tree-ssa-dce.c (eliminate_unnecessary_stmts): Don't regard the removal of a debug...
[gcc.git] / gcc / tree-ssa-dce.c
1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Ben Elliston <bje@redhat.com>
5 and Andrew MacLeod <amacleod@redhat.com>
6 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 3, or (at your option) any
13 later version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* Dead code elimination.
25
26 References:
27
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
30
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
33
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
37 impact on the output.
38
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
45
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "ggc.h"
51
52 /* These RTL headers are needed for basic-block.h. */
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "hard-reg-set.h"
56 #include "obstack.h"
57 #include "basic-block.h"
58
59 #include "tree.h"
60 #include "diagnostic.h"
61 #include "tree-flow.h"
62 #include "gimple.h"
63 #include "tree-dump.h"
64 #include "tree-pass.h"
65 #include "timevar.h"
66 #include "flags.h"
67 #include "cfgloop.h"
68 #include "tree-scalar-evolution.h"
69
70 static struct stmt_stats
71 {
72 int total;
73 int total_phis;
74 int removed;
75 int removed_phis;
76 } stats;
77
78 #define STMT_NECESSARY GF_PLF_1
79
80 static VEC(gimple,heap) *worklist;
81
82 /* Vector indicating an SSA name has already been processed and marked
83 as necessary. */
84 static sbitmap processed;
85
86 /* Vector indicating that last_stmt if a basic block has already been
87 marked as necessary. */
88 static sbitmap last_stmt_necessary;
89
90 /* Vector indicating that BB contains statements that are live. */
91 static sbitmap bb_contains_live_stmts;
92
93 /* Before we can determine whether a control branch is dead, we need to
94 compute which blocks are control dependent on which edges.
95
96 We expect each block to be control dependent on very few edges so we
97 use a bitmap for each block recording its edges. An array holds the
98 bitmap. The Ith bit in the bitmap is set if that block is dependent
99 on the Ith edge. */
100 static bitmap *control_dependence_map;
101
102 /* Vector indicating that a basic block has already had all the edges
103 processed that it is control dependent on. */
104 static sbitmap visited_control_parents;
105
106 /* TRUE if this pass alters the CFG (by removing control statements).
107 FALSE otherwise.
108
109 If this pass alters the CFG, then it will arrange for the dominators
110 to be recomputed. */
111 static bool cfg_altered;
112
113 /* Execute code that follows the macro for each edge (given number
114 EDGE_NUMBER within the CODE) for which the block with index N is
115 control dependent. */
116 #define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER) \
117 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0, \
118 (EDGE_NUMBER), (BI))
119
120
121 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
122 static inline void
123 set_control_dependence_map_bit (basic_block bb, int edge_index)
124 {
125 if (bb == ENTRY_BLOCK_PTR)
126 return;
127 gcc_assert (bb != EXIT_BLOCK_PTR);
128 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
129 }
130
131 /* Clear all control dependences for block BB. */
132 static inline void
133 clear_control_dependence_bitmap (basic_block bb)
134 {
135 bitmap_clear (control_dependence_map[bb->index]);
136 }
137
138
139 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
140 This function is necessary because some blocks have negative numbers. */
141
142 static inline basic_block
143 find_pdom (basic_block block)
144 {
145 gcc_assert (block != ENTRY_BLOCK_PTR);
146
147 if (block == EXIT_BLOCK_PTR)
148 return EXIT_BLOCK_PTR;
149 else
150 {
151 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
152 if (! bb)
153 return EXIT_BLOCK_PTR;
154 return bb;
155 }
156 }
157
158
159 /* Determine all blocks' control dependences on the given edge with edge_list
160 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
161
162 static void
163 find_control_dependence (struct edge_list *el, int edge_index)
164 {
165 basic_block current_block;
166 basic_block ending_block;
167
168 gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
169
170 if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
171 ending_block = single_succ (ENTRY_BLOCK_PTR);
172 else
173 ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
174
175 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
176 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
177 current_block = find_pdom (current_block))
178 {
179 edge e = INDEX_EDGE (el, edge_index);
180
181 /* For abnormal edges, we don't make current_block control
182 dependent because instructions that throw are always necessary
183 anyway. */
184 if (e->flags & EDGE_ABNORMAL)
185 continue;
186
187 set_control_dependence_map_bit (current_block, edge_index);
188 }
189 }
190
191
192 /* Record all blocks' control dependences on all edges in the edge
193 list EL, ala Morgan, Section 3.6. */
194
195 static void
196 find_all_control_dependences (struct edge_list *el)
197 {
198 int i;
199
200 for (i = 0; i < NUM_EDGES (el); ++i)
201 find_control_dependence (el, i);
202 }
203
204 /* If STMT is not already marked necessary, mark it, and add it to the
205 worklist if ADD_TO_WORKLIST is true. */
206 static inline void
207 mark_stmt_necessary (gimple stmt, bool add_to_worklist)
208 {
209 gcc_assert (stmt);
210
211 if (gimple_plf (stmt, STMT_NECESSARY))
212 return;
213
214 if (dump_file && (dump_flags & TDF_DETAILS))
215 {
216 fprintf (dump_file, "Marking useful stmt: ");
217 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
218 fprintf (dump_file, "\n");
219 }
220
221 gimple_set_plf (stmt, STMT_NECESSARY, true);
222 if (add_to_worklist)
223 VEC_safe_push (gimple, heap, worklist, stmt);
224 if (bb_contains_live_stmts && !is_gimple_debug (stmt))
225 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
226 }
227
228
229 /* Mark the statement defining operand OP as necessary. */
230
231 static inline void
232 mark_operand_necessary (tree op)
233 {
234 gimple stmt;
235 int ver;
236
237 gcc_assert (op);
238
239 ver = SSA_NAME_VERSION (op);
240 if (TEST_BIT (processed, ver))
241 {
242 stmt = SSA_NAME_DEF_STMT (op);
243 gcc_assert (gimple_nop_p (stmt)
244 || gimple_plf (stmt, STMT_NECESSARY));
245 return;
246 }
247 SET_BIT (processed, ver);
248
249 stmt = SSA_NAME_DEF_STMT (op);
250 gcc_assert (stmt);
251
252 if (gimple_plf (stmt, STMT_NECESSARY) || gimple_nop_p (stmt))
253 return;
254
255 if (dump_file && (dump_flags & TDF_DETAILS))
256 {
257 fprintf (dump_file, "marking necessary through ");
258 print_generic_expr (dump_file, op, 0);
259 fprintf (dump_file, " stmt ");
260 print_gimple_stmt (dump_file, stmt, 0, 0);
261 }
262
263 gimple_set_plf (stmt, STMT_NECESSARY, true);
264 if (bb_contains_live_stmts)
265 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
266 VEC_safe_push (gimple, heap, worklist, stmt);
267 }
268
269
270 /* Mark STMT as necessary if it obviously is. Add it to the worklist if
271 it can make other statements necessary.
272
273 If AGGRESSIVE is false, control statements are conservatively marked as
274 necessary. */
275
276 static void
277 mark_stmt_if_obviously_necessary (gimple stmt, bool aggressive)
278 {
279 tree lhs = NULL_TREE;
280 /* With non-call exceptions, we have to assume that all statements could
281 throw. If a statement may throw, it is inherently necessary. */
282 if (flag_non_call_exceptions
283 && stmt_could_throw_p (stmt))
284 {
285 mark_stmt_necessary (stmt, true);
286 return;
287 }
288
289 /* Statements that are implicitly live. Most function calls, asm
290 and return statements are required. Labels and GIMPLE_BIND nodes
291 are kept because they are control flow, and we have no way of
292 knowing whether they can be removed. DCE can eliminate all the
293 other statements in a block, and CFG can then remove the block
294 and labels. */
295 switch (gimple_code (stmt))
296 {
297 case GIMPLE_PREDICT:
298 case GIMPLE_LABEL:
299 mark_stmt_necessary (stmt, false);
300 return;
301
302 case GIMPLE_ASM:
303 case GIMPLE_RESX:
304 case GIMPLE_RETURN:
305 mark_stmt_necessary (stmt, true);
306 return;
307
308 case GIMPLE_CALL:
309 /* Most, but not all function calls are required. Function calls that
310 produce no result and have no side effects (i.e. const pure
311 functions) are unnecessary. */
312 if (gimple_has_side_effects (stmt))
313 {
314 mark_stmt_necessary (stmt, true);
315 return;
316 }
317 if (!gimple_call_lhs (stmt))
318 return;
319 lhs = gimple_call_lhs (stmt);
320 /* Fall through */
321
322 case GIMPLE_ASSIGN:
323 if (!lhs)
324 lhs = gimple_assign_lhs (stmt);
325 break;
326
327 case GIMPLE_DEBUG:
328 /* Debug temps without a value are not useful. ??? If we could
329 easily locate the debug temp bind stmt for a use thereof,
330 would could refrain from marking all debug temps here, and
331 mark them only if they're used. */
332 if (gimple_debug_bind_has_value_p (stmt)
333 || TREE_CODE (gimple_debug_bind_get_var (stmt)) != DEBUG_EXPR_DECL)
334 mark_stmt_necessary (stmt, false);
335 return;
336
337 case GIMPLE_GOTO:
338 gcc_assert (!simple_goto_p (stmt));
339 mark_stmt_necessary (stmt, true);
340 return;
341
342 case GIMPLE_COND:
343 gcc_assert (EDGE_COUNT (gimple_bb (stmt)->succs) == 2);
344 /* Fall through. */
345
346 case GIMPLE_SWITCH:
347 if (! aggressive)
348 mark_stmt_necessary (stmt, true);
349 break;
350
351 default:
352 break;
353 }
354
355 /* If the statement has volatile operands, it needs to be preserved.
356 Same for statements that can alter control flow in unpredictable
357 ways. */
358 if (gimple_has_volatile_ops (stmt) || is_ctrl_altering_stmt (stmt))
359 {
360 mark_stmt_necessary (stmt, true);
361 return;
362 }
363
364 if (is_hidden_global_store (stmt))
365 {
366 mark_stmt_necessary (stmt, true);
367 return;
368 }
369
370 return;
371 }
372
373
374 /* Make corresponding control dependent edges necessary. We only
375 have to do this once for each basic block, so we clear the bitmap
376 after we're done. */
377 static void
378 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el)
379 {
380 bitmap_iterator bi;
381 unsigned edge_number;
382
383 gcc_assert (bb != EXIT_BLOCK_PTR);
384
385 if (bb == ENTRY_BLOCK_PTR)
386 return;
387
388 EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
389 {
390 gimple stmt;
391 basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
392
393 if (TEST_BIT (last_stmt_necessary, cd_bb->index))
394 continue;
395 SET_BIT (last_stmt_necessary, cd_bb->index);
396 SET_BIT (bb_contains_live_stmts, cd_bb->index);
397
398 stmt = last_stmt (cd_bb);
399 if (stmt && is_ctrl_stmt (stmt))
400 mark_stmt_necessary (stmt, true);
401 }
402 }
403
404
405 /* Find obviously necessary statements. These are things like most function
406 calls, and stores to file level variables.
407
408 If EL is NULL, control statements are conservatively marked as
409 necessary. Otherwise it contains the list of edges used by control
410 dependence analysis. */
411
412 static void
413 find_obviously_necessary_stmts (struct edge_list *el)
414 {
415 basic_block bb;
416 gimple_stmt_iterator gsi;
417 edge e;
418 gimple phi, stmt;
419
420 FOR_EACH_BB (bb)
421 {
422 /* PHI nodes are never inherently necessary. */
423 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
424 {
425 phi = gsi_stmt (gsi);
426 gimple_set_plf (phi, STMT_NECESSARY, false);
427 }
428
429 /* Check all statements in the block. */
430 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
431 {
432 stmt = gsi_stmt (gsi);
433 gimple_set_plf (stmt, STMT_NECESSARY, false);
434 mark_stmt_if_obviously_necessary (stmt, el != NULL);
435 }
436 }
437
438 /* Pure and const functions are finite and thus have no infinite loops in
439 them. */
440 if ((TREE_READONLY (current_function_decl)
441 || DECL_PURE_P (current_function_decl))
442 && !DECL_LOOPING_CONST_OR_PURE_P (current_function_decl))
443 return;
444
445 /* Prevent the empty possibly infinite loops from being removed. */
446 if (el)
447 {
448 loop_iterator li;
449 struct loop *loop;
450 scev_initialize ();
451 if (mark_irreducible_loops ())
452 FOR_EACH_BB (bb)
453 {
454 edge_iterator ei;
455 FOR_EACH_EDGE (e, ei, bb->succs)
456 if ((e->flags & EDGE_DFS_BACK)
457 && (e->flags & EDGE_IRREDUCIBLE_LOOP))
458 {
459 if (dump_file)
460 fprintf (dump_file, "Marking back edge of irreducible loop %i->%i\n",
461 e->src->index, e->dest->index);
462 mark_control_dependent_edges_necessary (e->dest, el);
463 }
464 }
465
466 FOR_EACH_LOOP (li, loop, 0)
467 if (!finite_loop_p (loop))
468 {
469 if (dump_file)
470 fprintf (dump_file, "can not prove finiteness of loop %i\n", loop->num);
471 mark_control_dependent_edges_necessary (loop->latch, el);
472 }
473 scev_finalize ();
474 }
475 }
476
477
478 /* Return true if REF is based on an aliased base, otherwise false. */
479
480 static bool
481 ref_may_be_aliased (tree ref)
482 {
483 while (handled_component_p (ref))
484 ref = TREE_OPERAND (ref, 0);
485 return !(DECL_P (ref)
486 && !may_be_aliased (ref));
487 }
488
489 static bitmap visited = NULL;
490 static unsigned int longest_chain = 0;
491 static unsigned int total_chain = 0;
492 static bool chain_ovfl = false;
493
494 /* Worker for the walker that marks reaching definitions of REF,
495 which is based on a non-aliased decl, necessary. It returns
496 true whenever the defining statement of the current VDEF is
497 a kill for REF, as no dominating may-defs are necessary for REF
498 anymore. DATA points to cached get_ref_base_and_extent data for REF. */
499
500 static bool
501 mark_aliased_reaching_defs_necessary_1 (ao_ref *ref, tree vdef,
502 void *data ATTRIBUTE_UNUSED)
503 {
504 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
505
506 /* All stmts we visit are necessary. */
507 mark_operand_necessary (vdef);
508
509 /* If the stmt lhs kills ref, then we can stop walking. */
510 if (gimple_has_lhs (def_stmt)
511 && TREE_CODE (gimple_get_lhs (def_stmt)) != SSA_NAME)
512 {
513 tree base, lhs = gimple_get_lhs (def_stmt);
514 HOST_WIDE_INT size, offset, max_size;
515 ao_ref_base (ref);
516 base = get_ref_base_and_extent (lhs, &offset, &size, &max_size);
517 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
518 so base == refd->base does not always hold. */
519 if (base == ref->base)
520 {
521 /* For a must-alias check we need to be able to constrain
522 the accesses properly. */
523 if (size != -1 && size == max_size
524 && ref->max_size != -1)
525 {
526 if (offset <= ref->offset
527 && offset + size >= ref->offset + ref->max_size)
528 return true;
529 }
530 /* Or they need to be exactly the same. */
531 else if (ref->ref
532 && operand_equal_p (ref->ref, lhs, 0))
533 return true;
534 }
535 }
536
537 /* Otherwise keep walking. */
538 return false;
539 }
540
541 static void
542 mark_aliased_reaching_defs_necessary (gimple stmt, tree ref)
543 {
544 unsigned int chain;
545 ao_ref refd;
546 gcc_assert (!chain_ovfl);
547 ao_ref_init (&refd, ref);
548 chain = walk_aliased_vdefs (&refd, gimple_vuse (stmt),
549 mark_aliased_reaching_defs_necessary_1,
550 NULL, NULL);
551 if (chain > longest_chain)
552 longest_chain = chain;
553 total_chain += chain;
554 }
555
556 /* Worker for the walker that marks reaching definitions of REF, which
557 is not based on a non-aliased decl. For simplicity we need to end
558 up marking all may-defs necessary that are not based on a non-aliased
559 decl. The only job of this walker is to skip may-defs based on
560 a non-aliased decl. */
561
562 static bool
563 mark_all_reaching_defs_necessary_1 (ao_ref *ref ATTRIBUTE_UNUSED,
564 tree vdef, void *data ATTRIBUTE_UNUSED)
565 {
566 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
567
568 /* We have to skip already visited (and thus necessary) statements
569 to make the chaining work after we dropped back to simple mode. */
570 if (chain_ovfl
571 && TEST_BIT (processed, SSA_NAME_VERSION (vdef)))
572 {
573 gcc_assert (gimple_nop_p (def_stmt)
574 || gimple_plf (def_stmt, STMT_NECESSARY));
575 return false;
576 }
577
578 /* We want to skip stores to non-aliased variables. */
579 if (!chain_ovfl
580 && gimple_assign_single_p (def_stmt))
581 {
582 tree lhs = gimple_assign_lhs (def_stmt);
583 if (!ref_may_be_aliased (lhs))
584 return false;
585 }
586
587 mark_operand_necessary (vdef);
588
589 return false;
590 }
591
592 static void
593 mark_all_reaching_defs_necessary (gimple stmt)
594 {
595 walk_aliased_vdefs (NULL, gimple_vuse (stmt),
596 mark_all_reaching_defs_necessary_1, NULL, &visited);
597 }
598
599 /* Return true for PHI nodes with one or identical arguments
600 can be removed. */
601 static bool
602 degenerate_phi_p (gimple phi)
603 {
604 unsigned int i;
605 tree op = gimple_phi_arg_def (phi, 0);
606 for (i = 1; i < gimple_phi_num_args (phi); i++)
607 if (gimple_phi_arg_def (phi, i) != op)
608 return false;
609 return true;
610 }
611
612 /* Propagate necessity using the operands of necessary statements.
613 Process the uses on each statement in the worklist, and add all
614 feeding statements which contribute to the calculation of this
615 value to the worklist.
616
617 In conservative mode, EL is NULL. */
618
619 static void
620 propagate_necessity (struct edge_list *el)
621 {
622 gimple stmt;
623 bool aggressive = (el ? true : false);
624
625 if (dump_file && (dump_flags & TDF_DETAILS))
626 fprintf (dump_file, "\nProcessing worklist:\n");
627
628 while (VEC_length (gimple, worklist) > 0)
629 {
630 /* Take STMT from worklist. */
631 stmt = VEC_pop (gimple, worklist);
632
633 if (dump_file && (dump_flags & TDF_DETAILS))
634 {
635 fprintf (dump_file, "processing: ");
636 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
637 fprintf (dump_file, "\n");
638 }
639
640 if (aggressive)
641 {
642 /* Mark the last statements of the basic blocks that the block
643 containing STMT is control dependent on, but only if we haven't
644 already done so. */
645 basic_block bb = gimple_bb (stmt);
646 if (bb != ENTRY_BLOCK_PTR
647 && ! TEST_BIT (visited_control_parents, bb->index))
648 {
649 SET_BIT (visited_control_parents, bb->index);
650 mark_control_dependent_edges_necessary (bb, el);
651 }
652 }
653
654 if (gimple_code (stmt) == GIMPLE_PHI
655 /* We do not process virtual PHI nodes nor do we track their
656 necessity. */
657 && is_gimple_reg (gimple_phi_result (stmt)))
658 {
659 /* PHI nodes are somewhat special in that each PHI alternative has
660 data and control dependencies. All the statements feeding the
661 PHI node's arguments are always necessary. In aggressive mode,
662 we also consider the control dependent edges leading to the
663 predecessor block associated with each PHI alternative as
664 necessary. */
665 size_t k;
666
667 for (k = 0; k < gimple_phi_num_args (stmt); k++)
668 {
669 tree arg = PHI_ARG_DEF (stmt, k);
670 if (TREE_CODE (arg) == SSA_NAME)
671 mark_operand_necessary (arg);
672 }
673
674 if (aggressive && !degenerate_phi_p (stmt))
675 {
676 for (k = 0; k < gimple_phi_num_args (stmt); k++)
677 {
678 basic_block arg_bb = gimple_phi_arg_edge (stmt, k)->src;
679 if (arg_bb != ENTRY_BLOCK_PTR
680 && ! TEST_BIT (visited_control_parents, arg_bb->index))
681 {
682 SET_BIT (visited_control_parents, arg_bb->index);
683 mark_control_dependent_edges_necessary (arg_bb, el);
684 }
685 }
686 }
687 }
688 else
689 {
690 /* Propagate through the operands. Examine all the USE, VUSE and
691 VDEF operands in this statement. Mark all the statements
692 which feed this statement's uses as necessary. */
693 ssa_op_iter iter;
694 tree use;
695
696 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
697 mark_operand_necessary (use);
698
699 use = gimple_vuse (stmt);
700 if (!use)
701 continue;
702
703 /* If we dropped to simple mode make all immediately
704 reachable definitions necessary. */
705 if (chain_ovfl)
706 {
707 mark_all_reaching_defs_necessary (stmt);
708 continue;
709 }
710
711 /* For statements that may load from memory (have a VUSE) we
712 have to mark all reaching (may-)definitions as necessary.
713 We partition this task into two cases:
714 1) explicit loads based on decls that are not aliased
715 2) implicit loads (like calls) and explicit loads not
716 based on decls that are not aliased (like indirect
717 references or loads from globals)
718 For 1) we mark all reaching may-defs as necessary, stopping
719 at dominating kills. For 2) we want to mark all dominating
720 references necessary, but non-aliased ones which we handle
721 in 1). By keeping a global visited bitmap for references
722 we walk for 2) we avoid quadratic behavior for those. */
723
724 if (is_gimple_call (stmt))
725 {
726 tree callee = gimple_call_fndecl (stmt);
727 unsigned i;
728
729 /* Calls to functions that are merely acting as barriers
730 or that only store to memory do not make any previous
731 stores necessary. */
732 if (callee != NULL_TREE
733 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
734 && (DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET
735 || DECL_FUNCTION_CODE (callee) == BUILT_IN_MALLOC
736 || DECL_FUNCTION_CODE (callee) == BUILT_IN_FREE))
737 continue;
738
739 /* Calls implicitly load from memory, their arguments
740 in addition may explicitly perform memory loads. */
741 mark_all_reaching_defs_necessary (stmt);
742 for (i = 0; i < gimple_call_num_args (stmt); ++i)
743 {
744 tree arg = gimple_call_arg (stmt, i);
745 if (TREE_CODE (arg) == SSA_NAME
746 || is_gimple_min_invariant (arg))
747 continue;
748 if (!ref_may_be_aliased (arg))
749 mark_aliased_reaching_defs_necessary (stmt, arg);
750 }
751 }
752 else if (gimple_assign_single_p (stmt))
753 {
754 tree rhs;
755 bool rhs_aliased = false;
756 /* If this is a load mark things necessary. */
757 rhs = gimple_assign_rhs1 (stmt);
758 if (TREE_CODE (rhs) != SSA_NAME
759 && !is_gimple_min_invariant (rhs))
760 {
761 if (!ref_may_be_aliased (rhs))
762 mark_aliased_reaching_defs_necessary (stmt, rhs);
763 else
764 rhs_aliased = true;
765 }
766 if (rhs_aliased)
767 mark_all_reaching_defs_necessary (stmt);
768 }
769 else if (gimple_code (stmt) == GIMPLE_RETURN)
770 {
771 tree rhs = gimple_return_retval (stmt);
772 /* A return statement may perform a load. */
773 if (TREE_CODE (rhs) != SSA_NAME
774 && !is_gimple_min_invariant (rhs))
775 {
776 if (!ref_may_be_aliased (rhs))
777 mark_aliased_reaching_defs_necessary (stmt, rhs);
778 else
779 mark_all_reaching_defs_necessary (stmt);
780 }
781 }
782 else if (gimple_code (stmt) == GIMPLE_ASM)
783 {
784 unsigned i;
785 mark_all_reaching_defs_necessary (stmt);
786 /* Inputs may perform loads. */
787 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
788 {
789 tree op = TREE_VALUE (gimple_asm_input_op (stmt, i));
790 if (TREE_CODE (op) != SSA_NAME
791 && !is_gimple_min_invariant (op)
792 && !ref_may_be_aliased (op))
793 mark_aliased_reaching_defs_necessary (stmt, op);
794 }
795 }
796 else
797 gcc_unreachable ();
798
799 /* If we over-used our alias oracle budget drop to simple
800 mode. The cost metric allows quadratic behavior up to
801 a constant maximal chain and after that falls back to
802 super-linear complexity. */
803 if (longest_chain > 256
804 && total_chain > 256 * longest_chain)
805 {
806 chain_ovfl = true;
807 if (visited)
808 bitmap_clear (visited);
809 }
810 }
811 }
812 }
813
814 /* Replace all uses of result of PHI by underlying variable and mark it
815 for renaming. */
816
817 void
818 mark_virtual_phi_result_for_renaming (gimple phi)
819 {
820 bool used = false;
821 imm_use_iterator iter;
822 use_operand_p use_p;
823 gimple stmt;
824 tree result_ssa, result_var;
825
826 if (dump_file && (dump_flags & TDF_DETAILS))
827 {
828 fprintf (dump_file, "Marking result for renaming : ");
829 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
830 fprintf (dump_file, "\n");
831 }
832
833 result_ssa = gimple_phi_result (phi);
834 result_var = SSA_NAME_VAR (result_ssa);
835 FOR_EACH_IMM_USE_STMT (stmt, iter, result_ssa)
836 {
837 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
838 SET_USE (use_p, result_var);
839 update_stmt (stmt);
840 used = true;
841 }
842 if (used)
843 mark_sym_for_renaming (result_var);
844 }
845
846 /* Remove dead PHI nodes from block BB. */
847
848 static bool
849 remove_dead_phis (basic_block bb)
850 {
851 bool something_changed = false;
852 gimple_seq phis;
853 gimple phi;
854 gimple_stmt_iterator gsi;
855 phis = phi_nodes (bb);
856
857 for (gsi = gsi_start (phis); !gsi_end_p (gsi);)
858 {
859 stats.total_phis++;
860 phi = gsi_stmt (gsi);
861
862 /* We do not track necessity of virtual PHI nodes. Instead do
863 very simple dead PHI removal here. */
864 if (!is_gimple_reg (gimple_phi_result (phi)))
865 {
866 /* Virtual PHI nodes with one or identical arguments
867 can be removed. */
868 if (degenerate_phi_p (phi))
869 {
870 tree vdef = gimple_phi_result (phi);
871 tree vuse = gimple_phi_arg_def (phi, 0);
872
873 use_operand_p use_p;
874 imm_use_iterator iter;
875 gimple use_stmt;
876 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vdef)
877 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
878 SET_USE (use_p, vuse);
879 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vdef)
880 && TREE_CODE (vuse) == SSA_NAME)
881 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 1;
882 }
883 else
884 gimple_set_plf (phi, STMT_NECESSARY, true);
885 }
886
887 if (!gimple_plf (phi, STMT_NECESSARY))
888 {
889 something_changed = true;
890 if (dump_file && (dump_flags & TDF_DETAILS))
891 {
892 fprintf (dump_file, "Deleting : ");
893 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
894 fprintf (dump_file, "\n");
895 }
896
897 remove_phi_node (&gsi, true);
898 stats.removed_phis++;
899 continue;
900 }
901
902 gsi_next (&gsi);
903 }
904 return something_changed;
905 }
906
907 /* Find first live post dominator of BB. */
908
909 static basic_block
910 get_live_post_dom (basic_block bb)
911 {
912 basic_block post_dom_bb;
913
914
915 /* The post dominance info has to be up-to-date. */
916 gcc_assert (dom_info_state (CDI_POST_DOMINATORS) == DOM_OK);
917
918 /* Get the immediate post dominator of bb. */
919 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
920 /* And look for first live one. */
921 while (post_dom_bb != EXIT_BLOCK_PTR
922 && !TEST_BIT (bb_contains_live_stmts, post_dom_bb->index))
923 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, post_dom_bb);
924
925 return post_dom_bb;
926 }
927
928 /* Forward edge E to respective POST_DOM_BB and update PHIs. */
929
930 static edge
931 forward_edge_to_pdom (edge e, basic_block post_dom_bb)
932 {
933 gimple_stmt_iterator gsi;
934 edge e2 = NULL;
935 edge_iterator ei;
936
937 if (dump_file && (dump_flags & TDF_DETAILS))
938 fprintf (dump_file, "Redirecting edge %i->%i to %i\n", e->src->index,
939 e->dest->index, post_dom_bb->index);
940
941 e2 = redirect_edge_and_branch (e, post_dom_bb);
942 cfg_altered = true;
943
944 /* If edge was already around, no updating is neccesary. */
945 if (e2 != e)
946 return e2;
947
948 if (phi_nodes (post_dom_bb))
949 {
950 /* We are sure that for every live PHI we are seeing control dependent BB.
951 This means that we can look up the end of control dependent path leading
952 to the PHI itself. */
953 FOR_EACH_EDGE (e2, ei, post_dom_bb->preds)
954 if (e2 != e && dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->src))
955 break;
956 for (gsi = gsi_start_phis (post_dom_bb); !gsi_end_p (gsi);)
957 {
958 gimple phi = gsi_stmt (gsi);
959 tree op;
960 source_location locus;
961
962 /* Dead PHI do not imply control dependency. */
963 if (!gimple_plf (phi, STMT_NECESSARY)
964 && is_gimple_reg (gimple_phi_result (phi)))
965 {
966 gsi_next (&gsi);
967 continue;
968 }
969 if (gimple_phi_arg_def (phi, e->dest_idx))
970 {
971 gsi_next (&gsi);
972 continue;
973 }
974
975 /* We didn't find edge to update. This can happen for PHIs on virtuals
976 since there is no control dependency relation on them. We are lost
977 here and must force renaming of the symbol. */
978 if (!is_gimple_reg (gimple_phi_result (phi)))
979 {
980 mark_virtual_phi_result_for_renaming (phi);
981 remove_phi_node (&gsi, true);
982 continue;
983 }
984 if (!e2)
985 {
986 op = gimple_phi_arg_def (phi, e->dest_idx == 0 ? 1 : 0);
987 locus = gimple_phi_arg_location (phi, e->dest_idx == 0 ? 1 : 0);
988 }
989 else
990 {
991 op = gimple_phi_arg_def (phi, e2->dest_idx);
992 locus = gimple_phi_arg_location (phi, e2->dest_idx);
993 }
994 add_phi_arg (phi, op, e, locus);
995 gcc_assert (e2 || degenerate_phi_p (phi));
996 gsi_next (&gsi);
997 }
998 }
999 return e;
1000 }
1001
1002 /* Remove dead statement pointed to by iterator I. Receives the basic block BB
1003 containing I so that we don't have to look it up. */
1004
1005 static void
1006 remove_dead_stmt (gimple_stmt_iterator *i, basic_block bb)
1007 {
1008 gimple stmt = gsi_stmt (*i);
1009
1010 if (dump_file && (dump_flags & TDF_DETAILS))
1011 {
1012 fprintf (dump_file, "Deleting : ");
1013 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1014 fprintf (dump_file, "\n");
1015 }
1016
1017 stats.removed++;
1018
1019 /* If we have determined that a conditional branch statement contributes
1020 nothing to the program, then we not only remove it, but we also change
1021 the flow graph so that the current block will simply fall-thru to its
1022 immediate post-dominator. The blocks we are circumventing will be
1023 removed by cleanup_tree_cfg if this change in the flow graph makes them
1024 unreachable. */
1025 if (is_ctrl_stmt (stmt))
1026 {
1027 basic_block post_dom_bb;
1028 edge e, e2;
1029 edge_iterator ei;
1030
1031 post_dom_bb = get_live_post_dom (bb);
1032
1033 e = find_edge (bb, post_dom_bb);
1034
1035 /* If edge is already there, try to use it. This avoids need to update
1036 PHI nodes. Also watch for cases where post dominator does not exists
1037 or is exit block. These can happen for infinite loops as we create
1038 fake edges in the dominator tree. */
1039 if (e)
1040 ;
1041 else if (! post_dom_bb || post_dom_bb == EXIT_BLOCK_PTR)
1042 e = EDGE_SUCC (bb, 0);
1043 else
1044 e = forward_edge_to_pdom (EDGE_SUCC (bb, 0), post_dom_bb);
1045 gcc_assert (e);
1046 e->probability = REG_BR_PROB_BASE;
1047 e->count = bb->count;
1048
1049 /* The edge is no longer associated with a conditional, so it does
1050 not have TRUE/FALSE flags. */
1051 e->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
1052
1053 /* The lone outgoing edge from BB will be a fallthru edge. */
1054 e->flags |= EDGE_FALLTHRU;
1055
1056 /* Remove the remaining outgoing edges. */
1057 for (ei = ei_start (bb->succs); (e2 = ei_safe_edge (ei)); )
1058 if (e != e2)
1059 {
1060 cfg_altered = true;
1061 remove_edge (e2);
1062 }
1063 else
1064 ei_next (&ei);
1065 }
1066
1067 unlink_stmt_vdef (stmt);
1068 gsi_remove (i, true);
1069 release_defs (stmt);
1070 }
1071
1072 /* Eliminate unnecessary statements. Any instruction not marked as necessary
1073 contributes nothing to the program, and can be deleted. */
1074
1075 static bool
1076 eliminate_unnecessary_stmts (void)
1077 {
1078 bool something_changed = false;
1079 basic_block bb;
1080 gimple_stmt_iterator gsi, psi;
1081 gimple stmt;
1082 tree call;
1083 VEC (basic_block, heap) *h;
1084
1085 if (dump_file && (dump_flags & TDF_DETAILS))
1086 fprintf (dump_file, "\nEliminating unnecessary statements:\n");
1087
1088 clear_special_calls ();
1089
1090 /* Walking basic blocks and statements in reverse order avoids
1091 releasing SSA names before any other DEFs that refer to them are
1092 released. This helps avoid loss of debug information, as we get
1093 a chance to propagate all RHSs of removed SSAs into debug uses,
1094 rather than only the latest ones. E.g., consider:
1095
1096 x_3 = y_1 + z_2;
1097 a_5 = x_3 - b_4;
1098 # DEBUG a => a_5
1099
1100 If we were to release x_3 before a_5, when we reached a_5 and
1101 tried to substitute it into the debug stmt, we'd see x_3 there,
1102 but x_3's DEF, type, etc would have already been disconnected.
1103 By going backwards, the debug stmt first changes to:
1104
1105 # DEBUG a => x_3 - b_4
1106
1107 and then to:
1108
1109 # DEBUG a => y_1 + z_2 - b_4
1110
1111 as desired. */
1112 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
1113 h = get_all_dominated_blocks (CDI_DOMINATORS, single_succ (ENTRY_BLOCK_PTR));
1114
1115 while (VEC_length (basic_block, h))
1116 {
1117 bb = VEC_pop (basic_block, h);
1118
1119 /* Remove dead statements. */
1120 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi = psi)
1121 {
1122 stmt = gsi_stmt (gsi);
1123
1124 psi = gsi;
1125 gsi_prev (&psi);
1126
1127 stats.total++;
1128
1129 /* If GSI is not necessary then remove it. */
1130 if (!gimple_plf (stmt, STMT_NECESSARY))
1131 {
1132 if (!is_gimple_debug (stmt))
1133 something_changed = true;
1134 remove_dead_stmt (&gsi, bb);
1135 }
1136 else if (is_gimple_call (stmt))
1137 {
1138 call = gimple_call_fndecl (stmt);
1139 if (call)
1140 {
1141 tree name;
1142
1143 /* When LHS of var = call (); is dead, simplify it into
1144 call (); saving one operand. */
1145 name = gimple_call_lhs (stmt);
1146 if (name && TREE_CODE (name) == SSA_NAME
1147 && !TEST_BIT (processed, SSA_NAME_VERSION (name)))
1148 {
1149 something_changed = true;
1150 if (dump_file && (dump_flags & TDF_DETAILS))
1151 {
1152 fprintf (dump_file, "Deleting LHS of call: ");
1153 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1154 fprintf (dump_file, "\n");
1155 }
1156
1157 gimple_call_set_lhs (stmt, NULL_TREE);
1158 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1159 update_stmt (stmt);
1160 release_ssa_name (name);
1161 }
1162 notice_special_calls (stmt);
1163 }
1164 }
1165 }
1166 }
1167
1168 VEC_free (basic_block, heap, h);
1169
1170 /* Since we don't track liveness of virtual PHI nodes, it is possible that we
1171 rendered some PHI nodes unreachable while they are still in use.
1172 Mark them for renaming. */
1173 if (cfg_altered)
1174 {
1175 basic_block prev_bb;
1176
1177 find_unreachable_blocks ();
1178
1179 /* Delete all unreachable basic blocks in reverse dominator order. */
1180 for (bb = EXIT_BLOCK_PTR->prev_bb; bb != ENTRY_BLOCK_PTR; bb = prev_bb)
1181 {
1182 prev_bb = bb->prev_bb;
1183
1184 if (!TEST_BIT (bb_contains_live_stmts, bb->index)
1185 || !(bb->flags & BB_REACHABLE))
1186 {
1187 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1188 if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
1189 {
1190 bool found = false;
1191 imm_use_iterator iter;
1192
1193 FOR_EACH_IMM_USE_STMT (stmt, iter, gimple_phi_result (gsi_stmt (gsi)))
1194 {
1195 if (!(gimple_bb (stmt)->flags & BB_REACHABLE))
1196 continue;
1197 if (gimple_code (stmt) == GIMPLE_PHI
1198 || gimple_plf (stmt, STMT_NECESSARY))
1199 {
1200 found = true;
1201 BREAK_FROM_IMM_USE_STMT (iter);
1202 }
1203 }
1204 if (found)
1205 mark_virtual_phi_result_for_renaming (gsi_stmt (gsi));
1206 }
1207
1208 if (!(bb->flags & BB_REACHABLE))
1209 {
1210 /* Speed up the removal of blocks that don't
1211 dominate others. Walking backwards, this should
1212 be the common case. ??? Do we need to recompute
1213 dominators because of cfg_altered? */
1214 if (!MAY_HAVE_DEBUG_STMTS
1215 || !first_dom_son (CDI_DOMINATORS, bb))
1216 delete_basic_block (bb);
1217 else
1218 {
1219 h = get_all_dominated_blocks (CDI_DOMINATORS, bb);
1220
1221 while (VEC_length (basic_block, h))
1222 {
1223 bb = VEC_pop (basic_block, h);
1224 prev_bb = bb->prev_bb;
1225 /* Rearrangements to the CFG may have failed
1226 to update the dominators tree, so that
1227 formerly-dominated blocks are now
1228 otherwise reachable. */
1229 if (!!(bb->flags & BB_REACHABLE))
1230 continue;
1231 delete_basic_block (bb);
1232 }
1233
1234 VEC_free (basic_block, heap, h);
1235 }
1236 }
1237 }
1238 }
1239 }
1240 FOR_EACH_BB (bb)
1241 {
1242 /* Remove dead PHI nodes. */
1243 something_changed |= remove_dead_phis (bb);
1244 }
1245
1246 return something_changed;
1247 }
1248
1249
1250 /* Print out removed statement statistics. */
1251
1252 static void
1253 print_stats (void)
1254 {
1255 float percg;
1256
1257 percg = ((float) stats.removed / (float) stats.total) * 100;
1258 fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
1259 stats.removed, stats.total, (int) percg);
1260
1261 if (stats.total_phis == 0)
1262 percg = 0;
1263 else
1264 percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
1265
1266 fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
1267 stats.removed_phis, stats.total_phis, (int) percg);
1268 }
1269
1270 /* Initialization for this pass. Set up the used data structures. */
1271
1272 static void
1273 tree_dce_init (bool aggressive)
1274 {
1275 memset ((void *) &stats, 0, sizeof (stats));
1276
1277 if (aggressive)
1278 {
1279 int i;
1280
1281 control_dependence_map = XNEWVEC (bitmap, last_basic_block);
1282 for (i = 0; i < last_basic_block; ++i)
1283 control_dependence_map[i] = BITMAP_ALLOC (NULL);
1284
1285 last_stmt_necessary = sbitmap_alloc (last_basic_block);
1286 sbitmap_zero (last_stmt_necessary);
1287 bb_contains_live_stmts = sbitmap_alloc (last_basic_block);
1288 sbitmap_zero (bb_contains_live_stmts);
1289 }
1290
1291 processed = sbitmap_alloc (num_ssa_names + 1);
1292 sbitmap_zero (processed);
1293
1294 worklist = VEC_alloc (gimple, heap, 64);
1295 cfg_altered = false;
1296 }
1297
1298 /* Cleanup after this pass. */
1299
1300 static void
1301 tree_dce_done (bool aggressive)
1302 {
1303 if (aggressive)
1304 {
1305 int i;
1306
1307 for (i = 0; i < last_basic_block; ++i)
1308 BITMAP_FREE (control_dependence_map[i]);
1309 free (control_dependence_map);
1310
1311 sbitmap_free (visited_control_parents);
1312 sbitmap_free (last_stmt_necessary);
1313 sbitmap_free (bb_contains_live_stmts);
1314 bb_contains_live_stmts = NULL;
1315 }
1316
1317 sbitmap_free (processed);
1318
1319 VEC_free (gimple, heap, worklist);
1320 }
1321
1322 /* Main routine to eliminate dead code.
1323
1324 AGGRESSIVE controls the aggressiveness of the algorithm.
1325 In conservative mode, we ignore control dependence and simply declare
1326 all but the most trivially dead branches necessary. This mode is fast.
1327 In aggressive mode, control dependences are taken into account, which
1328 results in more dead code elimination, but at the cost of some time.
1329
1330 FIXME: Aggressive mode before PRE doesn't work currently because
1331 the dominance info is not invalidated after DCE1. This is
1332 not an issue right now because we only run aggressive DCE
1333 as the last tree SSA pass, but keep this in mind when you
1334 start experimenting with pass ordering. */
1335
1336 static unsigned int
1337 perform_tree_ssa_dce (bool aggressive)
1338 {
1339 struct edge_list *el = NULL;
1340 bool something_changed = 0;
1341
1342 /* Preheaders are needed for SCEV to work.
1343 Simple lateches and recorded exits improve chances that loop will
1344 proved to be finite in testcases such as in loop-15.c and loop-24.c */
1345 if (aggressive)
1346 loop_optimizer_init (LOOPS_NORMAL
1347 | LOOPS_HAVE_RECORDED_EXITS);
1348
1349 tree_dce_init (aggressive);
1350
1351 if (aggressive)
1352 {
1353 /* Compute control dependence. */
1354 timevar_push (TV_CONTROL_DEPENDENCES);
1355 calculate_dominance_info (CDI_POST_DOMINATORS);
1356 el = create_edge_list ();
1357 find_all_control_dependences (el);
1358 timevar_pop (TV_CONTROL_DEPENDENCES);
1359
1360 visited_control_parents = sbitmap_alloc (last_basic_block);
1361 sbitmap_zero (visited_control_parents);
1362
1363 mark_dfs_back_edges ();
1364 }
1365
1366 find_obviously_necessary_stmts (el);
1367
1368 if (aggressive)
1369 loop_optimizer_finalize ();
1370
1371 longest_chain = 0;
1372 total_chain = 0;
1373 chain_ovfl = false;
1374 propagate_necessity (el);
1375 BITMAP_FREE (visited);
1376
1377 something_changed |= eliminate_unnecessary_stmts ();
1378 something_changed |= cfg_altered;
1379
1380 /* We do not update postdominators, so free them unconditionally. */
1381 free_dominance_info (CDI_POST_DOMINATORS);
1382
1383 /* If we removed paths in the CFG, then we need to update
1384 dominators as well. I haven't investigated the possibility
1385 of incrementally updating dominators. */
1386 if (cfg_altered)
1387 free_dominance_info (CDI_DOMINATORS);
1388
1389 statistics_counter_event (cfun, "Statements deleted", stats.removed);
1390 statistics_counter_event (cfun, "PHI nodes deleted", stats.removed_phis);
1391
1392 /* Debugging dumps. */
1393 if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
1394 print_stats ();
1395
1396 tree_dce_done (aggressive);
1397
1398 free_edge_list (el);
1399
1400 if (something_changed)
1401 return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
1402 | TODO_remove_unused_locals);
1403 else
1404 return 0;
1405 }
1406
1407 /* Pass entry points. */
1408 static unsigned int
1409 tree_ssa_dce (void)
1410 {
1411 return perform_tree_ssa_dce (/*aggressive=*/false);
1412 }
1413
1414 static unsigned int
1415 tree_ssa_dce_loop (void)
1416 {
1417 unsigned int todo;
1418 todo = perform_tree_ssa_dce (/*aggressive=*/false);
1419 if (todo)
1420 {
1421 free_numbers_of_iterations_estimates ();
1422 scev_reset ();
1423 }
1424 return todo;
1425 }
1426
1427 static unsigned int
1428 tree_ssa_cd_dce (void)
1429 {
1430 return perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
1431 }
1432
1433 static bool
1434 gate_dce (void)
1435 {
1436 return flag_tree_dce != 0;
1437 }
1438
1439 struct gimple_opt_pass pass_dce =
1440 {
1441 {
1442 GIMPLE_PASS,
1443 "dce", /* name */
1444 gate_dce, /* gate */
1445 tree_ssa_dce, /* execute */
1446 NULL, /* sub */
1447 NULL, /* next */
1448 0, /* static_pass_number */
1449 TV_TREE_DCE, /* tv_id */
1450 PROP_cfg | PROP_ssa, /* properties_required */
1451 0, /* properties_provided */
1452 0, /* properties_destroyed */
1453 0, /* todo_flags_start */
1454 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1455 }
1456 };
1457
1458 struct gimple_opt_pass pass_dce_loop =
1459 {
1460 {
1461 GIMPLE_PASS,
1462 "dceloop", /* name */
1463 gate_dce, /* gate */
1464 tree_ssa_dce_loop, /* execute */
1465 NULL, /* sub */
1466 NULL, /* next */
1467 0, /* static_pass_number */
1468 TV_TREE_DCE, /* tv_id */
1469 PROP_cfg | PROP_ssa, /* properties_required */
1470 0, /* properties_provided */
1471 0, /* properties_destroyed */
1472 0, /* todo_flags_start */
1473 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1474 }
1475 };
1476
1477 struct gimple_opt_pass pass_cd_dce =
1478 {
1479 {
1480 GIMPLE_PASS,
1481 "cddce", /* name */
1482 gate_dce, /* gate */
1483 tree_ssa_cd_dce, /* execute */
1484 NULL, /* sub */
1485 NULL, /* next */
1486 0, /* static_pass_number */
1487 TV_TREE_CD_DCE, /* tv_id */
1488 PROP_cfg | PROP_ssa, /* properties_required */
1489 0, /* properties_provided */
1490 0, /* properties_destroyed */
1491 0, /* todo_flags_start */
1492 TODO_dump_func | TODO_verify_ssa
1493 | TODO_verify_flow /* todo_flags_finish */
1494 }
1495 };