re PR tree-optimization/40759 (segfault in useless_type_conversion_p)
[gcc.git] / gcc / tree-ssa-dce.c
1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Ben Elliston <bje@redhat.com>
5 and Andrew MacLeod <amacleod@redhat.com>
6 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 3, or (at your option) any
13 later version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* Dead code elimination.
25
26 References:
27
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
30
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
33
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
37 impact on the output.
38
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
45
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "ggc.h"
51
52 /* These RTL headers are needed for basic-block.h. */
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "hard-reg-set.h"
56 #include "obstack.h"
57 #include "basic-block.h"
58
59 #include "tree.h"
60 #include "diagnostic.h"
61 #include "tree-flow.h"
62 #include "gimple.h"
63 #include "tree-dump.h"
64 #include "tree-pass.h"
65 #include "timevar.h"
66 #include "flags.h"
67 #include "cfgloop.h"
68 #include "tree-scalar-evolution.h"
69
70 static struct stmt_stats
71 {
72 int total;
73 int total_phis;
74 int removed;
75 int removed_phis;
76 } stats;
77
78 #define STMT_NECESSARY GF_PLF_1
79
80 static VEC(gimple,heap) *worklist;
81
82 /* Vector indicating an SSA name has already been processed and marked
83 as necessary. */
84 static sbitmap processed;
85
86 /* Vector indicating that last_stmt if a basic block has already been
87 marked as necessary. */
88 static sbitmap last_stmt_necessary;
89
90 /* Vector indicating that BB contains statements that are live. */
91 static sbitmap bb_contains_live_stmts;
92
93 /* Before we can determine whether a control branch is dead, we need to
94 compute which blocks are control dependent on which edges.
95
96 We expect each block to be control dependent on very few edges so we
97 use a bitmap for each block recording its edges. An array holds the
98 bitmap. The Ith bit in the bitmap is set if that block is dependent
99 on the Ith edge. */
100 static bitmap *control_dependence_map;
101
102 /* Vector indicating that a basic block has already had all the edges
103 processed that it is control dependent on. */
104 static sbitmap visited_control_parents;
105
106 /* TRUE if this pass alters the CFG (by removing control statements).
107 FALSE otherwise.
108
109 If this pass alters the CFG, then it will arrange for the dominators
110 to be recomputed. */
111 static bool cfg_altered;
112
113 /* Execute code that follows the macro for each edge (given number
114 EDGE_NUMBER within the CODE) for which the block with index N is
115 control dependent. */
116 #define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER) \
117 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0, \
118 (EDGE_NUMBER), (BI))
119
120
121 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
122 static inline void
123 set_control_dependence_map_bit (basic_block bb, int edge_index)
124 {
125 if (bb == ENTRY_BLOCK_PTR)
126 return;
127 gcc_assert (bb != EXIT_BLOCK_PTR);
128 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
129 }
130
131 /* Clear all control dependences for block BB. */
132 static inline void
133 clear_control_dependence_bitmap (basic_block bb)
134 {
135 bitmap_clear (control_dependence_map[bb->index]);
136 }
137
138
139 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
140 This function is necessary because some blocks have negative numbers. */
141
142 static inline basic_block
143 find_pdom (basic_block block)
144 {
145 gcc_assert (block != ENTRY_BLOCK_PTR);
146
147 if (block == EXIT_BLOCK_PTR)
148 return EXIT_BLOCK_PTR;
149 else
150 {
151 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
152 if (! bb)
153 return EXIT_BLOCK_PTR;
154 return bb;
155 }
156 }
157
158
159 /* Determine all blocks' control dependences on the given edge with edge_list
160 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
161
162 static void
163 find_control_dependence (struct edge_list *el, int edge_index)
164 {
165 basic_block current_block;
166 basic_block ending_block;
167
168 gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
169
170 if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
171 ending_block = single_succ (ENTRY_BLOCK_PTR);
172 else
173 ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
174
175 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
176 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
177 current_block = find_pdom (current_block))
178 {
179 edge e = INDEX_EDGE (el, edge_index);
180
181 /* For abnormal edges, we don't make current_block control
182 dependent because instructions that throw are always necessary
183 anyway. */
184 if (e->flags & EDGE_ABNORMAL)
185 continue;
186
187 set_control_dependence_map_bit (current_block, edge_index);
188 }
189 }
190
191
192 /* Record all blocks' control dependences on all edges in the edge
193 list EL, ala Morgan, Section 3.6. */
194
195 static void
196 find_all_control_dependences (struct edge_list *el)
197 {
198 int i;
199
200 for (i = 0; i < NUM_EDGES (el); ++i)
201 find_control_dependence (el, i);
202 }
203
204 /* If STMT is not already marked necessary, mark it, and add it to the
205 worklist if ADD_TO_WORKLIST is true. */
206 static inline void
207 mark_stmt_necessary (gimple stmt, bool add_to_worklist)
208 {
209 gcc_assert (stmt);
210
211 if (gimple_plf (stmt, STMT_NECESSARY))
212 return;
213
214 if (dump_file && (dump_flags & TDF_DETAILS))
215 {
216 fprintf (dump_file, "Marking useful stmt: ");
217 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
218 fprintf (dump_file, "\n");
219 }
220
221 gimple_set_plf (stmt, STMT_NECESSARY, true);
222 if (add_to_worklist)
223 VEC_safe_push (gimple, heap, worklist, stmt);
224 if (bb_contains_live_stmts)
225 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
226 }
227
228
229 /* Mark the statement defining operand OP as necessary. */
230
231 static inline void
232 mark_operand_necessary (tree op)
233 {
234 gimple stmt;
235 int ver;
236
237 gcc_assert (op);
238
239 ver = SSA_NAME_VERSION (op);
240 if (TEST_BIT (processed, ver))
241 {
242 stmt = SSA_NAME_DEF_STMT (op);
243 gcc_assert (gimple_nop_p (stmt)
244 || gimple_plf (stmt, STMT_NECESSARY));
245 return;
246 }
247 SET_BIT (processed, ver);
248
249 stmt = SSA_NAME_DEF_STMT (op);
250 gcc_assert (stmt);
251
252 if (gimple_plf (stmt, STMT_NECESSARY) || gimple_nop_p (stmt))
253 return;
254
255 if (dump_file && (dump_flags & TDF_DETAILS))
256 {
257 fprintf (dump_file, "marking necessary through ");
258 print_generic_expr (dump_file, op, 0);
259 fprintf (dump_file, " stmt ");
260 print_gimple_stmt (dump_file, stmt, 0, 0);
261 }
262
263 gimple_set_plf (stmt, STMT_NECESSARY, true);
264 if (bb_contains_live_stmts)
265 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
266 VEC_safe_push (gimple, heap, worklist, stmt);
267 }
268
269
270 /* Mark STMT as necessary if it obviously is. Add it to the worklist if
271 it can make other statements necessary.
272
273 If AGGRESSIVE is false, control statements are conservatively marked as
274 necessary. */
275
276 static void
277 mark_stmt_if_obviously_necessary (gimple stmt, bool aggressive)
278 {
279 tree lhs = NULL_TREE;
280 /* With non-call exceptions, we have to assume that all statements could
281 throw. If a statement may throw, it is inherently necessary. */
282 if (flag_non_call_exceptions
283 && stmt_could_throw_p (stmt))
284 {
285 mark_stmt_necessary (stmt, true);
286 return;
287 }
288
289 /* Statements that are implicitly live. Most function calls, asm
290 and return statements are required. Labels and GIMPLE_BIND nodes
291 are kept because they are control flow, and we have no way of
292 knowing whether they can be removed. DCE can eliminate all the
293 other statements in a block, and CFG can then remove the block
294 and labels. */
295 switch (gimple_code (stmt))
296 {
297 case GIMPLE_PREDICT:
298 case GIMPLE_LABEL:
299 mark_stmt_necessary (stmt, false);
300 return;
301
302 case GIMPLE_ASM:
303 case GIMPLE_RESX:
304 case GIMPLE_RETURN:
305 mark_stmt_necessary (stmt, true);
306 return;
307
308 case GIMPLE_CALL:
309 /* Most, but not all function calls are required. Function calls that
310 produce no result and have no side effects (i.e. const pure
311 functions) are unnecessary. */
312 if (gimple_has_side_effects (stmt))
313 {
314 mark_stmt_necessary (stmt, true);
315 return;
316 }
317 if (!gimple_call_lhs (stmt))
318 return;
319 lhs = gimple_call_lhs (stmt);
320 /* Fall through */
321
322 case GIMPLE_ASSIGN:
323 if (!lhs)
324 lhs = gimple_assign_lhs (stmt);
325 /* These values are mildly magic bits of the EH runtime. We can't
326 see the entire lifetime of these values until landing pads are
327 generated. */
328 if (TREE_CODE (lhs) == EXC_PTR_EXPR
329 || TREE_CODE (lhs) == FILTER_EXPR)
330 {
331 mark_stmt_necessary (stmt, true);
332 return;
333 }
334 break;
335
336 case GIMPLE_GOTO:
337 gcc_assert (!simple_goto_p (stmt));
338 mark_stmt_necessary (stmt, true);
339 return;
340
341 case GIMPLE_COND:
342 gcc_assert (EDGE_COUNT (gimple_bb (stmt)->succs) == 2);
343 /* Fall through. */
344
345 case GIMPLE_SWITCH:
346 if (! aggressive)
347 mark_stmt_necessary (stmt, true);
348 break;
349
350 default:
351 break;
352 }
353
354 /* If the statement has volatile operands, it needs to be preserved.
355 Same for statements that can alter control flow in unpredictable
356 ways. */
357 if (gimple_has_volatile_ops (stmt) || is_ctrl_altering_stmt (stmt))
358 {
359 mark_stmt_necessary (stmt, true);
360 return;
361 }
362
363 if (is_hidden_global_store (stmt))
364 {
365 mark_stmt_necessary (stmt, true);
366 return;
367 }
368
369 return;
370 }
371
372
373 /* Make corresponding control dependent edges necessary. We only
374 have to do this once for each basic block, so we clear the bitmap
375 after we're done. */
376 static void
377 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el)
378 {
379 bitmap_iterator bi;
380 unsigned edge_number;
381
382 gcc_assert (bb != EXIT_BLOCK_PTR);
383
384 if (bb == ENTRY_BLOCK_PTR)
385 return;
386
387 EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
388 {
389 gimple stmt;
390 basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
391
392 if (TEST_BIT (last_stmt_necessary, cd_bb->index))
393 continue;
394 SET_BIT (last_stmt_necessary, cd_bb->index);
395 SET_BIT (bb_contains_live_stmts, cd_bb->index);
396
397 stmt = last_stmt (cd_bb);
398 if (stmt && is_ctrl_stmt (stmt))
399 mark_stmt_necessary (stmt, true);
400 }
401 }
402
403
404 /* Find obviously necessary statements. These are things like most function
405 calls, and stores to file level variables.
406
407 If EL is NULL, control statements are conservatively marked as
408 necessary. Otherwise it contains the list of edges used by control
409 dependence analysis. */
410
411 static void
412 find_obviously_necessary_stmts (struct edge_list *el)
413 {
414 basic_block bb;
415 gimple_stmt_iterator gsi;
416 edge e;
417 gimple phi, stmt;
418
419 FOR_EACH_BB (bb)
420 {
421 /* PHI nodes are never inherently necessary. */
422 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
423 {
424 phi = gsi_stmt (gsi);
425 gimple_set_plf (phi, STMT_NECESSARY, false);
426 }
427
428 /* Check all statements in the block. */
429 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
430 {
431 stmt = gsi_stmt (gsi);
432 gimple_set_plf (stmt, STMT_NECESSARY, false);
433 mark_stmt_if_obviously_necessary (stmt, el != NULL);
434 }
435 }
436
437 /* Pure and const functions are finite and thus have no infinite loops in
438 them. */
439 if ((TREE_READONLY (current_function_decl)
440 || DECL_PURE_P (current_function_decl))
441 && !DECL_LOOPING_CONST_OR_PURE_P (current_function_decl))
442 return;
443
444 /* Prevent the empty possibly infinite loops from being removed. */
445 if (el)
446 {
447 loop_iterator li;
448 struct loop *loop;
449 scev_initialize ();
450 if (mark_irreducible_loops ())
451 FOR_EACH_BB (bb)
452 {
453 edge_iterator ei;
454 FOR_EACH_EDGE (e, ei, bb->succs)
455 if ((e->flags & EDGE_DFS_BACK)
456 && (e->flags & EDGE_IRREDUCIBLE_LOOP))
457 {
458 if (dump_file)
459 fprintf (dump_file, "Marking back edge of irreducible loop %i->%i\n",
460 e->src->index, e->dest->index);
461 mark_control_dependent_edges_necessary (e->dest, el);
462 }
463 }
464
465 FOR_EACH_LOOP (li, loop, 0)
466 if (!finite_loop_p (loop))
467 {
468 if (dump_file)
469 fprintf (dump_file, "can not prove finiteness of loop %i\n", loop->num);
470 mark_control_dependent_edges_necessary (loop->latch, el);
471 }
472 scev_finalize ();
473 }
474 }
475
476
477 /* Return true if REF is based on an aliased base, otherwise false. */
478
479 static bool
480 ref_may_be_aliased (tree ref)
481 {
482 while (handled_component_p (ref))
483 ref = TREE_OPERAND (ref, 0);
484 return !(DECL_P (ref)
485 && !may_be_aliased (ref));
486 }
487
488 static bitmap visited = NULL;
489 static unsigned int longest_chain = 0;
490 static unsigned int total_chain = 0;
491 static bool chain_ovfl = false;
492
493 /* Worker for the walker that marks reaching definitions of REF,
494 which is based on a non-aliased decl, necessary. It returns
495 true whenever the defining statement of the current VDEF is
496 a kill for REF, as no dominating may-defs are necessary for REF
497 anymore. DATA points to cached get_ref_base_and_extent data for REF. */
498
499 static bool
500 mark_aliased_reaching_defs_necessary_1 (ao_ref *ref, tree vdef,
501 void *data ATTRIBUTE_UNUSED)
502 {
503 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
504
505 /* All stmts we visit are necessary. */
506 mark_operand_necessary (vdef);
507
508 /* If the stmt lhs kills ref, then we can stop walking. */
509 if (gimple_has_lhs (def_stmt)
510 && TREE_CODE (gimple_get_lhs (def_stmt)) != SSA_NAME)
511 {
512 tree base, lhs = gimple_get_lhs (def_stmt);
513 HOST_WIDE_INT size, offset, max_size;
514 ao_ref_base (ref);
515 base = get_ref_base_and_extent (lhs, &offset, &size, &max_size);
516 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
517 so base == refd->base does not always hold. */
518 if (base == ref->base)
519 {
520 /* For a must-alias check we need to be able to constrain
521 the accesses properly. */
522 if (size != -1 && size == max_size
523 && ref->max_size != -1)
524 {
525 if (offset <= ref->offset
526 && offset + size >= ref->offset + ref->max_size)
527 return true;
528 }
529 /* Or they need to be exactly the same. */
530 else if (ref->ref
531 && operand_equal_p (ref->ref, lhs, 0))
532 return true;
533 }
534 }
535
536 /* Otherwise keep walking. */
537 return false;
538 }
539
540 static void
541 mark_aliased_reaching_defs_necessary (gimple stmt, tree ref)
542 {
543 unsigned int chain;
544 ao_ref refd;
545 gcc_assert (!chain_ovfl);
546 ao_ref_init (&refd, ref);
547 chain = walk_aliased_vdefs (&refd, gimple_vuse (stmt),
548 mark_aliased_reaching_defs_necessary_1,
549 NULL, NULL);
550 if (chain > longest_chain)
551 longest_chain = chain;
552 total_chain += chain;
553 }
554
555 /* Worker for the walker that marks reaching definitions of REF, which
556 is not based on a non-aliased decl. For simplicity we need to end
557 up marking all may-defs necessary that are not based on a non-aliased
558 decl. The only job of this walker is to skip may-defs based on
559 a non-aliased decl. */
560
561 static bool
562 mark_all_reaching_defs_necessary_1 (ao_ref *ref ATTRIBUTE_UNUSED,
563 tree vdef, void *data ATTRIBUTE_UNUSED)
564 {
565 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
566
567 /* We have to skip already visited (and thus necessary) statements
568 to make the chaining work after we dropped back to simple mode. */
569 if (chain_ovfl
570 && TEST_BIT (processed, SSA_NAME_VERSION (vdef)))
571 {
572 gcc_assert (gimple_nop_p (def_stmt)
573 || gimple_plf (def_stmt, STMT_NECESSARY));
574 return false;
575 }
576
577 /* We want to skip stores to non-aliased variables. */
578 if (!chain_ovfl
579 && gimple_assign_single_p (def_stmt))
580 {
581 tree lhs = gimple_assign_lhs (def_stmt);
582 if (!ref_may_be_aliased (lhs))
583 return false;
584 }
585
586 mark_operand_necessary (vdef);
587
588 return false;
589 }
590
591 static void
592 mark_all_reaching_defs_necessary (gimple stmt)
593 {
594 walk_aliased_vdefs (NULL, gimple_vuse (stmt),
595 mark_all_reaching_defs_necessary_1, NULL, &visited);
596 }
597
598 /* Return true for PHI nodes with one or identical arguments
599 can be removed. */
600 static bool
601 degenerate_phi_p (gimple phi)
602 {
603 unsigned int i;
604 tree op = gimple_phi_arg_def (phi, 0);
605 for (i = 1; i < gimple_phi_num_args (phi); i++)
606 if (gimple_phi_arg_def (phi, i) != op)
607 return false;
608 return true;
609 }
610
611 /* Propagate necessity using the operands of necessary statements.
612 Process the uses on each statement in the worklist, and add all
613 feeding statements which contribute to the calculation of this
614 value to the worklist.
615
616 In conservative mode, EL is NULL. */
617
618 static void
619 propagate_necessity (struct edge_list *el)
620 {
621 gimple stmt;
622 bool aggressive = (el ? true : false);
623
624 if (dump_file && (dump_flags & TDF_DETAILS))
625 fprintf (dump_file, "\nProcessing worklist:\n");
626
627 while (VEC_length (gimple, worklist) > 0)
628 {
629 /* Take STMT from worklist. */
630 stmt = VEC_pop (gimple, worklist);
631
632 if (dump_file && (dump_flags & TDF_DETAILS))
633 {
634 fprintf (dump_file, "processing: ");
635 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
636 fprintf (dump_file, "\n");
637 }
638
639 if (aggressive)
640 {
641 /* Mark the last statements of the basic blocks that the block
642 containing STMT is control dependent on, but only if we haven't
643 already done so. */
644 basic_block bb = gimple_bb (stmt);
645 if (bb != ENTRY_BLOCK_PTR
646 && ! TEST_BIT (visited_control_parents, bb->index))
647 {
648 SET_BIT (visited_control_parents, bb->index);
649 mark_control_dependent_edges_necessary (bb, el);
650 }
651 }
652
653 if (gimple_code (stmt) == GIMPLE_PHI
654 /* We do not process virtual PHI nodes nor do we track their
655 necessity. */
656 && is_gimple_reg (gimple_phi_result (stmt)))
657 {
658 /* PHI nodes are somewhat special in that each PHI alternative has
659 data and control dependencies. All the statements feeding the
660 PHI node's arguments are always necessary. In aggressive mode,
661 we also consider the control dependent edges leading to the
662 predecessor block associated with each PHI alternative as
663 necessary. */
664 size_t k;
665
666 for (k = 0; k < gimple_phi_num_args (stmt); k++)
667 {
668 tree arg = PHI_ARG_DEF (stmt, k);
669 if (TREE_CODE (arg) == SSA_NAME)
670 mark_operand_necessary (arg);
671 }
672
673 if (aggressive && !degenerate_phi_p (stmt))
674 {
675 for (k = 0; k < gimple_phi_num_args (stmt); k++)
676 {
677 basic_block arg_bb = gimple_phi_arg_edge (stmt, k)->src;
678 if (arg_bb != ENTRY_BLOCK_PTR
679 && ! TEST_BIT (visited_control_parents, arg_bb->index))
680 {
681 SET_BIT (visited_control_parents, arg_bb->index);
682 mark_control_dependent_edges_necessary (arg_bb, el);
683 }
684 }
685 }
686 }
687 else
688 {
689 /* Propagate through the operands. Examine all the USE, VUSE and
690 VDEF operands in this statement. Mark all the statements
691 which feed this statement's uses as necessary. */
692 ssa_op_iter iter;
693 tree use;
694
695 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
696 mark_operand_necessary (use);
697
698 use = gimple_vuse (stmt);
699 if (!use)
700 continue;
701
702 /* If we dropped to simple mode make all immediately
703 reachable definitions necessary. */
704 if (chain_ovfl)
705 {
706 mark_all_reaching_defs_necessary (stmt);
707 continue;
708 }
709
710 /* For statements that may load from memory (have a VUSE) we
711 have to mark all reaching (may-)definitions as necessary.
712 We partition this task into two cases:
713 1) explicit loads based on decls that are not aliased
714 2) implicit loads (like calls) and explicit loads not
715 based on decls that are not aliased (like indirect
716 references or loads from globals)
717 For 1) we mark all reaching may-defs as necessary, stopping
718 at dominating kills. For 2) we want to mark all dominating
719 references necessary, but non-aliased ones which we handle
720 in 1). By keeping a global visited bitmap for references
721 we walk for 2) we avoid quadratic behavior for those. */
722
723 if (is_gimple_call (stmt))
724 {
725 tree callee = gimple_call_fndecl (stmt);
726 unsigned i;
727
728 /* Calls to functions that are merely acting as barriers
729 or that only store to memory do not make any previous
730 stores necessary. */
731 if (callee != NULL_TREE
732 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
733 && (DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET
734 || DECL_FUNCTION_CODE (callee) == BUILT_IN_MALLOC
735 || DECL_FUNCTION_CODE (callee) == BUILT_IN_FREE))
736 continue;
737
738 /* Calls implicitly load from memory, their arguments
739 in addition may explicitly perform memory loads. */
740 mark_all_reaching_defs_necessary (stmt);
741 for (i = 0; i < gimple_call_num_args (stmt); ++i)
742 {
743 tree arg = gimple_call_arg (stmt, i);
744 if (TREE_CODE (arg) == SSA_NAME
745 || is_gimple_min_invariant (arg))
746 continue;
747 if (!ref_may_be_aliased (arg))
748 mark_aliased_reaching_defs_necessary (stmt, arg);
749 }
750 }
751 else if (gimple_assign_single_p (stmt))
752 {
753 tree rhs;
754 bool rhs_aliased = false;
755 /* If this is a load mark things necessary. */
756 rhs = gimple_assign_rhs1 (stmt);
757 if (TREE_CODE (rhs) != SSA_NAME
758 && !is_gimple_min_invariant (rhs))
759 {
760 if (!ref_may_be_aliased (rhs))
761 mark_aliased_reaching_defs_necessary (stmt, rhs);
762 else
763 rhs_aliased = true;
764 }
765 if (rhs_aliased)
766 mark_all_reaching_defs_necessary (stmt);
767 }
768 else if (gimple_code (stmt) == GIMPLE_RETURN)
769 {
770 tree rhs = gimple_return_retval (stmt);
771 /* A return statement may perform a load. */
772 if (TREE_CODE (rhs) != SSA_NAME
773 && !is_gimple_min_invariant (rhs))
774 {
775 if (!ref_may_be_aliased (rhs))
776 mark_aliased_reaching_defs_necessary (stmt, rhs);
777 else
778 mark_all_reaching_defs_necessary (stmt);
779 }
780 }
781 else if (gimple_code (stmt) == GIMPLE_ASM)
782 {
783 unsigned i;
784 mark_all_reaching_defs_necessary (stmt);
785 /* Inputs may perform loads. */
786 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
787 {
788 tree op = TREE_VALUE (gimple_asm_input_op (stmt, i));
789 if (TREE_CODE (op) != SSA_NAME
790 && !is_gimple_min_invariant (op)
791 && !ref_may_be_aliased (op))
792 mark_aliased_reaching_defs_necessary (stmt, op);
793 }
794 }
795 else
796 gcc_unreachable ();
797
798 /* If we over-used our alias oracle budget drop to simple
799 mode. The cost metric allows quadratic behavior up to
800 a constant maximal chain and after that falls back to
801 super-linear complexity. */
802 if (longest_chain > 256
803 && total_chain > 256 * longest_chain)
804 {
805 chain_ovfl = true;
806 if (visited)
807 bitmap_clear (visited);
808 }
809 }
810 }
811 }
812
813 /* Replace all uses of result of PHI by underlying variable and mark it
814 for renaming. */
815
816 static void
817 mark_virtual_phi_result_for_renaming (gimple phi)
818 {
819 bool used = false;
820 imm_use_iterator iter;
821 use_operand_p use_p;
822 gimple stmt;
823 if (dump_file && (dump_flags & TDF_DETAILS))
824 {
825 fprintf (dump_file, "Marking result for renaming : ");
826 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
827 fprintf (dump_file, "\n");
828 }
829 FOR_EACH_IMM_USE_STMT (stmt, iter, gimple_phi_result (phi))
830 {
831 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
832 SET_USE (use_p, SSA_NAME_VAR (gimple_phi_result (phi)));
833 update_stmt (stmt);
834 used = true;
835 }
836 if (used)
837 mark_sym_for_renaming (SSA_NAME_VAR (PHI_RESULT (phi)));
838 }
839
840 /* Remove dead PHI nodes from block BB. */
841
842 static bool
843 remove_dead_phis (basic_block bb)
844 {
845 bool something_changed = false;
846 gimple_seq phis;
847 gimple phi;
848 gimple_stmt_iterator gsi;
849 phis = phi_nodes (bb);
850
851 for (gsi = gsi_start (phis); !gsi_end_p (gsi);)
852 {
853 stats.total_phis++;
854 phi = gsi_stmt (gsi);
855
856 /* We do not track necessity of virtual PHI nodes. Instead do
857 very simple dead PHI removal here. */
858 if (!is_gimple_reg (gimple_phi_result (phi)))
859 {
860 /* Virtual PHI nodes with one or identical arguments
861 can be removed. */
862 if (degenerate_phi_p (phi))
863 {
864 tree vdef = gimple_phi_result (phi);
865 tree vuse = gimple_phi_arg_def (phi, 0);
866
867 use_operand_p use_p;
868 imm_use_iterator iter;
869 gimple use_stmt;
870 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vdef)
871 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
872 SET_USE (use_p, vuse);
873 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vdef)
874 && TREE_CODE (vuse) == SSA_NAME)
875 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 1;
876 }
877 else
878 gimple_set_plf (phi, STMT_NECESSARY, true);
879 }
880
881 if (!gimple_plf (phi, STMT_NECESSARY))
882 {
883 something_changed = true;
884 if (dump_file && (dump_flags & TDF_DETAILS))
885 {
886 fprintf (dump_file, "Deleting : ");
887 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
888 fprintf (dump_file, "\n");
889 }
890
891 remove_phi_node (&gsi, true);
892 stats.removed_phis++;
893 continue;
894 }
895
896 gsi_next (&gsi);
897 }
898 return something_changed;
899 }
900
901 /* Find first live post dominator of BB. */
902
903 static basic_block
904 get_live_post_dom (basic_block bb)
905 {
906 basic_block post_dom_bb;
907
908
909 /* The post dominance info has to be up-to-date. */
910 gcc_assert (dom_info_state (CDI_POST_DOMINATORS) == DOM_OK);
911
912 /* Get the immediate post dominator of bb. */
913 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
914 /* And look for first live one. */
915 while (post_dom_bb != EXIT_BLOCK_PTR
916 && !TEST_BIT (bb_contains_live_stmts, post_dom_bb->index))
917 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, post_dom_bb);
918
919 return post_dom_bb;
920 }
921
922 /* Forward edge E to respective POST_DOM_BB and update PHIs. */
923
924 static edge
925 forward_edge_to_pdom (edge e, basic_block post_dom_bb)
926 {
927 gimple_stmt_iterator gsi;
928 edge e2 = NULL;
929 edge_iterator ei;
930
931 if (dump_file && (dump_flags & TDF_DETAILS))
932 fprintf (dump_file, "Redirecting edge %i->%i to %i\n", e->src->index,
933 e->dest->index, post_dom_bb->index);
934
935 e2 = redirect_edge_and_branch (e, post_dom_bb);
936 cfg_altered = true;
937
938 /* If edge was already around, no updating is neccesary. */
939 if (e2 != e)
940 return e2;
941
942 if (phi_nodes (post_dom_bb))
943 {
944 /* We are sure that for every live PHI we are seeing control dependent BB.
945 This means that we can look up the end of control dependent path leading
946 to the PHI itself. */
947 FOR_EACH_EDGE (e2, ei, post_dom_bb->preds)
948 if (e2 != e && dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->src))
949 break;
950 for (gsi = gsi_start_phis (post_dom_bb); !gsi_end_p (gsi);)
951 {
952 gimple phi = gsi_stmt (gsi);
953 tree op;
954
955 /* Dead PHI do not imply control dependency. */
956 if (!gimple_plf (phi, STMT_NECESSARY)
957 && is_gimple_reg (gimple_phi_result (phi)))
958 {
959 gsi_next (&gsi);
960 continue;
961 }
962 if (gimple_phi_arg_def (phi, e->dest_idx))
963 {
964 gsi_next (&gsi);
965 continue;
966 }
967
968 /* We didn't find edge to update. This can happen for PHIs on virtuals
969 since there is no control dependency relation on them. We are lost
970 here and must force renaming of the symbol. */
971 if (!is_gimple_reg (gimple_phi_result (phi)))
972 {
973 mark_virtual_phi_result_for_renaming (phi);
974 remove_phi_node (&gsi, true);
975 continue;
976 }
977 if (!e2)
978 op = gimple_phi_arg_def (phi, e->dest_idx == 0 ? 1 : 0);
979 else
980 op = gimple_phi_arg_def (phi, e2->dest_idx);
981 add_phi_arg (phi, op, e);
982 gcc_assert (e2 || degenerate_phi_p (phi));
983 gsi_next (&gsi);
984 }
985 }
986 return e;
987 }
988
989 /* Remove dead statement pointed to by iterator I. Receives the basic block BB
990 containing I so that we don't have to look it up. */
991
992 static void
993 remove_dead_stmt (gimple_stmt_iterator *i, basic_block bb)
994 {
995 gimple stmt = gsi_stmt (*i);
996
997 if (dump_file && (dump_flags & TDF_DETAILS))
998 {
999 fprintf (dump_file, "Deleting : ");
1000 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1001 fprintf (dump_file, "\n");
1002 }
1003
1004 stats.removed++;
1005
1006 /* If we have determined that a conditional branch statement contributes
1007 nothing to the program, then we not only remove it, but we also change
1008 the flow graph so that the current block will simply fall-thru to its
1009 immediate post-dominator. The blocks we are circumventing will be
1010 removed by cleanup_tree_cfg if this change in the flow graph makes them
1011 unreachable. */
1012 if (is_ctrl_stmt (stmt))
1013 {
1014 basic_block post_dom_bb;
1015 edge e, e2;
1016 edge_iterator ei;
1017
1018 post_dom_bb = get_live_post_dom (bb);
1019
1020 e = find_edge (bb, post_dom_bb);
1021
1022 /* If edge is already there, try to use it. This avoids need to update
1023 PHI nodes. Also watch for cases where post dominator does not exists
1024 or is exit block. These can happen for infinite loops as we create
1025 fake edges in the dominator tree. */
1026 if (e)
1027 ;
1028 else if (! post_dom_bb || post_dom_bb == EXIT_BLOCK_PTR)
1029 e = EDGE_SUCC (bb, 0);
1030 else
1031 e = forward_edge_to_pdom (EDGE_SUCC (bb, 0), post_dom_bb);
1032 gcc_assert (e);
1033 e->probability = REG_BR_PROB_BASE;
1034 e->count = bb->count;
1035
1036 /* The edge is no longer associated with a conditional, so it does
1037 not have TRUE/FALSE flags. */
1038 e->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
1039
1040 /* The lone outgoing edge from BB will be a fallthru edge. */
1041 e->flags |= EDGE_FALLTHRU;
1042
1043 /* Remove the remaining outgoing edges. */
1044 for (ei = ei_start (bb->succs); (e2 = ei_safe_edge (ei)); )
1045 if (e != e2)
1046 {
1047 cfg_altered = true;
1048 remove_edge (e2);
1049 }
1050 else
1051 ei_next (&ei);
1052 }
1053
1054 unlink_stmt_vdef (stmt);
1055 gsi_remove (i, true);
1056 release_defs (stmt);
1057 }
1058
1059
1060 /* Eliminate unnecessary statements. Any instruction not marked as necessary
1061 contributes nothing to the program, and can be deleted. */
1062
1063 static bool
1064 eliminate_unnecessary_stmts (void)
1065 {
1066 bool something_changed = false;
1067 basic_block bb;
1068 gimple_stmt_iterator gsi;
1069 gimple stmt;
1070 tree call;
1071
1072 if (dump_file && (dump_flags & TDF_DETAILS))
1073 fprintf (dump_file, "\nEliminating unnecessary statements:\n");
1074
1075 clear_special_calls ();
1076
1077 FOR_EACH_BB (bb)
1078 {
1079 /* Remove dead statements. */
1080 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
1081 {
1082 stmt = gsi_stmt (gsi);
1083
1084 stats.total++;
1085
1086 /* If GSI is not necessary then remove it. */
1087 if (!gimple_plf (stmt, STMT_NECESSARY))
1088 {
1089 remove_dead_stmt (&gsi, bb);
1090 something_changed = true;
1091 }
1092 else if (is_gimple_call (stmt))
1093 {
1094 call = gimple_call_fndecl (stmt);
1095 if (call)
1096 {
1097 tree name;
1098
1099 /* When LHS of var = call (); is dead, simplify it into
1100 call (); saving one operand. */
1101 name = gimple_call_lhs (stmt);
1102 if (name && TREE_CODE (name) == SSA_NAME
1103 && !TEST_BIT (processed, SSA_NAME_VERSION (name)))
1104 {
1105 something_changed = true;
1106 if (dump_file && (dump_flags & TDF_DETAILS))
1107 {
1108 fprintf (dump_file, "Deleting LHS of call: ");
1109 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1110 fprintf (dump_file, "\n");
1111 }
1112
1113 gimple_call_set_lhs (stmt, NULL_TREE);
1114 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1115 update_stmt (stmt);
1116 release_ssa_name (name);
1117 }
1118 notice_special_calls (stmt);
1119 }
1120 gsi_next (&gsi);
1121 }
1122 else
1123 {
1124 gsi_next (&gsi);
1125 }
1126 }
1127 }
1128 /* Since we don't track liveness of virtual PHI nodes, it is possible that we
1129 rendered some PHI nodes unreachable while they are still in use.
1130 Mark them for renaming. */
1131 if (cfg_altered)
1132 {
1133 basic_block next_bb;
1134 find_unreachable_blocks ();
1135 for (bb = ENTRY_BLOCK_PTR->next_bb; bb != EXIT_BLOCK_PTR; bb = next_bb)
1136 {
1137 next_bb = bb->next_bb;
1138 if (!TEST_BIT (bb_contains_live_stmts, bb->index)
1139 || !(bb->flags & BB_REACHABLE))
1140 {
1141 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1142 if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
1143 {
1144 bool found = false;
1145 imm_use_iterator iter;
1146
1147 FOR_EACH_IMM_USE_STMT (stmt, iter, gimple_phi_result (gsi_stmt (gsi)))
1148 {
1149 if (!(gimple_bb (stmt)->flags & BB_REACHABLE))
1150 continue;
1151 if (gimple_code (stmt) == GIMPLE_PHI
1152 || gimple_plf (stmt, STMT_NECESSARY))
1153 {
1154 found = true;
1155 BREAK_FROM_IMM_USE_STMT (iter);
1156 }
1157 }
1158 if (found)
1159 mark_virtual_phi_result_for_renaming (gsi_stmt (gsi));
1160 }
1161 if (!(bb->flags & BB_REACHABLE))
1162 delete_basic_block (bb);
1163 }
1164 }
1165 }
1166 FOR_EACH_BB (bb)
1167 {
1168 /* Remove dead PHI nodes. */
1169 something_changed |= remove_dead_phis (bb);
1170 }
1171
1172 return something_changed;
1173 }
1174
1175
1176 /* Print out removed statement statistics. */
1177
1178 static void
1179 print_stats (void)
1180 {
1181 float percg;
1182
1183 percg = ((float) stats.removed / (float) stats.total) * 100;
1184 fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
1185 stats.removed, stats.total, (int) percg);
1186
1187 if (stats.total_phis == 0)
1188 percg = 0;
1189 else
1190 percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
1191
1192 fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
1193 stats.removed_phis, stats.total_phis, (int) percg);
1194 }
1195
1196 /* Initialization for this pass. Set up the used data structures. */
1197
1198 static void
1199 tree_dce_init (bool aggressive)
1200 {
1201 memset ((void *) &stats, 0, sizeof (stats));
1202
1203 if (aggressive)
1204 {
1205 int i;
1206
1207 control_dependence_map = XNEWVEC (bitmap, last_basic_block);
1208 for (i = 0; i < last_basic_block; ++i)
1209 control_dependence_map[i] = BITMAP_ALLOC (NULL);
1210
1211 last_stmt_necessary = sbitmap_alloc (last_basic_block);
1212 sbitmap_zero (last_stmt_necessary);
1213 bb_contains_live_stmts = sbitmap_alloc (last_basic_block);
1214 sbitmap_zero (bb_contains_live_stmts);
1215 }
1216
1217 processed = sbitmap_alloc (num_ssa_names + 1);
1218 sbitmap_zero (processed);
1219
1220 worklist = VEC_alloc (gimple, heap, 64);
1221 cfg_altered = false;
1222 }
1223
1224 /* Cleanup after this pass. */
1225
1226 static void
1227 tree_dce_done (bool aggressive)
1228 {
1229 if (aggressive)
1230 {
1231 int i;
1232
1233 for (i = 0; i < last_basic_block; ++i)
1234 BITMAP_FREE (control_dependence_map[i]);
1235 free (control_dependence_map);
1236
1237 sbitmap_free (visited_control_parents);
1238 sbitmap_free (last_stmt_necessary);
1239 sbitmap_free (bb_contains_live_stmts);
1240 bb_contains_live_stmts = NULL;
1241 }
1242
1243 sbitmap_free (processed);
1244
1245 VEC_free (gimple, heap, worklist);
1246 }
1247
1248 /* Main routine to eliminate dead code.
1249
1250 AGGRESSIVE controls the aggressiveness of the algorithm.
1251 In conservative mode, we ignore control dependence and simply declare
1252 all but the most trivially dead branches necessary. This mode is fast.
1253 In aggressive mode, control dependences are taken into account, which
1254 results in more dead code elimination, but at the cost of some time.
1255
1256 FIXME: Aggressive mode before PRE doesn't work currently because
1257 the dominance info is not invalidated after DCE1. This is
1258 not an issue right now because we only run aggressive DCE
1259 as the last tree SSA pass, but keep this in mind when you
1260 start experimenting with pass ordering. */
1261
1262 static unsigned int
1263 perform_tree_ssa_dce (bool aggressive)
1264 {
1265 struct edge_list *el = NULL;
1266 bool something_changed = 0;
1267
1268 /* Preheaders are needed for SCEV to work.
1269 Simple lateches and recorded exits improve chances that loop will
1270 proved to be finite in testcases such as in loop-15.c and loop-24.c */
1271 if (aggressive)
1272 loop_optimizer_init (LOOPS_NORMAL
1273 | LOOPS_HAVE_RECORDED_EXITS);
1274
1275 tree_dce_init (aggressive);
1276
1277 if (aggressive)
1278 {
1279 /* Compute control dependence. */
1280 timevar_push (TV_CONTROL_DEPENDENCES);
1281 calculate_dominance_info (CDI_POST_DOMINATORS);
1282 el = create_edge_list ();
1283 find_all_control_dependences (el);
1284 timevar_pop (TV_CONTROL_DEPENDENCES);
1285
1286 visited_control_parents = sbitmap_alloc (last_basic_block);
1287 sbitmap_zero (visited_control_parents);
1288
1289 mark_dfs_back_edges ();
1290 }
1291
1292 find_obviously_necessary_stmts (el);
1293
1294 if (aggressive)
1295 loop_optimizer_finalize ();
1296
1297 longest_chain = 0;
1298 total_chain = 0;
1299 chain_ovfl = false;
1300 propagate_necessity (el);
1301 BITMAP_FREE (visited);
1302
1303 something_changed |= eliminate_unnecessary_stmts ();
1304 something_changed |= cfg_altered;
1305
1306 /* We do not update postdominators, so free them unconditionally. */
1307 free_dominance_info (CDI_POST_DOMINATORS);
1308
1309 /* If we removed paths in the CFG, then we need to update
1310 dominators as well. I haven't investigated the possibility
1311 of incrementally updating dominators. */
1312 if (cfg_altered)
1313 free_dominance_info (CDI_DOMINATORS);
1314
1315 statistics_counter_event (cfun, "Statements deleted", stats.removed);
1316 statistics_counter_event (cfun, "PHI nodes deleted", stats.removed_phis);
1317
1318 /* Debugging dumps. */
1319 if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
1320 print_stats ();
1321
1322 tree_dce_done (aggressive);
1323
1324 free_edge_list (el);
1325
1326 if (something_changed)
1327 return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
1328 | TODO_remove_unused_locals);
1329 else
1330 return 0;
1331 }
1332
1333 /* Pass entry points. */
1334 static unsigned int
1335 tree_ssa_dce (void)
1336 {
1337 return perform_tree_ssa_dce (/*aggressive=*/false);
1338 }
1339
1340 static unsigned int
1341 tree_ssa_dce_loop (void)
1342 {
1343 unsigned int todo;
1344 todo = perform_tree_ssa_dce (/*aggressive=*/false);
1345 if (todo)
1346 {
1347 free_numbers_of_iterations_estimates ();
1348 scev_reset ();
1349 }
1350 return todo;
1351 }
1352
1353 static unsigned int
1354 tree_ssa_cd_dce (void)
1355 {
1356 return perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
1357 }
1358
1359 static bool
1360 gate_dce (void)
1361 {
1362 return flag_tree_dce != 0;
1363 }
1364
1365 struct gimple_opt_pass pass_dce =
1366 {
1367 {
1368 GIMPLE_PASS,
1369 "dce", /* name */
1370 gate_dce, /* gate */
1371 tree_ssa_dce, /* execute */
1372 NULL, /* sub */
1373 NULL, /* next */
1374 0, /* static_pass_number */
1375 TV_TREE_DCE, /* tv_id */
1376 PROP_cfg | PROP_ssa, /* properties_required */
1377 0, /* properties_provided */
1378 0, /* properties_destroyed */
1379 0, /* todo_flags_start */
1380 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1381 }
1382 };
1383
1384 struct gimple_opt_pass pass_dce_loop =
1385 {
1386 {
1387 GIMPLE_PASS,
1388 "dceloop", /* name */
1389 gate_dce, /* gate */
1390 tree_ssa_dce_loop, /* execute */
1391 NULL, /* sub */
1392 NULL, /* next */
1393 0, /* static_pass_number */
1394 TV_TREE_DCE, /* tv_id */
1395 PROP_cfg | PROP_ssa, /* properties_required */
1396 0, /* properties_provided */
1397 0, /* properties_destroyed */
1398 0, /* todo_flags_start */
1399 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1400 }
1401 };
1402
1403 struct gimple_opt_pass pass_cd_dce =
1404 {
1405 {
1406 GIMPLE_PASS,
1407 "cddce", /* name */
1408 gate_dce, /* gate */
1409 tree_ssa_cd_dce, /* execute */
1410 NULL, /* sub */
1411 NULL, /* next */
1412 0, /* static_pass_number */
1413 TV_TREE_CD_DCE, /* tv_id */
1414 PROP_cfg | PROP_ssa, /* properties_required */
1415 0, /* properties_provided */
1416 0, /* properties_destroyed */
1417 0, /* todo_flags_start */
1418 TODO_dump_func | TODO_verify_ssa
1419 | TODO_verify_flow /* todo_flags_finish */
1420 }
1421 };