, then we need to update
1596 dominators as well. I haven't investigated the possibility
1597 of incrementally updating dominators. */
1598 if (cfg_altered)
1599 free_dominance_info (CDI_DOMINATORS);
1600
1601 statistics_counter_event (cfun, "Statements deleted", stats.removed);
1602 statistics_counter_event (cfun, "PHI nodes deleted", stats.removed_phis);
1603
1604 /* Debugging dumps. */
1605 if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
1606 print_stats ();
1607
1608 tree_dce_done (aggressive);
1609
1610 free_edge_list (el);
1611
1612 if (something_changed)
1613 return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
1614 | TODO_remove_unused_locals);
1615 else
1616 return 0;
1617 }
1618
1619 /* Pass entry points. */
1620 static unsigned int
1621 tree_ssa_dce (void)
1622 {
1623 return perform_tree_ssa_dce (/*aggressive=*/false);
1624 }
1625
1626 static unsigned int
1627 tree_ssa_dce_loop (void)
1628 {
1629 unsigned int todo;
1630 todo = perform_tree_ssa_dce (/*aggressive=*/false);
1631 if (todo)
1632 {
1633 free_numbers_of_iterations_estimates ();
1634 scev_reset ();
1635 }
1636 return todo;
1637 }
1638
1639 static unsigned int
1640 tree_ssa_cd_dce (void)
1641 {
1642 return perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
1643 }
1644
1645 static bool
1646 gate_dce (void)
1647 {
1648 return flag_tree_dce != 0;
1649 }
1650
1651 struct gimple_opt_pass pass_dce =
1652 {
1653 {
1654 GIMPLE_PASS,
1655 "dce", /* name */
1656 gate_dce, /* gate */
1657 tree_ssa_dce, /* execute */
1658 NULL, /* sub */
1659 NULL, /* next */
1660 0, /* static_pass_number */
1661 TV_TREE_DCE, /* tv_id */
1662 PROP_cfg | PROP_ssa, /* properties_required */
1663 0, /* properties_provided */
1664 0, /* properties_destroyed */
1665 0, /* todo_flags_start */
1666 TODO_verify_ssa /* todo_flags_finish */
1667 }
1668 };
1669
1670 struct gimple_opt_pass pass_dce_loop =
1671 {
1672 {
1673 GIMPLE_PASS,
1674 "dceloop", /* name */
1675 gate_dce, /* gate */
1676 tree_ssa_dce_loop, /* execute */
1677 NULL, /* sub */
1678 NULL, /* next */
1679 0, /* static_pass_number */
1680 TV_TREE_DCE, /* tv_id */
1681 PROP_cfg | PROP_ssa, /* properties_required */
1682 0, /* properties_provided */
1683 0, /* properties_destroyed */
1684 0, /* todo_flags_start */
1685 TODO_verify_ssa /* todo_flags_finish */
1686 }
1687 };
1688
1689 struct gimple_opt_pass pass_cd_dce =
1690 {
1691 {
1692 GIMPLE_PASS,
1693 "cddce", /* name */
1694 gate_dce, /* gate */
1695 tree_ssa_cd_dce, /* execute */
1696 NULL, /* sub */
1697 NULL, /* next */
1698 0, /* static_pass_number */
1699 TV_TREE_CD_DCE, /* tv_id */
1700 PROP_cfg | PROP_ssa, /* properties_required */
1701 0, /* properties_provided */
1702 0, /* properties_destroyed */
1703 0, /* todo_flags_start */
1704 TODO_verify_ssa
1705 | TODO_verify_flow /* todo_flags_finish */
1706 }
1707 };