re PR tree-optimization/40676 (internal compiler error: verify_ssa error: definition...
[gcc.git] / gcc / tree-ssa-dce.c
1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Ben Elliston <bje@redhat.com>
5 and Andrew MacLeod <amacleod@redhat.com>
6 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 3, or (at your option) any
13 later version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* Dead code elimination.
25
26 References:
27
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
30
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
33
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
37 impact on the output.
38
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
45
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "ggc.h"
51
52 /* These RTL headers are needed for basic-block.h. */
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "hard-reg-set.h"
56 #include "obstack.h"
57 #include "basic-block.h"
58
59 #include "tree.h"
60 #include "diagnostic.h"
61 #include "tree-flow.h"
62 #include "gimple.h"
63 #include "tree-dump.h"
64 #include "tree-pass.h"
65 #include "timevar.h"
66 #include "flags.h"
67 #include "cfgloop.h"
68 #include "tree-scalar-evolution.h"
69
70 static struct stmt_stats
71 {
72 int total;
73 int total_phis;
74 int removed;
75 int removed_phis;
76 } stats;
77
78 #define STMT_NECESSARY GF_PLF_1
79
80 static VEC(gimple,heap) *worklist;
81
82 /* Vector indicating an SSA name has already been processed and marked
83 as necessary. */
84 static sbitmap processed;
85
86 /* Vector indicating that last_stmt if a basic block has already been
87 marked as necessary. */
88 static sbitmap last_stmt_necessary;
89
90 /* Vector indicating that BB contains statements that are live. */
91 static sbitmap bb_contains_live_stmts;
92
93 /* Before we can determine whether a control branch is dead, we need to
94 compute which blocks are control dependent on which edges.
95
96 We expect each block to be control dependent on very few edges so we
97 use a bitmap for each block recording its edges. An array holds the
98 bitmap. The Ith bit in the bitmap is set if that block is dependent
99 on the Ith edge. */
100 static bitmap *control_dependence_map;
101
102 /* Vector indicating that a basic block has already had all the edges
103 processed that it is control dependent on. */
104 static sbitmap visited_control_parents;
105
106 /* TRUE if this pass alters the CFG (by removing control statements).
107 FALSE otherwise.
108
109 If this pass alters the CFG, then it will arrange for the dominators
110 to be recomputed. */
111 static bool cfg_altered;
112
113 /* Execute code that follows the macro for each edge (given number
114 EDGE_NUMBER within the CODE) for which the block with index N is
115 control dependent. */
116 #define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER) \
117 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0, \
118 (EDGE_NUMBER), (BI))
119
120
121 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
122 static inline void
123 set_control_dependence_map_bit (basic_block bb, int edge_index)
124 {
125 if (bb == ENTRY_BLOCK_PTR)
126 return;
127 gcc_assert (bb != EXIT_BLOCK_PTR);
128 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
129 }
130
131 /* Clear all control dependences for block BB. */
132 static inline void
133 clear_control_dependence_bitmap (basic_block bb)
134 {
135 bitmap_clear (control_dependence_map[bb->index]);
136 }
137
138
139 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
140 This function is necessary because some blocks have negative numbers. */
141
142 static inline basic_block
143 find_pdom (basic_block block)
144 {
145 gcc_assert (block != ENTRY_BLOCK_PTR);
146
147 if (block == EXIT_BLOCK_PTR)
148 return EXIT_BLOCK_PTR;
149 else
150 {
151 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
152 if (! bb)
153 return EXIT_BLOCK_PTR;
154 return bb;
155 }
156 }
157
158
159 /* Determine all blocks' control dependences on the given edge with edge_list
160 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
161
162 static void
163 find_control_dependence (struct edge_list *el, int edge_index)
164 {
165 basic_block current_block;
166 basic_block ending_block;
167
168 gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
169
170 if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
171 ending_block = single_succ (ENTRY_BLOCK_PTR);
172 else
173 ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
174
175 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
176 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
177 current_block = find_pdom (current_block))
178 {
179 edge e = INDEX_EDGE (el, edge_index);
180
181 /* For abnormal edges, we don't make current_block control
182 dependent because instructions that throw are always necessary
183 anyway. */
184 if (e->flags & EDGE_ABNORMAL)
185 continue;
186
187 set_control_dependence_map_bit (current_block, edge_index);
188 }
189 }
190
191
192 /* Record all blocks' control dependences on all edges in the edge
193 list EL, ala Morgan, Section 3.6. */
194
195 static void
196 find_all_control_dependences (struct edge_list *el)
197 {
198 int i;
199
200 for (i = 0; i < NUM_EDGES (el); ++i)
201 find_control_dependence (el, i);
202 }
203
204 /* If STMT is not already marked necessary, mark it, and add it to the
205 worklist if ADD_TO_WORKLIST is true. */
206 static inline void
207 mark_stmt_necessary (gimple stmt, bool add_to_worklist)
208 {
209 gcc_assert (stmt);
210
211 if (gimple_plf (stmt, STMT_NECESSARY))
212 return;
213
214 if (dump_file && (dump_flags & TDF_DETAILS))
215 {
216 fprintf (dump_file, "Marking useful stmt: ");
217 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
218 fprintf (dump_file, "\n");
219 }
220
221 gimple_set_plf (stmt, STMT_NECESSARY, true);
222 if (add_to_worklist)
223 VEC_safe_push (gimple, heap, worklist, stmt);
224 if (bb_contains_live_stmts)
225 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
226 }
227
228
229 /* Mark the statement defining operand OP as necessary. */
230
231 static inline void
232 mark_operand_necessary (tree op)
233 {
234 gimple stmt;
235 int ver;
236
237 gcc_assert (op);
238
239 ver = SSA_NAME_VERSION (op);
240 if (TEST_BIT (processed, ver))
241 {
242 stmt = SSA_NAME_DEF_STMT (op);
243 gcc_assert (gimple_nop_p (stmt)
244 || gimple_plf (stmt, STMT_NECESSARY));
245 return;
246 }
247 SET_BIT (processed, ver);
248
249 stmt = SSA_NAME_DEF_STMT (op);
250 gcc_assert (stmt);
251
252 if (gimple_plf (stmt, STMT_NECESSARY) || gimple_nop_p (stmt))
253 return;
254
255 if (dump_file && (dump_flags & TDF_DETAILS))
256 {
257 fprintf (dump_file, "marking necessary through ");
258 print_generic_expr (dump_file, op, 0);
259 fprintf (dump_file, " stmt ");
260 print_gimple_stmt (dump_file, stmt, 0, 0);
261 }
262
263 gimple_set_plf (stmt, STMT_NECESSARY, true);
264 if (bb_contains_live_stmts)
265 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
266 VEC_safe_push (gimple, heap, worklist, stmt);
267 }
268
269
270 /* Mark STMT as necessary if it obviously is. Add it to the worklist if
271 it can make other statements necessary.
272
273 If AGGRESSIVE is false, control statements are conservatively marked as
274 necessary. */
275
276 static void
277 mark_stmt_if_obviously_necessary (gimple stmt, bool aggressive)
278 {
279 tree lhs = NULL_TREE;
280 /* With non-call exceptions, we have to assume that all statements could
281 throw. If a statement may throw, it is inherently necessary. */
282 if (flag_non_call_exceptions
283 && stmt_could_throw_p (stmt))
284 {
285 mark_stmt_necessary (stmt, true);
286 return;
287 }
288
289 /* Statements that are implicitly live. Most function calls, asm
290 and return statements are required. Labels and GIMPLE_BIND nodes
291 are kept because they are control flow, and we have no way of
292 knowing whether they can be removed. DCE can eliminate all the
293 other statements in a block, and CFG can then remove the block
294 and labels. */
295 switch (gimple_code (stmt))
296 {
297 case GIMPLE_PREDICT:
298 case GIMPLE_LABEL:
299 mark_stmt_necessary (stmt, false);
300 return;
301
302 case GIMPLE_ASM:
303 case GIMPLE_RESX:
304 case GIMPLE_RETURN:
305 mark_stmt_necessary (stmt, true);
306 return;
307
308 case GIMPLE_CALL:
309 /* Most, but not all function calls are required. Function calls that
310 produce no result and have no side effects (i.e. const pure
311 functions) are unnecessary. */
312 if (gimple_has_side_effects (stmt))
313 {
314 mark_stmt_necessary (stmt, true);
315 return;
316 }
317 if (!gimple_call_lhs (stmt))
318 return;
319 lhs = gimple_call_lhs (stmt);
320 /* Fall through */
321
322 case GIMPLE_ASSIGN:
323 if (!lhs)
324 lhs = gimple_assign_lhs (stmt);
325 /* These values are mildly magic bits of the EH runtime. We can't
326 see the entire lifetime of these values until landing pads are
327 generated. */
328 if (TREE_CODE (lhs) == EXC_PTR_EXPR
329 || TREE_CODE (lhs) == FILTER_EXPR)
330 {
331 mark_stmt_necessary (stmt, true);
332 return;
333 }
334 break;
335
336 case GIMPLE_GOTO:
337 gcc_assert (!simple_goto_p (stmt));
338 mark_stmt_necessary (stmt, true);
339 return;
340
341 case GIMPLE_COND:
342 gcc_assert (EDGE_COUNT (gimple_bb (stmt)->succs) == 2);
343 /* Fall through. */
344
345 case GIMPLE_SWITCH:
346 if (! aggressive)
347 mark_stmt_necessary (stmt, true);
348 break;
349
350 default:
351 break;
352 }
353
354 /* If the statement has volatile operands, it needs to be preserved.
355 Same for statements that can alter control flow in unpredictable
356 ways. */
357 if (gimple_has_volatile_ops (stmt) || is_ctrl_altering_stmt (stmt))
358 {
359 mark_stmt_necessary (stmt, true);
360 return;
361 }
362
363 if (is_hidden_global_store (stmt))
364 {
365 mark_stmt_necessary (stmt, true);
366 return;
367 }
368
369 return;
370 }
371
372
373 /* Make corresponding control dependent edges necessary. We only
374 have to do this once for each basic block, so we clear the bitmap
375 after we're done. */
376 static void
377 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el)
378 {
379 bitmap_iterator bi;
380 unsigned edge_number;
381
382 gcc_assert (bb != EXIT_BLOCK_PTR);
383
384 if (bb == ENTRY_BLOCK_PTR)
385 return;
386
387 EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
388 {
389 gimple stmt;
390 basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
391
392 if (TEST_BIT (last_stmt_necessary, cd_bb->index))
393 continue;
394 SET_BIT (last_stmt_necessary, cd_bb->index);
395 SET_BIT (bb_contains_live_stmts, cd_bb->index);
396
397 stmt = last_stmt (cd_bb);
398 if (stmt && is_ctrl_stmt (stmt))
399 mark_stmt_necessary (stmt, true);
400 }
401 }
402
403
404 /* Find obviously necessary statements. These are things like most function
405 calls, and stores to file level variables.
406
407 If EL is NULL, control statements are conservatively marked as
408 necessary. Otherwise it contains the list of edges used by control
409 dependence analysis. */
410
411 static void
412 find_obviously_necessary_stmts (struct edge_list *el)
413 {
414 basic_block bb;
415 gimple_stmt_iterator gsi;
416 edge e;
417 gimple phi, stmt;
418
419 FOR_EACH_BB (bb)
420 {
421 /* PHI nodes are never inherently necessary. */
422 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
423 {
424 phi = gsi_stmt (gsi);
425 gimple_set_plf (phi, STMT_NECESSARY, false);
426 }
427
428 /* Check all statements in the block. */
429 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
430 {
431 stmt = gsi_stmt (gsi);
432 gimple_set_plf (stmt, STMT_NECESSARY, false);
433 mark_stmt_if_obviously_necessary (stmt, el != NULL);
434 }
435 }
436
437 /* Pure and const functions are finite and thus have no infinite loops in
438 them. */
439 if ((TREE_READONLY (current_function_decl)
440 || DECL_PURE_P (current_function_decl))
441 && !DECL_LOOPING_CONST_OR_PURE_P (current_function_decl))
442 return;
443
444 /* Prevent the empty possibly infinite loops from being removed. */
445 if (el)
446 {
447 loop_iterator li;
448 struct loop *loop;
449 scev_initialize ();
450 if (mark_irreducible_loops ())
451 FOR_EACH_BB (bb)
452 {
453 edge_iterator ei;
454 FOR_EACH_EDGE (e, ei, bb->succs)
455 if ((e->flags & EDGE_DFS_BACK)
456 && (e->flags & EDGE_IRREDUCIBLE_LOOP))
457 {
458 if (dump_file)
459 fprintf (dump_file, "Marking back edge of irreducible loop %i->%i\n",
460 e->src->index, e->dest->index);
461 mark_control_dependent_edges_necessary (e->dest, el);
462 }
463 }
464
465 FOR_EACH_LOOP (li, loop, 0)
466 if (!finite_loop_p (loop))
467 {
468 if (dump_file)
469 fprintf (dump_file, "can not prove finiteness of loop %i\n", loop->num);
470 mark_control_dependent_edges_necessary (loop->latch, el);
471 }
472 scev_finalize ();
473 }
474 }
475
476
477 /* Return true if REF is based on an aliased base, otherwise false. */
478
479 static bool
480 ref_may_be_aliased (tree ref)
481 {
482 while (handled_component_p (ref))
483 ref = TREE_OPERAND (ref, 0);
484 return !(DECL_P (ref)
485 && !may_be_aliased (ref));
486 }
487
488 static bitmap visited = NULL;
489 static unsigned int longest_chain = 0;
490 static unsigned int total_chain = 0;
491 static bool chain_ovfl = false;
492
493 /* Worker for the walker that marks reaching definitions of REF,
494 which is based on a non-aliased decl, necessary. It returns
495 true whenever the defining statement of the current VDEF is
496 a kill for REF, as no dominating may-defs are necessary for REF
497 anymore. DATA points to cached get_ref_base_and_extent data for REF. */
498
499 static bool
500 mark_aliased_reaching_defs_necessary_1 (ao_ref *ref, tree vdef,
501 void *data ATTRIBUTE_UNUSED)
502 {
503 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
504
505 /* All stmts we visit are necessary. */
506 mark_operand_necessary (vdef);
507
508 /* If the stmt lhs kills ref, then we can stop walking. */
509 if (gimple_has_lhs (def_stmt)
510 && TREE_CODE (gimple_get_lhs (def_stmt)) != SSA_NAME)
511 {
512 tree base, lhs = gimple_get_lhs (def_stmt);
513 HOST_WIDE_INT size, offset, max_size;
514 ao_ref_base (ref);
515 base = get_ref_base_and_extent (lhs, &offset, &size, &max_size);
516 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
517 so base == refd->base does not always hold. */
518 if (base == ref->base)
519 {
520 /* For a must-alias check we need to be able to constrain
521 the accesses properly. */
522 if (size != -1 && size == max_size
523 && ref->max_size != -1)
524 {
525 if (offset <= ref->offset
526 && offset + size >= ref->offset + ref->max_size)
527 return true;
528 }
529 /* Or they need to be exactly the same. */
530 else if (ref->ref
531 && operand_equal_p (ref->ref, lhs, 0))
532 return true;
533 }
534 }
535
536 /* Otherwise keep walking. */
537 return false;
538 }
539
540 static void
541 mark_aliased_reaching_defs_necessary (gimple stmt, tree ref)
542 {
543 unsigned int chain;
544 ao_ref refd;
545 gcc_assert (!chain_ovfl);
546 ao_ref_init (&refd, ref);
547 chain = walk_aliased_vdefs (&refd, gimple_vuse (stmt),
548 mark_aliased_reaching_defs_necessary_1,
549 NULL, NULL);
550 if (chain > longest_chain)
551 longest_chain = chain;
552 total_chain += chain;
553 }
554
555 /* Worker for the walker that marks reaching definitions of REF, which
556 is not based on a non-aliased decl. For simplicity we need to end
557 up marking all may-defs necessary that are not based on a non-aliased
558 decl. The only job of this walker is to skip may-defs based on
559 a non-aliased decl. */
560
561 static bool
562 mark_all_reaching_defs_necessary_1 (ao_ref *ref ATTRIBUTE_UNUSED,
563 tree vdef, void *data ATTRIBUTE_UNUSED)
564 {
565 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
566
567 /* We have to skip already visited (and thus necessary) statements
568 to make the chaining work after we dropped back to simple mode. */
569 if (chain_ovfl
570 && TEST_BIT (processed, SSA_NAME_VERSION (vdef)))
571 {
572 gcc_assert (gimple_nop_p (def_stmt)
573 || gimple_plf (def_stmt, STMT_NECESSARY));
574 return false;
575 }
576
577 /* We want to skip stores to non-aliased variables. */
578 if (!chain_ovfl
579 && gimple_assign_single_p (def_stmt))
580 {
581 tree lhs = gimple_assign_lhs (def_stmt);
582 if (!ref_may_be_aliased (lhs))
583 return false;
584 }
585
586 mark_operand_necessary (vdef);
587
588 return false;
589 }
590
591 static void
592 mark_all_reaching_defs_necessary (gimple stmt)
593 {
594 walk_aliased_vdefs (NULL, gimple_vuse (stmt),
595 mark_all_reaching_defs_necessary_1, NULL, &visited);
596 }
597
598 /* Return true for PHI nodes with one or identical arguments
599 can be removed. */
600 static bool
601 degenerate_phi_p (gimple phi)
602 {
603 unsigned int i;
604 tree op = gimple_phi_arg_def (phi, 0);
605 for (i = 1; i < gimple_phi_num_args (phi); i++)
606 if (gimple_phi_arg_def (phi, i) != op)
607 return false;
608 return true;
609 }
610
611 /* Propagate necessity using the operands of necessary statements.
612 Process the uses on each statement in the worklist, and add all
613 feeding statements which contribute to the calculation of this
614 value to the worklist.
615
616 In conservative mode, EL is NULL. */
617
618 static void
619 propagate_necessity (struct edge_list *el)
620 {
621 gimple stmt;
622 bool aggressive = (el ? true : false);
623
624 if (dump_file && (dump_flags & TDF_DETAILS))
625 fprintf (dump_file, "\nProcessing worklist:\n");
626
627 while (VEC_length (gimple, worklist) > 0)
628 {
629 /* Take STMT from worklist. */
630 stmt = VEC_pop (gimple, worklist);
631
632 if (dump_file && (dump_flags & TDF_DETAILS))
633 {
634 fprintf (dump_file, "processing: ");
635 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
636 fprintf (dump_file, "\n");
637 }
638
639 if (aggressive)
640 {
641 /* Mark the last statements of the basic blocks that the block
642 containing STMT is control dependent on, but only if we haven't
643 already done so. */
644 basic_block bb = gimple_bb (stmt);
645 if (bb != ENTRY_BLOCK_PTR
646 && ! TEST_BIT (visited_control_parents, bb->index))
647 {
648 SET_BIT (visited_control_parents, bb->index);
649 mark_control_dependent_edges_necessary (bb, el);
650 }
651 }
652
653 if (gimple_code (stmt) == GIMPLE_PHI
654 /* We do not process virtual PHI nodes nor do we track their
655 necessity. */
656 && is_gimple_reg (gimple_phi_result (stmt)))
657 {
658 /* PHI nodes are somewhat special in that each PHI alternative has
659 data and control dependencies. All the statements feeding the
660 PHI node's arguments are always necessary. In aggressive mode,
661 we also consider the control dependent edges leading to the
662 predecessor block associated with each PHI alternative as
663 necessary. */
664 size_t k;
665
666 for (k = 0; k < gimple_phi_num_args (stmt); k++)
667 {
668 tree arg = PHI_ARG_DEF (stmt, k);
669 if (TREE_CODE (arg) == SSA_NAME)
670 mark_operand_necessary (arg);
671 }
672
673 if (aggressive && !degenerate_phi_p (stmt))
674 {
675 for (k = 0; k < gimple_phi_num_args (stmt); k++)
676 {
677 basic_block arg_bb = gimple_phi_arg_edge (stmt, k)->src;
678 if (arg_bb != ENTRY_BLOCK_PTR
679 && ! TEST_BIT (visited_control_parents, arg_bb->index))
680 {
681 SET_BIT (visited_control_parents, arg_bb->index);
682 mark_control_dependent_edges_necessary (arg_bb, el);
683 }
684 }
685 }
686 }
687 else
688 {
689 /* Propagate through the operands. Examine all the USE, VUSE and
690 VDEF operands in this statement. Mark all the statements
691 which feed this statement's uses as necessary. */
692 ssa_op_iter iter;
693 tree use;
694
695 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
696 mark_operand_necessary (use);
697
698 use = gimple_vuse (stmt);
699 if (!use)
700 continue;
701
702 /* If we dropped to simple mode make all immediately
703 reachable definitions necessary. */
704 if (chain_ovfl)
705 {
706 mark_all_reaching_defs_necessary (stmt);
707 continue;
708 }
709
710 /* For statements that may load from memory (have a VUSE) we
711 have to mark all reaching (may-)definitions as necessary.
712 We partition this task into two cases:
713 1) explicit loads based on decls that are not aliased
714 2) implicit loads (like calls) and explicit loads not
715 based on decls that are not aliased (like indirect
716 references or loads from globals)
717 For 1) we mark all reaching may-defs as necessary, stopping
718 at dominating kills. For 2) we want to mark all dominating
719 references necessary, but non-aliased ones which we handle
720 in 1). By keeping a global visited bitmap for references
721 we walk for 2) we avoid quadratic behavior for those. */
722
723 if (is_gimple_call (stmt))
724 {
725 tree callee = gimple_call_fndecl (stmt);
726 unsigned i;
727
728 /* Calls to functions that are merely acting as barriers
729 or that only store to memory do not make any previous
730 stores necessary. */
731 if (callee != NULL_TREE
732 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
733 && (DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET
734 || DECL_FUNCTION_CODE (callee) == BUILT_IN_MALLOC
735 || DECL_FUNCTION_CODE (callee) == BUILT_IN_FREE))
736 continue;
737
738 /* Calls implicitly load from memory, their arguments
739 in addition may explicitly perform memory loads. */
740 mark_all_reaching_defs_necessary (stmt);
741 for (i = 0; i < gimple_call_num_args (stmt); ++i)
742 {
743 tree arg = gimple_call_arg (stmt, i);
744 if (TREE_CODE (arg) == SSA_NAME
745 || is_gimple_min_invariant (arg))
746 continue;
747 if (!ref_may_be_aliased (arg))
748 mark_aliased_reaching_defs_necessary (stmt, arg);
749 }
750 }
751 else if (gimple_assign_single_p (stmt))
752 {
753 tree rhs;
754 bool rhs_aliased = false;
755 /* If this is a load mark things necessary. */
756 rhs = gimple_assign_rhs1 (stmt);
757 if (TREE_CODE (rhs) != SSA_NAME
758 && !is_gimple_min_invariant (rhs))
759 {
760 if (!ref_may_be_aliased (rhs))
761 mark_aliased_reaching_defs_necessary (stmt, rhs);
762 else
763 rhs_aliased = true;
764 }
765 if (rhs_aliased)
766 mark_all_reaching_defs_necessary (stmt);
767 }
768 else if (gimple_code (stmt) == GIMPLE_RETURN)
769 {
770 tree rhs = gimple_return_retval (stmt);
771 /* A return statement may perform a load. */
772 if (TREE_CODE (rhs) != SSA_NAME
773 && !is_gimple_min_invariant (rhs))
774 {
775 if (!ref_may_be_aliased (rhs))
776 mark_aliased_reaching_defs_necessary (stmt, rhs);
777 else
778 mark_all_reaching_defs_necessary (stmt);
779 }
780 }
781 else if (gimple_code (stmt) == GIMPLE_ASM)
782 {
783 unsigned i;
784 mark_all_reaching_defs_necessary (stmt);
785 /* Inputs may perform loads. */
786 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
787 {
788 tree op = TREE_VALUE (gimple_asm_input_op (stmt, i));
789 if (TREE_CODE (op) != SSA_NAME
790 && !is_gimple_min_invariant (op)
791 && !ref_may_be_aliased (op))
792 mark_aliased_reaching_defs_necessary (stmt, op);
793 }
794 }
795 else
796 gcc_unreachable ();
797
798 /* If we over-used our alias oracle budget drop to simple
799 mode. The cost metric allows quadratic behavior up to
800 a constant maximal chain and after that falls back to
801 super-linear complexity. */
802 if (longest_chain > 256
803 && total_chain > 256 * longest_chain)
804 {
805 chain_ovfl = true;
806 if (visited)
807 bitmap_clear (visited);
808 }
809 }
810 }
811 }
812
813 /* Replace all uses of result of PHI by underlying variable and mark it
814 for renaming. */
815
816 static void
817 mark_virtual_phi_result_for_renaming (gimple phi)
818 {
819 bool used = false;
820 imm_use_iterator iter;
821 use_operand_p use_p;
822 gimple stmt;
823 if (dump_file && (dump_flags & TDF_DETAILS))
824 {
825 fprintf (dump_file, "Marking result for renaming : ");
826 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
827 fprintf (dump_file, "\n");
828 }
829 FOR_EACH_IMM_USE_STMT (stmt, iter, gimple_phi_result (phi))
830 {
831 if (gimple_code (stmt) != GIMPLE_PHI
832 && !gimple_plf (stmt, STMT_NECESSARY))
833 continue;
834 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
835 SET_USE (use_p, SSA_NAME_VAR (gimple_phi_result (phi)));
836 update_stmt (stmt);
837 used = true;
838 }
839 if (used)
840 mark_sym_for_renaming (SSA_NAME_VAR (PHI_RESULT (phi)));
841 }
842
843 /* Remove dead PHI nodes from block BB. */
844
845 static bool
846 remove_dead_phis (basic_block bb)
847 {
848 bool something_changed = false;
849 gimple_seq phis;
850 gimple phi;
851 gimple_stmt_iterator gsi;
852 phis = phi_nodes (bb);
853
854 for (gsi = gsi_start (phis); !gsi_end_p (gsi);)
855 {
856 stats.total_phis++;
857 phi = gsi_stmt (gsi);
858
859 /* We do not track necessity of virtual PHI nodes. Instead do
860 very simple dead PHI removal here. */
861 if (!is_gimple_reg (gimple_phi_result (phi)))
862 {
863 /* Virtual PHI nodes with one or identical arguments
864 can be removed. */
865 if (degenerate_phi_p (phi))
866 {
867 tree vdef = gimple_phi_result (phi);
868 tree vuse = gimple_phi_arg_def (phi, 0);
869
870 use_operand_p use_p;
871 imm_use_iterator iter;
872 gimple use_stmt;
873 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vdef)
874 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
875 SET_USE (use_p, vuse);
876 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vdef))
877 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 1;
878 }
879 else
880 gimple_set_plf (phi, STMT_NECESSARY, true);
881 }
882
883 if (!gimple_plf (phi, STMT_NECESSARY))
884 {
885 something_changed = true;
886 if (dump_file && (dump_flags & TDF_DETAILS))
887 {
888 fprintf (dump_file, "Deleting : ");
889 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
890 fprintf (dump_file, "\n");
891 }
892
893 remove_phi_node (&gsi, true);
894 stats.removed_phis++;
895 continue;
896 }
897
898 gsi_next (&gsi);
899 }
900 return something_changed;
901 }
902
903 /* Find first live post dominator of BB. */
904
905 static basic_block
906 get_live_post_dom (basic_block bb)
907 {
908 basic_block post_dom_bb;
909
910
911 /* The post dominance info has to be up-to-date. */
912 gcc_assert (dom_info_state (CDI_POST_DOMINATORS) == DOM_OK);
913
914 /* Get the immediate post dominator of bb. */
915 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
916 /* And look for first live one. */
917 while (post_dom_bb != EXIT_BLOCK_PTR
918 && !TEST_BIT (bb_contains_live_stmts, post_dom_bb->index))
919 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, post_dom_bb);
920
921 return post_dom_bb;
922 }
923
924 /* Forward edge E to respective POST_DOM_BB and update PHIs. */
925
926 static edge
927 forward_edge_to_pdom (edge e, basic_block post_dom_bb)
928 {
929 gimple_stmt_iterator gsi;
930 edge e2 = NULL;
931 edge_iterator ei;
932
933 if (dump_file && (dump_flags & TDF_DETAILS))
934 fprintf (dump_file, "Redirecting edge %i->%i to %i\n", e->src->index,
935 e->dest->index, post_dom_bb->index);
936
937 e2 = redirect_edge_and_branch (e, post_dom_bb);
938 cfg_altered = true;
939
940 /* If edge was already around, no updating is neccesary. */
941 if (e2 != e)
942 return e2;
943
944 if (phi_nodes (post_dom_bb))
945 {
946 /* We are sure that for every live PHI we are seeing control dependent BB.
947 This means that we can look up the end of control dependent path leading
948 to the PHI itself. */
949 FOR_EACH_EDGE (e2, ei, post_dom_bb->preds)
950 if (e2 != e && dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->src))
951 break;
952 for (gsi = gsi_start_phis (post_dom_bb); !gsi_end_p (gsi);)
953 {
954 gimple phi = gsi_stmt (gsi);
955 tree op;
956
957 /* Dead PHI do not imply control dependency. */
958 if (!gimple_plf (phi, STMT_NECESSARY)
959 && is_gimple_reg (gimple_phi_result (phi)))
960 {
961 gsi_next (&gsi);
962 continue;
963 }
964 if (gimple_phi_arg_def (phi, e->dest_idx))
965 {
966 gsi_next (&gsi);
967 continue;
968 }
969
970 /* We didn't find edge to update. This can happen for PHIs on virtuals
971 since there is no control dependency relation on them. We are lost
972 here and must force renaming of the symbol. */
973 if (!is_gimple_reg (gimple_phi_result (phi)))
974 {
975 mark_virtual_phi_result_for_renaming (phi);
976 remove_phi_node (&gsi, true);
977 continue;
978 }
979 if (!e2)
980 op = gimple_phi_arg_def (phi, e->dest_idx == 0 ? 1 : 0);
981 else
982 op = gimple_phi_arg_def (phi, e2->dest_idx);
983 add_phi_arg (phi, op, e);
984 gcc_assert (e2 || degenerate_phi_p (phi));
985 gsi_next (&gsi);
986 }
987 }
988 return e;
989 }
990
991 /* Remove dead statement pointed to by iterator I. Receives the basic block BB
992 containing I so that we don't have to look it up. */
993
994 static void
995 remove_dead_stmt (gimple_stmt_iterator *i, basic_block bb)
996 {
997 gimple stmt = gsi_stmt (*i);
998
999 if (dump_file && (dump_flags & TDF_DETAILS))
1000 {
1001 fprintf (dump_file, "Deleting : ");
1002 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1003 fprintf (dump_file, "\n");
1004 }
1005
1006 stats.removed++;
1007
1008 /* If we have determined that a conditional branch statement contributes
1009 nothing to the program, then we not only remove it, but we also change
1010 the flow graph so that the current block will simply fall-thru to its
1011 immediate post-dominator. The blocks we are circumventing will be
1012 removed by cleanup_tree_cfg if this change in the flow graph makes them
1013 unreachable. */
1014 if (is_ctrl_stmt (stmt))
1015 {
1016 basic_block post_dom_bb;
1017 edge e, e2;
1018 edge_iterator ei;
1019
1020 post_dom_bb = get_live_post_dom (bb);
1021
1022 e = find_edge (bb, post_dom_bb);
1023
1024 /* If edge is already there, try to use it. This avoids need to update
1025 PHI nodes. Also watch for cases where post dominator does not exists
1026 or is exit block. These can happen for infinite loops as we create
1027 fake edges in the dominator tree. */
1028 if (e)
1029 ;
1030 else if (! post_dom_bb || post_dom_bb == EXIT_BLOCK_PTR)
1031 e = EDGE_SUCC (bb, 0);
1032 else
1033 e = forward_edge_to_pdom (EDGE_SUCC (bb, 0), post_dom_bb);
1034 gcc_assert (e);
1035 e->probability = REG_BR_PROB_BASE;
1036 e->count = bb->count;
1037
1038 /* The edge is no longer associated with a conditional, so it does
1039 not have TRUE/FALSE flags. */
1040 e->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
1041
1042 /* The lone outgoing edge from BB will be a fallthru edge. */
1043 e->flags |= EDGE_FALLTHRU;
1044
1045 /* Remove the remaining outgoing edges. */
1046 for (ei = ei_start (bb->succs); (e2 = ei_safe_edge (ei)); )
1047 if (e != e2)
1048 {
1049 cfg_altered = true;
1050 remove_edge (e2);
1051 }
1052 else
1053 ei_next (&ei);
1054 }
1055
1056 unlink_stmt_vdef (stmt);
1057 gsi_remove (i, true);
1058 release_defs (stmt);
1059 }
1060
1061
1062 /* Eliminate unnecessary statements. Any instruction not marked as necessary
1063 contributes nothing to the program, and can be deleted. */
1064
1065 static bool
1066 eliminate_unnecessary_stmts (void)
1067 {
1068 bool something_changed = false;
1069 basic_block bb;
1070 gimple_stmt_iterator gsi;
1071 gimple stmt;
1072 tree call;
1073
1074 if (dump_file && (dump_flags & TDF_DETAILS))
1075 fprintf (dump_file, "\nEliminating unnecessary statements:\n");
1076
1077 clear_special_calls ();
1078
1079 FOR_EACH_BB (bb)
1080 {
1081 /* Remove dead statements. */
1082 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
1083 {
1084 stmt = gsi_stmt (gsi);
1085
1086 stats.total++;
1087
1088 /* If GSI is not necessary then remove it. */
1089 if (!gimple_plf (stmt, STMT_NECESSARY))
1090 {
1091 remove_dead_stmt (&gsi, bb);
1092 something_changed = true;
1093 }
1094 else if (is_gimple_call (stmt))
1095 {
1096 call = gimple_call_fndecl (stmt);
1097 if (call)
1098 {
1099 tree name;
1100
1101 /* When LHS of var = call (); is dead, simplify it into
1102 call (); saving one operand. */
1103 name = gimple_call_lhs (stmt);
1104 if (name && TREE_CODE (name) == SSA_NAME
1105 && !TEST_BIT (processed, SSA_NAME_VERSION (name)))
1106 {
1107 something_changed = true;
1108 if (dump_file && (dump_flags & TDF_DETAILS))
1109 {
1110 fprintf (dump_file, "Deleting LHS of call: ");
1111 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1112 fprintf (dump_file, "\n");
1113 }
1114
1115 gimple_call_set_lhs (stmt, NULL_TREE);
1116 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1117 update_stmt (stmt);
1118 release_ssa_name (name);
1119 }
1120 notice_special_calls (stmt);
1121 }
1122 gsi_next (&gsi);
1123 }
1124 else
1125 {
1126 gsi_next (&gsi);
1127 }
1128 }
1129 }
1130 /* Since we don't track liveness of virtual PHI nodes, it is possible that we
1131 rendered some PHI nodes unreachable while they are still in use.
1132 Mark them for renaming. */
1133 if (cfg_altered)
1134 {
1135 basic_block next_bb;
1136 find_unreachable_blocks ();
1137 for (bb = ENTRY_BLOCK_PTR->next_bb; bb != EXIT_BLOCK_PTR; bb = next_bb)
1138 {
1139 next_bb = bb->next_bb;
1140 if (!TEST_BIT (bb_contains_live_stmts, bb->index)
1141 || !(bb->flags & BB_REACHABLE))
1142 {
1143 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1144 if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
1145 {
1146 bool found = false;
1147 imm_use_iterator iter;
1148
1149 FOR_EACH_IMM_USE_STMT (stmt, iter, gimple_phi_result (gsi_stmt (gsi)))
1150 {
1151 if (!(gimple_bb (stmt)->flags & BB_REACHABLE))
1152 continue;
1153 if (gimple_code (stmt) == GIMPLE_PHI
1154 || gimple_plf (stmt, STMT_NECESSARY))
1155 {
1156 found = true;
1157 BREAK_FROM_IMM_USE_STMT (iter);
1158 }
1159 }
1160 if (found)
1161 mark_virtual_phi_result_for_renaming (gsi_stmt (gsi));
1162 }
1163 if (!(bb->flags & BB_REACHABLE))
1164 delete_basic_block (bb);
1165 }
1166 }
1167 }
1168 FOR_EACH_BB (bb)
1169 {
1170 /* Remove dead PHI nodes. */
1171 something_changed |= remove_dead_phis (bb);
1172 }
1173
1174 return something_changed;
1175 }
1176
1177
1178 /* Print out removed statement statistics. */
1179
1180 static void
1181 print_stats (void)
1182 {
1183 float percg;
1184
1185 percg = ((float) stats.removed / (float) stats.total) * 100;
1186 fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
1187 stats.removed, stats.total, (int) percg);
1188
1189 if (stats.total_phis == 0)
1190 percg = 0;
1191 else
1192 percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
1193
1194 fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
1195 stats.removed_phis, stats.total_phis, (int) percg);
1196 }
1197
1198 /* Initialization for this pass. Set up the used data structures. */
1199
1200 static void
1201 tree_dce_init (bool aggressive)
1202 {
1203 memset ((void *) &stats, 0, sizeof (stats));
1204
1205 if (aggressive)
1206 {
1207 int i;
1208
1209 control_dependence_map = XNEWVEC (bitmap, last_basic_block);
1210 for (i = 0; i < last_basic_block; ++i)
1211 control_dependence_map[i] = BITMAP_ALLOC (NULL);
1212
1213 last_stmt_necessary = sbitmap_alloc (last_basic_block);
1214 sbitmap_zero (last_stmt_necessary);
1215 bb_contains_live_stmts = sbitmap_alloc (last_basic_block);
1216 sbitmap_zero (bb_contains_live_stmts);
1217 }
1218
1219 processed = sbitmap_alloc (num_ssa_names + 1);
1220 sbitmap_zero (processed);
1221
1222 worklist = VEC_alloc (gimple, heap, 64);
1223 cfg_altered = false;
1224 }
1225
1226 /* Cleanup after this pass. */
1227
1228 static void
1229 tree_dce_done (bool aggressive)
1230 {
1231 if (aggressive)
1232 {
1233 int i;
1234
1235 for (i = 0; i < last_basic_block; ++i)
1236 BITMAP_FREE (control_dependence_map[i]);
1237 free (control_dependence_map);
1238
1239 sbitmap_free (visited_control_parents);
1240 sbitmap_free (last_stmt_necessary);
1241 sbitmap_free (bb_contains_live_stmts);
1242 bb_contains_live_stmts = NULL;
1243 }
1244
1245 sbitmap_free (processed);
1246
1247 VEC_free (gimple, heap, worklist);
1248 }
1249
1250 /* Main routine to eliminate dead code.
1251
1252 AGGRESSIVE controls the aggressiveness of the algorithm.
1253 In conservative mode, we ignore control dependence and simply declare
1254 all but the most trivially dead branches necessary. This mode is fast.
1255 In aggressive mode, control dependences are taken into account, which
1256 results in more dead code elimination, but at the cost of some time.
1257
1258 FIXME: Aggressive mode before PRE doesn't work currently because
1259 the dominance info is not invalidated after DCE1. This is
1260 not an issue right now because we only run aggressive DCE
1261 as the last tree SSA pass, but keep this in mind when you
1262 start experimenting with pass ordering. */
1263
1264 static unsigned int
1265 perform_tree_ssa_dce (bool aggressive)
1266 {
1267 struct edge_list *el = NULL;
1268 bool something_changed = 0;
1269
1270 /* Preheaders are needed for SCEV to work.
1271 Simple lateches and recorded exits improve chances that loop will
1272 proved to be finite in testcases such as in loop-15.c and loop-24.c */
1273 if (aggressive)
1274 loop_optimizer_init (LOOPS_NORMAL
1275 | LOOPS_HAVE_RECORDED_EXITS);
1276
1277 tree_dce_init (aggressive);
1278
1279 if (aggressive)
1280 {
1281 /* Compute control dependence. */
1282 timevar_push (TV_CONTROL_DEPENDENCES);
1283 calculate_dominance_info (CDI_POST_DOMINATORS);
1284 el = create_edge_list ();
1285 find_all_control_dependences (el);
1286 timevar_pop (TV_CONTROL_DEPENDENCES);
1287
1288 visited_control_parents = sbitmap_alloc (last_basic_block);
1289 sbitmap_zero (visited_control_parents);
1290
1291 mark_dfs_back_edges ();
1292 }
1293
1294 find_obviously_necessary_stmts (el);
1295
1296 if (aggressive)
1297 loop_optimizer_finalize ();
1298
1299 longest_chain = 0;
1300 total_chain = 0;
1301 chain_ovfl = false;
1302 propagate_necessity (el);
1303 BITMAP_FREE (visited);
1304
1305 something_changed |= eliminate_unnecessary_stmts ();
1306 something_changed |= cfg_altered;
1307
1308 /* We do not update postdominators, so free them unconditionally. */
1309 free_dominance_info (CDI_POST_DOMINATORS);
1310
1311 /* If we removed paths in the CFG, then we need to update
1312 dominators as well. I haven't investigated the possibility
1313 of incrementally updating dominators. */
1314 if (cfg_altered)
1315 free_dominance_info (CDI_DOMINATORS);
1316
1317 statistics_counter_event (cfun, "Statements deleted", stats.removed);
1318 statistics_counter_event (cfun, "PHI nodes deleted", stats.removed_phis);
1319
1320 /* Debugging dumps. */
1321 if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
1322 print_stats ();
1323
1324 tree_dce_done (aggressive);
1325
1326 free_edge_list (el);
1327
1328 if (something_changed)
1329 return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
1330 | TODO_remove_unused_locals);
1331 else
1332 return 0;
1333 }
1334
1335 /* Pass entry points. */
1336 static unsigned int
1337 tree_ssa_dce (void)
1338 {
1339 return perform_tree_ssa_dce (/*aggressive=*/false);
1340 }
1341
1342 static unsigned int
1343 tree_ssa_dce_loop (void)
1344 {
1345 unsigned int todo;
1346 todo = perform_tree_ssa_dce (/*aggressive=*/false);
1347 if (todo)
1348 {
1349 free_numbers_of_iterations_estimates ();
1350 scev_reset ();
1351 }
1352 return todo;
1353 }
1354
1355 static unsigned int
1356 tree_ssa_cd_dce (void)
1357 {
1358 return perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
1359 }
1360
1361 static bool
1362 gate_dce (void)
1363 {
1364 return flag_tree_dce != 0;
1365 }
1366
1367 struct gimple_opt_pass pass_dce =
1368 {
1369 {
1370 GIMPLE_PASS,
1371 "dce", /* name */
1372 gate_dce, /* gate */
1373 tree_ssa_dce, /* execute */
1374 NULL, /* sub */
1375 NULL, /* next */
1376 0, /* static_pass_number */
1377 TV_TREE_DCE, /* tv_id */
1378 PROP_cfg | PROP_ssa, /* properties_required */
1379 0, /* properties_provided */
1380 0, /* properties_destroyed */
1381 0, /* todo_flags_start */
1382 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1383 }
1384 };
1385
1386 struct gimple_opt_pass pass_dce_loop =
1387 {
1388 {
1389 GIMPLE_PASS,
1390 "dceloop", /* name */
1391 gate_dce, /* gate */
1392 tree_ssa_dce_loop, /* execute */
1393 NULL, /* sub */
1394 NULL, /* next */
1395 0, /* static_pass_number */
1396 TV_TREE_DCE, /* tv_id */
1397 PROP_cfg | PROP_ssa, /* properties_required */
1398 0, /* properties_provided */
1399 0, /* properties_destroyed */
1400 0, /* todo_flags_start */
1401 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1402 }
1403 };
1404
1405 struct gimple_opt_pass pass_cd_dce =
1406 {
1407 {
1408 GIMPLE_PASS,
1409 "cddce", /* name */
1410 gate_dce, /* gate */
1411 tree_ssa_cd_dce, /* execute */
1412 NULL, /* sub */
1413 NULL, /* next */
1414 0, /* static_pass_number */
1415 TV_TREE_CD_DCE, /* tv_id */
1416 PROP_cfg | PROP_ssa, /* properties_required */
1417 0, /* properties_provided */
1418 0, /* properties_destroyed */
1419 0, /* todo_flags_start */
1420 TODO_dump_func | TODO_verify_ssa
1421 | TODO_verify_flow /* todo_flags_finish */
1422 }
1423 };