Squash commit of EH in gimple
[gcc.git] / gcc / tree-ssa-dce.c
1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Ben Elliston <bje@redhat.com>
5 and Andrew MacLeod <amacleod@redhat.com>
6 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 3, or (at your option) any
13 later version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* Dead code elimination.
25
26 References:
27
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
30
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
33
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
37 impact on the output.
38
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
45
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "ggc.h"
51
52 /* These RTL headers are needed for basic-block.h. */
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "hard-reg-set.h"
56 #include "obstack.h"
57 #include "basic-block.h"
58
59 #include "tree.h"
60 #include "diagnostic.h"
61 #include "tree-flow.h"
62 #include "gimple.h"
63 #include "tree-dump.h"
64 #include "tree-pass.h"
65 #include "timevar.h"
66 #include "flags.h"
67 #include "cfgloop.h"
68 #include "tree-scalar-evolution.h"
69
70 static struct stmt_stats
71 {
72 int total;
73 int total_phis;
74 int removed;
75 int removed_phis;
76 } stats;
77
78 #define STMT_NECESSARY GF_PLF_1
79
80 static VEC(gimple,heap) *worklist;
81
82 /* Vector indicating an SSA name has already been processed and marked
83 as necessary. */
84 static sbitmap processed;
85
86 /* Vector indicating that last_stmt if a basic block has already been
87 marked as necessary. */
88 static sbitmap last_stmt_necessary;
89
90 /* Vector indicating that BB contains statements that are live. */
91 static sbitmap bb_contains_live_stmts;
92
93 /* Before we can determine whether a control branch is dead, we need to
94 compute which blocks are control dependent on which edges.
95
96 We expect each block to be control dependent on very few edges so we
97 use a bitmap for each block recording its edges. An array holds the
98 bitmap. The Ith bit in the bitmap is set if that block is dependent
99 on the Ith edge. */
100 static bitmap *control_dependence_map;
101
102 /* Vector indicating that a basic block has already had all the edges
103 processed that it is control dependent on. */
104 static sbitmap visited_control_parents;
105
106 /* TRUE if this pass alters the CFG (by removing control statements).
107 FALSE otherwise.
108
109 If this pass alters the CFG, then it will arrange for the dominators
110 to be recomputed. */
111 static bool cfg_altered;
112
113 /* Execute code that follows the macro for each edge (given number
114 EDGE_NUMBER within the CODE) for which the block with index N is
115 control dependent. */
116 #define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER) \
117 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0, \
118 (EDGE_NUMBER), (BI))
119
120
121 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
122 static inline void
123 set_control_dependence_map_bit (basic_block bb, int edge_index)
124 {
125 if (bb == ENTRY_BLOCK_PTR)
126 return;
127 gcc_assert (bb != EXIT_BLOCK_PTR);
128 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
129 }
130
131 /* Clear all control dependences for block BB. */
132 static inline void
133 clear_control_dependence_bitmap (basic_block bb)
134 {
135 bitmap_clear (control_dependence_map[bb->index]);
136 }
137
138
139 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
140 This function is necessary because some blocks have negative numbers. */
141
142 static inline basic_block
143 find_pdom (basic_block block)
144 {
145 gcc_assert (block != ENTRY_BLOCK_PTR);
146
147 if (block == EXIT_BLOCK_PTR)
148 return EXIT_BLOCK_PTR;
149 else
150 {
151 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
152 if (! bb)
153 return EXIT_BLOCK_PTR;
154 return bb;
155 }
156 }
157
158
159 /* Determine all blocks' control dependences on the given edge with edge_list
160 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
161
162 static void
163 find_control_dependence (struct edge_list *el, int edge_index)
164 {
165 basic_block current_block;
166 basic_block ending_block;
167
168 gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
169
170 if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
171 ending_block = single_succ (ENTRY_BLOCK_PTR);
172 else
173 ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
174
175 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
176 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
177 current_block = find_pdom (current_block))
178 {
179 edge e = INDEX_EDGE (el, edge_index);
180
181 /* For abnormal edges, we don't make current_block control
182 dependent because instructions that throw are always necessary
183 anyway. */
184 if (e->flags & EDGE_ABNORMAL)
185 continue;
186
187 set_control_dependence_map_bit (current_block, edge_index);
188 }
189 }
190
191
192 /* Record all blocks' control dependences on all edges in the edge
193 list EL, ala Morgan, Section 3.6. */
194
195 static void
196 find_all_control_dependences (struct edge_list *el)
197 {
198 int i;
199
200 for (i = 0; i < NUM_EDGES (el); ++i)
201 find_control_dependence (el, i);
202 }
203
204 /* If STMT is not already marked necessary, mark it, and add it to the
205 worklist if ADD_TO_WORKLIST is true. */
206 static inline void
207 mark_stmt_necessary (gimple stmt, bool add_to_worklist)
208 {
209 gcc_assert (stmt);
210
211 if (gimple_plf (stmt, STMT_NECESSARY))
212 return;
213
214 if (dump_file && (dump_flags & TDF_DETAILS))
215 {
216 fprintf (dump_file, "Marking useful stmt: ");
217 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
218 fprintf (dump_file, "\n");
219 }
220
221 gimple_set_plf (stmt, STMT_NECESSARY, true);
222 if (add_to_worklist)
223 VEC_safe_push (gimple, heap, worklist, stmt);
224 if (bb_contains_live_stmts && !is_gimple_debug (stmt))
225 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
226 }
227
228
229 /* Mark the statement defining operand OP as necessary. */
230
231 static inline void
232 mark_operand_necessary (tree op)
233 {
234 gimple stmt;
235 int ver;
236
237 gcc_assert (op);
238
239 ver = SSA_NAME_VERSION (op);
240 if (TEST_BIT (processed, ver))
241 {
242 stmt = SSA_NAME_DEF_STMT (op);
243 gcc_assert (gimple_nop_p (stmt)
244 || gimple_plf (stmt, STMT_NECESSARY));
245 return;
246 }
247 SET_BIT (processed, ver);
248
249 stmt = SSA_NAME_DEF_STMT (op);
250 gcc_assert (stmt);
251
252 if (gimple_plf (stmt, STMT_NECESSARY) || gimple_nop_p (stmt))
253 return;
254
255 if (dump_file && (dump_flags & TDF_DETAILS))
256 {
257 fprintf (dump_file, "marking necessary through ");
258 print_generic_expr (dump_file, op, 0);
259 fprintf (dump_file, " stmt ");
260 print_gimple_stmt (dump_file, stmt, 0, 0);
261 }
262
263 gimple_set_plf (stmt, STMT_NECESSARY, true);
264 if (bb_contains_live_stmts)
265 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
266 VEC_safe_push (gimple, heap, worklist, stmt);
267 }
268
269
270 /* Mark STMT as necessary if it obviously is. Add it to the worklist if
271 it can make other statements necessary.
272
273 If AGGRESSIVE is false, control statements are conservatively marked as
274 necessary. */
275
276 static void
277 mark_stmt_if_obviously_necessary (gimple stmt, bool aggressive)
278 {
279 tree lhs = NULL_TREE;
280 /* With non-call exceptions, we have to assume that all statements could
281 throw. If a statement may throw, it is inherently necessary. */
282 if (flag_non_call_exceptions
283 && stmt_could_throw_p (stmt))
284 {
285 mark_stmt_necessary (stmt, true);
286 return;
287 }
288
289 /* Statements that are implicitly live. Most function calls, asm
290 and return statements are required. Labels and GIMPLE_BIND nodes
291 are kept because they are control flow, and we have no way of
292 knowing whether they can be removed. DCE can eliminate all the
293 other statements in a block, and CFG can then remove the block
294 and labels. */
295 switch (gimple_code (stmt))
296 {
297 case GIMPLE_PREDICT:
298 case GIMPLE_LABEL:
299 mark_stmt_necessary (stmt, false);
300 return;
301
302 case GIMPLE_ASM:
303 case GIMPLE_RESX:
304 case GIMPLE_RETURN:
305 mark_stmt_necessary (stmt, true);
306 return;
307
308 case GIMPLE_CALL:
309 /* Most, but not all function calls are required. Function calls that
310 produce no result and have no side effects (i.e. const pure
311 functions) are unnecessary. */
312 if (gimple_has_side_effects (stmt))
313 {
314 mark_stmt_necessary (stmt, true);
315 return;
316 }
317 if (!gimple_call_lhs (stmt))
318 return;
319 lhs = gimple_call_lhs (stmt);
320 /* Fall through */
321
322 case GIMPLE_ASSIGN:
323 if (!lhs)
324 lhs = gimple_assign_lhs (stmt);
325 break;
326
327 case GIMPLE_DEBUG:
328 mark_stmt_necessary (stmt, false);
329 return;
330
331 case GIMPLE_GOTO:
332 gcc_assert (!simple_goto_p (stmt));
333 mark_stmt_necessary (stmt, true);
334 return;
335
336 case GIMPLE_COND:
337 gcc_assert (EDGE_COUNT (gimple_bb (stmt)->succs) == 2);
338 /* Fall through. */
339
340 case GIMPLE_SWITCH:
341 if (! aggressive)
342 mark_stmt_necessary (stmt, true);
343 break;
344
345 default:
346 break;
347 }
348
349 /* If the statement has volatile operands, it needs to be preserved.
350 Same for statements that can alter control flow in unpredictable
351 ways. */
352 if (gimple_has_volatile_ops (stmt) || is_ctrl_altering_stmt (stmt))
353 {
354 mark_stmt_necessary (stmt, true);
355 return;
356 }
357
358 if (is_hidden_global_store (stmt))
359 {
360 mark_stmt_necessary (stmt, true);
361 return;
362 }
363
364 return;
365 }
366
367
368 /* Make corresponding control dependent edges necessary. We only
369 have to do this once for each basic block, so we clear the bitmap
370 after we're done. */
371 static void
372 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el)
373 {
374 bitmap_iterator bi;
375 unsigned edge_number;
376
377 gcc_assert (bb != EXIT_BLOCK_PTR);
378
379 if (bb == ENTRY_BLOCK_PTR)
380 return;
381
382 EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
383 {
384 gimple stmt;
385 basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
386
387 if (TEST_BIT (last_stmt_necessary, cd_bb->index))
388 continue;
389 SET_BIT (last_stmt_necessary, cd_bb->index);
390 SET_BIT (bb_contains_live_stmts, cd_bb->index);
391
392 stmt = last_stmt (cd_bb);
393 if (stmt && is_ctrl_stmt (stmt))
394 mark_stmt_necessary (stmt, true);
395 }
396 }
397
398
399 /* Find obviously necessary statements. These are things like most function
400 calls, and stores to file level variables.
401
402 If EL is NULL, control statements are conservatively marked as
403 necessary. Otherwise it contains the list of edges used by control
404 dependence analysis. */
405
406 static void
407 find_obviously_necessary_stmts (struct edge_list *el)
408 {
409 basic_block bb;
410 gimple_stmt_iterator gsi;
411 edge e;
412 gimple phi, stmt;
413
414 FOR_EACH_BB (bb)
415 {
416 /* PHI nodes are never inherently necessary. */
417 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
418 {
419 phi = gsi_stmt (gsi);
420 gimple_set_plf (phi, STMT_NECESSARY, false);
421 }
422
423 /* Check all statements in the block. */
424 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
425 {
426 stmt = gsi_stmt (gsi);
427 gimple_set_plf (stmt, STMT_NECESSARY, false);
428 mark_stmt_if_obviously_necessary (stmt, el != NULL);
429 }
430 }
431
432 /* Pure and const functions are finite and thus have no infinite loops in
433 them. */
434 if ((TREE_READONLY (current_function_decl)
435 || DECL_PURE_P (current_function_decl))
436 && !DECL_LOOPING_CONST_OR_PURE_P (current_function_decl))
437 return;
438
439 /* Prevent the empty possibly infinite loops from being removed. */
440 if (el)
441 {
442 loop_iterator li;
443 struct loop *loop;
444 scev_initialize ();
445 if (mark_irreducible_loops ())
446 FOR_EACH_BB (bb)
447 {
448 edge_iterator ei;
449 FOR_EACH_EDGE (e, ei, bb->succs)
450 if ((e->flags & EDGE_DFS_BACK)
451 && (e->flags & EDGE_IRREDUCIBLE_LOOP))
452 {
453 if (dump_file)
454 fprintf (dump_file, "Marking back edge of irreducible loop %i->%i\n",
455 e->src->index, e->dest->index);
456 mark_control_dependent_edges_necessary (e->dest, el);
457 }
458 }
459
460 FOR_EACH_LOOP (li, loop, 0)
461 if (!finite_loop_p (loop))
462 {
463 if (dump_file)
464 fprintf (dump_file, "can not prove finiteness of loop %i\n", loop->num);
465 mark_control_dependent_edges_necessary (loop->latch, el);
466 }
467 scev_finalize ();
468 }
469 }
470
471
472 /* Return true if REF is based on an aliased base, otherwise false. */
473
474 static bool
475 ref_may_be_aliased (tree ref)
476 {
477 while (handled_component_p (ref))
478 ref = TREE_OPERAND (ref, 0);
479 return !(DECL_P (ref)
480 && !may_be_aliased (ref));
481 }
482
483 static bitmap visited = NULL;
484 static unsigned int longest_chain = 0;
485 static unsigned int total_chain = 0;
486 static bool chain_ovfl = false;
487
488 /* Worker for the walker that marks reaching definitions of REF,
489 which is based on a non-aliased decl, necessary. It returns
490 true whenever the defining statement of the current VDEF is
491 a kill for REF, as no dominating may-defs are necessary for REF
492 anymore. DATA points to cached get_ref_base_and_extent data for REF. */
493
494 static bool
495 mark_aliased_reaching_defs_necessary_1 (ao_ref *ref, tree vdef,
496 void *data ATTRIBUTE_UNUSED)
497 {
498 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
499
500 /* All stmts we visit are necessary. */
501 mark_operand_necessary (vdef);
502
503 /* If the stmt lhs kills ref, then we can stop walking. */
504 if (gimple_has_lhs (def_stmt)
505 && TREE_CODE (gimple_get_lhs (def_stmt)) != SSA_NAME)
506 {
507 tree base, lhs = gimple_get_lhs (def_stmt);
508 HOST_WIDE_INT size, offset, max_size;
509 ao_ref_base (ref);
510 base = get_ref_base_and_extent (lhs, &offset, &size, &max_size);
511 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
512 so base == refd->base does not always hold. */
513 if (base == ref->base)
514 {
515 /* For a must-alias check we need to be able to constrain
516 the accesses properly. */
517 if (size != -1 && size == max_size
518 && ref->max_size != -1)
519 {
520 if (offset <= ref->offset
521 && offset + size >= ref->offset + ref->max_size)
522 return true;
523 }
524 /* Or they need to be exactly the same. */
525 else if (ref->ref
526 && operand_equal_p (ref->ref, lhs, 0))
527 return true;
528 }
529 }
530
531 /* Otherwise keep walking. */
532 return false;
533 }
534
535 static void
536 mark_aliased_reaching_defs_necessary (gimple stmt, tree ref)
537 {
538 unsigned int chain;
539 ao_ref refd;
540 gcc_assert (!chain_ovfl);
541 ao_ref_init (&refd, ref);
542 chain = walk_aliased_vdefs (&refd, gimple_vuse (stmt),
543 mark_aliased_reaching_defs_necessary_1,
544 NULL, NULL);
545 if (chain > longest_chain)
546 longest_chain = chain;
547 total_chain += chain;
548 }
549
550 /* Worker for the walker that marks reaching definitions of REF, which
551 is not based on a non-aliased decl. For simplicity we need to end
552 up marking all may-defs necessary that are not based on a non-aliased
553 decl. The only job of this walker is to skip may-defs based on
554 a non-aliased decl. */
555
556 static bool
557 mark_all_reaching_defs_necessary_1 (ao_ref *ref ATTRIBUTE_UNUSED,
558 tree vdef, void *data ATTRIBUTE_UNUSED)
559 {
560 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
561
562 /* We have to skip already visited (and thus necessary) statements
563 to make the chaining work after we dropped back to simple mode. */
564 if (chain_ovfl
565 && TEST_BIT (processed, SSA_NAME_VERSION (vdef)))
566 {
567 gcc_assert (gimple_nop_p (def_stmt)
568 || gimple_plf (def_stmt, STMT_NECESSARY));
569 return false;
570 }
571
572 /* We want to skip stores to non-aliased variables. */
573 if (!chain_ovfl
574 && gimple_assign_single_p (def_stmt))
575 {
576 tree lhs = gimple_assign_lhs (def_stmt);
577 if (!ref_may_be_aliased (lhs))
578 return false;
579 }
580
581 mark_operand_necessary (vdef);
582
583 return false;
584 }
585
586 static void
587 mark_all_reaching_defs_necessary (gimple stmt)
588 {
589 walk_aliased_vdefs (NULL, gimple_vuse (stmt),
590 mark_all_reaching_defs_necessary_1, NULL, &visited);
591 }
592
593 /* Return true for PHI nodes with one or identical arguments
594 can be removed. */
595 static bool
596 degenerate_phi_p (gimple phi)
597 {
598 unsigned int i;
599 tree op = gimple_phi_arg_def (phi, 0);
600 for (i = 1; i < gimple_phi_num_args (phi); i++)
601 if (gimple_phi_arg_def (phi, i) != op)
602 return false;
603 return true;
604 }
605
606 /* Propagate necessity using the operands of necessary statements.
607 Process the uses on each statement in the worklist, and add all
608 feeding statements which contribute to the calculation of this
609 value to the worklist.
610
611 In conservative mode, EL is NULL. */
612
613 static void
614 propagate_necessity (struct edge_list *el)
615 {
616 gimple stmt;
617 bool aggressive = (el ? true : false);
618
619 if (dump_file && (dump_flags & TDF_DETAILS))
620 fprintf (dump_file, "\nProcessing worklist:\n");
621
622 while (VEC_length (gimple, worklist) > 0)
623 {
624 /* Take STMT from worklist. */
625 stmt = VEC_pop (gimple, worklist);
626
627 if (dump_file && (dump_flags & TDF_DETAILS))
628 {
629 fprintf (dump_file, "processing: ");
630 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
631 fprintf (dump_file, "\n");
632 }
633
634 if (aggressive)
635 {
636 /* Mark the last statements of the basic blocks that the block
637 containing STMT is control dependent on, but only if we haven't
638 already done so. */
639 basic_block bb = gimple_bb (stmt);
640 if (bb != ENTRY_BLOCK_PTR
641 && ! TEST_BIT (visited_control_parents, bb->index))
642 {
643 SET_BIT (visited_control_parents, bb->index);
644 mark_control_dependent_edges_necessary (bb, el);
645 }
646 }
647
648 if (gimple_code (stmt) == GIMPLE_PHI
649 /* We do not process virtual PHI nodes nor do we track their
650 necessity. */
651 && is_gimple_reg (gimple_phi_result (stmt)))
652 {
653 /* PHI nodes are somewhat special in that each PHI alternative has
654 data and control dependencies. All the statements feeding the
655 PHI node's arguments are always necessary. In aggressive mode,
656 we also consider the control dependent edges leading to the
657 predecessor block associated with each PHI alternative as
658 necessary. */
659 size_t k;
660
661 for (k = 0; k < gimple_phi_num_args (stmt); k++)
662 {
663 tree arg = PHI_ARG_DEF (stmt, k);
664 if (TREE_CODE (arg) == SSA_NAME)
665 mark_operand_necessary (arg);
666 }
667
668 if (aggressive && !degenerate_phi_p (stmt))
669 {
670 for (k = 0; k < gimple_phi_num_args (stmt); k++)
671 {
672 basic_block arg_bb = gimple_phi_arg_edge (stmt, k)->src;
673 if (arg_bb != ENTRY_BLOCK_PTR
674 && ! TEST_BIT (visited_control_parents, arg_bb->index))
675 {
676 SET_BIT (visited_control_parents, arg_bb->index);
677 mark_control_dependent_edges_necessary (arg_bb, el);
678 }
679 }
680 }
681 }
682 else
683 {
684 /* Propagate through the operands. Examine all the USE, VUSE and
685 VDEF operands in this statement. Mark all the statements
686 which feed this statement's uses as necessary. */
687 ssa_op_iter iter;
688 tree use;
689
690 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
691 mark_operand_necessary (use);
692
693 use = gimple_vuse (stmt);
694 if (!use)
695 continue;
696
697 /* If we dropped to simple mode make all immediately
698 reachable definitions necessary. */
699 if (chain_ovfl)
700 {
701 mark_all_reaching_defs_necessary (stmt);
702 continue;
703 }
704
705 /* For statements that may load from memory (have a VUSE) we
706 have to mark all reaching (may-)definitions as necessary.
707 We partition this task into two cases:
708 1) explicit loads based on decls that are not aliased
709 2) implicit loads (like calls) and explicit loads not
710 based on decls that are not aliased (like indirect
711 references or loads from globals)
712 For 1) we mark all reaching may-defs as necessary, stopping
713 at dominating kills. For 2) we want to mark all dominating
714 references necessary, but non-aliased ones which we handle
715 in 1). By keeping a global visited bitmap for references
716 we walk for 2) we avoid quadratic behavior for those. */
717
718 if (is_gimple_call (stmt))
719 {
720 tree callee = gimple_call_fndecl (stmt);
721 unsigned i;
722
723 /* Calls to functions that are merely acting as barriers
724 or that only store to memory do not make any previous
725 stores necessary. */
726 if (callee != NULL_TREE
727 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
728 && (DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET
729 || DECL_FUNCTION_CODE (callee) == BUILT_IN_MALLOC
730 || DECL_FUNCTION_CODE (callee) == BUILT_IN_FREE))
731 continue;
732
733 /* Calls implicitly load from memory, their arguments
734 in addition may explicitly perform memory loads. */
735 mark_all_reaching_defs_necessary (stmt);
736 for (i = 0; i < gimple_call_num_args (stmt); ++i)
737 {
738 tree arg = gimple_call_arg (stmt, i);
739 if (TREE_CODE (arg) == SSA_NAME
740 || is_gimple_min_invariant (arg))
741 continue;
742 if (!ref_may_be_aliased (arg))
743 mark_aliased_reaching_defs_necessary (stmt, arg);
744 }
745 }
746 else if (gimple_assign_single_p (stmt))
747 {
748 tree rhs;
749 bool rhs_aliased = false;
750 /* If this is a load mark things necessary. */
751 rhs = gimple_assign_rhs1 (stmt);
752 if (TREE_CODE (rhs) != SSA_NAME
753 && !is_gimple_min_invariant (rhs))
754 {
755 if (!ref_may_be_aliased (rhs))
756 mark_aliased_reaching_defs_necessary (stmt, rhs);
757 else
758 rhs_aliased = true;
759 }
760 if (rhs_aliased)
761 mark_all_reaching_defs_necessary (stmt);
762 }
763 else if (gimple_code (stmt) == GIMPLE_RETURN)
764 {
765 tree rhs = gimple_return_retval (stmt);
766 /* A return statement may perform a load. */
767 if (TREE_CODE (rhs) != SSA_NAME
768 && !is_gimple_min_invariant (rhs))
769 {
770 if (!ref_may_be_aliased (rhs))
771 mark_aliased_reaching_defs_necessary (stmt, rhs);
772 else
773 mark_all_reaching_defs_necessary (stmt);
774 }
775 }
776 else if (gimple_code (stmt) == GIMPLE_ASM)
777 {
778 unsigned i;
779 mark_all_reaching_defs_necessary (stmt);
780 /* Inputs may perform loads. */
781 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
782 {
783 tree op = TREE_VALUE (gimple_asm_input_op (stmt, i));
784 if (TREE_CODE (op) != SSA_NAME
785 && !is_gimple_min_invariant (op)
786 && !ref_may_be_aliased (op))
787 mark_aliased_reaching_defs_necessary (stmt, op);
788 }
789 }
790 else
791 gcc_unreachable ();
792
793 /* If we over-used our alias oracle budget drop to simple
794 mode. The cost metric allows quadratic behavior up to
795 a constant maximal chain and after that falls back to
796 super-linear complexity. */
797 if (longest_chain > 256
798 && total_chain > 256 * longest_chain)
799 {
800 chain_ovfl = true;
801 if (visited)
802 bitmap_clear (visited);
803 }
804 }
805 }
806 }
807
808 /* Replace all uses of result of PHI by underlying variable and mark it
809 for renaming. */
810
811 void
812 mark_virtual_phi_result_for_renaming (gimple phi)
813 {
814 bool used = false;
815 imm_use_iterator iter;
816 use_operand_p use_p;
817 gimple stmt;
818 tree result_ssa, result_var;
819
820 if (dump_file && (dump_flags & TDF_DETAILS))
821 {
822 fprintf (dump_file, "Marking result for renaming : ");
823 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
824 fprintf (dump_file, "\n");
825 }
826
827 result_ssa = gimple_phi_result (phi);
828 result_var = SSA_NAME_VAR (result_ssa);
829 FOR_EACH_IMM_USE_STMT (stmt, iter, result_ssa)
830 {
831 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
832 SET_USE (use_p, result_var);
833 update_stmt (stmt);
834 used = true;
835 }
836 if (used)
837 mark_sym_for_renaming (result_var);
838 }
839
840 /* Remove dead PHI nodes from block BB. */
841
842 static bool
843 remove_dead_phis (basic_block bb)
844 {
845 bool something_changed = false;
846 gimple_seq phis;
847 gimple phi;
848 gimple_stmt_iterator gsi;
849 phis = phi_nodes (bb);
850
851 for (gsi = gsi_start (phis); !gsi_end_p (gsi);)
852 {
853 stats.total_phis++;
854 phi = gsi_stmt (gsi);
855
856 /* We do not track necessity of virtual PHI nodes. Instead do
857 very simple dead PHI removal here. */
858 if (!is_gimple_reg (gimple_phi_result (phi)))
859 {
860 /* Virtual PHI nodes with one or identical arguments
861 can be removed. */
862 if (degenerate_phi_p (phi))
863 {
864 tree vdef = gimple_phi_result (phi);
865 tree vuse = gimple_phi_arg_def (phi, 0);
866
867 use_operand_p use_p;
868 imm_use_iterator iter;
869 gimple use_stmt;
870 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vdef)
871 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
872 SET_USE (use_p, vuse);
873 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vdef)
874 && TREE_CODE (vuse) == SSA_NAME)
875 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 1;
876 }
877 else
878 gimple_set_plf (phi, STMT_NECESSARY, true);
879 }
880
881 if (!gimple_plf (phi, STMT_NECESSARY))
882 {
883 something_changed = true;
884 if (dump_file && (dump_flags & TDF_DETAILS))
885 {
886 fprintf (dump_file, "Deleting : ");
887 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
888 fprintf (dump_file, "\n");
889 }
890
891 remove_phi_node (&gsi, true);
892 stats.removed_phis++;
893 continue;
894 }
895
896 gsi_next (&gsi);
897 }
898 return something_changed;
899 }
900
901 /* Find first live post dominator of BB. */
902
903 static basic_block
904 get_live_post_dom (basic_block bb)
905 {
906 basic_block post_dom_bb;
907
908
909 /* The post dominance info has to be up-to-date. */
910 gcc_assert (dom_info_state (CDI_POST_DOMINATORS) == DOM_OK);
911
912 /* Get the immediate post dominator of bb. */
913 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
914 /* And look for first live one. */
915 while (post_dom_bb != EXIT_BLOCK_PTR
916 && !TEST_BIT (bb_contains_live_stmts, post_dom_bb->index))
917 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, post_dom_bb);
918
919 return post_dom_bb;
920 }
921
922 /* Forward edge E to respective POST_DOM_BB and update PHIs. */
923
924 static edge
925 forward_edge_to_pdom (edge e, basic_block post_dom_bb)
926 {
927 gimple_stmt_iterator gsi;
928 edge e2 = NULL;
929 edge_iterator ei;
930
931 if (dump_file && (dump_flags & TDF_DETAILS))
932 fprintf (dump_file, "Redirecting edge %i->%i to %i\n", e->src->index,
933 e->dest->index, post_dom_bb->index);
934
935 e2 = redirect_edge_and_branch (e, post_dom_bb);
936 cfg_altered = true;
937
938 /* If edge was already around, no updating is neccesary. */
939 if (e2 != e)
940 return e2;
941
942 if (phi_nodes (post_dom_bb))
943 {
944 /* We are sure that for every live PHI we are seeing control dependent BB.
945 This means that we can look up the end of control dependent path leading
946 to the PHI itself. */
947 FOR_EACH_EDGE (e2, ei, post_dom_bb->preds)
948 if (e2 != e && dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->src))
949 break;
950 for (gsi = gsi_start_phis (post_dom_bb); !gsi_end_p (gsi);)
951 {
952 gimple phi = gsi_stmt (gsi);
953 tree op;
954 source_location locus;
955
956 /* Dead PHI do not imply control dependency. */
957 if (!gimple_plf (phi, STMT_NECESSARY)
958 && is_gimple_reg (gimple_phi_result (phi)))
959 {
960 gsi_next (&gsi);
961 continue;
962 }
963 if (gimple_phi_arg_def (phi, e->dest_idx))
964 {
965 gsi_next (&gsi);
966 continue;
967 }
968
969 /* We didn't find edge to update. This can happen for PHIs on virtuals
970 since there is no control dependency relation on them. We are lost
971 here and must force renaming of the symbol. */
972 if (!is_gimple_reg (gimple_phi_result (phi)))
973 {
974 mark_virtual_phi_result_for_renaming (phi);
975 remove_phi_node (&gsi, true);
976 continue;
977 }
978 if (!e2)
979 {
980 op = gimple_phi_arg_def (phi, e->dest_idx == 0 ? 1 : 0);
981 locus = gimple_phi_arg_location (phi, e->dest_idx == 0 ? 1 : 0);
982 }
983 else
984 {
985 op = gimple_phi_arg_def (phi, e2->dest_idx);
986 locus = gimple_phi_arg_location (phi, e2->dest_idx);
987 }
988 add_phi_arg (phi, op, e, locus);
989 gcc_assert (e2 || degenerate_phi_p (phi));
990 gsi_next (&gsi);
991 }
992 }
993 return e;
994 }
995
996 /* Remove dead statement pointed to by iterator I. Receives the basic block BB
997 containing I so that we don't have to look it up. */
998
999 static void
1000 remove_dead_stmt (gimple_stmt_iterator *i, basic_block bb)
1001 {
1002 gimple stmt = gsi_stmt (*i);
1003
1004 if (dump_file && (dump_flags & TDF_DETAILS))
1005 {
1006 fprintf (dump_file, "Deleting : ");
1007 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1008 fprintf (dump_file, "\n");
1009 }
1010
1011 stats.removed++;
1012
1013 /* If we have determined that a conditional branch statement contributes
1014 nothing to the program, then we not only remove it, but we also change
1015 the flow graph so that the current block will simply fall-thru to its
1016 immediate post-dominator. The blocks we are circumventing will be
1017 removed by cleanup_tree_cfg if this change in the flow graph makes them
1018 unreachable. */
1019 if (is_ctrl_stmt (stmt))
1020 {
1021 basic_block post_dom_bb;
1022 edge e, e2;
1023 edge_iterator ei;
1024
1025 post_dom_bb = get_live_post_dom (bb);
1026
1027 e = find_edge (bb, post_dom_bb);
1028
1029 /* If edge is already there, try to use it. This avoids need to update
1030 PHI nodes. Also watch for cases where post dominator does not exists
1031 or is exit block. These can happen for infinite loops as we create
1032 fake edges in the dominator tree. */
1033 if (e)
1034 ;
1035 else if (! post_dom_bb || post_dom_bb == EXIT_BLOCK_PTR)
1036 e = EDGE_SUCC (bb, 0);
1037 else
1038 e = forward_edge_to_pdom (EDGE_SUCC (bb, 0), post_dom_bb);
1039 gcc_assert (e);
1040 e->probability = REG_BR_PROB_BASE;
1041 e->count = bb->count;
1042
1043 /* The edge is no longer associated with a conditional, so it does
1044 not have TRUE/FALSE flags. */
1045 e->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
1046
1047 /* The lone outgoing edge from BB will be a fallthru edge. */
1048 e->flags |= EDGE_FALLTHRU;
1049
1050 /* Remove the remaining outgoing edges. */
1051 for (ei = ei_start (bb->succs); (e2 = ei_safe_edge (ei)); )
1052 if (e != e2)
1053 {
1054 cfg_altered = true;
1055 remove_edge (e2);
1056 }
1057 else
1058 ei_next (&ei);
1059 }
1060
1061 unlink_stmt_vdef (stmt);
1062 gsi_remove (i, true);
1063 release_defs (stmt);
1064 }
1065
1066 /* Eliminate unnecessary statements. Any instruction not marked as necessary
1067 contributes nothing to the program, and can be deleted. */
1068
1069 static bool
1070 eliminate_unnecessary_stmts (void)
1071 {
1072 bool something_changed = false;
1073 basic_block bb;
1074 gimple_stmt_iterator gsi;
1075 gimple stmt;
1076 tree call;
1077 VEC (basic_block, heap) *h;
1078
1079 if (dump_file && (dump_flags & TDF_DETAILS))
1080 fprintf (dump_file, "\nEliminating unnecessary statements:\n");
1081
1082 clear_special_calls ();
1083
1084 /* Walking basic blocks and statements in reverse order avoids
1085 releasing SSA names before any other DEFs that refer to them are
1086 released. This helps avoid loss of debug information, as we get
1087 a chance to propagate all RHSs of removed SSAs into debug uses,
1088 rather than only the latest ones. E.g., consider:
1089
1090 x_3 = y_1 + z_2;
1091 a_5 = x_3 - b_4;
1092 # DEBUG a => a_5
1093
1094 If we were to release x_3 before a_5, when we reached a_5 and
1095 tried to substitute it into the debug stmt, we'd see x_3 there,
1096 but x_3's DEF, type, etc would have already been disconnected.
1097 By going backwards, the debug stmt first changes to:
1098
1099 # DEBUG a => x_3 - b_4
1100
1101 and then to:
1102
1103 # DEBUG a => y_1 + z_2 - b_4
1104
1105 as desired. */
1106 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
1107 h = get_all_dominated_blocks (CDI_DOMINATORS, single_succ (ENTRY_BLOCK_PTR));
1108
1109 while (VEC_length (basic_block, h))
1110 {
1111 bb = VEC_pop (basic_block, h);
1112
1113 /* Remove dead statements. */
1114 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
1115 {
1116 stmt = gsi_stmt (gsi);
1117
1118 stats.total++;
1119
1120 /* If GSI is not necessary then remove it. */
1121 if (!gimple_plf (stmt, STMT_NECESSARY))
1122 {
1123 remove_dead_stmt (&gsi, bb);
1124 something_changed = true;
1125
1126 /* If stmt was the last stmt in the block, we want to
1127 move gsi to the stmt that became the last stmt, but
1128 gsi_prev would crash. */
1129 if (gsi_end_p (gsi))
1130 gsi = gsi_last_bb (bb);
1131 else
1132 gsi_prev (&gsi);
1133 }
1134 else if (is_gimple_call (stmt))
1135 {
1136 call = gimple_call_fndecl (stmt);
1137 if (call)
1138 {
1139 tree name;
1140
1141 /* When LHS of var = call (); is dead, simplify it into
1142 call (); saving one operand. */
1143 name = gimple_call_lhs (stmt);
1144 if (name && TREE_CODE (name) == SSA_NAME
1145 && !TEST_BIT (processed, SSA_NAME_VERSION (name)))
1146 {
1147 something_changed = true;
1148 if (dump_file && (dump_flags & TDF_DETAILS))
1149 {
1150 fprintf (dump_file, "Deleting LHS of call: ");
1151 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1152 fprintf (dump_file, "\n");
1153 }
1154
1155 gimple_call_set_lhs (stmt, NULL_TREE);
1156 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1157 update_stmt (stmt);
1158 release_ssa_name (name);
1159 }
1160 notice_special_calls (stmt);
1161 }
1162 gsi_prev (&gsi);
1163 }
1164 else
1165 gsi_prev (&gsi);
1166 }
1167 }
1168
1169 VEC_free (basic_block, heap, h);
1170
1171 /* Since we don't track liveness of virtual PHI nodes, it is possible that we
1172 rendered some PHI nodes unreachable while they are still in use.
1173 Mark them for renaming. */
1174 if (cfg_altered)
1175 {
1176 basic_block prev_bb;
1177
1178 find_unreachable_blocks ();
1179
1180 /* Delete all unreachable basic blocks in reverse dominator order. */
1181 for (bb = EXIT_BLOCK_PTR->prev_bb; bb != ENTRY_BLOCK_PTR; bb = prev_bb)
1182 {
1183 prev_bb = bb->prev_bb;
1184
1185 if (!TEST_BIT (bb_contains_live_stmts, bb->index)
1186 || !(bb->flags & BB_REACHABLE))
1187 {
1188 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1189 if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
1190 {
1191 bool found = false;
1192 imm_use_iterator iter;
1193
1194 FOR_EACH_IMM_USE_STMT (stmt, iter, gimple_phi_result (gsi_stmt (gsi)))
1195 {
1196 if (!(gimple_bb (stmt)->flags & BB_REACHABLE))
1197 continue;
1198 if (gimple_code (stmt) == GIMPLE_PHI
1199 || gimple_plf (stmt, STMT_NECESSARY))
1200 {
1201 found = true;
1202 BREAK_FROM_IMM_USE_STMT (iter);
1203 }
1204 }
1205 if (found)
1206 mark_virtual_phi_result_for_renaming (gsi_stmt (gsi));
1207 }
1208
1209 if (!(bb->flags & BB_REACHABLE))
1210 {
1211 /* Speed up the removal of blocks that don't
1212 dominate others. Walking backwards, this should
1213 be the common case. ??? Do we need to recompute
1214 dominators because of cfg_altered? */
1215 if (!MAY_HAVE_DEBUG_STMTS
1216 || !first_dom_son (CDI_DOMINATORS, bb))
1217 delete_basic_block (bb);
1218 else
1219 {
1220 h = get_all_dominated_blocks (CDI_DOMINATORS, bb);
1221
1222 while (VEC_length (basic_block, h))
1223 {
1224 bb = VEC_pop (basic_block, h);
1225 prev_bb = bb->prev_bb;
1226 /* Rearrangements to the CFG may have failed
1227 to update the dominators tree, so that
1228 formerly-dominated blocks are now
1229 otherwise reachable. */
1230 if (!!(bb->flags & BB_REACHABLE))
1231 continue;
1232 delete_basic_block (bb);
1233 }
1234
1235 VEC_free (basic_block, heap, h);
1236 }
1237 }
1238 }
1239 }
1240 }
1241 FOR_EACH_BB (bb)
1242 {
1243 /* Remove dead PHI nodes. */
1244 something_changed |= remove_dead_phis (bb);
1245 }
1246
1247 return something_changed;
1248 }
1249
1250
1251 /* Print out removed statement statistics. */
1252
1253 static void
1254 print_stats (void)
1255 {
1256 float percg;
1257
1258 percg = ((float) stats.removed / (float) stats.total) * 100;
1259 fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
1260 stats.removed, stats.total, (int) percg);
1261
1262 if (stats.total_phis == 0)
1263 percg = 0;
1264 else
1265 percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
1266
1267 fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
1268 stats.removed_phis, stats.total_phis, (int) percg);
1269 }
1270
1271 /* Initialization for this pass. Set up the used data structures. */
1272
1273 static void
1274 tree_dce_init (bool aggressive)
1275 {
1276 memset ((void *) &stats, 0, sizeof (stats));
1277
1278 if (aggressive)
1279 {
1280 int i;
1281
1282 control_dependence_map = XNEWVEC (bitmap, last_basic_block);
1283 for (i = 0; i < last_basic_block; ++i)
1284 control_dependence_map[i] = BITMAP_ALLOC (NULL);
1285
1286 last_stmt_necessary = sbitmap_alloc (last_basic_block);
1287 sbitmap_zero (last_stmt_necessary);
1288 bb_contains_live_stmts = sbitmap_alloc (last_basic_block);
1289 sbitmap_zero (bb_contains_live_stmts);
1290 }
1291
1292 processed = sbitmap_alloc (num_ssa_names + 1);
1293 sbitmap_zero (processed);
1294
1295 worklist = VEC_alloc (gimple, heap, 64);
1296 cfg_altered = false;
1297 }
1298
1299 /* Cleanup after this pass. */
1300
1301 static void
1302 tree_dce_done (bool aggressive)
1303 {
1304 if (aggressive)
1305 {
1306 int i;
1307
1308 for (i = 0; i < last_basic_block; ++i)
1309 BITMAP_FREE (control_dependence_map[i]);
1310 free (control_dependence_map);
1311
1312 sbitmap_free (visited_control_parents);
1313 sbitmap_free (last_stmt_necessary);
1314 sbitmap_free (bb_contains_live_stmts);
1315 bb_contains_live_stmts = NULL;
1316 }
1317
1318 sbitmap_free (processed);
1319
1320 VEC_free (gimple, heap, worklist);
1321 }
1322
1323 /* Main routine to eliminate dead code.
1324
1325 AGGRESSIVE controls the aggressiveness of the algorithm.
1326 In conservative mode, we ignore control dependence and simply declare
1327 all but the most trivially dead branches necessary. This mode is fast.
1328 In aggressive mode, control dependences are taken into account, which
1329 results in more dead code elimination, but at the cost of some time.
1330
1331 FIXME: Aggressive mode before PRE doesn't work currently because
1332 the dominance info is not invalidated after DCE1. This is
1333 not an issue right now because we only run aggressive DCE
1334 as the last tree SSA pass, but keep this in mind when you
1335 start experimenting with pass ordering. */
1336
1337 static unsigned int
1338 perform_tree_ssa_dce (bool aggressive)
1339 {
1340 struct edge_list *el = NULL;
1341 bool something_changed = 0;
1342
1343 /* Preheaders are needed for SCEV to work.
1344 Simple lateches and recorded exits improve chances that loop will
1345 proved to be finite in testcases such as in loop-15.c and loop-24.c */
1346 if (aggressive)
1347 loop_optimizer_init (LOOPS_NORMAL
1348 | LOOPS_HAVE_RECORDED_EXITS);
1349
1350 tree_dce_init (aggressive);
1351
1352 if (aggressive)
1353 {
1354 /* Compute control dependence. */
1355 timevar_push (TV_CONTROL_DEPENDENCES);
1356 calculate_dominance_info (CDI_POST_DOMINATORS);
1357 el = create_edge_list ();
1358 find_all_control_dependences (el);
1359 timevar_pop (TV_CONTROL_DEPENDENCES);
1360
1361 visited_control_parents = sbitmap_alloc (last_basic_block);
1362 sbitmap_zero (visited_control_parents);
1363
1364 mark_dfs_back_edges ();
1365 }
1366
1367 find_obviously_necessary_stmts (el);
1368
1369 if (aggressive)
1370 loop_optimizer_finalize ();
1371
1372 longest_chain = 0;
1373 total_chain = 0;
1374 chain_ovfl = false;
1375 propagate_necessity (el);
1376 BITMAP_FREE (visited);
1377
1378 something_changed |= eliminate_unnecessary_stmts ();
1379 something_changed |= cfg_altered;
1380
1381 /* We do not update postdominators, so free them unconditionally. */
1382 free_dominance_info (CDI_POST_DOMINATORS);
1383
1384 /* If we removed paths in the CFG, then we need to update
1385 dominators as well. I haven't investigated the possibility
1386 of incrementally updating dominators. */
1387 if (cfg_altered)
1388 free_dominance_info (CDI_DOMINATORS);
1389
1390 statistics_counter_event (cfun, "Statements deleted", stats.removed);
1391 statistics_counter_event (cfun, "PHI nodes deleted", stats.removed_phis);
1392
1393 /* Debugging dumps. */
1394 if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
1395 print_stats ();
1396
1397 tree_dce_done (aggressive);
1398
1399 free_edge_list (el);
1400
1401 if (something_changed)
1402 return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
1403 | TODO_remove_unused_locals);
1404 else
1405 return 0;
1406 }
1407
1408 /* Pass entry points. */
1409 static unsigned int
1410 tree_ssa_dce (void)
1411 {
1412 return perform_tree_ssa_dce (/*aggressive=*/false);
1413 }
1414
1415 static unsigned int
1416 tree_ssa_dce_loop (void)
1417 {
1418 unsigned int todo;
1419 todo = perform_tree_ssa_dce (/*aggressive=*/false);
1420 if (todo)
1421 {
1422 free_numbers_of_iterations_estimates ();
1423 scev_reset ();
1424 }
1425 return todo;
1426 }
1427
1428 static unsigned int
1429 tree_ssa_cd_dce (void)
1430 {
1431 return perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
1432 }
1433
1434 static bool
1435 gate_dce (void)
1436 {
1437 return flag_tree_dce != 0;
1438 }
1439
1440 struct gimple_opt_pass pass_dce =
1441 {
1442 {
1443 GIMPLE_PASS,
1444 "dce", /* name */
1445 gate_dce, /* gate */
1446 tree_ssa_dce, /* execute */
1447 NULL, /* sub */
1448 NULL, /* next */
1449 0, /* static_pass_number */
1450 TV_TREE_DCE, /* tv_id */
1451 PROP_cfg | PROP_ssa, /* properties_required */
1452 0, /* properties_provided */
1453 0, /* properties_destroyed */
1454 0, /* todo_flags_start */
1455 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1456 }
1457 };
1458
1459 struct gimple_opt_pass pass_dce_loop =
1460 {
1461 {
1462 GIMPLE_PASS,
1463 "dceloop", /* name */
1464 gate_dce, /* gate */
1465 tree_ssa_dce_loop, /* execute */
1466 NULL, /* sub */
1467 NULL, /* next */
1468 0, /* static_pass_number */
1469 TV_TREE_DCE, /* tv_id */
1470 PROP_cfg | PROP_ssa, /* properties_required */
1471 0, /* properties_provided */
1472 0, /* properties_destroyed */
1473 0, /* todo_flags_start */
1474 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1475 }
1476 };
1477
1478 struct gimple_opt_pass pass_cd_dce =
1479 {
1480 {
1481 GIMPLE_PASS,
1482 "cddce", /* name */
1483 gate_dce, /* gate */
1484 tree_ssa_cd_dce, /* execute */
1485 NULL, /* sub */
1486 NULL, /* next */
1487 0, /* static_pass_number */
1488 TV_TREE_CD_DCE, /* tv_id */
1489 PROP_cfg | PROP_ssa, /* properties_required */
1490 0, /* properties_provided */
1491 0, /* properties_destroyed */
1492 0, /* todo_flags_start */
1493 TODO_dump_func | TODO_verify_ssa
1494 | TODO_verify_flow /* todo_flags_finish */
1495 }
1496 };