Makefile.in (build/genmddeps.o): Depend on $(READ_MD_H).
[gcc.git] / gcc / tree-ssa-dce.c
1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Ben Elliston <bje@redhat.com>
5 and Andrew MacLeod <amacleod@redhat.com>
6 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 3, or (at your option) any
13 later version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* Dead code elimination.
25
26 References:
27
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
30
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
33
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
37 impact on the output.
38
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
45
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50
51 #include "tree.h"
52 #include "tree-pretty-print.h"
53 #include "gimple-pretty-print.h"
54 #include "basic-block.h"
55 #include "tree-flow.h"
56 #include "gimple.h"
57 #include "tree-dump.h"
58 #include "tree-pass.h"
59 #include "timevar.h"
60 #include "flags.h"
61 #include "cfgloop.h"
62 #include "tree-scalar-evolution.h"
63
64 static struct stmt_stats
65 {
66 int total;
67 int total_phis;
68 int removed;
69 int removed_phis;
70 } stats;
71
72 #define STMT_NECESSARY GF_PLF_1
73
74 static VEC(gimple,heap) *worklist;
75
76 /* Vector indicating an SSA name has already been processed and marked
77 as necessary. */
78 static sbitmap processed;
79
80 /* Vector indicating that the last statement of a basic block has already
81 been marked as necessary. */
82 static sbitmap last_stmt_necessary;
83
84 /* Vector indicating that BB contains statements that are live. */
85 static sbitmap bb_contains_live_stmts;
86
87 /* Before we can determine whether a control branch is dead, we need to
88 compute which blocks are control dependent on which edges.
89
90 We expect each block to be control dependent on very few edges so we
91 use a bitmap for each block recording its edges. An array holds the
92 bitmap. The Ith bit in the bitmap is set if that block is dependent
93 on the Ith edge. */
94 static bitmap *control_dependence_map;
95
96 /* Vector indicating that a basic block has already had all the edges
97 processed that it is control dependent on. */
98 static sbitmap visited_control_parents;
99
100 /* TRUE if this pass alters the CFG (by removing control statements).
101 FALSE otherwise.
102
103 If this pass alters the CFG, then it will arrange for the dominators
104 to be recomputed. */
105 static bool cfg_altered;
106
107 /* Execute code that follows the macro for each edge (given number
108 EDGE_NUMBER within the CODE) for which the block with index N is
109 control dependent. */
110 #define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER) \
111 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0, \
112 (EDGE_NUMBER), (BI))
113
114
115 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
116 static inline void
117 set_control_dependence_map_bit (basic_block bb, int edge_index)
118 {
119 if (bb == ENTRY_BLOCK_PTR)
120 return;
121 gcc_assert (bb != EXIT_BLOCK_PTR);
122 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
123 }
124
125 /* Clear all control dependences for block BB. */
126 static inline void
127 clear_control_dependence_bitmap (basic_block bb)
128 {
129 bitmap_clear (control_dependence_map[bb->index]);
130 }
131
132
133 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
134 This function is necessary because some blocks have negative numbers. */
135
136 static inline basic_block
137 find_pdom (basic_block block)
138 {
139 gcc_assert (block != ENTRY_BLOCK_PTR);
140
141 if (block == EXIT_BLOCK_PTR)
142 return EXIT_BLOCK_PTR;
143 else
144 {
145 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
146 if (! bb)
147 return EXIT_BLOCK_PTR;
148 return bb;
149 }
150 }
151
152
153 /* Determine all blocks' control dependences on the given edge with edge_list
154 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
155
156 static void
157 find_control_dependence (struct edge_list *el, int edge_index)
158 {
159 basic_block current_block;
160 basic_block ending_block;
161
162 gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
163
164 if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
165 ending_block = single_succ (ENTRY_BLOCK_PTR);
166 else
167 ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
168
169 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
170 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
171 current_block = find_pdom (current_block))
172 {
173 edge e = INDEX_EDGE (el, edge_index);
174
175 /* For abnormal edges, we don't make current_block control
176 dependent because instructions that throw are always necessary
177 anyway. */
178 if (e->flags & EDGE_ABNORMAL)
179 continue;
180
181 set_control_dependence_map_bit (current_block, edge_index);
182 }
183 }
184
185
186 /* Record all blocks' control dependences on all edges in the edge
187 list EL, ala Morgan, Section 3.6. */
188
189 static void
190 find_all_control_dependences (struct edge_list *el)
191 {
192 int i;
193
194 for (i = 0; i < NUM_EDGES (el); ++i)
195 find_control_dependence (el, i);
196 }
197
198 /* If STMT is not already marked necessary, mark it, and add it to the
199 worklist if ADD_TO_WORKLIST is true. */
200
201 static inline void
202 mark_stmt_necessary (gimple stmt, bool add_to_worklist)
203 {
204 gcc_assert (stmt);
205
206 if (gimple_plf (stmt, STMT_NECESSARY))
207 return;
208
209 if (dump_file && (dump_flags & TDF_DETAILS))
210 {
211 fprintf (dump_file, "Marking useful stmt: ");
212 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
213 fprintf (dump_file, "\n");
214 }
215
216 gimple_set_plf (stmt, STMT_NECESSARY, true);
217 if (add_to_worklist)
218 VEC_safe_push (gimple, heap, worklist, stmt);
219 if (bb_contains_live_stmts && !is_gimple_debug (stmt))
220 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
221 }
222
223
224 /* Mark the statement defining operand OP as necessary. */
225
226 static inline void
227 mark_operand_necessary (tree op)
228 {
229 gimple stmt;
230 int ver;
231
232 gcc_assert (op);
233
234 ver = SSA_NAME_VERSION (op);
235 if (TEST_BIT (processed, ver))
236 {
237 stmt = SSA_NAME_DEF_STMT (op);
238 gcc_assert (gimple_nop_p (stmt)
239 || gimple_plf (stmt, STMT_NECESSARY));
240 return;
241 }
242 SET_BIT (processed, ver);
243
244 stmt = SSA_NAME_DEF_STMT (op);
245 gcc_assert (stmt);
246
247 if (gimple_plf (stmt, STMT_NECESSARY) || gimple_nop_p (stmt))
248 return;
249
250 if (dump_file && (dump_flags & TDF_DETAILS))
251 {
252 fprintf (dump_file, "marking necessary through ");
253 print_generic_expr (dump_file, op, 0);
254 fprintf (dump_file, " stmt ");
255 print_gimple_stmt (dump_file, stmt, 0, 0);
256 }
257
258 gimple_set_plf (stmt, STMT_NECESSARY, true);
259 if (bb_contains_live_stmts)
260 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
261 VEC_safe_push (gimple, heap, worklist, stmt);
262 }
263
264
265 /* Mark STMT as necessary if it obviously is. Add it to the worklist if
266 it can make other statements necessary.
267
268 If AGGRESSIVE is false, control statements are conservatively marked as
269 necessary. */
270
271 static void
272 mark_stmt_if_obviously_necessary (gimple stmt, bool aggressive)
273 {
274 tree lhs = NULL_TREE;
275
276 /* With non-call exceptions, we have to assume that all statements could
277 throw. If a statement may throw, it is inherently necessary. */
278 if (cfun->can_throw_non_call_exceptions && stmt_could_throw_p (stmt))
279 {
280 mark_stmt_necessary (stmt, true);
281 return;
282 }
283
284 /* Statements that are implicitly live. Most function calls, asm
285 and return statements are required. Labels and GIMPLE_BIND nodes
286 are kept because they are control flow, and we have no way of
287 knowing whether they can be removed. DCE can eliminate all the
288 other statements in a block, and CFG can then remove the block
289 and labels. */
290 switch (gimple_code (stmt))
291 {
292 case GIMPLE_PREDICT:
293 case GIMPLE_LABEL:
294 mark_stmt_necessary (stmt, false);
295 return;
296
297 case GIMPLE_ASM:
298 case GIMPLE_RESX:
299 case GIMPLE_RETURN:
300 mark_stmt_necessary (stmt, true);
301 return;
302
303 case GIMPLE_CALL:
304 /* Most, but not all function calls are required. Function calls that
305 produce no result and have no side effects (i.e. const pure
306 functions) are unnecessary. */
307 if (gimple_has_side_effects (stmt))
308 {
309 mark_stmt_necessary (stmt, true);
310 return;
311 }
312 if (!gimple_call_lhs (stmt))
313 return;
314 lhs = gimple_call_lhs (stmt);
315 /* Fall through */
316
317 case GIMPLE_ASSIGN:
318 if (!lhs)
319 lhs = gimple_assign_lhs (stmt);
320 break;
321
322 case GIMPLE_DEBUG:
323 /* Debug temps without a value are not useful. ??? If we could
324 easily locate the debug temp bind stmt for a use thereof,
325 would could refrain from marking all debug temps here, and
326 mark them only if they're used. */
327 if (gimple_debug_bind_has_value_p (stmt)
328 || TREE_CODE (gimple_debug_bind_get_var (stmt)) != DEBUG_EXPR_DECL)
329 mark_stmt_necessary (stmt, false);
330 return;
331
332 case GIMPLE_GOTO:
333 gcc_assert (!simple_goto_p (stmt));
334 mark_stmt_necessary (stmt, true);
335 return;
336
337 case GIMPLE_COND:
338 gcc_assert (EDGE_COUNT (gimple_bb (stmt)->succs) == 2);
339 /* Fall through. */
340
341 case GIMPLE_SWITCH:
342 if (! aggressive)
343 mark_stmt_necessary (stmt, true);
344 break;
345
346 default:
347 break;
348 }
349
350 /* If the statement has volatile operands, it needs to be preserved.
351 Same for statements that can alter control flow in unpredictable
352 ways. */
353 if (gimple_has_volatile_ops (stmt) || is_ctrl_altering_stmt (stmt))
354 {
355 mark_stmt_necessary (stmt, true);
356 return;
357 }
358
359 if (is_hidden_global_store (stmt))
360 {
361 mark_stmt_necessary (stmt, true);
362 return;
363 }
364
365 return;
366 }
367
368
369 /* Mark the last statement of BB as necessary. */
370
371 static void
372 mark_last_stmt_necessary (basic_block bb)
373 {
374 gimple stmt = last_stmt (bb);
375
376 SET_BIT (last_stmt_necessary, bb->index);
377 SET_BIT (bb_contains_live_stmts, bb->index);
378
379 /* We actually mark the statement only if it is a control statement. */
380 if (stmt && is_ctrl_stmt (stmt))
381 mark_stmt_necessary (stmt, true);
382 }
383
384
385 /* Mark control dependent edges of BB as necessary. We have to do this only
386 once for each basic block so we set the appropriate bit after we're done.
387
388 When IGNORE_SELF is true, ignore BB in the list of control dependences. */
389
390 static void
391 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el,
392 bool ignore_self)
393 {
394 bitmap_iterator bi;
395 unsigned edge_number;
396 bool skipped = false;
397
398 gcc_assert (bb != EXIT_BLOCK_PTR);
399
400 if (bb == ENTRY_BLOCK_PTR)
401 return;
402
403 EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
404 {
405 basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
406
407 if (ignore_self && cd_bb == bb)
408 {
409 skipped = true;
410 continue;
411 }
412
413 if (!TEST_BIT (last_stmt_necessary, cd_bb->index))
414 mark_last_stmt_necessary (cd_bb);
415 }
416
417 if (!skipped)
418 SET_BIT (visited_control_parents, bb->index);
419 }
420
421
422 /* Find obviously necessary statements. These are things like most function
423 calls, and stores to file level variables.
424
425 If EL is NULL, control statements are conservatively marked as
426 necessary. Otherwise it contains the list of edges used by control
427 dependence analysis. */
428
429 static void
430 find_obviously_necessary_stmts (struct edge_list *el)
431 {
432 basic_block bb;
433 gimple_stmt_iterator gsi;
434 edge e;
435 gimple phi, stmt;
436
437 FOR_EACH_BB (bb)
438 {
439 /* PHI nodes are never inherently necessary. */
440 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
441 {
442 phi = gsi_stmt (gsi);
443 gimple_set_plf (phi, STMT_NECESSARY, false);
444 }
445
446 /* Check all statements in the block. */
447 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
448 {
449 stmt = gsi_stmt (gsi);
450 gimple_set_plf (stmt, STMT_NECESSARY, false);
451 mark_stmt_if_obviously_necessary (stmt, el != NULL);
452 }
453 }
454
455 /* Pure and const functions are finite and thus have no infinite loops in
456 them. */
457 if ((TREE_READONLY (current_function_decl)
458 || DECL_PURE_P (current_function_decl))
459 && !DECL_LOOPING_CONST_OR_PURE_P (current_function_decl))
460 return;
461
462 /* Prevent the empty possibly infinite loops from being removed. */
463 if (el)
464 {
465 loop_iterator li;
466 struct loop *loop;
467 scev_initialize ();
468 if (mark_irreducible_loops ())
469 FOR_EACH_BB (bb)
470 {
471 edge_iterator ei;
472 FOR_EACH_EDGE (e, ei, bb->succs)
473 if ((e->flags & EDGE_DFS_BACK)
474 && (e->flags & EDGE_IRREDUCIBLE_LOOP))
475 {
476 if (dump_file)
477 fprintf (dump_file, "Marking back edge of irreducible loop %i->%i\n",
478 e->src->index, e->dest->index);
479 mark_control_dependent_edges_necessary (e->dest, el, false);
480 }
481 }
482
483 FOR_EACH_LOOP (li, loop, 0)
484 if (!finite_loop_p (loop))
485 {
486 if (dump_file)
487 fprintf (dump_file, "can not prove finiteness of loop %i\n", loop->num);
488 mark_control_dependent_edges_necessary (loop->latch, el, false);
489 }
490 scev_finalize ();
491 }
492 }
493
494
495 /* Return true if REF is based on an aliased base, otherwise false. */
496
497 static bool
498 ref_may_be_aliased (tree ref)
499 {
500 while (handled_component_p (ref))
501 ref = TREE_OPERAND (ref, 0);
502 return !(DECL_P (ref)
503 && !may_be_aliased (ref));
504 }
505
506 static bitmap visited = NULL;
507 static unsigned int longest_chain = 0;
508 static unsigned int total_chain = 0;
509 static unsigned int nr_walks = 0;
510 static bool chain_ovfl = false;
511
512 /* Worker for the walker that marks reaching definitions of REF,
513 which is based on a non-aliased decl, necessary. It returns
514 true whenever the defining statement of the current VDEF is
515 a kill for REF, as no dominating may-defs are necessary for REF
516 anymore. DATA points to the basic-block that contains the
517 stmt that refers to REF. */
518
519 static bool
520 mark_aliased_reaching_defs_necessary_1 (ao_ref *ref, tree vdef, void *data)
521 {
522 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
523
524 /* All stmts we visit are necessary. */
525 mark_operand_necessary (vdef);
526
527 /* If the stmt lhs kills ref, then we can stop walking. */
528 if (gimple_has_lhs (def_stmt)
529 && TREE_CODE (gimple_get_lhs (def_stmt)) != SSA_NAME)
530 {
531 tree base, lhs = gimple_get_lhs (def_stmt);
532 HOST_WIDE_INT size, offset, max_size;
533 ao_ref_base (ref);
534 base = get_ref_base_and_extent (lhs, &offset, &size, &max_size);
535 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
536 so base == refd->base does not always hold. */
537 if (base == ref->base)
538 {
539 /* For a must-alias check we need to be able to constrain
540 the accesses properly. */
541 if (size != -1 && size == max_size
542 && ref->max_size != -1)
543 {
544 if (offset <= ref->offset
545 && offset + size >= ref->offset + ref->max_size)
546 return true;
547 }
548 /* Or they need to be exactly the same. */
549 else if (ref->ref
550 /* Make sure there is no induction variable involved
551 in the references (gcc.c-torture/execute/pr42142.c).
552 The simplest way is to check if the kill dominates
553 the use. */
554 && dominated_by_p (CDI_DOMINATORS, (basic_block) data,
555 gimple_bb (def_stmt))
556 && operand_equal_p (ref->ref, lhs, 0))
557 return true;
558 }
559 }
560
561 /* Otherwise keep walking. */
562 return false;
563 }
564
565 static void
566 mark_aliased_reaching_defs_necessary (gimple stmt, tree ref)
567 {
568 unsigned int chain;
569 ao_ref refd;
570 gcc_assert (!chain_ovfl);
571 ao_ref_init (&refd, ref);
572 chain = walk_aliased_vdefs (&refd, gimple_vuse (stmt),
573 mark_aliased_reaching_defs_necessary_1,
574 gimple_bb (stmt), NULL);
575 if (chain > longest_chain)
576 longest_chain = chain;
577 total_chain += chain;
578 nr_walks++;
579 }
580
581 /* Worker for the walker that marks reaching definitions of REF, which
582 is not based on a non-aliased decl. For simplicity we need to end
583 up marking all may-defs necessary that are not based on a non-aliased
584 decl. The only job of this walker is to skip may-defs based on
585 a non-aliased decl. */
586
587 static bool
588 mark_all_reaching_defs_necessary_1 (ao_ref *ref ATTRIBUTE_UNUSED,
589 tree vdef, void *data ATTRIBUTE_UNUSED)
590 {
591 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
592
593 /* We have to skip already visited (and thus necessary) statements
594 to make the chaining work after we dropped back to simple mode. */
595 if (chain_ovfl
596 && TEST_BIT (processed, SSA_NAME_VERSION (vdef)))
597 {
598 gcc_assert (gimple_nop_p (def_stmt)
599 || gimple_plf (def_stmt, STMT_NECESSARY));
600 return false;
601 }
602
603 /* We want to skip stores to non-aliased variables. */
604 if (!chain_ovfl
605 && gimple_assign_single_p (def_stmt))
606 {
607 tree lhs = gimple_assign_lhs (def_stmt);
608 if (!ref_may_be_aliased (lhs))
609 return false;
610 }
611
612 mark_operand_necessary (vdef);
613
614 return false;
615 }
616
617 static void
618 mark_all_reaching_defs_necessary (gimple stmt)
619 {
620 walk_aliased_vdefs (NULL, gimple_vuse (stmt),
621 mark_all_reaching_defs_necessary_1, NULL, &visited);
622 }
623
624 /* Return true for PHI nodes with one or identical arguments
625 can be removed. */
626 static bool
627 degenerate_phi_p (gimple phi)
628 {
629 unsigned int i;
630 tree op = gimple_phi_arg_def (phi, 0);
631 for (i = 1; i < gimple_phi_num_args (phi); i++)
632 if (gimple_phi_arg_def (phi, i) != op)
633 return false;
634 return true;
635 }
636
637 /* Propagate necessity using the operands of necessary statements.
638 Process the uses on each statement in the worklist, and add all
639 feeding statements which contribute to the calculation of this
640 value to the worklist.
641
642 In conservative mode, EL is NULL. */
643
644 static void
645 propagate_necessity (struct edge_list *el)
646 {
647 gimple stmt;
648 bool aggressive = (el ? true : false);
649
650 if (dump_file && (dump_flags & TDF_DETAILS))
651 fprintf (dump_file, "\nProcessing worklist:\n");
652
653 while (VEC_length (gimple, worklist) > 0)
654 {
655 /* Take STMT from worklist. */
656 stmt = VEC_pop (gimple, worklist);
657
658 if (dump_file && (dump_flags & TDF_DETAILS))
659 {
660 fprintf (dump_file, "processing: ");
661 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
662 fprintf (dump_file, "\n");
663 }
664
665 if (aggressive)
666 {
667 /* Mark the last statement of the basic blocks on which the block
668 containing STMT is control dependent, but only if we haven't
669 already done so. */
670 basic_block bb = gimple_bb (stmt);
671 if (bb != ENTRY_BLOCK_PTR
672 && !TEST_BIT (visited_control_parents, bb->index))
673 mark_control_dependent_edges_necessary (bb, el, false);
674 }
675
676 if (gimple_code (stmt) == GIMPLE_PHI
677 /* We do not process virtual PHI nodes nor do we track their
678 necessity. */
679 && is_gimple_reg (gimple_phi_result (stmt)))
680 {
681 /* PHI nodes are somewhat special in that each PHI alternative has
682 data and control dependencies. All the statements feeding the
683 PHI node's arguments are always necessary. In aggressive mode,
684 we also consider the control dependent edges leading to the
685 predecessor block associated with each PHI alternative as
686 necessary. */
687 size_t k;
688
689 for (k = 0; k < gimple_phi_num_args (stmt); k++)
690 {
691 tree arg = PHI_ARG_DEF (stmt, k);
692 if (TREE_CODE (arg) == SSA_NAME)
693 mark_operand_necessary (arg);
694 }
695
696 /* For PHI operands it matters from where the control flow arrives
697 to the BB. Consider the following example:
698
699 a=exp1;
700 b=exp2;
701 if (test)
702 ;
703 else
704 ;
705 c=PHI(a,b)
706
707 We need to mark control dependence of the empty basic blocks, since they
708 contains computation of PHI operands.
709
710 Doing so is too restrictive in the case the predecestor block is in
711 the loop. Consider:
712
713 if (b)
714 {
715 int i;
716 for (i = 0; i<1000; ++i)
717 ;
718 j = 0;
719 }
720 return j;
721
722 There is PHI for J in the BB containing return statement.
723 In this case the control dependence of predecestor block (that is
724 within the empty loop) also contains the block determining number
725 of iterations of the block that would prevent removing of empty
726 loop in this case.
727
728 This scenario can be avoided by splitting critical edges.
729 To save the critical edge splitting pass we identify how the control
730 dependence would look like if the edge was split.
731
732 Consider the modified CFG created from current CFG by splitting
733 edge B->C. In the postdominance tree of modified CFG, C' is
734 always child of C. There are two cases how chlids of C' can look
735 like:
736
737 1) C' is leaf
738
739 In this case the only basic block C' is control dependent on is B.
740
741 2) C' has single child that is B
742
743 In this case control dependence of C' is same as control
744 dependence of B in original CFG except for block B itself.
745 (since C' postdominate B in modified CFG)
746
747 Now how to decide what case happens? There are two basic options:
748
749 a) C postdominate B. Then C immediately postdominate B and
750 case 2 happens iff there is no other way from B to C except
751 the edge B->C.
752
753 There is other way from B to C iff there is succesor of B that
754 is not postdominated by B. Testing this condition is somewhat
755 expensive, because we need to iterate all succesors of B.
756 We are safe to assume that this does not happen: we will mark B
757 as needed when processing the other path from B to C that is
758 conrol dependent on B and marking control dependencies of B
759 itself is harmless because they will be processed anyway after
760 processing control statement in B.
761
762 b) C does not postdominate B. Always case 1 happens since there is
763 path from C to exit that does not go through B and thus also C'. */
764
765 if (aggressive && !degenerate_phi_p (stmt))
766 {
767 for (k = 0; k < gimple_phi_num_args (stmt); k++)
768 {
769 basic_block arg_bb = gimple_phi_arg_edge (stmt, k)->src;
770
771 if (gimple_bb (stmt)
772 != get_immediate_dominator (CDI_POST_DOMINATORS, arg_bb))
773 {
774 if (!TEST_BIT (last_stmt_necessary, arg_bb->index))
775 mark_last_stmt_necessary (arg_bb);
776 }
777 else if (arg_bb != ENTRY_BLOCK_PTR
778 && !TEST_BIT (visited_control_parents,
779 arg_bb->index))
780 mark_control_dependent_edges_necessary (arg_bb, el, true);
781 }
782 }
783 }
784 else
785 {
786 /* Propagate through the operands. Examine all the USE, VUSE and
787 VDEF operands in this statement. Mark all the statements
788 which feed this statement's uses as necessary. */
789 ssa_op_iter iter;
790 tree use;
791
792 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
793 mark_operand_necessary (use);
794
795 use = gimple_vuse (stmt);
796 if (!use)
797 continue;
798
799 /* If we dropped to simple mode make all immediately
800 reachable definitions necessary. */
801 if (chain_ovfl)
802 {
803 mark_all_reaching_defs_necessary (stmt);
804 continue;
805 }
806
807 /* For statements that may load from memory (have a VUSE) we
808 have to mark all reaching (may-)definitions as necessary.
809 We partition this task into two cases:
810 1) explicit loads based on decls that are not aliased
811 2) implicit loads (like calls) and explicit loads not
812 based on decls that are not aliased (like indirect
813 references or loads from globals)
814 For 1) we mark all reaching may-defs as necessary, stopping
815 at dominating kills. For 2) we want to mark all dominating
816 references necessary, but non-aliased ones which we handle
817 in 1). By keeping a global visited bitmap for references
818 we walk for 2) we avoid quadratic behavior for those. */
819
820 if (is_gimple_call (stmt))
821 {
822 tree callee = gimple_call_fndecl (stmt);
823 unsigned i;
824
825 /* Calls to functions that are merely acting as barriers
826 or that only store to memory do not make any previous
827 stores necessary. */
828 if (callee != NULL_TREE
829 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
830 && (DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET
831 || DECL_FUNCTION_CODE (callee) == BUILT_IN_MALLOC
832 || DECL_FUNCTION_CODE (callee) == BUILT_IN_FREE))
833 continue;
834
835 /* Calls implicitly load from memory, their arguments
836 in addition may explicitly perform memory loads. */
837 mark_all_reaching_defs_necessary (stmt);
838 for (i = 0; i < gimple_call_num_args (stmt); ++i)
839 {
840 tree arg = gimple_call_arg (stmt, i);
841 if (TREE_CODE (arg) == SSA_NAME
842 || is_gimple_min_invariant (arg))
843 continue;
844 if (!ref_may_be_aliased (arg))
845 mark_aliased_reaching_defs_necessary (stmt, arg);
846 }
847 }
848 else if (gimple_assign_single_p (stmt))
849 {
850 tree rhs;
851 bool rhs_aliased = false;
852 /* If this is a load mark things necessary. */
853 rhs = gimple_assign_rhs1 (stmt);
854 if (TREE_CODE (rhs) != SSA_NAME
855 && !is_gimple_min_invariant (rhs))
856 {
857 if (!ref_may_be_aliased (rhs))
858 mark_aliased_reaching_defs_necessary (stmt, rhs);
859 else
860 rhs_aliased = true;
861 }
862 if (rhs_aliased)
863 mark_all_reaching_defs_necessary (stmt);
864 }
865 else if (gimple_code (stmt) == GIMPLE_RETURN)
866 {
867 tree rhs = gimple_return_retval (stmt);
868 /* A return statement may perform a load. */
869 if (TREE_CODE (rhs) != SSA_NAME
870 && !is_gimple_min_invariant (rhs))
871 {
872 if (!ref_may_be_aliased (rhs))
873 mark_aliased_reaching_defs_necessary (stmt, rhs);
874 else
875 mark_all_reaching_defs_necessary (stmt);
876 }
877 }
878 else if (gimple_code (stmt) == GIMPLE_ASM)
879 {
880 unsigned i;
881 mark_all_reaching_defs_necessary (stmt);
882 /* Inputs may perform loads. */
883 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
884 {
885 tree op = TREE_VALUE (gimple_asm_input_op (stmt, i));
886 if (TREE_CODE (op) != SSA_NAME
887 && !is_gimple_min_invariant (op)
888 && !ref_may_be_aliased (op))
889 mark_aliased_reaching_defs_necessary (stmt, op);
890 }
891 }
892 else
893 gcc_unreachable ();
894
895 /* If we over-used our alias oracle budget drop to simple
896 mode. The cost metric allows quadratic behavior
897 (number of uses times number of may-defs queries) up to
898 a constant maximal number of queries and after that falls back to
899 super-linear complexity. */
900 if (/* Constant but quadratic for small functions. */
901 total_chain > 128 * 128
902 /* Linear in the number of may-defs. */
903 && total_chain > 32 * longest_chain
904 /* Linear in the number of uses. */
905 && total_chain > nr_walks * 32)
906 {
907 chain_ovfl = true;
908 if (visited)
909 bitmap_clear (visited);
910 }
911 }
912 }
913 }
914
915 /* Replace all uses of result of PHI by underlying variable and mark it
916 for renaming. */
917
918 void
919 mark_virtual_phi_result_for_renaming (gimple phi)
920 {
921 bool used = false;
922 imm_use_iterator iter;
923 use_operand_p use_p;
924 gimple stmt;
925 tree result_ssa, result_var;
926
927 if (dump_file && (dump_flags & TDF_DETAILS))
928 {
929 fprintf (dump_file, "Marking result for renaming : ");
930 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
931 fprintf (dump_file, "\n");
932 }
933
934 result_ssa = gimple_phi_result (phi);
935 result_var = SSA_NAME_VAR (result_ssa);
936 FOR_EACH_IMM_USE_STMT (stmt, iter, result_ssa)
937 {
938 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
939 SET_USE (use_p, result_var);
940 update_stmt (stmt);
941 used = true;
942 }
943 if (used)
944 mark_sym_for_renaming (result_var);
945 }
946
947 /* Remove dead PHI nodes from block BB. */
948
949 static bool
950 remove_dead_phis (basic_block bb)
951 {
952 bool something_changed = false;
953 gimple_seq phis;
954 gimple phi;
955 gimple_stmt_iterator gsi;
956 phis = phi_nodes (bb);
957
958 for (gsi = gsi_start (phis); !gsi_end_p (gsi);)
959 {
960 stats.total_phis++;
961 phi = gsi_stmt (gsi);
962
963 /* We do not track necessity of virtual PHI nodes. Instead do
964 very simple dead PHI removal here. */
965 if (!is_gimple_reg (gimple_phi_result (phi)))
966 {
967 /* Virtual PHI nodes with one or identical arguments
968 can be removed. */
969 if (degenerate_phi_p (phi))
970 {
971 tree vdef = gimple_phi_result (phi);
972 tree vuse = gimple_phi_arg_def (phi, 0);
973
974 use_operand_p use_p;
975 imm_use_iterator iter;
976 gimple use_stmt;
977 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vdef)
978 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
979 SET_USE (use_p, vuse);
980 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vdef)
981 && TREE_CODE (vuse) == SSA_NAME)
982 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 1;
983 }
984 else
985 gimple_set_plf (phi, STMT_NECESSARY, true);
986 }
987
988 if (!gimple_plf (phi, STMT_NECESSARY))
989 {
990 something_changed = true;
991 if (dump_file && (dump_flags & TDF_DETAILS))
992 {
993 fprintf (dump_file, "Deleting : ");
994 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
995 fprintf (dump_file, "\n");
996 }
997
998 remove_phi_node (&gsi, true);
999 stats.removed_phis++;
1000 continue;
1001 }
1002
1003 gsi_next (&gsi);
1004 }
1005 return something_changed;
1006 }
1007
1008 /* Forward edge E to respective POST_DOM_BB and update PHIs. */
1009
1010 static edge
1011 forward_edge_to_pdom (edge e, basic_block post_dom_bb)
1012 {
1013 gimple_stmt_iterator gsi;
1014 edge e2 = NULL;
1015 edge_iterator ei;
1016
1017 if (dump_file && (dump_flags & TDF_DETAILS))
1018 fprintf (dump_file, "Redirecting edge %i->%i to %i\n", e->src->index,
1019 e->dest->index, post_dom_bb->index);
1020
1021 e2 = redirect_edge_and_branch (e, post_dom_bb);
1022 cfg_altered = true;
1023
1024 /* If edge was already around, no updating is neccesary. */
1025 if (e2 != e)
1026 return e2;
1027
1028 if (!gimple_seq_empty_p (phi_nodes (post_dom_bb)))
1029 {
1030 /* We are sure that for every live PHI we are seeing control dependent BB.
1031 This means that we can pick any edge to duplicate PHI args from. */
1032 FOR_EACH_EDGE (e2, ei, post_dom_bb->preds)
1033 if (e2 != e)
1034 break;
1035 for (gsi = gsi_start_phis (post_dom_bb); !gsi_end_p (gsi);)
1036 {
1037 gimple phi = gsi_stmt (gsi);
1038 tree op;
1039 source_location locus;
1040
1041 /* PHIs for virtuals have no control dependency relation on them.
1042 We are lost here and must force renaming of the symbol. */
1043 if (!is_gimple_reg (gimple_phi_result (phi)))
1044 {
1045 mark_virtual_phi_result_for_renaming (phi);
1046 remove_phi_node (&gsi, true);
1047 continue;
1048 }
1049
1050 /* Dead PHI do not imply control dependency. */
1051 if (!gimple_plf (phi, STMT_NECESSARY))
1052 {
1053 gsi_next (&gsi);
1054 continue;
1055 }
1056
1057 op = gimple_phi_arg_def (phi, e2->dest_idx);
1058 locus = gimple_phi_arg_location (phi, e2->dest_idx);
1059 add_phi_arg (phi, op, e, locus);
1060 /* The resulting PHI if not dead can only be degenerate. */
1061 gcc_assert (degenerate_phi_p (phi));
1062 gsi_next (&gsi);
1063 }
1064 }
1065 return e;
1066 }
1067
1068 /* Remove dead statement pointed to by iterator I. Receives the basic block BB
1069 containing I so that we don't have to look it up. */
1070
1071 static void
1072 remove_dead_stmt (gimple_stmt_iterator *i, basic_block bb)
1073 {
1074 gimple stmt = gsi_stmt (*i);
1075
1076 if (dump_file && (dump_flags & TDF_DETAILS))
1077 {
1078 fprintf (dump_file, "Deleting : ");
1079 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1080 fprintf (dump_file, "\n");
1081 }
1082
1083 stats.removed++;
1084
1085 /* If we have determined that a conditional branch statement contributes
1086 nothing to the program, then we not only remove it, but we also change
1087 the flow graph so that the current block will simply fall-thru to its
1088 immediate post-dominator. The blocks we are circumventing will be
1089 removed by cleanup_tree_cfg if this change in the flow graph makes them
1090 unreachable. */
1091 if (is_ctrl_stmt (stmt))
1092 {
1093 basic_block post_dom_bb;
1094 edge e, e2;
1095 edge_iterator ei;
1096
1097 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
1098
1099 e = find_edge (bb, post_dom_bb);
1100
1101 /* If edge is already there, try to use it. This avoids need to update
1102 PHI nodes. Also watch for cases where post dominator does not exists
1103 or is exit block. These can happen for infinite loops as we create
1104 fake edges in the dominator tree. */
1105 if (e)
1106 ;
1107 else if (! post_dom_bb || post_dom_bb == EXIT_BLOCK_PTR)
1108 e = EDGE_SUCC (bb, 0);
1109 else
1110 e = forward_edge_to_pdom (EDGE_SUCC (bb, 0), post_dom_bb);
1111 gcc_assert (e);
1112 e->probability = REG_BR_PROB_BASE;
1113 e->count = bb->count;
1114
1115 /* The edge is no longer associated with a conditional, so it does
1116 not have TRUE/FALSE flags. */
1117 e->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
1118
1119 /* The lone outgoing edge from BB will be a fallthru edge. */
1120 e->flags |= EDGE_FALLTHRU;
1121
1122 /* Remove the remaining outgoing edges. */
1123 for (ei = ei_start (bb->succs); (e2 = ei_safe_edge (ei)); )
1124 if (e != e2)
1125 {
1126 cfg_altered = true;
1127 remove_edge (e2);
1128 }
1129 else
1130 ei_next (&ei);
1131 }
1132
1133 unlink_stmt_vdef (stmt);
1134 gsi_remove (i, true);
1135 release_defs (stmt);
1136 }
1137
1138 /* Eliminate unnecessary statements. Any instruction not marked as necessary
1139 contributes nothing to the program, and can be deleted. */
1140
1141 static bool
1142 eliminate_unnecessary_stmts (void)
1143 {
1144 bool something_changed = false;
1145 basic_block bb;
1146 gimple_stmt_iterator gsi, psi;
1147 gimple stmt;
1148 tree call;
1149 VEC (basic_block, heap) *h;
1150
1151 if (dump_file && (dump_flags & TDF_DETAILS))
1152 fprintf (dump_file, "\nEliminating unnecessary statements:\n");
1153
1154 clear_special_calls ();
1155
1156 /* Walking basic blocks and statements in reverse order avoids
1157 releasing SSA names before any other DEFs that refer to them are
1158 released. This helps avoid loss of debug information, as we get
1159 a chance to propagate all RHSs of removed SSAs into debug uses,
1160 rather than only the latest ones. E.g., consider:
1161
1162 x_3 = y_1 + z_2;
1163 a_5 = x_3 - b_4;
1164 # DEBUG a => a_5
1165
1166 If we were to release x_3 before a_5, when we reached a_5 and
1167 tried to substitute it into the debug stmt, we'd see x_3 there,
1168 but x_3's DEF, type, etc would have already been disconnected.
1169 By going backwards, the debug stmt first changes to:
1170
1171 # DEBUG a => x_3 - b_4
1172
1173 and then to:
1174
1175 # DEBUG a => y_1 + z_2 - b_4
1176
1177 as desired. */
1178 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
1179 h = get_all_dominated_blocks (CDI_DOMINATORS, single_succ (ENTRY_BLOCK_PTR));
1180
1181 while (VEC_length (basic_block, h))
1182 {
1183 bb = VEC_pop (basic_block, h);
1184
1185 /* Remove dead statements. */
1186 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi = psi)
1187 {
1188 stmt = gsi_stmt (gsi);
1189
1190 psi = gsi;
1191 gsi_prev (&psi);
1192
1193 stats.total++;
1194
1195 /* If GSI is not necessary then remove it. */
1196 if (!gimple_plf (stmt, STMT_NECESSARY))
1197 {
1198 if (!is_gimple_debug (stmt))
1199 something_changed = true;
1200 remove_dead_stmt (&gsi, bb);
1201 }
1202 else if (is_gimple_call (stmt))
1203 {
1204 call = gimple_call_fndecl (stmt);
1205 if (call)
1206 {
1207 tree name;
1208
1209 /* When LHS of var = call (); is dead, simplify it into
1210 call (); saving one operand. */
1211 name = gimple_call_lhs (stmt);
1212 if (name && TREE_CODE (name) == SSA_NAME
1213 && !TEST_BIT (processed, SSA_NAME_VERSION (name)))
1214 {
1215 something_changed = true;
1216 if (dump_file && (dump_flags & TDF_DETAILS))
1217 {
1218 fprintf (dump_file, "Deleting LHS of call: ");
1219 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1220 fprintf (dump_file, "\n");
1221 }
1222
1223 gimple_call_set_lhs (stmt, NULL_TREE);
1224 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1225 update_stmt (stmt);
1226 release_ssa_name (name);
1227 }
1228 notice_special_calls (stmt);
1229 }
1230 }
1231 }
1232 }
1233
1234 VEC_free (basic_block, heap, h);
1235
1236 /* Since we don't track liveness of virtual PHI nodes, it is possible that we
1237 rendered some PHI nodes unreachable while they are still in use.
1238 Mark them for renaming. */
1239 if (cfg_altered)
1240 {
1241 basic_block prev_bb;
1242
1243 find_unreachable_blocks ();
1244
1245 /* Delete all unreachable basic blocks in reverse dominator order. */
1246 for (bb = EXIT_BLOCK_PTR->prev_bb; bb != ENTRY_BLOCK_PTR; bb = prev_bb)
1247 {
1248 prev_bb = bb->prev_bb;
1249
1250 if (!TEST_BIT (bb_contains_live_stmts, bb->index)
1251 || !(bb->flags & BB_REACHABLE))
1252 {
1253 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1254 if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
1255 {
1256 bool found = false;
1257 imm_use_iterator iter;
1258
1259 FOR_EACH_IMM_USE_STMT (stmt, iter, gimple_phi_result (gsi_stmt (gsi)))
1260 {
1261 if (!(gimple_bb (stmt)->flags & BB_REACHABLE))
1262 continue;
1263 if (gimple_code (stmt) == GIMPLE_PHI
1264 || gimple_plf (stmt, STMT_NECESSARY))
1265 {
1266 found = true;
1267 BREAK_FROM_IMM_USE_STMT (iter);
1268 }
1269 }
1270 if (found)
1271 mark_virtual_phi_result_for_renaming (gsi_stmt (gsi));
1272 }
1273
1274 if (!(bb->flags & BB_REACHABLE))
1275 {
1276 /* Speed up the removal of blocks that don't
1277 dominate others. Walking backwards, this should
1278 be the common case. ??? Do we need to recompute
1279 dominators because of cfg_altered? */
1280 if (!MAY_HAVE_DEBUG_STMTS
1281 || !first_dom_son (CDI_DOMINATORS, bb))
1282 delete_basic_block (bb);
1283 else
1284 {
1285 h = get_all_dominated_blocks (CDI_DOMINATORS, bb);
1286
1287 while (VEC_length (basic_block, h))
1288 {
1289 bb = VEC_pop (basic_block, h);
1290 prev_bb = bb->prev_bb;
1291 /* Rearrangements to the CFG may have failed
1292 to update the dominators tree, so that
1293 formerly-dominated blocks are now
1294 otherwise reachable. */
1295 if (!!(bb->flags & BB_REACHABLE))
1296 continue;
1297 delete_basic_block (bb);
1298 }
1299
1300 VEC_free (basic_block, heap, h);
1301 }
1302 }
1303 }
1304 }
1305 }
1306 FOR_EACH_BB (bb)
1307 {
1308 /* Remove dead PHI nodes. */
1309 something_changed |= remove_dead_phis (bb);
1310 }
1311
1312 return something_changed;
1313 }
1314
1315
1316 /* Print out removed statement statistics. */
1317
1318 static void
1319 print_stats (void)
1320 {
1321 float percg;
1322
1323 percg = ((float) stats.removed / (float) stats.total) * 100;
1324 fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
1325 stats.removed, stats.total, (int) percg);
1326
1327 if (stats.total_phis == 0)
1328 percg = 0;
1329 else
1330 percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
1331
1332 fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
1333 stats.removed_phis, stats.total_phis, (int) percg);
1334 }
1335
1336 /* Initialization for this pass. Set up the used data structures. */
1337
1338 static void
1339 tree_dce_init (bool aggressive)
1340 {
1341 memset ((void *) &stats, 0, sizeof (stats));
1342
1343 if (aggressive)
1344 {
1345 int i;
1346
1347 control_dependence_map = XNEWVEC (bitmap, last_basic_block);
1348 for (i = 0; i < last_basic_block; ++i)
1349 control_dependence_map[i] = BITMAP_ALLOC (NULL);
1350
1351 last_stmt_necessary = sbitmap_alloc (last_basic_block);
1352 sbitmap_zero (last_stmt_necessary);
1353 bb_contains_live_stmts = sbitmap_alloc (last_basic_block);
1354 sbitmap_zero (bb_contains_live_stmts);
1355 }
1356
1357 processed = sbitmap_alloc (num_ssa_names + 1);
1358 sbitmap_zero (processed);
1359
1360 worklist = VEC_alloc (gimple, heap, 64);
1361 cfg_altered = false;
1362 }
1363
1364 /* Cleanup after this pass. */
1365
1366 static void
1367 tree_dce_done (bool aggressive)
1368 {
1369 if (aggressive)
1370 {
1371 int i;
1372
1373 for (i = 0; i < last_basic_block; ++i)
1374 BITMAP_FREE (control_dependence_map[i]);
1375 free (control_dependence_map);
1376
1377 sbitmap_free (visited_control_parents);
1378 sbitmap_free (last_stmt_necessary);
1379 sbitmap_free (bb_contains_live_stmts);
1380 bb_contains_live_stmts = NULL;
1381 }
1382
1383 sbitmap_free (processed);
1384
1385 VEC_free (gimple, heap, worklist);
1386 }
1387
1388 /* Main routine to eliminate dead code.
1389
1390 AGGRESSIVE controls the aggressiveness of the algorithm.
1391 In conservative mode, we ignore control dependence and simply declare
1392 all but the most trivially dead branches necessary. This mode is fast.
1393 In aggressive mode, control dependences are taken into account, which
1394 results in more dead code elimination, but at the cost of some time.
1395
1396 FIXME: Aggressive mode before PRE doesn't work currently because
1397 the dominance info is not invalidated after DCE1. This is
1398 not an issue right now because we only run aggressive DCE
1399 as the last tree SSA pass, but keep this in mind when you
1400 start experimenting with pass ordering. */
1401
1402 static unsigned int
1403 perform_tree_ssa_dce (bool aggressive)
1404 {
1405 struct edge_list *el = NULL;
1406 bool something_changed = 0;
1407
1408 /* Preheaders are needed for SCEV to work.
1409 Simple lateches and recorded exits improve chances that loop will
1410 proved to be finite in testcases such as in loop-15.c and loop-24.c */
1411 if (aggressive)
1412 loop_optimizer_init (LOOPS_NORMAL
1413 | LOOPS_HAVE_RECORDED_EXITS);
1414
1415 tree_dce_init (aggressive);
1416
1417 if (aggressive)
1418 {
1419 /* Compute control dependence. */
1420 timevar_push (TV_CONTROL_DEPENDENCES);
1421 calculate_dominance_info (CDI_POST_DOMINATORS);
1422 el = create_edge_list ();
1423 find_all_control_dependences (el);
1424 timevar_pop (TV_CONTROL_DEPENDENCES);
1425
1426 visited_control_parents = sbitmap_alloc (last_basic_block);
1427 sbitmap_zero (visited_control_parents);
1428
1429 mark_dfs_back_edges ();
1430 }
1431
1432 find_obviously_necessary_stmts (el);
1433
1434 if (aggressive)
1435 loop_optimizer_finalize ();
1436
1437 longest_chain = 0;
1438 total_chain = 0;
1439 nr_walks = 0;
1440 chain_ovfl = false;
1441 visited = BITMAP_ALLOC (NULL);
1442 propagate_necessity (el);
1443 BITMAP_FREE (visited);
1444
1445 something_changed |= eliminate_unnecessary_stmts ();
1446 something_changed |= cfg_altered;
1447
1448 /* We do not update postdominators, so free them unconditionally. */
1449 free_dominance_info (CDI_POST_DOMINATORS);
1450
1451 /* If we removed paths in the CFG, then we need to update
1452 dominators as well. I haven't investigated the possibility
1453 of incrementally updating dominators. */
1454 if (cfg_altered)
1455 free_dominance_info (CDI_DOMINATORS);
1456
1457 statistics_counter_event (cfun, "Statements deleted", stats.removed);
1458 statistics_counter_event (cfun, "PHI nodes deleted", stats.removed_phis);
1459
1460 /* Debugging dumps. */
1461 if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
1462 print_stats ();
1463
1464 tree_dce_done (aggressive);
1465
1466 free_edge_list (el);
1467
1468 if (something_changed)
1469 return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
1470 | TODO_remove_unused_locals);
1471 else
1472 return 0;
1473 }
1474
1475 /* Pass entry points. */
1476 static unsigned int
1477 tree_ssa_dce (void)
1478 {
1479 return perform_tree_ssa_dce (/*aggressive=*/false);
1480 }
1481
1482 static unsigned int
1483 tree_ssa_dce_loop (void)
1484 {
1485 unsigned int todo;
1486 todo = perform_tree_ssa_dce (/*aggressive=*/false);
1487 if (todo)
1488 {
1489 free_numbers_of_iterations_estimates ();
1490 scev_reset ();
1491 }
1492 return todo;
1493 }
1494
1495 static unsigned int
1496 tree_ssa_cd_dce (void)
1497 {
1498 return perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
1499 }
1500
1501 static bool
1502 gate_dce (void)
1503 {
1504 return flag_tree_dce != 0;
1505 }
1506
1507 struct gimple_opt_pass pass_dce =
1508 {
1509 {
1510 GIMPLE_PASS,
1511 "dce", /* name */
1512 gate_dce, /* gate */
1513 tree_ssa_dce, /* execute */
1514 NULL, /* sub */
1515 NULL, /* next */
1516 0, /* static_pass_number */
1517 TV_TREE_DCE, /* tv_id */
1518 PROP_cfg | PROP_ssa, /* properties_required */
1519 0, /* properties_provided */
1520 0, /* properties_destroyed */
1521 0, /* todo_flags_start */
1522 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1523 }
1524 };
1525
1526 struct gimple_opt_pass pass_dce_loop =
1527 {
1528 {
1529 GIMPLE_PASS,
1530 "dceloop", /* name */
1531 gate_dce, /* gate */
1532 tree_ssa_dce_loop, /* execute */
1533 NULL, /* sub */
1534 NULL, /* next */
1535 0, /* static_pass_number */
1536 TV_TREE_DCE, /* tv_id */
1537 PROP_cfg | PROP_ssa, /* properties_required */
1538 0, /* properties_provided */
1539 0, /* properties_destroyed */
1540 0, /* todo_flags_start */
1541 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1542 }
1543 };
1544
1545 struct gimple_opt_pass pass_cd_dce =
1546 {
1547 {
1548 GIMPLE_PASS,
1549 "cddce", /* name */
1550 gate_dce, /* gate */
1551 tree_ssa_cd_dce, /* execute */
1552 NULL, /* sub */
1553 NULL, /* next */
1554 0, /* static_pass_number */
1555 TV_TREE_CD_DCE, /* tv_id */
1556 PROP_cfg | PROP_ssa, /* properties_required */
1557 0, /* properties_provided */
1558 0, /* properties_destroyed */
1559 0, /* todo_flags_start */
1560 TODO_dump_func | TODO_verify_ssa
1561 | TODO_verify_flow /* todo_flags_finish */
1562 }
1563 };