tree-ssa-ccp.c (evaluate_stmt): Try bitwise tracking for builtin calls even if likely...
[gcc.git] / gcc / tree-ssa-dce.c
1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Ben Elliston <bje@redhat.com>
5 and Andrew MacLeod <amacleod@redhat.com>
6 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 3, or (at your option) any
13 later version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* Dead code elimination.
25
26 References:
27
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
30
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
33
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
37 impact on the output.
38
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
45
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50
51 #include "tree.h"
52 #include "tree-pretty-print.h"
53 #include "gimple-pretty-print.h"
54 #include "basic-block.h"
55 #include "tree-flow.h"
56 #include "gimple.h"
57 #include "tree-dump.h"
58 #include "tree-pass.h"
59 #include "timevar.h"
60 #include "flags.h"
61 #include "cfgloop.h"
62 #include "tree-scalar-evolution.h"
63
64 static struct stmt_stats
65 {
66 int total;
67 int total_phis;
68 int removed;
69 int removed_phis;
70 } stats;
71
72 #define STMT_NECESSARY GF_PLF_1
73
74 static VEC(gimple,heap) *worklist;
75
76 /* Vector indicating an SSA name has already been processed and marked
77 as necessary. */
78 static sbitmap processed;
79
80 /* Vector indicating that the last statement of a basic block has already
81 been marked as necessary. */
82 static sbitmap last_stmt_necessary;
83
84 /* Vector indicating that BB contains statements that are live. */
85 static sbitmap bb_contains_live_stmts;
86
87 /* Before we can determine whether a control branch is dead, we need to
88 compute which blocks are control dependent on which edges.
89
90 We expect each block to be control dependent on very few edges so we
91 use a bitmap for each block recording its edges. An array holds the
92 bitmap. The Ith bit in the bitmap is set if that block is dependent
93 on the Ith edge. */
94 static bitmap *control_dependence_map;
95
96 /* Vector indicating that a basic block has already had all the edges
97 processed that it is control dependent on. */
98 static sbitmap visited_control_parents;
99
100 /* TRUE if this pass alters the CFG (by removing control statements).
101 FALSE otherwise.
102
103 If this pass alters the CFG, then it will arrange for the dominators
104 to be recomputed. */
105 static bool cfg_altered;
106
107 /* Execute code that follows the macro for each edge (given number
108 EDGE_NUMBER within the CODE) for which the block with index N is
109 control dependent. */
110 #define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER) \
111 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0, \
112 (EDGE_NUMBER), (BI))
113
114
115 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
116 static inline void
117 set_control_dependence_map_bit (basic_block bb, int edge_index)
118 {
119 if (bb == ENTRY_BLOCK_PTR)
120 return;
121 gcc_assert (bb != EXIT_BLOCK_PTR);
122 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
123 }
124
125 /* Clear all control dependences for block BB. */
126 static inline void
127 clear_control_dependence_bitmap (basic_block bb)
128 {
129 bitmap_clear (control_dependence_map[bb->index]);
130 }
131
132
133 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
134 This function is necessary because some blocks have negative numbers. */
135
136 static inline basic_block
137 find_pdom (basic_block block)
138 {
139 gcc_assert (block != ENTRY_BLOCK_PTR);
140
141 if (block == EXIT_BLOCK_PTR)
142 return EXIT_BLOCK_PTR;
143 else
144 {
145 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
146 if (! bb)
147 return EXIT_BLOCK_PTR;
148 return bb;
149 }
150 }
151
152
153 /* Determine all blocks' control dependences on the given edge with edge_list
154 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
155
156 static void
157 find_control_dependence (struct edge_list *el, int edge_index)
158 {
159 basic_block current_block;
160 basic_block ending_block;
161
162 gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
163
164 if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
165 ending_block = single_succ (ENTRY_BLOCK_PTR);
166 else
167 ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
168
169 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
170 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
171 current_block = find_pdom (current_block))
172 {
173 edge e = INDEX_EDGE (el, edge_index);
174
175 /* For abnormal edges, we don't make current_block control
176 dependent because instructions that throw are always necessary
177 anyway. */
178 if (e->flags & EDGE_ABNORMAL)
179 continue;
180
181 set_control_dependence_map_bit (current_block, edge_index);
182 }
183 }
184
185
186 /* Record all blocks' control dependences on all edges in the edge
187 list EL, ala Morgan, Section 3.6. */
188
189 static void
190 find_all_control_dependences (struct edge_list *el)
191 {
192 int i;
193
194 for (i = 0; i < NUM_EDGES (el); ++i)
195 find_control_dependence (el, i);
196 }
197
198 /* If STMT is not already marked necessary, mark it, and add it to the
199 worklist if ADD_TO_WORKLIST is true. */
200
201 static inline void
202 mark_stmt_necessary (gimple stmt, bool add_to_worklist)
203 {
204 gcc_assert (stmt);
205
206 if (gimple_plf (stmt, STMT_NECESSARY))
207 return;
208
209 if (dump_file && (dump_flags & TDF_DETAILS))
210 {
211 fprintf (dump_file, "Marking useful stmt: ");
212 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
213 fprintf (dump_file, "\n");
214 }
215
216 gimple_set_plf (stmt, STMT_NECESSARY, true);
217 if (add_to_worklist)
218 VEC_safe_push (gimple, heap, worklist, stmt);
219 if (bb_contains_live_stmts && !is_gimple_debug (stmt))
220 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
221 }
222
223
224 /* Mark the statement defining operand OP as necessary. */
225
226 static inline void
227 mark_operand_necessary (tree op)
228 {
229 gimple stmt;
230 int ver;
231
232 gcc_assert (op);
233
234 ver = SSA_NAME_VERSION (op);
235 if (TEST_BIT (processed, ver))
236 {
237 stmt = SSA_NAME_DEF_STMT (op);
238 gcc_assert (gimple_nop_p (stmt)
239 || gimple_plf (stmt, STMT_NECESSARY));
240 return;
241 }
242 SET_BIT (processed, ver);
243
244 stmt = SSA_NAME_DEF_STMT (op);
245 gcc_assert (stmt);
246
247 if (gimple_plf (stmt, STMT_NECESSARY) || gimple_nop_p (stmt))
248 return;
249
250 if (dump_file && (dump_flags & TDF_DETAILS))
251 {
252 fprintf (dump_file, "marking necessary through ");
253 print_generic_expr (dump_file, op, 0);
254 fprintf (dump_file, " stmt ");
255 print_gimple_stmt (dump_file, stmt, 0, 0);
256 }
257
258 gimple_set_plf (stmt, STMT_NECESSARY, true);
259 if (bb_contains_live_stmts)
260 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
261 VEC_safe_push (gimple, heap, worklist, stmt);
262 }
263
264
265 /* Mark STMT as necessary if it obviously is. Add it to the worklist if
266 it can make other statements necessary.
267
268 If AGGRESSIVE is false, control statements are conservatively marked as
269 necessary. */
270
271 static void
272 mark_stmt_if_obviously_necessary (gimple stmt, bool aggressive)
273 {
274 /* With non-call exceptions, we have to assume that all statements could
275 throw. If a statement may throw, it is inherently necessary. */
276 if (cfun->can_throw_non_call_exceptions && stmt_could_throw_p (stmt))
277 {
278 mark_stmt_necessary (stmt, true);
279 return;
280 }
281
282 /* Statements that are implicitly live. Most function calls, asm
283 and return statements are required. Labels and GIMPLE_BIND nodes
284 are kept because they are control flow, and we have no way of
285 knowing whether they can be removed. DCE can eliminate all the
286 other statements in a block, and CFG can then remove the block
287 and labels. */
288 switch (gimple_code (stmt))
289 {
290 case GIMPLE_PREDICT:
291 case GIMPLE_LABEL:
292 mark_stmt_necessary (stmt, false);
293 return;
294
295 case GIMPLE_ASM:
296 case GIMPLE_RESX:
297 case GIMPLE_RETURN:
298 mark_stmt_necessary (stmt, true);
299 return;
300
301 case GIMPLE_CALL:
302 /* Most, but not all function calls are required. Function calls that
303 produce no result and have no side effects (i.e. const pure
304 functions) are unnecessary. */
305 if (gimple_has_side_effects (stmt))
306 {
307 mark_stmt_necessary (stmt, true);
308 return;
309 }
310 if (!gimple_call_lhs (stmt))
311 return;
312 break;
313
314 case GIMPLE_DEBUG:
315 /* Debug temps without a value are not useful. ??? If we could
316 easily locate the debug temp bind stmt for a use thereof,
317 would could refrain from marking all debug temps here, and
318 mark them only if they're used. */
319 if (!gimple_debug_bind_p (stmt)
320 || gimple_debug_bind_has_value_p (stmt)
321 || TREE_CODE (gimple_debug_bind_get_var (stmt)) != DEBUG_EXPR_DECL)
322 mark_stmt_necessary (stmt, false);
323 return;
324
325 case GIMPLE_GOTO:
326 gcc_assert (!simple_goto_p (stmt));
327 mark_stmt_necessary (stmt, true);
328 return;
329
330 case GIMPLE_COND:
331 gcc_assert (EDGE_COUNT (gimple_bb (stmt)->succs) == 2);
332 /* Fall through. */
333
334 case GIMPLE_SWITCH:
335 if (! aggressive)
336 mark_stmt_necessary (stmt, true);
337 break;
338
339 default:
340 break;
341 }
342
343 /* If the statement has volatile operands, it needs to be preserved.
344 Same for statements that can alter control flow in unpredictable
345 ways. */
346 if (gimple_has_volatile_ops (stmt) || is_ctrl_altering_stmt (stmt))
347 {
348 mark_stmt_necessary (stmt, true);
349 return;
350 }
351
352 if (is_hidden_global_store (stmt))
353 {
354 mark_stmt_necessary (stmt, true);
355 return;
356 }
357
358 return;
359 }
360
361
362 /* Mark the last statement of BB as necessary. */
363
364 static void
365 mark_last_stmt_necessary (basic_block bb)
366 {
367 gimple stmt = last_stmt (bb);
368
369 SET_BIT (last_stmt_necessary, bb->index);
370 SET_BIT (bb_contains_live_stmts, bb->index);
371
372 /* We actually mark the statement only if it is a control statement. */
373 if (stmt && is_ctrl_stmt (stmt))
374 mark_stmt_necessary (stmt, true);
375 }
376
377
378 /* Mark control dependent edges of BB as necessary. We have to do this only
379 once for each basic block so we set the appropriate bit after we're done.
380
381 When IGNORE_SELF is true, ignore BB in the list of control dependences. */
382
383 static void
384 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el,
385 bool ignore_self)
386 {
387 bitmap_iterator bi;
388 unsigned edge_number;
389 bool skipped = false;
390
391 gcc_assert (bb != EXIT_BLOCK_PTR);
392
393 if (bb == ENTRY_BLOCK_PTR)
394 return;
395
396 EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
397 {
398 basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
399
400 if (ignore_self && cd_bb == bb)
401 {
402 skipped = true;
403 continue;
404 }
405
406 if (!TEST_BIT (last_stmt_necessary, cd_bb->index))
407 mark_last_stmt_necessary (cd_bb);
408 }
409
410 if (!skipped)
411 SET_BIT (visited_control_parents, bb->index);
412 }
413
414
415 /* Find obviously necessary statements. These are things like most function
416 calls, and stores to file level variables.
417
418 If EL is NULL, control statements are conservatively marked as
419 necessary. Otherwise it contains the list of edges used by control
420 dependence analysis. */
421
422 static void
423 find_obviously_necessary_stmts (struct edge_list *el)
424 {
425 basic_block bb;
426 gimple_stmt_iterator gsi;
427 edge e;
428 gimple phi, stmt;
429 int flags;
430
431 FOR_EACH_BB (bb)
432 {
433 /* PHI nodes are never inherently necessary. */
434 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
435 {
436 phi = gsi_stmt (gsi);
437 gimple_set_plf (phi, STMT_NECESSARY, false);
438 }
439
440 /* Check all statements in the block. */
441 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
442 {
443 stmt = gsi_stmt (gsi);
444 gimple_set_plf (stmt, STMT_NECESSARY, false);
445 mark_stmt_if_obviously_necessary (stmt, el != NULL);
446 }
447 }
448
449 /* Pure and const functions are finite and thus have no infinite loops in
450 them. */
451 flags = flags_from_decl_or_type (current_function_decl);
452 if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
453 return;
454
455 /* Prevent the empty possibly infinite loops from being removed. */
456 if (el)
457 {
458 loop_iterator li;
459 struct loop *loop;
460 scev_initialize ();
461 if (mark_irreducible_loops ())
462 FOR_EACH_BB (bb)
463 {
464 edge_iterator ei;
465 FOR_EACH_EDGE (e, ei, bb->succs)
466 if ((e->flags & EDGE_DFS_BACK)
467 && (e->flags & EDGE_IRREDUCIBLE_LOOP))
468 {
469 if (dump_file)
470 fprintf (dump_file, "Marking back edge of irreducible loop %i->%i\n",
471 e->src->index, e->dest->index);
472 mark_control_dependent_edges_necessary (e->dest, el, false);
473 }
474 }
475
476 FOR_EACH_LOOP (li, loop, 0)
477 if (!finite_loop_p (loop))
478 {
479 if (dump_file)
480 fprintf (dump_file, "can not prove finiteness of loop %i\n", loop->num);
481 mark_control_dependent_edges_necessary (loop->latch, el, false);
482 }
483 scev_finalize ();
484 }
485 }
486
487
488 /* Return true if REF is based on an aliased base, otherwise false. */
489
490 static bool
491 ref_may_be_aliased (tree ref)
492 {
493 while (handled_component_p (ref))
494 ref = TREE_OPERAND (ref, 0);
495 if (TREE_CODE (ref) == MEM_REF
496 && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
497 ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
498 return !(DECL_P (ref)
499 && !may_be_aliased (ref));
500 }
501
502 static bitmap visited = NULL;
503 static unsigned int longest_chain = 0;
504 static unsigned int total_chain = 0;
505 static unsigned int nr_walks = 0;
506 static bool chain_ovfl = false;
507
508 /* Worker for the walker that marks reaching definitions of REF,
509 which is based on a non-aliased decl, necessary. It returns
510 true whenever the defining statement of the current VDEF is
511 a kill for REF, as no dominating may-defs are necessary for REF
512 anymore. DATA points to the basic-block that contains the
513 stmt that refers to REF. */
514
515 static bool
516 mark_aliased_reaching_defs_necessary_1 (ao_ref *ref, tree vdef, void *data)
517 {
518 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
519
520 /* All stmts we visit are necessary. */
521 mark_operand_necessary (vdef);
522
523 /* If the stmt lhs kills ref, then we can stop walking. */
524 if (gimple_has_lhs (def_stmt)
525 && TREE_CODE (gimple_get_lhs (def_stmt)) != SSA_NAME
526 /* The assignment is not necessarily carried out if it can throw
527 and we can catch it in the current function where we could inspect
528 the previous value.
529 ??? We only need to care about the RHS throwing. For aggregate
530 assignments or similar calls and non-call exceptions the LHS
531 might throw as well. */
532 && !stmt_can_throw_internal (def_stmt))
533 {
534 tree base, lhs = gimple_get_lhs (def_stmt);
535 HOST_WIDE_INT size, offset, max_size;
536 ao_ref_base (ref);
537 base = get_ref_base_and_extent (lhs, &offset, &size, &max_size);
538 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
539 so base == refd->base does not always hold. */
540 if (base == ref->base)
541 {
542 /* For a must-alias check we need to be able to constrain
543 the accesses properly. */
544 if (size != -1 && size == max_size
545 && ref->max_size != -1)
546 {
547 if (offset <= ref->offset
548 && offset + size >= ref->offset + ref->max_size)
549 return true;
550 }
551 /* Or they need to be exactly the same. */
552 else if (ref->ref
553 /* Make sure there is no induction variable involved
554 in the references (gcc.c-torture/execute/pr42142.c).
555 The simplest way is to check if the kill dominates
556 the use. */
557 && dominated_by_p (CDI_DOMINATORS, (basic_block) data,
558 gimple_bb (def_stmt))
559 && operand_equal_p (ref->ref, lhs, 0))
560 return true;
561 }
562 }
563
564 /* Otherwise keep walking. */
565 return false;
566 }
567
568 static void
569 mark_aliased_reaching_defs_necessary (gimple stmt, tree ref)
570 {
571 unsigned int chain;
572 ao_ref refd;
573 gcc_assert (!chain_ovfl);
574 ao_ref_init (&refd, ref);
575 chain = walk_aliased_vdefs (&refd, gimple_vuse (stmt),
576 mark_aliased_reaching_defs_necessary_1,
577 gimple_bb (stmt), NULL);
578 if (chain > longest_chain)
579 longest_chain = chain;
580 total_chain += chain;
581 nr_walks++;
582 }
583
584 /* Worker for the walker that marks reaching definitions of REF, which
585 is not based on a non-aliased decl. For simplicity we need to end
586 up marking all may-defs necessary that are not based on a non-aliased
587 decl. The only job of this walker is to skip may-defs based on
588 a non-aliased decl. */
589
590 static bool
591 mark_all_reaching_defs_necessary_1 (ao_ref *ref ATTRIBUTE_UNUSED,
592 tree vdef, void *data ATTRIBUTE_UNUSED)
593 {
594 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
595
596 /* We have to skip already visited (and thus necessary) statements
597 to make the chaining work after we dropped back to simple mode. */
598 if (chain_ovfl
599 && TEST_BIT (processed, SSA_NAME_VERSION (vdef)))
600 {
601 gcc_assert (gimple_nop_p (def_stmt)
602 || gimple_plf (def_stmt, STMT_NECESSARY));
603 return false;
604 }
605
606 /* We want to skip stores to non-aliased variables. */
607 if (!chain_ovfl
608 && gimple_assign_single_p (def_stmt))
609 {
610 tree lhs = gimple_assign_lhs (def_stmt);
611 if (!ref_may_be_aliased (lhs))
612 return false;
613 }
614
615 mark_operand_necessary (vdef);
616
617 return false;
618 }
619
620 static void
621 mark_all_reaching_defs_necessary (gimple stmt)
622 {
623 walk_aliased_vdefs (NULL, gimple_vuse (stmt),
624 mark_all_reaching_defs_necessary_1, NULL, &visited);
625 }
626
627 /* Return true for PHI nodes with one or identical arguments
628 can be removed. */
629 static bool
630 degenerate_phi_p (gimple phi)
631 {
632 unsigned int i;
633 tree op = gimple_phi_arg_def (phi, 0);
634 for (i = 1; i < gimple_phi_num_args (phi); i++)
635 if (gimple_phi_arg_def (phi, i) != op)
636 return false;
637 return true;
638 }
639
640 /* Propagate necessity using the operands of necessary statements.
641 Process the uses on each statement in the worklist, and add all
642 feeding statements which contribute to the calculation of this
643 value to the worklist.
644
645 In conservative mode, EL is NULL. */
646
647 static void
648 propagate_necessity (struct edge_list *el)
649 {
650 gimple stmt;
651 bool aggressive = (el ? true : false);
652
653 if (dump_file && (dump_flags & TDF_DETAILS))
654 fprintf (dump_file, "\nProcessing worklist:\n");
655
656 while (VEC_length (gimple, worklist) > 0)
657 {
658 /* Take STMT from worklist. */
659 stmt = VEC_pop (gimple, worklist);
660
661 if (dump_file && (dump_flags & TDF_DETAILS))
662 {
663 fprintf (dump_file, "processing: ");
664 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
665 fprintf (dump_file, "\n");
666 }
667
668 if (aggressive)
669 {
670 /* Mark the last statement of the basic blocks on which the block
671 containing STMT is control dependent, but only if we haven't
672 already done so. */
673 basic_block bb = gimple_bb (stmt);
674 if (bb != ENTRY_BLOCK_PTR
675 && !TEST_BIT (visited_control_parents, bb->index))
676 mark_control_dependent_edges_necessary (bb, el, false);
677 }
678
679 if (gimple_code (stmt) == GIMPLE_PHI
680 /* We do not process virtual PHI nodes nor do we track their
681 necessity. */
682 && is_gimple_reg (gimple_phi_result (stmt)))
683 {
684 /* PHI nodes are somewhat special in that each PHI alternative has
685 data and control dependencies. All the statements feeding the
686 PHI node's arguments are always necessary. In aggressive mode,
687 we also consider the control dependent edges leading to the
688 predecessor block associated with each PHI alternative as
689 necessary. */
690 size_t k;
691
692 for (k = 0; k < gimple_phi_num_args (stmt); k++)
693 {
694 tree arg = PHI_ARG_DEF (stmt, k);
695 if (TREE_CODE (arg) == SSA_NAME)
696 mark_operand_necessary (arg);
697 }
698
699 /* For PHI operands it matters from where the control flow arrives
700 to the BB. Consider the following example:
701
702 a=exp1;
703 b=exp2;
704 if (test)
705 ;
706 else
707 ;
708 c=PHI(a,b)
709
710 We need to mark control dependence of the empty basic blocks, since they
711 contains computation of PHI operands.
712
713 Doing so is too restrictive in the case the predecestor block is in
714 the loop. Consider:
715
716 if (b)
717 {
718 int i;
719 for (i = 0; i<1000; ++i)
720 ;
721 j = 0;
722 }
723 return j;
724
725 There is PHI for J in the BB containing return statement.
726 In this case the control dependence of predecestor block (that is
727 within the empty loop) also contains the block determining number
728 of iterations of the block that would prevent removing of empty
729 loop in this case.
730
731 This scenario can be avoided by splitting critical edges.
732 To save the critical edge splitting pass we identify how the control
733 dependence would look like if the edge was split.
734
735 Consider the modified CFG created from current CFG by splitting
736 edge B->C. In the postdominance tree of modified CFG, C' is
737 always child of C. There are two cases how chlids of C' can look
738 like:
739
740 1) C' is leaf
741
742 In this case the only basic block C' is control dependent on is B.
743
744 2) C' has single child that is B
745
746 In this case control dependence of C' is same as control
747 dependence of B in original CFG except for block B itself.
748 (since C' postdominate B in modified CFG)
749
750 Now how to decide what case happens? There are two basic options:
751
752 a) C postdominate B. Then C immediately postdominate B and
753 case 2 happens iff there is no other way from B to C except
754 the edge B->C.
755
756 There is other way from B to C iff there is succesor of B that
757 is not postdominated by B. Testing this condition is somewhat
758 expensive, because we need to iterate all succesors of B.
759 We are safe to assume that this does not happen: we will mark B
760 as needed when processing the other path from B to C that is
761 conrol dependent on B and marking control dependencies of B
762 itself is harmless because they will be processed anyway after
763 processing control statement in B.
764
765 b) C does not postdominate B. Always case 1 happens since there is
766 path from C to exit that does not go through B and thus also C'. */
767
768 if (aggressive && !degenerate_phi_p (stmt))
769 {
770 for (k = 0; k < gimple_phi_num_args (stmt); k++)
771 {
772 basic_block arg_bb = gimple_phi_arg_edge (stmt, k)->src;
773
774 if (gimple_bb (stmt)
775 != get_immediate_dominator (CDI_POST_DOMINATORS, arg_bb))
776 {
777 if (!TEST_BIT (last_stmt_necessary, arg_bb->index))
778 mark_last_stmt_necessary (arg_bb);
779 }
780 else if (arg_bb != ENTRY_BLOCK_PTR
781 && !TEST_BIT (visited_control_parents,
782 arg_bb->index))
783 mark_control_dependent_edges_necessary (arg_bb, el, true);
784 }
785 }
786 }
787 else
788 {
789 /* Propagate through the operands. Examine all the USE, VUSE and
790 VDEF operands in this statement. Mark all the statements
791 which feed this statement's uses as necessary. */
792 ssa_op_iter iter;
793 tree use;
794
795 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
796 mark_operand_necessary (use);
797
798 use = gimple_vuse (stmt);
799 if (!use)
800 continue;
801
802 /* If we dropped to simple mode make all immediately
803 reachable definitions necessary. */
804 if (chain_ovfl)
805 {
806 mark_all_reaching_defs_necessary (stmt);
807 continue;
808 }
809
810 /* For statements that may load from memory (have a VUSE) we
811 have to mark all reaching (may-)definitions as necessary.
812 We partition this task into two cases:
813 1) explicit loads based on decls that are not aliased
814 2) implicit loads (like calls) and explicit loads not
815 based on decls that are not aliased (like indirect
816 references or loads from globals)
817 For 1) we mark all reaching may-defs as necessary, stopping
818 at dominating kills. For 2) we want to mark all dominating
819 references necessary, but non-aliased ones which we handle
820 in 1). By keeping a global visited bitmap for references
821 we walk for 2) we avoid quadratic behavior for those. */
822
823 if (is_gimple_call (stmt))
824 {
825 tree callee = gimple_call_fndecl (stmt);
826 unsigned i;
827
828 /* Calls to functions that are merely acting as barriers
829 or that only store to memory do not make any previous
830 stores necessary. */
831 if (callee != NULL_TREE
832 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
833 && (DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET
834 || DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET_CHK
835 || DECL_FUNCTION_CODE (callee) == BUILT_IN_MALLOC
836 || DECL_FUNCTION_CODE (callee) == BUILT_IN_CALLOC
837 || DECL_FUNCTION_CODE (callee) == BUILT_IN_FREE
838 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
839 || DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE
840 || DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE))
841 continue;
842
843 /* Calls implicitly load from memory, their arguments
844 in addition may explicitly perform memory loads. */
845 mark_all_reaching_defs_necessary (stmt);
846 for (i = 0; i < gimple_call_num_args (stmt); ++i)
847 {
848 tree arg = gimple_call_arg (stmt, i);
849 if (TREE_CODE (arg) == SSA_NAME
850 || is_gimple_min_invariant (arg))
851 continue;
852 if (!ref_may_be_aliased (arg))
853 mark_aliased_reaching_defs_necessary (stmt, arg);
854 }
855 }
856 else if (gimple_assign_single_p (stmt))
857 {
858 tree rhs;
859 bool rhs_aliased = false;
860 /* If this is a load mark things necessary. */
861 rhs = gimple_assign_rhs1 (stmt);
862 if (TREE_CODE (rhs) != SSA_NAME
863 && !is_gimple_min_invariant (rhs))
864 {
865 if (!ref_may_be_aliased (rhs))
866 mark_aliased_reaching_defs_necessary (stmt, rhs);
867 else
868 rhs_aliased = true;
869 }
870 if (rhs_aliased)
871 mark_all_reaching_defs_necessary (stmt);
872 }
873 else if (gimple_code (stmt) == GIMPLE_RETURN)
874 {
875 tree rhs = gimple_return_retval (stmt);
876 /* A return statement may perform a load. */
877 if (rhs
878 && TREE_CODE (rhs) != SSA_NAME
879 && !is_gimple_min_invariant (rhs))
880 {
881 if (!ref_may_be_aliased (rhs))
882 mark_aliased_reaching_defs_necessary (stmt, rhs);
883 else
884 mark_all_reaching_defs_necessary (stmt);
885 }
886 }
887 else if (gimple_code (stmt) == GIMPLE_ASM)
888 {
889 unsigned i;
890 mark_all_reaching_defs_necessary (stmt);
891 /* Inputs may perform loads. */
892 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
893 {
894 tree op = TREE_VALUE (gimple_asm_input_op (stmt, i));
895 if (TREE_CODE (op) != SSA_NAME
896 && !is_gimple_min_invariant (op)
897 && !ref_may_be_aliased (op))
898 mark_aliased_reaching_defs_necessary (stmt, op);
899 }
900 }
901 else
902 gcc_unreachable ();
903
904 /* If we over-used our alias oracle budget drop to simple
905 mode. The cost metric allows quadratic behavior
906 (number of uses times number of may-defs queries) up to
907 a constant maximal number of queries and after that falls back to
908 super-linear complexity. */
909 if (/* Constant but quadratic for small functions. */
910 total_chain > 128 * 128
911 /* Linear in the number of may-defs. */
912 && total_chain > 32 * longest_chain
913 /* Linear in the number of uses. */
914 && total_chain > nr_walks * 32)
915 {
916 chain_ovfl = true;
917 if (visited)
918 bitmap_clear (visited);
919 }
920 }
921 }
922 }
923
924 /* Replace all uses of result of PHI by underlying variable and mark it
925 for renaming. */
926
927 void
928 mark_virtual_phi_result_for_renaming (gimple phi)
929 {
930 bool used = false;
931 imm_use_iterator iter;
932 use_operand_p use_p;
933 gimple stmt;
934 tree result_ssa, result_var;
935
936 if (dump_file && (dump_flags & TDF_DETAILS))
937 {
938 fprintf (dump_file, "Marking result for renaming : ");
939 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
940 fprintf (dump_file, "\n");
941 }
942
943 result_ssa = gimple_phi_result (phi);
944 result_var = SSA_NAME_VAR (result_ssa);
945 FOR_EACH_IMM_USE_STMT (stmt, iter, result_ssa)
946 {
947 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
948 SET_USE (use_p, result_var);
949 update_stmt (stmt);
950 used = true;
951 }
952 if (used)
953 mark_sym_for_renaming (result_var);
954 }
955
956 /* Remove dead PHI nodes from block BB. */
957
958 static bool
959 remove_dead_phis (basic_block bb)
960 {
961 bool something_changed = false;
962 gimple_seq phis;
963 gimple phi;
964 gimple_stmt_iterator gsi;
965 phis = phi_nodes (bb);
966
967 for (gsi = gsi_start (phis); !gsi_end_p (gsi);)
968 {
969 stats.total_phis++;
970 phi = gsi_stmt (gsi);
971
972 /* We do not track necessity of virtual PHI nodes. Instead do
973 very simple dead PHI removal here. */
974 if (!is_gimple_reg (gimple_phi_result (phi)))
975 {
976 /* Virtual PHI nodes with one or identical arguments
977 can be removed. */
978 if (degenerate_phi_p (phi))
979 {
980 tree vdef = gimple_phi_result (phi);
981 tree vuse = gimple_phi_arg_def (phi, 0);
982
983 use_operand_p use_p;
984 imm_use_iterator iter;
985 gimple use_stmt;
986 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vdef)
987 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
988 SET_USE (use_p, vuse);
989 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vdef)
990 && TREE_CODE (vuse) == SSA_NAME)
991 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 1;
992 }
993 else
994 gimple_set_plf (phi, STMT_NECESSARY, true);
995 }
996
997 if (!gimple_plf (phi, STMT_NECESSARY))
998 {
999 something_changed = true;
1000 if (dump_file && (dump_flags & TDF_DETAILS))
1001 {
1002 fprintf (dump_file, "Deleting : ");
1003 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
1004 fprintf (dump_file, "\n");
1005 }
1006
1007 remove_phi_node (&gsi, true);
1008 stats.removed_phis++;
1009 continue;
1010 }
1011
1012 gsi_next (&gsi);
1013 }
1014 return something_changed;
1015 }
1016
1017 /* Forward edge E to respective POST_DOM_BB and update PHIs. */
1018
1019 static edge
1020 forward_edge_to_pdom (edge e, basic_block post_dom_bb)
1021 {
1022 gimple_stmt_iterator gsi;
1023 edge e2 = NULL;
1024 edge_iterator ei;
1025
1026 if (dump_file && (dump_flags & TDF_DETAILS))
1027 fprintf (dump_file, "Redirecting edge %i->%i to %i\n", e->src->index,
1028 e->dest->index, post_dom_bb->index);
1029
1030 e2 = redirect_edge_and_branch (e, post_dom_bb);
1031 cfg_altered = true;
1032
1033 /* If edge was already around, no updating is neccesary. */
1034 if (e2 != e)
1035 return e2;
1036
1037 if (!gimple_seq_empty_p (phi_nodes (post_dom_bb)))
1038 {
1039 /* We are sure that for every live PHI we are seeing control dependent BB.
1040 This means that we can pick any edge to duplicate PHI args from. */
1041 FOR_EACH_EDGE (e2, ei, post_dom_bb->preds)
1042 if (e2 != e)
1043 break;
1044 for (gsi = gsi_start_phis (post_dom_bb); !gsi_end_p (gsi);)
1045 {
1046 gimple phi = gsi_stmt (gsi);
1047 tree op;
1048 source_location locus;
1049
1050 /* PHIs for virtuals have no control dependency relation on them.
1051 We are lost here and must force renaming of the symbol. */
1052 if (!is_gimple_reg (gimple_phi_result (phi)))
1053 {
1054 mark_virtual_phi_result_for_renaming (phi);
1055 remove_phi_node (&gsi, true);
1056 continue;
1057 }
1058
1059 /* Dead PHI do not imply control dependency. */
1060 if (!gimple_plf (phi, STMT_NECESSARY))
1061 {
1062 gsi_next (&gsi);
1063 continue;
1064 }
1065
1066 op = gimple_phi_arg_def (phi, e2->dest_idx);
1067 locus = gimple_phi_arg_location (phi, e2->dest_idx);
1068 add_phi_arg (phi, op, e, locus);
1069 /* The resulting PHI if not dead can only be degenerate. */
1070 gcc_assert (degenerate_phi_p (phi));
1071 gsi_next (&gsi);
1072 }
1073 }
1074 return e;
1075 }
1076
1077 /* Remove dead statement pointed to by iterator I. Receives the basic block BB
1078 containing I so that we don't have to look it up. */
1079
1080 static void
1081 remove_dead_stmt (gimple_stmt_iterator *i, basic_block bb)
1082 {
1083 gimple stmt = gsi_stmt (*i);
1084
1085 if (dump_file && (dump_flags & TDF_DETAILS))
1086 {
1087 fprintf (dump_file, "Deleting : ");
1088 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1089 fprintf (dump_file, "\n");
1090 }
1091
1092 stats.removed++;
1093
1094 /* If we have determined that a conditional branch statement contributes
1095 nothing to the program, then we not only remove it, but we also change
1096 the flow graph so that the current block will simply fall-thru to its
1097 immediate post-dominator. The blocks we are circumventing will be
1098 removed by cleanup_tree_cfg if this change in the flow graph makes them
1099 unreachable. */
1100 if (is_ctrl_stmt (stmt))
1101 {
1102 basic_block post_dom_bb;
1103 edge e, e2;
1104 edge_iterator ei;
1105
1106 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
1107
1108 e = find_edge (bb, post_dom_bb);
1109
1110 /* If edge is already there, try to use it. This avoids need to update
1111 PHI nodes. Also watch for cases where post dominator does not exists
1112 or is exit block. These can happen for infinite loops as we create
1113 fake edges in the dominator tree. */
1114 if (e)
1115 ;
1116 else if (! post_dom_bb || post_dom_bb == EXIT_BLOCK_PTR)
1117 e = EDGE_SUCC (bb, 0);
1118 else
1119 e = forward_edge_to_pdom (EDGE_SUCC (bb, 0), post_dom_bb);
1120 gcc_assert (e);
1121 e->probability = REG_BR_PROB_BASE;
1122 e->count = bb->count;
1123
1124 /* The edge is no longer associated with a conditional, so it does
1125 not have TRUE/FALSE flags. */
1126 e->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
1127
1128 /* The lone outgoing edge from BB will be a fallthru edge. */
1129 e->flags |= EDGE_FALLTHRU;
1130
1131 /* Remove the remaining outgoing edges. */
1132 for (ei = ei_start (bb->succs); (e2 = ei_safe_edge (ei)); )
1133 if (e != e2)
1134 {
1135 cfg_altered = true;
1136 remove_edge (e2);
1137 }
1138 else
1139 ei_next (&ei);
1140 }
1141
1142 unlink_stmt_vdef (stmt);
1143 gsi_remove (i, true);
1144 release_defs (stmt);
1145 }
1146
1147 /* Eliminate unnecessary statements. Any instruction not marked as necessary
1148 contributes nothing to the program, and can be deleted. */
1149
1150 static bool
1151 eliminate_unnecessary_stmts (void)
1152 {
1153 bool something_changed = false;
1154 basic_block bb;
1155 gimple_stmt_iterator gsi, psi;
1156 gimple stmt;
1157 tree call;
1158 VEC (basic_block, heap) *h;
1159
1160 if (dump_file && (dump_flags & TDF_DETAILS))
1161 fprintf (dump_file, "\nEliminating unnecessary statements:\n");
1162
1163 clear_special_calls ();
1164
1165 /* Walking basic blocks and statements in reverse order avoids
1166 releasing SSA names before any other DEFs that refer to them are
1167 released. This helps avoid loss of debug information, as we get
1168 a chance to propagate all RHSs of removed SSAs into debug uses,
1169 rather than only the latest ones. E.g., consider:
1170
1171 x_3 = y_1 + z_2;
1172 a_5 = x_3 - b_4;
1173 # DEBUG a => a_5
1174
1175 If we were to release x_3 before a_5, when we reached a_5 and
1176 tried to substitute it into the debug stmt, we'd see x_3 there,
1177 but x_3's DEF, type, etc would have already been disconnected.
1178 By going backwards, the debug stmt first changes to:
1179
1180 # DEBUG a => x_3 - b_4
1181
1182 and then to:
1183
1184 # DEBUG a => y_1 + z_2 - b_4
1185
1186 as desired. */
1187 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
1188 h = get_all_dominated_blocks (CDI_DOMINATORS, single_succ (ENTRY_BLOCK_PTR));
1189
1190 while (VEC_length (basic_block, h))
1191 {
1192 bb = VEC_pop (basic_block, h);
1193
1194 /* Remove dead statements. */
1195 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi = psi)
1196 {
1197 stmt = gsi_stmt (gsi);
1198
1199 psi = gsi;
1200 gsi_prev (&psi);
1201
1202 stats.total++;
1203
1204 /* If GSI is not necessary then remove it. */
1205 if (!gimple_plf (stmt, STMT_NECESSARY))
1206 {
1207 if (!is_gimple_debug (stmt))
1208 something_changed = true;
1209 remove_dead_stmt (&gsi, bb);
1210 }
1211 else if (is_gimple_call (stmt))
1212 {
1213 call = gimple_call_fndecl (stmt);
1214 if (call)
1215 {
1216 tree name;
1217
1218 /* When LHS of var = call (); is dead, simplify it into
1219 call (); saving one operand. */
1220 name = gimple_call_lhs (stmt);
1221 if (name && TREE_CODE (name) == SSA_NAME
1222 && !TEST_BIT (processed, SSA_NAME_VERSION (name)))
1223 {
1224 something_changed = true;
1225 if (dump_file && (dump_flags & TDF_DETAILS))
1226 {
1227 fprintf (dump_file, "Deleting LHS of call: ");
1228 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1229 fprintf (dump_file, "\n");
1230 }
1231
1232 gimple_call_set_lhs (stmt, NULL_TREE);
1233 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1234 update_stmt (stmt);
1235 release_ssa_name (name);
1236 }
1237 notice_special_calls (stmt);
1238 }
1239 }
1240 }
1241 }
1242
1243 VEC_free (basic_block, heap, h);
1244
1245 /* Since we don't track liveness of virtual PHI nodes, it is possible that we
1246 rendered some PHI nodes unreachable while they are still in use.
1247 Mark them for renaming. */
1248 if (cfg_altered)
1249 {
1250 basic_block prev_bb;
1251
1252 find_unreachable_blocks ();
1253
1254 /* Delete all unreachable basic blocks in reverse dominator order. */
1255 for (bb = EXIT_BLOCK_PTR->prev_bb; bb != ENTRY_BLOCK_PTR; bb = prev_bb)
1256 {
1257 prev_bb = bb->prev_bb;
1258
1259 if (!TEST_BIT (bb_contains_live_stmts, bb->index)
1260 || !(bb->flags & BB_REACHABLE))
1261 {
1262 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1263 if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
1264 {
1265 bool found = false;
1266 imm_use_iterator iter;
1267
1268 FOR_EACH_IMM_USE_STMT (stmt, iter, gimple_phi_result (gsi_stmt (gsi)))
1269 {
1270 if (!(gimple_bb (stmt)->flags & BB_REACHABLE))
1271 continue;
1272 if (gimple_code (stmt) == GIMPLE_PHI
1273 || gimple_plf (stmt, STMT_NECESSARY))
1274 {
1275 found = true;
1276 BREAK_FROM_IMM_USE_STMT (iter);
1277 }
1278 }
1279 if (found)
1280 mark_virtual_phi_result_for_renaming (gsi_stmt (gsi));
1281 }
1282
1283 if (!(bb->flags & BB_REACHABLE))
1284 {
1285 /* Speed up the removal of blocks that don't
1286 dominate others. Walking backwards, this should
1287 be the common case. ??? Do we need to recompute
1288 dominators because of cfg_altered? */
1289 if (!MAY_HAVE_DEBUG_STMTS
1290 || !first_dom_son (CDI_DOMINATORS, bb))
1291 delete_basic_block (bb);
1292 else
1293 {
1294 h = get_all_dominated_blocks (CDI_DOMINATORS, bb);
1295
1296 while (VEC_length (basic_block, h))
1297 {
1298 bb = VEC_pop (basic_block, h);
1299 prev_bb = bb->prev_bb;
1300 /* Rearrangements to the CFG may have failed
1301 to update the dominators tree, so that
1302 formerly-dominated blocks are now
1303 otherwise reachable. */
1304 if (!!(bb->flags & BB_REACHABLE))
1305 continue;
1306 delete_basic_block (bb);
1307 }
1308
1309 VEC_free (basic_block, heap, h);
1310 }
1311 }
1312 }
1313 }
1314 }
1315 FOR_EACH_BB (bb)
1316 {
1317 /* Remove dead PHI nodes. */
1318 something_changed |= remove_dead_phis (bb);
1319 }
1320
1321 return something_changed;
1322 }
1323
1324
1325 /* Print out removed statement statistics. */
1326
1327 static void
1328 print_stats (void)
1329 {
1330 float percg;
1331
1332 percg = ((float) stats.removed / (float) stats.total) * 100;
1333 fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
1334 stats.removed, stats.total, (int) percg);
1335
1336 if (stats.total_phis == 0)
1337 percg = 0;
1338 else
1339 percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
1340
1341 fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
1342 stats.removed_phis, stats.total_phis, (int) percg);
1343 }
1344
1345 /* Initialization for this pass. Set up the used data structures. */
1346
1347 static void
1348 tree_dce_init (bool aggressive)
1349 {
1350 memset ((void *) &stats, 0, sizeof (stats));
1351
1352 if (aggressive)
1353 {
1354 int i;
1355
1356 control_dependence_map = XNEWVEC (bitmap, last_basic_block);
1357 for (i = 0; i < last_basic_block; ++i)
1358 control_dependence_map[i] = BITMAP_ALLOC (NULL);
1359
1360 last_stmt_necessary = sbitmap_alloc (last_basic_block);
1361 sbitmap_zero (last_stmt_necessary);
1362 bb_contains_live_stmts = sbitmap_alloc (last_basic_block);
1363 sbitmap_zero (bb_contains_live_stmts);
1364 }
1365
1366 processed = sbitmap_alloc (num_ssa_names + 1);
1367 sbitmap_zero (processed);
1368
1369 worklist = VEC_alloc (gimple, heap, 64);
1370 cfg_altered = false;
1371 }
1372
1373 /* Cleanup after this pass. */
1374
1375 static void
1376 tree_dce_done (bool aggressive)
1377 {
1378 if (aggressive)
1379 {
1380 int i;
1381
1382 for (i = 0; i < last_basic_block; ++i)
1383 BITMAP_FREE (control_dependence_map[i]);
1384 free (control_dependence_map);
1385
1386 sbitmap_free (visited_control_parents);
1387 sbitmap_free (last_stmt_necessary);
1388 sbitmap_free (bb_contains_live_stmts);
1389 bb_contains_live_stmts = NULL;
1390 }
1391
1392 sbitmap_free (processed);
1393
1394 VEC_free (gimple, heap, worklist);
1395 }
1396
1397 /* Main routine to eliminate dead code.
1398
1399 AGGRESSIVE controls the aggressiveness of the algorithm.
1400 In conservative mode, we ignore control dependence and simply declare
1401 all but the most trivially dead branches necessary. This mode is fast.
1402 In aggressive mode, control dependences are taken into account, which
1403 results in more dead code elimination, but at the cost of some time.
1404
1405 FIXME: Aggressive mode before PRE doesn't work currently because
1406 the dominance info is not invalidated after DCE1. This is
1407 not an issue right now because we only run aggressive DCE
1408 as the last tree SSA pass, but keep this in mind when you
1409 start experimenting with pass ordering. */
1410
1411 static unsigned int
1412 perform_tree_ssa_dce (bool aggressive)
1413 {
1414 struct edge_list *el = NULL;
1415 bool something_changed = 0;
1416
1417 calculate_dominance_info (CDI_DOMINATORS);
1418
1419 /* Preheaders are needed for SCEV to work.
1420 Simple lateches and recorded exits improve chances that loop will
1421 proved to be finite in testcases such as in loop-15.c and loop-24.c */
1422 if (aggressive)
1423 loop_optimizer_init (LOOPS_NORMAL
1424 | LOOPS_HAVE_RECORDED_EXITS);
1425
1426 tree_dce_init (aggressive);
1427
1428 if (aggressive)
1429 {
1430 /* Compute control dependence. */
1431 timevar_push (TV_CONTROL_DEPENDENCES);
1432 calculate_dominance_info (CDI_POST_DOMINATORS);
1433 el = create_edge_list ();
1434 find_all_control_dependences (el);
1435 timevar_pop (TV_CONTROL_DEPENDENCES);
1436
1437 visited_control_parents = sbitmap_alloc (last_basic_block);
1438 sbitmap_zero (visited_control_parents);
1439
1440 mark_dfs_back_edges ();
1441 }
1442
1443 find_obviously_necessary_stmts (el);
1444
1445 if (aggressive)
1446 loop_optimizer_finalize ();
1447
1448 longest_chain = 0;
1449 total_chain = 0;
1450 nr_walks = 0;
1451 chain_ovfl = false;
1452 visited = BITMAP_ALLOC (NULL);
1453 propagate_necessity (el);
1454 BITMAP_FREE (visited);
1455
1456 something_changed |= eliminate_unnecessary_stmts ();
1457 something_changed |= cfg_altered;
1458
1459 /* We do not update postdominators, so free them unconditionally. */
1460 free_dominance_info (CDI_POST_DOMINATORS);
1461
1462 /* If we removed paths in the CFG, then we need to update
1463 dominators as well. I haven't investigated the possibility
1464 of incrementally updating dominators. */
1465 if (cfg_altered)
1466 free_dominance_info (CDI_DOMINATORS);
1467
1468 statistics_counter_event (cfun, "Statements deleted", stats.removed);
1469 statistics_counter_event (cfun, "PHI nodes deleted", stats.removed_phis);
1470
1471 /* Debugging dumps. */
1472 if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
1473 print_stats ();
1474
1475 tree_dce_done (aggressive);
1476
1477 free_edge_list (el);
1478
1479 if (something_changed)
1480 return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
1481 | TODO_remove_unused_locals);
1482 else
1483 return 0;
1484 }
1485
1486 /* Pass entry points. */
1487 static unsigned int
1488 tree_ssa_dce (void)
1489 {
1490 return perform_tree_ssa_dce (/*aggressive=*/false);
1491 }
1492
1493 static unsigned int
1494 tree_ssa_dce_loop (void)
1495 {
1496 unsigned int todo;
1497 todo = perform_tree_ssa_dce (/*aggressive=*/false);
1498 if (todo)
1499 {
1500 free_numbers_of_iterations_estimates ();
1501 scev_reset ();
1502 }
1503 return todo;
1504 }
1505
1506 static unsigned int
1507 tree_ssa_cd_dce (void)
1508 {
1509 return perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
1510 }
1511
1512 static bool
1513 gate_dce (void)
1514 {
1515 return flag_tree_dce != 0;
1516 }
1517
1518 struct gimple_opt_pass pass_dce =
1519 {
1520 {
1521 GIMPLE_PASS,
1522 "dce", /* name */
1523 gate_dce, /* gate */
1524 tree_ssa_dce, /* execute */
1525 NULL, /* sub */
1526 NULL, /* next */
1527 0, /* static_pass_number */
1528 TV_TREE_DCE, /* tv_id */
1529 PROP_cfg | PROP_ssa, /* properties_required */
1530 0, /* properties_provided */
1531 0, /* properties_destroyed */
1532 0, /* todo_flags_start */
1533 TODO_verify_ssa /* todo_flags_finish */
1534 }
1535 };
1536
1537 struct gimple_opt_pass pass_dce_loop =
1538 {
1539 {
1540 GIMPLE_PASS,
1541 "dceloop", /* name */
1542 gate_dce, /* gate */
1543 tree_ssa_dce_loop, /* execute */
1544 NULL, /* sub */
1545 NULL, /* next */
1546 0, /* static_pass_number */
1547 TV_TREE_DCE, /* tv_id */
1548 PROP_cfg | PROP_ssa, /* properties_required */
1549 0, /* properties_provided */
1550 0, /* properties_destroyed */
1551 0, /* todo_flags_start */
1552 TODO_verify_ssa /* todo_flags_finish */
1553 }
1554 };
1555
1556 struct gimple_opt_pass pass_cd_dce =
1557 {
1558 {
1559 GIMPLE_PASS,
1560 "cddce", /* name */
1561 gate_dce, /* gate */
1562 tree_ssa_cd_dce, /* execute */
1563 NULL, /* sub */
1564 NULL, /* next */
1565 0, /* static_pass_number */
1566 TV_TREE_CD_DCE, /* tv_id */
1567 PROP_cfg | PROP_ssa, /* properties_required */
1568 0, /* properties_provided */
1569 0, /* properties_destroyed */
1570 0, /* todo_flags_start */
1571 TODO_verify_ssa
1572 | TODO_verify_flow /* todo_flags_finish */
1573 }
1574 };