tree-ssa-uncprop.c (uncprop_into_successor_phis): Fix PHI node existence check.
[gcc.git] / gcc / tree-ssa-dce.c
1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Ben Elliston <bje@redhat.com>
5 and Andrew MacLeod <amacleod@redhat.com>
6 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 3, or (at your option) any
13 later version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* Dead code elimination.
25
26 References:
27
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
30
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
33
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
37 impact on the output.
38
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
45
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "ggc.h"
51
52 /* These RTL headers are needed for basic-block.h. */
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "hard-reg-set.h"
56 #include "obstack.h"
57 #include "basic-block.h"
58
59 #include "tree.h"
60 #include "diagnostic.h"
61 #include "tree-flow.h"
62 #include "gimple.h"
63 #include "tree-dump.h"
64 #include "tree-pass.h"
65 #include "timevar.h"
66 #include "flags.h"
67 #include "cfgloop.h"
68 #include "tree-scalar-evolution.h"
69
70 static struct stmt_stats
71 {
72 int total;
73 int total_phis;
74 int removed;
75 int removed_phis;
76 } stats;
77
78 #define STMT_NECESSARY GF_PLF_1
79
80 static VEC(gimple,heap) *worklist;
81
82 /* Vector indicating an SSA name has already been processed and marked
83 as necessary. */
84 static sbitmap processed;
85
86 /* Vector indicating that last_stmt if a basic block has already been
87 marked as necessary. */
88 static sbitmap last_stmt_necessary;
89
90 /* Vector indicating that BB contains statements that are live. */
91 static sbitmap bb_contains_live_stmts;
92
93 /* Before we can determine whether a control branch is dead, we need to
94 compute which blocks are control dependent on which edges.
95
96 We expect each block to be control dependent on very few edges so we
97 use a bitmap for each block recording its edges. An array holds the
98 bitmap. The Ith bit in the bitmap is set if that block is dependent
99 on the Ith edge. */
100 static bitmap *control_dependence_map;
101
102 /* Vector indicating that a basic block has already had all the edges
103 processed that it is control dependent on. */
104 static sbitmap visited_control_parents;
105
106 /* TRUE if this pass alters the CFG (by removing control statements).
107 FALSE otherwise.
108
109 If this pass alters the CFG, then it will arrange for the dominators
110 to be recomputed. */
111 static bool cfg_altered;
112
113 /* Execute code that follows the macro for each edge (given number
114 EDGE_NUMBER within the CODE) for which the block with index N is
115 control dependent. */
116 #define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER) \
117 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0, \
118 (EDGE_NUMBER), (BI))
119
120
121 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
122 static inline void
123 set_control_dependence_map_bit (basic_block bb, int edge_index)
124 {
125 if (bb == ENTRY_BLOCK_PTR)
126 return;
127 gcc_assert (bb != EXIT_BLOCK_PTR);
128 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
129 }
130
131 /* Clear all control dependences for block BB. */
132 static inline void
133 clear_control_dependence_bitmap (basic_block bb)
134 {
135 bitmap_clear (control_dependence_map[bb->index]);
136 }
137
138
139 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
140 This function is necessary because some blocks have negative numbers. */
141
142 static inline basic_block
143 find_pdom (basic_block block)
144 {
145 gcc_assert (block != ENTRY_BLOCK_PTR);
146
147 if (block == EXIT_BLOCK_PTR)
148 return EXIT_BLOCK_PTR;
149 else
150 {
151 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
152 if (! bb)
153 return EXIT_BLOCK_PTR;
154 return bb;
155 }
156 }
157
158
159 /* Determine all blocks' control dependences on the given edge with edge_list
160 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
161
162 static void
163 find_control_dependence (struct edge_list *el, int edge_index)
164 {
165 basic_block current_block;
166 basic_block ending_block;
167
168 gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
169
170 if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
171 ending_block = single_succ (ENTRY_BLOCK_PTR);
172 else
173 ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
174
175 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
176 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
177 current_block = find_pdom (current_block))
178 {
179 edge e = INDEX_EDGE (el, edge_index);
180
181 /* For abnormal edges, we don't make current_block control
182 dependent because instructions that throw are always necessary
183 anyway. */
184 if (e->flags & EDGE_ABNORMAL)
185 continue;
186
187 set_control_dependence_map_bit (current_block, edge_index);
188 }
189 }
190
191
192 /* Record all blocks' control dependences on all edges in the edge
193 list EL, ala Morgan, Section 3.6. */
194
195 static void
196 find_all_control_dependences (struct edge_list *el)
197 {
198 int i;
199
200 for (i = 0; i < NUM_EDGES (el); ++i)
201 find_control_dependence (el, i);
202 }
203
204 /* If STMT is not already marked necessary, mark it, and add it to the
205 worklist if ADD_TO_WORKLIST is true. */
206 static inline void
207 mark_stmt_necessary (gimple stmt, bool add_to_worklist)
208 {
209 gcc_assert (stmt);
210
211 if (gimple_plf (stmt, STMT_NECESSARY))
212 return;
213
214 if (dump_file && (dump_flags & TDF_DETAILS))
215 {
216 fprintf (dump_file, "Marking useful stmt: ");
217 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
218 fprintf (dump_file, "\n");
219 }
220
221 gimple_set_plf (stmt, STMT_NECESSARY, true);
222 if (add_to_worklist)
223 VEC_safe_push (gimple, heap, worklist, stmt);
224 if (bb_contains_live_stmts && !is_gimple_debug (stmt))
225 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
226 }
227
228
229 /* Mark the statement defining operand OP as necessary. */
230
231 static inline void
232 mark_operand_necessary (tree op)
233 {
234 gimple stmt;
235 int ver;
236
237 gcc_assert (op);
238
239 ver = SSA_NAME_VERSION (op);
240 if (TEST_BIT (processed, ver))
241 {
242 stmt = SSA_NAME_DEF_STMT (op);
243 gcc_assert (gimple_nop_p (stmt)
244 || gimple_plf (stmt, STMT_NECESSARY));
245 return;
246 }
247 SET_BIT (processed, ver);
248
249 stmt = SSA_NAME_DEF_STMT (op);
250 gcc_assert (stmt);
251
252 if (gimple_plf (stmt, STMT_NECESSARY) || gimple_nop_p (stmt))
253 return;
254
255 if (dump_file && (dump_flags & TDF_DETAILS))
256 {
257 fprintf (dump_file, "marking necessary through ");
258 print_generic_expr (dump_file, op, 0);
259 fprintf (dump_file, " stmt ");
260 print_gimple_stmt (dump_file, stmt, 0, 0);
261 }
262
263 gimple_set_plf (stmt, STMT_NECESSARY, true);
264 if (bb_contains_live_stmts)
265 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
266 VEC_safe_push (gimple, heap, worklist, stmt);
267 }
268
269
270 /* Mark STMT as necessary if it obviously is. Add it to the worklist if
271 it can make other statements necessary.
272
273 If AGGRESSIVE is false, control statements are conservatively marked as
274 necessary. */
275
276 static void
277 mark_stmt_if_obviously_necessary (gimple stmt, bool aggressive)
278 {
279 tree lhs = NULL_TREE;
280 /* With non-call exceptions, we have to assume that all statements could
281 throw. If a statement may throw, it is inherently necessary. */
282 if (flag_non_call_exceptions
283 && stmt_could_throw_p (stmt))
284 {
285 mark_stmt_necessary (stmt, true);
286 return;
287 }
288
289 /* Statements that are implicitly live. Most function calls, asm
290 and return statements are required. Labels and GIMPLE_BIND nodes
291 are kept because they are control flow, and we have no way of
292 knowing whether they can be removed. DCE can eliminate all the
293 other statements in a block, and CFG can then remove the block
294 and labels. */
295 switch (gimple_code (stmt))
296 {
297 case GIMPLE_PREDICT:
298 case GIMPLE_LABEL:
299 mark_stmt_necessary (stmt, false);
300 return;
301
302 case GIMPLE_ASM:
303 case GIMPLE_RESX:
304 case GIMPLE_RETURN:
305 mark_stmt_necessary (stmt, true);
306 return;
307
308 case GIMPLE_CALL:
309 /* Most, but not all function calls are required. Function calls that
310 produce no result and have no side effects (i.e. const pure
311 functions) are unnecessary. */
312 if (gimple_has_side_effects (stmt))
313 {
314 mark_stmt_necessary (stmt, true);
315 return;
316 }
317 if (!gimple_call_lhs (stmt))
318 return;
319 lhs = gimple_call_lhs (stmt);
320 /* Fall through */
321
322 case GIMPLE_ASSIGN:
323 if (!lhs)
324 lhs = gimple_assign_lhs (stmt);
325 break;
326
327 case GIMPLE_DEBUG:
328 /* Debug temps without a value are not useful. ??? If we could
329 easily locate the debug temp bind stmt for a use thereof,
330 would could refrain from marking all debug temps here, and
331 mark them only if they're used. */
332 if (gimple_debug_bind_has_value_p (stmt)
333 || TREE_CODE (gimple_debug_bind_get_var (stmt)) != DEBUG_EXPR_DECL)
334 mark_stmt_necessary (stmt, false);
335 return;
336
337 case GIMPLE_GOTO:
338 gcc_assert (!simple_goto_p (stmt));
339 mark_stmt_necessary (stmt, true);
340 return;
341
342 case GIMPLE_COND:
343 gcc_assert (EDGE_COUNT (gimple_bb (stmt)->succs) == 2);
344 /* Fall through. */
345
346 case GIMPLE_SWITCH:
347 if (! aggressive)
348 mark_stmt_necessary (stmt, true);
349 break;
350
351 default:
352 break;
353 }
354
355 /* If the statement has volatile operands, it needs to be preserved.
356 Same for statements that can alter control flow in unpredictable
357 ways. */
358 if (gimple_has_volatile_ops (stmt) || is_ctrl_altering_stmt (stmt))
359 {
360 mark_stmt_necessary (stmt, true);
361 return;
362 }
363
364 if (is_hidden_global_store (stmt))
365 {
366 mark_stmt_necessary (stmt, true);
367 return;
368 }
369
370 return;
371 }
372
373
374 /* Make corresponding control dependent edges necessary. We only
375 have to do this once for each basic block, so we clear the bitmap
376 after we're done. */
377 static void
378 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el)
379 {
380 bitmap_iterator bi;
381 unsigned edge_number;
382
383 gcc_assert (bb != EXIT_BLOCK_PTR);
384
385 if (bb == ENTRY_BLOCK_PTR)
386 return;
387
388 EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
389 {
390 gimple stmt;
391 basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
392
393 if (TEST_BIT (last_stmt_necessary, cd_bb->index))
394 continue;
395 SET_BIT (last_stmt_necessary, cd_bb->index);
396 SET_BIT (bb_contains_live_stmts, cd_bb->index);
397
398 stmt = last_stmt (cd_bb);
399 if (stmt && is_ctrl_stmt (stmt))
400 mark_stmt_necessary (stmt, true);
401 }
402 }
403
404
405 /* Find obviously necessary statements. These are things like most function
406 calls, and stores to file level variables.
407
408 If EL is NULL, control statements are conservatively marked as
409 necessary. Otherwise it contains the list of edges used by control
410 dependence analysis. */
411
412 static void
413 find_obviously_necessary_stmts (struct edge_list *el)
414 {
415 basic_block bb;
416 gimple_stmt_iterator gsi;
417 edge e;
418 gimple phi, stmt;
419
420 FOR_EACH_BB (bb)
421 {
422 /* PHI nodes are never inherently necessary. */
423 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
424 {
425 phi = gsi_stmt (gsi);
426 gimple_set_plf (phi, STMT_NECESSARY, false);
427 }
428
429 /* Check all statements in the block. */
430 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
431 {
432 stmt = gsi_stmt (gsi);
433 gimple_set_plf (stmt, STMT_NECESSARY, false);
434 mark_stmt_if_obviously_necessary (stmt, el != NULL);
435 }
436 }
437
438 /* Pure and const functions are finite and thus have no infinite loops in
439 them. */
440 if ((TREE_READONLY (current_function_decl)
441 || DECL_PURE_P (current_function_decl))
442 && !DECL_LOOPING_CONST_OR_PURE_P (current_function_decl))
443 return;
444
445 /* Prevent the empty possibly infinite loops from being removed. */
446 if (el)
447 {
448 loop_iterator li;
449 struct loop *loop;
450 scev_initialize ();
451 if (mark_irreducible_loops ())
452 FOR_EACH_BB (bb)
453 {
454 edge_iterator ei;
455 FOR_EACH_EDGE (e, ei, bb->succs)
456 if ((e->flags & EDGE_DFS_BACK)
457 && (e->flags & EDGE_IRREDUCIBLE_LOOP))
458 {
459 if (dump_file)
460 fprintf (dump_file, "Marking back edge of irreducible loop %i->%i\n",
461 e->src->index, e->dest->index);
462 mark_control_dependent_edges_necessary (e->dest, el);
463 }
464 }
465
466 FOR_EACH_LOOP (li, loop, 0)
467 if (!finite_loop_p (loop))
468 {
469 if (dump_file)
470 fprintf (dump_file, "can not prove finiteness of loop %i\n", loop->num);
471 mark_control_dependent_edges_necessary (loop->latch, el);
472 }
473 scev_finalize ();
474 }
475 }
476
477
478 /* Return true if REF is based on an aliased base, otherwise false. */
479
480 static bool
481 ref_may_be_aliased (tree ref)
482 {
483 while (handled_component_p (ref))
484 ref = TREE_OPERAND (ref, 0);
485 return !(DECL_P (ref)
486 && !may_be_aliased (ref));
487 }
488
489 static bitmap visited = NULL;
490 static unsigned int longest_chain = 0;
491 static unsigned int total_chain = 0;
492 static unsigned int nr_walks = 0;
493 static bool chain_ovfl = false;
494
495 /* Worker for the walker that marks reaching definitions of REF,
496 which is based on a non-aliased decl, necessary. It returns
497 true whenever the defining statement of the current VDEF is
498 a kill for REF, as no dominating may-defs are necessary for REF
499 anymore. DATA points to the basic-block that contains the
500 stmt that refers to REF. */
501
502 static bool
503 mark_aliased_reaching_defs_necessary_1 (ao_ref *ref, tree vdef, void *data)
504 {
505 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
506
507 /* All stmts we visit are necessary. */
508 mark_operand_necessary (vdef);
509
510 /* If the stmt lhs kills ref, then we can stop walking. */
511 if (gimple_has_lhs (def_stmt)
512 && TREE_CODE (gimple_get_lhs (def_stmt)) != SSA_NAME)
513 {
514 tree base, lhs = gimple_get_lhs (def_stmt);
515 HOST_WIDE_INT size, offset, max_size;
516 ao_ref_base (ref);
517 base = get_ref_base_and_extent (lhs, &offset, &size, &max_size);
518 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
519 so base == refd->base does not always hold. */
520 if (base == ref->base)
521 {
522 /* For a must-alias check we need to be able to constrain
523 the accesses properly. */
524 if (size != -1 && size == max_size
525 && ref->max_size != -1)
526 {
527 if (offset <= ref->offset
528 && offset + size >= ref->offset + ref->max_size)
529 return true;
530 }
531 /* Or they need to be exactly the same. */
532 else if (ref->ref
533 /* Make sure there is no induction variable involved
534 in the references (gcc.c-torture/execute/pr42142.c).
535 The simplest way is to check if the kill dominates
536 the use. */
537 && dominated_by_p (CDI_DOMINATORS, (basic_block) data,
538 gimple_bb (def_stmt))
539 && operand_equal_p (ref->ref, lhs, 0))
540 return true;
541 }
542 }
543
544 /* Otherwise keep walking. */
545 return false;
546 }
547
548 static void
549 mark_aliased_reaching_defs_necessary (gimple stmt, tree ref)
550 {
551 unsigned int chain;
552 ao_ref refd;
553 gcc_assert (!chain_ovfl);
554 ao_ref_init (&refd, ref);
555 chain = walk_aliased_vdefs (&refd, gimple_vuse (stmt),
556 mark_aliased_reaching_defs_necessary_1,
557 gimple_bb (stmt), NULL);
558 if (chain > longest_chain)
559 longest_chain = chain;
560 total_chain += chain;
561 nr_walks++;
562 }
563
564 /* Worker for the walker that marks reaching definitions of REF, which
565 is not based on a non-aliased decl. For simplicity we need to end
566 up marking all may-defs necessary that are not based on a non-aliased
567 decl. The only job of this walker is to skip may-defs based on
568 a non-aliased decl. */
569
570 static bool
571 mark_all_reaching_defs_necessary_1 (ao_ref *ref ATTRIBUTE_UNUSED,
572 tree vdef, void *data ATTRIBUTE_UNUSED)
573 {
574 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
575
576 /* We have to skip already visited (and thus necessary) statements
577 to make the chaining work after we dropped back to simple mode. */
578 if (chain_ovfl
579 && TEST_BIT (processed, SSA_NAME_VERSION (vdef)))
580 {
581 gcc_assert (gimple_nop_p (def_stmt)
582 || gimple_plf (def_stmt, STMT_NECESSARY));
583 return false;
584 }
585
586 /* We want to skip stores to non-aliased variables. */
587 if (!chain_ovfl
588 && gimple_assign_single_p (def_stmt))
589 {
590 tree lhs = gimple_assign_lhs (def_stmt);
591 if (!ref_may_be_aliased (lhs))
592 return false;
593 }
594
595 mark_operand_necessary (vdef);
596
597 return false;
598 }
599
600 static void
601 mark_all_reaching_defs_necessary (gimple stmt)
602 {
603 walk_aliased_vdefs (NULL, gimple_vuse (stmt),
604 mark_all_reaching_defs_necessary_1, NULL, &visited);
605 }
606
607 /* Return true for PHI nodes with one or identical arguments
608 can be removed. */
609 static bool
610 degenerate_phi_p (gimple phi)
611 {
612 unsigned int i;
613 tree op = gimple_phi_arg_def (phi, 0);
614 for (i = 1; i < gimple_phi_num_args (phi); i++)
615 if (gimple_phi_arg_def (phi, i) != op)
616 return false;
617 return true;
618 }
619
620 /* Propagate necessity using the operands of necessary statements.
621 Process the uses on each statement in the worklist, and add all
622 feeding statements which contribute to the calculation of this
623 value to the worklist.
624
625 In conservative mode, EL is NULL. */
626
627 static void
628 propagate_necessity (struct edge_list *el)
629 {
630 gimple stmt;
631 bool aggressive = (el ? true : false);
632
633 if (dump_file && (dump_flags & TDF_DETAILS))
634 fprintf (dump_file, "\nProcessing worklist:\n");
635
636 while (VEC_length (gimple, worklist) > 0)
637 {
638 /* Take STMT from worklist. */
639 stmt = VEC_pop (gimple, worklist);
640
641 if (dump_file && (dump_flags & TDF_DETAILS))
642 {
643 fprintf (dump_file, "processing: ");
644 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
645 fprintf (dump_file, "\n");
646 }
647
648 if (aggressive)
649 {
650 /* Mark the last statements of the basic blocks that the block
651 containing STMT is control dependent on, but only if we haven't
652 already done so. */
653 basic_block bb = gimple_bb (stmt);
654 if (bb != ENTRY_BLOCK_PTR
655 && ! TEST_BIT (visited_control_parents, bb->index))
656 {
657 SET_BIT (visited_control_parents, bb->index);
658 mark_control_dependent_edges_necessary (bb, el);
659 }
660 }
661
662 if (gimple_code (stmt) == GIMPLE_PHI
663 /* We do not process virtual PHI nodes nor do we track their
664 necessity. */
665 && is_gimple_reg (gimple_phi_result (stmt)))
666 {
667 /* PHI nodes are somewhat special in that each PHI alternative has
668 data and control dependencies. All the statements feeding the
669 PHI node's arguments are always necessary. In aggressive mode,
670 we also consider the control dependent edges leading to the
671 predecessor block associated with each PHI alternative as
672 necessary. */
673 size_t k;
674
675 for (k = 0; k < gimple_phi_num_args (stmt); k++)
676 {
677 tree arg = PHI_ARG_DEF (stmt, k);
678 if (TREE_CODE (arg) == SSA_NAME)
679 mark_operand_necessary (arg);
680 }
681
682 if (aggressive && !degenerate_phi_p (stmt))
683 {
684 for (k = 0; k < gimple_phi_num_args (stmt); k++)
685 {
686 basic_block arg_bb = gimple_phi_arg_edge (stmt, k)->src;
687 if (arg_bb != ENTRY_BLOCK_PTR
688 && ! TEST_BIT (visited_control_parents, arg_bb->index))
689 {
690 SET_BIT (visited_control_parents, arg_bb->index);
691 mark_control_dependent_edges_necessary (arg_bb, el);
692 }
693 }
694 }
695 }
696 else
697 {
698 /* Propagate through the operands. Examine all the USE, VUSE and
699 VDEF operands in this statement. Mark all the statements
700 which feed this statement's uses as necessary. */
701 ssa_op_iter iter;
702 tree use;
703
704 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
705 mark_operand_necessary (use);
706
707 use = gimple_vuse (stmt);
708 if (!use)
709 continue;
710
711 /* If we dropped to simple mode make all immediately
712 reachable definitions necessary. */
713 if (chain_ovfl)
714 {
715 mark_all_reaching_defs_necessary (stmt);
716 continue;
717 }
718
719 /* For statements that may load from memory (have a VUSE) we
720 have to mark all reaching (may-)definitions as necessary.
721 We partition this task into two cases:
722 1) explicit loads based on decls that are not aliased
723 2) implicit loads (like calls) and explicit loads not
724 based on decls that are not aliased (like indirect
725 references or loads from globals)
726 For 1) we mark all reaching may-defs as necessary, stopping
727 at dominating kills. For 2) we want to mark all dominating
728 references necessary, but non-aliased ones which we handle
729 in 1). By keeping a global visited bitmap for references
730 we walk for 2) we avoid quadratic behavior for those. */
731
732 if (is_gimple_call (stmt))
733 {
734 tree callee = gimple_call_fndecl (stmt);
735 unsigned i;
736
737 /* Calls to functions that are merely acting as barriers
738 or that only store to memory do not make any previous
739 stores necessary. */
740 if (callee != NULL_TREE
741 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
742 && (DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET
743 || DECL_FUNCTION_CODE (callee) == BUILT_IN_MALLOC
744 || DECL_FUNCTION_CODE (callee) == BUILT_IN_FREE))
745 continue;
746
747 /* Calls implicitly load from memory, their arguments
748 in addition may explicitly perform memory loads. */
749 mark_all_reaching_defs_necessary (stmt);
750 for (i = 0; i < gimple_call_num_args (stmt); ++i)
751 {
752 tree arg = gimple_call_arg (stmt, i);
753 if (TREE_CODE (arg) == SSA_NAME
754 || is_gimple_min_invariant (arg))
755 continue;
756 if (!ref_may_be_aliased (arg))
757 mark_aliased_reaching_defs_necessary (stmt, arg);
758 }
759 }
760 else if (gimple_assign_single_p (stmt))
761 {
762 tree rhs;
763 bool rhs_aliased = false;
764 /* If this is a load mark things necessary. */
765 rhs = gimple_assign_rhs1 (stmt);
766 if (TREE_CODE (rhs) != SSA_NAME
767 && !is_gimple_min_invariant (rhs))
768 {
769 if (!ref_may_be_aliased (rhs))
770 mark_aliased_reaching_defs_necessary (stmt, rhs);
771 else
772 rhs_aliased = true;
773 }
774 if (rhs_aliased)
775 mark_all_reaching_defs_necessary (stmt);
776 }
777 else if (gimple_code (stmt) == GIMPLE_RETURN)
778 {
779 tree rhs = gimple_return_retval (stmt);
780 /* A return statement may perform a load. */
781 if (TREE_CODE (rhs) != SSA_NAME
782 && !is_gimple_min_invariant (rhs))
783 {
784 if (!ref_may_be_aliased (rhs))
785 mark_aliased_reaching_defs_necessary (stmt, rhs);
786 else
787 mark_all_reaching_defs_necessary (stmt);
788 }
789 }
790 else if (gimple_code (stmt) == GIMPLE_ASM)
791 {
792 unsigned i;
793 mark_all_reaching_defs_necessary (stmt);
794 /* Inputs may perform loads. */
795 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
796 {
797 tree op = TREE_VALUE (gimple_asm_input_op (stmt, i));
798 if (TREE_CODE (op) != SSA_NAME
799 && !is_gimple_min_invariant (op)
800 && !ref_may_be_aliased (op))
801 mark_aliased_reaching_defs_necessary (stmt, op);
802 }
803 }
804 else
805 gcc_unreachable ();
806
807 /* If we over-used our alias oracle budget drop to simple
808 mode. The cost metric allows quadratic behavior
809 (number of uses times number of may-defs queries) up to
810 a constant maximal number of queries and after that falls back to
811 super-linear complexity. */
812 if (/* Constant but quadratic for small functions. */
813 total_chain > 128 * 128
814 /* Linear in the number of may-defs. */
815 && total_chain > 32 * longest_chain
816 /* Linear in the number of uses. */
817 && total_chain > nr_walks * 32)
818 {
819 chain_ovfl = true;
820 if (visited)
821 bitmap_clear (visited);
822 }
823 }
824 }
825 }
826
827 /* Replace all uses of result of PHI by underlying variable and mark it
828 for renaming. */
829
830 void
831 mark_virtual_phi_result_for_renaming (gimple phi)
832 {
833 bool used = false;
834 imm_use_iterator iter;
835 use_operand_p use_p;
836 gimple stmt;
837 tree result_ssa, result_var;
838
839 if (dump_file && (dump_flags & TDF_DETAILS))
840 {
841 fprintf (dump_file, "Marking result for renaming : ");
842 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
843 fprintf (dump_file, "\n");
844 }
845
846 result_ssa = gimple_phi_result (phi);
847 result_var = SSA_NAME_VAR (result_ssa);
848 FOR_EACH_IMM_USE_STMT (stmt, iter, result_ssa)
849 {
850 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
851 SET_USE (use_p, result_var);
852 update_stmt (stmt);
853 used = true;
854 }
855 if (used)
856 mark_sym_for_renaming (result_var);
857 }
858
859 /* Remove dead PHI nodes from block BB. */
860
861 static bool
862 remove_dead_phis (basic_block bb)
863 {
864 bool something_changed = false;
865 gimple_seq phis;
866 gimple phi;
867 gimple_stmt_iterator gsi;
868 phis = phi_nodes (bb);
869
870 for (gsi = gsi_start (phis); !gsi_end_p (gsi);)
871 {
872 stats.total_phis++;
873 phi = gsi_stmt (gsi);
874
875 /* We do not track necessity of virtual PHI nodes. Instead do
876 very simple dead PHI removal here. */
877 if (!is_gimple_reg (gimple_phi_result (phi)))
878 {
879 /* Virtual PHI nodes with one or identical arguments
880 can be removed. */
881 if (degenerate_phi_p (phi))
882 {
883 tree vdef = gimple_phi_result (phi);
884 tree vuse = gimple_phi_arg_def (phi, 0);
885
886 use_operand_p use_p;
887 imm_use_iterator iter;
888 gimple use_stmt;
889 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vdef)
890 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
891 SET_USE (use_p, vuse);
892 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vdef)
893 && TREE_CODE (vuse) == SSA_NAME)
894 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 1;
895 }
896 else
897 gimple_set_plf (phi, STMT_NECESSARY, true);
898 }
899
900 if (!gimple_plf (phi, STMT_NECESSARY))
901 {
902 something_changed = true;
903 if (dump_file && (dump_flags & TDF_DETAILS))
904 {
905 fprintf (dump_file, "Deleting : ");
906 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
907 fprintf (dump_file, "\n");
908 }
909
910 remove_phi_node (&gsi, true);
911 stats.removed_phis++;
912 continue;
913 }
914
915 gsi_next (&gsi);
916 }
917 return something_changed;
918 }
919
920 /* Find first live post dominator of BB. */
921
922 static basic_block
923 get_live_post_dom (basic_block bb)
924 {
925 basic_block post_dom_bb;
926
927
928 /* The post dominance info has to be up-to-date. */
929 gcc_assert (dom_info_state (CDI_POST_DOMINATORS) == DOM_OK);
930
931 /* Get the immediate post dominator of bb. */
932 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
933 /* And look for first live one. */
934 while (post_dom_bb != EXIT_BLOCK_PTR
935 && !TEST_BIT (bb_contains_live_stmts, post_dom_bb->index))
936 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, post_dom_bb);
937
938 return post_dom_bb;
939 }
940
941 /* Forward edge E to respective POST_DOM_BB and update PHIs. */
942
943 static edge
944 forward_edge_to_pdom (edge e, basic_block post_dom_bb)
945 {
946 gimple_stmt_iterator gsi;
947 edge e2 = NULL;
948 edge_iterator ei;
949
950 if (dump_file && (dump_flags & TDF_DETAILS))
951 fprintf (dump_file, "Redirecting edge %i->%i to %i\n", e->src->index,
952 e->dest->index, post_dom_bb->index);
953
954 e2 = redirect_edge_and_branch (e, post_dom_bb);
955 cfg_altered = true;
956
957 /* If edge was already around, no updating is neccesary. */
958 if (e2 != e)
959 return e2;
960
961 if (!gimple_seq_empty_p (phi_nodes (post_dom_bb)))
962 {
963 /* We are sure that for every live PHI we are seeing control dependent BB.
964 This means that we can look up the end of control dependent path leading
965 to the PHI itself. */
966 FOR_EACH_EDGE (e2, ei, post_dom_bb->preds)
967 if (e2 != e && dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->src))
968 break;
969 for (gsi = gsi_start_phis (post_dom_bb); !gsi_end_p (gsi);)
970 {
971 gimple phi = gsi_stmt (gsi);
972 tree op;
973 source_location locus;
974
975 /* Dead PHI do not imply control dependency. */
976 if (!gimple_plf (phi, STMT_NECESSARY)
977 && is_gimple_reg (gimple_phi_result (phi)))
978 {
979 gsi_next (&gsi);
980 continue;
981 }
982 if (gimple_phi_arg_def (phi, e->dest_idx))
983 {
984 gsi_next (&gsi);
985 continue;
986 }
987
988 /* We didn't find edge to update. This can happen for PHIs on virtuals
989 since there is no control dependency relation on them. We are lost
990 here and must force renaming of the symbol. */
991 if (!is_gimple_reg (gimple_phi_result (phi)))
992 {
993 mark_virtual_phi_result_for_renaming (phi);
994 remove_phi_node (&gsi, true);
995 continue;
996 }
997 if (!e2)
998 {
999 op = gimple_phi_arg_def (phi, e->dest_idx == 0 ? 1 : 0);
1000 locus = gimple_phi_arg_location (phi, e->dest_idx == 0 ? 1 : 0);
1001 }
1002 else
1003 {
1004 op = gimple_phi_arg_def (phi, e2->dest_idx);
1005 locus = gimple_phi_arg_location (phi, e2->dest_idx);
1006 }
1007 add_phi_arg (phi, op, e, locus);
1008 gcc_assert (e2 || degenerate_phi_p (phi));
1009 gsi_next (&gsi);
1010 }
1011 }
1012 return e;
1013 }
1014
1015 /* Remove dead statement pointed to by iterator I. Receives the basic block BB
1016 containing I so that we don't have to look it up. */
1017
1018 static void
1019 remove_dead_stmt (gimple_stmt_iterator *i, basic_block bb)
1020 {
1021 gimple stmt = gsi_stmt (*i);
1022
1023 if (dump_file && (dump_flags & TDF_DETAILS))
1024 {
1025 fprintf (dump_file, "Deleting : ");
1026 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1027 fprintf (dump_file, "\n");
1028 }
1029
1030 stats.removed++;
1031
1032 /* If we have determined that a conditional branch statement contributes
1033 nothing to the program, then we not only remove it, but we also change
1034 the flow graph so that the current block will simply fall-thru to its
1035 immediate post-dominator. The blocks we are circumventing will be
1036 removed by cleanup_tree_cfg if this change in the flow graph makes them
1037 unreachable. */
1038 if (is_ctrl_stmt (stmt))
1039 {
1040 basic_block post_dom_bb;
1041 edge e, e2;
1042 edge_iterator ei;
1043
1044 post_dom_bb = get_live_post_dom (bb);
1045
1046 e = find_edge (bb, post_dom_bb);
1047
1048 /* If edge is already there, try to use it. This avoids need to update
1049 PHI nodes. Also watch for cases where post dominator does not exists
1050 or is exit block. These can happen for infinite loops as we create
1051 fake edges in the dominator tree. */
1052 if (e)
1053 ;
1054 else if (! post_dom_bb || post_dom_bb == EXIT_BLOCK_PTR)
1055 e = EDGE_SUCC (bb, 0);
1056 else
1057 e = forward_edge_to_pdom (EDGE_SUCC (bb, 0), post_dom_bb);
1058 gcc_assert (e);
1059 e->probability = REG_BR_PROB_BASE;
1060 e->count = bb->count;
1061
1062 /* The edge is no longer associated with a conditional, so it does
1063 not have TRUE/FALSE flags. */
1064 e->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
1065
1066 /* The lone outgoing edge from BB will be a fallthru edge. */
1067 e->flags |= EDGE_FALLTHRU;
1068
1069 /* Remove the remaining outgoing edges. */
1070 for (ei = ei_start (bb->succs); (e2 = ei_safe_edge (ei)); )
1071 if (e != e2)
1072 {
1073 cfg_altered = true;
1074 remove_edge (e2);
1075 }
1076 else
1077 ei_next (&ei);
1078 }
1079
1080 unlink_stmt_vdef (stmt);
1081 gsi_remove (i, true);
1082 release_defs (stmt);
1083 }
1084
1085 /* Eliminate unnecessary statements. Any instruction not marked as necessary
1086 contributes nothing to the program, and can be deleted. */
1087
1088 static bool
1089 eliminate_unnecessary_stmts (void)
1090 {
1091 bool something_changed = false;
1092 basic_block bb;
1093 gimple_stmt_iterator gsi, psi;
1094 gimple stmt;
1095 tree call;
1096 VEC (basic_block, heap) *h;
1097
1098 if (dump_file && (dump_flags & TDF_DETAILS))
1099 fprintf (dump_file, "\nEliminating unnecessary statements:\n");
1100
1101 clear_special_calls ();
1102
1103 /* Walking basic blocks and statements in reverse order avoids
1104 releasing SSA names before any other DEFs that refer to them are
1105 released. This helps avoid loss of debug information, as we get
1106 a chance to propagate all RHSs of removed SSAs into debug uses,
1107 rather than only the latest ones. E.g., consider:
1108
1109 x_3 = y_1 + z_2;
1110 a_5 = x_3 - b_4;
1111 # DEBUG a => a_5
1112
1113 If we were to release x_3 before a_5, when we reached a_5 and
1114 tried to substitute it into the debug stmt, we'd see x_3 there,
1115 but x_3's DEF, type, etc would have already been disconnected.
1116 By going backwards, the debug stmt first changes to:
1117
1118 # DEBUG a => x_3 - b_4
1119
1120 and then to:
1121
1122 # DEBUG a => y_1 + z_2 - b_4
1123
1124 as desired. */
1125 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
1126 h = get_all_dominated_blocks (CDI_DOMINATORS, single_succ (ENTRY_BLOCK_PTR));
1127
1128 while (VEC_length (basic_block, h))
1129 {
1130 bb = VEC_pop (basic_block, h);
1131
1132 /* Remove dead statements. */
1133 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi = psi)
1134 {
1135 stmt = gsi_stmt (gsi);
1136
1137 psi = gsi;
1138 gsi_prev (&psi);
1139
1140 stats.total++;
1141
1142 /* If GSI is not necessary then remove it. */
1143 if (!gimple_plf (stmt, STMT_NECESSARY))
1144 {
1145 if (!is_gimple_debug (stmt))
1146 something_changed = true;
1147 remove_dead_stmt (&gsi, bb);
1148 }
1149 else if (is_gimple_call (stmt))
1150 {
1151 call = gimple_call_fndecl (stmt);
1152 if (call)
1153 {
1154 tree name;
1155
1156 /* When LHS of var = call (); is dead, simplify it into
1157 call (); saving one operand. */
1158 name = gimple_call_lhs (stmt);
1159 if (name && TREE_CODE (name) == SSA_NAME
1160 && !TEST_BIT (processed, SSA_NAME_VERSION (name)))
1161 {
1162 something_changed = true;
1163 if (dump_file && (dump_flags & TDF_DETAILS))
1164 {
1165 fprintf (dump_file, "Deleting LHS of call: ");
1166 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1167 fprintf (dump_file, "\n");
1168 }
1169
1170 gimple_call_set_lhs (stmt, NULL_TREE);
1171 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1172 update_stmt (stmt);
1173 release_ssa_name (name);
1174 }
1175 notice_special_calls (stmt);
1176 }
1177 }
1178 }
1179 }
1180
1181 VEC_free (basic_block, heap, h);
1182
1183 /* Since we don't track liveness of virtual PHI nodes, it is possible that we
1184 rendered some PHI nodes unreachable while they are still in use.
1185 Mark them for renaming. */
1186 if (cfg_altered)
1187 {
1188 basic_block prev_bb;
1189
1190 find_unreachable_blocks ();
1191
1192 /* Delete all unreachable basic blocks in reverse dominator order. */
1193 for (bb = EXIT_BLOCK_PTR->prev_bb; bb != ENTRY_BLOCK_PTR; bb = prev_bb)
1194 {
1195 prev_bb = bb->prev_bb;
1196
1197 if (!TEST_BIT (bb_contains_live_stmts, bb->index)
1198 || !(bb->flags & BB_REACHABLE))
1199 {
1200 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1201 if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
1202 {
1203 bool found = false;
1204 imm_use_iterator iter;
1205
1206 FOR_EACH_IMM_USE_STMT (stmt, iter, gimple_phi_result (gsi_stmt (gsi)))
1207 {
1208 if (!(gimple_bb (stmt)->flags & BB_REACHABLE))
1209 continue;
1210 if (gimple_code (stmt) == GIMPLE_PHI
1211 || gimple_plf (stmt, STMT_NECESSARY))
1212 {
1213 found = true;
1214 BREAK_FROM_IMM_USE_STMT (iter);
1215 }
1216 }
1217 if (found)
1218 mark_virtual_phi_result_for_renaming (gsi_stmt (gsi));
1219 }
1220
1221 if (!(bb->flags & BB_REACHABLE))
1222 {
1223 /* Speed up the removal of blocks that don't
1224 dominate others. Walking backwards, this should
1225 be the common case. ??? Do we need to recompute
1226 dominators because of cfg_altered? */
1227 if (!MAY_HAVE_DEBUG_STMTS
1228 || !first_dom_son (CDI_DOMINATORS, bb))
1229 delete_basic_block (bb);
1230 else
1231 {
1232 h = get_all_dominated_blocks (CDI_DOMINATORS, bb);
1233
1234 while (VEC_length (basic_block, h))
1235 {
1236 bb = VEC_pop (basic_block, h);
1237 prev_bb = bb->prev_bb;
1238 /* Rearrangements to the CFG may have failed
1239 to update the dominators tree, so that
1240 formerly-dominated blocks are now
1241 otherwise reachable. */
1242 if (!!(bb->flags & BB_REACHABLE))
1243 continue;
1244 delete_basic_block (bb);
1245 }
1246
1247 VEC_free (basic_block, heap, h);
1248 }
1249 }
1250 }
1251 }
1252 }
1253 FOR_EACH_BB (bb)
1254 {
1255 /* Remove dead PHI nodes. */
1256 something_changed |= remove_dead_phis (bb);
1257 }
1258
1259 return something_changed;
1260 }
1261
1262
1263 /* Print out removed statement statistics. */
1264
1265 static void
1266 print_stats (void)
1267 {
1268 float percg;
1269
1270 percg = ((float) stats.removed / (float) stats.total) * 100;
1271 fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
1272 stats.removed, stats.total, (int) percg);
1273
1274 if (stats.total_phis == 0)
1275 percg = 0;
1276 else
1277 percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
1278
1279 fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
1280 stats.removed_phis, stats.total_phis, (int) percg);
1281 }
1282
1283 /* Initialization for this pass. Set up the used data structures. */
1284
1285 static void
1286 tree_dce_init (bool aggressive)
1287 {
1288 memset ((void *) &stats, 0, sizeof (stats));
1289
1290 if (aggressive)
1291 {
1292 int i;
1293
1294 control_dependence_map = XNEWVEC (bitmap, last_basic_block);
1295 for (i = 0; i < last_basic_block; ++i)
1296 control_dependence_map[i] = BITMAP_ALLOC (NULL);
1297
1298 last_stmt_necessary = sbitmap_alloc (last_basic_block);
1299 sbitmap_zero (last_stmt_necessary);
1300 bb_contains_live_stmts = sbitmap_alloc (last_basic_block);
1301 sbitmap_zero (bb_contains_live_stmts);
1302 }
1303
1304 processed = sbitmap_alloc (num_ssa_names + 1);
1305 sbitmap_zero (processed);
1306
1307 worklist = VEC_alloc (gimple, heap, 64);
1308 cfg_altered = false;
1309 }
1310
1311 /* Cleanup after this pass. */
1312
1313 static void
1314 tree_dce_done (bool aggressive)
1315 {
1316 if (aggressive)
1317 {
1318 int i;
1319
1320 for (i = 0; i < last_basic_block; ++i)
1321 BITMAP_FREE (control_dependence_map[i]);
1322 free (control_dependence_map);
1323
1324 sbitmap_free (visited_control_parents);
1325 sbitmap_free (last_stmt_necessary);
1326 sbitmap_free (bb_contains_live_stmts);
1327 bb_contains_live_stmts = NULL;
1328 }
1329
1330 sbitmap_free (processed);
1331
1332 VEC_free (gimple, heap, worklist);
1333 }
1334
1335 /* Main routine to eliminate dead code.
1336
1337 AGGRESSIVE controls the aggressiveness of the algorithm.
1338 In conservative mode, we ignore control dependence and simply declare
1339 all but the most trivially dead branches necessary. This mode is fast.
1340 In aggressive mode, control dependences are taken into account, which
1341 results in more dead code elimination, but at the cost of some time.
1342
1343 FIXME: Aggressive mode before PRE doesn't work currently because
1344 the dominance info is not invalidated after DCE1. This is
1345 not an issue right now because we only run aggressive DCE
1346 as the last tree SSA pass, but keep this in mind when you
1347 start experimenting with pass ordering. */
1348
1349 static unsigned int
1350 perform_tree_ssa_dce (bool aggressive)
1351 {
1352 struct edge_list *el = NULL;
1353 bool something_changed = 0;
1354
1355 /* Preheaders are needed for SCEV to work.
1356 Simple lateches and recorded exits improve chances that loop will
1357 proved to be finite in testcases such as in loop-15.c and loop-24.c */
1358 if (aggressive)
1359 loop_optimizer_init (LOOPS_NORMAL
1360 | LOOPS_HAVE_RECORDED_EXITS);
1361
1362 tree_dce_init (aggressive);
1363
1364 if (aggressive)
1365 {
1366 /* Compute control dependence. */
1367 timevar_push (TV_CONTROL_DEPENDENCES);
1368 calculate_dominance_info (CDI_POST_DOMINATORS);
1369 el = create_edge_list ();
1370 find_all_control_dependences (el);
1371 timevar_pop (TV_CONTROL_DEPENDENCES);
1372
1373 visited_control_parents = sbitmap_alloc (last_basic_block);
1374 sbitmap_zero (visited_control_parents);
1375
1376 mark_dfs_back_edges ();
1377 }
1378
1379 find_obviously_necessary_stmts (el);
1380
1381 if (aggressive)
1382 loop_optimizer_finalize ();
1383
1384 longest_chain = 0;
1385 total_chain = 0;
1386 nr_walks = 0;
1387 chain_ovfl = false;
1388 visited = BITMAP_ALLOC (NULL);
1389 propagate_necessity (el);
1390 BITMAP_FREE (visited);
1391
1392 something_changed |= eliminate_unnecessary_stmts ();
1393 something_changed |= cfg_altered;
1394
1395 /* We do not update postdominators, so free them unconditionally. */
1396 free_dominance_info (CDI_POST_DOMINATORS);
1397
1398 /* If we removed paths in the CFG, then we need to update
1399 dominators as well. I haven't investigated the possibility
1400 of incrementally updating dominators. */
1401 if (cfg_altered)
1402 free_dominance_info (CDI_DOMINATORS);
1403
1404 statistics_counter_event (cfun, "Statements deleted", stats.removed);
1405 statistics_counter_event (cfun, "PHI nodes deleted", stats.removed_phis);
1406
1407 /* Debugging dumps. */
1408 if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
1409 print_stats ();
1410
1411 tree_dce_done (aggressive);
1412
1413 free_edge_list (el);
1414
1415 if (something_changed)
1416 return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
1417 | TODO_remove_unused_locals);
1418 else
1419 return 0;
1420 }
1421
1422 /* Pass entry points. */
1423 static unsigned int
1424 tree_ssa_dce (void)
1425 {
1426 return perform_tree_ssa_dce (/*aggressive=*/false);
1427 }
1428
1429 static unsigned int
1430 tree_ssa_dce_loop (void)
1431 {
1432 unsigned int todo;
1433 todo = perform_tree_ssa_dce (/*aggressive=*/false);
1434 if (todo)
1435 {
1436 free_numbers_of_iterations_estimates ();
1437 scev_reset ();
1438 }
1439 return todo;
1440 }
1441
1442 static unsigned int
1443 tree_ssa_cd_dce (void)
1444 {
1445 return perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
1446 }
1447
1448 static bool
1449 gate_dce (void)
1450 {
1451 return flag_tree_dce != 0;
1452 }
1453
1454 struct gimple_opt_pass pass_dce =
1455 {
1456 {
1457 GIMPLE_PASS,
1458 "dce", /* name */
1459 gate_dce, /* gate */
1460 tree_ssa_dce, /* execute */
1461 NULL, /* sub */
1462 NULL, /* next */
1463 0, /* static_pass_number */
1464 TV_TREE_DCE, /* tv_id */
1465 PROP_cfg | PROP_ssa, /* properties_required */
1466 0, /* properties_provided */
1467 0, /* properties_destroyed */
1468 0, /* todo_flags_start */
1469 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1470 }
1471 };
1472
1473 struct gimple_opt_pass pass_dce_loop =
1474 {
1475 {
1476 GIMPLE_PASS,
1477 "dceloop", /* name */
1478 gate_dce, /* gate */
1479 tree_ssa_dce_loop, /* execute */
1480 NULL, /* sub */
1481 NULL, /* next */
1482 0, /* static_pass_number */
1483 TV_TREE_DCE, /* tv_id */
1484 PROP_cfg | PROP_ssa, /* properties_required */
1485 0, /* properties_provided */
1486 0, /* properties_destroyed */
1487 0, /* todo_flags_start */
1488 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1489 }
1490 };
1491
1492 struct gimple_opt_pass pass_cd_dce =
1493 {
1494 {
1495 GIMPLE_PASS,
1496 "cddce", /* name */
1497 gate_dce, /* gate */
1498 tree_ssa_cd_dce, /* execute */
1499 NULL, /* sub */
1500 NULL, /* next */
1501 0, /* static_pass_number */
1502 TV_TREE_CD_DCE, /* tv_id */
1503 PROP_cfg | PROP_ssa, /* properties_required */
1504 0, /* properties_provided */
1505 0, /* properties_destroyed */
1506 0, /* todo_flags_start */
1507 TODO_dump_func | TODO_verify_ssa
1508 | TODO_verify_flow /* todo_flags_finish */
1509 }
1510 };