tree-data-ref.c (subscript_dependence_tester_1): Call free_conflict_function.
[gcc.git] / gcc / tree-ssa-dce.c
1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Contributed by Ben Elliston <bje@redhat.com>
5 and Andrew MacLeod <amacleod@redhat.com>
6 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 3, or (at your option) any
13 later version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* Dead code elimination.
25
26 References:
27
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
30
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
33
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
37 impact on the output.
38
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
45
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "ggc.h"
51
52 /* These RTL headers are needed for basic-block.h. */
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "hard-reg-set.h"
56 #include "obstack.h"
57 #include "basic-block.h"
58
59 #include "tree.h"
60 #include "diagnostic.h"
61 #include "tree-flow.h"
62 #include "tree-gimple.h"
63 #include "tree-dump.h"
64 #include "tree-pass.h"
65 #include "timevar.h"
66 #include "flags.h"
67 #include "cfgloop.h"
68 #include "tree-scalar-evolution.h"
69 \f
70 static struct stmt_stats
71 {
72 int total;
73 int total_phis;
74 int removed;
75 int removed_phis;
76 } stats;
77
78 static VEC(tree,heap) *worklist;
79
80 /* Vector indicating an SSA name has already been processed and marked
81 as necessary. */
82 static sbitmap processed;
83
84 /* Vector indicating that last_stmt if a basic block has already been
85 marked as necessary. */
86 static sbitmap last_stmt_necessary;
87
88 /* Before we can determine whether a control branch is dead, we need to
89 compute which blocks are control dependent on which edges.
90
91 We expect each block to be control dependent on very few edges so we
92 use a bitmap for each block recording its edges. An array holds the
93 bitmap. The Ith bit in the bitmap is set if that block is dependent
94 on the Ith edge. */
95 static bitmap *control_dependence_map;
96
97 /* Vector indicating that a basic block has already had all the edges
98 processed that it is control dependent on. */
99 static sbitmap visited_control_parents;
100
101 /* TRUE if this pass alters the CFG (by removing control statements).
102 FALSE otherwise.
103
104 If this pass alters the CFG, then it will arrange for the dominators
105 to be recomputed. */
106 static bool cfg_altered;
107
108 /* Execute code that follows the macro for each edge (given number
109 EDGE_NUMBER within the CODE) for which the block with index N is
110 control dependent. */
111 #define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER) \
112 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0, \
113 (EDGE_NUMBER), (BI))
114
115
116 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
117 static inline void
118 set_control_dependence_map_bit (basic_block bb, int edge_index)
119 {
120 if (bb == ENTRY_BLOCK_PTR)
121 return;
122 gcc_assert (bb != EXIT_BLOCK_PTR);
123 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
124 }
125
126 /* Clear all control dependences for block BB. */
127 static inline void
128 clear_control_dependence_bitmap (basic_block bb)
129 {
130 bitmap_clear (control_dependence_map[bb->index]);
131 }
132
133
134 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
135 This function is necessary because some blocks have negative numbers. */
136
137 static inline basic_block
138 find_pdom (basic_block block)
139 {
140 gcc_assert (block != ENTRY_BLOCK_PTR);
141
142 if (block == EXIT_BLOCK_PTR)
143 return EXIT_BLOCK_PTR;
144 else
145 {
146 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
147 if (! bb)
148 return EXIT_BLOCK_PTR;
149 return bb;
150 }
151 }
152
153
154 /* Determine all blocks' control dependences on the given edge with edge_list
155 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
156
157 static void
158 find_control_dependence (struct edge_list *el, int edge_index)
159 {
160 basic_block current_block;
161 basic_block ending_block;
162
163 gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
164
165 if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
166 ending_block = single_succ (ENTRY_BLOCK_PTR);
167 else
168 ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
169
170 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
171 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
172 current_block = find_pdom (current_block))
173 {
174 edge e = INDEX_EDGE (el, edge_index);
175
176 /* For abnormal edges, we don't make current_block control
177 dependent because instructions that throw are always necessary
178 anyway. */
179 if (e->flags & EDGE_ABNORMAL)
180 continue;
181
182 set_control_dependence_map_bit (current_block, edge_index);
183 }
184 }
185
186
187 /* Record all blocks' control dependences on all edges in the edge
188 list EL, ala Morgan, Section 3.6. */
189
190 static void
191 find_all_control_dependences (struct edge_list *el)
192 {
193 int i;
194
195 for (i = 0; i < NUM_EDGES (el); ++i)
196 find_control_dependence (el, i);
197 }
198
199
200 #define NECESSARY(stmt) stmt->base.asm_written_flag
201
202 /* If STMT is not already marked necessary, mark it, and add it to the
203 worklist if ADD_TO_WORKLIST is true. */
204 static inline void
205 mark_stmt_necessary (tree stmt, bool add_to_worklist)
206 {
207 gcc_assert (stmt);
208 gcc_assert (!DECL_P (stmt));
209
210 if (NECESSARY (stmt))
211 return;
212
213 if (dump_file && (dump_flags & TDF_DETAILS))
214 {
215 fprintf (dump_file, "Marking useful stmt: ");
216 print_generic_stmt (dump_file, stmt, TDF_SLIM);
217 fprintf (dump_file, "\n");
218 }
219
220 NECESSARY (stmt) = 1;
221 if (add_to_worklist)
222 VEC_safe_push (tree, heap, worklist, stmt);
223 }
224
225
226 /* Mark the statement defining operand OP as necessary. */
227
228 static inline void
229 mark_operand_necessary (tree op)
230 {
231 tree stmt;
232 int ver;
233
234 gcc_assert (op);
235
236 ver = SSA_NAME_VERSION (op);
237 if (TEST_BIT (processed, ver))
238 return;
239 SET_BIT (processed, ver);
240
241 stmt = SSA_NAME_DEF_STMT (op);
242 gcc_assert (stmt);
243
244 if (NECESSARY (stmt) || IS_EMPTY_STMT (stmt))
245 return;
246
247 NECESSARY (stmt) = 1;
248 VEC_safe_push (tree, heap, worklist, stmt);
249 }
250
251
252 /* Mark STMT as necessary if it obviously is. Add it to the worklist if
253 it can make other statements necessary.
254
255 If AGGRESSIVE is false, control statements are conservatively marked as
256 necessary. */
257
258 static void
259 mark_stmt_if_obviously_necessary (tree stmt, bool aggressive)
260 {
261 stmt_ann_t ann;
262 tree op;
263
264 /* With non-call exceptions, we have to assume that all statements could
265 throw. If a statement may throw, it is inherently necessary. */
266 if (flag_non_call_exceptions
267 && tree_could_throw_p (stmt))
268 {
269 mark_stmt_necessary (stmt, true);
270 return;
271 }
272
273 /* Statements that are implicitly live. Most function calls, asm and return
274 statements are required. Labels and BIND_EXPR nodes are kept because
275 they are control flow, and we have no way of knowing whether they can be
276 removed. DCE can eliminate all the other statements in a block, and CFG
277 can then remove the block and labels. */
278 switch (TREE_CODE (stmt))
279 {
280 case BIND_EXPR:
281 case LABEL_EXPR:
282 case CASE_LABEL_EXPR:
283 mark_stmt_necessary (stmt, false);
284 return;
285
286 case ASM_EXPR:
287 case RESX_EXPR:
288 case RETURN_EXPR:
289 case CHANGE_DYNAMIC_TYPE_EXPR:
290 mark_stmt_necessary (stmt, true);
291 return;
292
293 case CALL_EXPR:
294 /* Most, but not all function calls are required. Function calls that
295 produce no result and have no side effects (i.e. const pure
296 functions) are unnecessary. */
297 if (TREE_SIDE_EFFECTS (stmt))
298 mark_stmt_necessary (stmt, true);
299 return;
300
301 case GIMPLE_MODIFY_STMT:
302 op = get_call_expr_in (stmt);
303 if (op && TREE_SIDE_EFFECTS (op))
304 {
305 mark_stmt_necessary (stmt, true);
306 return;
307 }
308
309 /* These values are mildly magic bits of the EH runtime. We can't
310 see the entire lifetime of these values until landing pads are
311 generated. */
312 if (TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 0)) == EXC_PTR_EXPR
313 || TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 0)) == FILTER_EXPR)
314 {
315 mark_stmt_necessary (stmt, true);
316 return;
317 }
318 break;
319
320 case GOTO_EXPR:
321 gcc_assert (!simple_goto_p (stmt));
322 mark_stmt_necessary (stmt, true);
323 return;
324
325 case COND_EXPR:
326 gcc_assert (EDGE_COUNT (bb_for_stmt (stmt)->succs) == 2);
327 /* Fall through. */
328
329 case SWITCH_EXPR:
330 if (! aggressive)
331 mark_stmt_necessary (stmt, true);
332 break;
333
334 default:
335 break;
336 }
337
338 ann = stmt_ann (stmt);
339
340 /* If the statement has volatile operands, it needs to be preserved.
341 Same for statements that can alter control flow in unpredictable
342 ways. */
343 if (ann->has_volatile_ops || is_ctrl_altering_stmt (stmt))
344 {
345 mark_stmt_necessary (stmt, true);
346 return;
347 }
348
349 if (is_hidden_global_store (stmt))
350 {
351 mark_stmt_necessary (stmt, true);
352 return;
353 }
354
355 return;
356 }
357
358
359 /* Make corresponding control dependent edges necessary. We only
360 have to do this once for each basic block, so we clear the bitmap
361 after we're done. */
362 static void
363 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el)
364 {
365 bitmap_iterator bi;
366 unsigned edge_number;
367
368 gcc_assert (bb != EXIT_BLOCK_PTR);
369
370 if (bb == ENTRY_BLOCK_PTR)
371 return;
372
373 EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
374 {
375 tree t;
376 basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
377
378 if (TEST_BIT (last_stmt_necessary, cd_bb->index))
379 continue;
380 SET_BIT (last_stmt_necessary, cd_bb->index);
381
382 t = last_stmt (cd_bb);
383 if (t && is_ctrl_stmt (t))
384 mark_stmt_necessary (t, true);
385 }
386 }
387
388
389 /* Find obviously necessary statements. These are things like most function
390 calls, and stores to file level variables.
391
392 If EL is NULL, control statements are conservatively marked as
393 necessary. Otherwise it contains the list of edges used by control
394 dependence analysis. */
395
396 static void
397 find_obviously_necessary_stmts (struct edge_list *el)
398 {
399 basic_block bb;
400 block_stmt_iterator i;
401 edge e;
402
403 FOR_EACH_BB (bb)
404 {
405 tree phi;
406
407 /* PHI nodes are never inherently necessary. */
408 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
409 NECESSARY (phi) = 0;
410
411 /* Check all statements in the block. */
412 for (i = bsi_start (bb); ! bsi_end_p (i); bsi_next (&i))
413 {
414 tree stmt = bsi_stmt (i);
415 NECESSARY (stmt) = 0;
416 mark_stmt_if_obviously_necessary (stmt, el != NULL);
417 }
418 }
419
420 if (el)
421 {
422 /* Prevent the loops from being removed. We must keep the infinite loops,
423 and we currently do not have a means to recognize the finite ones. */
424 FOR_EACH_BB (bb)
425 {
426 edge_iterator ei;
427 FOR_EACH_EDGE (e, ei, bb->succs)
428 if (e->flags & EDGE_DFS_BACK)
429 mark_control_dependent_edges_necessary (e->dest, el);
430 }
431 }
432 }
433
434
435 /* Propagate necessity using the operands of necessary statements.
436 Process the uses on each statement in the worklist, and add all
437 feeding statements which contribute to the calculation of this
438 value to the worklist.
439
440 In conservative mode, EL is NULL. */
441
442 static void
443 propagate_necessity (struct edge_list *el)
444 {
445 tree stmt;
446 bool aggressive = (el ? true : false);
447
448 if (dump_file && (dump_flags & TDF_DETAILS))
449 fprintf (dump_file, "\nProcessing worklist:\n");
450
451 while (VEC_length (tree, worklist) > 0)
452 {
453 /* Take STMT from worklist. */
454 stmt = VEC_pop (tree, worklist);
455
456 if (dump_file && (dump_flags & TDF_DETAILS))
457 {
458 fprintf (dump_file, "processing: ");
459 print_generic_stmt (dump_file, stmt, TDF_SLIM);
460 fprintf (dump_file, "\n");
461 }
462
463 if (aggressive)
464 {
465 /* Mark the last statements of the basic blocks that the block
466 containing STMT is control dependent on, but only if we haven't
467 already done so. */
468 basic_block bb = bb_for_stmt (stmt);
469 if (bb != ENTRY_BLOCK_PTR
470 && ! TEST_BIT (visited_control_parents, bb->index))
471 {
472 SET_BIT (visited_control_parents, bb->index);
473 mark_control_dependent_edges_necessary (bb, el);
474 }
475 }
476
477 if (TREE_CODE (stmt) == PHI_NODE)
478 {
479 /* PHI nodes are somewhat special in that each PHI alternative has
480 data and control dependencies. All the statements feeding the
481 PHI node's arguments are always necessary. In aggressive mode,
482 we also consider the control dependent edges leading to the
483 predecessor block associated with each PHI alternative as
484 necessary. */
485 int k;
486
487 for (k = 0; k < PHI_NUM_ARGS (stmt); k++)
488 {
489 tree arg = PHI_ARG_DEF (stmt, k);
490 if (TREE_CODE (arg) == SSA_NAME)
491 mark_operand_necessary (arg);
492 }
493
494 if (aggressive)
495 {
496 for (k = 0; k < PHI_NUM_ARGS (stmt); k++)
497 {
498 basic_block arg_bb = PHI_ARG_EDGE (stmt, k)->src;
499 if (arg_bb != ENTRY_BLOCK_PTR
500 && ! TEST_BIT (visited_control_parents, arg_bb->index))
501 {
502 SET_BIT (visited_control_parents, arg_bb->index);
503 mark_control_dependent_edges_necessary (arg_bb, el);
504 }
505 }
506 }
507 }
508 else
509 {
510 /* Propagate through the operands. Examine all the USE, VUSE and
511 VDEF operands in this statement. Mark all the statements
512 which feed this statement's uses as necessary. The
513 operands of VDEF expressions are also needed as they
514 represent potential definitions that may reach this
515 statement (VDEF operands allow us to follow def-def
516 links). */
517 ssa_op_iter iter;
518 tree use;
519
520 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_ALL_USES)
521 mark_operand_necessary (use);
522 }
523 }
524 }
525
526
527 /* Remove dead PHI nodes from block BB. */
528
529 static bool
530 remove_dead_phis (basic_block bb)
531 {
532 tree prev, phi;
533 bool something_changed = false;
534
535 prev = NULL_TREE;
536 phi = phi_nodes (bb);
537 while (phi)
538 {
539 stats.total_phis++;
540
541 if (! NECESSARY (phi))
542 {
543 tree next = PHI_CHAIN (phi);
544
545 something_changed = true;
546 if (dump_file && (dump_flags & TDF_DETAILS))
547 {
548 fprintf (dump_file, "Deleting : ");
549 print_generic_stmt (dump_file, phi, TDF_SLIM);
550 fprintf (dump_file, "\n");
551 }
552
553 remove_phi_node (phi, prev, true);
554 stats.removed_phis++;
555 phi = next;
556 }
557 else
558 {
559 prev = phi;
560 phi = PHI_CHAIN (phi);
561 }
562 }
563 return something_changed;
564 }
565
566
567 /* Remove dead statement pointed to by iterator I. Receives the basic block BB
568 containing I so that we don't have to look it up. */
569
570 static void
571 remove_dead_stmt (block_stmt_iterator *i, basic_block bb)
572 {
573 tree t = bsi_stmt (*i);
574
575 if (dump_file && (dump_flags & TDF_DETAILS))
576 {
577 fprintf (dump_file, "Deleting : ");
578 print_generic_stmt (dump_file, t, TDF_SLIM);
579 fprintf (dump_file, "\n");
580 }
581
582 stats.removed++;
583
584 /* If we have determined that a conditional branch statement contributes
585 nothing to the program, then we not only remove it, but we also change
586 the flow graph so that the current block will simply fall-thru to its
587 immediate post-dominator. The blocks we are circumventing will be
588 removed by cleanup_tree_cfg if this change in the flow graph makes them
589 unreachable. */
590 if (is_ctrl_stmt (t))
591 {
592 basic_block post_dom_bb;
593
594 /* The post dominance info has to be up-to-date. */
595 gcc_assert (dom_info_state (CDI_POST_DOMINATORS) == DOM_OK);
596 /* Get the immediate post dominator of bb. */
597 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
598
599 /* There are three particularly problematical cases.
600
601 1. Blocks that do not have an immediate post dominator. This
602 can happen with infinite loops.
603
604 2. Blocks that are only post dominated by the exit block. These
605 can also happen for infinite loops as we create fake edges
606 in the dominator tree.
607
608 3. If the post dominator has PHI nodes we may be able to compute
609 the right PHI args for them.
610
611 In each of these cases we must remove the control statement
612 as it may reference SSA_NAMEs which are going to be removed and
613 we remove all but one outgoing edge from the block. */
614 if (! post_dom_bb
615 || post_dom_bb == EXIT_BLOCK_PTR
616 || phi_nodes (post_dom_bb))
617 ;
618 else
619 {
620 /* Redirect the first edge out of BB to reach POST_DOM_BB. */
621 redirect_edge_and_branch (EDGE_SUCC (bb, 0), post_dom_bb);
622 PENDING_STMT (EDGE_SUCC (bb, 0)) = NULL;
623
624 /* It is not sufficient to set cfg_altered below during edge
625 removal, in case BB has two successors and one of them
626 is POST_DOM_BB. */
627 cfg_altered = true;
628 }
629 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
630 EDGE_SUCC (bb, 0)->count = bb->count;
631
632 /* The edge is no longer associated with a conditional, so it does
633 not have TRUE/FALSE flags. */
634 EDGE_SUCC (bb, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
635
636 /* The lone outgoing edge from BB will be a fallthru edge. */
637 EDGE_SUCC (bb, 0)->flags |= EDGE_FALLTHRU;
638
639 /* Remove the remaining the outgoing edges. */
640 while (!single_succ_p (bb))
641 {
642 /* FIXME. When we remove the edge, we modify the CFG, which
643 in turn modifies the dominator and post-dominator tree.
644 Is it safe to postpone recomputing the dominator and
645 post-dominator tree until the end of this pass given that
646 the post-dominators are used above? */
647 cfg_altered = true;
648 remove_edge (EDGE_SUCC (bb, 1));
649 }
650 }
651
652 bsi_remove (i, true);
653 release_defs (t);
654 }
655
656
657 /* Eliminate unnecessary statements. Any instruction not marked as necessary
658 contributes nothing to the program, and can be deleted. */
659
660 static bool
661 eliminate_unnecessary_stmts (void)
662 {
663 bool something_changed = false;
664 basic_block bb;
665 block_stmt_iterator i;
666
667 if (dump_file && (dump_flags & TDF_DETAILS))
668 fprintf (dump_file, "\nEliminating unnecessary statements:\n");
669
670 clear_special_calls ();
671 FOR_EACH_BB (bb)
672 {
673 /* Remove dead PHI nodes. */
674 something_changed |= remove_dead_phis (bb);
675 }
676
677 FOR_EACH_BB (bb)
678 {
679 /* Remove dead statements. */
680 for (i = bsi_start (bb); ! bsi_end_p (i) ; )
681 {
682 tree t = bsi_stmt (i);
683
684 stats.total++;
685
686 /* If `i' is not necessary then remove it. */
687 if (! NECESSARY (t))
688 {
689 remove_dead_stmt (&i, bb);
690 something_changed = true;
691 }
692 else
693 {
694 tree call = get_call_expr_in (t);
695 if (call)
696 {
697 tree name;
698
699 /* When LHS of var = call (); is dead, simplify it into
700 call (); saving one operand. */
701 if (TREE_CODE (t) == GIMPLE_MODIFY_STMT
702 && (TREE_CODE ((name = GIMPLE_STMT_OPERAND (t, 0)))
703 == SSA_NAME)
704 && !TEST_BIT (processed, SSA_NAME_VERSION (name)))
705 {
706 tree oldlhs = GIMPLE_STMT_OPERAND (t, 0);
707 something_changed = true;
708 if (dump_file && (dump_flags & TDF_DETAILS))
709 {
710 fprintf (dump_file, "Deleting LHS of call: ");
711 print_generic_stmt (dump_file, t, TDF_SLIM);
712 fprintf (dump_file, "\n");
713 }
714 push_stmt_changes (bsi_stmt_ptr (i));
715 TREE_BLOCK (call) = TREE_BLOCK (t);
716 bsi_replace (&i, call, false);
717 maybe_clean_or_replace_eh_stmt (t, call);
718 mark_symbols_for_renaming (call);
719 pop_stmt_changes (bsi_stmt_ptr (i));
720 release_ssa_name (oldlhs);
721 }
722 notice_special_calls (call);
723 }
724 bsi_next (&i);
725 }
726 }
727 }
728
729 return something_changed;
730 }
731
732
733 /* Print out removed statement statistics. */
734
735 static void
736 print_stats (void)
737 {
738 if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
739 {
740 float percg;
741
742 percg = ((float) stats.removed / (float) stats.total) * 100;
743 fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
744 stats.removed, stats.total, (int) percg);
745
746 if (stats.total_phis == 0)
747 percg = 0;
748 else
749 percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
750
751 fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
752 stats.removed_phis, stats.total_phis, (int) percg);
753 }
754 }
755 \f
756 /* Initialization for this pass. Set up the used data structures. */
757
758 static void
759 tree_dce_init (bool aggressive)
760 {
761 memset ((void *) &stats, 0, sizeof (stats));
762
763 if (aggressive)
764 {
765 int i;
766
767 control_dependence_map = XNEWVEC (bitmap, last_basic_block);
768 for (i = 0; i < last_basic_block; ++i)
769 control_dependence_map[i] = BITMAP_ALLOC (NULL);
770
771 last_stmt_necessary = sbitmap_alloc (last_basic_block);
772 sbitmap_zero (last_stmt_necessary);
773 }
774
775 processed = sbitmap_alloc (num_ssa_names + 1);
776 sbitmap_zero (processed);
777
778 worklist = VEC_alloc (tree, heap, 64);
779 cfg_altered = false;
780 }
781
782 /* Cleanup after this pass. */
783
784 static void
785 tree_dce_done (bool aggressive)
786 {
787 if (aggressive)
788 {
789 int i;
790
791 for (i = 0; i < last_basic_block; ++i)
792 BITMAP_FREE (control_dependence_map[i]);
793 free (control_dependence_map);
794
795 sbitmap_free (visited_control_parents);
796 sbitmap_free (last_stmt_necessary);
797 }
798
799 sbitmap_free (processed);
800
801 VEC_free (tree, heap, worklist);
802 }
803 \f
804 /* Main routine to eliminate dead code.
805
806 AGGRESSIVE controls the aggressiveness of the algorithm.
807 In conservative mode, we ignore control dependence and simply declare
808 all but the most trivially dead branches necessary. This mode is fast.
809 In aggressive mode, control dependences are taken into account, which
810 results in more dead code elimination, but at the cost of some time.
811
812 FIXME: Aggressive mode before PRE doesn't work currently because
813 the dominance info is not invalidated after DCE1. This is
814 not an issue right now because we only run aggressive DCE
815 as the last tree SSA pass, but keep this in mind when you
816 start experimenting with pass ordering. */
817
818 static unsigned int
819 perform_tree_ssa_dce (bool aggressive)
820 {
821 struct edge_list *el = NULL;
822 bool something_changed = 0;
823
824 tree_dce_init (aggressive);
825
826 if (aggressive)
827 {
828 /* Compute control dependence. */
829 timevar_push (TV_CONTROL_DEPENDENCES);
830 calculate_dominance_info (CDI_POST_DOMINATORS);
831 el = create_edge_list ();
832 find_all_control_dependences (el);
833 timevar_pop (TV_CONTROL_DEPENDENCES);
834
835 visited_control_parents = sbitmap_alloc (last_basic_block);
836 sbitmap_zero (visited_control_parents);
837
838 mark_dfs_back_edges ();
839 }
840
841 find_obviously_necessary_stmts (el);
842
843 propagate_necessity (el);
844
845 something_changed |= eliminate_unnecessary_stmts ();
846 something_changed |= cfg_altered;
847
848 /* We do not update postdominators, so free them unconditionally. */
849 free_dominance_info (CDI_POST_DOMINATORS);
850
851 /* If we removed paths in the CFG, then we need to update
852 dominators as well. I haven't investigated the possibility
853 of incrementally updating dominators. */
854 if (cfg_altered)
855 free_dominance_info (CDI_DOMINATORS);
856
857 /* Debugging dumps. */
858 if (dump_file)
859 print_stats ();
860
861 tree_dce_done (aggressive);
862
863 free_edge_list (el);
864
865 if (something_changed)
866 return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
867 | TODO_remove_unused_locals);
868 else
869 return 0;
870 }
871
872 /* Pass entry points. */
873 static unsigned int
874 tree_ssa_dce (void)
875 {
876 return perform_tree_ssa_dce (/*aggressive=*/false);
877 }
878
879 static unsigned int
880 tree_ssa_dce_loop (void)
881 {
882 unsigned int todo;
883 todo = perform_tree_ssa_dce (/*aggressive=*/false);
884 if (todo)
885 {
886 free_numbers_of_iterations_estimates ();
887 scev_reset ();
888 }
889 return todo;
890 }
891
892 static unsigned int
893 tree_ssa_cd_dce (void)
894 {
895 return perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
896 }
897
898 static bool
899 gate_dce (void)
900 {
901 return flag_tree_dce != 0;
902 }
903
904 struct tree_opt_pass pass_dce =
905 {
906 "dce", /* name */
907 gate_dce, /* gate */
908 tree_ssa_dce, /* execute */
909 NULL, /* sub */
910 NULL, /* next */
911 0, /* static_pass_number */
912 TV_TREE_DCE, /* tv_id */
913 PROP_cfg | PROP_ssa, /* properties_required */
914 0, /* properties_provided */
915 0, /* properties_destroyed */
916 0, /* todo_flags_start */
917 TODO_dump_func | TODO_verify_ssa, /* todo_flags_finish */
918 0 /* letter */
919 };
920
921 struct tree_opt_pass pass_dce_loop =
922 {
923 "dceloop", /* name */
924 gate_dce, /* gate */
925 tree_ssa_dce_loop, /* execute */
926 NULL, /* sub */
927 NULL, /* next */
928 0, /* static_pass_number */
929 TV_TREE_DCE, /* tv_id */
930 PROP_cfg | PROP_ssa, /* properties_required */
931 0, /* properties_provided */
932 0, /* properties_destroyed */
933 0, /* todo_flags_start */
934 TODO_dump_func | TODO_verify_ssa, /* todo_flags_finish */
935 0 /* letter */
936 };
937
938 struct tree_opt_pass pass_cd_dce =
939 {
940 "cddce", /* name */
941 gate_dce, /* gate */
942 tree_ssa_cd_dce, /* execute */
943 NULL, /* sub */
944 NULL, /* next */
945 0, /* static_pass_number */
946 TV_TREE_CD_DCE, /* tv_id */
947 PROP_cfg | PROP_ssa, /* properties_required */
948 0, /* properties_provided */
949 0, /* properties_destroyed */
950 0, /* todo_flags_start */
951 TODO_dump_func | TODO_verify_ssa
952 | TODO_verify_flow, /* todo_flags_finish */
953 0 /* letter */
954 };